JP2004079883A - Thermoelement - Google Patents

Thermoelement Download PDF

Info

Publication number
JP2004079883A
JP2004079883A JP2002240430A JP2002240430A JP2004079883A JP 2004079883 A JP2004079883 A JP 2004079883A JP 2002240430 A JP2002240430 A JP 2002240430A JP 2002240430 A JP2002240430 A JP 2002240430A JP 2004079883 A JP2004079883 A JP 2004079883A
Authority
JP
Japan
Prior art keywords
heat
thermoelectric element
thermoelectric
thermoelement
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002240430A
Other languages
Japanese (ja)
Inventor
Atsushi Murakami
村上  淳
Shigeru Watanabe
渡辺  滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2002240430A priority Critical patent/JP2004079883A/en
Publication of JP2004079883A publication Critical patent/JP2004079883A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelement and a heat radiating structure thereof in which a heat source is cooled by the thermoelement even in a narrow space to easily design a portion to install the thermoelement, a great external force is prevented from being applied to the thermoelement to improve durability of the thermoelement, and heat is prevented from flowing back from a heat radiating member to the heat source to improve cooling efficiency. <P>SOLUTION: The thermoelement is provided with a heat conductor which is composed of a flexible member extended from a wiring surface of the thermoelement and connected to the heat radiating member such as a heat sink in its extended portion. Thus, a heat radiating component can be installed even away from the heat source of a cooling target, such that the thermoelement is provided even in the narrow space, and the heat source in the narrow space where components are crowded is cooled. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ペルチェ効果を利用した熱電冷却装置に用いる熱電素子に関し、特に熱電素子の放熱構造に関する。
【0002】
【従来の技術】
熱電素子は、主に複数のp型熱電半導体およびn型熱電半導体から構成されており、熱エネルギーを電気エネルギーに、また電気エネルギーを熱エネルギーに直接変換することができるデバイスである。
【0003】
熱電素子の両端に温度差を与えると、ゼーベック効果により電圧を発生する。また、熱電素子に直流電流を流すと、ペルチェ効果により一端で吸熱し、他端で放熱(発熱)する。
【0004】
熱電素子はこのような可逆の効果を併せ持つデバイスであり、熱エネルギーと電気エネルギーの変換素子として様々な装置に応用されている。
【0005】
特に、ペルチェ効果を利用することにより、熱電素子の吸熱する側に適当な熱源を熱伝導良好な状態で接続させれば、その熱源を冷やす熱電冷却装置として利用することができる。また、熱電素子に流す電流を調節することにより、単に冷却するだけでなく、一定の温度に保つような温度調節装置としても利用することができる。
【0006】
熱電素子を利用した熱電冷却装置は他の方式の冷却装置と異なり、コンプレッサーなどの機械部品を含まず、かつ小型化も可能なことからポータブル冷蔵庫や、集積回路やレーザー光源などの熱源に対する局所的な熱電冷却装置または温度調節装置として利用されている。
【0007】
特に熱電冷却装置として使用する熱電素子のことを、その効果の名前からペルチェ素子と呼ぶこともあるが、本発明の説明においては、熱電素子と表記することにする。
【0008】
近年になって小型の熱電素子が作れるようになり、数mm程度の大きさの小型熱電素子なども開発されて、実際に製品化されている。
【0009】
そのような、小型の熱電素子の用途として、レーザーダイオードなどの冷却が挙げられる。光通信分野やDVDピックアップなどに使われているレーザーダイオードは、高温になると壊れたり、性能が著しく劣化したりするため、特に光通信分野ではレーザーダイオードの冷却および一定温度に制御する温度調節は必須な技術であり、現在、小型の熱電素子はこのような光通信分野において、一般的に利用されている。
【0010】
またDVDでも特に自動車に搭載するカーナビゲーション用のDVDなどでは、夏場に車内温度がかなり高温になるため、レーザーダイオードの温度を下げる必要があり、放熱対策にペルチェ素子を組み込み、冷却あるいは温度調節することが試みられている。
【0011】
図7は従来技術の熱電素子の構造を示す断面図である。
【0012】
熱電素子の構造は、p型熱電半導体11とn型熱電半導体12を、交互に規則的になるように配置し、各々の熱電半導体の両端部分で配線電極13により配線し、複数のp型熱電半導体とn型熱電半導体が、交互に電気的に直列になるように接続する。配線電極13が並んでいる配線面24および配線面25には各配線面とほぼ同じぐらいの大きさの熱伝導板18、19がそれぞれ接合されている。
【0013】
ここで、配線面24、配線面25とは、熱電半導体の両端を配線する全ての配線電極13および引き出し電極15によって形成される平面全体のことを言う。
【0014】
熱伝導板18、19は通常アルミナなどのセラミックス材料から成っている。また、熱電半導体を直列に配線した両端は、引き出し電極15で外部から電流を投入できるようになっている。
【0015】
ここで、引き出し電極15から電流をある方向に流すことによって、熱伝導板18側では吸熱し、熱伝導板19側では放熱するというペルチェ効果を生じる。
【0016】
従来の熱電素子を利用した冷却の原理は、熱伝導板18には冷却対象となる熱源21を接続し、熱源21が発した熱を吸収して熱源21を冷却し、熱伝導板19側にはヒートシンク22を接続し、熱伝導板18で吸収した熱源21が発する熱および熱電素子そのもので発生するジュール熱の両方の熱を、ヒートシンク22を介して周囲空気などへ放熱するしくみとなっている。ヒートシンク22にファンを付けて強制空冷を行う場合もある。
【0017】
つまり、従来の技術では熱源に熱電素子を接続させて冷却する場合、熱電素子の熱源とは反対側にヒートシンクやファンなどを含む大きな放熱部材が必要となる。
【0018】
【発明が解決しようとする課題】
しかし、DVDのピックアップような様々な多くの部品が非常に狭いスペースに集積されていて、なおかつ可動するような部分にレーザーダイオードのような熱源がある場合や、ノートパソコンのように寸法的に制限があり、やはり非常に狭いスペースにCPUのような熱源があるような場合の冷却に熱電素子を利用する場合、従来の熱電素子による冷却のしくみのようにヒートシンクのような大きな放熱部品を熱電素子とともに設置しようとすると、ヒートシンク分のスペースが必要になるため、製品の小型化が非常に難しくなり、そのような狭いスペースでの熱電素子による冷却ができないという問題があった。
【0019】
また、ヒートシンクと他の部品との干渉を防ぐために熱電素子を設置する部分の設計が非常に難しくなるという問題があった。
【0020】
そして、DVDピックアップのような可動部ではヒートシンクのような大きなものを一緒に可動させる場合、またヒートシンクをネジ止めなどで押さえ込むようにして固定する場合、熱電素子に過度の外力が加わる。熱電素子は脆い性質の熱電半導体からなるので機械的強度が弱いため、このように過度の外力が加わると熱電素子が壊れやすくなるという問題があった。
【0021】
さらには、そのような非常に狭い部分でヒートシンクなどの放熱部材から周囲空気に放熱することで、周囲空気に熱がこもるため、冷却対象である熱源に周囲空気を伝わって熱が逆流してしまうことにより、冷却効率が著しく低下してしまう問題もあった。
【0022】
〔発明の目的〕
そこで、本発明の目的は上記の問題を解決して、狭いスペースにおいても熱電素子によって熱源を冷却することができ、熱電素子を設置する部分の設計を簡単にできるようにし、熱電素子に大きな外力が加わらないようにして熱電素子の耐久性が高まり、放熱部材から熱源に熱が逆流するのを防いで冷却効率が良い、熱電素子およびその放熱構造を提供することにある。
【0023】
【課題を解決するための手段】
上記の課題を解決するために、本発明の熱電素子においては、下記に記載する構成を採用する。
【0024】
すなわち、本発明の熱電素子は、所定の間隔を持って配置された少なくとも一対のp型熱電半導体とn型熱電半導体を配線電極にて電気的に直列に接続し、少なくとも一方の配線面が熱伝導体に熱伝導可能に接続した熱電素子において、
前記熱伝導体が、可撓性を有する部材からなり、かつ熱電素子の前記配線面から延出しており、前記熱伝導体の延出している部分で放熱部材に接続することを特徴とする。
また本発明の熱電素子は、前記熱伝導体が、シート状の部材からなり、前記部材の熱伝導率が平面方向と厚さ方向で異方性を持ち、前記平面方向の熱伝導率が高ければ好ましい。
【0025】
〔作用〕
本発明の熱電素子では、可撓性を有する熱伝導体で熱を自由な経路で放熱部材まで運び出すことができるため、冷却対象の熱源と離れた場所に放熱部材を設置でき、狭いスペースにおいても熱電素子を設けることが可能になり、狭いスペースの中の熱源を冷却することができる。また同時に、放熱部材を部品類が密集している熱源と離れた広い場所に設置できるので、熱電素子を設置する部分の設計が非常に簡単になる。さらに熱伝導体は可撓性を有するために熱電素子に過度な外力が加わらず、熱電素子の耐久性を高めることができる。そして熱源と放熱部材が離れているために熱の逆流が生じないので冷却効率が良い熱電素子を形成することができる。
【0026】
【発明の実施の形態】
以下、本発明の熱電素子の構成における最適な実施形態について図面を用いて説明する。
【0027】
図1〜図6を用いて本発明の実施の形態における熱電素子の構造および放熱構造のしくみについて説明する。
【0028】
図1は本発明の熱電素子の全体的な構成を示す断面図である。熱電素子は大きく分けて、熱電素子ブロック10と、この熱電素子ブロック10の配線面24に配置する熱伝導板18と、配線面25に配置する熱伝導体20と、熱電素子ブロック10と熱伝導板18との間に設ける絶縁層16と、熱電素子ブロック10と熱伝導体20との間に設ける絶縁層17と、からなっている。
【0029】
熱電素子ブロック10は、柱状の形状をした複数のp型熱電半導体11とn型熱電半導体12を一定の間隔をおいて規則的に配置し、配線電極13でp型熱電半導体11とn型熱電半導体12が交互になるように電気的に直列に配線し、絶縁体14でp型熱電半導体11とn型熱電半導体12の間、および熱電素子ブロック10の外周側面を埋めるように充填している。
【0030】
熱電材料としては、p型熱電半導体11にはBiTeSbからなる合金を用い、またn型熱電半導体12にはBiTeSeからなる合金を用いている。しかし、熱電材料としてはこれに制限されるものではなく、他のBiTe系、FeSi系など用途に応じて様々な熱電材料を用いることができる。
【0031】
ここで、熱電素子ブロック10の配線面24から見た斜視図を図2に、配線面25方向から見た斜視図を図3に示す。これら図2と図3の斜視図では、説明の都合上、熱伝導板18と熱伝導体20を省略している。
【0032】
熱電素子ブロック10の配線面24と配線面25にはそれぞれ配線電極13をp型熱電半導体11とn型熱電半導体12とを直列に接続するように設ける。配線電極13は膜厚が1〜10μm程度の銅膜を用いる。この銅膜は真空蒸着や電解めっきなどで熱電素子ブロック10に形成する。
【0033】
また、引き出し電極15は熱電素子に外部から電流を導入するためのリード線を接続するためのもので、薄い銅板などを導電ペーストまたは半田で熱電素子ブロック10のp型熱電半導体11とn型熱電半導体12に接続する。
【0034】
熱電素子ブロック10の配線面24では配線電極13は図2に示すように隣り合ったp型熱電半導体11とn型熱電半導体12を交互に接続し、熱電素子ブロック10の配線面25では斜め方向と隣り合ったp型熱電半導体11とn型熱電半導体12とを接続して複数の熱電半導体を電気的に直列化する構成となっている。
【0035】
すなわち、配線電極13によって、一対のp型熱電半導体11とn型熱電半導体12は複数の連続した熱電対となり、熱電素子ブロック10の配線面24又は配線面25上に形成された配線電極13は、熱電子ブロック10のそれぞれの配線面24と配線面25上で熱電素子の吸熱部分または放熱部分を平面的に形成する構成となっている。
【0036】
絶縁体14としては、エポキシ系樹脂、ポリイミド系樹脂、シリコン系樹脂などの樹脂から構成されており、熱電半導体どうしの絶縁性を確保しつつ、脆い性質の熱電半導体を固定して補強し、機械的強度を維持する構造を持たせている。
【0037】
絶縁層16は、熱電素子ブロック10と熱伝導板18との間に、エポキシ樹脂やシリコン樹脂に熱伝導性が非常に良いボロンナイトライド、窒化アルミニウム、アルミナなどの微粒子(フィラー)を混合した高い熱伝導率の熱伝導性接着剤、またはセラミックス系接着剤で接合することにより形成する。
これは配線面24と熱伝導板18との間の熱抵抗をできるだけ小さくして、熱伝導性をできるだけ良くするためである。
【0038】
熱伝導板18は、通常かたくて変形しにくい材質のものを使用する。熱伝導板18の材質としてはとしては、窒化アルミニウムやアルミナなどの絶縁性を有し熱伝導性の良いセラミックスやアルマイト処理を施したアルミニウムを用いることが望ましい。絶縁性を有する熱伝導板18を使用する理由は、絶縁層16が薄い場合には、熱伝導板18が配線電極13に接触して配線電極13がショートする可能性があり、そのショートの発生を防止するためである。しかし絶縁層16が配線電極13のショートを防げる程度の厚さを形成し、絶縁性を十分に取ることが出来れば、熱伝導板18として銅またはアルミニウムなどの金属材料を用いることもできる。
【0039】
また、絶縁層16と熱伝導板18の代わりに、熱電素子ブロック10の配線面24に窒化アルミニウムやDLC(ダイヤモンドライクカーボン)などの絶縁膜を真空蒸着などで成膜することにより、絶縁層16と熱伝導板18の両方の役割を持たせる構造でもよい。
【0040】
熱源21と熱伝導板18との接合は、その間の熱抵抗がなるべく小さくなるような構造であることが好ましい。たとえば、樹脂系やセラミックス系の熱伝導性接着剤などで接着接合する方法、押さえ込む他部材を用いて熱伝導性グリースを介して密着接合する方法などが挙げられる。
【0041】
絶縁層17は、絶縁層16と同様に熱電素子ブロック10と熱伝導体20との間に、エポキシ樹脂やシリコン樹脂に熱伝導性が非常に良いボロンナイトライド、窒化アルミニウム、アルミナなどの微粒子(フィラー)を混合した高い熱伝導率の熱伝導性接着剤、またはセラミックス系接着剤で接合することにより形成する。
そして配線面25と熱伝導体20との間の熱抵抗をできるだけ小さくして、熱伝導性をできるだけ良くする。
【0042】
図4は熱電素子を斜めから見た斜視図である。ここで本発明の特徴的な構造について説明する。
【0043】
図1および図4に示すように熱伝導体20は、熱電素子ブロック10の配線面25で絶縁層17を介して接合し、シート状の形状を有し、長手方向の大きさは熱電素子ブロック10の配線面25よりも大きくする構造を有する。
【0044】
説明の都合上、熱伝導体20の配線面25との接合部分を熱伝導体20aとし、熱伝導体20a以外の熱伝導体20の部分を熱伝導体20bとすることにする。
【0045】
さらに熱伝導体20は、熱伝導体20bの部分によって熱電素子ブロック10と距離的に離れた場所において放熱部材であるヒートシンク22に接続する構造を有する。
【0046】
ヒートシンク22は、熱電素子ブロック10と離れた場所に設置したフィン、あるいはフィンに強制空冷ファンの付いたもの、または部品類の外側を囲む筐体の壁面、またはその壁面の外側にフィンを付けたものなど、熱電素子ブロック10と離れた場所であり、かつ空気や水などの冷却媒体に放熱可能なものとする。
【0047】
ヒートシンク22は特に筐体部分などに接合する場合、部品類がある狭いスペースの内部と異なり、広いスペースに設置できるため、可能な限り大きくすることができる。
【0048】
ヒートシンク22と熱伝導体20との接続は、接着層23として高い熱伝導率の熱伝導性接着剤やセラミックス系接着剤で接着するか、あるいは押さえ込む他部材を用いて熱伝導性グリースを介して密着固定する方法をとる。
【0049】
熱伝導体20としては、グラファイトや銅やアルミニウムなどの熱伝導性の高い材質で、可撓性を有するやわらかいシート状か、またはたるみのあるシート状のものが好ましい。この熱伝導体20の厚さに関しては0.1mmから数mm程度のものを使用する。
【0050】
ここで、可撓性とは、撓ませたり折り曲げたりすることが可能で自由に変形する性質を持つものという意味で使用している。また、シート状とは、紙のように平面方向に大きく厚さ方向に薄いものという意味で使用している。
【0051】
また、特に熱伝導体20の材質がグラファイトのものを使用した場合は、高分子フィルムをグラファイト化する方法で、グラファイトの六角板状の結晶の配向性を高めて平面方向と厚さ方向で熱伝導率が異なる異方性を持たせることができる。そのため、熱伝導体20の平面方向の熱伝導率をグラファイトの平均熱伝導率よりも飛躍的に高めることができる。
【0052】
異方性を持つグラファイトの例としてたとえば、平面方向の熱伝導率が銅の2倍の800W/(m・K)で、厚さ方向の熱伝導率が5W/(m・K)のシートが松下電子部品(株)からPGS高熱伝導グラファイトシートとして販売されている。
【0053】
また、樹脂系シートなどの内部にヒートパイプの機能を持たせたものや、樹脂系シート上に、熱伝導性の良い銅、ダイヤモンド、DLCなどの膜を、柔軟性を損なわないように形成したものでもよい。
【0054】
ただし、熱伝導体20としては、いわゆるフレキシブル基板に用いられているポリイミドフィルムやビニールなどの樹脂系の材質のみのもので、金属やセラミックスより熱伝導率が小さいものは好ましくない。
【0055】
このように熱伝導体20は、熱伝導体20aの部分で熱電素子ブロック10と接合し、熱伝導体20bの部分によって熱電素子ブロック10と距離的に離れた場所において放熱部材であるヒートシンク22に接続する構造を有する。
【0056】
このため、狭いスペースにおいても熱源21を冷却することができ、同時に部品が密集している中で取り回しが自由になり、熱電素子設置部分および放熱部材周辺の設計が非常に簡単になり、さらに熱電素子ブロック10に過度な外力が加わらず、熱電素子の耐久性を高めることができ、そして熱源21とヒートシンク22(放熱部分)が離れているために熱の逆流が生じないので冷却効率が良い熱電素子を形成することができる。
【0057】
絶縁体14は、熱電素子の機械的強度を保ち、熱電半導体の柱間の絶縁性を確保するために設けたが、熱電半導体の柱が十分太く、柱間が十分空いている場合は無くても良い。
【0058】
また、熱伝導板18は熱源21と接続する部材であるが、直接熱源21に配線面24を熱伝導性接着剤などで熱伝導良く接合可能な場合には熱伝導板18は無くても良い。
【0059】
さらに、熱伝導板18に半田接合用のメタライズを施し、また熱伝導体20が絶縁性を有する材質の場合はそのままメタライズを施し、あるいは熱伝導体20が導電性を有する材質の場合は絶縁層を少なくとも一層設けた上にメタライズを施せば、熱電素子ブロック10の配線面24および配線面25において半田接合することも可能である。
【0060】
また、引き出し電極15から引き出したリード線と、熱伝導体20とを接着(接合)することで一体化すれば、放熱経路と電気導入経路を一緒にすることができ、リード線の引き回しなどが簡単になり、さらに使い勝手がよくなる構造をとることが可能である。
【0061】
そして、熱伝導板18の熱源21と接する面状に熱伝導性の両面テープなどを設ければ、非常に簡単に熱源21に実装できる熱電素子を実現することができる。
【0062】
さらに、図示はしないが、熱伝導板18の代わりにもう一つの熱伝導体20Cの一端を熱電素子ブロック10の配線面24に接合して、熱伝導体20Cの他端を熱源21に接合するという構成とすると、熱電素子ブロック10も熱源とは離れた場所に設置できるため、さらに設計の自由度が大きくなる。
【0063】
そして、本発明の熱電素子については、熱電素子に電流を投入して生じるペルチェ効果による冷却手段の構成で説明したが、熱電素子に温度差を与えて電圧を取り出すというゼーベック効果による発電手段の構成も、本発明の熱電素子の構成と同じ構成で適用可能である。
【0064】
この発明を具体的に適用した実施例について以下に、図5および図6を用いて具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではない。
【0065】
(実施例)
図5は本発明の熱電素子の実施例を示す構成図である。電気回路基板27上にレンズ28、レーザーダイオード29(熱源21)、駆動制御コイル30が接続されている。
【0066】
実施の形態で説明した熱電素子の構造(図1、図4参照)において、p型熱電半導体11(BiTeSe)とn型熱電半導体12(BiTeSe)の形状は、縦450μm、横450μm、高さ1mmの柱状であり、p型熱電半導体11とn型熱電半導体12との間の絶縁体14の幅は50μmである。この熱電半導体を縦に6本、横に6本、計36本並べて18対の熱電素子を構成している。
【0067】
また熱伝導板18は平面形状3mmの正方形で厚さ0.2mmの窒化アルミニウム板であり、熱電素子ブロック10の配線面25の大きさは3mmの正方形で高さは1mmである。この熱電素子ブロック10に平面方向の熱伝導率が800W/mK、厚さ0.1mm、幅5mmの松下電子部品(株)製PGS高熱伝導グラファイトシートを熱伝導性接着剤で接着し、長手方向20mm離して、筐体31に接合したヒートシンク22(10mm×10mmのフィンが10枚付いたもの)に熱伝導性接着剤で接着した。
【0068】
ヒートシンク22を25℃の空気(外気)で冷却し、レーザーダイオード29の発熱量を80mWとした場合、熱電素子に電流90mA、電圧0.26Vを投入した場合、レーザーダイオード29は26.4℃となった。またレーザーダイオード29の温度が最も下がるまで電力を投入した場合、電流280mA、電圧0.9Vでレーザーダイオード29は14.5℃まで下げることができた。
【0069】
(比較例)
図6は比較例を示す構成図である。図5と同様に電気回路基板27上にレンズ28、レーザーダイオード29(熱源21)、駆動制御コイル30が接続されている。
【0070】
比較例では、熱電素子ブロック10、冷却側の熱伝導板の構成は実施例と同じであり、異なるのは熱電素子ブロック10の放熱側の熱伝導板19にヒートシンク22(5mm×5mmのフィンが5枚付いたもの)が熱伝導性接着剤で直接接着してあることである。
【0071】
この比較例の場合、図6から明らかなように、ヒートシンク22は放熱性の良い大きいものはスペースが狭いため使用しにくく、なおかつとなりあう駆動制御コイル30はヒートシンク22の大きさのスペースを確保するために位置をずらす必要がある。
【0072】
この比較例でヒートシンク22を25℃の空気で冷却し、レーザーダイオード29の発熱量を80mWとして、レーザーダイオード29の温度が最も下がるまで電力を投入した場合でも、電流90mA、電圧0.28Vでレーザーダイオード29は64.1℃までしか下がらなかった。もし密閉された筐体内などにヒートシンク22が設置された場合、ヒートシンク22周辺の空気が外気(25℃)に比べて高くなることが多いが、その場合はレーザーダイオード29の温度はもっと上がってしまうことになる。
【0073】
図5と図6を比較すると明らかなように、本発明の実施例では狭いスペースでも放熱構造を簡単に構成できるのに対して、従来技術の比較例ではヒートシンク22の分だけ部品位置を変更する必要があり、その分スペースを大きくする必要があり製品の小型化が難しく、明らかに本発明の熱電素子の方が狭いスペースに設置できることが確認された。
【0074】
さらに本発明の熱電素子の冷却性能については、実施例では90mAの電流でレーザーダイオード29の温度が26.4℃まで下がったのに対して、比較例では64.1℃となってしまった。また比較例ではこの64.1℃が最も下がった温度であり、それに対して実施例では14.5℃まで下げることができ、明らかに本発明の熱電素子の冷却能力が高いことが確認された。
【0075】
【発明の効果】
以上の説明で明らかなように、本発明の熱電素子は、可撓性を有する部材からなる熱伝導体が、熱電素子の配線面から延出しており、かつ熱伝導体から延出している部分で放熱部材に接続することによって、狭いスペースにおいても熱電素子によって熱源を冷却することができ、同時に部品が密集している中で取り回しが自由になり、熱電素子設置部分および放熱部材周辺の設計を簡単にできるようにし、熱電素子に大きな外力が加わらないようにして熱電素子の耐久性が高まり、放熱構造から熱源に熱が逆流するのを防いで熱電素子の冷却効率を良くするという効果がある。
【0076】
また、狭いスペースでの熱電素子の実装、放熱部材周辺の設計が簡単になることから製品の小型化が可能となる効果を持つ。
【0077】
さらに、これらの熱電素子を複数用いて筐体外部に放熱して筐体内部の全ての熱源を冷やすことにより、筐体内部の熱を外部に放熱するためのファンなどが不要になるため、騒音が無く、ゴミの混入が防げ、密閉型の製品を作ることができる効果も持つ。
【図面の簡単な説明】
【図1】本発明の熱電素子の実施の形態における熱電素子の構成を示す断面図である。
【図2】本発明の熱電素子の実施の形態における熱電素子ブロックの構成を示す斜視図である
【図3】本発明の熱電素子の実施の形態における熱電素子ブロックの構成を示す斜視図である。
【図4】本発明の熱電素子の実施の形態における熱電素子の構成を示す斜視図である。
【図5】本発明の熱電素子の実施の形態における熱電素子の実施例の構成を示す断面図である。
【図6】従来の熱電素子である比較例の構成を示す断面図である。
【図7】従来の熱電素子の断面図である。
【符号の説明】
10 熱電素子ブロック
11 p型熱電半導体
12 n型熱電半導体
13 配線電極
14 絶縁体
15 引き出し電極
16、17 絶縁層
18、19 熱伝導板
20、20a、20b、20C 熱伝導体
21 熱源
22 ヒートシンク
23 接着部
24、25 配線面
26 熱電素子ブロック側面
27 電気回路基板
28 レンズ
29 レーザーダイオード
30 駆動制御コイル
31 筐体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermoelectric element used for a thermoelectric cooling device using the Peltier effect, and more particularly to a heat dissipation structure of a thermoelectric element.
[0002]
[Prior art]
The thermoelectric element is mainly composed of a plurality of p-type thermoelectric semiconductors and n-type thermoelectric semiconductors, and is a device that can directly convert thermal energy into electrical energy and electrical energy into thermal energy.
[0003]
When a temperature difference is applied to both ends of the thermoelectric element, a voltage is generated by the Seebeck effect. When a direct current is applied to the thermoelectric element, heat is absorbed at one end by the Peltier effect and heat is released (heated) at the other end.
[0004]
The thermoelectric element is a device having such a reversible effect, and is applied to various devices as a conversion element between thermal energy and electric energy.
[0005]
In particular, if a suitable heat source is connected to the heat absorbing side of the thermoelectric element with good heat conduction by utilizing the Peltier effect, the thermoelectric element can be used as a thermoelectric cooling device for cooling the heat source. Further, by adjusting the current flowing through the thermoelectric element, it can be used not only for cooling but also as a temperature adjusting device for maintaining a constant temperature.
[0006]
Unlike other types of cooling devices, thermoelectric cooling devices that use thermoelectric elements do not include mechanical parts such as compressors and can be miniaturized, so they can be used locally for portable refrigerators and heat sources such as integrated circuits and laser light sources. It is used as a thermoelectric cooler or a temperature controller.
[0007]
Particularly, a thermoelectric element used as a thermoelectric cooling device may be called a Peltier element from the name of its effect, but in the description of the present invention, it will be referred to as a thermoelectric element.
[0008]
In recent years, small thermoelectric elements can be manufactured, and small thermoelectric elements having a size of about several mm have been developed and actually commercialized.
[0009]
Applications of such small thermoelectric elements include cooling of laser diodes and the like. Laser diodes used in the optical communication field and DVD pickups can be damaged or deteriorate in performance at high temperatures. Therefore, especially in the optical communication field, cooling the laser diode and adjusting the temperature to control it to a constant temperature are essential. At present, small thermoelectric elements are generally used in such optical communication fields.
[0010]
Also, in the case of DVDs, especially for car navigation DVDs mounted on automobiles, the temperature inside the vehicle becomes extremely high in summer, so it is necessary to lower the temperature of the laser diode. Have been tried.
[0011]
FIG. 7 is a cross-sectional view showing the structure of a conventional thermoelectric element.
[0012]
The structure of the thermoelectric element is such that p-type thermoelectric semiconductors 11 and n-type thermoelectric semiconductors 12 are arranged alternately and regularly, and are wired by wiring electrodes 13 at both ends of each thermoelectric semiconductor. The semiconductor and the n-type thermoelectric semiconductor are alternately connected in series. Heat conductive plates 18 and 19 having substantially the same size as the respective wiring surfaces are joined to the wiring surfaces 24 and 25 where the wiring electrodes 13 are arranged.
[0013]
Here, the wiring surface 24 and the wiring surface 25 refer to the entire plane formed by all the wiring electrodes 13 and the lead-out electrodes 15 for wiring both ends of the thermoelectric semiconductor.
[0014]
The heat conducting plates 18 and 19 are usually made of a ceramic material such as alumina. Further, both ends where the thermoelectric semiconductors are wired in series can be supplied with current from the outside by the extraction electrode 15.
[0015]
Here, when a current flows from the extraction electrode 15 in a certain direction, a Peltier effect occurs in which heat is absorbed on the heat conduction plate 18 side and heat is released on the heat conduction plate 19 side.
[0016]
The principle of cooling using a conventional thermoelectric element is that a heat source 21 to be cooled is connected to the heat conductive plate 18, the heat generated by the heat source 21 is absorbed and the heat source 21 is cooled, and the heat conductive plate 18 is cooled. Is connected to a heat sink 22 to radiate both heat generated by the heat source 21 absorbed by the heat conductive plate 18 and Joule heat generated by the thermoelectric element itself to the surrounding air or the like via the heat sink 22. . In some cases, forced air cooling is performed by attaching a fan to the heat sink 22.
[0017]
That is, in the related art, when a thermoelectric element is connected to a heat source for cooling, a large heat radiating member including a heat sink and a fan is required on the opposite side of the thermoelectric element from the heat source.
[0018]
[Problems to be solved by the invention]
However, when a lot of various components such as a DVD pickup are integrated in a very small space, and there is a heat source such as a laser diode in a movable part, or a dimensional limitation such as a notebook computer. When a thermoelectric element is used for cooling when there is a heat source such as a CPU in a very narrow space, a large heat dissipating component such as a heat sink is used as a cooling mechanism using a conventional thermoelectric element. Attempting to install them together requires a space for a heat sink, which makes it very difficult to reduce the size of the product, and there is a problem that cooling by a thermoelectric element in such a narrow space cannot be performed.
[0019]
In addition, there is a problem that it is very difficult to design a portion where the thermoelectric element is installed in order to prevent interference between the heat sink and other components.
[0020]
In a movable part such as a DVD pickup, when a large object such as a heat sink is moved together, or when the heat sink is fixed by pressing it with screws or the like, an excessive external force is applied to the thermoelectric element. Since the thermoelectric element is made of a brittle thermoelectric semiconductor and has low mechanical strength, there has been a problem that the thermoelectric element is easily broken when an excessive external force is applied as described above.
[0021]
Furthermore, since heat is stored in the surrounding air by radiating heat from the heat radiating member such as a heat sink to the surrounding air in such a very narrow portion, the heat flows back to the heat source to be cooled and the heat flows back. As a result, there is a problem that the cooling efficiency is significantly reduced.
[0022]
[Object of the invention]
Therefore, an object of the present invention is to solve the above-mentioned problem, to cool a heat source by a thermoelectric element even in a narrow space, to simplify the design of a portion for installing the thermoelectric element, and to apply a large external force to the thermoelectric element. It is an object of the present invention to provide a thermoelectric element and a heat dissipation structure thereof, in which heat is prevented from being applied to increase the durability of the thermoelectric element, prevent heat from flowing back from the heat radiating member to the heat source, and provide good cooling efficiency.
[0023]
[Means for Solving the Problems]
In order to solve the above problems, the thermoelectric element of the present invention employs the following configuration.
[0024]
That is, in the thermoelectric element of the present invention, at least one pair of the p-type thermoelectric semiconductor and the n-type thermoelectric semiconductor arranged at a predetermined interval are electrically connected in series by the wiring electrode, and at least one of the wiring surfaces is thermally connected. In a thermoelectric element connected to a conductor so as to be able to conduct heat,
The heat conductor is made of a flexible member, extends from the wiring surface of the thermoelectric element, and is connected to a heat radiating member at a portion where the heat conductor extends.
Further, in the thermoelectric element of the present invention, the heat conductor is formed of a sheet-shaped member, and the heat conductivity of the member has anisotropy in a plane direction and a thickness direction, and the heat conductivity in the plane direction is high. Is preferred.
[0025]
[Action]
In the thermoelectric element of the present invention, since the heat can be carried out to the heat radiating member by a free path by the flexible heat conductor, the heat radiating member can be installed at a place away from the heat source to be cooled, and even in a narrow space. A thermoelectric element can be provided, and a heat source in a narrow space can be cooled. At the same time, the heat dissipating member can be installed in a wide place away from the heat source where the components are densely packed, so that the design of the portion where the thermoelectric element is installed becomes very simple. Further, since the heat conductor has flexibility, an excessive external force is not applied to the thermoelectric element, and the durability of the thermoelectric element can be improved. Since the heat source and the heat radiating member are separated from each other, no backflow of heat occurs, so that a thermoelectric element having good cooling efficiency can be formed.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an optimal embodiment of the configuration of the thermoelectric element of the present invention will be described with reference to the drawings.
[0027]
The structure of the thermoelectric element and the structure of the heat radiation structure according to the embodiment of the present invention will be described with reference to FIGS.
[0028]
FIG. 1 is a sectional view showing the overall configuration of the thermoelectric element of the present invention. The thermoelectric element is roughly divided into a thermoelectric element block 10, a heat conductive plate 18 arranged on a wiring surface 24 of the thermoelectric element block 10, a heat conductor 20 arranged on a wiring surface 25, a thermoelectric element block 10 and a heat conductive element. An insulating layer 16 is provided between the thermoelectric element block 10 and the thermal conductor 20, and an insulating layer 17 is provided between the thermoelectric element block 10 and the thermal conductor 20.
[0029]
In the thermoelectric element block 10, a plurality of columnar p-type thermoelectric semiconductors 11 and n-type thermoelectric semiconductors 12 are regularly arranged at regular intervals, and the p-type thermoelectric semiconductor 11 and the n-type thermoelectric The semiconductors 12 are electrically wired in series so as to be alternated, and filled with an insulator 14 so as to fill the space between the p-type thermoelectric semiconductor 11 and the n-type thermoelectric semiconductor 12 and the outer peripheral side surface of the thermoelectric element block 10. .
[0030]
As the thermoelectric material, an alloy made of BiTeSb is used for the p-type thermoelectric semiconductor 11, and an alloy made of BiTeSe is used for the n-type thermoelectric semiconductor 12. However, the thermoelectric material is not limited to this, and various thermoelectric materials such as other BiTe-based materials and FeSi-based materials can be used depending on applications.
[0031]
Here, a perspective view of the thermoelectric element block 10 as viewed from the wiring surface 24 is shown in FIG. 2, and a perspective view of the thermoelectric element block 10 as viewed from the wiring surface 25 is shown in FIG. 2 and 3, the heat conductive plate 18 and the heat conductor 20 are omitted for convenience of explanation.
[0032]
The wiring electrodes 13 are provided on the wiring surface 24 and the wiring surface 25 of the thermoelectric element block 10 so that the p-type thermoelectric semiconductor 11 and the n-type thermoelectric semiconductor 12 are connected in series. The wiring electrode 13 uses a copper film having a thickness of about 1 to 10 μm. This copper film is formed on the thermoelectric element block 10 by vacuum evaporation, electrolytic plating, or the like.
[0033]
The lead electrode 15 is for connecting a lead wire for introducing a current from the outside to the thermoelectric element. A thin copper plate or the like is connected to the p-type thermoelectric semiconductor 11 of the thermoelectric element block 10 and the n-type thermoelectric element by a conductive paste or solder. Connect to semiconductor 12.
[0034]
On the wiring surface 24 of the thermoelectric element block 10, the wiring electrodes 13 alternately connect the adjacent p-type thermoelectric semiconductors 11 and n-type thermoelectric semiconductors 12 as shown in FIG. The p-type thermoelectric semiconductor 11 and the n-type thermoelectric semiconductor 12 adjacent to each other are connected to electrically serialize a plurality of thermoelectric semiconductors.
[0035]
That is, the pair of p-type thermoelectric semiconductors 11 and n-type thermoelectric semiconductors 12 form a plurality of continuous thermocouples by the wiring electrodes 13, and the wiring electrodes 13 formed on the wiring surface 24 or the wiring surface 25 of the thermoelectric element block 10 The heat absorbing portion or the heat radiating portion of the thermoelectric element is formed in a plane on each of the wiring surface 24 and the wiring surface 25 of the thermoelectronic block 10.
[0036]
The insulator 14 is made of a resin such as an epoxy-based resin, a polyimide-based resin, or a silicon-based resin, and secures and reinforces a thermoelectric semiconductor having a brittle property while securing insulation between the thermoelectric semiconductors. It has a structure that maintains the target strength.
[0037]
The insulating layer 16 is formed by mixing fine particles (filler) such as boron nitride, aluminum nitride, and alumina with excellent thermal conductivity in an epoxy resin or a silicon resin between the thermoelectric element block 10 and the heat conductive plate 18. It is formed by bonding with a heat conductive adhesive having a thermal conductivity or a ceramic adhesive.
This is to reduce the thermal resistance between the wiring surface 24 and the heat conductive plate 18 as much as possible and to improve the thermal conductivity as much as possible.
[0038]
The heat conductive plate 18 is made of a material that is usually hard and hardly deformed. As the material of the heat conductive plate 18, it is desirable to use ceramics having good insulating properties and heat conductivity, such as aluminum nitride and alumina, or aluminum subjected to alumite treatment. The reason for using the heat conductive plate 18 having an insulating property is that when the insulating layer 16 is thin, the heat conductive plate 18 may come into contact with the wiring electrode 13 and short-circuit the wiring electrode 13. This is to prevent However, if the insulating layer 16 is formed to a thickness that can prevent short-circuiting of the wiring electrode 13 and sufficient insulation can be obtained, a metal material such as copper or aluminum can be used for the heat conductive plate 18.
[0039]
Further, instead of the insulating layer 16 and the heat conductive plate 18, an insulating film such as aluminum nitride or DLC (diamond-like carbon) is formed on the wiring surface 24 of the thermoelectric element block 10 by vacuum deposition or the like, so that the insulating layer 16 is formed. The structure may have a role of both the heat conduction plate 18 and the heat conduction plate 18.
[0040]
It is preferable that the joint between the heat source 21 and the heat conductive plate 18 has a structure in which the thermal resistance therebetween is as small as possible. For example, a method of bonding with a resin-based or ceramic-based heat-conductive adhesive or the like, a method of closely bonding with another member to be held down via a heat-conductive grease, or the like can be used.
[0041]
Similarly to the insulating layer 16, the insulating layer 17 is provided between the thermoelectric element block 10 and the heat conductor 20, and fine particles (e.g., boron nitride, aluminum nitride, alumina, etc.) having very good thermal conductivity to epoxy resin or silicon resin. (A filler) mixed with a thermally conductive adhesive having a high thermal conductivity or a ceramic adhesive.
Then, the thermal resistance between the wiring surface 25 and the thermal conductor 20 is made as small as possible, and the thermal conductivity is made as good as possible.
[0042]
FIG. 4 is a perspective view of the thermoelectric element as viewed obliquely. Here, the characteristic structure of the present invention will be described.
[0043]
As shown in FIGS. 1 and 4, the heat conductor 20 is bonded to the wiring surface 25 of the thermoelectric element block 10 via the insulating layer 17, has a sheet-like shape, and has a longitudinal size of the thermoelectric element block. It has a structure that is larger than the ten wiring surfaces 25.
[0044]
For convenience of explanation, a joint portion between the heat conductor 20 and the wiring surface 25 is referred to as a heat conductor 20a, and a portion of the heat conductor 20 other than the heat conductor 20a is referred to as a heat conductor 20b.
[0045]
Further, the heat conductor 20 has a structure in which the heat conductor 20b is connected to a heat sink 22 which is a heat radiating member at a location apart from the thermoelectric element block 10 by a distance.
[0046]
The heat sink 22 has fins installed at a location remote from the thermoelectric element block 10, or fins with a forced air cooling fan, or fins attached to the wall surface of a housing surrounding the outside of components, or the outside of the wall surface. It is assumed that it is a place away from the thermoelectric element block 10 and can radiate heat to a cooling medium such as air or water.
[0047]
In particular, when the heat sink 22 is joined to a housing portion or the like, the heat sink 22 can be installed in a wide space, unlike the inside of a narrow space in which components are located, so that the heat sink 22 can be made as large as possible.
[0048]
The connection between the heat sink 22 and the heat conductor 20 is made by bonding with a heat conductive adhesive or ceramics adhesive having a high heat conductivity as the adhesive layer 23, or through a heat conductive grease using another member for holding down. Take the method of tightly fixing.
[0049]
The heat conductor 20 is preferably made of a material having high heat conductivity such as graphite, copper or aluminum, and has a flexible soft sheet shape or a loose sheet shape. The thickness of the heat conductor 20 is about 0.1 mm to several mm.
[0050]
Here, the term "flexible" is used to mean a material that can be bent or bent and has a property of being freely deformed. In addition, the term “sheet-like” is used to mean a sheet that is large in a plane direction and thin in a thickness direction like paper.
[0051]
Particularly, when the material of the heat conductor 20 is graphite, the orientation of the hexagonal plate-like crystals of graphite is increased by a method of graphitizing a polymer film, and the heat is generated in the plane direction and the thickness direction. Anisotropy with different conductivity can be provided. Therefore, the thermal conductivity in the plane direction of the thermal conductor 20 can be dramatically increased compared to the average thermal conductivity of graphite.
[0052]
As an example of graphite having anisotropy, for example, a sheet having a thermal conductivity in the plane direction of 800 W / (m · K) twice that of copper and a thermal conductivity in the thickness direction of 5 W / (m · K) is used. It is sold by Matsushita Electronic Components Co., Ltd. as a PGS high thermal conductive graphite sheet.
[0053]
In addition, a film having a heat pipe function inside a resin sheet or the like, or a film made of copper, diamond, DLC, etc. having good heat conductivity is formed on the resin sheet so as not to impair the flexibility. It may be something.
[0054]
However, as the heat conductor 20, only a resin-based material such as a polyimide film or vinyl used for a so-called flexible substrate, and a material having a lower heat conductivity than metal or ceramics are not preferable.
[0055]
As described above, the heat conductor 20 is joined to the thermoelectric element block 10 at the heat conductor 20a, and the heat conductor 20b is connected to the heat sink 22 as a heat radiating member at a distance from the thermoelectric element block 10 by the heat conductor 20b. It has a connection structure.
[0056]
For this reason, the heat source 21 can be cooled even in a narrow space, and at the same time, the parts can be freely arranged while the parts are densely packed, and the design of the thermoelectric element installation portion and the heat radiation member periphery becomes very simple. An excessive external force is not applied to the element block 10, so that the durability of the thermoelectric element can be increased. Further, since the heat source 21 and the heat sink 22 (heat radiating portion) are separated from each other, no reverse flow of heat occurs, so that the thermoelectric element has good cooling efficiency. An element can be formed.
[0057]
The insulator 14 is provided in order to maintain the mechanical strength of the thermoelectric element and ensure insulation between the columns of the thermoelectric semiconductor. However, there is no case where the columns of the thermoelectric semiconductor are sufficiently thick and the spaces between the columns are sufficiently empty. Is also good.
[0058]
The heat conductive plate 18 is a member that is connected to the heat source 21. However, the heat conductive plate 18 may be omitted if the wiring surface 24 can be directly bonded to the heat source 21 with good heat conductivity using a heat conductive adhesive or the like. .
[0059]
Further, the heat conductive plate 18 is subjected to metallization for solder bonding, and if the heat conductor 20 is made of an insulating material, the metallization is applied as it is, or if the heat conductor 20 is made of a conductive material, an insulating layer is used. If at least one layer is provided and metallization is performed, it is possible to perform solder bonding on the wiring surfaces 24 and 25 of the thermoelectric element block 10.
[0060]
Further, if the lead wire drawn from the lead electrode 15 and the heat conductor 20 are integrated by bonding (joining), the heat dissipation path and the electricity introduction path can be made the same, and the lead wire can be routed. It is possible to adopt a structure that is simple and easy to use.
[0061]
If a heat conductive double-sided tape or the like is provided on the surface of the heat conductive plate 18 which is in contact with the heat source 21, a thermoelectric element which can be mounted on the heat source 21 very easily can be realized.
[0062]
Further, although not shown, one end of another heat conductor 20C is joined to the wiring surface 24 of the thermoelectric element block 10 instead of the heat conduction plate 18, and the other end of the heat conductor 20C is joined to the heat source 21. With such a configuration, the thermoelectric element block 10 can also be installed at a place away from the heat source, so that the degree of design freedom is further increased.
[0063]
The thermoelectric element of the present invention has been described in terms of the configuration of the cooling means by the Peltier effect generated by applying a current to the thermoelectric element, but the configuration of the power generation means by the Seebeck effect of giving a temperature difference to the thermoelectric element and extracting a voltage. Can also be applied in the same configuration as the configuration of the thermoelectric element of the present invention.
[0064]
Embodiments to which the present invention is specifically applied will be specifically described below with reference to FIGS. 5 and 6, but the present invention is not limited by the following embodiments.
[0065]
(Example)
FIG. 5 is a configuration diagram showing an embodiment of the thermoelectric element of the present invention. On an electric circuit board 27, a lens 28, a laser diode 29 (heat source 21), and a drive control coil 30 are connected.
[0066]
In the structure of the thermoelectric element described in the embodiment (see FIGS. 1 and 4), the shapes of the p-type thermoelectric semiconductor 11 (BiTeSe) and the n-type thermoelectric semiconductor 12 (BiTeSe) are 450 μm in length, 450 μm in width, and 1 mm in height. The width of the insulator 14 between the p-type thermoelectric semiconductor 11 and the n-type thermoelectric semiconductor 12 is 50 μm. Sixteen thermoelectric semiconductors are arranged vertically and six horizontally, and a total of 36 thermoelectric semiconductors are arranged to constitute 18 pairs of thermoelectric elements.
[0067]
The heat conducting plate 18 is an aluminum nitride plate having a planar shape of 3 mm and a thickness of 0.2 mm. The size of the wiring surface 25 of the thermoelectric element block 10 is a square of 3 mm and the height is 1 mm. A PGS high heat conductive graphite sheet manufactured by Matsushita Electronic Components Co., Ltd. having a thermal conductivity of 800 W / mK, a thickness of 0.1 mm, and a width of 5 mm is bonded to the thermoelectric element block 10 with a heat conductive adhesive. At a distance of 20 mm, the heat sink 22 (with 10 fins of 10 mm × 10 mm) bonded to the housing 31 was bonded with a heat conductive adhesive.
[0068]
When the heat sink 22 is cooled by air (outside air) at 25 ° C. and the heat generation of the laser diode 29 is set to 80 mW, the current of 90 mA and the voltage of 0.26 V are applied to the thermoelectric element. became. Also, when power was applied until the temperature of the laser diode 29 became the lowest, the laser diode 29 could be lowered to 14.5 ° C. at a current of 280 mA and a voltage of 0.9 V.
[0069]
(Comparative example)
FIG. 6 is a configuration diagram showing a comparative example. As in FIG. 5, a lens 28, a laser diode 29 (heat source 21), and a drive control coil 30 are connected on an electric circuit board 27.
[0070]
In the comparative example, the configuration of the thermoelectric element block 10 and the heat conduction plate on the cooling side is the same as that of the embodiment, except that the heat conduction plate 19 on the heat radiation side of the thermoelectric element block 10 has a heat sink 22 (5 mm × 5 mm fin). 5) are directly bonded with a heat conductive adhesive.
[0071]
In the case of this comparative example, as is clear from FIG. 6, the heat sink 22 having good heat dissipation has a small space, so that it is difficult to use the heat sink 22, and the adjacent drive control coil 30 secures a space of the size of the heat sink 22. Need to be shifted.
[0072]
In this comparative example, the heat sink 22 was cooled with air at 25 ° C., and the heating value of the laser diode 29 was set to 80 mW, and even when power was applied until the temperature of the laser diode 29 dropped to the minimum, the laser was operated at a current of 90 mA and a voltage of 0.28 V. Diode 29 dropped only to 64.1 ° C. If the heat sink 22 is installed in a closed housing or the like, the air around the heat sink 22 often becomes higher than the outside air (25 ° C.), but in that case, the temperature of the laser diode 29 further rises. Will be.
[0073]
As is clear from the comparison between FIG. 5 and FIG. 6, in the embodiment of the present invention, the heat radiation structure can be easily configured even in a narrow space, whereas in the comparative example of the prior art, the component position is changed by the heat sink 22. Therefore, it is necessary to increase the space, which makes it difficult to reduce the size of the product, and it has been clearly confirmed that the thermoelectric element of the present invention can be installed in a narrower space.
[0074]
Further, the cooling performance of the thermoelectric element of the present invention was as follows: the temperature of the laser diode 29 was reduced to 26.4 ° C. at a current of 90 mA in the example, but was 64.1 ° C. in the comparative example. In the comparative example, the temperature was 64.1 ° C., which was the lowest temperature. In contrast, in the example, the temperature could be lowered to 14.5 ° C., and it was confirmed that the cooling capacity of the thermoelectric element of the present invention was clearly high. .
[0075]
【The invention's effect】
As is clear from the above description, in the thermoelectric element of the present invention, a portion in which the heat conductor made of a flexible member extends from the wiring surface of the thermoelectric element and extends from the heat conductor By connecting to the heat dissipating member, the heat source can be cooled by the thermoelectric element even in a narrow space, and at the same time, the handling is free in the densely packed parts, and the design around the thermoelectric element installation part and the heat dissipating member It has the effect of improving the thermoelectric element's durability by preventing it from being applied easily and preventing a large external force from being applied to the thermoelectric element, preventing heat from flowing back from the heat dissipation structure to the heat source, and improving the cooling efficiency of the thermoelectric element. .
[0076]
In addition, since the mounting of the thermoelectric element in a narrow space and the design around the heat radiating member are simplified, the product can be downsized.
[0077]
Furthermore, by using a plurality of these thermoelectric elements to radiate heat to the outside of the housing and cool all heat sources inside the housing, there is no need for a fan or the like to radiate heat inside the housing to the outside. There is also no effect, so that contamination of garbage can be prevented, and an effect that a sealed product can be produced is also provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a thermoelectric element according to an embodiment of the present invention.
FIG. 2 is a perspective view illustrating a configuration of a thermoelectric element block according to the embodiment of the thermoelectric element of the present invention. FIG. 3 is a perspective view illustrating a configuration of the thermoelectric element block according to the embodiment of the thermoelectric element of the present invention. .
FIG. 4 is a perspective view showing a configuration of the thermoelectric element in the embodiment of the thermoelectric element of the present invention.
FIG. 5 is a cross-sectional view illustrating a configuration of an example of a thermoelectric element according to an embodiment of the thermoelectric element of the present invention.
FIG. 6 is a cross-sectional view showing a configuration of a comparative example which is a conventional thermoelectric element.
FIG. 7 is a cross-sectional view of a conventional thermoelectric element.
[Explanation of symbols]
REFERENCE SIGNS LIST 10 thermoelectric element block 11 p-type thermoelectric semiconductor 12 n-type thermoelectric semiconductor 13 wiring electrode 14 insulator 15 lead electrode 16, 17 insulating layer 18, 19 heat conduction plate 20, 20a, 20b, 20C heat conductor 21 heat source 22 heat sink 23 bonding Parts 24, 25 Wiring surface 26 Thermoelectric element block side surface 27 Electric circuit board 28 Lens 29 Laser diode 30 Drive control coil 31 Housing

Claims (2)

所定の間隔を持って配置された少なくとも一対のp型熱電半導体とn型熱電半導体とを配線電極にて電気的に直列に接続し、少なくとも一方の配線面が熱伝導体に熱伝導可能に接続される熱電素子であって、
前記熱伝導体が、可撓性を有する部材からなり、前記配線面から延出しており、前記熱伝導体の延出している部分で放熱部材に接続される熱電素子。
At least a pair of p-type thermoelectric semiconductors and n-type thermoelectric semiconductors arranged at predetermined intervals are electrically connected in series by wiring electrodes, and at least one wiring surface is connected to a heat conductor so as to be able to conduct heat. Thermoelectric element,
A thermoelectric element, wherein the heat conductor is made of a flexible member, extends from the wiring surface, and is connected to a heat dissipation member at a portion where the heat conductor extends.
前記熱伝導体が、シート状の部材からなり、該部材の熱伝導率が平面方向と厚さ方向とで異方性を有し、前記平面方向の熱伝導率が高いことを特徴とする請求項1に記載の熱電素子。The heat conductor is made of a sheet-shaped member, and the heat conductivity of the member has anisotropy in a plane direction and a thickness direction, and the heat conductivity in the plane direction is high. Item 2. The thermoelectric element according to Item 1.
JP2002240430A 2002-08-21 2002-08-21 Thermoelement Pending JP2004079883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002240430A JP2004079883A (en) 2002-08-21 2002-08-21 Thermoelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002240430A JP2004079883A (en) 2002-08-21 2002-08-21 Thermoelement

Publications (1)

Publication Number Publication Date
JP2004079883A true JP2004079883A (en) 2004-03-11

Family

ID=32023222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002240430A Pending JP2004079883A (en) 2002-08-21 2002-08-21 Thermoelement

Country Status (1)

Country Link
JP (1) JP2004079883A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078222A (en) * 2006-09-19 2008-04-03 Denso Corp Thermoelectric transducer
WO2008078739A1 (en) 2006-12-26 2008-07-03 Jtekt Corporation Multilayer circuit board and motor drive circuit board
JP2008244320A (en) * 2007-03-28 2008-10-09 Fujikura Ltd Cooling apparatus
JP2009016682A (en) * 2007-07-06 2009-01-22 Fujitsu Ltd Optical module and communication device
JP2010176756A (en) * 2009-01-30 2010-08-12 Hitachi Ltd Magnetic disk device
WO2010014958A3 (en) * 2008-08-01 2011-01-06 Bsst Llc Enhanced thermally isolated thermoelectrics
WO2011016876A1 (en) * 2009-08-06 2011-02-10 Laird Technologies, Inc. Thermoelectric modules, thermoelectric assemblies, and related methods
US8069674B2 (en) 2001-08-07 2011-12-06 Bsst Llc Thermoelectric personal environment appliance
US8079223B2 (en) 2001-02-09 2011-12-20 Bsst Llc High power density thermoelectric systems
WO2012098446A3 (en) * 2011-01-21 2012-11-29 Toyota Jidosha Kabushiki Kaisha Thermoelectric device
US8375728B2 (en) 2001-02-09 2013-02-19 Bsst, Llc Thermoelectrics utilizing convective heat flow
US8424315B2 (en) 2006-03-16 2013-04-23 Bsst Llc Thermoelectric device efficiency enhancement using dynamic feedback
US8495884B2 (en) 2001-02-09 2013-07-30 Bsst, Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
WO2013107637A3 (en) * 2012-01-19 2013-09-26 Abb Technology Ag Device and method for supplying energy to sensors in the mining industry
EP2498310A3 (en) * 2011-03-11 2013-12-11 Imec Thermoelectric textile
US8613200B2 (en) 2008-10-23 2013-12-24 Bsst Llc Heater-cooler with bithermal thermoelectric device
US8640466B2 (en) 2008-06-03 2014-02-04 Bsst Llc Thermoelectric heat pump
US8649179B2 (en) 2011-02-05 2014-02-11 Laird Technologies, Inc. Circuit assemblies including thermoelectric modules
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
US9006556B2 (en) 2005-06-28 2015-04-14 Genthem Incorporated Thermoelectric power generator for variable thermal power source
EP2908356A3 (en) * 2014-02-14 2015-08-26 LG Innotek Co., Ltd. Heat conversion device
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
US9310112B2 (en) 2007-05-25 2016-04-12 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
EP3187815A1 (en) * 2009-02-11 2017-07-05 Bae Systems Hägglunds Aktiebolag Device for thermal adaption
JP2017130490A (en) * 2016-01-18 2017-07-27 マツダ株式会社 Cooling structure for power control apparatus
WO2017208950A1 (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Thermoelectric conversion substrate, thermoelectric conversion module and method for producing thermoelectric conversion substrate
JP2018012154A (en) * 2016-07-20 2018-01-25 株式会社マキタ Electric work machine
EP3218942A4 (en) * 2014-11-14 2018-07-18 Charles J. Cauchy Heating and cooling technologies
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
JPWO2017164104A1 (en) * 2016-03-23 2019-05-30 国立研究開発法人産業技術総合研究所 Thermoelectric module power generation evaluation device
EP3602641A4 (en) * 2017-03-20 2021-01-13 Charles J. Cauchy Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
JP2021512488A (en) * 2018-01-23 2021-05-13 エルジー イノテック カンパニー リミテッド Thermoelectric module
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
WO2021220533A1 (en) * 2020-05-01 2021-11-04 株式会社Eサーモジェンテック Thermoelectric power-generation module, wearable biological-body-sensing device, biological-body location detection system
US11240883B2 (en) 2014-02-14 2022-02-01 Gentherm Incorporated Conductive convective climate controlled seat
US11639816B2 (en) 2014-11-14 2023-05-02 Gentherm Incorporated Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system
US11857004B2 (en) 2014-11-14 2024-01-02 Gentherm Incorporated Heating and cooling technologies

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8495884B2 (en) 2001-02-09 2013-07-30 Bsst, Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
US8375728B2 (en) 2001-02-09 2013-02-19 Bsst, Llc Thermoelectrics utilizing convective heat flow
US8079223B2 (en) 2001-02-09 2011-12-20 Bsst Llc High power density thermoelectric systems
US8069674B2 (en) 2001-08-07 2011-12-06 Bsst Llc Thermoelectric personal environment appliance
US9006556B2 (en) 2005-06-28 2015-04-14 Genthem Incorporated Thermoelectric power generator for variable thermal power source
US8424315B2 (en) 2006-03-16 2013-04-23 Bsst Llc Thermoelectric device efficiency enhancement using dynamic feedback
JP2008078222A (en) * 2006-09-19 2008-04-03 Denso Corp Thermoelectric transducer
WO2008078739A1 (en) 2006-12-26 2008-07-03 Jtekt Corporation Multilayer circuit board and motor drive circuit board
JP2008244320A (en) * 2007-03-28 2008-10-09 Fujikura Ltd Cooling apparatus
US10464391B2 (en) 2007-05-25 2019-11-05 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
US9366461B2 (en) 2007-05-25 2016-06-14 Gentherm Incorporated System and method for climate control within a passenger compartment of a vehicle
US9310112B2 (en) 2007-05-25 2016-04-12 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
JP2009016682A (en) * 2007-07-06 2009-01-22 Fujitsu Ltd Optical module and communication device
US9719701B2 (en) 2008-06-03 2017-08-01 Gentherm Incorporated Thermoelectric heat pump
US10473365B2 (en) 2008-06-03 2019-11-12 Gentherm Incorporated Thermoelectric heat pump
US8640466B2 (en) 2008-06-03 2014-02-04 Bsst Llc Thermoelectric heat pump
US8701422B2 (en) 2008-06-03 2014-04-22 Bsst Llc Thermoelectric heat pump
EP2333829A3 (en) * 2008-08-01 2013-11-27 Bsst Llc Enhanced Thermally Isolated Thermoelectrics
WO2010014958A3 (en) * 2008-08-01 2011-01-06 Bsst Llc Enhanced thermally isolated thermoelectrics
US8613200B2 (en) 2008-10-23 2013-12-24 Bsst Llc Heater-cooler with bithermal thermoelectric device
JP2010176756A (en) * 2009-01-30 2010-08-12 Hitachi Ltd Magnetic disk device
EP3187815A1 (en) * 2009-02-11 2017-07-05 Bae Systems Hägglunds Aktiebolag Device for thermal adaption
US9891024B2 (en) 2009-02-11 2018-02-13 BAE Systems Hägglunds Aktiebolag Device for thermal adaption
CN102473833A (en) * 2009-08-06 2012-05-23 莱尔德技术股份有限公司 Thermoelectric modules, thermoelectric assemblies, and related methods
WO2011016876A1 (en) * 2009-08-06 2011-02-10 Laird Technologies, Inc. Thermoelectric modules, thermoelectric assemblies, and related methods
WO2012098446A3 (en) * 2011-01-21 2012-11-29 Toyota Jidosha Kabushiki Kaisha Thermoelectric device
US8649179B2 (en) 2011-02-05 2014-02-11 Laird Technologies, Inc. Circuit assemblies including thermoelectric modules
US9322580B2 (en) 2011-02-05 2016-04-26 Laird Technologies, Inc. Circuit assemblies including thermoelectric modules
EP2498310A3 (en) * 2011-03-11 2013-12-11 Imec Thermoelectric textile
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
WO2013107637A3 (en) * 2012-01-19 2013-09-26 Abb Technology Ag Device and method for supplying energy to sensors in the mining industry
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
US10784546B2 (en) 2013-01-30 2020-09-22 Gentherm Incorporated Thermoelectric-based thermal management system
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
US11240883B2 (en) 2014-02-14 2022-02-01 Gentherm Incorporated Conductive convective climate controlled seat
US11240882B2 (en) 2014-02-14 2022-02-01 Gentherm Incorporated Conductive convective climate controlled seat
EP2908356A3 (en) * 2014-02-14 2015-08-26 LG Innotek Co., Ltd. Heat conversion device
US11033058B2 (en) 2014-11-14 2021-06-15 Gentherm Incorporated Heating and cooling technologies
US11857004B2 (en) 2014-11-14 2024-01-02 Gentherm Incorporated Heating and cooling technologies
EP3218942A4 (en) * 2014-11-14 2018-07-18 Charles J. Cauchy Heating and cooling technologies
US11639816B2 (en) 2014-11-14 2023-05-02 Gentherm Incorporated Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system
EP3726594A1 (en) * 2014-11-14 2020-10-21 Gentherm Incorporated Heating and cooling technologies
JP2017130490A (en) * 2016-01-18 2017-07-27 マツダ株式会社 Cooling structure for power control apparatus
JPWO2017164104A1 (en) * 2016-03-23 2019-05-30 国立研究開発法人産業技術総合研究所 Thermoelectric module power generation evaluation device
US11056632B2 (en) 2016-05-31 2021-07-06 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric conversion substrate, thermoelectric conversion module and method for producing thermoelectric conversion substrate
WO2017208950A1 (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Thermoelectric conversion substrate, thermoelectric conversion module and method for producing thermoelectric conversion substrate
JPWO2017208950A1 (en) * 2016-05-31 2019-04-04 パナソニックIpマネジメント株式会社 Thermoelectric conversion substrate, thermoelectric conversion module, and method of manufacturing thermoelectric conversion substrate
CN109476009A (en) * 2016-07-20 2019-03-15 株式会社牧田 Electric working machine
JP2018012154A (en) * 2016-07-20 2018-01-25 株式会社マキタ Electric work machine
WO2018016315A1 (en) * 2016-07-20 2018-01-25 株式会社マキタ Electric tool
EP3602641A4 (en) * 2017-03-20 2021-01-13 Charles J. Cauchy Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system
JP2021512488A (en) * 2018-01-23 2021-05-13 エルジー イノテック カンパニー リミテッド Thermoelectric module
JP7407718B2 (en) 2018-01-23 2024-01-04 エルジー イノテック カンパニー リミテッド thermoelectric module
US11223004B2 (en) 2018-07-30 2022-01-11 Gentherm Incorporated Thermoelectric device having a polymeric coating
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11075331B2 (en) 2018-07-30 2021-07-27 Gentherm Incorporated Thermoelectric device having circuitry with structural rigidity
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
WO2021220533A1 (en) * 2020-05-01 2021-11-04 株式会社Eサーモジェンテック Thermoelectric power-generation module, wearable biological-body-sensing device, biological-body location detection system

Similar Documents

Publication Publication Date Title
JP2004079883A (en) Thermoelement
JP4255691B2 (en) Electronic component cooling device using thermoelectric conversion material
US20090167134A1 (en) Light source module with high heat-dissipation efficiency
JPH0997930A (en) Thermoelectric cooling module and manufacture thereof
JP2003188323A (en) Graphite sheet and its manufacturing method
JP2003174203A (en) Thermoelectric conversion device
US20060005944A1 (en) Thermoelectric heat dissipation device and method for fabricating the same
WO2004001865A1 (en) Thermoelectric element and electronic component module and portable electronic apparatus using it
WO2015145711A1 (en) Power conversion apparatus
US20100218512A1 (en) Heat exchanger for thermoelectric applications
JP2005260237A (en) Module for cooling semiconductor element
JP4391351B2 (en) Cooling system
JP4999071B2 (en) heatsink
JP4542443B2 (en) Heat transfer device
KR20100003494A (en) Thermoelectric cooling device with flexible copper band wire
JP2008210875A (en) Heat sink
JP2006128260A (en) Semiconductor device and semiconductor device having cooler
JP5453296B2 (en) Semiconductor device
CN220776346U (en) Heat dissipation device
KR20190089631A (en) Thermoelectric device module
JP2011082272A (en) Thermoelectric cooling device
KR20010068353A (en) Thermoelectric cooling module
CN220733332U (en) Electronic equipment
US20230263060A1 (en) Thermoelectric power generation module and method of manufacturing thermoelectric power generation module
JP2007110031A (en) Terminal box for solar cell panel