JP3539796B2 - Thermoelectric converter - Google Patents

Thermoelectric converter Download PDF

Info

Publication number
JP3539796B2
JP3539796B2 JP13214695A JP13214695A JP3539796B2 JP 3539796 B2 JP3539796 B2 JP 3539796B2 JP 13214695 A JP13214695 A JP 13214695A JP 13214695 A JP13214695 A JP 13214695A JP 3539796 B2 JP3539796 B2 JP 3539796B2
Authority
JP
Japan
Prior art keywords
substrate
insulating film
electrode
thermoelectric conversion
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13214695A
Other languages
Japanese (ja)
Other versions
JPH08330638A (en
Inventor
日出男 渡辺
基弘 酒井
文一 木谷
光敏 小笠原
剛 東松
Original Assignee
株式会社エコ・トゥエンティーワン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エコ・トゥエンティーワン filed Critical 株式会社エコ・トゥエンティーワン
Priority to JP13214695A priority Critical patent/JP3539796B2/en
Publication of JPH08330638A publication Critical patent/JPH08330638A/en
Application granted granted Critical
Publication of JP3539796B2 publication Critical patent/JP3539796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、電子冷却装置あるいは熱発電装置などの熱電変換装置に係り、特にそれの電極を支持する基体ならびに電極に関する。
【0002】
【従来の技術】
は、従来の電子冷却装置の一部拡大断面図である。アルミナなどからなる放熱側絶縁基板100の上に半田層101を介して放熱側電極102が設置され、その放熱側電極102の上にP形半導体層103とN形半導体層104がそれぞれ配置されている。このP形半導体層103とN形半導体層104を接続するように吸熱側電極105が設けられ、さらにその上に半田層106を介して吸熱側絶縁基板107が設置されている。
【0003】
前記P形半導体層103とN形半導体層104は対になって放熱側電極102と吸熱側電極105の間に多数並設され、電気的には直列に、熱的には並列に接続されて電子冷却素子群を構成している。
【0004】
この電子冷却素子群に所定の電流を流すことにより、吸熱側絶縁基板107側の方が吸熱され、その周囲が冷却される。この吸熱によって奪われた熱は放熱側絶縁基板100側で放熱され、放熱フィンやファン(図示せず)によって外部に放散されることにより、熱移動が起こる仕組みになっている。
【0005】
【発明が解決しようとする課題】
ところで、従来の熱電変換装置では耐用寿命が充分とはいえず、使用を繰り返しているうちに、冷却効率などの熱電変換効率が悪くなり、一定の電力を投入した割りには冷却側の温度が下がらなかったり、温度差があるにもかかわらず充分な電力が得られなかった。
【0006】
本発明者らはこの問題点について鋭意検討した結果、熱電変換装置の構成上に問題があることを解明した。すなわち従来の熱電変換装置では、アルミナなどのセラミックからなる絶縁基板100、107が金属製の電極102、105に半田層101、106によって一体に接合されている。
【0007】
このセラミックからなる絶縁基板100、107と、金属からなる半田層101、106(電極102、105、半導体層103、104)は熱膨張(収縮)係数が大きく異なるため、熱電変換装置の使用を繰り返していると(すなわち、冷、暖の温度履歴を繰り返していると)、絶縁基板100、107に反りなどの変形を生じる。そして前記半田層101、106ならびに電極102、105とP形半導体層103およびN形半導体層104の境界部分などに疲労現象が起こり、そのために熱抵抗が大となり、接続不良や断線などを生じてしまい、熱電変換装置の耐用寿命の短縮化の要因となっていた。
【0008】
また、セラミックからなる絶縁基板100、107自体も熱抵抗が大きく、しかも成形や焼結したときにも反りなどの変形が生じ、そのためフィンを含む熱伝導部材との密着性が悪く、その間の熱抵抗が大となる。
【0009】
さらに、セラミックからなる絶縁基板100、107は機械的に脆いため、製造過程などの取扱時に欠けや割れを生じ、歩留りが悪いなどの欠点を有している。
【0010】
従来、特公昭40−11577号公報に記載されているような熱電変換装置の製造方法が提案されている。この方法は、アルミニウムなどの金属製熱伝導体をシュウ酸などの電解液に浸漬して、表面に陽極酸化皮膜を形成する。そしてこの酸化皮膜を沸騰水または水蒸気で短時間(2分以内)封孔処理して、その封孔処理した酸化皮膜上に電気メッキ法で電極を形成する方法である。
【0011】
しかし、この陽極酸化皮膜に封孔処理を施した基板はその上に形成された電極との接合強度が弱く、そのため電極が基板から剥離することが多々あり、実用的ではない。
【0012】
本発明の目的は、このような従来技術の欠点を解消し、熱電変換効率が良好で、耐用寿命の長い熱電変換装置を提供することにある。
【0013】
【課題を解決するための手段】
前記目的を達成するため、本発明は、
例えばアルミニウムなどの金属基材の少なくとも片面に、例えば陽極酸化法などによって多数の細孔を有する例えばアルマイトからなる酸化絶縁皮膜を形成し、前記細孔を封孔処理しないで細孔内に例えばニッケルや銅などの結合用金属を充填して酸化絶縁皮膜の表面に導電性を付与し、その酸化絶縁皮膜上に例えばニッケルや銅などからなる電極を接合したことを特徴とするものである。
【0015】
【作用】
発明によれば、従来のようにアルミナなどのセラミックからなる絶縁基板を使用しないで、絶縁皮膜を形成した金属基材を使用しているから、基板自体としての熱抵抗を低くすることができる。
【0016】
この金属基材は半田層、電極、半導体層などの熱膨張(収縮)係数とあまり差がないため、熱電変換装置の使用を繰り返しても基板が変形したり、半田層や電極などに疲労現象が起こったりすることがなく、熱抵抗を低く抑えることができ、熱電変換装置の耐用寿命を延長することができる。
【0017】
また、セラミックからなる絶縁基板では成形や焼結したときに反りなどの変形が生じ、そのために熱導体との密着性が悪くなるが、金属基材を主体とする本発明の基板ではこのようなことがなく、熱導体との密着が常に良好である。
【0018】
さらに、絶縁皮膜中の細孔は封孔処理をしないで細孔内に結合用金属を充填し、その上に電極を接合した構造になっているから、基板と電極との接合強度を高めることができる。
【0020】
【実施例】
次に本発明の実施例を図とともに説明する。
(第1実施例)
アルミニウム基板を0.5重量%のシュウ酸溶液からなる電解液に浸漬して、浴温20℃、印加電圧100Vの定電圧で5分間陽極酸化を行ない、図1(a)に示すようにアルミニウム基板1上に膜厚約10μmの絶縁皮膜2を形成する。
【0021】
ついでこのアルミニウム基板1を5重量%のリン酸溶液(液温30℃)に一定時間浸漬することにより、前記絶縁皮膜2中に形成されている微細孔の孔径を拡張する。
【0022】
この拡張処理したアルミニウム基板1を塩酸性塩化スズ溶液に1〜10分間浸漬し、その後水洗して蒸留水中に10〜30分間静置して感受性化処理を終了する。次に塩化鉛溶液に5分間浸し、その後水洗して蒸留水中に10〜30分間静置して活性化処理を終了する。
【0023】
このようにして感受性化処理ならびに活性化処理の前処理を行った後、下記の組成からなる無電解メッキ浴に浸漬する。
NiSO・6HO 2.5重量%
NaPH・HO 5.0重量%
Na・10HO 2.5重量%
pH値 11(アンモニア水で調整)
浴温 40℃
このようにして無電解メッキすることにより、前記絶縁皮膜2中の微細孔内にニッケルを析出、充填して絶縁皮膜2の表面に電導性が付与される。
【0024】
次に図1(b)に示すように表面に電導性が付与された絶縁皮膜2の上に常法に従って膜厚が約0.3〜50μmの銅の導電膜3を電気メッキによって形成し、同図(c)に示す如く導電膜3の不要部分をフォトリソグラフィーなどの手法で除去してパターンニングする。
【0025】
駆動時に小電流を流す熱電変換装置の場合には、パターンニングされた導電膜3をそのまま電極として用い、その上にP、N半導体層を設置することもできるが、通常の熱電変換装置の場合には同図(d)に示すようにパターンニングされた導電膜3上に厚さが約200〜1000μmの比較的肉厚の電極4を半田付けによって接合する。
【0026】
図2は図1(d)におけるX部の拡大断面図であり、絶縁皮膜2中に形成されている細孔5内に結合用金属(本実施例の場合はNi)6が充填され、凹凸状になっている細孔5の周壁面に密着するとともに、導電膜3とも密着しており、基板1と導電膜3の間の接合強度を高めている。
【0027】
(実施例2)
図3は実施例2に係るアルミニウム基板1の断面図で、比較的純度が低くて(例えば純度97%)安価なアルミニウムあるいはアルミニウム合金などからなる基材1a上に、高純度のアルミニウム(例えば純度99.99%)からなる陽極酸化用薄層1bがクラッドあるいは溶射などの手段で接合されている。この陽極酸化用薄層1bの厚さは、基板1の全体の厚さが3mmであればその10%に相当する0.3mmで充分である。
【0028】
前記陽極酸化用薄層1bに前記実施例1と同様にして陽極酸化による絶縁皮膜2が形成され、さらにパターンニングされた導電膜3ならびに電極4が設けられる。
【0029】
(実施例3)
図4(a),(b)は実施例3を説明するための図で、同図(a)に示すように比較的純度が低くて(例えば純度97%)安価なアルミニウムあるいはアルミニウム合金などからなる基材1a上に、高純度(例えば純度99.99%)のアルミニウム粒子7を例えばプラズマ焼結法などにより所定の厚さ(例えば0.2〜1mm程度)に焼結して、表面に無数の凹凸を有するとともに内部に無数の粒界をもった焼結層8を形成する。
【0030】
そしてこの焼結層8の上に同図(b)に示すように、前記実施例1と同様にして陽極酸化による絶縁皮膜2を形成し、図示していないがその絶縁皮膜2の上にパターンニングされた導電膜3と電極4を順次形成する。
【0031】
(実施例4)
図5(a),(b)は実施例4を説明するための図で、同図(a)に示すようにアルミニウムからなる基材1aの表面を、例えばサンドブラスト法などの機械的方法あるいはエッチングなどの化学的方法により粗面9にする。そしてこの微細な凹凸を無数に有する粗面9側に同図(b)に示す如く、前記実施例1と同様にして陽極酸化による絶縁皮膜2を形成し、図示していないがその絶縁皮膜2の上にパターンニングされた導電膜3と電極4を順次形成する。
【0032】
(実施例5)
図6(a)〜(d)は実施例5を説明するための図で、同図(a)に示すようにアルミニウムからなる基材1aの表面を加熱して柔らかくした状態で、例えば粒径が約50〜150μmのアルミナや窒化アルミニウムなどからなる硬質粒子10を高圧をかけて表面近傍に埋め込む。この硬質粒子10の埋め込みにより、基材1aの表面が若干盛り上がった状態となる。
【0033】
次に同図(b)に示すように基材1aを浸食しないで硬質粒子10のみを基材1aから溶出することにより基材1aの表面を粗面9にし、同図(c)に示す如くその粗面9に前記実施例1と同様にして陽極酸化による絶縁皮膜2を形成せしめる。
【0034】
しかる後、同図(d)に示すように絶縁皮膜2の上に無電解メッキによって結合用金属6の層を形成して、絶縁皮膜2中の細孔に結合用金属6(Ni)を充填せしめ、図示していないがその結合用金属6の上にパターンニングされた導電膜3と電極4を順次形成する。
【0040】
前記実施例1〜5では陽極酸化法としてシュウ酸法を用いたが、本発明はこれに限定されるものではなく、例えば硫酸法、硬質陽極酸化法、クロム酸法などの他の陽極酸化法を適用することも可能である。
【0041】
前記実施例では電子冷却装置の場合について説明したが、本発明は熱発電装置にも適用可能である。
【0042】
【発明の効果】
請求項1記載の発明によれば、従来のようにアルミナなどのセラミックからなる絶縁基板を使用しないで、絶縁皮膜を形成した金属基材を使用しているから、基板自体としての熱抵抗を低くすることができる。
【0043】
この金属基材は半田層、電極、半導体層などの熱膨張(収縮)係数とあまり差がないため、熱電変換装置の使用を繰り返しても基板が変形したり、半田層や電極などに疲労現象が起こったりすることがなく、熱抵抗を低く抑えることができ、熱電変換装置の耐用寿命を延長することができる。
【0044】
また、セラミックからなる絶縁基板では成形や焼結したときに反りなどの変形が生じ、そのために熱導体との密着性が悪くなるが、金属基材を主体とする本発明の基板ではこのようなことがなく、熱導体との密着が常に良好である。
【0045】
さらに、絶縁皮膜中の細孔は封孔処理をしないで細孔内に結合用金属を充填し、その上に電極を接合した構造になっているから、基板と電極との接合強度を高めることができる。
【0047】
さらに請求項記載のように、酸化絶縁皮膜が不純物を殆ど含まない高純度金属(例えば純度が99.99重量%)の酸化物皮膜から構成されていれば、極薄でも高い電気絶縁性が得られ、信頼性の向上が図れる。
【0049】
以上のようなことから、熱電変換効率が良好で、耐用寿命の長い熱電変換装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る基板の製造工程を示す断面図である。
【図2】図1(d)におけるX部の拡大断面図である。
【図3】本発明の実施例2で使用する基板の断面図である。
【図4】本発明の実施例3に係る基板の製造工程を示す断面図である。
【図5】本発明の実施例4に係る基板の製造工程を示す断面図である。
【図6】本発明の実施例5に係る基板の製造工程を示す断面図である。
【図】従来の電子冷却装置の一部拡大断面図である。
【符号の説明】
1 アルミニウム基板
1a 基材
1b 陽極酸化用薄層
2 絶縁皮膜
3 導電膜
4 電極
5 細孔
6 結合用金属
7 アルミニウム粒子
8 焼結層
9 粗面
10 硬質粒子
11 電極本体
12 絶縁層
13 半田接合用金属層
14 積層電極
14a 吸熱側積層電極
14b 放熱側積層電極
15 冷却側熱導体
16 放熱側熱導体
17 P形半導体層
18 N形半導体層
[0001]
[Industrial applications]
The present invention relates to a thermoelectric conversion device such as an electronic cooling device or a thermoelectric generator, and more particularly, to a substrate and an electrode for supporting the electrode.
[0002]
[Prior art]
FIG. 7 is a partially enlarged sectional view of a conventional electronic cooling device. A heat-dissipation-side electrode 102 is provided on a heat-dissipation-side insulating substrate 100 made of alumina or the like via a solder layer 101, and a P-type semiconductor layer 103 and an N-type semiconductor layer 104 are disposed on the heat-dissipation electrode 102, respectively. I have. A heat-absorbing electrode 105 is provided so as to connect the P-type semiconductor layer 103 and the N-type semiconductor layer 104, and a heat-absorbing insulating substrate 107 is further provided thereon via a solder layer 106.
[0003]
A large number of the P-type semiconductor layers 103 and the N-type semiconductor layers 104 are provided in parallel between the heat-radiating electrode 102 and the heat-absorbing electrode 105 in pairs, and are electrically connected in series and thermally connected in parallel. It constitutes an electronic cooling element group.
[0004]
By passing a predetermined current through this group of electronic cooling elements, heat is absorbed on the heat absorbing side insulating substrate 107 side, and the surrounding area is cooled. The heat deprived by this heat absorption is radiated on the heat-radiating-side insulating substrate 100 side, and is radiated to the outside by radiating fins or a fan (not shown), whereby heat transfer occurs.
[0005]
[Problems to be solved by the invention]
By the way, conventional thermoelectric converters do not have a sufficient service life, and as they are used repeatedly, the thermoelectric conversion efficiency such as cooling efficiency deteriorates. Sufficient power could not be obtained despite the temperature not dropping or the temperature difference.
[0006]
As a result of intensive studies on this problem, the present inventors have clarified that there is a problem in the configuration of the thermoelectric conversion device. That is, in the conventional thermoelectric conversion device, the insulating substrates 100 and 107 made of ceramics such as alumina are integrally joined to the metal electrodes 102 and 105 by the solder layers 101 and 106.
[0007]
The insulating substrates 100 and 107 made of ceramic and the solder layers 101 and 106 (electrodes 102 and 105 and the semiconductor layers 103 and 104) made of metal have significantly different coefficients of thermal expansion (shrinkage). (That is, if the temperature histories of cold and warm are repeated), the insulating substrates 100 and 107 are deformed such as warpage. Then, a fatigue phenomenon occurs at the boundary between the solder layers 101 and 106 and the electrodes 102 and 105 with the P-type semiconductor layer 103 and the N-type semiconductor layer 104, so that the thermal resistance becomes large, resulting in poor connection or disconnection. This has been a factor in shortening the useful life of the thermoelectric converter.
[0008]
In addition, the insulating substrates 100 and 107 made of ceramic also have high thermal resistance, and deformation such as warping occurs during molding or sintering. The resistance increases.
[0009]
Further, since the insulating substrates 100 and 107 made of ceramic are mechanically fragile, they have defects such as chipping and cracking during handling in a manufacturing process and the like, and poor yield.
[0010]
Conventionally, a method of manufacturing a thermoelectric conversion device as described in Japanese Patent Publication No. 40-11577 has been proposed. In this method, a metal heat conductor such as aluminum is immersed in an electrolyte such as oxalic acid to form an anodic oxide film on the surface. Then, the oxide film is sealed with boiling water or steam for a short time (within 2 minutes), and an electrode is formed on the sealed oxide film by electroplating.
[0011]
However, a substrate in which this anodic oxide film has been subjected to sealing treatment has a low bonding strength with an electrode formed thereon, so that the electrode often peels off from the substrate, which is not practical.
[0012]
SUMMARY OF THE INVENTION An object of the present invention is to provide a thermoelectric conversion device which solves such drawbacks of the prior art, has a good thermoelectric conversion efficiency, and has a long service life.
[0013]
[Means for Solving the Problems]
To achieve the above object , the present invention provides:
For example, on at least one surface of a metal substrate such as aluminum, for example, an oxide insulating film made of, for example, alumite having a large number of pores by anodization or the like is formed, and for example, nickel is formed in the pores without sealing the pores. A metal for bonding such as copper or copper is filled to impart conductivity to the surface of the oxide insulating film, and an electrode made of, for example, nickel or copper is bonded on the oxide insulating film.
[0015]
[Action]
According to the present invention, the heat resistance of the substrate itself can be reduced because the metal substrate on which the insulating film is formed is used instead of using the insulating substrate made of a ceramic such as alumina as in the related art. .
[0016]
This metal base material does not significantly differ from the thermal expansion (shrinkage) coefficient of the solder layer, electrode, semiconductor layer, etc., so even if the thermoelectric conversion device is used repeatedly, the substrate may be deformed or the solder layer, electrode, etc. may become fatigued. Does not occur, the thermal resistance can be kept low, and the useful life of the thermoelectric converter can be extended.
[0017]
Further, in the case of an insulating substrate made of ceramic, deformation such as warpage occurs when molded or sintered, and thus the adhesion with a heat conductor is deteriorated. There is no problem and the adhesion to the heat conductor is always good.
[0018]
In addition, the pores in the insulating film are filled with a bonding metal without sealing treatment, and the electrodes are bonded on top of them, so the bonding strength between the substrate and the electrodes must be increased. Can be.
[0020]
【Example】
Next, an embodiment of the present invention will be described with reference to the drawings.
(First embodiment)
The aluminum substrate was immersed in an electrolytic solution consisting of a 0.5% by weight oxalic acid solution, and anodized at a bath temperature of 20 ° C. and a constant voltage of 100 V for 5 minutes to form an aluminum plate as shown in FIG. An insulating film 2 having a thickness of about 10 μm is formed on a substrate 1.
[0021]
Then, the aluminum substrate 1 is immersed in a 5% by weight phosphoric acid solution (solution temperature: 30 ° C.) for a certain period of time to expand the diameter of the fine holes formed in the insulating film 2.
[0022]
The expanded aluminum substrate 1 is immersed in a hydrochloric acid tin chloride solution for 1 to 10 minutes, washed with water, and left standing in distilled water for 10 to 30 minutes to complete the sensitization process. Next, it is immersed in a lead chloride solution for 5 minutes, washed with water, and left standing in distilled water for 10 to 30 minutes to complete the activation treatment.
[0023]
After the sensitization treatment and the pretreatment for the activation treatment are performed in this way, the substrate is immersed in an electroless plating bath having the following composition.
NiSO 4 .6H 2 O 2.5% by weight
NaPH 2 O 2 · H 2 O 5.0% by weight
Na 4 P 2 O 7 · 10H 2 O 2.5 wt%
pH value 11 (adjusted with ammonia water)
Bath temperature 40 ° C
By performing the electroless plating in this manner, nickel is deposited and filled in the micropores in the insulating film 2 to impart conductivity to the surface of the insulating film 2.
[0024]
Next, as shown in FIG. 1B, a copper conductive film 3 having a thickness of about 0.3 to 50 μm is formed by electroplating on an insulating film 2 having a surface provided with conductivity according to a conventional method. As shown in FIG. 3C, unnecessary portions of the conductive film 3 are removed and patterned by a technique such as photolithography.
[0025]
In the case of a thermoelectric converter in which a small current flows during driving, the patterned conductive film 3 can be used as an electrode as it is, and P and N semiconductor layers can be provided thereon. As shown in FIG. 3D, a relatively thick electrode 4 having a thickness of about 200 to 1000 μm is joined by soldering onto the patterned conductive film 3 as shown in FIG.
[0026]
FIG. 2 is an enlarged cross-sectional view of a portion X in FIG. 1D, in which pores 5 formed in the insulating film 2 are filled with a bonding metal (Ni in the case of the present embodiment) 6, and irregularities are formed. It is in close contact with the peripheral wall surface of the formed pores 5 and is also in close contact with the conductive film 3, thereby increasing the bonding strength between the substrate 1 and the conductive film 3.
[0027]
(Example 2)
FIG. 3 is a cross-sectional view of an aluminum substrate 1 according to the second embodiment, in which a high purity aluminum (for example, a purity of 97%) is formed on a base material 1a made of inexpensive aluminum or an aluminum alloy having a relatively low purity (for example, 97%). (99.99%) is joined by means such as cladding or thermal spraying. If the overall thickness of the substrate 1 is 3 mm, the thickness of the anodizing thin layer 1b is sufficient to be 0.3 mm, which is 10% of the thickness.
[0028]
An insulating film 2 by anodic oxidation is formed on the anodic oxidation thin layer 1b in the same manner as in Example 1, and a patterned conductive film 3 and electrodes 4 are provided.
[0029]
(Example 3)
FIGS. 4A and 4B are diagrams for explaining the third embodiment. As shown in FIG. 4A, aluminum or aluminum alloy having relatively low purity (eg, 97% purity) is used. A high purity (for example, 99.99% purity) aluminum particles 7 are sintered to a predetermined thickness (for example, about 0.2 to 1 mm) by, for example, a plasma sintering method on the base material 1a to be A sintered layer 8 having countless irregularities and having countless grain boundaries therein is formed.
[0030]
Then, as shown in FIG. 3B, an insulating film 2 is formed on the sintered layer 8 by anodic oxidation in the same manner as in the first embodiment, and a pattern is formed on the insulating film 2 (not shown). The patterned conductive film 3 and electrode 4 are sequentially formed.
[0031]
(Example 4)
FIGS. 5A and 5B are views for explaining the fourth embodiment. As shown in FIG. 5A, the surface of a base material 1a made of aluminum is etched by a mechanical method such as a sand blast method or etched. The rough surface 9 is formed by a chemical method such as the above. Then, as shown in FIG. 3B, an insulating film 2 by anodic oxidation is formed on the rough surface 9 having a myriad of fine irregularities as shown in FIG. A patterned conductive film 3 and an electrode 4 are sequentially formed thereon.
[0032]
(Example 5)
6 (a) to 6 (d) are views for explaining Example 5, and as shown in FIG. 6 (a), the surface of a substrate 1a made of aluminum is heated to be soft, Is embedded in the vicinity of the surface by applying high pressure to hard particles 10 of about 50 to 150 μm made of alumina, aluminum nitride, or the like. By embedding the hard particles 10, the surface of the substrate 1a is slightly raised.
[0033]
Next, as shown in FIG. 3B, only the hard particles 10 are eluted from the substrate 1a without eroding the substrate 1a to make the surface of the substrate 1a rough, and as shown in FIG. The insulating film 2 is formed on the rough surface 9 by anodic oxidation in the same manner as in the first embodiment.
[0034]
Thereafter, as shown in FIG. 2D, a layer of the bonding metal 6 is formed on the insulating film 2 by electroless plating, and the pores in the insulating film 2 are filled with the bonding metal 6 (Ni). At least, although not shown, the patterned conductive film 3 and the electrode 4 are sequentially formed on the bonding metal 6.
[0040]
In Examples 1 to 5, the oxalic acid method was used as the anodic oxidation method. However, the present invention is not limited to this method. For example, other anodic oxidation methods such as a sulfuric acid method, a hard anodic oxidation method, and a chromic acid method. It is also possible to apply
[0041]
In the above embodiment, the case of the electronic cooling device has been described, but the present invention is also applicable to a thermoelectric generator.
[0042]
【The invention's effect】
According to the first aspect of the present invention, since the metal substrate on which the insulating film is formed is used instead of using the insulating substrate made of ceramic such as alumina as in the related art, the thermal resistance as the substrate itself is reduced. Can be lower.
[0043]
This metal base material does not significantly differ from the thermal expansion (shrinkage) coefficient of the solder layer, electrode, semiconductor layer, etc., so even if the thermoelectric conversion device is used repeatedly, the substrate may be deformed or the solder layer, electrode, etc. may become fatigued. Does not occur, the thermal resistance can be kept low, and the useful life of the thermoelectric converter can be extended.
[0044]
Further, in the case of an insulating substrate made of ceramic, deformation such as warpage occurs when molded or sintered, and thus the adhesion with a heat conductor is deteriorated. There is no problem and the adhesion to the heat conductor is always good.
[0045]
In addition, the pores in the insulating film are filled with a bonding metal without sealing treatment, and the electrodes are bonded on top of them, so the bonding strength between the substrate and the electrodes must be increased. Can be.
[0047]
Further, as claimed in claim 4, wherein, if it is composed of an oxide film of high-purity metal oxide insulating film is substantially free of impurities (e.g., purity of 99.99 wt%), a high electric insulation even in extremely thin And reliability can be improved.
[0049]
As described above, a thermoelectric conversion device having good thermoelectric conversion efficiency and a long service life can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a manufacturing process of a substrate according to a first embodiment of the present invention.
FIG. 2 is an enlarged sectional view of a portion X in FIG. 1 (d).
FIG. 3 is a sectional view of a substrate used in a second embodiment of the present invention.
FIG. 4 is a cross-sectional view illustrating a step of manufacturing a substrate according to Example 3 of the present invention.
FIG. 5 is a cross-sectional view illustrating a step of manufacturing a substrate according to Example 4 of the present invention.
FIG. 6 is a cross-sectional view illustrating a step of manufacturing a substrate according to Example 5 of the present invention.
FIG. 7 is a partially enlarged cross-sectional view of a conventional electronic cooling device.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 aluminum substrate 1a base material 1b thin layer for anodizing 2 insulating film 3 conductive film 4 electrode 5 pore 6 bonding metal 7 aluminum particle 8 sintered layer 9 rough surface 10 hard particle 11 electrode body 12 insulating layer 13 for solder bonding Metal layer 14 Laminated electrode 14a Heat absorbing side laminated electrode 14b Radiation side laminated electrode 15 Cooling side heat conductor 16 Radiation side heat conductor 17 P-type semiconductor layer 18 N-type semiconductor layer

Claims (4)

金属基材の少なくとも片面に多数の細孔を有する酸化絶縁皮膜を形成し、前記細孔を封孔処理しないで細孔内に結合用金属を充填して酸化絶縁皮膜の表面に導電性を付与し、その酸化絶縁皮膜上に電極を接合したことを特徴とする熱電変換装置。An oxide insulating film having a large number of pores is formed on at least one surface of the metal substrate, and the pores are filled with a bonding metal in the pores without sealing to impart conductivity to the surface of the oxide insulating film. A thermoelectric conversion device wherein electrodes are bonded on the oxide insulating film. 請求項1記載において、前記導電性を付与した酸化絶縁皮膜の上に導電膜をパターンニングし、その導電膜の上に前記電極を接合したことを特徴とする熱電変換装置。2. The thermoelectric conversion device according to claim 1, wherein a conductive film is patterned on the oxide insulating film provided with the conductivity, and the electrode is bonded on the conductive film . 請求項1記載において、前記導電性を付与した酸化絶縁皮膜の上に導電膜をパターンニングし、その導電膜を前記電極として用いることを特徴とする熱電変換装置。2. The thermoelectric conversion device according to claim 1, wherein a conductive film is patterned on the conductive oxide insulating film, and the conductive film is used as the electrode . 請求項1記載において、前記酸化絶縁皮膜が不純物を殆ど含まない高純度金属の酸化物皮膜から構成されていることを特徴とする熱電変換装置。2. The thermoelectric conversion device according to claim 1, wherein the oxide insulating film is formed of a high-purity metal oxide film containing almost no impurities.
JP13214695A 1995-05-30 1995-05-30 Thermoelectric converter Expired - Fee Related JP3539796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13214695A JP3539796B2 (en) 1995-05-30 1995-05-30 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13214695A JP3539796B2 (en) 1995-05-30 1995-05-30 Thermoelectric converter

Publications (2)

Publication Number Publication Date
JPH08330638A JPH08330638A (en) 1996-12-13
JP3539796B2 true JP3539796B2 (en) 2004-07-07

Family

ID=15074438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13214695A Expired - Fee Related JP3539796B2 (en) 1995-05-30 1995-05-30 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JP3539796B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580406B2 (en) * 1998-09-16 2004-10-20 日本電信電話株式会社 High temperature thermoelectric conversion element
JP2001156342A (en) * 1999-11-30 2001-06-08 Aisin Seiki Co Ltd Thermoelectric device
TW201624779A (en) * 2014-12-23 2016-07-01 財團法人工業技術研究院 Thermoelectric Conversion apparatus application system thereof
KR102220946B1 (en) * 2019-06-18 2021-02-26 엘지이노텍 주식회사 Thermo electric element

Also Published As

Publication number Publication date
JPH08330638A (en) 1996-12-13

Similar Documents

Publication Publication Date Title
US6911728B2 (en) Member for electronic circuit, method for manufacturing the member, and electronic part
WO2005124882A1 (en) Thermoelectric conversion module
CN108133915B (en) Power module with built-in power device and double-sided heat dissipation function and manufacturing method thereof
US20130014796A1 (en) Thermoelectric element and thermoelectric module
JP2008527733A (en) Power board
CN103327732A (en) High heat conduction substrate and manufacturing method thereof
KR20130036650A (en) Metal substrate module for led, method for manufacturing the same, and led package for vehicle using metal substrate module
KR20050104712A (en) Heat sink and the finishing method for the same
JP3539796B2 (en) Thermoelectric converter
JP2012212788A (en) Metal base substrate and manufacturing method of the same
JP2012064914A (en) Heat dissipation substrate and manufacturing method of the same
JP4959387B2 (en) Insulating structure and manufacturing method thereof
JP5069485B2 (en) Metal base circuit board
JPH0487213A (en) Anisotropic conductive film and its manufacture
JP3669980B2 (en) MODULE STRUCTURE MANUFACTURING METHOD, CIRCUIT BOARD FIXING METHOD, AND CIRCUIT BOARD
KR20110015098A (en) Method for manufacturing metal core pcb
JP2000164941A (en) Thermoelectric conversion module
JP3548658B2 (en) Thermal conductive substrate
JPH104260A (en) Method of manufacturing aluminum radiation substrate
JPH09266374A (en) Manufacture of heat-radiating board
JP6536442B2 (en) Method of manufacturing plated power module substrate
JP3669981B2 (en) Method for manufacturing module structure
JPH09153647A (en) Heat conductive substrate for thermoelectric conversion module
KR102040504B1 (en) method and apparatus of manufacturing substrate material for thermoelectric module
JP6114948B2 (en) Semiconductor device having heat dissipation structure and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees