JP4038173B2 - Power semiconductor device - Google Patents

Power semiconductor device Download PDF

Info

Publication number
JP4038173B2
JP4038173B2 JP2003420488A JP2003420488A JP4038173B2 JP 4038173 B2 JP4038173 B2 JP 4038173B2 JP 2003420488 A JP2003420488 A JP 2003420488A JP 2003420488 A JP2003420488 A JP 2003420488A JP 4038173 B2 JP4038173 B2 JP 4038173B2
Authority
JP
Japan
Prior art keywords
semiconductor device
control wiring
power semiconductor
insulating layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003420488A
Other languages
Japanese (ja)
Other versions
JP2005183568A (en
Inventor
進吾 須藤
敦司 楢崎
浩明 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003420488A priority Critical patent/JP4038173B2/en
Publication of JP2005183568A publication Critical patent/JP2005183568A/en
Application granted granted Critical
Publication of JP4038173B2 publication Critical patent/JP4038173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/40139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous strap daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Description

本発明は、電力用半導体装置に関し、特に、半導体素子に接続された引き出し電極を含む電力用半導体装置に関する。   The present invention relates to a power semiconductor device, and more particularly to a power semiconductor device including an extraction electrode connected to a semiconductor element.

電力用半導体装置を構成するパワー半導体素子の引き出し電極は、半導体素子から電気信号を外部に取り出すために必要不可欠である。例えば、引き出し電極として板状部材を準備し、かかる板状部材を半導体素子の表面の電極に接合して、電気信号を外部に取り出す構造が提案されている。
板状部材を半導体素子の電極に接合するためには、板状部材と電極とをはんだで接合するとともに、電極以外の絶縁層で覆われた部分にも、はんだに対する濡れ性の良い金属を設け、その上に板状部材をはんだで接合する(例えば、特許文献1参照)。
特開2000−114445号公報
The lead electrode of the power semiconductor element constituting the power semiconductor device is indispensable for taking out an electrical signal from the semiconductor element to the outside. For example, a structure has been proposed in which a plate-like member is prepared as an extraction electrode, and the plate-like member is joined to an electrode on the surface of a semiconductor element to extract an electric signal to the outside.
In order to join the plate-like member to the electrode of the semiconductor element, the plate-like member and the electrode are joined with solder, and a metal having good wettability with respect to the solder is also provided on the portion covered with the insulating layer other than the electrode. Then, a plate-like member is joined with solder (for example, see Patent Document 1).
JP 2000-114445 A

しかしながら、パワー半導体素子からの放熱等の温度サイクルにより接合部に熱応力が発生し、絶縁層に破壊を生じ、電気的な短絡が発生するという問題があった。   However, there has been a problem that thermal stress is generated in the joint due to a temperature cycle such as heat dissipation from the power semiconductor element, the insulating layer is broken, and an electrical short circuit occurs.

そこでかかる短絡について研究を重ねた結果、絶縁層の破壊により、絶縁層に覆われた制御配線と、絶縁層上の板状部材とが電気的に短絡することが問題であることを見出し、本発明を完成した。   Therefore, as a result of repeated research on such a short circuit, it was found that the problem is that the control wiring covered with the insulating layer and the plate-like member on the insulating layer are electrically short-circuited due to the breakdown of the insulating layer. Completed the invention.

即ち、本発明は、熱応力が負荷される環境で使用しても、短絡が発生しない、信頼性の高い電力用半導体装置の提供を目的とする。   That is, an object of the present invention is to provide a highly reliable power semiconductor device that does not cause a short circuit even when used in an environment where thermal stress is applied.

本発明は、制御配線と制御配線を挟んで対向配置された外部電極とが同一表面に並置された半導体素子と、制御配線を覆う絶縁層と、外部電極上に設けられた接続材料と、接続材料に接続された引き出し電極とを備え、接続材料と絶縁層との間に空隙部を設けたことを特徴とする電力用半導体装置である。また、絶縁層と外部電極とを覆う金属膜を含むものであっても良い。
The present invention relates to a semiconductor element in which a control wiring and an external electrode arranged opposite to each other with the control wiring interposed therebetween on the same surface, an insulating layer covering the control wiring, a connection material provided on the external electrode, and a connection A power semiconductor device comprising an extraction electrode connected to a material, and a gap provided between the connection material and the insulating layer. Further, a metal film that covers the insulating layer and the external electrode may be included.

以上のように、本発明にかかる電力用半導体装置では、温度サイクルが負荷された場合の熱応力による破壊が防止でき、信頼線の高い電力用半導体装置が提供できる。   As described above, the power semiconductor device according to the present invention can prevent destruction due to thermal stress when a temperature cycle is loaded, and can provide a power semiconductor device with a high reliability line.

実施の形態1.
図1は、全体が100で表される、本発明の実施の形態1にかかる電力用半導体装置の断面図であり、図2は、電力用半導体装置100のIGBT2近傍の斜視図である。
電力用半導体装置100はブロック1を含む。ブロック1は、例えば、厚さ3mmの銅からなる。ブロック1の上には、IGBT2とダイオード3とが、はんだ4Aにより固定されている。IGBT2は、例えば、厚さ0.4mm、縦横がそれぞれ15mmであり、ダイオード3は、例えば、厚さ0.3mm、縦11mm×横17mmである。また、はんだ4Aには、例えば、厚さ0.15mmのSn−Ag−Cu系はんだが用いられる。
ブロック1は、IGBT2およびダイオード3からの放熱手段と、両素子の裏面側配線の双方を兼ねる。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of the power semiconductor device according to the first embodiment of the present invention, the whole being represented by 100, and FIG. 2 is a perspective view of the vicinity of the IGBT 2 of the power semiconductor device 100.
The power semiconductor device 100 includes a block 1. The block 1 is made of, for example, copper having a thickness of 3 mm. On the block 1, the IGBT 2 and the diode 3 are fixed by solder 4A. The IGBT 2 is, for example, 0.4 mm thick and 15 mm in length and width, and the diode 3 is, for example, 0.3 mm thick, 11 mm long × 17 mm wide. For example, Sn-Ag-Cu solder having a thickness of 0.15 mm is used for the solder 4A.
The block 1 serves as both the heat radiation means from the IGBT 2 and the diode 3 and the backside wiring of both elements.

IGBT2とダイオード3には、例えば厚さ0.2mmの銅からなるリードが、接続材料であるはんだ4Bで接続されている。具体的には、リード5が、引き出し電極部5Aを含み、引き出し電極部5Aと、IGBT2の電極およびダイオード3の電極が、それぞれ電気的に接続されている。はんだ4Bには、例えば、厚さ0.2mmのSn−Ag−Cu系はんだが用いられる。   For example, a lead made of copper having a thickness of 0.2 mm is connected to the IGBT 2 and the diode 3 with solder 4B as a connection material. Specifically, the lead 5 includes an extraction electrode portion 5A, and the extraction electrode portion 5A is electrically connected to the electrode of the IGBT 2 and the electrode of the diode 3 respectively. For example, Sn-Ag-Cu solder having a thickness of 0.2 mm is used for the solder 4B.

ブロック1は電極端子6Bに、リード5は電極端子6Aに、それぞれ固着されており、装置の外部と電流の入出力を行う。IGBT2のゲート電極(図示せず)と電極端子6Cとは、例えばアルミニウムのボンディングワイヤ7を用いて接続されている。更に、IGBT2等はトランスファーモールドにより、樹脂筐体8中に封止されている。   The block 1 is fixed to the electrode terminal 6B and the lead 5 is fixed to the electrode terminal 6A, respectively, and inputs / outputs current to / from the outside of the apparatus. The gate electrode (not shown) of the IGBT 2 and the electrode terminal 6 </ b> C are connected using, for example, an aluminum bonding wire 7. Further, the IGBT 2 and the like are sealed in the resin casing 8 by transfer molding.

図3は、IGBT2の表面の電極形状を示したものである。IGBT2の表面には、制御電極であるゲート電極9と、内部にトランジスタ構造を有した外部電極であるエミッタ電極10とが設けられている。ゲート電極9には、エミッタ電極10を分割するように配置された、複数の制御配線であるゲート配線9Aが接続されている。
図3では、エミッタ電極10がゲート配線9Aを挟んで対向配置されているが、対向配置された2つのエミッタ電極10は連結されていても良い。即ち、本願発明は、2つのエミッタ電極10が互いに連結しているか否かに関わらず、ゲート配線9Aが2つのエミッタ電極10間を分割するように配置された構造に適用される。
FIG. 3 shows the electrode shape on the surface of the IGBT 2. A gate electrode 9 as a control electrode and an emitter electrode 10 as an external electrode having a transistor structure inside are provided on the surface of the IGBT 2. The gate electrode 9 is connected to a gate wiring 9A which is a plurality of control wirings arranged so as to divide the emitter electrode 10.
In FIG. 3, the emitter electrodes 10 are disposed to face each other with the gate wiring 9 </ b> A interposed therebetween, but the two emitter electrodes 10 that are disposed to face each other may be connected. That is, the present invention is applied to a structure in which the gate wiring 9A is arranged so as to divide the two emitter electrodes 10 regardless of whether or not the two emitter electrodes 10 are connected to each other.

図4は、図2の電力用半導体装置100のIGBT2近傍を、II−II方向に見た場合の部分断面図である。シリコン等の半導体基板2Aの上には、エミッタ電極10が、ゲート配線9Aを挟んで対向配置されている。ゲート配線9Aは厚さが4μmであり、ガラス系材料等からなる厚さ1μmの絶縁層9Bで覆われ、また周囲にある厚さ4μmのエミッタ電極10等とは絶縁されている。ゲート配線9Aとエミッタ電極10とは間隔は、約5μmである。   4 is a partial cross-sectional view of the vicinity of the IGBT 2 of the power semiconductor device 100 of FIG. 2 when viewed in the II-II direction. On the semiconductor substrate 2A such as silicon, the emitter electrode 10 is disposed so as to face the gate wiring 9A. The gate wiring 9A has a thickness of 4 μm, is covered with a 1 μm thick insulating layer 9B made of a glass-based material, etc., and is insulated from the surrounding 4 μm thick emitter electrode 10 and the like. The distance between the gate wiring 9A and the emitter electrode 10 is about 5 μm.

エミッタ電極10の表面には、はんだ4Bが濡れるように、下から順にAl/Mo/Ni/Auの積層構造からなる金属層10Aが真空蒸着により形成されている。金属膜10Aは、はんだ接合時に最表面のAuがはんだ中に溶解し、NiとはんだのSnが合金化する。
一方、絶縁層9Bははんだ4Bと濡れを生じないため、絶縁層9Bに上には空隙11が形成される。
なお、ここでは図示しないが、ダイオード3の表面にも同様に、はんだ4Bが濡れるように金属層が形成されている。
On the surface of the emitter electrode 10, a metal layer 10A having a laminated structure of Al / Mo / Ni / Au is formed by vacuum deposition in order from the bottom so that the solder 4B gets wet. In the metal film 10A, Au on the outermost surface is dissolved in the solder during solder joining, and Ni and Sn of the solder are alloyed.
On the other hand, since the insulating layer 9B does not wet with the solder 4B, a gap 11 is formed on the insulating layer 9B.
Although not shown here, a metal layer is similarly formed on the surface of the diode 3 so that the solder 4B is wet.

ここで、はんだ4Bについては、はんだ付けにはフラックスを使わないことが望ましい。即ち、フラックスを用いてはんだ付けを行なうと、空隙11となるべき部分にフラックスが残る。通常、これらのフラックスは、溶剤などを用いて洗浄工程で除去されるが、本実施の形態のように、0.1mm以下の厚さの空隙11には溶剤が浸透せず、フラックスが残る。この結果、絶縁層9Bやエミッタ電極10がフラックスにより腐食され、素子不良等の原因となるからである。
なお、はんだ4Bの膜厚を薄くした場合や、引き出し電極5Aの空隙に対応する部分に高分子材料等のはんだに対してぬれを生じない材料でコーティングした場合には、空隙11の上部にははんだ4Bが存在せず、空隙11が直接引き出し電極部5Aに接するようになる。
Here, as for the solder 4B, it is desirable not to use flux for soldering. That is, when soldering is performed using a flux, the flux remains in a portion that should become the gap 11. Normally, these fluxes are removed by a cleaning process using a solvent or the like, but as in this embodiment, the solvent does not penetrate into the gap 11 having a thickness of 0.1 mm or less, and the flux remains. As a result, the insulating layer 9 </ b> B and the emitter electrode 10 are corroded by the flux, causing a device defect and the like.
When the thickness of the solder 4B is reduced, or when the portion corresponding to the gap of the extraction electrode 5A is coated with a material such as a polymer material that does not wet the solder, The solder 4B does not exist, and the gap 11 comes into direct contact with the extraction electrode portion 5A.

このように、本実施の形態にかかる電力用半導体装置100では、ゲート配線9Aを覆う絶縁層9B上に空隙11が設けられている。このため、エミッタ電極10と接合されたはんだ4Bは、絶縁層9Bとは接続されない。従って、IGBT2からの放熱等による温度サイクルに晒された場合でも、IGBT2の主材料であるシリコンとリード5の成分である銅との熱膨張率差に起因する熱応力が絶縁層9Bに付加されることがなく、絶縁層9Bの破損が防止できる。特に、シリコンとの熱膨張率差の大きい銅やアルミニウムをリード材料に使用した場合でも同様である。この結果、従来の電力用半導体装置で発生していた、熱応力による破損が防止でき、信頼性の高い電力用半導体装置とすることができる。   Thus, in the power semiconductor device 100 according to the present embodiment, the air gap 11 is provided on the insulating layer 9B covering the gate wiring 9A. For this reason, the solder 4B joined to the emitter electrode 10 is not connected to the insulating layer 9B. Therefore, even when exposed to a temperature cycle due to heat dissipation from the IGBT 2, thermal stress resulting from a difference in thermal expansion coefficient between silicon, which is the main material of the IGBT 2, and copper, which is a component of the lead 5, is applied to the insulating layer 9B. And the damage to the insulating layer 9B can be prevented. This is especially true when copper or aluminum having a large difference in thermal expansion coefficient from silicon is used as the lead material. As a result, damage due to thermal stress, which has occurred in conventional power semiconductor devices, can be prevented, and a highly reliable power semiconductor device can be obtained.

図5は、空隙あり、空隙なしのサンプルに対して温度サイクル試験(−40℃から125℃まで)を行なった場合の、破壊に至るまでのサイクル数である。
試験に用いたサンプルの断面形状は、図4とほぼ同様であり、半導体チップに対して、リード5として厚さ0.2mmの銅板をはんだで接合したものを用いる。空隙11を有するサンプル(空隙あり)は、図4の構造と同様にゲート配線9Aを覆うように絶縁層9Bを形成することにより作製する。一方、空隙を有しないサンプルは、絶縁層9Bの上にもはんだの濡れる金属膜を形成することにより作製する。
FIG. 5 shows the number of cycles to break when a temperature cycle test (from −40 ° C. to 125 ° C.) is performed on a sample with and without voids.
The cross-sectional shape of the sample used for the test is almost the same as that in FIG. 4, and a semiconductor chip having a 0.2 mm-thick copper plate joined to the semiconductor chip by solder is used. A sample having a gap 11 (with a gap) is produced by forming an insulating layer 9B so as to cover the gate wiring 9A, similarly to the structure of FIG. On the other hand, a sample having no void is produced by forming a metal film on which solder is wetted also on the insulating layer 9B.

図5に示すように、絶縁層9Bにはんだ材が接触した場合(空隙なし)、約1000サイクルで破壊が発生するのに対して、絶縁層9Bにはんだ材が接触しない場合(空隙あり)、5000サイクルまで試験したが破損は生じなかった。
図5の結果から、空隙11を設けた本実施の形態にかかる構造では、温度サイクルによる破損が発生せず、信頼性の高い電力用半導体装置を得ることができることがわかる。
また、絶縁層の剛性を下げても充分な絶縁を得ることが可能となるので、絶縁層の厚さを1μm以下に薄くでき、電力用半導体装置の製造コストを低減できる。
As shown in FIG. 5, when the solder material is in contact with the insulating layer 9B (no gap), destruction occurs in about 1000 cycles, whereas when the solder material is not in contact with the insulating layer 9B (with a gap), Testing up to 5000 cycles did not cause damage.
From the results of FIG. 5, it can be seen that the structure according to the present embodiment in which the air gap 11 is provided does not cause damage due to the temperature cycle and can provide a highly reliable power semiconductor device.
Further, since sufficient insulation can be obtained even if the rigidity of the insulating layer is lowered, the thickness of the insulating layer can be reduced to 1 μm or less, and the manufacturing cost of the power semiconductor device can be reduced.

図6は、全体が110で表される、本実施の形態にかかる他の電力用半導体装置の断面図である。図6中、図1と同一符号は、同一又は相当箇所を示す。電力用半導体装置110では、トランスファモールド型ではなく、ゲル封止タイプのケース型となっている。即ち、IGBT2を搭載した絶縁基板16は樹脂ケース14により囲まれ、その中にシリコンゲル15が充填されている。
かかる電力用半導体装置110においても、図4の構造を用いて、ゲート配線9Aの上部に空隙11を設けることができる。これにより、熱応力による破壊を防止でき、信頼性の高い電力用半導体装置を得ることができる。
FIG. 6 is a cross-sectional view of another power semiconductor device according to the present embodiment, indicated as a whole by 110. In FIG. 6, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. The power semiconductor device 110 is not a transfer mold type but a gel-sealed case type. That is, the insulating substrate 16 on which the IGBT 2 is mounted is surrounded by the resin case 14 and filled with the silicon gel 15 therein.
Also in the power semiconductor device 110, the gap 11 can be provided above the gate wiring 9A using the structure of FIG. Thereby, destruction due to thermal stress can be prevented, and a highly reliable power semiconductor device can be obtained.

なお、リード5の材料として、電気伝導率の高い銅を用いる場合について説明したが、アルミニウム、コバールや42Alloyなど鉄系の配線材料にはんだの濡れる処理を施した材料等を使用しても構わない。   In addition, although the case where copper with high electric conductivity was used as the material of the lead 5 was described, a material obtained by subjecting an iron-based wiring material such as aluminum, Kovar, or 42 Alloy to a process in which solder is wetted may be used. .

また、IGBT2に代えて、MOSFETなどの素子を用いても構わない。   Further, an element such as a MOSFET may be used in place of the IGBT 2.

また、はんだ材として、Sn−Ag系のはんだを用いる場合について説明したが、Au−Si系、Sn−Pb系など、他のはんだ材料を用いても構わない。   Moreover, although the case where Sn-Ag solder is used as the solder material has been described, other solder materials such as Au-Si or Sn-Pb may be used.

はんだの濡れる金属膜として、Al/Mo/Ni/Auの積層構造を用いたが、かかる積層構造の作製には、マスクパターンを用いた蒸着や、レジストマスクを用いた無電解メッキ等の方法を用いることができる。また、金属膜には、Al/Ti/Ni/AuやAl/Ni/Auなどの他の積層構造や、Ni、Ag、Au、Pd、Cu等、はんだが濡れを生じる他の金属を用いても構わない。   A multilayer structure of Al / Mo / Ni / Au was used as the metal film to which the solder gets wet. For the production of such a multilayer structure, vapor deposition using a mask pattern or electroless plating using a resist mask is used. Can be used. In addition, for the metal film, other laminated structures such as Al / Ti / Ni / Au and Al / Ni / Au, and other metals that cause solder to wet, such as Ni, Ag, Au, Pd, and Cu, are used. It doesn't matter.

絶縁層9Bには、ガラス系材料のほか、ポリイミドなど高分子材料や酸化シリコン、窒化シリコン等を用いることもできる。   For the insulating layer 9B, in addition to a glass-based material, a polymer material such as polyimide, silicon oxide, silicon nitride, or the like can be used.

なお、これらの材料は、以下で述べる他の実施の形態にかかる電力用半導体装置にも適用できる。   These materials can also be applied to power semiconductor devices according to other embodiments described below.

実施の形態2.
図7は、全体が200で表された、本実施の形態2にかかる電力用半導体装置の部分断面図である。図7中、図1と同一符号は、同一又は相当箇所を示す。
電力用半導体装置200では、絶縁層9B、エミッタ電極10を覆うように、例えば、厚さ4μmのアルミニウムからなる金属層12が形成されている。金属層12は、例えば蒸着法により形成され、エミッタ電極10と電気的に接続されている。
更に、エミッタ電極10の上方の金属層12の表面には、はんだの濡れる金属膜12Aが形成されている。
Embodiment 2. FIG.
FIG. 7 is a partial cross-sectional view of the power semiconductor device according to the second embodiment, the whole being represented by 200. In FIG. 7, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
In the power semiconductor device 200, for example, a metal layer 12 made of aluminum having a thickness of 4 μm is formed so as to cover the insulating layer 9 </ b> B and the emitter electrode 10. The metal layer 12 is formed by, for example, a vapor deposition method and is electrically connected to the emitter electrode 10.
Further, on the surface of the metal layer 12 above the emitter electrode 10, a metal film 12 </ b> A that gets wet by solder is formed.

金属膜12Aの上には、フラックスを用いない方法により、例えばSn−Ag−Cu系のはんだ4Bを用いて引き出し電極部5Aが接合されている。これにより、はんだの濡れる金属膜12Aの無い金属膜12上には、空隙11が形成される。   On the metal film 12A, the lead electrode portion 5A is joined by, for example, Sn—Ag—Cu-based solder 4B by a method not using a flux. Thereby, the space | gap 11 is formed on the metal film 12 without the metal film 12A which the solder gets wet.

かかる構造では、分割されたエミッタ電極10を金属層12で連結することにより、例えば空隙11が大きい場合でも、それぞれのエミッタ電極10間の電流経路が金属層12により確保される。このため、IGBT2からの電流引き出し効率を向上させることができる。   In such a structure, by connecting the divided emitter electrodes 10 with the metal layer 12, even when the gap 11 is large, for example, a current path between the emitter electrodes 10 is secured by the metal layer 12. For this reason, the current drawing efficiency from the IGBT 2 can be improved.

電力用半導体装置200では、IGBT2と引き出し電極5Aとの熱膨張率差に起因した熱応力が、エミッタ電極10上にある金属層12とはんだ4Bに対して負荷される。ここで、金属層12では、ゲート配線9Aとエミッタ電極10との間に存在する段差によって応力が緩和されるため、ゲート配線9A上の金属層12はせん断変形を受けない。従って、ゲート配線9Aおよびその周囲の絶縁層9も変形を受けず、破壊されることも無い。この結果、ゲート配線9Aとエミッタ電極10の短絡による不良発生を抑制でき、信頼性の高い電力用半導体装置200を提供できる。   In the power semiconductor device 200, thermal stress caused by the difference in thermal expansion coefficient between the IGBT 2 and the extraction electrode 5A is applied to the metal layer 12 on the emitter electrode 10 and the solder 4B. Here, in the metal layer 12, since the stress is relieved by the step existing between the gate wiring 9A and the emitter electrode 10, the metal layer 12 on the gate wiring 9A is not subjected to shear deformation. Accordingly, the gate wiring 9A and the surrounding insulating layer 9 are not deformed and are not destroyed. As a result, it is possible to suppress the occurrence of defects due to a short circuit between the gate wiring 9A and the emitter electrode 10, and to provide a highly reliable power semiconductor device 200.

また、例え、温度サイクルによる熱応力によりはんだ4Bにクラックが進展し、金属膜12Aとの接合面積が減少しても、金属層12が連続していることにより、接合面積の減少に対して金属層12が電流のバイパスとなり、電気抵抗の増加を防止できる。   In addition, even if cracks develop in the solder 4B due to thermal stress due to the temperature cycle and the bonding area with the metal film 12A decreases, the metal layer 12 continues, so that the metal is reduced against the decrease in the bonding area. The layer 12 serves as a current bypass, and an increase in electrical resistance can be prevented.

同様に、金属膜12Aを形成する領域を減少させても、その抵抗増加に与える影響が小さいことから、引き出し電極5Aの搭載位置精度、金属膜12Aの成膜位置精度を下げても、電力用半導体装置の特性は低下しない。このため、電力用半導体装置の製造工程が簡略化でき、製造コストの低減が可能となる。   Similarly, even if the region where the metal film 12A is formed is reduced, the effect on the increase in resistance is small. Therefore, even if the mounting position accuracy of the extraction electrode 5A and the deposition position accuracy of the metal film 12A are lowered, The characteristics of the semiconductor device do not deteriorate. For this reason, the manufacturing process of the power semiconductor device can be simplified, and the manufacturing cost can be reduced.

実施の形態3.
図8は、全体が300で表される、本発明の実施の形態3にかかる電力用半導体装置のIGBT2近傍の斜視図である。また、図9は、図8の電力用半導体装置300の、VIII−VIII方向の断面図である。図8、9において、図1と同一符号は、同一又は相当箇所を示す。
Embodiment 3 FIG.
FIG. 8 is a perspective view of the vicinity of the IGBT 2 of the power semiconductor device according to the third embodiment of the present invention, the whole being represented by 300. FIG. 9 is a cross-sectional view of the power semiconductor device 300 of FIG. 8 in the VIII-VIII direction. 8 and 9, the same reference numerals as those in FIG. 1 indicate the same or corresponding portions.

図8に示すように、電力用半導体装置300では、リード5の引き出し電極部5Aが、短冊状に分割された形状となっている。短冊形状の引き出し電極部5Aは、例えば、リード5のプレス打ち抜き、エッチング等により作製される。また、引き出し電極5Aの間に空隙13が形成される。
短冊の幅、短冊間の間隔は、特に限定しないが、成形性の観点からリード5の板厚と同程度以上であることが好ましい。
また、短冊状の引き出し電極部5Aを配置する位置は特に特定しないが、引き出し電極部5Aがゲート配線9Aの上方に位置する場合、エミッタ電極10の上方に位置する場合について、それぞれ以下の実施の形態4、5で説明する。
As shown in FIG. 8, in the power semiconductor device 300, the lead electrode portion 5 </ b> A of the lead 5 has a shape divided into strips. The strip-shaped lead electrode portion 5A is produced, for example, by press punching the lead 5, etching, or the like. Further, a gap 13 is formed between the extraction electrodes 5A.
The width of the strips and the interval between the strips are not particularly limited, but are preferably about the same as the plate thickness of the leads 5 from the viewpoint of formability.
Further, the position where the strip-shaped lead electrode portion 5A is arranged is not particularly specified. However, when the lead electrode portion 5A is located above the gate wiring 9A and the emitter electrode 10 are located, the following implementation is performed. This will be described in Embodiments 4 and 5.

本実施の形態にかかる電力用半導体装置300では、引き出し電極5Aが短冊状に分割されているため、引き出し電極5Aが膨張した場合の熱応力を、一体型の引き出し電極5Aに比べて小さくできる。また、ゲート配線9A、絶縁層9Bに対する熱応力だけでなく、エミッタ電極10に対する熱応力も低減できる。また、はんだ4Bへの熱応力も低減されるため、はんだ4Bに発生するクラックも抑制できる。この結果、信頼性の高い電力用半導体装置300を得ることができる。   In the power semiconductor device 300 according to the present embodiment, since the extraction electrode 5A is divided into strips, the thermal stress when the extraction electrode 5A expands can be made smaller than that of the integrated extraction electrode 5A. Further, not only the thermal stress on the gate wiring 9A and the insulating layer 9B but also the thermal stress on the emitter electrode 10 can be reduced. Moreover, since the thermal stress to the solder 4B is also reduced, cracks occurring in the solder 4B can be suppressed. As a result, a highly reliable power semiconductor device 300 can be obtained.

なお、ダイオード2に接続される引き出し電極部5Aは、ゲート配線9Aを有しないため、短冊状に分割しなくても良いが、熱応力の低減のためには、短冊状に分割された形状とすることが好ましい。   The extraction electrode portion 5A connected to the diode 2 does not have the gate wiring 9A, and thus does not need to be divided into strips. However, in order to reduce thermal stress, It is preferable to do.

実施の形態4.
図10は、全体が400で表される、本発明の実施の形態4にかかる電力用半導体装置の部分断面図である。図10中、図1と同一符号は、同一又は相当箇所を示す。
Embodiment 4 FIG.
FIG. 10 is a partial cross-sectional view of the power semiconductor device according to the fourth embodiment of the present invention, indicated as a whole by 400. 10, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.

本実施の形態にかかる電力用半導体装置400では、実施の形態3と同様に、引き出し電極5Aが短冊状に分割されるとともに、引き出し電極5Aが、ゲート配線9Aの上方に位置するように配置されている。ゲート配線9Aの上方には、金属層12とはんだ4Bとが接触しないように、空隙11が設けられている。   In the power semiconductor device 400 according to the present embodiment, as in the third embodiment, the extraction electrode 5A is divided into strips, and the extraction electrode 5A is disposed above the gate wiring 9A. ing. A gap 11 is provided above the gate wiring 9A so that the metal layer 12 and the solder 4B do not contact each other.

かかる電力用半導体装置400では、金属層12上に空隙11を設けることにより、後述するようなポリイミドなどの高分子材料をコーティングすることなく、熱応力による絶縁層9Bの破損を防止できる。かかる空隙11の形成は製造工程の増加を伴わず、製造コストを増加させることなく信頼性の高い電力用半導体装置400を得ることができる。   In such a power semiconductor device 400, by providing the gap 11 on the metal layer 12, it is possible to prevent the insulating layer 9B from being damaged by thermal stress without coating a polymer material such as polyimide as described later. The formation of the void 11 does not involve an increase in the manufacturing process, and a highly reliable power semiconductor device 400 can be obtained without increasing the manufacturing cost.

実施の形態5.
図11は、全体が500で表される、本発明の実施の形態5にかかる電力用半導体装置の部分断面図である。図11中、図1と同一符号は、同一又は相当箇所を示す。
図11に示すように、本実施の形態にかかる電力用半導体装置500では、ゲート配線9Aの上方にははんだ4Bおよび引き出し電極5Aが無く、空隙13が形成されている。
Embodiment 5. FIG.
FIG. 11 is a partial cross-sectional view of the power semiconductor device according to the fifth embodiment of the present invention, indicated as a whole by 500. 11, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
As shown in FIG. 11, in the power semiconductor device 500 according to the present embodiment, there is no solder 4B and no lead electrode 5A above the gate wiring 9A, and a gap 13 is formed.

例えば、図6に示すようなゲル封止タイプの半導体装置とした場合、空隙13にはシリコンゲルが充填され、緩和層(図示せず)が形成される。しかしながら、シリコンゲルは弾性係数が小さく、また、金属層12との密着力も、はんだ4Bが濡れた場合の密着力と比べると小さい。このため、絶縁層9Bを破壊するほど大きな熱応力は発生せず、絶縁層9Bの破壊は発生しない。なお、シリコンゲルは、液状のシリコン材料を空隙13に流し込んだ後、150℃で約1時間加熱してゲル化し形成する。   For example, in the case of a gel-sealed semiconductor device as shown in FIG. 6, the gap 13 is filled with silicon gel to form a relaxation layer (not shown). However, the silicon gel has a small elastic coefficient, and the adhesion with the metal layer 12 is also smaller than the adhesion when the solder 4B is wet. For this reason, the thermal stress which is so large that the insulating layer 9B is destroyed does not occur, and the insulating layer 9B does not break. The silicon gel is formed by gelling by pouring a liquid silicon material into the gap 13 and then heating at 150 ° C. for about 1 hour.

一方、図1に示すような樹脂封止型の半導体装置とした場合、空隙13にはエポキシ樹脂等の樹脂が充填され、緩和層(図示せず)が形成される。空隙13にエポキシ樹脂を充填するには、例えば、各部材を組み合わせた状態で金型内に配置し、金型内にゲル状のエポキシ樹脂を120kg/cmの圧力で注入し、180℃程度で加熱硬化すればよい。 On the other hand, when the resin-encapsulated semiconductor device as shown in FIG. 1 is used, the gap 13 is filled with a resin such as an epoxy resin to form a relaxation layer (not shown). To fill the epoxy resin in the gap 13, for example, placed in a mold in a state that combines each member, the gel-like epoxy resin is injected at a pressure of 120 kg / cm 2 in a mold, about 180 ° C. Heat-curing with

絶縁層9Bとシリコンゲルやエポキシ樹脂等の樹脂との間に、例えば4〜10μm程度のポリイミド膜等の緩衝層(図示せず)を介在させることにより、空隙13に充填される樹脂等の弾性率を上げることができる。緩衝層は、例えば、絶縁層9Bを形成した状態で、ポリアミック酸をスピンコートし、加熱して形成したポリイミド膜とする。かかる構造では、熱応力による変形はポリイミド層により緩和され、絶縁層9Bの破損を防止できる。   By interposing a buffer layer (not shown) such as a polyimide film of about 4 to 10 μm, for example, between the insulating layer 9B and a resin such as silicon gel or epoxy resin, the elasticity of the resin or the like that fills the gap 13 You can raise the rate. The buffer layer is, for example, a polyimide film formed by spin-coating polyamic acid with the insulating layer 9B formed and heating. In such a structure, deformation due to thermal stress is relaxed by the polyimide layer, and damage to the insulating layer 9B can be prevented.

このように、電力用半導体装置500では、上述の電力用半導体装置300、400と同様に、熱応力による絶縁層9Bの破壊を防止し、信頼性の高い電力用半導体装置を得ることができる。   As described above, in the power semiconductor device 500, similarly to the power semiconductor devices 300 and 400 described above, it is possible to prevent the insulating layer 9B from being broken due to thermal stress, and to obtain a highly reliable power semiconductor device.

また、引き出し電極5Aが一面に配置された場合(図2)と同様に、それぞれのエミッタ電極10から、短冊状の引き出し電極5Aの幅に向って、均等な電流を引き出すことが可能となる。このため、電力用半導体装置を効率的に動作させることが可能となる。   Further, as in the case where the extraction electrode 5A is arranged on one surface (FIG. 2), it is possible to draw an equal current from each emitter electrode 10 toward the width of the strip-shaped extraction electrode 5A. For this reason, it becomes possible to operate the power semiconductor device efficiently.

更に、空隙13を形成する構造では、フラックスを用いたはんだ付けを行なっても、フラックスを容易に洗浄できる。このため、フラックスを用いたはんだ付けによる大量処理が可能となる。   Furthermore, in the structure in which the gap 13 is formed, the flux can be easily cleaned even if soldering using the flux is performed. For this reason, mass processing by soldering using a flux becomes possible.

実施の形態6.
図12は、本発明の実施の形態6にかかる電力用半導体装置の、IGBT2近傍の斜視図である。図12から明らかなように、本実施の形態では、上述のように引き出し電極部5Aが短冊状に分割されているとともに、その先端部分に、それぞれの短冊状の部分を接続する連結部5Bが設けられている。
Embodiment 6 FIG.
FIG. 12 is a perspective view of the vicinity of the IGBT 2 of the power semiconductor device according to the sixth embodiment of the present invention. As is apparent from FIG. 12, in the present embodiment, the extraction electrode portion 5A is divided into strips as described above, and the connecting portions 5B that connect the respective strip-like portions are formed at the tip portions thereof. Is provided.

引き出し電極5Aからの電流の引き出しは1方向であるが、それぞれの短冊部分に流れる電流がばらつく場合がある。かかる場合、IGBT2からの電流の引き出しが均一にならず、局所的に温度が上昇することがある。これは金属層12によって軽減されるものの、金属層12の厚さが小さいため、電流のばらつきが大きい場合には均一化の効果が小さくなる。
そこで、図12のように、短冊状の引き出し電極部5Aの先端を連結部5Bで連結することにより、短冊部分の電流ばらつきを均一化し、IGBT2の局所的な温度上昇を抑制することができる。
Although current is drawn from the lead electrode 5A in one direction, the current flowing in each strip portion may vary. In such a case, current drawing from the IGBT 2 may not be uniform, and the temperature may rise locally. Although this is alleviated by the metal layer 12, the thickness of the metal layer 12 is small, so that the effect of equalization is reduced when the variation in current is large.
Therefore, as shown in FIG. 12, by connecting the tips of the strip-shaped lead electrode portions 5A with the connecting portions 5B, the current variation in the strip portions can be made uniform, and the local temperature rise of the IGBT 2 can be suppressed.

また、かかる構造とすることで、引き出し電極部5Aが変形しにくくなり、引き出し電極部5Aのはんだ付け精度を向上させ、信頼性の高い電力用半導体装置を容易に作製できる。   Further, with this structure, the extraction electrode portion 5A is not easily deformed, the soldering accuracy of the extraction electrode portion 5A is improved, and a highly reliable power semiconductor device can be easily manufactured.

本発明の実施の形態1にかかる電力用半導体装置の断面図である。It is sectional drawing of the semiconductor device for electric power concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかるIGBTの斜視図である。1 is a perspective view of an IGBT according to a first embodiment of the present invention. 本発明の実施の形態1にかかるIGBTの表面図である。1 is a surface view of an IGBT according to a first embodiment of the present invention. 本発明の実施の形態1にかかる電力用半導体装置の部分断面図である。1 is a partial cross-sectional view of a power semiconductor device according to a first embodiment of the present invention. 半導体チップの破壊に至るまでのサイクル数である。This is the number of cycles until the semiconductor chip is destroyed. 本発明の実施の形態1にかかる他の電力用半導体装置の断面図である。It is sectional drawing of the other power semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる電力用半導体装置の部分断面図である。It is a fragmentary sectional view of the power semiconductor device concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかるIGBTの斜視図である。It is a perspective view of IGBT concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる電力用半導体装置の部分断面図である。It is a fragmentary sectional view of the semiconductor device for electric power concerning Embodiment 3 of this invention. 本発明の実施の形態4にかかる電力用半導体装置の部分断面図である。It is a fragmentary sectional view of the power semiconductor device concerning Embodiment 4 of this invention. 本発明の実施の形態5にかかる電力用半導体装置の部分断面図である。It is a fragmentary sectional view of the power semiconductor device concerning Embodiment 5 of this invention. 本発明の実施の形態6にかかるIGBTの斜視図である。It is a perspective view of IGBT concerning Embodiment 6 of this invention.

符号の説明Explanation of symbols

1 ブロック、2 IGBT、2A 半導体基体、3 ダイオード、4A、4B はんだ、5 リード、5A 引き出し電極部、5B 連結部、6A、6B、6C 電極端子、7 ボンディングワイヤ、8 樹脂筐体、9 ゲート電極、9A ゲート配線、9B 絶縁層、10 エミッタ電極、11 空隙、12 金属層、10A、12A 金属膜、13 空隙、14 樹脂ケース、15 シリコンゲル、16 絶縁基板。
1 block, 2 IGBT, 2A semiconductor substrate, 3 diode, 4A, 4B solder, 5 lead, 5A lead electrode part, 5B connecting part, 6A, 6B, 6C electrode terminal, 7 bonding wire, 8 resin housing, 9 gate electrode , 9A gate wiring, 9B insulating layer, 10 emitter electrode, 11 void, 12 metal layer, 10A, 12A metal film, 13 void, 14 resin case, 15 silicon gel, 16 insulating substrate.

Claims (10)

制御配線と該制御配線を挟んで対向配置された外部電極とが同一表面に並置された半導体素子と、
該制御配線を覆う絶縁層と、
該外部電極上に設けられた接続材料と、
該接続材料に接続された引き出し電極と、を備え、
該接続材料と該絶縁層との間に空隙部を設けたことを特徴とする電力用半導体装置。
A semiconductor element in which a control wiring and an external electrode arranged opposite to each other with the control wiring interposed therebetween are arranged on the same surface ;
An insulating layer covering the control wiring;
A connection material provided on the external electrode;
An extraction electrode connected to the connection material ,
A power semiconductor device, wherein a gap is provided between the connection material and the insulating layer .
制御配線と該制御配線を挟んで対向配置された外部電極とが同一表面に並置された半導体素子と、
該制御配線を覆う絶縁層と、
該絶縁層と該外部電極とを覆う金属膜と、
該金属膜上に設けられた接続材料と、
該接続材料に接続された引き出し電極と、を備え、
該接続材料と該金属膜との間に空隙部を設けたことを特徴とする電力用半導体装置。
A semiconductor element in which a control wiring and an external electrode arranged opposite to each other with the control wiring interposed therebetween are arranged on the same surface ;
An insulating layer covering the control wiring;
A metal film covering the insulating layer and the external electrode;
A connection material provided on the metal film;
An extraction electrode connected to the connection material ,
A power semiconductor device, wherein a gap is provided between the connection material and the metal film .
上記引き出し電極が、短冊状に分割され略平行に配置された櫛歯状電極からなることを特徴とする請求項1または2に記載の電力用半導体装置。 3. The power semiconductor device according to claim 1, wherein the lead electrode is composed of comb-like electrodes divided into strips and arranged substantially in parallel. 4. 制御配線と該制御配線を挟んで対向配置された外部電極とが同一表面に並置された半導体素子と、
該制御配線を覆う絶縁層と、
該外部電極上に設けられた接続材料と、
該接続材料に接続され、短冊状に分割され略平行に配置された櫛歯状の引き出し電極と、を備え、
該制御配線の上方に空隙部を設けたことを特徴とする電力用半導体装置。
A semiconductor element in which a control wiring and an external electrode arranged opposite to each other with the control wiring interposed therebetween are arranged on the same surface ;
An insulating layer covering the control wiring;
A connection material provided on the external electrode;
A comb-shaped lead electrode connected to the connecting material and divided into strips and arranged substantially in parallel ;
A power semiconductor device, wherein a gap is provided above the control wiring .
制御配線と該制御配線を挟んで対向配置された外部電極とが同一表面に並置された半導体素子と、
該制御配線を覆う絶縁層と、
該絶縁層と該外部電極とを覆う金属膜と、
該金属膜上に設けられた接続材料と、
該接続材料に接続され、短冊状に分割され略平行に配置された櫛歯状の引き出し電極と、を備え、
該制御配線の上方に空隙部を設けたことを特徴とする電力用半導体装置。
A semiconductor element arranged to face the external electrodes sandwiching the control lines and control lines are juxtaposed on the same surface,
An insulating layer covering the control wiring;
A metal film covering the insulating layer and the external electrode;
A connection material provided on the metal film;
A comb-shaped lead electrode connected to the connecting material and divided into strips and arranged substantially in parallel ;
A power semiconductor device, wherein a gap is provided above the control wiring .
制御配線と該制御配線を挟んで対向配置された外部電極とが同一表面に並置された半導体素子と、
該制御配線を覆う絶縁層と、
該外部電極上に設けられた接続材料と、
該接続材料に接続され、短冊状に分割され略平行に配置された櫛歯状の引き出し電極と、を備え、
該引き出し電極が該外部電極の上方に設けられ、該制御配線の上方には緩和層が充填されたことを特徴とする電力用半導体装置。
A semiconductor element in which a control wiring and an external electrode arranged opposite to each other with the control wiring interposed therebetween are arranged on the same surface ;
An insulating layer covering the control wiring;
A connection material provided on the external electrode;
A comb-shaped lead electrode connected to the connecting material and divided into strips and arranged substantially in parallel ;
A power semiconductor device, wherein the lead electrode is provided above the external electrode, and a relaxation layer is filled above the control wiring.
制御配線と該制御配線を挟んで対向配置された外部電極とが同一表面に並置された半導体素子と、
該制御配線を覆う絶縁層と、
該絶縁層と該外部電極とを覆う金属膜と、
該金属膜上に設けられた接続材料と、
該接続材料に接続され、短冊状に分割され略平行に配置された櫛歯状の引き出し電極と、を備え、
該引き出し電極が該外部電極の上方に設けられ、該制御配線の上方には緩和層が充填されたことを特徴とする電力用半導体装置。
A semiconductor element in which a control wiring and an external electrode arranged opposite to each other with the control wiring interposed therebetween are arranged on the same surface ;
An insulating layer covering the control wiring;
A metal film covering the insulating layer and the external electrode;
A connection material provided on the metal film;
A comb-shaped lead electrode connected to the connecting material and divided into strips and arranged substantially in parallel ;
A power semiconductor device, wherein the lead electrode is provided above the external electrode, and a relaxation layer is filled above the control wiring.
上記緩和層が、シリコンゲルおよびエポキシ樹脂から選択される材料からなることを特徴とする請求項6または7に記載の電力用半導体装置。 8. The power semiconductor device according to claim 6, wherein the relaxation layer is made of a material selected from silicon gel and epoxy resin. 上記接続材料が、Sn−Ag系はんだ、Au−Si系はんだ、及びSn−Pb系はんだから選択される一のはんだからなることを特徴とする請求項1〜8のいずれかに記載の電力用半導体装置。 9. The power connection device according to claim 1, wherein the connection material is made of one solder selected from Sn—Ag solder, Au—Si solder, and Sn—Pb solder. Semiconductor device. 更に、上記櫛歯状の引き出し電極の端部に、該引き出し電極を連結する連結部が設けられたことを特徴とする請求項3〜8のいずれかに記載の電力用半導体装置。 9. The power semiconductor device according to claim 3, further comprising a connecting portion for connecting the extraction electrode at an end of the comb-shaped extraction electrode.
JP2003420488A 2003-12-18 2003-12-18 Power semiconductor device Expired - Lifetime JP4038173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420488A JP4038173B2 (en) 2003-12-18 2003-12-18 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420488A JP4038173B2 (en) 2003-12-18 2003-12-18 Power semiconductor device

Publications (2)

Publication Number Publication Date
JP2005183568A JP2005183568A (en) 2005-07-07
JP4038173B2 true JP4038173B2 (en) 2008-01-23

Family

ID=34781995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420488A Expired - Lifetime JP4038173B2 (en) 2003-12-18 2003-12-18 Power semiconductor device

Country Status (1)

Country Link
JP (1) JP4038173B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081155A (en) * 2005-09-14 2007-03-29 Hitachi Ltd Semiconductor device
JP4764692B2 (en) * 2005-09-29 2011-09-07 日立オートモティブシステムズ株式会社 Semiconductor module
JP2007157863A (en) * 2005-12-02 2007-06-21 Hitachi Ltd Power semiconductor device, and method of manufacturing same
JP4916745B2 (en) * 2006-03-28 2012-04-18 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP5254398B2 (en) * 2011-04-22 2013-08-07 ルネサスエレクトロニクス株式会社 Semiconductor device
JP5962365B2 (en) * 2012-09-13 2016-08-03 富士電機株式会社 Power semiconductor module
WO2016071982A1 (en) * 2014-11-06 2016-05-12 三菱電機株式会社 Semiconductor module and conductive member for semiconductor module
WO2019116910A1 (en) 2017-12-13 2019-06-20 三菱電機株式会社 Semiconductor device and method for producing semiconductor device
JP7190985B2 (en) * 2019-08-05 2022-12-16 三菱電機株式会社 semiconductor equipment

Also Published As

Publication number Publication date
JP2005183568A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP4499577B2 (en) Semiconductor device
US9899345B2 (en) Electrode terminal, semiconductor device for electrical power, and method for manufacturing semiconductor device for electrical power
JP4635564B2 (en) Semiconductor device
JP6602480B2 (en) Semiconductor device
JP5214936B2 (en) Semiconductor device
JP2021121032A (en) Semiconductor device
US7030496B2 (en) Semiconductor device having aluminum and metal electrodes and method for manufacturing the same
JPH065401A (en) Chip type resistor element and semiconductor device
JP6305176B2 (en) Semiconductor device and manufacturing method
JP4038173B2 (en) Power semiconductor device
JP2010287726A (en) Semiconductor device
JP3601529B2 (en) Semiconductor device
JP2004014599A (en) Semiconductor device and its manufacturing method
CN111816633A (en) Semiconductor device and method for manufacturing semiconductor device
JP4442609B2 (en) Semiconductor device and manufacturing method thereof
JP2000323647A (en) Module semiconductor device and manufacture thereof
JP2006196765A (en) Semiconductor device
JP5444299B2 (en) Semiconductor device
CN114792671A (en) Semiconductor device, power module, and method for manufacturing semiconductor device
JP2012209444A (en) Method of manufacturing semiconductor device and semiconductor device
JP7472806B2 (en) Semiconductor device, power module, and method of manufacturing the semiconductor device
WO2021246204A1 (en) Semiconductor device, semiconductor module, and method for manufacturing semiconductor device
JP4357493B2 (en) Semiconductor device
JP5017228B2 (en) Semiconductor device
JP4357492B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071102

R150 Certificate of patent or registration of utility model

Ref document number: 4038173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term