JP5865721B2 - Thermoelectric module - Google Patents

Thermoelectric module Download PDF

Info

Publication number
JP5865721B2
JP5865721B2 JP2012016745A JP2012016745A JP5865721B2 JP 5865721 B2 JP5865721 B2 JP 5865721B2 JP 2012016745 A JP2012016745 A JP 2012016745A JP 2012016745 A JP2012016745 A JP 2012016745A JP 5865721 B2 JP5865721 B2 JP 5865721B2
Authority
JP
Japan
Prior art keywords
thermoelectric module
heat exchange
coating layer
bonding material
exchange member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012016745A
Other languages
Japanese (ja)
Other versions
JP2013157446A (en
Inventor
賢一 赤羽
賢一 赤羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012016745A priority Critical patent/JP5865721B2/en
Publication of JP2013157446A publication Critical patent/JP2013157446A/en
Application granted granted Critical
Publication of JP5865721B2 publication Critical patent/JP5865721B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、恒温槽、冷蔵庫、自動車用のシートクーラー、半導体製造装置、レーザーダイオード等の温度制御、廃熱発電等に好適に使用される熱電モジュールに関するものである。   The present invention relates to a thermoelectric module suitably used for temperature control, waste heat power generation, and the like of a thermostatic bath, a refrigerator, an automobile seat cooler, a semiconductor manufacturing apparatus, a laser diode, and the like.

熱電素子は、p型半導体とn型半導体とからなるPN接合対に電流を流すと、それぞれの半導体の一端側が発熱するとともに他端側が吸熱するというペルチェ効果を利用したもので、これをモジュール化した熱電モジュールは、精密な温度制御が可能であり、小型で構造が簡単でありフロンレスの冷却装置、光検出素子、半導体製造装置等の冷却装置、レーザーダイオードの温度調節装置等への幅広い利用がされている。   The thermoelectric element utilizes the Peltier effect that when a current is passed through a PN junction pair consisting of a p-type semiconductor and an n-type semiconductor, one end side of each semiconductor generates heat and the other end side absorbs heat. The thermoelectric module is capable of precise temperature control, is small and has a simple structure, and is widely used in cooling devices such as freonless cooling devices, photodetectors, semiconductor manufacturing devices, laser diode temperature control devices, etc. Has been.

また、熱電素子はその両端に温度差があると電力をとりだすことも可能であるため、排熱回収発電等の発電装置への利用が期待されている。   Moreover, since the thermoelectric element can also extract electric power when there is a temperature difference between both ends, it is expected to be used for a power generation device such as exhaust heat recovery power generation.

室温付近で使用される熱電モジュールは、A型結晶(AはBi及び/又はSb、BはTe及び/又はSe)からなる熱電材料で形成されたP型の熱電素子およびN型の熱電素子を対にして含む構成となっている。例えば、特に優れた性能を示す熱電材料として、P型の熱電素子にはBiTeとSbTe(テルル化アンチモン)との固溶体からなる熱電材料が用いられ、N型の熱電素子にはBiTeとBiSe(セレン化ビスマス)との固溶体からなる熱電材料が用いられる。 Thermoelectric modules used near room temperature are P-type thermoelectric elements and N-type elements made of thermoelectric materials made of A 2 B 3 type crystals (A is Bi and / or Sb, B is Te and / or Se). The thermoelectric element is configured to include a pair. For example, as a thermoelectric material exhibiting particularly excellent performance, a thermoelectric material made of a solid solution of Bi 2 Te 3 and Sb 2 Te 3 (antimony telluride) is used for a P-type thermoelectric element, and an N-type thermoelectric element is used. Is a thermoelectric material made of a solid solution of Bi 2 Te 3 and Bi 2 Se 3 (bismuth selenide).

そして、このような熱電材料で形成されたP型熱電素子とN型熱電素子とを直列に電気接続するようにして、セラミックス等の絶縁体からなる互いに対向するように配置された一対の支持基板の対向する内側主面間に配列し、はんだで一対の支持基板の対向する内側の主面にそれぞれ設けられた配線導体とP型熱電素子及びN型熱電素子とを接合する。さらに、空気、水等の媒体を介して集熱、放熱させるためにフィンなどの熱交換部材を支持基板の外側主面に接着剤、はんだなどの接合材で接合することによって熱電モジュールが作製される(例えば特許文献1を参照)。   Then, a pair of support substrates arranged so as to face each other made of an insulator such as ceramics so as to electrically connect the P-type thermoelectric element and the N-type thermoelectric element formed of such a thermoelectric material in series. The P-type thermoelectric element and the N-type thermoelectric element are joined to each other with the wiring conductors arranged on the opposed inner main surfaces of the pair of support substrates respectively. Furthermore, a thermoelectric module is manufactured by joining a heat exchange member such as a fin to the outer main surface of the support substrate with a bonding material such as an adhesive or solder in order to collect and dissipate heat through a medium such as air or water. (For example, refer to Patent Document 1).

特開2007−35907号公報JP 2007-35907 A

しかしながら、特許文献1に示すような熱交換部材と支持基板との接合では、熱源が急激な温度上昇・下降した場合に接合材にクラックが入ることで、熱電モジュールの発電量が低下するおそれがあった。   However, in the joining of the heat exchange member and the support substrate as shown in Patent Document 1, when the heat source suddenly rises or falls in temperature, the joining material may crack, which may reduce the power generation amount of the thermoelectric module. there were.

本発明は、上記の事情に鑑みてなされたもので、熱源の急激な温度変化によっても長期間発電能力が低下しにくい熱電モジュールを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermoelectric module in which the power generation capacity is not easily lowered for a long time even by a rapid temperature change of a heat source.

本発明は、互いに対向するように配置された一対の支持基板と、該一対の支持基板の対向する内側の主面にそれぞれ設けられた配線導体と、前記一対の支持基板の対向する内側の主面間に前記配線導体によって電気的に接続されるように複数配列された熱電素子と、前記一対の支持基板のうちの少なくとも一方の支持基板の外側の主面に接合材を介して取り付けられ、一断面で見て、前記支持基板の主面に垂直な方向に延びる複数の立設部と、隣り合う立設部の支持基板側の端部を1つおきに接続する底部とを有する熱交換部材と該熱交換部材で覆われていない前記接合材の表面領域を覆う被覆層と、を有するとともに、該被覆層は、前記立設部において立設方向における前記底部側を除く領域には設けられていないことを特徴とする熱電モジュールである。
The present invention provides a pair of support substrates disposed so as to face each other, wiring conductors provided on the inner main surfaces facing each other of the pair of support substrates, and inner main surfaces facing each other of the pair of support substrates. A plurality of thermoelectric elements arranged so as to be electrically connected by the wiring conductor between the surfaces, and attached to the outer main surface of at least one of the pair of support substrates via a bonding material , A heat exchange having a plurality of standing portions extending in a direction perpendicular to the main surface of the support substrate and a bottom portion connecting every other end of the adjacent standing portions on the support substrate side when viewed in a section. region and the member, and having a, and the Kutsugaeso Let covering the surface area of the bonding material which is not covered with the heat exchange member, the coating layer is, excluding the bottom side of the upright direction in the standing portion thermoelectric, characterized in that not provided in the It is a joule.

ここで、前記被覆層は前記接合材と前記熱交換部材とに接しているのが好ましい。   Here, it is preferable that the coating layer is in contact with the bonding material and the heat exchange member.

また、前記熱交換部材の外周部に沿って、前記被覆層が接合材の表面領域を覆っているのが好ましい。   Moreover, it is preferable that the said coating layer has covered the surface area | region of the joining material along the outer peripheral part of the said heat exchange member.

また、前記被覆層が前記底部と前記底部との間に充填されるようにして設けられているのが好ましい。
Also, preferably before Symbol coating layer is provided so as to be filled between the bottom portion and the bottom portion.

また、前記被覆層は前記底部の上面よりも高い位置まで設けられているのが好ましい。   Moreover, it is preferable that the said coating layer is provided to the position higher than the upper surface of the said bottom part.

また、前記被覆層は前記底部の上にも設けられているのが好ましい。   Moreover, it is preferable that the said coating layer is provided also on the said bottom part.

また、前記熱交換部材は両方の支持基板の外側の主面にそれぞれ取り付けられているのが好ましい。   Moreover, it is preferable that the said heat exchange member is each attached to the outer main surface of both support substrates.

本発明によれば、支持基板と熱交換部材とを接合する接合材において、熱交換部材で覆われていない領域の表面に被覆層があることで、接合強度が向上し、また、熱容量が増加する。そのため、急激な熱源の温度変化が生じた環境下でも、接合材にクラックが入るのを抑制し、長期間発電能力が低下しにくい熱電モジュールを実現することができる。   According to the present invention, the bonding material for bonding the support substrate and the heat exchange member has a coating layer on the surface of the region not covered with the heat exchange member, thereby improving the bonding strength and increasing the heat capacity. To do. Therefore, it is possible to realize a thermoelectric module in which cracks are prevented from entering the bonding material even under an environment in which a rapid temperature change of the heat source occurs, and the power generation capacity is not easily lowered for a long time.

本発明の熱電モジュールの実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the thermoelectric module of this invention. 図1に示す熱電モジュールの一部を分解した斜視図である。It is the perspective view which decomposed | disassembled some thermoelectric modules shown in FIG. 本発明の熱電モジュールの実施の形態の他の例の要部を示す断面図である。It is sectional drawing which shows the principal part of the other example of embodiment of the thermoelectric module of this invention.

以下、本発明の熱電モジュールの実施の形態の例について説明する。   Hereinafter, the example of embodiment of the thermoelectric module of this invention is demonstrated.

図1は本発明の熱電モジュールの実施の形態の一例を示す断面図であり、図2は図1に示す熱電モジュールの一部を分解した斜視図である。   FIG. 1 is a cross-sectional view showing an example of an embodiment of a thermoelectric module of the present invention, and FIG. 2 is an exploded perspective view of a part of the thermoelectric module shown in FIG.

図1および図2に示す熱電モジュールは、互いに対向するように配置された一対の支持基板1と、一対の支持基板1の対向する内側の主面にそれぞれ設けられた配線導体2と、一対の支持基板1の対向する内側の主面間に配線導体2によって電気的に接続されるように複数配列された熱電素子3と、一対の支持基板1のうちの少なくとも一方の支持基板1aの外側の主面に接合材4を介して取り付けられた熱交換部材5とを備え、熱交換部材5で覆われていない接合材4の表面領域を覆うように被覆層6を有していることを特徴とする熱電モジュールである。   The thermoelectric module shown in FIG. 1 and FIG. 2 includes a pair of support substrates 1 arranged so as to face each other, a wiring conductor 2 provided on each of the opposing main surfaces of the pair of support substrates 1, and a pair of A plurality of thermoelectric elements 3 arranged so as to be electrically connected by wiring conductors 2 between the opposing inner main surfaces of the support substrate 1, and at least one support substrate 1a of the pair of support substrates 1 And a heat exchange member 5 attached to the main surface via the bonding material 4, and has a coating layer 6 so as to cover the surface region of the bonding material 4 not covered with the heat exchange member 5. It is a thermoelectric module.

互いに対向するように配置された一対の支持基板1(1a,1b)は、例えばアルミナフィラーを添加してなるエポキシ樹脂板(基板本体)の外側の主面に銅板を貼り合わせた基板(例えば厚み100〜500μmの銅板を貼りあわせた基板)であり、それぞれの支持基板1a,1bが互いに対向するように配置されたものである。この一対の支持基板1
(1a,1b)は、平面視したときの寸法が、例えば縦40〜50mm、横20〜40mmに形成され、また厚みが例えば0.05〜2.0mmに形成されたものである。なお、支持基板1としては、アルミナ、窒化アルミニウムなどのセラミック材料からなる基板本体の外側の主面に銅などの金属板を貼り合わせた構成であってもよく、銅、銀、銀−パラジウムなどの導電性材料からなる基板本体の内側の主面にエポキシ樹脂、ポリイミド樹脂、アルミナ、窒化アルミニウムなどからなる絶縁層を設けた構成であってもよい。
一対の支持基板1(1a,1b)の対向する内側の主面には、それぞれ配線導体2が設けられている。この配線導体2は、例えば支持基板1の内側の主面に貼りあわされた銅板をエッチングによって配線パターンに形成したものであり、隣接するP型熱電素子3a及びN型熱電素子3b間を直列に電気的に接続するように設けられている。配線導体2の形成材料としては、銅に限られず、例えば銀、銀−パラジウムなどの材料でもよい。
A pair of support substrates 1 (1a, 1b) arranged so as to face each other is a substrate (for example, a thickness) in which a copper plate is bonded to the outer main surface of an epoxy resin plate (substrate body) to which an alumina filler is added, for example. And a support substrate 1a, 1b disposed so as to face each other. This pair of support substrates 1
(1a, 1b) is formed so that the dimensions when viewed in plan are, for example, 40 to 50 mm in length, 20 to 40 mm in width, and 0.05 to 2.0 mm in thickness. The support substrate 1 may have a configuration in which a metal plate such as copper is bonded to the outer main surface of a substrate body made of a ceramic material such as alumina or aluminum nitride, such as copper, silver, or silver-palladium. Alternatively, an insulating layer made of epoxy resin, polyimide resin, alumina, aluminum nitride, or the like may be provided on the inner main surface of the substrate body made of the conductive material.
Wiring conductors 2 are provided on the inner main surfaces of the pair of support substrates 1 (1a, 1b) facing each other. The wiring conductor 2 is formed, for example, by etching a copper plate bonded to the inner main surface of the support substrate 1 into a wiring pattern, and between adjacent P-type thermoelectric elements 3a and N-type thermoelectric elements 3b in series. An electrical connection is provided. The material for forming the wiring conductor 2 is not limited to copper, and may be a material such as silver or silver-palladium.

一対の支持基板1(1a,1b)の対向する内側の主面間に、配線導体2によって電気的に接続されるように、熱電素子3(P型熱電素子3a及びN型熱電素子3b)が複数配列されている。熱電素子3(P型熱電素子3a,N型熱電素子3b)は、A型結晶(AはBi及び/又はSb、BはTe及び/又はSe)からなる熱電材料、好ましくはビスマス(Bi)、テルル(Te)系の熱電材料で本体部が形成されている。具体的には、P型熱電素子3aは、例えばBiTe(テルル化ビスマス)とSbTe(テルル化アンチモン)との固溶体からなる熱電材料で形成され、N型熱電素子3bは、例えばBiTe(テルル化ビスマス)とBiSe(セレン化ビスマス)との固溶体からなる熱電材料で形成されている。 Thermoelectric elements 3 (P-type thermoelectric elements 3a and N-type thermoelectric elements 3b) are electrically connected by wiring conductors 2 between the inner main surfaces of the pair of supporting substrates 1 (1a, 1b) facing each other. Multiple sequences are arranged. The thermoelectric element 3 (P-type thermoelectric element 3a, N-type thermoelectric element 3b) is a thermoelectric material made of A 2 B 3 type crystal (A is Bi and / or Sb, B is Te and / or Se), preferably bismuth ( Bi) The main body is formed of a tellurium (Te) thermoelectric material. Specifically, the P-type thermoelectric element 3a is formed of, for example, a thermoelectric material made of a solid solution of Bi 2 Te 3 (bismuth telluride) and Sb 2 Te 3 (antimony telluride), and the N-type thermoelectric element 3b is For example, it is formed of a thermoelectric material made of a solid solution of Bi 2 Te 3 (bismuth telluride) and Bi 2 Se 3 (bismuth selenide).

ここで、P型熱電素子3aとなる熱電材料は一度溶融させて固化したBiSbおよびTeからなるP型の形成材料を、ブリッジマン法により一方向に凝固させ、例えば直径1〜3mmの断面円形の棒状体としたものである。また、N型熱電素子3bとなる熱電材料は、一度溶融させて固化したBi、TeおよびSeからなるN型の形成材料を、ブリッジマン法により一方向に凝固させ、例えば直径1〜3mmの断面円形の棒状体としたものである。 Here, the thermoelectric material to be the P-type thermoelectric element 3a is a P-type forming material composed of Bi , Sb and Te once melted and solidified in one direction by the Bridgman method, for example, a cross section having a diameter of 1 to 3 mm. It is a circular rod-shaped body. Further, the thermoelectric material to be the N-type thermoelectric element 3b is an N-type forming material composed of Bi, Te and Se once melted and solidified in one direction by the Bridgman method, for example, a cross section having a diameter of 1 to 3 mm. It is a circular rod-shaped body.

これらの熱電材料の側面にメッキが付着することを防止するレジストをコーティングした後、ワイヤーソーを用いて例えば0.3〜5.0mmの幅に切断する。ついで、切断面のみに、例えば電解メッキでNi層を形成し、その上にSn層を形成し、溶解液でレジストを剥離することで、熱電素子3(P型熱電素子3a,N型熱電素子3b)を得ることができる。   After coating a resist for preventing the plating from adhering to the side surfaces of these thermoelectric materials, the wire is cut into a width of, for example, 0.3 to 5.0 mm using a wire saw. Next, the Ni layer is formed only on the cut surface by, for example, electrolytic plating, the Sn layer is formed thereon, and the resist is peeled off with the solution, whereby the thermoelectric element 3 (P-type thermoelectric element 3a, N-type thermoelectric element). 3b) can be obtained.

なお、熱電素子3(P型熱電素子3a,N型熱電素子3b)の形状は、円柱状、四角柱状または多角柱状でも構わないが、使用時の膨張収縮に伴う応力集中を避けるために、円柱状が好ましい。   The shape of the thermoelectric element 3 (P-type thermoelectric element 3a, N-type thermoelectric element 3b) may be cylindrical, quadrangular, or polygonal, but in order to avoid stress concentration associated with expansion and contraction during use, A columnar shape is preferred.

この熱電素子3が、図2に示すように、例えば0.5〜3mm、熱電素子サイズ(直径)の0.5〜2.0倍の間隔で縦横の並びに複数配列される。そして、熱電素子3(P型熱電素子3a,N型熱電素子3b)は、配線導体2と同様のパターンに塗布されたはんだペーストにより配線導体2と接合され、複数配列された熱電素子3は配線導体2により直列に電気的接続される。   As shown in FIG. 2, a plurality of the thermoelectric elements 3 are arranged vertically and horizontally, for example, at intervals of 0.5 to 2.0 mm and 0.5 to 2.0 times the thermoelectric element size (diameter). The thermoelectric elements 3 (P-type thermoelectric element 3a and N-type thermoelectric element 3b) are joined to the wiring conductor 2 by a solder paste applied in the same pattern as the wiring conductor 2, and a plurality of thermoelectric elements 3 arranged in the wiring The conductors 2 are electrically connected in series.

そして、一対の支持基板1のうちの少なくとも一方の支持基板1aの外側の主面に、接合材4を介して熱交換部材5が取り付けられている。なお、図1では、両方の支持基板1a、1bの外側に接合材4を介して熱交換部材5が取り付けられている。   A heat exchange member 5 is attached to the outer main surface of at least one of the pair of support substrates 1 via a bonding material 4. In FIG. 1, a heat exchange member 5 is attached to the outside of both support substrates 1a and 1b via a bonding material 4.

接合材4としては、例えばSn−Bi系はんだ、Sn−Sb系はんだ、Sn−Ag−C
u系はんだなどが使用される。
Examples of the bonding material 4 include Sn-Bi solder, Sn-Sb solder, Sn-Ag-C.
u-based solder or the like is used.

熱交換部材5としては、通常熱伝導率の高い銅、アルミ、鉄などが使用され、1000℃を超える領域での用途(例えば、廃熱炉などに用いる熱電発電用途)では、窒化珪素などのセラミックスも使用される。また、形状は、水、有機溶剤などの液体や、空気、窒素などの気体に熱伝達させるため、単位面積あたりの表面積を多くするように、波上のコルゲート型フィンや針状ピンが多く立っている形状などが好ましい。   As the heat exchange member 5, copper, aluminum, iron or the like having high thermal conductivity is usually used. For applications in the region exceeding 1000 ° C. (for example, thermoelectric power generation used in a waste heat furnace or the like), silicon nitride or the like is used. Ceramics are also used. In addition, because the heat is transferred to liquids such as water and organic solvents, and gases such as air and nitrogen, many corrugated fins and needle pins on the wave stand to increase the surface area per unit area. The shape etc. which are are preferable.

そして、本発明の熱電モジュールは、熱交換部材5で覆われていない接合材4の表面領域を覆うように被覆層6を有している。   And the thermoelectric module of this invention has the coating layer 6 so that the surface area | region of the joining material 4 which is not covered with the heat exchange member 5 may be covered.

被覆層6は、例えばエポキシ樹脂、ポリイミド樹脂、シリコーンなどの樹脂材料からなり、例えば10〜100μmの厚みに形成される。この被覆層6の形成方法としては、熱交換部材5と支持基板1とを接合後に、接合材4の表面にスプレー塗布やディスペンサ塗布して形成する。   The coating layer 6 is made of a resin material such as an epoxy resin, a polyimide resin, or silicone, and is formed to have a thickness of 10 to 100 μm, for example. As a method for forming the coating layer 6, the heat exchange member 5 and the support substrate 1 are bonded to each other, and then formed on the surface of the bonding material 4 by spray coating or dispenser coating.

また、上記樹脂に代えて接合材4に含まれるフラックスで被覆層6を形成してもよい。この場合、接合材4としてハロゲン量0.1%以下のフラックスを使用したはんだを使用し、熱交換部材5と支持基板1とをはんだ接合すると表面のフラックス成分が被覆層6を形成するようになる。   Further, the coating layer 6 may be formed of a flux contained in the bonding material 4 instead of the resin. In this case, a solder using a flux having a halogen content of 0.1% or less is used as the bonding material 4, and when the heat exchange member 5 and the support substrate 1 are soldered together, the surface flux component forms the coating layer 6. Become.

熱電発電は熱電モジュールの対向する面に温度差をつけることで発電するため、熱電モジュールの一方の面で熱源からの熱量を吸収し、他方の面を水冷、空冷などで冷却する。ここで使用する熱源は、例えば産業廃棄物の炉や工業炉、自動車用の廃熱など時間的一定の熱量ではなく、時間変化をともなうものが大半をしめる。そのため、その急激な温度変化が生じると、その熱応力で接合材4にクラックが入り、熱抵抗が増大して熱電素子3へ伝わる熱量が低下し、結果として発電量が低下するおそれがある。   In thermoelectric power generation, power is generated by creating a temperature difference between opposing surfaces of the thermoelectric module. Therefore, one surface of the thermoelectric module absorbs heat from the heat source, and the other surface is cooled by water cooling, air cooling, or the like. The heat source used here is not a constant amount of heat such as a furnace for industrial waste, an industrial furnace, or waste heat for automobiles, but most of it has a change with time. Therefore, when the rapid temperature change occurs, the bonding material 4 is cracked by the thermal stress, the thermal resistance is increased, the amount of heat transmitted to the thermoelectric element 3 is decreased, and the power generation amount may be decreased as a result.

これに対し、本発明のように構成した熱電モジュールは、支持基板1と熱交換部材5との接合強度が向上し、また熱容量が増加する。そのため、急激な熱源の温度変化が生じた環境下でも、接合材4にクラックが入ることが抑制され、発電性能の低下を抑制することができる。   On the other hand, the thermoelectric module comprised like this invention improves the joining strength of the support substrate 1 and the heat exchange member 5, and heat capacity increases. Therefore, even in an environment where a rapid temperature change of the heat source has occurred, cracks in the bonding material 4 are suppressed, and a decrease in power generation performance can be suppressed.

ここで、被覆層6は接合材4と熱交換部材5とに接していることが望ましい。熱量は熱源から気体を介して熱交換部材5に伝熱され、次に接合材4、支持基板1、配線導体2、熱電素子3の順に伝熱される。被覆層6を有することで、熱交換部材5から支持基板1への伝熱パスが増加するため、接合材4が局所過熱されないため、接合材4への応力が低減できる。したがって、クラック発生を抑制することができ、発電性能低下を防止することができる。   Here, the coating layer 6 is preferably in contact with the bonding material 4 and the heat exchange member 5. The amount of heat is transferred from the heat source to the heat exchange member 5 through gas, and then transferred in the order of the bonding material 4, the support substrate 1, the wiring conductor 2, and the thermoelectric element 3. By having the coating layer 6, the heat transfer path from the heat exchange member 5 to the support substrate 1 increases, so that the bonding material 4 is not locally overheated, so that the stress on the bonding material 4 can be reduced. Therefore, generation | occurrence | production of a crack can be suppressed and power generation performance fall can be prevented.

また、熱交換部材5の外周部に沿って、被覆層6が接合材4の表面領域を覆っていることが望ましい。   Further, it is desirable that the covering layer 6 covers the surface region of the bonding material 4 along the outer peripheral portion of the heat exchange member 5.

高温側の支持基板1、接合材4、熱交換部材5は熱膨張により広がろうとするため、熱電モジュール外周部の熱応力は最大となる。そのため、急激な熱源の温度変化に対して、熱電モジュールの外周部に繰り返し応力がかかるため、クラックが発生して発電性能が低下する可能性が高い。これに対し、熱電モジュールの外周部の接合材4の表面領域を覆うように被覆層6を形成することで、強度が向上するため、クラック発生を抑制することができる。   Since the support substrate 1, the bonding material 4, and the heat exchange member 5 on the high temperature side tend to spread due to thermal expansion, the thermal stress at the outer peripheral portion of the thermoelectric module is maximized. Therefore, since stress is repeatedly applied to the outer peripheral portion of the thermoelectric module in response to a rapid temperature change of the heat source, there is a high possibility that a power generation performance is deteriorated due to cracks. On the other hand, since the strength is improved by forming the covering layer 6 so as to cover the surface region of the bonding material 4 on the outer peripheral portion of the thermoelectric module, the occurrence of cracks can be suppressed.

また、図3に示すように、一断面で見て、熱交換部材5は、支持基板1の主面に垂直な方向に延びる複数の立設部51と、隣り合う立設部51の支持基板側の端部を1つおきに接続する底部52とを有し、被覆層6が底部52と底部52との間に充填されるようにして設けられていることが望ましい。   As shown in FIG. 3, the heat exchange member 5 includes a plurality of standing portions 51 extending in a direction perpendicular to the main surface of the support substrate 1 and a support substrate of the adjacent standing portions 51 as viewed in a cross section. It is desirable that the covering layer 6 is provided so as to be filled between the bottom portion 52 and the bottom portion 52 that connects every other end portion on the side.

熱源からの熱量としては、気体を介しての伝熱と輻射熱によるものがある。接合材4としては、例えばSn−Bi系はんだ、Sn−Sb系はんだ、Sn−Ag−Cu系はんだなどが使用されるが、どの材料系も輻射熱を吸収しにくく、効率よく熱源からの輻射熱を吸収しにくい。   The amount of heat from the heat source includes heat transfer through gas and radiant heat. As the bonding material 4, for example, Sn—Bi solder, Sn—Sb solder, Sn—Ag—Cu solder, and the like are used, but any material system hardly absorbs radiant heat and efficiently radiates heat from a heat source. Hard to absorb.

本発明のように、熱交換部材5が一枚板を折り曲げた形状をしており、支持基板1の主面に垂直な方向に延びる複数の立設部51(フィン)と、隣り合う立設部5の支持基板側の端部を1つおきに接続する底部52とを有し、被覆層6が底部52と52底部との間に充填されることで、熱源からの輻射熱の吸収率を向上させることができる。したがって、吸収熱量が増加し、発電量が向上する。   As in the present invention, the heat exchanging member 5 has a shape in which a single plate is bent, and a plurality of standing portions 51 (fins) extending in a direction perpendicular to the main surface of the support substrate 1 are adjacent to each other. A bottom portion 52 that connects every other end of the portion 5 on the support substrate side, and the covering layer 6 is filled between the bottom portions 52 and 52 so that the absorption rate of the radiant heat from the heat source is increased. Can be improved. Therefore, the amount of heat absorbed increases and the amount of power generation improves.

また、図3に示すように、被覆層6は底部52の上面よりも高い位置まで設けられていることが望ましい。   Further, as shown in FIG. 3, it is desirable that the covering layer 6 is provided up to a position higher than the upper surface of the bottom portion 52.

例えば、熱交換部材5の厚み(底部52の厚み)は5〜150μm、接合材4の厚みは50〜200μmであり、熱交換部材5で覆われていない接合材4の表面領域を覆うように設けられる被覆層6は底部52の上面よりも高い位置まで到達するように厚み100μm〜5.0mmとされる。   For example, the thickness of the heat exchange member 5 (the thickness of the bottom 52) is 5 to 150 μm, the thickness of the bonding material 4 is 50 to 200 μm, and covers the surface region of the bonding material 4 that is not covered with the heat exchange member 5. The coating layer 6 to be provided has a thickness of 100 μm to 5.0 mm so as to reach a position higher than the upper surface of the bottom portion 52.

被覆層6を設けたことによる熱容量の増加により、支持基板1の面内温度が一様になり、発電性能が向上する。さらに、輻射熱の吸収率も向上し、発電性能が向上する。   By increasing the heat capacity due to the provision of the coating layer 6, the in-plane temperature of the support substrate 1 becomes uniform, and the power generation performance is improved. Furthermore, the absorption rate of radiant heat is improved, and the power generation performance is improved.

また、図示しないが、被覆層6は底部52の上にも設けられていることが望ましい。この構成によれば、立設部51(フィン)の上部からの輻射熱を吸収することができるため、発電性能が向上する。   Although not shown, it is desirable that the covering layer 6 is also provided on the bottom 52. According to this structure, since the radiant heat from the upper part of the standing part 51 (fin) can be absorbed, electric power generation performance improves.

また、熱交換部材5は両方の支持基板1の外側の主面にそれぞれ取り付けられていてもよい。   Further, the heat exchange member 5 may be attached to the outer main surface of both the support substrates 1.

例えば、熱電モジュールの高温側と低温側とを固定せずに反転させて使用する場合は、両方の支持基板1の外側の主面にそれぞれ熱交換部材5を取り付けることが望ましいが、このような場合においては、温度差による繰り返しの熱応力が両側の接合材4で発生する。そこで、熱交換部材5で覆われていないそれぞれの接合材4の表面領域を覆うように被覆層6があることで、両側の接合材4にクラックが入るのを抑制し、発電量低下を抑制することができる。   For example, in the case of using the thermoelectric module by reversing the high temperature side and the low temperature side without fixing, it is desirable to attach the heat exchange member 5 to each of the outer main surfaces of both support substrates 1. In some cases, repeated thermal stresses due to temperature differences occur in the bonding material 4 on both sides. Therefore, the presence of the coating layer 6 so as to cover the surface region of each bonding material 4 not covered with the heat exchange member 5 suppresses cracks in the bonding material 4 on both sides and suppresses a decrease in power generation amount. can do.

上述の熱電モジュールは、以下のようにして製造することができる。   The thermoelectric module described above can be manufactured as follows.

まず、熱電素子3(P型熱電素子3a及びN型熱電素子3b)と支持基板1とを接合する。   First, the thermoelectric element 3 (P-type thermoelectric element 3a and N-type thermoelectric element 3b) and the support substrate 1 are joined.

図2に示すように、支持基板1(1b)上に形成した配線導体2の少なくとも一部にはんだペーストを塗布し、はんだ層を形成する。ここで、塗布方法としては、メタルマスクあるいはスクリーンメッシュを用いたスクリーン印刷法がコスト、量産性の面から好ましい。   As shown in FIG. 2, a solder paste is applied to at least a part of the wiring conductor 2 formed on the support substrate 1 (1b) to form a solder layer. Here, as a coating method, a screen printing method using a metal mask or a screen mesh is preferable in terms of cost and mass productivity.

ついで、はんだ層が形成された配線導体2の表面に熱電素子3を配列する。熱電素子3はP型熱電素子3aとN型熱電素子3bの2種類の素子を配列することが必要である。接合する方法としては公知の技術であればいずれでも良いが、P型熱電素子3a及びN型熱電素子3bのそれぞれを別々に振動させながら配列穴加工された治具に振り込む振込み式で配列させた後、転写して支持基板1(1b)上に配列する方法が簡便で好ましい。   Next, the thermoelectric elements 3 are arranged on the surface of the wiring conductor 2 on which the solder layer is formed. The thermoelectric element 3 needs to arrange two types of elements, a P-type thermoelectric element 3a and an N-type thermoelectric element 3b. Any known technique may be used as a joining method, but the P-type thermoelectric element 3a and the N-type thermoelectric element 3b are arranged by a transfer method in which each of the P-type thermoelectric element 3a and the N-type thermoelectric element 3b is separately transferred to a jig that has been drilled. After that, a method of transferring and arranging on the support substrate 1 (1b) is simple and preferable.

支持基板1(1b)上に熱電素子3(P型熱電素子3a及びN型熱電素子3b)を配列した後、熱電素子3(P型熱電素子3a及びN型熱電素子3b)の上面に反対側の支持基板1(1a)を設置する。   After the thermoelectric elements 3 (P-type thermoelectric elements 3a and N-type thermoelectric elements 3b) are arranged on the support substrate 1 (1b), the thermoelectric elements 3 (P-type thermoelectric elements 3a and N-type thermoelectric elements 3b) are opposite to the upper surface. The support substrate 1 (1a) is installed.

具体的には、支持基板1bに設けられた配線導体2の上に配列された熱電素子3(P型熱電素子3a及びN型熱電素子3b)の上面に、配線導体2の表面にはんだ層が形成塗布された支持基板1aを公知の技術によりはんだ接合する。はんだ接合の方法としては、リフロー炉あるいはヒーターによる加熱などいずれでも良いが、支持基板1に樹脂を用いる場合、上下面に圧力をかけながら加熱することがはんだと熱電素子3(P型熱電素子3a及びN型熱電素子3b)の密着性を高める上で好ましい。   Specifically, a solder layer is formed on the surface of the wiring conductor 2 on the upper surface of the thermoelectric elements 3 (P-type thermoelectric element 3a and N-type thermoelectric element 3b) arranged on the wiring conductor 2 provided on the support substrate 1b. The formed and coated support substrate 1a is soldered by a known technique. The soldering method may be any of reflow oven or heating with a heater. However, when resin is used for the support substrate 1, the solder and the thermoelectric element 3 (P-type thermoelectric element 3a) may be heated while applying pressure to the upper and lower surfaces. And N-type thermoelectric element 3b) is preferable for improving the adhesion.

次に、一対の支持基板1(1a,1b)のうちの少なくとも一方に、熱交換部材5を接合材4にて取り付ける。使用する熱交換部材5はその用途によって形、材質が異なる。ここで、銅製のフィンが熱伝導率が高い点で好ましく、熱源からの熱を空気などの気体を介して伝熱する場合、気体と接触する面積が増えるように波状の形で作製されたフィンが望ましい。   Next, the heat exchange member 5 is attached to at least one of the pair of support substrates 1 (1a, 1b) with the bonding material 4. The shape and material of the heat exchange member 5 to be used differ depending on the application. Here, copper fins are preferable in terms of high thermal conductivity, and when heat from a heat source is transferred through a gas such as air, the fins are formed in a wavy shape so that the area in contact with the gas increases. Is desirable.

次に、接合材4が露出している部分および必要により底部52と底部52との間や底部52の上に、エポキシ樹脂などを流し込み硬化させて被覆層6を形成する。   Next, an epoxy resin or the like is poured into the portion where the bonding material 4 is exposed and, if necessary, between the bottom portion 52 and the bottom portion 52 or on the bottom portion 52, and the coating layer 6 is formed.

最後に、配線導体2に電流を通電するためのリード線(図示せず)をはんだごて、レーザー等で接合して、本発明の熱電モジュールが得られる。   Finally, a lead wire (not shown) for energizing the wiring conductor 2 is joined with a soldering iron and a laser or the like to obtain the thermoelectric module of the present invention.

以下、実施例を挙げて本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

まず、Bi,Sb,Te、SeからなるP型熱電材料およびN型熱電材料をブリッジマン法により溶融凝固させ、直径1.8mmの断面円形の棒状の材料を作製した。具体的には、P型熱電材料はBiTe(テルル化ビスマス)とSbTe(テルル化アンチモン)との固溶体で作製し、N型熱電材料はBiTe(テルル化ビスマス)とBiSe(セレン化ビスマス)との固溶体で作製した。ここで、表面を粗化させるため、棒状のP型熱電材料及びN型熱電材料の表面を硝酸でエッチング処理を行った。 First, a P-type thermoelectric material and an N-type thermoelectric material made of Bi, Sb, Te, and Se were melted and solidified by the Bridgman method to produce a rod-shaped material having a circular section of 1.8 mm in diameter. Specifically, the P-type thermoelectric material is made of a solid solution of Bi 2 Te 3 (bismuth telluride) and Sb 2 Te 3 (antimony telluride), and the N-type thermoelectric material is Bi 2 Te 3 (bismuth telluride). And Bi 2 Se 3 (bismuth selenide). Here, in order to roughen the surface, the surfaces of the rod-shaped P-type thermoelectric material and N-type thermoelectric material were etched with nitric acid.

次に、被覆層が被覆された棒状のP型熱電材料及び棒状のN型熱電材料を高さ(厚さ)1.6mmになるように、ワイヤーソーにて切断し、P型熱電素子及びN型熱電素子を得た。得られたP型熱電素子及びN型熱電素子は、電解メッキで切断面にニッケル層を形成した。   Next, the rod-shaped P-type thermoelectric material and the rod-shaped N-type thermoelectric material coated with the coating layer are cut with a wire saw so as to have a height (thickness) of 1.6 mm, and the P-type thermoelectric element and N A mold thermoelectric element was obtained. The obtained P-type thermoelectric element and N-type thermoelectric element formed a nickel layer on the cut surface by electrolytic plating.

次に、一方主面にエポキシ樹脂からなる厚み80μmの絶縁層が形成されたCu製の支持基板(縦40mm×横40mm×厚み200μm)を準備し、絶縁層の上に厚み105μmの配線導体を形成した。そして、この配線導体上に、95Sn−5Sbのはんだペーストをスクリーン印刷した。   Next, a support substrate made of Cu (length 40 mm × width 40 mm × thickness 200 μm) having an insulating layer made of epoxy resin formed on one main surface and having a thickness of 80 μm is prepared, and a wiring conductor having a thickness of 105 μm is formed on the insulating layer. Formed. Then, 95Sn-5Sb solder paste was screen-printed on the wiring conductor.

さらに、このはんだペースト上に、P型熱電素子及びN型熱電素子が電気的に直列になるようにマウンターを使用して各熱電素子を160個づつ配設した。上記のように配列されたP型熱電素子とN型熱電素子を2枚の支持基板で挟み込むようにし、上下面に圧力をかけながらリフロー炉で加熱し、配線導体と熱電素子とをはんだを介して接合した。   Furthermore, 160 thermoelectric elements were arranged on the solder paste using a mounter so that the P-type thermoelectric elements and the N-type thermoelectric elements were electrically in series. The P-type thermoelectric elements and N-type thermoelectric elements arranged as described above are sandwiched between two supporting substrates, heated in a reflow furnace while applying pressure to the upper and lower surfaces, and the wiring conductor and thermoelectric elements are connected via solder. And joined.

次に、支持基板に熱交換部材(銅製のフィン)を接合材で取り付けた。   Next, a heat exchange member (copper fin) was attached to the support substrate with a bonding material.

ここで、試料1(比較例)の熱電モジュールとして、熱交換部材で覆われていない接合材の表面領域に被覆層を形成しなかったものを作製し、試料2(本発明実施例)の熱電モジュールとして、熱交換部材で覆われていない接合材の表面領域に被覆層を形成したものを作製した。被覆層は、エポキシ樹脂をフィンと支持基板との間に流し込み、硬化させたもので、厚みは約50μmであった。   Here, as the thermoelectric module of sample 1 (comparative example), a thermoelectric module of sample 2 (invention example) was prepared by forming a coating layer on the surface region of the bonding material not covered with the heat exchange member. A module having a coating layer formed on the surface region of the bonding material not covered with the heat exchange member was produced. The coating layer was formed by pouring an epoxy resin between the fin and the support substrate and curing the coating layer, and the thickness was about 50 μm.

組み立てたそれぞれの熱電モジュールについて評価を行った。   Each assembled thermoelectric module was evaluated.

評価方法としては、被覆層がない試料1と被覆層がある試料2を各20個準備し、空気中で熱電モジュールに約200℃の温度差をつけ、発電量劣化の程度を比較した。具体的には、片面に40mm角ヒーターブロックをフィン上に置き、フィンを加熱して最高温度220℃になるように出力を調整し、耐久加速させるため、ヒーターパターンは10minオン2minオフを1サイクルとした。もう一方のフィンは、20℃、5L/minの水量が流れる水の中にいれた。   As an evaluation method, 20 samples 1 each having no coating layer and 2 samples 2 having a coating layer were prepared, a temperature difference of about 200 ° C. was applied to the thermoelectric module in air, and the degree of power generation deterioration was compared. Specifically, a 40mm square heater block is placed on one side of the fin, and the fin is heated to adjust the output so that the maximum temperature is 220 ° C. It was. The other fin was placed in water flowing at 20 ° C. and 5 L / min.

そして、1サイクル後と5000サイクル後の発電量の比較を行ったところ、試験前発電量は、試料1が平均9.2Wであるのに対し、試料2が平均9.7Wであり、被覆層があることで5%発電量が上昇することがわかった。   When the power generation amount after one cycle and after 5000 cycles was compared, the power generation amount before the test was 9.2 W on the average for sample 1 and 9.7 W on the average for sample 2. It was found that the power generation amount increased by 5%.

また、5000サイクル時の発電量の比較を行ったところ、試料1が平均8.1Wで12%発電量が低下したのに対し、試料2が平均9.5Wであり、被覆層があることで1%以下の発電量低下にとどまっていることがわかった。   In addition, when the power generation amount at 5000 cycles was compared, Sample 1 had an average of 8.1 W and 12% power generation decreased, whereas Sample 2 had an average of 9.5 W, and there was a coating layer. It was found that the amount of power generation was less than 1%.

なお、試料1の5000サイクル後の外観を調査すると、フィンと支持基板との間のはんだにクラックが観察され、はんだに引っ張り応力が印加されることが推察される。 以上の結果から、比較例の試料1よりも本発明実施例の試料2のほうが、恒温高湿内での反転通電などの信頼性が高いことがわかる。   In addition, when the external appearance after 5000 cycles of the sample 1 is investigated, it is inferred that cracks are observed in the solder between the fin and the support substrate, and tensile stress is applied to the solder. From the above results, it can be seen that the sample 2 of the embodiment of the present invention is more reliable than the sample 1 of the comparative example, such as reversal energization in a constant temperature and high humidity.

1、1a、1b 支持基板
2 配線導体
3 熱電素子
3a P型熱電素子
3b N型熱電素子
4 接合材
5 熱交換部材
51 立設部
52 底部
1, 1a, 1b Support substrate 2 Wiring conductor 3 Thermoelectric element 3a P-type thermoelectric element 3b N-type thermoelectric element 4 Bonding material 5 Heat exchange member 51 Standing portion 52 Bottom

Claims (7)

互いに対向するように配置された一対の支持基板と、該一対の支持基板の対向する内側の主面にそれぞれ設けられた配線導体と、前記一対の支持基板の対向する内側の主面間に前記配線導体によって電気的に接続されるように複数配列された熱電素子と、前記一対の支持基板のうちの少なくとも一方の支持基板の外側の主面に接合材を介して取り付けられ、一断面で見て、前記支持基板の主面に垂直な方向に延びる複数の立設部と、隣り合う立設部の支持基板側の端部を1つおきに接続する底部とを有する熱交換部材と該熱交換部材で覆われていない前記接合材の表面領域を覆う被覆層と、を有するとともに、該被覆層は、前記立設部において立設方向における前記底部側を除く領域には設けられていないことを特徴とする熱電モジュール。 Between a pair of support substrates disposed so as to face each other, wiring conductors respectively provided on the inner main surfaces facing the pair of support substrates, and the inner main surfaces facing the pair of support substrates, A plurality of thermoelectric elements arranged so as to be electrically connected by the wiring conductor and at least one of the pair of support substrates are attached to the outer main surface of the support substrate via a bonding material, and viewed in one section. A plurality of upright portions extending in a direction perpendicular to the main surface of the support substrate, and a bottom portion connecting every other end portion of the adjacent upright portions on the support substrate side , and the Kutsugaeso Let covering the surface area of the bonding material which is not covered by the heat exchange member, and having a, the coating layer is provided in a region excluding the bottom side of the upright direction in the standing portion thermoelectric module, wherein the non 前記被覆層は前記接合材と前記熱交換部材とに接していることを特徴とする請求項1に記載の熱電モジュール。   The thermoelectric module according to claim 1, wherein the coating layer is in contact with the bonding material and the heat exchange member. 前記熱交換部材の外周部に沿って、前記被覆層が接合材の表面領域を覆っていることを特徴とする請求項1または請求項2に記載の熱電モジュール。   The thermoelectric module according to claim 1, wherein the coating layer covers a surface region of the bonding material along an outer peripheral portion of the heat exchange member. 記被覆層が前記底部と前記底部との間に充填されるようにして設けられていることを特徴とする請求項1乃至請求項3のうちいずれかに記載の熱電モジュール。 The thermoelectric module according to any one of claims 1 to 3 before Symbol coating layer and being provided so as to be filled between the bottom portion and the bottom portion. 前記被覆層は前記底部の上面よりも高い位置まで設けられていることを特徴とする請求項4に記載の熱電モジュール。   The thermoelectric module according to claim 4, wherein the coating layer is provided up to a position higher than an upper surface of the bottom portion. 前記被覆層は前記底部の上にも設けられていることを特徴とする請求項4に記載の熱電モジュール。   The thermoelectric module according to claim 4, wherein the covering layer is also provided on the bottom portion. 前記熱交換部材は両方の支持基板の外側の主面にそれぞれ取り付けられていることを特徴とする請求項1に記載の熱電モジュール。   The thermoelectric module according to claim 1, wherein the heat exchange member is attached to each of main surfaces on the outer sides of both support substrates.
JP2012016745A 2012-01-30 2012-01-30 Thermoelectric module Active JP5865721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012016745A JP5865721B2 (en) 2012-01-30 2012-01-30 Thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012016745A JP5865721B2 (en) 2012-01-30 2012-01-30 Thermoelectric module

Publications (2)

Publication Number Publication Date
JP2013157446A JP2013157446A (en) 2013-08-15
JP5865721B2 true JP5865721B2 (en) 2016-02-17

Family

ID=49052352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016745A Active JP5865721B2 (en) 2012-01-30 2012-01-30 Thermoelectric module

Country Status (1)

Country Link
JP (1) JP5865721B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6213050B2 (en) * 2013-08-22 2017-10-18 富士通株式会社 Cooling device for temperature difference power generation
KR101534978B1 (en) 2013-12-23 2015-07-08 현대자동차주식회사 Heat exchanger and manufacture method thereof
CN108702107B (en) 2016-02-26 2020-06-23 株式会社国际电气 Power generation system, management device, and substrate processing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310506A (en) * 2005-04-28 2006-11-09 Denso Corp Thermoelectric conversion device
JP2007123530A (en) * 2005-10-27 2007-05-17 Denso Corp Thermoelectric conversion device and manufacturing method thereof
JP2008034791A (en) * 2006-06-28 2008-02-14 Denso Corp Thermoelectric converter and its manufacturing process
JP2008078222A (en) * 2006-09-19 2008-04-03 Denso Corp Thermoelectric transducer

Also Published As

Publication number Publication date
JP2013157446A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP6114398B2 (en) Thermoelectric module
JP5956608B2 (en) Thermoelectric module
JP5377753B2 (en) Thermoelectric element and thermoelectric module
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
JP2009206501A (en) Thermoelectric module
JP5726210B2 (en) Thermoelectric module
JP5638333B2 (en) Thermoelectric module
JP5865721B2 (en) Thermoelectric module
JP5638329B2 (en) Thermoelectric element and thermoelectric module including the same
JP2007035907A (en) Thermoelectric module
JP5713526B2 (en) Thermoelectric conversion module, cooling device, power generation device and temperature control device
JP6690017B2 (en) Thermoelectric module
JP2017045970A (en) Thermoelectric module
JP6471241B2 (en) Thermoelectric module
JP5638342B2 (en) Thermoelectric element and thermoelectric module
JP6595320B2 (en) Thermoelectric module assembly
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
JP5940939B2 (en) Thermoelectric module
JP6169984B2 (en) Thermoelectric module
JP5794872B2 (en) Thermoelectric module
JPWO2019082928A1 (en) Thermoelectric module
JP6193772B2 (en) Thermoelectric module
JP5247531B2 (en) Thermoelectric conversion module
JP2018032687A (en) Thermoelectric module
JP3007904U (en) Thermal battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151228

R150 Certificate of patent or registration of utility model

Ref document number: 5865721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150