JP2827461B2 - Electronic refrigerator - Google Patents

Electronic refrigerator

Info

Publication number
JP2827461B2
JP2827461B2 JP2160289A JP16028990A JP2827461B2 JP 2827461 B2 JP2827461 B2 JP 2827461B2 JP 2160289 A JP2160289 A JP 2160289A JP 16028990 A JP16028990 A JP 16028990A JP 2827461 B2 JP2827461 B2 JP 2827461B2
Authority
JP
Japan
Prior art keywords
elements
heat load
heat
temperature
microcomputer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2160289A
Other languages
Japanese (ja)
Other versions
JPH0452470A (en
Inventor
秀夫 太田
一敏 西沢
兼二 山田
義貴 戸松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2160289A priority Critical patent/JP2827461B2/en
Publication of JPH0452470A publication Critical patent/JPH0452470A/en
Application granted granted Critical
Publication of JP2827461B2 publication Critical patent/JP2827461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電子冷凍装置に関するものである。Description: TECHNICAL FIELD The present invention relates to an electronic refrigerator.

〔従来の技術〕[Conventional technology]

従来、例えば、実開昭55−41964号公報に示されてい
るように、電子冷凍装置を用いた自動車用空調装置が知
られている。これは、エバポレータの代わりに電子冷凍
装置を用いたものである。
DESCRIPTION OF RELATED ART Conventionally, as shown in Unexamined-Japanese-Patent No. 55-41964, the air conditioner for motor vehicles using the electronic refrigerator is known, for example. This uses an electronic refrigerator instead of an evaporator.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、吸熱能力が最大となる素子数と成績係数
(効率)が最大となる素子数とが異なるので、吸熱能力
を優先して最適設計をすれば成績係数が犠牲になり、
又、成績係数を優先して最適設計をすれば吸熱能力が犠
牲になってしまっていた。
However, the number of elements with the maximum heat absorption capacity is different from the number of elements with the highest coefficient of performance (efficiency).
In addition, if the optimum design is performed with priority on the coefficient of performance, the heat absorbing ability is sacrificed.

この発明の目的は、能力と効率を考慮した最適なる運
転を行うことができる電子冷凍装置を提供することにあ
る。
An object of the present invention is to provide an electronic refrigeration apparatus that can perform an optimal operation in consideration of capacity and efficiency.

〔課題を解決するための手段〕 この発明は、第1図に示すように、複数の熱電素子M1
を直列に接続して、電源からの電圧を熱電素子M1に印加
するようにした電子冷凍装置において、 前記前記熱電素子数を変更する手段M2と、熱負荷を検
出する熱負荷検出手段M3と、前記熱負荷検出手段M3によ
り検出された熱負荷が所定の熱負荷より大きいときには
最大能力運転となり、又、熱負荷が所定の熱負荷より小
さいときには最大効率運転となるように、前記変更手段
M2を制御して前記熱電素子数を変更させる制御手段M4と
を備えた電子冷凍装置をその要旨とするものである。
[Means for Solving the Problems] The present invention, as shown in FIG.
Are connected in series, in the electronic refrigeration apparatus configured to apply a voltage from a power supply to the thermoelectric element M1, a means M2 for changing the number of the thermoelectric elements, and a thermal load detecting means M3 for detecting a thermal load, When the heat load detected by the heat load detecting means M3 is larger than a predetermined heat load, the maximum capacity operation is performed, and when the heat load is smaller than the predetermined heat load, the maximum efficiency operation is performed.
The gist of the present invention is an electronic refrigerating apparatus including a control unit M4 for controlling the number of thermoelectric elements by controlling M2.

〔作用〕[Action]

制御手段M4は熱負荷検出手段M3により検出された熱負
荷が所定の熱負荷より大きいときには最大能力運転とな
り、又、熱負荷が所定の熱負荷より小さいときには最大
効率運転となるように、変更手段M2を制御して熱電素子
数を変更させる。
The control means M4 changes to a maximum capacity operation when the heat load detected by the heat load detection means M3 is larger than the predetermined heat load, and a maximum efficiency operation when the heat load is smaller than the predetermined heat load. Control M2 to change the number of thermoelectric elements.

〔実施例〕〔Example〕

以下、この発明を自動車用空調装置に具体化した一実
施例を図面に従って説明する。
Hereinafter, an embodiment in which the present invention is embodied in an air conditioner for a vehicle will be described with reference to the drawings.

第2図に示すように、エアダクト1内には送風機2が
配置され、内外気切替ダンパ3を介して内気又は外気が
ダクト1内に導入される。エアダクト1内には電子冷凍
ユニット4が配置され、この電子冷凍ユニット4は第3
図に示すようにP型半導体5と放熱フィン6とN型半導
体7と吸熱フィン8とを順に積層したものである。この
各熱電素子(P型半導体5とN型半導体7)は直列に接
続されている。そして、第3図に示すように、各素子
は、エアコンスイッチ9及び変更手段としてのリレー回
路20を介して電子冷凍用電源としてのバッテリ10からの
電圧が印加されるようになっている。このとき、P→N
方向に電流を流すことにより、PとNの接合部では放熱
が、又、NとPの接合部では吸熱が行われる。電子冷凍
式の空調装置は、このときの吸熱を利用したものであ
る。
As shown in FIG. 2, a blower 2 is arranged in an air duct 1, and inside air or outside air is introduced into the duct 1 via an inside / outside air switching damper 3. An electronic refrigeration unit 4 is arranged in the air duct 1, and the electronic refrigeration unit 4
As shown in the figure, a P-type semiconductor 5, a radiation fin 6, an N-type semiconductor 7, and a heat absorption fin 8 are sequentially laminated. These thermoelectric elements (P-type semiconductor 5 and N-type semiconductor 7) are connected in series. As shown in FIG. 3, a voltage from a battery 10 as a power source for electronic refrigeration is applied to each element via an air conditioner switch 9 and a relay circuit 20 as a changing means. At this time, P → N
By flowing a current in the direction, heat is released at the junction between P and N, and heat is absorbed at the junction between N and P. The electronic refrigerating air conditioner utilizes the heat absorption at this time.

尚、フィン6,8には多数の穴が設けられ、第2図のよ
うな通風が可能となっている。
The fins 6 and 8 are provided with a large number of holes to allow ventilation as shown in FIG.

第2図において、送風機2にて導入された空気は電子
冷凍ユニット4の放熱フィン6を通過することにより加
熱されダンパ11を介して温風排出口12から車外に排出さ
れるとともに、電子冷凍ユニット4の吸熱フィン8を通
過することにより冷却されてエアダクト1の下流へと送
られる。
In FIG. 2, the air introduced by the blower 2 is heated by passing through the radiating fins 6 of the electronic refrigeration unit 4 and is discharged from the warm air discharge port 12 through the damper 11 to the outside of the vehicle. The air is cooled by passing through the heat absorbing fins 8 and sent downstream of the air duct 1.

電子冷凍ユニット4での最もアース側の吸熱フィン8
には吸熱フィン用サーミスタ13が設けられ、同サーミス
タ13は吸熱フィン8の温度Tcを検出する。又、電子冷凍
ユニット4での最もアース側の放熱フィン6には放熱フ
ィン用サーミスタ14が設けられ、同サーミスタ14は放熱
フィン6の温度Thを検出する。
Heat-absorbing fin 8 closest to earth side in electronic refrigeration unit 4
Is provided with a heat absorbing fin thermistor 13, which detects the temperature Tc of the heat absorbing fin 8. Further, a radiation fin thermistor 14 is provided on the radiation fin 6 closest to the ground in the electronic refrigeration unit 4, and the thermistor 14 detects the temperature Th of the radiation fin 6.

エアダクト1内における電子冷凍ユニット4の下流に
はヒータコア15が設けられ、このヒータコア15にエンジ
ン冷却水が供給される。そして、エアミックスダンパ16
の開度によりヒータコア15を通過する空気量が調整され
るようになっている。即ち、乗員が設定した温度になる
ように所定量の空気がヒータコア15で加熱される。
A heater core 15 is provided in the air duct 1 downstream of the electronic refrigeration unit 4, and engine coolant is supplied to the heater core 15. And air mix damper 16
The amount of air passing through the heater core 15 is adjusted according to the opening degree. That is, a predetermined amount of air is heated by the heater core 15 so as to reach a temperature set by the occupant.

エアダクト1内におけるヒータコア15の下流にはヒー
トダンパ17とデフダンパ18とベントダンパ19が設けら
れ、熱交換された空気が設定モードに合わせて各吹き出
し口から車室内へ吹き出されるようになっている。
A heat damper 17, a differential damper 18, and a vent damper 19 are provided downstream of the heater core 15 in the air duct 1, and heat-exchanged air is blown into the vehicle compartment from each outlet in accordance with a set mode.

第3図に示すように、リレー回路20は多数のリレー開
閉器よりなり(第3図では1個のみ示す)、この各リレ
ー開閉器の開閉動作によりバッテリ10の電圧を印加する
熱電素子の数を変更可能となっている。
As shown in FIG. 3, the relay circuit 20 is composed of a number of relay switches (only one is shown in FIG. 3), and the number of thermoelectric elements for applying the voltage of the battery 10 by the opening / closing operation of each relay switch. Can be changed.

制御手段としてのマイクロコンピュータ(以下、マイ
コンという)21は、吸熱フィン用サーミスタ13からの信
号と、放熱フィン用サーミスタ14からの信号を入力す
る。又、マイコン21はバッテリ電圧検知センサからのバ
ッテリ電圧検知信号を入力してバッテリ電圧を検知する
とともに、熱負荷検出手段としての車室内温度検知セン
サからの室内温度検知信号を入力して車室内の温度を検
知する。さらに、マイコン21はリレー回路20を駆動制御
してバッテリ電圧を印加する熱電素子の数を変更する。
熱電素子は第3図に示すように、放熱フィン6,P型半導
体5,吸熱フィン8,N型半導体7を1ユニットとし、この
単位で熱電素子の数が変更される。
A microcomputer (hereinafter, referred to as a microcomputer) 21 as a control means inputs a signal from the heat sink fin thermistor 13 and a signal from the heat radiation fin thermistor 14. Also, the microcomputer 21 receives a battery voltage detection signal from the battery voltage detection sensor to detect the battery voltage, and receives an indoor temperature detection signal from the vehicle interior temperature detection sensor as heat load detecting means to input the battery temperature detection signal from the vehicle interior. Detect temperature. Further, the microcomputer 21 drives and controls the relay circuit 20 to change the number of thermoelectric elements to which the battery voltage is applied.
As shown in FIG. 3, the thermoelectric element is composed of a heat radiation fin 6, a P-type semiconductor 5, a heat absorbing fin 8, and an N-type semiconductor 7, and the number of thermoelectric elements is changed in this unit.

次に、このように構成した自動車用空調装置の作用を
第4図に基づいて説明する。この際、第5図に示すよう
に、室内温度TRを目標の室内温度T2(例えば、25℃)
にクールダウンさせる場合について説明する。
Next, the operation of the automotive air conditioner thus configured will be described with reference to FIG. At this time, as shown in FIG. 5, the room temperature TR is changed to a target room temperature T2 (for example, 25 ° C.).
The case where the cool down is performed will be described.

マイコン21はステップ101でエアコンスイッチ9が入
るとステップ102で車室内の空気温度TRを取り込む。そ
して、マイコン21はステップ103で室内の温度TRと予め
定めた温度T1(>T2)とを比較し、室内温度TRが所定
の温度T1より大きいと(第5図での時間t0〜t1)、効率
よりも能力の要求が高いと判断してステップ104で素子
数nを所定の数n1(例えば、「150」)とする。そし
て、マイコン21はステップ105でバッテリ電圧Vと吸熱
フィン8の温度Tcと、放熱フィン6の温度Thを取り込
み、ステップ106で最大能力運転とするための最適素子
数nQCを求める。即ち、熱電素子の吸熱量Qcは次式にて
表される。
When the air conditioner switch 9 is turned on in step 101, the microcomputer 21 takes in the air temperature TR in the vehicle compartment in step 102. Then, the microcomputer 21 compares the indoor temperature TR with a predetermined temperature T1 (> T2) in step 103, and if the indoor temperature TR is higher than the predetermined temperature T1 (time t0 to t1 in FIG. 5), Since it is determined that the requirement for the performance is higher than the efficiency, the number n of elements is set to a predetermined number n1 (for example, “150”) in step 104. Then, the microcomputer 21 takes in the battery voltage V, the temperature Tc of the heat-absorbing fins 8 and the temperature Th of the heat-radiating fins 6 in Step 105, and in Step 106, finds the optimum number of elements nQC for the maximum capacity operation. That is, the heat absorption Qc of the thermoelectric element is expressed by the following equation.

ただし、αはゼーベック係数、ρは素子の比抵抗、λ
は熱伝導率、ΔTはTh−Tc、L/Aは素子の形状係数(A
は素子の電流通過断面積〔cm2〕、Lは素子の電流通過
長さ〔cm〕)。
Where α is the Seebeck coefficient, ρ is the specific resistance of the element, λ
Is the thermal conductivity, ΔT is Th−Tc, and L / A is the shape factor of the element (A
Is the current passing cross-sectional area of the element [cm 2 ], and L is the current passing length of the element [cm]).

その結果、最大能力運転となる素子数nQCは次式にて
表され、この式にて素子数nQCが求められる。
As a result, the number of elements n QC having the maximum capacity operation is expressed by the following equation, the number of elements n QC from this equation is obtained.

尚、素子数nQCは上式から求められるが、この際、小
数点以下を切捨て等して整数として求める。
The number of elements n QC can be obtained from the above equation. At this time, the number after the decimal point is truncated to obtain an integer.

第6図にはTc=10℃、Th=37℃(ΔT=27℃)の場合
を示す。
FIG. 6 shows the case where Tc = 10 ° C. and Th = 37 ° C. (ΔT = 27 ° C.).

そして、マイコン21はステップ107で素子数nを最適
素子数nQCとすべくそのときの素子数nと最適素子数nQC
とを比較してステップ108,109で「1」の加算又は減算
処理を行いステップ105に進む。そして、マイコン21は
素子数が最適素子数nQCとなるとステップ110でt0秒間待
ち、その後、ステップ102に進む。
Then, in step 107, the microcomputer 21 sets the number of elements n and the optimum number of elements n QC to make the number of elements n the optimum number of elements n QC.
Are compared with each other in steps 108 and 109, and the process proceeds to step 105. Then, the microcomputer 21 is t0 seconds wait at step 110 the number of elements is the optimum number of elements n QC, then proceeds to step 102.

一方、マイコン21はステップ103において室内の温度
TRが予め定めた温度T1より小さいと(第5図での時間t
1以降)、能力よりも効率の要求が高いと判断して、ス
テップ111で素子数nを所定数n2(例えば、「270」)と
する。そして、マイコン21はステップ112でバッテリ電
圧Vと吸熱フィン8の温度Tcと、放熱フィン6の温度Th
を取り込み、ステップ113で最大効率運転となる最適素
子数ncopを求める。即ち、熱電素子の冷却効率(成績係
数)COPは次式にて表される。
On the other hand, the microcomputer 21 determines in step 103 that the indoor temperature TR is lower than the predetermined temperature T1 (the time t in FIG. 5).
After 1), it is determined that the demand for efficiency is higher than the capability, and in step 111, the number n of elements is set to a predetermined number n2 (for example, “270”). Then, the microcomputer 21 determines in step 112 that the battery voltage V, the temperature Tc of the heat absorbing fin 8, and the temperature Th of the heat radiating fin 6.
Is obtained, and in step 113, the optimum number n cop of elements for achieving the maximum efficiency operation is obtained. That is, the cooling efficiency (coefficient of performance) COP of the thermoelectric element is expressed by the following equation.

その結果、最大効率運転となる素子数ncopは次式にて
表され、この式にて素子数ncopが求められる。
As a result, the number of elements n cop that achieves the maximum efficiency operation is expressed by the following equation, and the number of elements n cop is determined by this equation.

尚、素子数ncopは上式から求められるが、この際、小
数点以下を切捨て等して整数として求める。
Note that the number of elements n cop is obtained from the above equation, but at this time, it is obtained as an integer by truncating the decimal part.

そして、マイコン21はステップ114で素子数nを最適
素子数ncopとすべくそのときの素子数nと最適素子数n
copとを比較してステップ116,117で「1」の加算又は減
算処理を行いステップ112に進む。そして、マイコン21
は素子数が最適素子数ncopとなるとステップ117でt0秒
間待ち、その後、ステップ102に進む。
Then, the microcomputer 21 sets the element number n and the optimum element number n at that time so that the element number n becomes the optimum element number n cop in step 114.
The value is compared with cop, and addition or subtraction processing of “1” is performed in steps 116 and 117, and the process proceeds to step 112. And microcomputer 21
Waits for t0 seconds in step 117 when the number of elements reaches the optimum number of elements n cop, and then proceeds to step 102.

このように本実施例では、マイコン21は室内温度TR
が所定の温度T1より大きいときには最大能力運転とな
り、又、室内温度TRが所定の温度T1より小さいときに
は最大効率運転となるように、リレー回路20を制御して
熱電素子数を変更させるようにした。つまり、検出した
室内温度TRと目標室内温度T2との差が大きい場合(熱
負荷が大)と、検出した室内温度TRと目標室内温度T2
との差が小さい場合(熱負荷が小)とで、熱電素子数を
変更させるようにした。その結果、吸熱能力Qcと成績係
数COPを考慮した最適なる運転を行うことができること
となる。
As described above, in the present embodiment, the microcomputer 21 determines the room temperature TR.
When the temperature is higher than the predetermined temperature T1, the maximum capacity operation is performed, and when the room temperature TR is lower than the predetermined temperature T1, the relay circuit 20 is controlled to change the number of thermoelectric elements so that the maximum efficiency operation is performed. . That is, when the difference between the detected room temperature TR and the target room temperature T2 is large (the heat load is large), the detected room temperature TR and the target room temperature T2
The number of thermoelectric elements is changed when the difference from the above is small (the heat load is small). As a result, it is possible to perform an optimal operation in consideration of the heat absorption capacity Qc and the coefficient of performance COP.

尚、この発明は上記実施例に限定されるものではな
く、例えば、第6図に示すように、ある条件下では最大
能力運転となる素子数nQCが「150」であり、最大効率運
転となる素子数ncopが「270」であり、最大能力運転と
なる素子数nQCは最大効率運転となる素子数ncopのほぼ1
/2の値になるので、単純に電子冷凍ユニット4の素子数
を二分割するようにしてもよい。即ち、第7図に示すよ
うに、電流の流し方をリレー回路(2連式リレー回路)
22で切り替え可能とし、TR≦T1のときには実線で示す
ように接続して全ての素子を通電し、又、TR>T1のと
きには破線で示すように接続して半分の素子を通電す
る。
Note that the present invention is not limited to the above-described embodiment. For example, as shown in FIG. 6, the number of elements n QC at which the maximum capacity operation is performed under certain conditions is “150”, and the maximum efficiency operation is performed. The number of elements n cop is 270, and the number of elements n QC for maximum capacity operation is almost 1 of the number of elements n cop for maximum efficiency operation.
Since the value is / 2, the number of elements of the electronic refrigeration unit 4 may simply be divided into two. That is, as shown in FIG. 7, the current flow is controlled by a relay circuit (dual relay circuit).
The switching is made possible at 22 and when TR ≦ T1, the connection is made as shown by the solid line and all the elements are energized, and when TR> T1, the connection is made as shown by the broken line and half the elements are energized.

さらに、熱負荷の検出は、室内温度以外にも外気温や
日射量、あるいは、それらを組み合わせたものにより熱
負荷を検出してもよい。又、電子冷凍の電源はバッテリ
の他にもオルタネータの発電電力を用いてもよい。
Further, the detection of the heat load may be performed by detecting the heat load not only by the indoor temperature but also by the outside air temperature, the amount of solar radiation, or a combination thereof. Further, the power source of the electronic refrigeration may use the power generated by the alternator in addition to the battery.

又、第4図におけるステップ108,109,115,116の素子
数の加減算処理では「1」づつの処理としたが、「2」
以上の値を加減算処理してもよい。この場合には、より
速く目標素子数に収束させることができる。
In addition, in the addition / subtraction processing of the number of elements in steps 108, 109, 115 and 116 in FIG.
The above values may be subjected to addition / subtraction processing. In this case, it is possible to more quickly converge to the target number of elements.

〔発明の効果〕〔The invention's effect〕

以上詳述したように、この発明によれば、能力と効率
を考慮した最適なる運転を行うことができる。
As described in detail above, according to the present invention, it is possible to perform an optimal operation in consideration of the capacity and efficiency.

又、最大能力運転と、最大効率運転の切り替えは、熱
電素子一個当たりの印加電圧を例えば可変抵抗を用いる
ことによって変えることもできる。しかし、この場合は
可変抵抗で発熱が生じて電力が一部消費されてしまう問
題があるが、本発明によれば、熱電素子数を変更するこ
とにより、最大能力運転と、最大効率運転の切り替えを
行なって、熱電素子で本来の電力を消費させるため、エ
ネルギーロスがない。
Further, switching between the maximum capacity operation and the maximum efficiency operation can be performed by changing the applied voltage per thermoelectric element, for example, by using a variable resistor. However, in this case, there is a problem that heat is generated by the variable resistor and power is partially consumed. According to the present invention, switching between the maximum capacity operation and the maximum efficiency operation is performed by changing the number of thermoelectric elements. Is performed, and the original power is consumed by the thermoelectric element, so that there is no energy loss.

【図面の簡単な説明】[Brief description of the drawings]

第1図はクレーム対応図、第2図は実施例の自動車用空
調装置の構成図、第3図は自動車用空調装置の電気回路
図、第4図はフローチャート、第5図は室内温度の経過
を示す図、第6図は素子数に対する吸熱能力及び成績係
数の関係を示す図、第7図は別例の自動車用空調装置の
構成図である。 M1は熱電素子、M2は変更手段、M3は熱負荷検出手段、M4
は制御手段。
FIG. 1 is a diagram corresponding to the claims, FIG. 2 is a configuration diagram of the vehicle air conditioner of the embodiment, FIG. 3 is an electric circuit diagram of the vehicle air conditioner, FIG. 4 is a flowchart, and FIG. FIG. 6 is a diagram showing the relationship between the heat absorption capacity and the coefficient of performance with respect to the number of elements, and FIG. 7 is a configuration diagram of another example of an automotive air conditioner. M1 is thermoelectric element, M2 is change means, M3 is heat load detection means, M4
Is control means.

フロントページの続き (72)発明者 戸松 義貴 愛知県刈谷市昭和町1丁目1番地 日本 電装株式会社内 (56)参考文献 実公 昭44−18693(JP,Y1) (58)調査した分野(Int.Cl.6,DB名) F25B 21/02 B60H 1/32 621 H01L 35/28 - 35/32Continuation of the front page (72) Inventor Yoshitaka Tomatsu 1-1-1, Showa-cho, Kariya-shi, Aichi Japan Inside of Denso Co., Ltd. .Cl. 6 , DB name) F25B 21/02 B60H 1/32 621 H01L 35/28-35/32

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の熱電素子を直列に接続して、電源か
らの電圧を熱電素子に印加するようにした電子冷凍装置
において、 前記熱電素子数を変更する変更手段と、 熱負荷を検出する熱負荷検出手段と、 前記熱負荷検出手段により検出された熱負荷が所定の熱
負荷より大きいときには最大能力運転となり、又、熱負
荷が所定の熱負荷より小さいときには最大効率運転とな
るように、前記変更手段を制御して前記熱電素子数を変
更させる制御手段と を備えたことを特徴とする電子冷凍装置。
1. An electronic refrigerator in which a plurality of thermoelectric elements are connected in series to apply a voltage from a power supply to the thermoelectric elements. A change means for changing the number of the thermoelectric elements, and detecting a heat load. Heat load detection means, the maximum capacity operation when the heat load detected by the heat load detection means is greater than a predetermined heat load, and the maximum efficiency operation when the heat load is smaller than the predetermined heat load, Control means for controlling the changing means to change the number of the thermoelectric elements.
JP2160289A 1990-06-18 1990-06-18 Electronic refrigerator Expired - Fee Related JP2827461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2160289A JP2827461B2 (en) 1990-06-18 1990-06-18 Electronic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2160289A JP2827461B2 (en) 1990-06-18 1990-06-18 Electronic refrigerator

Publications (2)

Publication Number Publication Date
JPH0452470A JPH0452470A (en) 1992-02-20
JP2827461B2 true JP2827461B2 (en) 1998-11-25

Family

ID=15711768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2160289A Expired - Fee Related JP2827461B2 (en) 1990-06-18 1990-06-18 Electronic refrigerator

Country Status (1)

Country Link
JP (1) JP2827461B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2545066T3 (en) 1997-06-09 2015-09-08 Hitachi, Ltd. Recording medium for image information
US7587901B2 (en) 2004-12-20 2009-09-15 Amerigon Incorporated Control system for thermal module in vehicle
US20080087316A1 (en) 2006-10-12 2008-04-17 Masa Inaba Thermoelectric device with internal sensor
US9105808B2 (en) * 2007-01-10 2015-08-11 Gentherm Incorporated Thermoelectric device
WO2009036077A1 (en) 2007-09-10 2009-03-19 Amerigon, Inc. Operational control schemes for ventilated seat or bed assemblies
US8181290B2 (en) 2008-07-18 2012-05-22 Amerigon Incorporated Climate controlled bed assembly
KR20100111726A (en) 2008-02-01 2010-10-15 아메리곤 인코포레이티드 Condensation and humidity sensors for thermoelectric devices
US9685599B2 (en) 2011-10-07 2017-06-20 Gentherm Incorporated Method and system for controlling an operation of a thermoelectric device
US9989267B2 (en) 2012-02-10 2018-06-05 Gentherm Incorporated Moisture abatement in heating operation of climate controlled systems
US9662962B2 (en) 2013-11-05 2017-05-30 Gentherm Incorporated Vehicle headliner assembly for zonal comfort
CN106028874B (en) 2014-02-14 2020-01-31 金瑟姆股份公司 Conductive convection climate control seat
EP3152827B1 (en) * 2014-06-06 2019-12-11 Phononic Devices, Inc. High-efficiency power conversion architecture for driving a thermoelectric cooler in energy conscious applications
US11033058B2 (en) 2014-11-14 2021-06-15 Gentherm Incorporated Heating and cooling technologies
US11857004B2 (en) 2014-11-14 2024-01-02 Gentherm Incorporated Heating and cooling technologies
US11639816B2 (en) 2014-11-14 2023-05-02 Gentherm Incorporated Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system
US20200035898A1 (en) 2018-07-30 2020-01-30 Gentherm Incorporated Thermoelectric device having circuitry that facilitates manufacture
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board

Also Published As

Publication number Publication date
JPH0452470A (en) 1992-02-20

Similar Documents

Publication Publication Date Title
JP2827461B2 (en) Electronic refrigerator
JP3414004B2 (en) Electric vehicle battery temperature controller
US7096935B2 (en) Vehicle power supply control apparatus
JP6997558B2 (en) Vehicle air conditioner
US7832214B2 (en) Air-conditioning device
US6604576B2 (en) Automotive air conditioning system
US7610767B2 (en) Thermoelectrically heated/cooled seat with improved transient response using a proportioning valve
CN108698477B (en) Air conditioner for vehicle
US20090205342A1 (en) Auxiliary cooling and heating apparatus for automobiles using thermoelectric module
KR101225660B1 (en) An auxiliary cooling and heating device for automobile using thermo element module and its controlling method thereof
JP2004336832A (en) Temperature controller of battery
JPH11342731A (en) Car air conditioner
CN108602412B (en) Air conditioner for vehicle
JP3340161B2 (en) Cooling air conditioner for electric vehicles
US6164367A (en) Automotive air conditioning apparatus
JP2004066847A (en) Air conditioner for vehicle
JP2789788B2 (en) Electronic refrigerator
CN110062708B (en) Air conditioner for vehicle
CN109661317B (en) Air conditioner for vehicle
CN107351642A (en) A kind of pure electric automobile air conditioning system using multistage TEC
KR101415111B1 (en) Air conditioner for vehicles using thermoelectric element
KR100398950B1 (en) Modular air conditioner by using solar cell and peltier modules
JP3221026B2 (en) Vehicle air conditioner
JP5972084B2 (en) Air conditioner for vehicles
JP2001304633A (en) Heat storage air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees