JPH08330638A - Thermoelectric conversion device - Google Patents

Thermoelectric conversion device

Info

Publication number
JPH08330638A
JPH08330638A JP7132146A JP13214695A JPH08330638A JP H08330638 A JPH08330638 A JP H08330638A JP 7132146 A JP7132146 A JP 7132146A JP 13214695 A JP13214695 A JP 13214695A JP H08330638 A JPH08330638 A JP H08330638A
Authority
JP
Japan
Prior art keywords
electrode
insulating film
thermoelectric conversion
layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7132146A
Other languages
Japanese (ja)
Other versions
JP3539796B2 (en
Inventor
Hideo Watanabe
日出男 渡辺
Motohiro Sakai
基弘 酒井
Bunichi Kitani
文一 木谷
Mitsutoshi Ogasawara
光敏 小笠原
Takeshi Higashimatsu
剛 東松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technova Inc
Original Assignee
Technova Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technova Inc filed Critical Technova Inc
Priority to JP13214695A priority Critical patent/JP3539796B2/en
Publication of JPH08330638A publication Critical patent/JPH08330638A/en
Application granted granted Critical
Publication of JP3539796B2 publication Critical patent/JP3539796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a thermoelectric conversion device which has a high thermoelectric conversion efficiency and a long useful life. CONSTITUTION: An oxide insulating film which comprises many slender holes 5 is formed at least on one face of a metal substrate. A pore 5 is not sealed but filled with bonding metal 6. The surface of the oxide insulating film is endowed with a conductive property, and an electrode 4 is bonded onto the oxide insulating film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子冷却装置あるいは
熱発電装置などの熱電変換装置に係り、特にそれの電極
を支持する基体ならびに電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion device such as an electronic cooling device or a thermoelectric generator, and more particularly to a substrate and an electrode for supporting the electrode thereof.

【0002】[0002]

【従来の技術】図9は、従来の電子冷却装置の一部拡大
断面図である。アルミナなどからなる放熱側絶縁基板1
00の上に半田層101を介して放熱側電極102が設
置され、その放熱側電極102の上にP形半導体層10
3とN形半導体層104がそれぞれ配置されている。こ
のP形半導体層103とN形半導体層104を接続する
ように吸熱側電極105が設けられ、さらにその上に半
田層106を介して吸熱側絶縁基板107が設置されて
いる。
2. Description of the Related Art FIG. 9 is a partially enlarged sectional view of a conventional electronic cooling device. Heat-radiating side insulating substrate 1 made of alumina, etc.
On the heat radiation side, the heat radiation side electrode 102 is placed on the heat radiation side electrode 102 via the solder layer 101, and the P-type semiconductor layer 10
3 and the N-type semiconductor layer 104 are arranged respectively. A heat absorption side electrode 105 is provided so as to connect the P type semiconductor layer 103 and the N type semiconductor layer 104, and a heat absorption side insulating substrate 107 is further disposed on the heat absorption side electrode 105 via a solder layer 106.

【0003】前記P形半導体層103とN形半導体層1
04は対になって放熱側電極102と吸熱側電極105
の間に多数並設され、電気的には直列に、熱的には並列
に接続されて電子冷却素子群を構成している。
The P-type semiconductor layer 103 and the N-type semiconductor layer 1
Reference numeral 04 is a pair, and the heat radiation side electrode 102 and the heat absorption side electrode 105
A large number of them are connected in parallel, and electrically connected in series and thermally connected in parallel to form an electronic cooling element group.

【0004】この電子冷却素子群に所定の電流を流すこ
とにより、吸熱側絶縁基板107側の方が吸熱され、そ
の周囲が冷却される。この吸熱によって奪われた熱は放
熱側絶縁基板100側で放熱され、放熱フィンやファン
(図示せず)によって外部に放散されることにより、熱
移動が起こる仕組みになっている。
By supplying a predetermined current to the electronic cooling element group, the heat absorbing side insulating substrate 107 side absorbs heat and the surrounding area is cooled. The heat taken away by the heat absorption is radiated on the heat radiating side insulating substrate 100 side and is radiated to the outside by a heat radiating fin or a fan (not shown), so that heat is transferred.

【0005】[0005]

【発明が解決しようとする課題】ところで、従来の熱電
変換装置では耐用寿命が充分とはいえず、使用を繰り返
しているうちに、冷却効率などの熱電変換効率が悪くな
り、一定の電力を投入した割りには冷却側の温度が下が
らなかったり、温度差があるにもかかわらず充分な電力
が得られなかった。
By the way, the conventional thermoelectric conversion device does not have a sufficient service life, and during repeated use, the thermoelectric conversion efficiency such as cooling efficiency deteriorates, and constant power is supplied. In comparison, the temperature on the cooling side did not drop, and sufficient power could not be obtained despite the temperature difference.

【0006】本発明者らはこの問題点について鋭意検討
した結果、熱電変換装置の構成上に問題があることを解
明した。すなわち従来の熱電変換装置では、アルミナな
どのセラミックからなる絶縁基板100、107が金属
製の電極102、105に半田層101、106によっ
て一体に接合されている。
As a result of diligent studies on this problem, the present inventors have found that there is a problem in the structure of the thermoelectric conversion device. That is, in the conventional thermoelectric conversion device, the insulating substrates 100 and 107 made of ceramic such as alumina are integrally joined to the metal electrodes 102 and 105 by the solder layers 101 and 106.

