JP2000091650A - High temperature thermoelectric transducer - Google Patents

High temperature thermoelectric transducer

Info

Publication number
JP2000091650A
JP2000091650A JP10262011A JP26201198A JP2000091650A JP 2000091650 A JP2000091650 A JP 2000091650A JP 10262011 A JP10262011 A JP 10262011A JP 26201198 A JP26201198 A JP 26201198A JP 2000091650 A JP2000091650 A JP 2000091650A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
type thermoelectric
semiconductors
electrode
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10262011A
Other languages
Japanese (ja)
Other versions
JP3580406B2 (en
Inventor
Norio Nozaki
紀男 野崎
Maki Ishizawa
真樹 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26201198A priority Critical patent/JP3580406B2/en
Publication of JP2000091650A publication Critical patent/JP2000091650A/en
Application granted granted Critical
Publication of JP3580406B2 publication Critical patent/JP3580406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to absorb stress of a thermoelectric transducer due to bending or distortion caused by a difference in temperature by using such material as to make a first electrode movable for a first insulating member. SOLUTION: A second electrode (fixed electrode) 104 connected with thermoelectric transducing semiconductors 101, 102 is fixed to a second insulating member 107 constituted of, for example, an anodized aluminum film with an adhesive, etc., and is disposed on the heating side. In the meantime, a first electrode (movable electrode) 103 also connected with the thermoelectric transducing semiconductors 101, 102 is preferably made by patterning a silver foil attached to a first insulting member 105 constituted of, for example, a silicon resin film and is disposed on the cooling side. It is preferred that the first insulating member 105 disposed on the cooling side should have a thickness and an elasticity good enough to absorb distortion of the thermoelectric transuducing semiconductors 101, 102 caused by thermal stress during heating operation. For the material of the first insulating member 105, ethylene tetrafluoride resin can be used instead of silicon resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温度熱電変換素
子に係る。より詳細には、高温度となる燃料電池、ガス
エンジン等から排出される熱エネルギーを電気エネルギ
ーに変換して出力することが可能な高温度熱電変換素子
に関する。
[0001] The present invention relates to a high-temperature thermoelectric conversion element. More specifically, the present invention relates to a high-temperature thermoelectric conversion element capable of converting heat energy discharged from a high-temperature fuel cell, gas engine, or the like into electric energy and outputting the electric energy.

【0002】[0002]

【従来の技術】従来の熱電変換素子としては、例えば、
図4に示すものが挙げられる。図4の熱電変換素子は、
複数のp型熱電変換半導体401及びn型熱電変換半導
体402が電極403、404を介して交互かつ連続的
に接続され、その両面を絶縁性を有する基板405、4
07で挟み込んで構成され、片面を加熱板421、もう
一方の面を冷却板420に接触させて熱電変換装置とし
て用いられる。このような構成の熱電変換素子では、加
熱板421から貫流した熱と冷却板420により吸収さ
れた熱が絶縁性基板405、407を経て熱電変換半導
体401、402に達することによって、温度差が発生
する。この温度差はゼーベック効果により熱電変換半導
体401、402の両端間に起電力を発生させ、その結
果、電気出力配線422、423より電力が供給され
る。
2. Description of the Related Art As a conventional thermoelectric conversion element, for example,
One shown in FIG. The thermoelectric conversion element of FIG.
A plurality of p-type thermoelectric conversion semiconductors 401 and n-type thermoelectric conversion semiconductors 402 are alternately and continuously connected via electrodes 403 and 404, and both sides thereof have substrates 405 and 4 having insulating properties.
07, one side of which is in contact with the heating plate 421 and the other side of which is in contact with the cooling plate 420 to be used as a thermoelectric converter. In the thermoelectric conversion element having such a configuration, the heat flowing through the heating plate 421 and the heat absorbed by the cooling plate 420 reach the thermoelectric conversion semiconductors 401 and 402 via the insulating substrates 405 and 407, and a temperature difference occurs. I do. This temperature difference generates an electromotive force between both ends of the thermoelectric conversion semiconductors 401 and 402 by the Seebeck effect. As a result, power is supplied from the electric output wirings 422 and 423.

【0003】しかしながら、現状では絶縁性基板40
5、407の材質としては、一般的に平板のセラミック
材や平板のアルミナを用いて表面処理を施したアルミ材
が用いられている。従って、基板の形状が平面のため接
触面における熱抵抗等により熱伝搬が妨げられ、温度分
布が不均等となり熱電変換半導体に加わる温度差が小さ
くなって、電気出力が小さく熱電変換効率が低くなる、
という問題点があった。
However, at present, the insulating substrate 40
As the materials of 5, 407, generally, a flat ceramic material or an aluminum material subjected to a surface treatment using a flat alumina material is used. Therefore, since the shape of the substrate is flat, heat propagation is hindered by thermal resistance and the like at the contact surface, the temperature distribution becomes uneven, the temperature difference applied to the thermoelectric conversion semiconductor becomes small, the electric output is small, and the thermoelectric conversion efficiency is low. ,
There was a problem.

【0004】この問題点を解決する方法として、加熱側
基板407と加熱板421および冷却側基板405と冷
却板420の接触面に嵌合溝を設け接触面積の拡大を図
ることにより、熱流量を増加させ温度分布を均一化させ
る方法が、特開平10−144968号公報に開示され
ている。この方法によれば、加熱側基板407と加熱板
421および冷却側基板405と冷却板420の接触面
の熱流量を増加させ温度分布を均一化できるので、熱電
変換半導体401、402に加わる温度差が大きくなる
ため出力の増大効果が期待される。
As a method for solving this problem, a fitting groove is provided in a contact surface between the heating side substrate 407 and the heating plate 421 and a contact surface between the cooling side substrate 405 and the cooling plate 420 to enlarge the contact area, thereby reducing the heat flow. A method of increasing the temperature distribution to make the temperature distribution uniform is disclosed in Japanese Patent Application Laid-Open No. 10-144968. According to this method, the heat flow at the contact surface between the heating side substrate 407 and the heating plate 421 and the contact surface between the cooling side substrate 405 and the cooling plate 420 can be increased and the temperature distribution can be made uniform, so that the temperature difference applied to the thermoelectric conversion semiconductors 401 and 402 can be increased. Is expected to increase the output.

【0005】しかしながら、特開平10−144968
号公報に開示され方法は、熱供給温度が百数十℃程度の
熱電変換装置に使用して運転する場合には良好である
が、例えば、ディーゼルエンジン(排熱温度:300〜
450℃)や、ガスエンジン(排熱温度:400〜60
0℃)、固体電解質型燃料電池(排熱温度:600〜8
00℃)等のように排熱温度が300℃以上800℃以
下で熱供給運転する場合には、加熱側基板407と冷却
側基板405の温度の違いから金属特有の熱膨張差が発
生するため、百数十℃程度では問題とならなかった熱応
力が発生し熱電変換素子401、402の反り歪みが生
じる、という新たな問題が生じていた。
However, Japanese Patent Application Laid-Open No. H10-144968 discloses
The method disclosed in Japanese Patent Laid-Open Publication No. H06-27138 is good when operated by using a thermoelectric converter having a heat supply temperature of about one hundred and several tens of degrees Celsius, for example, a diesel engine (exhaust heat temperature: 300 to
450 ° C) or gas engine (exhaust heat temperature: 400-60
0 ° C.), solid oxide fuel cell (exhaust heat temperature: 600-8)
When the heat supply operation is performed at an exhaust heat temperature of 300 ° C. or more and 800 ° C. or less as in (00 ° C.), a difference in thermal expansion specific to metal occurs due to a difference in temperature between the heating side substrate 407 and the cooling side substrate 405. However, a new problem has arisen in that thermal stress, which is not a problem at about one hundred and several tens of degrees Celsius, is generated and warpage of the thermoelectric conversion elements 401 and 402 occurs.

【0006】この反り歪みは、熱供給温度が300℃以
上の場合には熱電変換素子401、402の機械的強度
の弱い部分、すなわち、熱電変換半導体401、402
本体や、熱電変換半導体401、402と電極403、
404との接続部411、412への応力となる。その
結果、金属疲労等により熱電変換半導体401、402
本体や熱電変換半導体401、402の電極403、4
04との接続部411、412の寿命を短くするという
問題が発生する。特に、熱電変換半導体401、402
は一般的に劈開性を持ち、通常の金属と比べ機械的強度
が弱いという性質を持つことから、熱電変換装置の熱供
給温度が300℃以上で運転する場合には、特開平10
−144968号公報に開示され方法だけでは上記問題
は解消できない状況にあった。
When the heat supply temperature is 300 ° C. or higher, the warp distortion is caused by the portions of the thermoelectric conversion elements 401 and 402 where the mechanical strength is weak, that is, the thermoelectric conversion semiconductors 401 and 402.
Body, thermoelectric conversion semiconductors 401 and 402 and electrodes 403,
This causes stress on the connection portions 411 and 412 with the 404. As a result, the thermoelectric conversion semiconductors 401 and 402 are caused by metal fatigue or the like.
Electrodes 403, 4 of the main body and thermoelectric conversion semiconductors 401, 402
There is a problem in that the life of the connection portions 411 and 412 with the 04 is shortened. In particular, thermoelectric conversion semiconductors 401 and 402
Is generally cleaved and has a lower mechanical strength than ordinary metals. Therefore, when the thermoelectric converter is operated at a heat supply temperature of 300 ° C. or more, the method disclosed in
The above-mentioned problem cannot be solved only by the method disclosed in JP-A-144968.

【0007】現在、熱電変換半導体401、402を構
成する材料としては、例えばビスマス−テルル系熱電変
換半導体が主に使用されているが、このビスマス−テル
ル系熱電変換半導体は本体温度が250〜300℃以上
に上昇すると空気中の酸素と反応して酸化する性質を有
する。従って、この酸化は直接的に熱電変換素子40
1、402の特性を劣化させ、出力を低下させるので、
この問題を解決することが期待されている。
At present, for example, a bismuth-tellurium-based thermoelectric conversion semiconductor is mainly used as a material constituting the thermoelectric conversion semiconductors 401 and 402, and the bismuth-tellurium-based thermoelectric conversion semiconductor has a body temperature of 250 to 300. It has the property of reacting with oxygen in the air and oxidizing when the temperature rises above ℃. Therefore, this oxidation is directly caused by the thermoelectric conversion element 40.
Since the characteristics of 1, 402 are deteriorated and the output is reduced,
It is hoped that this problem will be solved.

【0008】また、基板407、405と電極403、
404との間には絶縁材として耐熱400℃程度のポリ
イミドフィルム(不図示)を用いる場合があるが、電極
403、404を接着している接着剤(不図示)は耐熱
200℃程度であるため、熱電変換素子401、402
への供給温度を300℃以上とした場合、特開平10−
144968号公報に開示され方法は、冷却側基板40
5への適用は可能であるが、加熱側基板407への適用
はできない状況にあった。
Further, substrates 407 and 405 and electrodes 403,
In some cases, a polyimide film (not shown) having a heat resistance of about 400 ° C. is used as an insulating material between the electrodes 404 and 404, but the adhesive (not shown) bonding the electrodes 403 and 404 has a heat resistance of about 200 ° C. , Thermoelectric conversion elements 401, 402
When the supply temperature to the substrate is set to 300 ° C. or higher,
No. 144968 discloses a method for cooling the substrate 40.
5, but not to the heating-side substrate 407.

【0009】[0009]

【発明が解決しようとする課題】本発明は、熱電変換素
子への供給温度が300℃以上800℃以下という高温
度熱源供給時において、安定した出力の確保と、高い熱
電変換効率と、優れた耐久性とを兼ね備えた高温度熱電
変換素子を提供することを目的とする。
SUMMARY OF THE INVENTION According to the present invention, when supplying a high-temperature heat source at a supply temperature of 300 ° C. or more and 800 ° C. or less, a stable output, high thermoelectric conversion efficiency, and excellent thermoelectric conversion efficiency can be obtained. An object of the present invention is to provide a high-temperature thermoelectric conversion element having both durability and durability.

【0010】[0010]

【問題を解決するための手段】本発明に係る第一の高温
度熱電変換素子は、複数のp型熱電変換半導体とn型熱
電変換半導体とを交互に離間して設け、隣り合うp型熱
電変換半導体とn型熱電変換半導体の上面を電気的に接
続する第一の電極と、隣り合うp型熱電変換半導体とn
型熱電変換半導体の下面を電気的に接続する第二の電極
とを交互に備えることによって、前記複数のp型熱電変
換半導体とn型熱電変換半導体を直列に接続するととも
に、前記第一の電極が前記複数のp型熱電変換半導体と
n型熱電変換半導体に接触している側と反対の側には、
第一の絶縁部材、冷却側基板を順に接触させて設け、前
記第二の電極が前記複数のp型熱電変換半導体とn型熱
電変換半導体に接触している側と反対の側には、第二の
絶縁部材、加熱側基板を順に接触させて配置して構成さ
れ、更に、前記冷却側基板を冷却板に、前記加熱側基板
を加熱板に接触させることにより電気出力を得る高温度
熱電変換素子において、前記第一の絶縁部材は前記第一
の電極が可動となるような材料であることを特徴とす
る。
A first high-temperature thermoelectric conversion element according to the present invention comprises a plurality of p-type thermoelectric conversion semiconductors and a plurality of n-type thermoelectric conversion semiconductors which are alternately separated from each other, and the adjacent p-type thermoelectric conversion elements are provided. A first electrode for electrically connecting the conversion semiconductor and the upper surface of the n-type thermoelectric conversion semiconductor;
The plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductors are connected in series by alternately providing second electrodes for electrically connecting the lower surfaces of the type thermoelectric conversion semiconductors, and the first electrode On the side opposite to the side in contact with the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor,
A first insulating member and a cooling-side substrate are provided in contact with each other in order, and the second electrode has a plurality of p-type thermoelectric conversion semiconductors and an n-type thermoelectric conversion semiconductor. A high-temperature thermoelectric conversion device configured to contact and arrange the second insulating member and the heating-side substrate in order, and to obtain an electrical output by contacting the cooling-side substrate with a cooling plate and the heating-side substrate with a heating plate. The element is characterized in that the first insulating member is made of a material that makes the first electrode movable.

【0011】上記構成では、第一の絶縁部材として第一
の電極が可動となるような材料を用いたことにより、熱
電変換素子の温度差により生じる反りや歪みによる応力
を、第一の電極が可動となるような材料の弾性により吸
収することが可能となる。
[0011] In the above configuration, since the first insulating member is made of a material that allows the first electrode to move, stress caused by warpage or distortion caused by a temperature difference of the thermoelectric conversion element is reduced by the first electrode. It becomes possible to absorb by the elasticity of the material which becomes movable.

【0012】このような第一の電極が可動となるような
材料としては、導熱性シリコン樹脂又は4フッ化エチレ
ン樹脂が好適に用いられる。
As such a material that the first electrode becomes movable, a heat conductive silicon resin or a tetrafluoroethylene resin is preferably used.

【0013】本発明に係る第二の高温度熱電変換素子
は、複数のp型熱電変換半導体とn型熱電変換半導体と
を交互に離間して設け、隣り合うp型熱電変換半導体と
n型熱電変換半導体の上面を電気的に接続する第一の電
極と、隣り合うp型熱電変換半導体とn型熱電変換半導
体の下面を電気的に接続する第二の電極とを交互に備え
ることによって、前記複数のp型熱電変換半導体とn型
熱電変換半導体を直列に接続するとともに、前記第一の
電極が前記複数のp型熱電変換半導体とn型熱電変換半
導体に接触している側と反対の側には、第一の絶縁部
材、冷却側基板を順に接触させて設け、前記第二の電極
が前記複数のp型熱電変換半導体とn型熱電変換半導体
に接触している側と反対の側には、第二の絶縁部材、加
熱側基板を順に接触させて配置して構成され、更に、前
記冷却側基板を冷却板に、前記加熱側基板を加熱板に接
触させることにより電気出力を得る高温度熱電変換素子
において、前記第二の絶縁部材は300℃以上800℃
以下の耐熱性をもつ材料であることを特徴とする。
A second high-temperature thermoelectric conversion element according to the present invention is provided with a plurality of p-type thermoelectric conversion semiconductors and n-type thermoelectric conversion semiconductors which are alternately separated from each other. By alternately including a first electrode electrically connecting the upper surface of the conversion semiconductor, and a second electrode electrically connecting the lower surface of the adjacent p-type thermoelectric conversion semiconductor and the n-type thermoelectric conversion semiconductor, A side opposite to a side where the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor are connected in series, and the first electrode is in contact with the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor. A first insulating member and a cooling side substrate are provided in contact with each other in order, and the second electrode is provided on the side opposite to the side in contact with the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor. Contact the second insulating member and the heating side substrate in order. Further, in the high-temperature thermoelectric conversion element that obtains an electric output by bringing the cooling-side substrate into contact with the cooling plate and the heating-side substrate into contact with the heating plate, the second insulating member has a temperature of 300 ° C. 800 ℃
It is a material having the following heat resistance.

【0014】上記構成では、第二の絶縁部材として30
0℃以上800℃以下の耐熱性をもつ材料を用いたこと
により、供給温度が300〜800℃の範囲にあるディ
ーゼルエンジンをはじめ、ガスエンジンや固体電解質型
燃料電池等の排熱を、熱電変換素子への熱供給源として
利用できる。
In the above configuration, 30 second insulating members are used.
By using a material having a heat resistance of 0 ° C. or more and 800 ° C. or less, waste heat of a diesel engine, a gas engine, a solid oxide fuel cell, or the like having a supply temperature in a range of 300 to 800 ° C. is converted to a thermoelectric conversion. It can be used as a heat source for the device.

【0015】このような300℃以上800℃以下の耐
熱性をもつ材料としては、陽極酸化アルミが好ましい。
As such a material having a heat resistance of 300 ° C. or more and 800 ° C. or less, anodized aluminum is preferable.

【0016】上記特徴を有する高温度熱電変換素子にお
いて、前記冷却側基板と前記冷却板の互いの接触面、及
び、前記加熱側基板と前記加熱板の互いの接触面、を嵌
合溝構造とすることにより、各接触面の面積を拡大させ
ることができるので、熱流量を増加させ温度分布の均一
化が図れる。その結果、熱電変換半導体に加わる温度差
が大きくなるため出力の増大が可能となる。
In the high-temperature thermoelectric conversion element having the above characteristics, the contact surface between the cooling-side substrate and the cooling plate and the contact surface between the heating-side substrate and the heating plate may be formed by a fitting groove structure. By doing so, the area of each contact surface can be increased, so that the heat flow can be increased and the temperature distribution can be made uniform. As a result, the temperature difference applied to the thermoelectric conversion semiconductor increases, so that the output can be increased.

【0017】また、上記構成における第二の電極とし
て、真空蒸着法により作製した金属箔を用いることによ
り、金属箔を第二の絶縁部材に固定する際に、第二の絶
縁部材を構成する陽極酸化アルミ被膜の封孔処理も同時
に行うことができる。
Further, by using a metal foil produced by a vacuum deposition method as the second electrode in the above configuration, when the metal foil is fixed to the second insulating member, the anode constituting the second insulating member is used. The sealing treatment of the aluminum oxide film can be performed at the same time.

【0018】さらに、上記特徴を有する高温度熱電変換
素子において、前記複数のp型熱電変換半導体とn型熱
電変換半導体の上下面以外の側面に陽極酸化アルミ被膜
を設けることにより、空気中の酸素による熱電変換半導
体の酸化が防止できる。
Further, in the high-temperature thermoelectric conversion element having the above characteristics, an anodized aluminum film is provided on the side surfaces other than the upper and lower surfaces of the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor, so that oxygen in the air can be reduced. Can prevent oxidation of the thermoelectric conversion semiconductor.

【0019】またさらに、上記特徴を有する高温度熱電
変換素子において、前記複数のp型熱電変換半導体及び
n型熱電変換半導体と前記第一の電極との接触面、並び
に、前記複数のp型熱電変換半導体及びn型熱電変換半
導体と前記第二の電極との接触面、に銀メッキを施した
ことにより、加熱側各部において放射、対流による熱伝
導を低減させ熱電変換半導体にかかる温度差を向上させ
ることができる。
Still further, in the high-temperature thermoelectric conversion element having the above characteristics, a contact surface between the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor and the first electrode; Silver plating is applied to the contact surface between the conversion semiconductor and the n-type thermoelectric conversion semiconductor and the second electrode, thereby reducing heat radiation and convection in each part on the heating side and improving the temperature difference applied to the thermoelectric conversion semiconductor. Can be done.

【0020】[0020]

【発明の実施の形態】以下では、本発明に係る高温度熱
電変換素子について、図面に基づき詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A high-temperature thermoelectric conversion element according to the present invention will be described below in detail with reference to the drawings.

【0021】図1は、本発明に係る高温度熱電変換素子
の模式的な断面図である。図1において、101はp型
熱電変換半導体、102はn型熱電変換半導体、103
は第一の電極、104は第二の電極、105は第一の絶
縁部材、106は冷却側基板、107は第二の絶縁部
材、108は加熱側基板、109は冷却側基板と冷却板
との接触面、110加熱側基板と加熱板との接触面、1
11は熱電変換半導体と第一の電極との接触部、112
は熱電変換半導体と第二の電極との接触部、120は冷
却板、121は加熱板、122及び123は電気出力配
線である。
FIG. 1 is a schematic sectional view of a high temperature thermoelectric conversion element according to the present invention. In FIG. 1, 101 is a p-type thermoelectric conversion semiconductor, 102 is an n-type thermoelectric conversion semiconductor, 103
Is a first electrode, 104 is a second electrode, 105 is a first insulating member, 106 is a cooling side substrate, 107 is a second insulating member, 108 is a heating side substrate, and 109 is a cooling side substrate and a cooling plate. Contact surface, 110 contact surface between the heating-side substrate and the heating plate, 1
11 is a contact portion between the thermoelectric conversion semiconductor and the first electrode, 112
Is a contact portion between the thermoelectric conversion semiconductor and the second electrode, 120 is a cooling plate, 121 is a heating plate, and 122 and 123 are electric output wirings.

【0022】図1に示した高温度熱電変換素子では、複
数のp型熱電変換半導体101とn型熱電変換半導体1
02は、交互に離間して設けられ、隣り合うp型熱電変
換半導体101とn型熱電変換半導体102の上面(冷
却側)には第一の電極103を、隣り合うp型熱電変換
半導体101とn型熱電変換半導体102の下面(加熱
側)には第二の電極104を、交互に備えることによっ
て、前記複数のp型熱電変換半導体101とn型熱電変
換半導体102を直列に接続している。その際、第一の
電極103は熱が加わった際に可動できる材料で、第二
の電極104は熱が加わっても固定された状態を維持す
る材料で、それぞれ構成する。
In the high temperature thermoelectric conversion element shown in FIG. 1, a plurality of p-type thermoelectric conversion semiconductors 101 and n-type thermoelectric conversion
Reference numeral 02 denotes a first electrode 103 provided on the upper surface (cooling side) of an adjacent p-type thermoelectric conversion semiconductor 101 and an n-type thermoelectric conversion semiconductor 102, and a p-type thermoelectric conversion semiconductor 101 adjacent to the p-type thermoelectric conversion semiconductor 101. The plurality of p-type thermoelectric conversion semiconductors 101 and the n-type thermoelectric conversion semiconductors 102 are connected in series by alternately providing second electrodes 104 on the lower surface (heating side) of the n-type thermoelectric conversion semiconductor 102. . At this time, the first electrode 103 is made of a material that can move when heat is applied, and the second electrode 104 is made of a material that maintains a fixed state even when heat is applied.

【0023】更に、図1の高温度熱電変換素子は、第一
の電極103が複数のp型熱電変換半導体101とn型
熱電変換半導体102に接触している側と反対の側に
は、第一の絶縁部材105、冷却側基板106を順に接
触させて設け、前記第二の電極104が前記複数のp型
熱電変換半導体101とn型熱電変換半導体102に接
触している側と反対の側には、第二の絶縁部材104、
加熱側基板108を順に接触させて配置して構成され、
更に、前記冷却側基板106を冷却板120に、前記加
熱側基板108を加熱板121に接触させることにより
電気出力を得る。
Further, the high-temperature thermoelectric conversion element shown in FIG. 1 has a first electrode 103 on the side opposite to the side in contact with the plurality of p-type thermoelectric conversion semiconductors 101 and n-type thermoelectric conversion semiconductors 102. One insulating member 105 and a cooling-side substrate 106 are provided in contact with each other in this order, and the side opposite to the side where the second electrode 104 is in contact with the plurality of p-type thermoelectric conversion semiconductors 101 and n-type thermoelectric conversion semiconductors 102. Has a second insulating member 104,
It is configured by arranging the heating side substrates 108 in contact with each other,
Further, an electrical output is obtained by bringing the cooling-side substrate 106 into contact with the cooling plate 120 and the heating-side substrate 108 into contact with the heating plate 121.

【0024】その際、第一の電極103としては、熱が
加わった際に可動できる材料が好ましく、第二の電極1
04としては、熱が加わっても固定された状態を維持す
る材料が望ましい。
At this time, the first electrode 103 is preferably made of a material which can be moved when heat is applied.
As 04, a material that maintains a fixed state even when heat is applied is desirable.

【0025】具体的には、複数のp型熱電変換半導体1
01及びn型熱電変換半導体102が接続された第二の
電極(固定電極)104は、例えば陽極酸化アルミ被膜
からなる第二の絶縁部材107に接着材(不図示)によ
り固定、若しくは真空蒸着により陽極酸化アルミ被膜1
07の封孔処理とともに固定され、加熱側に設けられ
る。一方、複数のp型熱電変換半導体101及びn型熱
電変換半導体102が接続された第一の電極(可動電
極)103は、例えばシリコン樹脂被膜からなる第一の
絶縁部材105に接着された銀箔をパターン化したもの
が好適であり、冷却側に設けられる。その際、冷却側に
設ける第一の絶縁部材105は、加熱運転時における熱
電変換半導体101、102の熱応力による変形を吸収
する厚みと弾性を有する形態が好ましい。ここで、シリ
コン樹脂とはシリコンを任意の樹脂で固めたものを指
す。また、第一の絶縁部材105として、シリコン樹脂
に代えて4フッ化エチレン樹脂(商品名テフロンと呼称
されるもの等)を用いても構わない。
Specifically, a plurality of p-type thermoelectric conversion semiconductors 1
The second electrode (fixed electrode) 104 to which the 01-type and n-type thermoelectric conversion semiconductors 102 are connected is fixed to a second insulating member 107 made of, for example, an anodized aluminum film with an adhesive (not shown) or by vacuum evaporation. Anodized aluminum coating 1
It is fixed together with the sealing process of 07 and provided on the heating side. On the other hand, the first electrode (movable electrode) 103 to which the plurality of p-type thermoelectric conversion semiconductors 101 and n-type thermoelectric conversion semiconductors 102 are connected is a silver foil bonded to a first insulating member 105 made of, for example, a silicon resin film. Patterned ones are preferred and are provided on the cooling side. At this time, it is preferable that the first insulating member 105 provided on the cooling side has a thickness and elasticity that absorb deformation of the thermoelectric conversion semiconductors 101 and 102 due to thermal stress during the heating operation. Here, the silicon resin refers to a material obtained by hardening silicon with an arbitrary resin. Further, as the first insulating member 105, a tetrafluoroethylene resin (such as one called trade name Teflon) may be used instead of the silicon resin.

【0026】また、図1の高温度熱電変換素子におい
て、冷却側基板106と冷却板120の互いの接触面1
09、及び、加熱側基板108と加熱板121の互いの
接触面110、を嵌合溝構造とする形態が望ましい。こ
のような嵌合溝構造は、各接触面109、110の面積
を拡大させることができるので、熱流量を増加させ温度
分布の均一化が図れる。その結果、熱電変換半導体10
1、102に加わる温度差が大きくなるため出力の増大
が可能な、高温度熱電変換素子が得られる。
In the high-temperature thermoelectric conversion element shown in FIG. 1, the contact surface 1 of the cooling-side substrate 106 and the cooling plate 120 is in contact with each other.
09 and the contact surfaces 110 of the heating-side substrate 108 and the heating plate 121 are preferably formed in a fitting groove structure. Such a fitting groove structure can increase the area of each of the contact surfaces 109 and 110, so that the heat flow can be increased and the temperature distribution can be made uniform. As a result, the thermoelectric conversion semiconductor 10
A high-temperature thermoelectric conversion element capable of increasing the output due to a large temperature difference applied to the elements 1 and 102 is obtained.

【0027】図2は、図1に示した高温度熱電変換素子
を、高温度で運転した際の状態を示した模式的な断面図
である。図2に示すように、加熱側の嵌合溝付基板20
8は冷却側の嵌合溝付基板206よりも装置運転時には
非常に高温となるため、金属特有の熱膨張現象が起こり
両嵌合溝付基板206、208の寸法に相違が生じる。
また、複数のp型熱電変換半導体201及びn型熱電変
換半導体202においても両端温度差のため台形状に変
形が生じる。この変形は、どの熱電変換半導体でも同一
となるが、その傾きは基板中心部では小さく、基板外周
部に近づくほど大きくなる傾向がある。このような熱膨
張による応力は、劈開性をもつ熱電変換半導体201、
202本体、若しくは各熱電変換半導体201、202
と電極203、204との接続部211、212に歪み
となってかかる。しかしながら、本発明に係る高温度熱
電変換素子では、図3に示すように、熱膨張により台形
状に変形した熱電変換半導体201、202の加熱側か
ら冷却側に至る方向の熱膨張は、冷却側に設けた第一の
絶縁部材205であるシリコン樹脂の弾性によって吸収
することができる。
FIG. 2 is a schematic sectional view showing a state when the high-temperature thermoelectric conversion element shown in FIG. 1 is operated at a high temperature. As shown in FIG.
Since the temperature of the substrate 8 becomes much higher during operation of the apparatus than the substrate 206 having the fitting groove on the cooling side, a thermal expansion phenomenon peculiar to metal occurs, and the dimensions of the substrates 206 and 208 having the fitting groove differ.
In addition, a plurality of p-type thermoelectric conversion semiconductors 201 and n-type thermoelectric conversion semiconductors 202 are also trapezoidally deformed due to a temperature difference between both ends. This deformation is the same for all the thermoelectric conversion semiconductors, but the inclination tends to be smaller at the center of the substrate and larger as approaching the outer periphery of the substrate. The stress due to such thermal expansion is caused by the thermoelectric conversion semiconductor 201 having a cleavage property,
202 body or each thermoelectric conversion semiconductor 201, 202
The connection parts 211 and 212 between the electrodes 203 and 204 are distorted. However, in the high-temperature thermoelectric conversion element according to the present invention, as illustrated in FIG. Can be absorbed by the elasticity of the silicon resin that is the first insulating member 205 provided in the first member.

【0028】また、加熱側基板208における熱電変換
半導体接続部方向の熱膨張は加熱側基板221の嵌合溝
部分の微少滑面および素材弾性により緩和された後、熱
電変換半導体201、202の傾斜となって現れる。こ
の傾斜にかかる応力は、冷却側の第一の絶縁部材205
として設けたシリコン樹脂および冷却側の第一の電極
(可動電極)203の弾性による変形となって吸収され
る。このため、本発明に係る熱電変換素子は、加熱温度
と冷却温度の差が300〜800℃の範囲にある場合に
おいても、熱電変換半導体201、202本体若しくは
熱電変換半導体201、202と電極203、204と
の接続部分211、212にかかる熱応力を、従来に比
べて非常に小さくすることができる。
The thermal expansion of the heating-side substrate 208 in the direction of the thermoelectric conversion semiconductor connecting portion is reduced by the minute smooth surface of the fitting groove portion of the heating-side substrate 221 and the material elasticity, and then the inclination of the thermoelectric conversion semiconductors 201 and 202 is reduced. Appears as. The stress applied to this inclination is caused by the first insulating member 205 on the cooling side.
And the first electrode (movable electrode) 203 on the cooling side is elastically deformed and absorbed. Therefore, the thermoelectric conversion element according to the present invention, even when the difference between the heating temperature and the cooling temperature is in the range of 300 to 800 ° C., the thermoelectric conversion semiconductors 201 and 202 or the thermoelectric conversion semiconductors 201 and 202 and the electrodes 203, The thermal stress applied to the connection portions 211 and 212 with the 204 can be made extremely small as compared with the related art.

【0029】図3は、本発明に係る高温度熱電変換素子
を構成するn又はp型熱電変換半導体の模式的な斜視図
である。図3において、b1とb2は電極103、10
4と接する上下面を、a1〜a4は上下面以外の側面を
指す。従来、例えばビスマス−テルルからなる熱電変換
半導体は、本体温度が250〜300℃以上に上昇する
と空気中の酸素と反応して劣化する傾向があった。これ
に対して、本発明に係る熱電変換半導体では、この劣化
を防止するため熱電変換半導体101、102の加熱側
から冷却側に至る方向、すなわち熱電変換半導体10
1、102と電極103、104との接続面b1、b2
以外の側面a1〜a4に陽極酸化アルミ被膜を設けたこ
とにより大気を遮断できるので、各熱電変換半導体10
1、102の劣化を抑止できる。また、各熱電変換半導
体101、102の側面a1〜a4に設けた陽極酸化ア
ルミ被膜は、大気遮断の利点以外に陽極酸化アルミ被膜
自体の熱絶縁性を高めることにより加熱側基板108面
からの放射熱による熱電変換半導体101、102の温
度上昇を低減し熱電変換半導体101、102にかかる
温度差を確立させて出力を増大させる二次的効果も有す
る。
FIG. 3 is a schematic perspective view of an n-type or p-type thermoelectric conversion semiconductor constituting the high-temperature thermoelectric conversion element according to the present invention. In FIG. 3, b1 and b2 are electrodes 103, 10
4 and a1 to a4 indicate side surfaces other than the upper and lower surfaces. Conventionally, a thermoelectric conversion semiconductor made of, for example, bismuth-tellurium has a tendency to react with oxygen in air when the body temperature rises to 250 to 300 ° C. or more, and deteriorate. On the other hand, in the thermoelectric conversion semiconductor according to the present invention, in order to prevent this deterioration, the direction from the heating side to the cooling side of the thermoelectric conversion semiconductors 101 and 102, that is, the thermoelectric conversion semiconductor 10
Connection surfaces b1, b2 between electrodes 1, 102 and electrodes 103, 104
By providing an anodized aluminum coating on the side surfaces a1 to a4 other than the above, the atmosphere can be shut off.
1, 102 can be prevented from deteriorating. The anodized aluminum film provided on the side surfaces a1 to a4 of each of the thermoelectric conversion semiconductors 101 and 102 has the advantage of improving the thermal insulation properties of the anodized aluminum film itself in addition to the advantage of shielding from the air, so that the radiation from the surface 108 of the heating-side substrate 108 is improved. There is also a secondary effect of reducing the temperature rise of the thermoelectric conversion semiconductors 101 and 102 due to heat, establishing the temperature difference between the thermoelectric conversion semiconductors 101 and 102, and increasing the output.

【0030】また、加熱側基板108の第二の電極(固
定電極)104に対する各熱電変換半導体101、10
2の接続と、冷却側基板106の第一の電極(可動電
極)103に対する各熱電変換半導体101、102の
接続は、次に示すような異なる構成とした。すなわち、
加熱側基板108の第二の電極(固定電極)104に対
する各熱電変換半導体101、102の接続は、各熱電
変換半導体101、102の接続面112に銀メッキ処
理を施した後500℃程度で溶解する銀ろうを使用して
ろう付けした。一方、冷却側基板106の第一の電極
(可動電極)103に対する各熱電変換半導体101、
102の接続は、各熱電変換半導体101、102のの
接続面111に銀メッキまたは銅メッキ処理を施した後
200℃程度で溶解する半田を使用して半田付けした。
このような構成により、高温度時の運転において、冷却
側基板108の第一の電極(可動電極)103と各熱電
変換半導体101、102との接続面111に生じる熱
膨張をさらに緩和することができる。
Each of the thermoelectric conversion semiconductors 101, 10 with respect to the second electrode (fixed electrode) 104 of the heating-side substrate 108
2 and the connection of each of the thermoelectric conversion semiconductors 101 and 102 to the first electrode (movable electrode) 103 of the cooling-side substrate 106 have different configurations as described below. That is,
The connection of each of the thermoelectric conversion semiconductors 101 and 102 to the second electrode (fixed electrode) 104 of the heating-side substrate 108 is performed at about 500 ° C. after performing silver plating on the connection surface 112 of each of the thermoelectric conversion semiconductors 101 and 102. It was brazed using silver brazing. On the other hand, each thermoelectric conversion semiconductor 101 with respect to the first electrode (movable electrode) 103 of the cooling side substrate 106,
The connection of 102 was performed by applying silver plating or copper plating to the connection surface 111 of each of the thermoelectric conversion semiconductors 101 and 102, and then soldering the solder at about 200 ° C.
With such a configuration, in the operation at a high temperature, the thermal expansion generated on the connection surface 111 between the first electrode (movable electrode) 103 of the cooling-side substrate 108 and each of the thermoelectric conversion semiconductors 101 and 102 can be further reduced. it can.

【0031】上記構成からなる図1に示した高温度熱電
変換素子は、熱電変換素子への供給温度が300〜80
0℃という高温度熱源供給時でも安定に動作し、その出
力は2〜5kW/m2(供給温度300℃の場合)、5
〜13kW/m2(供給温度800℃の場合)であり十
分実用に値することが確認された。また、供給熱エネル
ギーと電気出力の比である熱電変換効率は2.5〜9%
(供給温度300℃の場合)、8〜19%(供給温度8
00℃の場合)と高効率であり、同出力の従来装置と比
較して装置体積が十分に小さいため省スペース化も図れ
ることが分かった。従って、本発明に係る高温度熱電変
換素子は、固体電解質型燃料電池やゴミ焼却炉等の排熱
を直接、電気エネルギーに変換できることが明らかとな
った。
The high-temperature thermoelectric conversion element shown in FIG. 1 having the above configuration has a supply temperature of 300 to 80 to the thermoelectric conversion element.
It operates stably even when a high-temperature heat source of 0 ° C. is supplied, and its output is 2 to 5 kW / m 2 (when the supply temperature is 300 ° C.).
1313 kW / m 2 (at a supply temperature of 800 ° C.), which was confirmed to be sufficiently practical. The thermoelectric conversion efficiency, which is the ratio of the supplied thermal energy to the electrical output, is 2.5 to 9%.
(At a supply temperature of 300 ° C.), 8 to 19% (at a supply temperature of 8
(In the case of 00 ° C.), the efficiency was high, and the volume of the device was sufficiently smaller than that of the conventional device having the same output, so that it was found that the space could be saved. Therefore, it has been clarified that the high-temperature thermoelectric conversion element according to the present invention can directly convert waste heat from a solid oxide fuel cell or a waste incinerator to electric energy.

【0032】[0032]

【発明の効果】以上説明したように、本発明に係る高温
度熱電変換素子は、熱電変換素子への供給温度が300
〜800℃という高温度熱源供給時に、各熱電変換半導
体と加熱側基板との接続は固定状態が維持される構成
と、各熱電変換半導体111、112と冷却側基板との
接続は可動状態となる構成とを備えている。従って、本
発明によれば、熱電変換素子への供給温度が300〜8
00℃という高温度熱源供給時において、安定した出力
の確保と、高い熱電変換効率と、優れた耐久性とを兼ね
備えた高温度熱電変換素子、すなわち、供給温度が30
0〜800℃となるディーゼルエンジン、ガスエンジ
ン、固体電解質型燃料電池等の排熱を、熱電変換素子へ
の熱供給源として利用できる高温度熱電変換素子を提供
することができる。
As described above, in the high-temperature thermoelectric conversion element according to the present invention, the supply temperature to the thermoelectric conversion element is 300.
When a high-temperature heat source of up to 800 ° C. is supplied, the connection between each thermoelectric conversion semiconductor and the heating-side substrate is maintained in a fixed state, and the connection between each thermoelectric conversion semiconductor 111 and 112 and the cooling-side substrate is movable. Configuration. Therefore, according to the present invention, the supply temperature to the thermoelectric conversion element is 300 to 8
When a high-temperature heat source of 00 ° C. is supplied, a high-temperature thermoelectric conversion element having stable output, high thermoelectric conversion efficiency, and excellent durability, that is, a supply temperature of 30 ° C.
It is possible to provide a high-temperature thermoelectric conversion element that can use exhaust heat of a diesel engine, a gas engine, a solid oxide fuel cell, or the like having a temperature of 0 to 800 ° C. as a heat supply source to the thermoelectric conversion element.

【0033】また、本発明に係る高温度熱電変換素子
は、熱電変換効率が向上するにより、同出力の従来装置
と比較して装置の小型化や省スペース化も達成できる。
Further, the high-temperature thermoelectric conversion element according to the present invention can improve the thermoelectric conversion efficiency, so that the device can be made smaller and space-saving as compared with a conventional device having the same output.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る高温度熱電変換素子の模式的な断
面図である。
FIG. 1 is a schematic sectional view of a high-temperature thermoelectric conversion element according to the present invention.

【図2】図1に示した高温度熱電変換素子を、高温度で
運転した際の状態を示した模式的な断面図である。
FIG. 2 is a schematic sectional view showing a state when the high-temperature thermoelectric conversion element shown in FIG. 1 is operated at a high temperature.

【図3】本発明に係る高温度熱電変換素子を構成するn
又はp型熱電変換半導体の模式的な斜視図である。
FIG. 3 shows n constituting the high-temperature thermoelectric conversion element according to the present invention.
Alternatively, it is a schematic perspective view of a p-type thermoelectric conversion semiconductor.

【図4】従来の高温度熱電変換素子の模式的な断面図で
ある。
FIG. 4 is a schematic sectional view of a conventional high-temperature thermoelectric conversion element.

【符号の説明】[Explanation of symbols]

101、201 p型熱電変換半導体、 102、201 n型熱電変換半導体、 103、203 第一の電極(可動電極)、 104、204 第二の電極(固定電極)、 105、205 第一の絶縁部材、 106、206 冷却側基板、 107、207 第二の絶縁部材、 108、208 加熱側基板、 109、209 冷却側基板と冷却板との接触面、 110、210 加熱側基板と加熱板との接触面、 111、211 熱電変換半導体と第一の電極との接触
部、 112、212 熱電変換半導体と第二の電極との接触
部、 120、220 冷却板、 121、221 加熱板、 122、123、222、223 電気出力配線、 401 p型熱電変換半導体、 402 n型熱電変換半導体、 403、404 電極、 405、407 絶縁性基板、 411、412 各熱電変換半導体と各電極との接続
部、 420 冷却板、 421 加熱板、 422、423 電気出力配線。
101, 201 p-type thermoelectric conversion semiconductor, 102, 201 n-type thermoelectric conversion semiconductor, 103, 203 first electrode (movable electrode), 104, 204 second electrode (fixed electrode), 105, 205 first insulating member , 106, 206 Cooling-side substrate, 107, 207 Second insulating member, 108, 208 Heating-side substrate, 109, 209 Contact surface between cooling-side substrate and cooling plate, 110, 210 Contact between heating-side substrate and heating plate Surfaces, 111, 211 contact portions between the thermoelectric conversion semiconductor and the first electrode, 112, 212 contact portions between the thermoelectric conversion semiconductor and the second electrode, 120, 220 cooling plate, 121, 221 heating plate, 122, 123, 222, 223 electric output wiring, 401 p-type thermoelectric conversion semiconductor, 402 n-type thermoelectric conversion semiconductor, 403, 404 electrode, 405, 407 insulating substrate, 411 412 connection portion between each of the thermoelectric conversion semiconductor and the electrodes, 420 the cooling plate, 421 heating plate, 422 and 423 electrical output wiring.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 複数のp型熱電変換半導体とn型熱電変
換半導体とを交互に離間して設け、隣り合うp型熱電変
換半導体とn型熱電変換半導体の上面を電気的に接続す
る第一の電極と、隣り合うp型熱電変換半導体とn型熱
電変換半導体の下面を電気的に接続する第二の電極とを
交互に備えることによって、前記複数のp型熱電変換半
導体とn型熱電変換半導体を直列に接続するとともに、 前記第一の電極が前記複数のp型熱電変換半導体とn型
熱電変換半導体に接触している側と反対の側には、第一
の絶縁部材、冷却側基板を順に接触させて設け、前記第
二の電極が前記複数のp型熱電変換半導体とn型熱電変
換半導体に接触している側と反対の側には、第二の絶縁
部材、加熱側基板を順に接触させて配置して構成され、 更に、前記冷却側基板を冷却板に、前記加熱側基板を加
熱板に接触させることにより電気出力を得る高温度熱電
変換素子において、 前記第一の絶縁部材は前記第一の電極が可動となるよう
な材料であることを特徴とする高温度熱電変換素子。
1. A first method for providing a plurality of p-type thermoelectric conversion semiconductors and n-type thermoelectric conversion semiconductors alternately separated from each other, and electrically connecting upper surfaces of adjacent p-type thermoelectric conversion semiconductors and n-type thermoelectric conversion semiconductors. Are alternately provided with a second electrode for electrically connecting the lower surfaces of the adjacent p-type thermoelectric conversion semiconductors and n-type thermoelectric conversion semiconductors, so that the plurality of p-type thermoelectric conversion semiconductors and n-type thermoelectric conversion A semiconductor is connected in series, and a first insulating member and a cooling-side substrate are provided on a side opposite to a side where the first electrode is in contact with the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor. Are provided in order, and a second insulating member and a heating-side substrate are provided on the side opposite to the side where the second electrode is in contact with the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor. The cooling side In a high-temperature thermoelectric conversion element that obtains an electrical output by bringing a plate into contact with a cooling plate and bringing the heating-side substrate into contact with a heating plate, the first insulating member is made of a material that allows the first electrode to move. A high-temperature thermoelectric conversion element characterized by the above-mentioned.
【請求項2】 前記第一の電極が可動となるような材料
は、シリコン樹脂又は4フッ化エチレン樹脂であること
を特徴とする請求項1に記載の高温度熱電変換素子。
2. The high-temperature thermoelectric conversion element according to claim 1, wherein the material by which the first electrode is movable is silicon resin or tetrafluoroethylene resin.
【請求項3】 複数のp型熱電変換半導体とn型熱電変
換半導体とを交互に離間して設け、隣り合うp型熱電変
換半導体とn型熱電変換半導体の上面を電気的に接続す
る第一の電極と、隣り合うp型熱電変換半導体とn型熱
電変換半導体の下面を電気的に接続する第二の電極とを
交互に備えることによって、前記複数のp型熱電変換半
導体とn型熱電変換半導体を直列に接続するとともに、 前記第一の電極が前記複数のp型熱電変換半導体とn型
熱電変換半導体に接触している側と反対の側には、第一
の絶縁部材、冷却側基板を順に接触させて設け、前記第
二の電極が前記複数のp型熱電変換半導体とn型熱電変
換半導体に接触している側と反対の側には、第二の絶縁
部材、加熱側基板を順に接触させて配置して構成され、 更に、前記冷却側基板を冷却板に、前記加熱側基板を加
熱板に接触させることにより電気出力を得る高温度熱電
変換素子において、 前記第二の絶縁部材は300℃以上800℃以下の耐熱
性をもつ材料であることを特徴とする高温度熱電変換素
子。
3. A first method, wherein a plurality of p-type thermoelectric conversion semiconductors and n-type thermoelectric conversion semiconductors are provided alternately and separately, and an upper surface of an adjacent p-type thermoelectric conversion semiconductor and an upper surface of the n-type thermoelectric conversion semiconductor are electrically connected. Are alternately provided with a second electrode for electrically connecting the lower surfaces of the adjacent p-type thermoelectric conversion semiconductors and n-type thermoelectric conversion semiconductors, so that the plurality of p-type thermoelectric conversion semiconductors and n-type thermoelectric conversion A semiconductor is connected in series, and a first insulating member and a cooling-side substrate are provided on a side opposite to a side where the first electrode is in contact with the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor. Are provided in order, and a second insulating member and a heating-side substrate are provided on the side opposite to the side where the second electrode is in contact with the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor. The cooling side In a high-temperature thermoelectric conversion element that obtains an electrical output by bringing a plate into contact with a cooling plate and the heating-side substrate into contact with a heating plate, the second insulating member is made of a material having heat resistance of 300 ° C. or more and 800 ° C. or less. A high-temperature thermoelectric conversion element characterized by the above-mentioned.
【請求項4】 前記300℃以上800℃以下の耐熱性
をもつ材料は、陽極酸化アルミであることを特徴とする
請求項3に記載の高温度熱電変換素子。
4. The high-temperature thermoelectric conversion element according to claim 3, wherein the material having a heat resistance of 300 ° C. or more and 800 ° C. or less is anodized aluminum.
【請求項5】 前記冷却側基板と前記冷却板の互いの接
触面、及び、前記加熱側基板と前記加熱板の互いの接触
面、を嵌合溝構造としたことを特徴とする請求項1乃至
4のいずれか1項に記載の高温度熱電変換素子。
5. A fitting groove structure between a contact surface between the cooling-side substrate and the cooling plate and a contact surface between the heating-side substrate and the heating plate. The high-temperature thermoelectric conversion element according to any one of claims 4 to 4.
【請求項6】 前記第二の電極は、真空蒸着法により作
製した金属箔であることを特徴とする請求項1乃至5の
いずれか1項に記載の高温度熱電変換素子。
6. The high-temperature thermoelectric conversion element according to claim 1, wherein the second electrode is a metal foil produced by a vacuum deposition method.
【請求項7】 前記複数のp型熱電変換半導体とn型熱
電変換半導体の上下面以外の側面に陽極酸化アルミ被膜
を設けたことを特徴とする請求項1乃至6のいずれか1
項に記載の高温度熱電変換素子。
7. An anodized aluminum film is provided on a side surface other than the upper and lower surfaces of the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor.
The high-temperature thermoelectric conversion element according to item.
【請求項8】 前記複数のp型熱電変換半導体及びn型
熱電変換半導体と前記第一の電極との接触面、並びに、
前記複数のp型熱電変換半導体及びn型熱電変換半導体
と前記第二の電極との接触面、に銀メッキを施したこと
を特徴とする請求項1乃至7のいずれか1項に記載の高
温度熱電変換素子。
8. A contact surface between the plurality of p-type and n-type thermoelectric conversion semiconductors and the first electrode, and
The silver plating is applied to a contact surface between the plurality of p-type thermoelectric conversion semiconductors and the n-type thermoelectric conversion semiconductor and the second electrode. Temperature thermoelectric conversion element.
JP26201198A 1998-09-16 1998-09-16 High temperature thermoelectric conversion element Expired - Fee Related JP3580406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26201198A JP3580406B2 (en) 1998-09-16 1998-09-16 High temperature thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26201198A JP3580406B2 (en) 1998-09-16 1998-09-16 High temperature thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2000091650A true JP2000091650A (en) 2000-03-31
JP3580406B2 JP3580406B2 (en) 2004-10-20

Family

ID=17369789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26201198A Expired - Fee Related JP3580406B2 (en) 1998-09-16 1998-09-16 High temperature thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP3580406B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100648630B1 (en) * 2000-09-26 2006-11-23 삼성전자주식회사 apparatus for cooling a plate in a semiconductor fabricating and method for producting a plate having a cooling line
JP2015522943A (en) * 2012-05-07 2015-08-06 フォノニック デバイセズ、インク Thermoelectric heat exchanger components including protective heat spreading lid and optimal thermal interface resistance
CN110112282A (en) * 2019-06-17 2019-08-09 中北大学 A kind of stealthy nanostructure of multilayer with graphene heat-conducting layer
CN110249439A (en) * 2017-02-08 2019-09-17 麦格纳座椅公司 Electrothermal module and flexible thermoelectricity circuit unit
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167077A (en) * 1983-02-28 1984-09-20 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Improved thermoelectric device
JPH08330638A (en) * 1995-05-30 1996-12-13 Technova:Kk Thermoelectric conversion device
JPH09148635A (en) * 1995-11-17 1997-06-06 Matsushita Electric Works Ltd Manufacture of thermoelectric conversion module
JPH10144968A (en) * 1996-11-11 1998-05-29 Nippon Telegr & Teleph Corp <Ntt> Thermoelectric element and thermoelectric conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167077A (en) * 1983-02-28 1984-09-20 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Improved thermoelectric device
JPH08330638A (en) * 1995-05-30 1996-12-13 Technova:Kk Thermoelectric conversion device
JPH09148635A (en) * 1995-11-17 1997-06-06 Matsushita Electric Works Ltd Manufacture of thermoelectric conversion module
JPH10144968A (en) * 1996-11-11 1998-05-29 Nippon Telegr & Teleph Corp <Ntt> Thermoelectric element and thermoelectric conversion device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100648630B1 (en) * 2000-09-26 2006-11-23 삼성전자주식회사 apparatus for cooling a plate in a semiconductor fabricating and method for producting a plate having a cooling line
JP2015522943A (en) * 2012-05-07 2015-08-06 フォノニック デバイセズ、インク Thermoelectric heat exchanger components including protective heat spreading lid and optimal thermal interface resistance
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
CN110249439A (en) * 2017-02-08 2019-09-17 麦格纳座椅公司 Electrothermal module and flexible thermoelectricity circuit unit
CN110112282A (en) * 2019-06-17 2019-08-09 中北大学 A kind of stealthy nanostructure of multilayer with graphene heat-conducting layer
CN110112282B (en) * 2019-06-17 2022-06-10 中北大学 Multilayer stealth nanostructure with graphene heat conduction layer

Also Published As

Publication number Publication date
JP3580406B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
JP4768961B2 (en) Thermoelectric module having thin film substrate
JP5336373B2 (en) Thermoelectric conversion module
CN100517676C (en) Semiconductor device, power converter device using it, and hybrid vehicle using the power converter device
JP3927784B2 (en) Method for manufacturing thermoelectric conversion member
TWI301333B (en) Thermoelectric device and method of manufacturing the same
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
JP5065077B2 (en) Thermoelectric generator
JP2005507157A5 (en)
WO2005124881A1 (en) Thermoelectric conversion element
JP2004273489A (en) Thermoelectric conversion module and its manufacturing method
WO2013122648A1 (en) Improved ceramic plate
JP2006049736A (en) Thermoelectric module
JP3580406B2 (en) High temperature thermoelectric conversion element
JP3501394B2 (en) Thermoelectric conversion module
JPH11330568A (en) Thermoelectric power generation device and its manufacture
CN111670505A (en) Thermoelectric module for generating electricity and corresponding production method
JP3469811B2 (en) Line type thermoelectric conversion module
JP3763107B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP3573448B2 (en) Thermoelectric conversion element
KR102021664B1 (en) Multi-multi-array themoeletric generator and its manufacturing method
JP2003179274A (en) Thermoelectric converting device
WO1995017020A1 (en) Thermoelectric conversion element, thermoelectric conversion element array, and thermal displacement converter
JPH10209509A (en) Thermoelectric transducer and its manufacture
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
JP2020150139A (en) Thermoelectric conversion module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees