JP2018032687A - Thermoelectric module - Google Patents

Thermoelectric module Download PDF

Info

Publication number
JP2018032687A
JP2018032687A JP2016162877A JP2016162877A JP2018032687A JP 2018032687 A JP2018032687 A JP 2018032687A JP 2016162877 A JP2016162877 A JP 2016162877A JP 2016162877 A JP2016162877 A JP 2016162877A JP 2018032687 A JP2018032687 A JP 2018032687A
Authority
JP
Japan
Prior art keywords
thermoelectric module
pair
thermoelectric
main surface
lead member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016162877A
Other languages
Japanese (ja)
Other versions
JP6818465B2 (en
Inventor
隆 前田
Takashi Maeda
隆 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2016162877A priority Critical patent/JP6818465B2/en
Publication of JP2018032687A publication Critical patent/JP2018032687A/en
Application granted granted Critical
Publication of JP6818465B2 publication Critical patent/JP6818465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric module excellent in cooling performance, by improving heat dissipation.SOLUTION: A thermoelectric module 10 includes a pair of support substrates 11, 12 having regions facing each other, wiring conductors 21, 22 provided, respectively, on one principal surfaces of the pair of support substrates 11, 12 facing each other, multiple thermoelectric elements 3 placed between one principal surfaces of the pair of support substrates 11, 12, a protrusion 111 provided on one support substrate 11 out of the pair of support substrates 11, 12, and a lead member 4 having an end joined to the wiring conductor 21 on one principal surface of the protrusion 111. The lead member 4 includes a core wire 41, and a coating layer 42 covering at least the side peripheral surface of the core wire 41 excepting the end. One principal surface of the protrusion 111 and the coating layer 42 of the lead member 4 are connected by a thermally conductive member 5.SELECTED DRAWING: Figure 2

Description

本開示は、例えば、恒温槽、冷蔵庫、自動車用のシートクーラー、半導体製造装置、レーザーダイオードもしくは燃料電池、電池等の温度調節に使用される熱電モジュールに関するものである。   The present disclosure relates to a thermoelectric module used for temperature control of, for example, a thermostatic bath, a refrigerator, an automobile seat cooler, a semiconductor manufacturing apparatus, a laser diode or a fuel cell, a battery, and the like.

熱電モジュールは、熱電素子に電力を供給することによって、一方の主面と他方の主面との間に温度差を生じさせることができる。また、熱電モジュールは、一方の主面と他方の主面との間に温度差を与えることによって、熱電素子によって電力を生じさせることができる。これらの性質を活かして、熱電モジュールは温度調節または熱電発電等に用いられる。   The thermoelectric module can generate a temperature difference between one main surface and the other main surface by supplying electric power to the thermoelectric element. Moreover, the thermoelectric module can generate electric power by a thermoelectric element by giving a temperature difference between one main surface and the other main surface. Taking advantage of these properties, thermoelectric modules are used for temperature control or thermoelectric generation.

このような熱電モジュールとして、互いに対向する領域を有する一対の支持基板と、該一対の支持基板の対向する一方主面にそれぞれ設けられた配線導体と、一対の支持基板の一方主面間に配置された複数の熱電素子と、配線導体に接合されたリード部材とを備えたものが知られている(例えば特許文献1を参照)。   As such a thermoelectric module, a pair of support substrates having regions facing each other, wiring conductors provided on one main surface facing each of the pair of support substrates, and one main surface of the pair of support substrates are arranged. A device including a plurality of thermoelectric elements and a lead member joined to a wiring conductor is known (see, for example, Patent Document 1).

特開平5−183195号公報JP-A-5-183195

熱電モジュールは、一対の支持基板のうちの一方の支持基板(高温側支持基板)から放熱される。ここで、熱電モジュールを温度調節用途として使用する場合、冷却性能を十分に発揮するには高温側支持基板からの放熱を十分に行う必要がある。この為、例えばフィン形状のヒートシンクを高温側支持基板の外面に設け、このヒートシンクにファンで空気を流して放熱することも行われている。しかしながら、さらなる放熱性の良好な熱電モジュールが求められている。   The thermoelectric module dissipates heat from one support substrate (high temperature side support substrate) of the pair of support substrates. Here, when the thermoelectric module is used as a temperature control application, it is necessary to sufficiently dissipate heat from the high temperature side support substrate in order to sufficiently exhibit the cooling performance. For this reason, for example, a fin-shaped heat sink is provided on the outer surface of the high-temperature side support substrate, and heat is radiated by flowing air to the heat sink with a fan. However, there is a need for a thermoelectric module with better heat dissipation.

本発明はかかる問題点に鑑みてなされたものであり、その目的は、放熱性を良好にし、冷却性能の優れた熱電モジュールを提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a thermoelectric module having good heat dissipation and excellent cooling performance.

本開示の熱電モジュールは、互いに対向する領域を有する一対の支持基板と、該一対の支持基板の対向する一方主面にそれぞれ設けられた配線導体と、前記一対の支持基板の一方主面間に配置された複数の熱電素子と、前記一対の支持基板のうちの一方の支持基板に設けられた突出部と、該突出部の一方主面上において前記配線導体と接合されたリード部材とを備え、該リード部材は、芯線と、該芯線が露出する先端部よりも後端側で前記芯線の側周面を覆う被覆層とを含み、前記突出部の一方主面と前記リード部材の前記被覆層とが熱伝導性部材で接続されていることを特徴とするものである。   The thermoelectric module according to the present disclosure includes a pair of support substrates having regions facing each other, wiring conductors provided on one main surface facing each of the pair of support substrates, and one main surface of the pair of support substrates. A plurality of thermoelectric elements arranged; a protrusion provided on one of the pair of support substrates; and a lead member joined to the wiring conductor on one main surface of the protrusion. The lead member includes a core wire and a covering layer that covers a side peripheral surface of the core wire on a rear end side with respect to a front end portion where the core wire is exposed, and the one main surface of the protruding portion and the covering of the lead member The layers are connected by a heat conductive member.

本開示の熱電モジュールによれば、一方の支持基板(高温側支持基板)に設けられた突出部とリード部材の芯線の側周面を覆う被覆層とを接続する熱伝導性部材をとおして、一方の支持基板の熱が外部へ放出されるので、放熱性を良好にして冷却性能を向上することができる。   According to the thermoelectric module of the present disclosure, through the thermally conductive member that connects the protrusion provided on one support substrate (high temperature side support substrate) and the covering layer covering the side peripheral surface of the core wire of the lead member, Since the heat of one support substrate is released to the outside, it is possible to improve heat dissipation and improve the cooling performance.

熱電モジュールの一例の概略斜視図である。It is a schematic perspective view of an example of a thermoelectric module. (a)は図1に示す熱電モジュールの平面図、(b)は(a)に示す熱電モジュールの側面図、(c)は(a)に示すc−c線で切断した断面図である。(A) is a top view of the thermoelectric module shown in FIG. 1, (b) is a side view of the thermoelectric module shown in (a), (c) is sectional drawing cut | disconnected by the cc line shown to (a). 熱電モジュールの他の例の概略斜視図である。It is a schematic perspective view of the other example of a thermoelectric module. (a)は図3に示す熱電モジュールの平面図、(b)は(a)に示す熱電モジュールの側面図、(c)は(a)に示すc−c線で切断した断面図である。(A) is a top view of the thermoelectric module shown in FIG. 3, (b) is a side view of the thermoelectric module shown in (a), (c) is sectional drawing cut | disconnected by the cc line shown to (a). (a)は熱電モジュールの他の例の平面図、(b)は(a)に示す熱電モジュールの側面図、(c)は(a)に示すc−c線で切断した断面図である。(A) is a top view of the other example of a thermoelectric module, (b) is a side view of the thermoelectric module shown to (a), (c) is sectional drawing cut | disconnected by the cc line | wire shown to (a). (a)は熱電モジュールの他の例の平面図、(b)は(a)に示す熱電モジュールの側面図、(c)は(a)に示すc−c線で切断した断面図である。(A) is a top view of the other example of a thermoelectric module, (b) is a side view of the thermoelectric module shown to (a), (c) is sectional drawing cut | disconnected by the cc line | wire shown to (a). 熱電モジュールの他の例の概略斜視図である。It is a schematic perspective view of the other example of a thermoelectric module. (a)は図7に示す熱電モジュールの平面図、(b)は(a)に示す熱電モジュールの側面図、(c)は(a)に示すc−c線で切断した断面図である。(A) is a top view of the thermoelectric module shown in FIG. 7, (b) is a side view of the thermoelectric module shown in (a), (c) is sectional drawing cut | disconnected by the cc line shown to (a). 熱電モジュールの他の例の概略斜視図である。It is a schematic perspective view of the other example of a thermoelectric module.

以下、本実施形態に係る熱電モジュールの一例について、図面を参照して説明する。   Hereinafter, an example of the thermoelectric module according to the present embodiment will be described with reference to the drawings.

図1は熱電モジュールの一例の概略斜視図であり、図2(a)は図1に示す熱電モジュールの平面図、図2(b)は図2(a)に示す熱電モジュールの側面図、図2(c)は図2(a)に示すc−c線で切断した断面図である。   1 is a schematic perspective view of an example of a thermoelectric module, FIG. 2 (a) is a plan view of the thermoelectric module shown in FIG. 1, FIG. 2 (b) is a side view of the thermoelectric module shown in FIG. 2 (c) is a cross-sectional view taken along the line cc shown in FIG. 2 (a).

図1および図2に示す熱電モジュール10は、互いに対向する領域を有する一対の支持基板11、12と、一対の支持基板11、12の対向する一方主面にそれぞれ設けられた配線導体21、22と、一対の支持基板11、12の一方主面間に配置された複数の熱電素子3と、一対の支持基板11、12のうちの一方の支持基板11に設けられた突出部111と、突出部111の一方主面上において端部が配線導体21と接合されたリード部材4とを備えている。リード部材4は、芯線41と、芯線41の少なくとも端部を除く側周面を覆う被覆層42とを含んでいる。そして、突出部111の一方主面とリード部材4の被覆層42とが熱伝導性部材5で接続されている。   The thermoelectric module 10 shown in FIGS. 1 and 2 includes a pair of support substrates 11 and 12 having regions facing each other, and wiring conductors 21 and 22 provided on one main surface of the pair of support substrates 11 and 12 facing each other. A plurality of thermoelectric elements 3 disposed between one main surface of the pair of support substrates 11 and 12, a protrusion 111 provided on one support substrate 11 of the pair of support substrates 11 and 12, and a protrusion On one main surface of the portion 111, an end portion is provided with a lead member 4 joined to the wiring conductor 21. The lead member 4 includes a core wire 41 and a coating layer 42 that covers a side peripheral surface excluding at least an end portion of the core wire 41. The one main surface of the protruding portion 111 and the covering layer 42 of the lead member 4 are connected by the heat conductive member 5.

一対の支持基板11、12は、複数の熱電素子3を挟んで支持している。支持基板11および支持基板12は、突出部111を除いて、例えば矩形状の互いに対向する領域を有している。この矩形状の互いに対向する領域を平面視したときの寸法は、例えば、縦40〜80mm、横20〜40mmに設定することができる。   The pair of support substrates 11 and 12 support a plurality of thermoelectric elements 3. The support substrate 11 and the support substrate 12 have areas facing each other, for example, in a rectangular shape, excluding the protruding portion 111. The dimensions of the rectangular regions facing each other can be set to 40 to 80 mm in length and 20 to 40 mm in width, for example.

支持基板11は上面が支持基板12に対向する一方主面となるように配置され、支持基板12は下面が支持基板11に対向する一方主面となるように配置されている。ここで、支持基板11が相対的に高温となる高温側支持基板であり、支持基板12が相対的に低温となる低温側支持基板である。   The support substrate 11 is arranged so that the upper surface is one main surface facing the support substrate 12, and the support substrate 12 is arranged so that the lower surface is one main surface facing the support substrate 11. Here, the support substrate 11 is a high-temperature side support substrate at a relatively high temperature, and the support substrate 12 is a low-temperature side support substrate at a relatively low temperature.

支持基板11は、上面に配線導体21が設けられることから、少なくとも上面側は絶縁材料からなる。支持基板11としては、例えば、アルミナフィラーを添加してなるエポキシ樹脂板、アルミナまたは窒化アルミニウムからなるセラミック板などの絶縁性基板を用いることができ、さらにこの絶縁性基板の下面に、外部への伝熱または放熱用の銅板を貼り合わせた基板を用いることができる。例えば、エポキシ樹脂板の厚みは50〜200μmとされ、銅板の厚みは50〜500μmとされる。   Since the support substrate 11 is provided with the wiring conductor 21 on the upper surface, at least the upper surface side is made of an insulating material. As the support substrate 11, for example, an insulating substrate such as an epoxy resin plate to which an alumina filler is added, a ceramic plate made of alumina or aluminum nitride, and the like can be used. A substrate on which a copper plate for heat transfer or heat dissipation is bonded can be used. For example, the thickness of the epoxy resin plate is 50 to 200 μm, and the thickness of the copper plate is 50 to 500 μm.

その他、支持基板11として、銅板、銀板または銀−パラジウム板の上面にエポキシ樹脂、ポリイミド樹脂、アルミナまたは窒化アルミニウム等からなる絶縁層を設けた基板を用いることもできる。   In addition, as the support substrate 11, a substrate in which an insulating layer made of an epoxy resin, a polyimide resin, alumina, aluminum nitride, or the like is provided on the upper surface of a copper plate, a silver plate, or a silver-palladium plate can also be used.

また、支持基板12は、下面に配線導体22が設けられることから、少なくとも下面側は絶縁材料からなる。支持基板12としては、第1支持基板11に用いられる上述の部材と同様の部材を用い、これを支持基板11とは対称に配置した構成にしたものとすることができる。   Further, since the support substrate 12 is provided with the wiring conductor 22 on the lower surface, at least the lower surface side is made of an insulating material. As the support substrate 12, a member similar to the above-described member used for the first support substrate 11 may be used, and this may be configured to be symmetrical to the support substrate 11.

一対の支持基板11、12の対向する内側の一方主面には、それぞれ配線導体21、22が設けられている。この配線導体21、22は、複数の熱電素子3およびリード部材4を電気的に接続するものである。例えば支持基板11、12の対向する一方主面に銅板を貼り付けておき、配線導体21、22となる部分にマスキングを施して、マスキングを施した領域以外の領域をエッチングで取り除くことによって得ることができる。また、打ち抜き加工によって配線導体21、22の形状に成形した銅板を支持基板11および支持基板12に貼り付けることによって配線導体21、22を設けてもよい。配線導体21、22を構成する材料としては、銅に限られず、例えば銀、銀−パラジウムなどの材料でもよい。   Wiring conductors 21 and 22 are provided on the inner main surfaces of the pair of support substrates 11 and 12 facing each other. The wiring conductors 21 and 22 are for electrically connecting the plurality of thermoelectric elements 3 and the lead member 4. For example, a copper plate is attached to one of the opposing main surfaces of the support substrates 11 and 12, masking is performed on the portions to be the wiring conductors 21 and 22, and regions other than the masked regions are removed by etching. Can do. Alternatively, the wiring conductors 21 and 22 may be provided by attaching a copper plate formed into the shape of the wiring conductors 21 and 22 by punching to the support substrate 11 and the support substrate 12. The material constituting the wiring conductors 21 and 22 is not limited to copper, and may be a material such as silver or silver-palladium.

一対の支持基板11、12の対向する内側の一方主面間には、配線導体21、22によって電気的に接続されるように、複数の熱電素子3(p型熱電素子31及びn型熱電素子32)が配置されている。熱電素子3は、例えばペルチェ効果によって温度調節を行なうための部材である。熱電素子3は、熱電素子3の直径の0.5〜2倍の間隔で縦横の並びに複数設けられ、配線導体21、22とはんだ(図示せず)で接合されている。具体的には、p型熱電素子31およびn型熱電素子32が隣接して交互に配置され、配線導体21、22およびはんだを介して直列に電気的に接続され、全ての熱電素子3が直列に接続されている。   A plurality of thermoelectric elements 3 (a p-type thermoelectric element 31 and an n-type thermoelectric element) are electrically connected by wiring conductors 21 and 22 between one opposing main surfaces of the pair of support substrates 11 and 12. 32) is arranged. The thermoelectric element 3 is a member for adjusting the temperature by the Peltier effect, for example. A plurality of the thermoelectric elements 3 are provided vertically and horizontally at intervals of 0.5 to 2 times the diameter of the thermoelectric element 3, and are joined to the wiring conductors 21 and 22 by solder (not shown). Specifically, the p-type thermoelectric elements 31 and the n-type thermoelectric elements 32 are alternately arranged adjacent to each other, and are electrically connected in series via the wiring conductors 21 and 22 and solder, and all the thermoelectric elements 3 are connected in series. It is connected to the.

複数の熱電素子3は、A型結晶(AはBiおよび/またはSb、BはTeおよび/またはSe)からなる熱電材料、好ましくはBi(ビスマス)およびTe(テルル)系の熱電材料で本体部が構成されている。具体的には、p型熱電素子31は、例えば、BiTe(テルル化ビスマス)とSbTe(テルル化アンチモン)との固溶体からなる熱電材料で構成される。また、n型熱電素子32は、例えば、BiTe(テルル化ビスマス)とBiSe(セレン化ビスマス)との固溶体からなる熱電材料で構成される。 The plurality of thermoelectric elements 3 are thermoelectric materials made of A 2 B 3 type crystals (A is Bi and / or Sb, B is Te and / or Se), preferably Bi (bismuth) and Te (tellurium) thermoelectric materials The main body is composed of. Specifically, the p-type thermoelectric element 31 is made of, for example, a thermoelectric material made of a solid solution of Bi 2 Te 3 (bismuth telluride) and Sb 2 Te 3 (antimony telluride). The n-type thermoelectric element 32 is made of, for example, a thermoelectric material made of a solid solution of Bi 2 Te 3 (bismuth telluride) and Bi 2 Se 3 (bismuth selenide).

ここで、p型熱電素子31となる熱電材料は一度溶融させて固化したBi、SbおよびTeからなるp型の熱電材料を、ブリッジマン法により一方向に凝固させ、例えば直径0.5〜3mmの断面円形の棒状体としたものである。また、n型熱電素子32となる熱電材料は、一度溶融させて固化したBi、TeおよびSeからなるn型の熱電材料を、ブリッジマン法により一方向に凝固させ、例えば直径0.5〜3mmの断面円形の棒状体としたものである。   Here, the p-type thermoelectric element 31 is a p-type thermoelectric material composed of Bi, Sb and Te once melted and solidified in one direction by the Bridgman method, for example, a diameter of 0.5 to 3 mm. This is a rod-shaped body having a circular cross section. The n-type thermoelectric element 32 is made of an n-type thermoelectric material composed of Bi, Te and Se once melted and solidified in one direction by the Bridgman method, for example, a diameter of 0.5 to 3 mm. This is a rod-shaped body having a circular cross section.

必要により、これらの熱電材料の側面にメッキが付着することを防止するレジストをコーティングした後、ワイヤーソーを用いて例えば0.3〜5.0mmの長さ(厚さ)に切断する。ついで、必要により、切断面のみに、例えば電気メッキでNi層を形成し、その上にSn層を形成し、熱電素子3(p型熱電素子31、n型熱電素子32)を得ることができる。   If necessary, after coating a resist that prevents the plating from adhering to the side surfaces of these thermoelectric materials, the wire is sawed to a length (thickness) of, for example, 0.3 to 5.0 mm. Then, if necessary, a Ni layer is formed only on the cut surface by, for example, electroplating, and an Sn layer is formed thereon, whereby the thermoelectric element 3 (p-type thermoelectric element 31, n-type thermoelectric element 32) can be obtained. .

熱電素子3の形状は、例えば円柱状、四角柱状、多角柱状等にすることができる。特に
、熱電素子3の形状を円柱状にすることにより、ヒートサイクル下において熱電素子3に生じる熱応力の影響を低減できる。熱電素子3を円柱状とする場合には、寸法は、例えば直径が0.5〜3mm、高さが0.3〜5mmに設定される。
The shape of the thermoelectric element 3 can be, for example, a cylindrical shape, a quadrangular prism shape, a polygonal prism shape, or the like. In particular, by making the shape of the thermoelectric element 3 cylindrical, the influence of thermal stress generated in the thermoelectric element 3 under a heat cycle can be reduced. In the case where the thermoelectric element 3 has a cylindrical shape, the dimensions are set to, for example, a diameter of 0.5 to 3 mm and a height of 0.3 to 5 mm.

この熱電素子3が、例えば0.5〜3mm、熱電素子サイズ(直径)の0.5〜2.0倍の間隔で縦横の並びに複数配列される。そして、熱電素子3は、配線導体21、22と同様のパターンに塗布されたはんだペーストにより配線導体21、22と接合され、複数配列された熱電素子3は配線導体21、22により電気的接続される。   A plurality of the thermoelectric elements 3 are arranged in rows and columns at intervals of 0.5 to 2.0 mm, for example, 0.5 to 2.0 times the thermoelectric element size (diameter). The thermoelectric element 3 is joined to the wiring conductors 21 and 22 by a solder paste applied in the same pattern as the wiring conductors 21 and 22, and the plurality of thermoelectric elements 3 are electrically connected by the wiring conductors 21 and 22. The

なお、支持基板11と支持基板12との間に配置された複数の熱電素子3の周囲には、必要により、例えばシリコーン樹脂、エポキシ樹脂などの樹脂からなるシール材(図示せず)を設けてもよい。外周側は支持基板11と支持基板12との間の温度差による変形が大きいが、一対の支持基板11、12の一方主面間における外周側に配置された複数の熱電素子3の隙間を埋めるようにシール材を設けることで、これが補強材となり、熱電素子3と支持基板11、12との間の剥離を抑制できる。   A sealing material (not shown) made of a resin such as a silicone resin or an epoxy resin is provided around the plurality of thermoelectric elements 3 arranged between the support substrate 11 and the support substrate 12 as necessary. Also good. The outer peripheral side is greatly deformed due to the temperature difference between the support substrate 11 and the support substrate 12, but fills the gaps between the plurality of thermoelectric elements 3 arranged on the outer peripheral side between the one main surfaces of the pair of support substrates 11 and 12. By providing the sealing material as described above, this serves as a reinforcing material, and separation between the thermoelectric element 3 and the support substrates 11 and 12 can be suppressed.

一対の支持基板11、12のうちの一方の支持基板11(高温側支持基板)には、突出部111が設けられている。ここで、突出部111とは、平面視したときに支持基板11における支持基板12と対向する領域よりもはみ出た領域のことであり、図2(b)において二点鎖線よりも左側の部分のことである。   One support substrate 11 (high temperature side support substrate) of the pair of support substrates 11 and 12 is provided with a protruding portion 111. Here, the protruding portion 111 is a region of the support substrate 11 that protrudes beyond the region facing the support substrate 12 when viewed in plan, and is a portion on the left side of the two-dot chain line in FIG. That is.

ここで、突出部111の突出量(突出距離)が例えば1〜5mmとされ、突出部111の支持基板11の辺に沿った方向の幅は例えば5mm〜40mm(短い辺の全域)とされる。   Here, the protrusion amount (protrusion distance) of the protrusion 111 is, for example, 1 to 5 mm, and the width of the protrusion 111 in the direction along the side of the support substrate 11 is, for example, 5 mm to 40 mm (the entire short side). .

支持基板11の一方主面(上面)上にある配線導体21は突出部111まで設けられていて、突出部111の一方主面上に設けられた配線導体21にリード部材4の端部がはんだ等の接合部材6で接合されている。なお、配線導体21とリード部材4との接合には、はんだの他、レーザーを用いた溶接であってもよい。   The wiring conductor 21 on one main surface (upper surface) of the support substrate 11 is provided up to the protruding portion 111, and the end portion of the lead member 4 is soldered to the wiring conductor 21 provided on the one main surface of the protruding portion 111. It joins with the joining members 6, such as. In addition, welding using a laser may be used for joining the wiring conductor 21 and the lead member 4 in addition to solder.

リード部材4は、熱電モジュール10と外部回路とを電気的に接続するもので、熱電素子3に電力を与えるか、または熱電素子3で生じた電力を取り出すための部材である。このリード部材4は、芯線41と、芯線41の少なくとも端部を除く側周面を覆う被覆層42とを含んでいる。   The lead member 4 is for electrically connecting the thermoelectric module 10 and an external circuit, and is a member for supplying electric power to the thermoelectric element 3 or taking out electric power generated in the thermoelectric element 3. The lead member 4 includes a core wire 41 and a covering layer 42 that covers a side peripheral surface excluding at least an end portion of the core wire 41.

芯線41は、例えば、銅からなり、直径が0.15〜0.30mmの金属線を複数本(例えば15〜30本)束ねてなるものである。   The core wire 41 is made of, for example, copper, and is formed by bundling a plurality (for example, 15 to 30) of metal wires having a diameter of 0.15 to 0.30 mm.

芯線41の配線導体21と電気的に接続される少なくとも先端部を除き、芯線41の側周面には被覆層42が設けられている。被覆層42は、例えば塩化ビニル、ポリエチレンなどからなり、厚み0.2〜0.4mmとされる。   A coating layer 42 is provided on the side peripheral surface of the core wire 41 except at least the tip portion that is electrically connected to the wiring conductor 21 of the core wire 41. The covering layer 42 is made of, for example, vinyl chloride or polyethylene, and has a thickness of 0.2 to 0.4 mm.

そして、突出部111の一方主面(上面)とリード部材4の被覆層42とが熱伝導性部材5で接続されている。熱伝導性部材5の材質としては、絶縁体であり、室温での加工性に優れ、かつ硬化が容易な樹脂で熱伝導率が比較的高いエポキシ樹脂、シリコーン樹脂等が挙げられる。さらに、これらの樹脂に、当該樹脂よりも熱伝導率の大きなフィラー、例えば窒化アルミニウムなどのセラミックス、金属などの粒子を含む構成としてもよい。   Then, one main surface (upper surface) of the protruding portion 111 and the coating layer 42 of the lead member 4 are connected by the heat conductive member 5. Examples of the material of the heat conductive member 5 include an epoxy resin and a silicone resin which are insulators, are excellent in processability at room temperature, are easily cured, and have a relatively high thermal conductivity. Further, these resins may include a filler having a thermal conductivity higher than that of the resin, for example, ceramics such as aluminum nitride, and particles such as metal.

熱伝導性部材5の厚みとしては、一対の支持基板11、12の間隔および熱電素子3の高さと同じ程度の厚みとすることができる。   The thickness of the heat conductive member 5 can be set to the same thickness as the distance between the pair of support substrates 11 and 12 and the height of the thermoelectric element 3.

この構成によれば、支持基板11の熱が熱伝導性部材5を通じて被覆層42を含むリード部材4に伝わるとともに熱伝導性部材5の表面から放熱されるため、熱電モジュール10の冷却性能を向上させることができる。   According to this configuration, since the heat of the support substrate 11 is transmitted to the lead member 4 including the coating layer 42 through the heat conductive member 5 and is radiated from the surface of the heat conductive member 5, the cooling performance of the thermoelectric module 10 is improved. Can be made.

ここで、図3および図4に示すように、突出部111の他方主面(下面)とリード部材4の被覆層42も熱伝導性部材5で接続されている構成とすることができる。この構成によれば、熱伝導性部材5と支持基板11との接着面積および熱伝導性部材5の表面積が増えるため、放熱量がより多くなり、冷却性能がより向上する。また、突出部111の一方主面と他方主面とに熱伝導性部材5が接着されることで、リード部材4の接合強度も向上する。   Here, as shown in FIGS. 3 and 4, the other main surface (lower surface) of the protruding portion 111 and the coating layer 42 of the lead member 4 can be connected by the heat conductive member 5. According to this configuration, since the adhesion area between the heat conductive member 5 and the support substrate 11 and the surface area of the heat conductive member 5 are increased, the amount of heat radiation is increased, and the cooling performance is further improved. In addition, the bonding strength of the lead member 4 is improved by bonding the heat conductive member 5 to the one main surface and the other main surface of the protrusion 111.

また、被覆層42の一部が突出部111に当接している構成とすることもできる。図5に示す熱電モジュール10は、被覆層42が突出部111の一方主面上に位置しており、被覆層42の先端が配線導体21に接触しているものである。また、図6に示す熱電モジュール10は、被覆層42の先端が突出部111の側面に接触しているものである。これらの構成によっても、突出部111から熱が被覆層42に直接伝わることで、放熱量が多くなり、冷却性能が向上する。   Moreover, it can also be set as the structure which a part of coating layer 42 contact | abuts to the protrusion part 111. FIG. In the thermoelectric module 10 shown in FIG. 5, the coating layer 42 is located on one main surface of the protruding portion 111, and the tip of the coating layer 42 is in contact with the wiring conductor 21. In the thermoelectric module 10 shown in FIG. 6, the tip of the coating layer 42 is in contact with the side surface of the protruding portion 111. Also with these configurations, heat is directly transmitted from the protruding portion 111 to the coating layer 42, so that the heat radiation amount is increased and the cooling performance is improved.

また、図1および図2は、リード部材4の先端部(芯線41)の一部が熱伝導性部材5で覆われていない構成を示しているが、図7および図8に示すように、熱伝導性部材5がリード部材4の先端部(芯線41)および被覆層42の一部を覆っている構成とすることもできる。なお、熱伝導性部材5がリード部材4の先端部(芯線41)を覆っているとは、接合部材6で覆われている芯線41を接合部材6の外側から熱伝導性部材5が覆っていることも含む意味である。   1 and 2 show a configuration in which a part of the tip portion (core wire 41) of the lead member 4 is not covered with the heat conductive member 5, but as shown in FIG. 7 and FIG. The heat conductive member 5 may be configured to cover the tip end portion (core wire 41) of the lead member 4 and a part of the coating layer 42. In addition, the heat conductive member 5 covers the front-end | tip part (core wire 41) of the lead member 4, and the heat conductive member 5 covers the core wire 41 covered with the joining member 6 from the outer side of the joining member 6. It is meant to include being.

この構成によれば、リード部材4の先端部が熱伝導性部材5で覆われているとともに、被覆層42の先端側の一部が熱伝導性部材5で覆われていることで、支持基板11の熱が熱伝導率の大きな芯線41にもよく伝わるとともに熱伝導性部材5の表面積も増えるため、放熱量が多くなり、冷却性能が向上する。また、リード部材4の接合強度も向上する。   According to this configuration, the distal end portion of the lead member 4 is covered with the thermal conductive member 5 and a portion of the distal end side of the coating layer 42 is covered with the thermal conductive member 5, thereby supporting the support substrate. 11 heat is transmitted well to the core wire 41 having a large thermal conductivity, and the surface area of the heat conductive member 5 is increased, so that the heat radiation amount is increased and the cooling performance is improved. Further, the bonding strength of the lead member 4 is also improved.

また、図9に示すように、熱伝導性部材5は、突出部111の一方主面上の全域にわたって設けられている構成とすることができる。図9に示す例では、支持基板11の短い辺の全域にかけて突出するように突出部111が設けられている。そして、この突出部11の一方主面上の全域にわたって熱伝導性部材5が設けられている。この構成によれば、熱伝導性部材5と支持基板11との接着面積および熱伝導性部材5の表面積がさらに増えるため、さらに熱放出量が多くなり、さらに冷却性能が向上する。   Moreover, as shown in FIG. 9, the heat conductive member 5 can be set as the structure provided over the whole region on the one main surface of the protrusion part 111. As shown in FIG. In the example shown in FIG. 9, the protruding portion 111 is provided so as to protrude over the entire short side of the support substrate 11. And the heat conductive member 5 is provided over the whole region on one main surface of this protrusion part 11. As shown in FIG. According to this configuration, since the adhesion area between the heat conductive member 5 and the support substrate 11 and the surface area of the heat conductive member 5 are further increased, the amount of heat released is further increased, and the cooling performance is further improved.

10:熱電モジュール
11、12:支持基板
111:突出部
21、22:配線導体
3:熱電素子
31:p型熱電素子
32:n型熱電素子
4:リード部材
41:芯線
42:被覆層
5 :熱伝導性部材
6 :接合部材
10: Thermoelectric module 11, 12: Support substrate 111: Protruding portion 21, 22: Wiring conductor 3: Thermoelectric element 31: p-type thermoelectric element 32: n-type thermoelectric element 4: lead member 41: core wire 42: coating layer 5: heat Conductive member 6: Joining member

Claims (5)

互いに対向する領域を有する一対の支持基板と、該一対の支持基板の対向する一方主面にそれぞれ設けられた配線導体と、前記一対の支持基板の一方主面間に配置された複数の熱電素子と、前記一対の支持基板のうちの一方の支持基板に設けられた突出部と、該突出部の一方主面上において端部が前記配線導体と接合されたリード部材とを備え、
該リード部材は、芯線と、該芯線の少なくとも端部を除く側周面を覆う被覆層とを含み、前記突出部の一方主面と前記リード部材の前記被覆層とが熱伝導性部材で接続されていることを特徴とする熱電モジュール。
A pair of support substrates having regions facing each other, wiring conductors respectively provided on one opposing main surface of the pair of support substrates, and a plurality of thermoelectric elements disposed between the one main surfaces of the pair of support substrates And a protruding portion provided on one of the pair of supporting substrates, and a lead member having an end joined to the wiring conductor on one main surface of the protruding portion,
The lead member includes a core wire and a covering layer covering a side peripheral surface excluding at least an end portion of the core wire, and one main surface of the projecting portion and the covering layer of the lead member are connected by a heat conductive member. Thermoelectric module characterized by being made.
前記突出部の他方主面と前記リード部材の前記被覆層も熱伝導性部材で接続されていることを特徴とする請求項1に記載の熱電モジュール。   The thermoelectric module according to claim 1, wherein the other main surface of the projecting portion and the covering layer of the lead member are also connected by a heat conductive member. 前記被覆層の一部が前記突出部に当接していることを特徴とする請求項1または請求項2に記載の熱電モジュール。   The thermoelectric module according to claim 1, wherein a part of the covering layer is in contact with the protruding portion. 前記熱伝導性部材が前記リード部材の先端部および前記被覆層の一部を覆っていることを特徴とする請求項1乃至請求項3のうちのいずれかに記載の熱電モジュール。   The thermoelectric module according to claim 1, wherein the heat conductive member covers a tip portion of the lead member and a part of the coating layer. 前記熱伝導性部材は、前記突出部の一方主面上の全域にわたって設けられていることを特徴とする請求項1乃至請求項4のうちのいずれかに記載の熱電モジュール。   5. The thermoelectric module according to claim 1, wherein the heat conductive member is provided over an entire area on one main surface of the protruding portion.
JP2016162877A 2016-08-23 2016-08-23 Thermoelectric module Active JP6818465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016162877A JP6818465B2 (en) 2016-08-23 2016-08-23 Thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016162877A JP6818465B2 (en) 2016-08-23 2016-08-23 Thermoelectric module

Publications (2)

Publication Number Publication Date
JP2018032687A true JP2018032687A (en) 2018-03-01
JP6818465B2 JP6818465B2 (en) 2021-01-20

Family

ID=61303620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016162877A Active JP6818465B2 (en) 2016-08-23 2016-08-23 Thermoelectric module

Country Status (1)

Country Link
JP (1) JP6818465B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022035215A1 (en) * 2020-08-11 2022-02-17 엘지이노텍 주식회사 Thermoelectric module
CN114127867A (en) * 2019-08-01 2022-03-01 株式会社自动网络技术研究所 Wiring member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347603A (en) * 2002-05-23 2003-12-05 Citizen Watch Co Ltd Thermoelectric element and its manufacturing method
JP2006073943A (en) * 2004-09-06 2006-03-16 Seiko Instruments Inc Thermoelectric conversion device
JP2008244239A (en) * 2007-03-28 2008-10-09 Kyocera Corp Thermoelectric module
WO2015045602A1 (en) * 2013-09-27 2015-04-02 京セラ株式会社 Thermoelectric module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347603A (en) * 2002-05-23 2003-12-05 Citizen Watch Co Ltd Thermoelectric element and its manufacturing method
JP2006073943A (en) * 2004-09-06 2006-03-16 Seiko Instruments Inc Thermoelectric conversion device
JP2008244239A (en) * 2007-03-28 2008-10-09 Kyocera Corp Thermoelectric module
WO2015045602A1 (en) * 2013-09-27 2015-04-02 京セラ株式会社 Thermoelectric module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114127867A (en) * 2019-08-01 2022-03-01 株式会社自动网络技术研究所 Wiring member
CN114127867B (en) * 2019-08-01 2024-04-19 株式会社自动网络技术研究所 Wiring member
US12046396B2 (en) 2019-08-01 2024-07-23 Autonetworks Technologies, Ltd. Wiring member
WO2022035215A1 (en) * 2020-08-11 2022-02-17 엘지이노텍 주식회사 Thermoelectric module

Also Published As

Publication number Publication date
JP6818465B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP5956608B2 (en) Thermoelectric module
JP6114398B2 (en) Thermoelectric module
JP5671569B2 (en) Thermoelectric conversion module
JP6818465B2 (en) Thermoelectric module
KR102510123B1 (en) Thermoelectric element
US10833237B2 (en) Thermoelectric module
US10236430B2 (en) Thermoelectric module
JP2017045970A (en) Thermoelectric module
JP6595320B2 (en) Thermoelectric module assembly
JP4575106B2 (en) Thermoelectric converter
CN111201621B (en) Thermoelectric module
JP2004140064A (en) Thermoelement and its manufacturing method
JP6920154B2 (en) Thermoelectric module
KR101897304B1 (en) Power module
JP2013157446A (en) Thermoelectric module
JP6169984B2 (en) Thermoelectric module
JP6987656B2 (en) Thermoelectric converter
JP2018125498A (en) Thermoelectric conversion device
JP2019121612A (en) Electronic device
JP2014049587A (en) Thermoelectric module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R150 Certificate of patent or registration of utility model

Ref document number: 6818465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150