【0007】このセラミックからなる絶縁基板100、
107と、金属からなる半田層101、106(電極1
02、105、半導体層103、104)は熱膨張(収
縮)係数が大きく異なるため、熱電変換装置の使用を繰
り返していると(すなわち、冷、暖の温度履歴を繰り返
していると)、絶縁基板100、107に反りなどの変
形を生じる。そして前記半田層101、106ならびに
電極102、105とP形半導体層103およびN形半
導体層104の境界部分などに疲労現象が起こり、その
ために熱抵抗が大となり、接続不良や断線などを生じて
しまい、熱電変換装置の耐用寿命の短縮化の要因となっ
ていた。
An insulating substrate 100 made of this ceramic,
107 and solder layers 101 and 106 made of metal (electrode 1
02, 105, and semiconductor layers 103, 104) differ greatly in thermal expansion (contraction) coefficient, so that if the thermoelectric conversion device is repeatedly used (that is, if the temperature history of cold and warm is repeated), the insulating substrate Deformation such as warpage occurs in 100 and 107. Then, a fatigue phenomenon occurs at the boundaries between the solder layers 101 and 106 and the electrodes 102 and 105 and the P-type semiconductor layer 103 and the N-type semiconductor layer 104, resulting in a large thermal resistance, resulting in poor connection and disconnection. This has been a factor in shortening the useful life of the thermoelectric conversion device.

【0008】また、セラミックからなる絶縁基板10
0、107自体も熱抵抗が大きく、しかも成形や焼結し
たときにも反りなどの変形が生じ、そのためフィンを含
む熱伝導部材との密着性が悪く、その間の熱抵抗が大と
なる。
The insulating substrate 10 made of ceramics
Nos. 0 and 107 themselves also have large thermal resistance, and deformation such as warpage occurs even when they are molded or sintered, so that the adhesion with the heat conducting member including the fins is poor and the thermal resistance during that time becomes large.

【0009】さらに、セラミックからなる絶縁基板10
0、107は機械的に脆いため、製造過程などの取扱時
に欠けや割れを生じ、歩留りが悪いなどの欠点を有して
いる。
Further, the insulating substrate 10 made of ceramics
Since 0 and 107 are mechanically fragile, they have defects such as chipping and cracking during handling in the manufacturing process and poor yield.

【0010】従来、特公昭40−11577号公報に記
載されているような熱電変換装置の製造方法が提案され
ている。この方法は、アルミニウムなどの金属製熱伝導
体をシュウ酸などの電解液に浸漬して、表面に陽極酸化
皮膜を形成する。そしてこの酸化皮膜を沸騰水または水
蒸気で短時間(2分以内)封孔処理して、その封孔処理
した酸化皮膜上に電気メッキ法で電極を形成する方法で
ある。
Conventionally, a method of manufacturing a thermoelectric conversion device as described in Japanese Patent Publication No. 40-11577 has been proposed. In this method, a metal heat conductor such as aluminum is immersed in an electrolytic solution such as oxalic acid to form an anodized film on the surface. Then, this oxide film is sealed with boiling water or steam for a short time (within 2 minutes), and an electrode is formed on the sealed oxide film by electroplating.

【0011】しかし、この陽極酸化皮膜に封孔処理を施
した基板はその上に形成された電極との接合強度が弱
く、そのため電極が基板から剥離することが多々あり、
実用的ではない。
However, the substrate obtained by sealing the anodic oxide film has a weak bonding strength with the electrode formed thereon, so that the electrode often peels from the substrate.
Not practical.

【0012】本発明の目的は、このような従来技術の欠
点を解消し、熱電変換効率が良好で、耐用寿命の長い熱
電変換装置を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a thermoelectric conversion device having a good thermoelectric conversion efficiency and a long service life.

【0013】[0013]

【課題を解決するための手段】前記目的を達成するた
め、第1の本発明は、例えばアルミニウムなどの金属基
材の少なくとも片面に、例えば陽極酸化法などによって
多数の細孔を有する例えばアルマイトからなる酸化絶縁
皮膜を形成し、前記細孔を封孔処理しないで細孔内に例
えばニッケルや銅などの結合用金属を充填して酸化絶縁
皮膜の表面に導電性を付与し、その酸化絶縁皮膜上に例
えばニッケルや銅などからなる電極を接合したことを特
徴とするものである。
In order to achieve the above object, the first aspect of the present invention is based on, for example, alumite having a large number of pores formed on at least one surface of a metal base material such as aluminum by, for example, anodization. The oxide insulating film is formed by filling the pores with a binding metal such as nickel or copper without sealing the pores to give conductivity to the surface of the oxide insulating film. It is characterized in that an electrode made of, for example, nickel, copper, or the like is bonded to the top.

【0014】前記目的を達成するため、第2の本発明
は、例えば銅などからなる電極本体の片面に、例えばア
ルミナや窒化アルミニウムなどからなる電気絶縁層を例
えば溶射などの手段で形成し、さらにその電気絶縁層の
上に例えば銅などからなる半田接合用金属層を例えば溶
射などの手段で積層した積層電極を用いて、前記電極本
体にP形半導体層ならびにN形半導体層を接合し、前記
半田接合用金属層に熱導体を接合したことを特徴とする
ものである。
In order to achieve the above object, the second aspect of the present invention is to form an electric insulating layer made of, for example, alumina or aluminum nitride on one surface of an electrode body made of, for example, copper by means such as thermal spraying. A P-type semiconductor layer and an N-type semiconductor layer are joined to the electrode body by using a laminated electrode in which a solder joining metal layer made of, for example, copper is laminated on the electrically insulating layer by means of, for example, thermal spraying. It is characterized in that a heat conductor is bonded to the solder bonding metal layer.

【0015】[0015]

【作用】前記第1の発明によれば、従来のようにアルミ
ナなどのセラミックからなる絶縁基板を使用しないで、
絶縁皮膜を形成した金属基材を使用しているから、基板
自体としての熱抵抗を低くすることができる。
According to the first aspect of the invention, unlike the conventional case, an insulating substrate made of ceramic such as alumina is not used,
Since the metal base material on which the insulating film is formed is used, the thermal resistance of the substrate itself can be reduced.

【0016】この金属基材は半田層、電極、半導体層な
どの熱膨張(収縮)係数とあまり差がないため、熱電変
換装置の使用を繰り返しても基板が変形したり、半田層
や電極などに疲労現象が起こったりすることがなく、熱
抵抗を低く抑えることができ、熱電変換装置の耐用寿命
を延長することができる。
Since this metal base material has little difference from the coefficient of thermal expansion (contraction) of the solder layer, the electrode, the semiconductor layer, etc., the substrate is deformed even when the thermoelectric conversion device is repeatedly used, and the solder layer, the electrode, etc. No fatigue phenomenon occurs, the thermal resistance can be kept low, and the service life of the thermoelectric conversion device can be extended.

【0017】また、セラミックからなる絶縁基板では成
形や焼結したときに反りなどの変形が生じ、そのために
熱導体との密着性が悪くなるが、金属基材を主体とする
本発明の基板ではこのようなことがなく、熱導体との密
着が常に良好である。
Further, in the case of an insulating substrate made of ceramics, deformation such as warpage occurs when it is molded or sintered, and thus the adhesion with the heat conductor deteriorates. However, in the substrate of the present invention mainly composed of a metal base material. This is not the case, and the close contact with the heat conductor is always good.

【0018】さらに、絶縁皮膜中の細孔は封孔処理をし
ないで細孔内に結合用金属を充填し、その上に電極を接
合した構造になっているから、基板と電極との接合強度
を高めることができる。
Further, since the pores in the insulating film are not sealed, the bonding metal is filled in the pores, and the electrodes are bonded on the pores, so that the bonding strength between the substrate and the electrodes is high. Can be increased.

【0019】前記第2の発明によれば、セラミックから
なる比較的肉厚の絶縁基板を使用しないで、薄い絶縁層
を形成した積層電極を使用しているから、熱抵抗を大幅
に小さくすることができ、また熱電変換装置の総高を低
くすることが可能である。
According to the second aspect of the present invention, since the relatively thick insulating substrate made of ceramic is not used but the laminated electrode having the thin insulating layer is used, the thermal resistance can be greatly reduced. It is also possible to reduce the total height of the thermoelectric conversion device.

【0020】[0020]

【実施例】次に本発明の実施例を図とともに説明する。 (第1実施例)アルミニウム基板を0.5重量%のシュ
ウ酸溶液からなる電解液に浸漬して、浴温20℃、印加
電圧100Vの定電圧で5分間陽極酸化を行ない、図1
(a)に示すようにアルミニウム基板1上に膜厚約10
μmの絶縁皮膜2を形成する。
Embodiments of the present invention will now be described with reference to the drawings. (First Example) An aluminum substrate was immersed in an electrolytic solution containing an oxalic acid solution of 0.5% by weight and anodized at a bath temperature of 20 ° C. and a constant voltage of 100 V for 5 minutes.
As shown in (a), a film thickness of about 10 is formed on the aluminum substrate 1.
An insulating film 2 having a thickness of μm is formed.

【0021】ついでこのアルミニウム基板1を5重量%
のリン酸溶液(液温30℃)に一定時間浸漬することに
より、前記絶縁皮膜2中に形成されている微細孔の孔径
を拡張する。
Then, the aluminum substrate 1 is added to 5% by weight.
The pore diameter of the fine pores formed in the insulating film 2 is expanded by immersing in the phosphoric acid solution (solution temperature 30 ° C.) for a certain time.

【0022】この拡張処理したアルミニウム基板1を塩
酸性塩化スズ溶液に1〜10分間浸漬し、その後水洗し
て蒸留水中に10〜30分間静置して感受性化処理を終
了する。次に塩化鉛溶液に5分間浸し、その後水洗して
蒸留水中に10〜30分間静置して活性化処理を終了す
る。
The expanded aluminum substrate 1 is dipped in a hydrochloric acid tin chloride solution for 1 to 10 minutes, washed with water, and then allowed to stand in distilled water for 10 to 30 minutes to complete the sensitization treatment. Next, it is immersed in a lead chloride solution for 5 minutes, then washed with water, and allowed to stand in distilled water for 10 to 30 minutes to complete the activation treatment.

【0023】このようにして感受性化処理ならびに活性
化処理の前処理を行った後、下記の組成からなる無電解
メッキ浴に浸漬する。 NiSO4 ・6H2 O 2.5重量% NaPH2 2 ・H2 O 5.0重量% Na4 2 7 ・10H2 O 2.5重量% pH値 11(アンモニア水で調整) 浴温 40℃ このようにして無電解メッキすることにより、前記絶縁
皮膜2中の微細孔内にニッケルを析出、充填して絶縁皮
膜2の表面に電導性が付与される。
After the sensitizing treatment and the pretreatment for the activating treatment are carried out in this manner, they are immersed in an electroless plating bath having the following composition. NiSO 4 · 6H 2 O 2.5 wt% NaPH 2 O 2 · H 2 O 5.0 wt% Na 4 P 2 O 7 · 10H 2 O 2.5 wt% pH value of 11 (adjusted with aqueous ammonia) Bath Temperature By the electroless plating at 40 ° C. in this manner, nickel is deposited and filled in the fine pores in the insulating coating 2 to impart conductivity to the surface of the insulating coating 2.

【0024】次に図1(b)に示すように表面に電導性
が付与された絶縁皮膜2の上に常法に従って膜厚が約
0.3〜50μmの銅の導電膜3を電気メッキによって
形成し、同図(c)に示す如く導電膜3の不要部分をフ
ォトリソグラフィーなどの手法で除去してパターンニン
グする。
Next, as shown in FIG. 1B, a copper conductive film 3 having a thickness of about 0.3 to 50 μm is formed by electroplating on the insulating film 2 having conductivity on its surface by a conventional method. After the formation, the unnecessary portion of the conductive film 3 is removed by a method such as photolithography and patterned as shown in FIG.

【0025】駆動時に小電流を流す熱電変換装置の場合
には、パターンニングされた導電膜3をそのまま電極と
して用い、その上にP、N半導体層を設置することもで
きるが、通常の熱電変換装置の場合には同図(d)に示
すようにパターンニングされた導電膜3上に厚さが約2
00〜1000μmの比較的肉厚の電極4を半田付けに
よって接合する。
In the case of a thermoelectric conversion device in which a small current is passed during driving, the patterned conductive film 3 can be used as an electrode as it is, and the P and N semiconductor layers can be placed on it. In the case of the device, the thickness is about 2 on the patterned conductive film 3 as shown in FIG.
The electrodes 4 having a relatively large thickness of 00 to 1000 μm are joined by soldering.

【0026】図2は図1(d)におけるX部の拡大断面
図であり、絶縁皮膜2中に形成されている細孔5内に結
合用金属(本実施例の場合はNi)6が充填され、凹凸
状になっている細孔5の周壁面に密着するとともに、導
電膜3とも密着しており、基板1と導電膜3の間の接合
強度を高めている。
FIG. 2 is an enlarged cross-sectional view of the X portion in FIG. 1 (d), in which the pores 5 formed in the insulating film 2 are filled with a binding metal (Ni in this embodiment) 6. As a result, it is in close contact with the peripheral wall surface of the uneven pores 5 and also with the conductive film 3 to enhance the bonding strength between the substrate 1 and the conductive film 3.

【0027】(実施例2)図3は実施例2に係るアルミ
ニウム基板1の断面図で、比較的純度が低くて(例えば
純度97%)安価なアルミニウムあるいはアルミニウム
合金などからなる基材1a上に、高純度のアルミニウム
(例えば純度99.99%)からなる陽極酸化用薄層1
bがクラッドあるいは溶射などの手段で接合されてい
る。この陽極酸化用薄層1bの厚さは、基板1の全体の
厚さが3mmであればその10%に相当する0.3mm
で充分である。
(Embodiment 2) FIG. 3 is a cross-sectional view of an aluminum substrate 1 according to Embodiment 2, in which a substrate 1a made of inexpensive aluminum or aluminum alloy having a relatively low purity (eg, 97% purity) is inexpensive. , A thin layer for anodization 1 made of high-purity aluminum (for example, 99.99% purity)
b is joined by means such as clad or thermal spraying. The thickness of the thin layer 1b for anodization is 0.3 mm, which corresponds to 10% of the total thickness of the substrate 1 of 3 mm.
Is enough.

【0028】前記陽極酸化用薄層1bに前記実施例1と
同様にして陽極酸化による絶縁皮膜2が形成され、さら
にパターンニングされた導電膜3ならびに電極4が設け
られる。
On the thin layer 1b for anodic oxidation, an insulating film 2 is formed by anodic oxidation in the same manner as in Example 1, and a conductive film 3 and an electrode 4 which are patterned are provided.

【0029】(実施例3)図4(a),(b)は実施例
3を説明するための図で、同図(a)に示すように比較
的純度が低くて(例えば純度97%)安価なアルミニウ
ムあるいはアルミニウム合金などからなる基材1a上
に、高純度(例えば純度99.99%)のアルミニウム
粒子7を例えばプラズマ焼結法などにより所定の厚さ
(例えば0.2〜1mm程度)に焼結して、表面に無数
の凹凸を有するとともに内部に無数の粒界をもった焼結
層8を形成する。
(Embodiment 3) FIGS. 4 (a) and 4 (b) are views for explaining the embodiment 3, and as shown in FIG. 4 (a), the purity is relatively low (eg, purity 97%). Aluminum particles 7 of high purity (for example, 99.99% purity) are provided on a base material 1a made of inexpensive aluminum or aluminum alloy to a predetermined thickness (for example, about 0.2 to 1 mm) by a plasma sintering method or the like. And sintered to form a sintered layer 8 having innumerable irregularities on the surface and innumerable grain boundaries inside.

【0030】そしてこの焼結層8の上に同図(b)に示
すように、前記実施例1と同様にして陽極酸化による絶
縁皮膜2を形成し、図示していないがその絶縁皮膜2の
上にパターンニングされた導電膜3と電極4を順次形成
する。
Then, as shown in FIG. 1B, an insulating film 2 is formed by anodic oxidation on the sintered layer 8 in the same manner as in the first embodiment. Although not shown, the insulating film 2 is formed. A patterned conductive film 3 and an electrode 4 are sequentially formed on the top.

【0031】(実施例4)図5(a),(b)は実施例
4を説明するための図で、同図(a)に示すようにアル
ミニウムからなる基材1aの表面を、例えばサンドブラ
スト法などの機械的方法あるいはエッチングなどの化学
的方法により粗面9にする。そしてこの微細な凹凸を無
数に有する粗面9側に同図(b)に示す如く、前記実施
例1と同様にして陽極酸化による絶縁皮膜2を形成し、
図示していないがその絶縁皮膜2の上にパターンニング
された導電膜3と電極4を順次形成する。
(Embodiment 4) FIGS. 5 (a) and 5 (b) are views for explaining Embodiment 4, and as shown in FIG. 5 (a), the surface of the base material 1a made of aluminum is sandblasted, for example. The rough surface 9 is formed by a mechanical method such as a method or a chemical method such as etching. Then, as shown in FIG. 2B, the insulating film 2 by anodic oxidation is formed on the side of the rough surface 9 having a myriad of fine irregularities as shown in FIG.
Although not shown, a patterned conductive film 3 and an electrode 4 are sequentially formed on the insulating film 2.

【0032】(実施例5)図6(a)〜(d)は実施例
5を説明するための図で、同図(a)に示すようにアル
ミニウムからなる基材1aの表面を加熱して柔らかくし
た状態で、例えば粒径が約50〜150μmのアルミナ
や窒化アルミニウムなどからなる硬質粒子10を高圧を
かけて表面近傍に埋め込む。この硬質粒子10の埋め込
みにより、基材1aの表面が若干盛り上がった状態とな
る。
(Embodiment 5) FIGS. 6 (a) to 6 (d) are views for explaining Embodiment 5, in which the surface of a substrate 1a made of aluminum is heated as shown in FIG. 6 (a). In the softened state, hard particles 10 made of, for example, alumina or aluminum nitride having a particle size of about 50 to 150 μm are embedded in the vicinity of the surface by applying a high pressure. By embedding the hard particles 10, the surface of the base material 1a is slightly raised.

【0033】次に同図(b)に示すように基材1aを浸
食しないで硬質粒子10のみを基材1aから溶出するこ
とにより基材1aの表面を粗面9にし、同図(c)に示
す如くその粗面9に前記実施例1と同様にして陽極酸化
による絶縁皮膜2を形成せしめる。
Next, as shown in FIG. 3B, the surface of the base material 1a is roughened by eluting only the hard particles 10 from the base material 1a without eroding the base material 1a. As shown in FIG. 7, the insulating film 2 by anodic oxidation is formed on the rough surface 9 in the same manner as in the first embodiment.

【0034】しかる後、同図(d)に示すように絶縁皮
膜2の上に無電解メッキによって結合用金属6の層を形
成して、絶縁皮膜2中の細孔に結合用金属6(Ni)を
充填せしめ、図示していないがその結合用金属6の上に
パターンニングされた導電膜3と電極4を順次形成す
る。
Thereafter, as shown in FIG. 3D, a layer of the bonding metal 6 is formed on the insulating film 2 by electroless plating, and the bonding metal 6 (Ni) is formed in the pores in the insulating film 2. ) Is filled in, and the patterned conductive film 3 and electrode 4 are sequentially formed on the bonding metal 6 (not shown).

【0035】(実施例6)図7ならびに図8は実施例6
を説明するための図で、図7はこの実施例に係る電極の
拡大断面図、図8はその電極を用いた電子冷蔵庫の一部
断面図である。
(Sixth Embodiment) FIGS. 7 and 8 show a sixth embodiment.
7 is an enlarged sectional view of an electrode according to this embodiment, and FIG. 8 is a partial sectional view of an electronic refrigerator using the electrode.

【0036】従来の熱電変換装置の電極は例えば銅やニ
ッケルなどの金属のみで構成され、それがアルミナなど
からなる絶縁基板に半田付けされていた。この絶縁基板
は厚さが0.64mm程度あり、このために熱抵抗が大
きく、装置の効率があまり良くなかった。
The electrodes of the conventional thermoelectric conversion device are composed only of a metal such as copper or nickel, which is soldered to an insulating substrate made of alumina or the like. This insulating substrate had a thickness of about 0.64 mm, and therefore had a large thermal resistance and the efficiency of the device was not so good.

【0037】これを改善するため本実施例では図7に示
すように、例えば銅やニッケルなどの良導体金属からな
る電極本体11(縦2mm.横5mm.厚さ0.5m
m)の片面に、アルミナや窒化アルミニウムなどを溶射
して厚さ100μmの絶縁層12を形成する。さらにこ
の絶縁層12上に、例えば銅やニッケルなどのように半
田となじみ性の良い金属を溶射して厚さ100μmの半
田接合用金属層13を設けた3層構造の積層電極14と
なっている。従って前記電極本体11は、絶縁層12な
らびに半田接合用金属層13を溶射する際に支持体とし
て機能しているとともに、電極本体11と半田接合用金
属層13は絶縁層12の介在によって電気的に完全に絶
縁されている。
In order to improve this, in the present embodiment, as shown in FIG. 7, for example, the electrode body 11 (2 mm long, 5 mm wide, 0.5 m thick) made of a good conductor metal such as copper or nickel.
The insulating layer 12 having a thickness of 100 μm is formed on one surface of m) by spraying alumina, aluminum nitride or the like. Further, a metal having good compatibility with solder, such as copper or nickel, is sprayed on the insulating layer 12 to form a solder bonding metal layer 13 having a thickness of 100 μm to form a laminated electrode 14 having a three-layer structure. There is. Therefore, the electrode body 11 functions as a support when the insulating layer 12 and the solder-bonding metal layer 13 are sprayed, and the electrode body 11 and the solder-bonding metal layer 13 are electrically interposed by the insulating layer 12. Is completely insulated.

【0038】図8はこの電極の使用例を示した図で、冷
蔵庫の例えば内箱などの冷却側熱導体15の外表面には
吸熱側積層電極14aの半田接合用金属層13aが直接
半田付けされおり、放熱フィン(図示せず)を付設した
放熱側熱導体16の表面には放熱側積層電極14bの半
田接合用金属層13bが直接半田付けされている。前記
冷却側熱導体15ならびに(あるいは)放熱側熱導体1
6が半田金属とのなじみがあまり良くない場合は、表面
に予め銅やニッケルなどの半田となじみ性の良い金属を
メッキしておく必要がある。
FIG. 8 is a view showing a usage example of this electrode, in which the metal layer 13a for solder bonding of the heat absorption side laminated electrode 14a is directly soldered to the outer surface of the cooling side heat conductor 15 such as an inner box of a refrigerator. The solder joint metal layer 13b of the heat dissipation side laminated electrode 14b is directly soldered to the surface of the heat dissipation side heat conductor 16 provided with a heat dissipation fin (not shown). The cooling side heat conductor 15 and / or the heat radiation side heat conductor 1
If 6 is not so well compatible with the solder metal, it is necessary to plate the surface with a metal having good compatibility with the solder such as copper or nickel in advance.

【0039】そして前記吸熱側積層電極14aと放熱側
積層電極14bの間にP形半導体層17とN形半導体層
18とが多数並設され、吸熱側積層電極14aの電極本
体11aと放熱側積層電極14bの電極本体11bとに
よって電気的に直列接続されている。
A large number of P-type semiconductor layers 17 and N-type semiconductor layers 18 are arranged in parallel between the heat absorption side laminated electrode 14a and the heat radiation side laminated electrode 14b, and the electrode body 11a of the heat absorption side laminated electrode 14a and the heat radiation side laminated layer are formed. The electrodes 14b and the electrode body 11b are electrically connected in series.

【0040】前記実施例1〜5では陽極酸化法としてシ
ュウ酸法を用いたが、本発明はこれに限定されるもので
はなく、例えば硫酸法、硬質陽極酸化法、クロム酸法な
どの他の陽極酸化法を適用することも可能である。
Although the oxalic acid method was used as the anodizing method in Examples 1 to 5, the present invention is not limited to this, and other methods such as a sulfuric acid method, a hard anodizing method, and a chromic acid method are used. It is also possible to apply an anodic oxidation method.

【0041】前記実施例では電子冷却装置の場合につい
て説明したが、本発明は熱発電装置にも適用可能であ
る。
In the above-mentioned embodiment, the case of the electronic cooling device has been described, but the present invention is also applicable to a thermoelectric generator.

【0042】[0042]

【発明の効果】請求項1記載の第1の発明によれば、従
来のようにアルミナなどのセラミックからなる絶縁基板
を使用しないで、絶縁皮膜を形成した金属基材を使用し
ているから、基板自体としての熱抵抗を低くすることが
できる。
According to the first aspect of the present invention, since the conventional insulating substrate made of ceramic such as alumina is not used, the metal base material having the insulating film is used. The thermal resistance of the substrate itself can be reduced.

【0043】この金属基材は半田層、電極、半導体層な
どの熱膨張(収縮)係数とあまり差がないため、熱電変
換装置の使用を繰り返しても基板が変形したり、半田層
や電極などに疲労現象が起こったりすることがなく、熱
抵抗を低く抑えることができ、熱電変換装置の耐用寿命
を延長することができる。
Since this metal base material does not differ much from the coefficient of thermal expansion (contraction) of the solder layer, electrode, semiconductor layer, etc., the substrate is deformed even when the thermoelectric conversion device is repeatedly used, and the solder layer, electrode, etc. No fatigue phenomenon occurs, the thermal resistance can be kept low, and the service life of the thermoelectric conversion device can be extended.

【0044】また、セラミックからなる絶縁基板では成
形や焼結したときに反りなどの変形が生じ、そのために
熱導体との密着性が悪くなるが、金属基材を主体とする
本発明の基板ではこのようなことがなく、熱導体との密
着が常に良好である。
Further, in the case of an insulating substrate made of ceramic, deformation such as warpage occurs when it is molded or sintered, and the adhesion with the heat conductor deteriorates. However, in the substrate of the present invention mainly composed of a metal base material. This is not the case, and the close contact with the heat conductor is always good.

【0045】さらに、絶縁皮膜中の細孔は封孔処理をし
ないで細孔内に結合用金属を充填し、その上に電極を接
合した構造になっているから、基板と電極との接合強度
を高めることができる。
Further, since the pores in the insulating film are not sealed, the bonding metal is filled in the pores, and the electrodes are bonded onto the pores, so that the bonding strength between the substrate and the electrodes is high. Can be increased.

【0046】また請求項2記載のように、酸化絶縁皮膜
の表面に微細な凹凸を有し、その酸化絶縁皮膜内の細孔
の向きが不揃いであると(実施例3〜5参照)、特に基
材と結合用金属との接合強度が高められ、そのために耐
用寿命の延長化が図れる。
Further, as described in claim 2, when the surface of the oxide insulating film has fine irregularities and the directions of the pores in the oxide insulating film are not uniform (see Examples 3 to 5), The bonding strength between the base material and the bonding metal is increased, and therefore the service life can be extended.

【0047】さらに請求項3記載のように、酸化絶縁皮
膜が不純物を殆ど含まない高純度金属(例えば純度が9
9.99重量%)の酸化物皮膜から構成されていれば、
極薄でも高い電気絶縁性が得られ、信頼性の向上が図れ
る。
Further, as described in claim 3, the oxide insulating film contains a high-purity metal containing almost no impurities (for example, a purity of 9).
9.99% by weight) oxide film,
Even if it is extremely thin, high electrical insulation can be obtained and reliability can be improved.

【0048】請求項4記載の第2の発明によれば、セラ
ミックからなる比較的肉厚の絶縁基板を使用しないで、
薄い絶縁層を形成した積層電極を使用しているから、熱
抵抗を大幅に小さくすることができ、また熱電変換装置
の総高を低くすることが可能である。
According to the second aspect of the present invention, a relatively thick insulating substrate made of ceramic is not used,
Since the laminated electrode having the thin insulating layer is used, the thermal resistance can be significantly reduced, and the total height of the thermoelectric conversion device can be reduced.

【0049】以上のようなことから、熱電変換効率が良
好で、耐用寿命の長い熱電変換装置を提供することがで
きる。
From the above, it is possible to provide a thermoelectric conversion device having a good thermoelectric conversion efficiency and a long service life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係る基板の製造工程を示す
断面図である。
FIG. 1 is a cross-sectional view showing a manufacturing process of a substrate according to a first embodiment of the present invention.

【図2】図1(d)におけるX部の拡大断面図である。FIG. 2 is an enlarged sectional view of an X portion in FIG. 1 (d).

【図3】本発明の実施例2で使用する基板の断面図であ
る。
FIG. 3 is a cross-sectional view of a substrate used in Example 2 of the present invention.

【図4】本発明の実施例3に係る基板の製造工程を示す
断面図である。
FIG. 4 is a cross-sectional view showing a manufacturing process of a substrate according to a third embodiment of the present invention.

【図5】本発明の実施例4に係る基板の製造工程を示す
断面図である。
FIG. 5 is a cross-sectional view showing a manufacturing process of a substrate according to a fourth embodiment of the present invention.

【図6】本発明の実施例5に係る基板の製造工程を示す
断面図である。
FIG. 6 is a cross-sectional view showing a manufacturing process of a substrate according to a fifth embodiment of the present invention.

【図7】本発明の実施例6で使用する電極の拡大断面図
である。
FIG. 7 is an enlarged cross-sectional view of an electrode used in Example 6 of the present invention.

【図8】その電極を使用した電子冷蔵庫の一部断面図で
ある。
FIG. 8 is a partial cross-sectional view of an electronic refrigerator using the electrode.

【図9】従来の電子冷却装置の一部拡大断面図である。FIG. 9 is a partially enlarged sectional view of a conventional electronic cooling device.

【符号の説明】[Explanation of symbols]

1 アルミニウム基板 1a 基材 1b 陽極酸化用薄層 2 絶縁皮膜 3 導電膜 4 電極 5 細孔 6 結合用金属 7 アルミニウム粒子 8 焼結層 9 粗面 10 硬質粒子 11 電極本体 12 絶縁層 13 半田接合用金属層 14 積層電極 14a 吸熱側積層電極 14b 放熱側積層電極 15 冷却側熱導体 16 放熱側熱導体 17 P形半導体層 18 N形半導体層 DESCRIPTION OF SYMBOLS 1 Aluminum substrate 1a Base material 1b Thin layer for anodic oxidation 2 Insulating film 3 Conductive film 4 Electrode 5 Pore 6 Metal for bonding 7 Aluminum particle 8 Sintered layer 9 Rough surface 10 Hard particle 11 Electrode body 12 Insulating layer 13 For soldering Metal layer 14 Laminated electrode 14a Heat absorption side laminated electrode 14b Radiation side laminated electrode 15 Cooling side heat conductor 16 Radiation side heat conductor 17 P-type semiconductor layer 18 N-type semiconductor layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小笠原 光敏 北海道室蘭市東町3丁目20番11号 (72)発明者 東松 剛 北海道登別市柏木町3丁目16番1号 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Mitsutoshi Ogasawara 3-20-11 Higashimachi, Muroran-shi, Hokkaido (72) Inventor Tsuyoshi Higashimatsu 3-16-1 Kashiwagicho, Noboribetsu-shi, Hokkaido

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属基材の少なくとも片面に多数の細孔
を有する酸化絶縁皮膜を形成し、前記細孔を封孔処理し
ないで細孔内に結合用金属を充填して酸化絶縁皮膜の表
面に導電性を付与し、その酸化絶縁皮膜上に電極を接合
したことを特徴とする熱電変換装置。
1. A surface of an oxide insulating film formed by forming an oxide insulating film having a large number of pores on at least one surface of a metal substrate, and filling the pores with a binding metal without sealing the pores. A thermoelectric conversion device characterized in that conductivity is imparted to an electrode and an electrode is bonded onto the oxide insulating film.
【請求項2】 請求項1記載において、表面に微細な凹
凸のある金属層の表面に酸化絶縁皮膜を形成し、その酸
化絶縁皮膜内の細孔の向きが不揃いであることを特徴と
する熱電変換装置。
2. The thermoelectric device according to claim 1, wherein an oxide insulating film is formed on the surface of the metal layer having fine irregularities on the surface, and the orientation of the pores in the oxide insulating film is uneven. Converter.
【請求項3】 請求項1記載において、前記酸化絶縁皮
膜が不純物を殆ど含まない高純度金属の酸化物皮膜から
構成されていることを特徴とする熱電変換装置。
3. The thermoelectric conversion device according to claim 1, wherein the oxide insulating film is composed of an oxide film of a high-purity metal containing almost no impurities.
【請求項4】 電極本体の片面に電気絶縁層を介して半
田接合用金属層を積層した積層電極を用いて、前記電極
本体にP形半導体層ならびにN形半導体層を接合し、前
記半田接合用金属層に熱導体を接合したことを特徴とす
る熱電変換装置。
4. A P-type semiconductor layer and an N-type semiconductor layer are joined to the electrode body by using a laminated electrode in which a solder joining metal layer is laminated on one surface of the electrode body through an electrically insulating layer, and the solder joint is formed. A thermoelectric converter characterized in that a heat conductor is joined to a metal layer for use.
JP13214695A 1995-05-30 1995-05-30 Thermoelectric converter Expired - Fee Related JP3539796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13214695A JP3539796B2 (en) 1995-05-30 1995-05-30 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13214695A JP3539796B2 (en) 1995-05-30 1995-05-30 Thermoelectric converter

Publications (2)

Publication Number Publication Date
JPH08330638A true JPH08330638A (en) 1996-12-13
JP3539796B2 JP3539796B2 (en) 2004-07-07

Family

ID=15074438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13214695A Expired - Fee Related JP3539796B2 (en) 1995-05-30 1995-05-30 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JP3539796B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091650A (en) * 1998-09-16 2000-03-31 Nippon Telegr & Teleph Corp <Ntt> High temperature thermoelectric transducer
JP2001156342A (en) * 1999-11-30 2001-06-08 Aisin Seiki Co Ltd Thermoelectric device
JP2016119450A (en) * 2014-12-23 2016-06-30 財團法人工業技術研究院Industrial Technology Research Institute Thermoelectric conversion device and application system thereof
WO2020256398A1 (en) * 2019-06-18 2020-12-24 엘지이노텍 주식회사 Thermoelectric element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091650A (en) * 1998-09-16 2000-03-31 Nippon Telegr & Teleph Corp <Ntt> High temperature thermoelectric transducer
JP2001156342A (en) * 1999-11-30 2001-06-08 Aisin Seiki Co Ltd Thermoelectric device
JP2016119450A (en) * 2014-12-23 2016-06-30 財團法人工業技術研究院Industrial Technology Research Institute Thermoelectric conversion device and application system thereof
CN105810809A (en) * 2014-12-23 2016-07-27 财团法人工业技术研究院 Thermoelectric conversion device and application system thereof
WO2020256398A1 (en) * 2019-06-18 2020-12-24 엘지이노텍 주식회사 Thermoelectric element

Also Published As

Publication number Publication date
JP3539796B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
CN108133915B (en) Power module with built-in power device and double-sided heat dissipation function and manufacturing method thereof
RU2185042C2 (en) Thermoelectric module with improved heat- transfer apparatus and its manufacturing process
TWI281679B (en) Solid electrolytic capacitor, stacked capacitor using the same, and fabrication method thereof
WO2005124882A1 (en) Thermoelectric conversion module
JP2008527733A (en) Power board
CN102256441A (en) Metal substrate of heat conducting aluminium-based core and preparation method thereof
KR20130036650A (en) Metal substrate module for led, method for manufacturing the same, and led package for vehicle using metal substrate module
JP2000164780A (en) Power electronic component
CN105470378B (en) High-thermal conductive metal base plate and preparation method thereof, LED module and preparation method thereof
JP2012212788A (en) Metal base substrate and manufacturing method of the same
JP5069485B2 (en) Metal base circuit board
JPH08330638A (en) Thermoelectric conversion device
JPH0487213A (en) Anisotropic conductive film and its manufacture
US5112668A (en) Insulated metal substrates and process for the production thereof
JP2012084786A (en) Led package
CN111455384A (en) Copper-clad plate with heat dissipation function and manufacturing method thereof
JP2007258714A (en) Insulating structure suitable for high-temperature process, and its manufacturing method
JP2000164941A (en) Thermoelectric conversion module
CN112038245B (en) Connection process of internal binding line of power module
JP3548658B2 (en) Thermal conductive substrate
JPH104260A (en) Method of manufacturing aluminum radiation substrate
JPH09266374A (en) Manufacture of heat-radiating board
JPH09153647A (en) Heat conductive substrate for thermoelectric conversion module
JP2020155639A (en) Module and manufacturing method thereof
JP7483955B2 (en) Power module substrate and power module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees