JP2000208823A - Thermoelectric generator - Google Patents

Thermoelectric generator

Info

Publication number
JP2000208823A
JP2000208823A JP11008802A JP880299A JP2000208823A JP 2000208823 A JP2000208823 A JP 2000208823A JP 11008802 A JP11008802 A JP 11008802A JP 880299 A JP880299 A JP 880299A JP 2000208823 A JP2000208823 A JP 2000208823A
Authority
JP
Japan
Prior art keywords
heat source
source fluid
thermoelectric generator
temperature
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11008802A
Other languages
Japanese (ja)
Inventor
Masakazu Kobayashi
正和 小林
Kazuhiko Shinohara
和彦 篠原
Keiko Kushibiki
圭子 櫛引
Kenji Furuya
健司 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11008802A priority Critical patent/JP2000208823A/en
Publication of JP2000208823A publication Critical patent/JP2000208823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat-electricity conversion efficiency by controlling a flow passage as to allow a heat source fluid body to enter an inlet near an outlet as the temperature of the fluid body drops. SOLUTION: The outlet 11 of a heat source fluid body is provided on the bottom on one side of a cylindrical heat sink, and then thermoelectric generating modules 12, 13 and 14 for low temperature, middle temperature and high temperature are hierarchically installed in sequence from closer side to the outlet 11, on the outer side of the side of the respective cylinders, and they are fixed by water-cooling jackets. Next, a flow passage control valve 16 is controlled so as to allow the heat source fluid body to enter the farthest inlet 15 from the outlet 11 when the temperature of the fluid body is 450 deg.C or higher, a middle inlet when it is between 45 deg.C and 250 deg.C, and the closest inlet 15 to the outlet 11 when it is 250 deg.C or lower, respectively. Thus, a rotary stream or a spiral stream can be formed, thereby improving the thermal conversion efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゼーベック効果を
利用して電力を得る熱電発電器に係わり、小型・軽量
で、高い熱−電気変換効率を有するとともに、高温熱源
流体の温度変化に対応して常に最適な発電性能を維持す
る、信頼性の高い熱電発電器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric generator for obtaining electric power by utilizing the Seebeck effect, which is small and lightweight, has high thermo-electric conversion efficiency, and copes with a temperature change of a high-temperature heat source fluid. A highly reliable thermoelectric generator that always maintains optimal power generation performance.

【0002】[0002]

【従来の技術】ゼーベック効果を利用して電力を得る熱
電発電器としては、従来から様々な構造のものが考案さ
れている。例えば、自動車排気ガスから熱エネルギーを
回収して電力に変換するための熱電発電器としては、特
開昭61−254082号公報、特開昭63−2620
75号公報、特開平7−307493号公報に開示され
ているようなものがある。
2. Description of the Related Art Various types of thermoelectric generators for obtaining electric power using the Seebeck effect have been proposed. For example, as a thermoelectric generator for recovering thermal energy from automobile exhaust gas and converting it into electric power, Japanese Patent Application Laid-Open Nos. 61-254082 and 63-2620 disclose
No. 75 and Japanese Patent Application Laid-Open No. 7-307493.

【0003】これらの熱電発電器は、直線状の流路を有
する円筒状あるいは箱状の吸熱器の外側に、熱電発電素
子/モジュールを、水冷あるいは空冷の放熱器で加圧固
定する構造を有し、排気管の途中に取り付けて吸熱器に
排気ガスを通過させることにより、放熱器との温度差を
利用してゼーベック効果により発電を行うようになって
いる。
[0003] These thermoelectric generators have a structure in which a thermoelectric generator / module is pressurized and fixed by a water-cooled or air-cooled radiator outside a cylindrical or box-shaped heat absorber having a straight flow path. Then, by attaching the exhaust gas to a heat absorber attached in the middle of the exhaust pipe, power generation is performed by the Seebeck effect using a temperature difference from the radiator.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな構造の熱電発電器の場合、排気ガスの流路が直線的
である上、流速が比較的大きいため、吸熱器の熱交換性
能が、あまり高くない、という問題点があった。
However, in the case of a thermoelectric generator having such a structure, since the flow path of the exhaust gas is linear and the flow velocity is relatively large, the heat exchange performance of the heat absorber is not so high. There was a problem that it was not high.

【0005】また、排気ガスの温度は自動車の走行状態
によって大きく変動するため、ある走行モードで最適な
発電性能が得られるように熱電発電器を設計した場合、
その走行モードより低負荷領域では排気ガスの温度・量
が低下するため十分な発電性能が得られず、一方、その
走行モードより高負荷領域では排気ガスの温度・量の上
昇によって熱電発電モジュールが破壊してしまう恐れが
ある、という問題点があった。
[0005] Further, since the temperature of the exhaust gas greatly varies depending on the driving state of the vehicle, when a thermoelectric generator is designed to obtain the optimum power generation performance in a certain driving mode,
Sufficient power generation performance cannot be obtained because the temperature and amount of exhaust gas decrease in the lower load region than in the traveling mode. On the other hand, the thermoelectric power generation module increases in temperature and amount of exhaust gas in the higher load region than the traveling mode. There was a problem that it could be destroyed.

【0006】上記2番目の問題点に対処するため、高温
用の熱電発電器と低温用の熱電発電器を併設して、排気
ガスの温度によって高温用あるいは低温用の熱電発電器
に排気ガスの流路を切り替えたり、あるいは、排気ガス
の流れ方向に高温用と低温用の熱電発電器を直線的に連
結するとともに、高温用の熱電発電器の入り口から低温
用の熱電発電器の入り口へ排気ガスのバイパス流路を設
けておき、排気ガスの温度が低いとき、排気ガスをバイ
パス流路に流すことにより、排気ガスの温度変化に対応
して最適な発電性能を維持し、かつ、熱電発電モジュー
ルの破損を回避する方法が公開されている(特開平5−
195765号公報参照)。
In order to cope with the second problem, a thermoelectric generator for high temperature and a thermoelectric generator for low temperature are provided side by side, and the high-temperature or low-temperature thermoelectric generator depends on the temperature of the exhaust gas. Switch the flow path or connect the high-temperature and low-temperature thermoelectric generators linearly in the flow direction of the exhaust gas, and exhaust air from the entrance of the high-temperature thermoelectric generator to the entrance of the low-temperature thermoelectric generator. A gas bypass flow path is provided, and when the temperature of the exhaust gas is low, the exhaust gas flows through the bypass flow path to maintain optimal power generation performance in response to a change in the temperature of the exhaust gas and to generate thermoelectric power. A method for avoiding module breakage has been disclosed (Japanese Patent Laid-Open Publication No.
195765).

【0007】本発明は、上記のような問題点に鑑みてな
されたものであり、小型・軽量で、高い熱−電気変換効
率を有するとともに、自動車排気ガス等のような高温熱
源流体の温度変化に対応して常に最適な発電性能を維持
する、信頼性の高い熱電発電器を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a small size, a light weight, a high heat-to-electricity conversion efficiency, and a temperature change of a high-temperature heat source fluid such as automobile exhaust gas. It is an object of the present invention to provide a highly reliable thermoelectric generator that always maintains an optimal power generation performance in response to the above.

【0008】[0008]

【課題を解決するための手段】本発明に係る熱電発電器
は、上述の課題を解決するために、請求項1に記載され
ているように、吸熱器を単一の熱源流体排出口を有する
円筒形状とし、吸熱器の側面外側に、排出口に近い側か
ら、最適動作温度の異なる2種類以上の熱電発電モジュ
ールを、最適動作温度の低い順に階層的に設置し、各階
層の最も排出口から遠い端に接線方向から熱源流体を流
入させる流入口を各階層毎に設けるとともに、熱源流体
の温度が低くなるに従って、より排出口に近い流入口か
ら熱源流体を流入させるように制御する機構を有するよ
うになっている。
SUMMARY OF THE INVENTION A thermoelectric generator according to the present invention has a heat sink having a single heat source fluid outlet as described in claim 1 in order to solve the above-mentioned problems. Two or more thermoelectric generation modules with different optimal operating temperatures are arranged in a hierarchy from the side close to the outlet on the outside of the side surface of the heat absorber, from the side near the outlet, in the order of lowest optimum operating temperature. A mechanism for controlling the heat source fluid to flow in from the inlet closer to the outlet as the temperature of the heat source fluid decreases as the inlet of the heat source fluid flows from the tangential direction to the end far from To have.

【0009】また、請求項2に記載されているように、
上記熱源流体の排出口が、円筒形状の吸熱器の高さ方向
に沿って底面に設置されているか、あるいは、底面付近
の円筒の接線方向に沿って側面に設置された構成となっ
ている。
Also, as described in claim 2,
The outlet of the heat source fluid is provided on the bottom surface along the height direction of the cylindrical heat absorber, or is provided on the side surface along the tangential direction of the cylinder near the bottom surface.

【0010】また更に、請求項3に記載されているよう
に、上記円筒形状の吸熱器の内部に階層的に設置したモ
ジュールの境界付近に、熱源流体の逆流を抑制するルー
バー隔壁を設置した構成となっている。
[0010] Still further, as described in claim 3, a louver partition for suppressing backflow of the heat source fluid is installed near the boundary of the modules hierarchically installed inside the cylindrical heat absorber. It has become.

【0011】更に、請求項4に記載されているように、
上記円筒形状の吸熱器の側面内側に、熱電発電器の螺旋
流を誘導するような熱交換フィンを設置した構成となっ
ている。
Further, as described in claim 4,
Heat exchange fins for guiding the spiral flow of the thermoelectric generator are installed inside the side surface of the cylindrical heat absorber.

【0012】[0012]

【発明の実施の形態】以下、本発明による熱電発電器の
実施の形態を添付図面を参照して詳細に説明する。 (第1の実施の形態)図1(a)は、本発明による熱電
発電器の第1の実施の形態を示す図である。まず、構成
を説明する。円筒形状の吸熱器10の片側の底面には、
熱源流体の排出口11が設けられており、別の底面は、
熱源流体が漏れ出さないように塞がれている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a thermoelectric generator according to the present invention will be described below in detail with reference to the accompanying drawings. (First Embodiment) FIG. 1A is a diagram showing a first embodiment of a thermoelectric generator according to the present invention. First, the configuration will be described. On the bottom surface on one side of the cylindrical heat absorber 10,
An outlet 11 for heat source fluid is provided, and another bottom surface is
The heat source fluid is blocked so as not to leak.

【0013】この排出口11に近い側から順に、低温
用、中温用、高温用の熱電発電モジュール12,13,
14が、それぞれ円筒の側面外側に階層的に設置され、
水冷あるいは空冷ジャケットで固定されている。これら
の熱電発電モジュールとしては、低温用にはBi−Te
系、中温用にはPb−Te系やCo−Sb系、高温用に
はSi−Ge系の材料を使用したものを用いることがで
きる。
In order from the side close to the discharge port 11, thermoelectric generation modules 12, 13, 13, and 13 for low temperature, medium temperature, and high temperature
14 are hierarchically installed on the outside of the side surface of each cylinder,
It is fixed with a water-cooled or air-cooled jacket. For these thermoelectric power generation modules, Bi-Te
A Pb-Te or Co-Sb-based material may be used for medium and medium temperatures, and a Si-Ge-based material may be used for high temperatures.

【0014】熱源流体の流路は、吸熱器10に入る手前
で3系統に分岐し、各階層の排出口11から最も遠い端
に接線方向から熱源流体を流入させる流入口15に接続
されている。
The flow path of the heat source fluid is branched into three systems before entering the heat absorber 10, and is connected to an inlet 15 through which the heat source fluid flows in from the tangential direction to the end farthest from the outlet 11 of each layer. .

【0015】各流入口15には、熱源流体の流入を制御
するための流路制御弁16が設けられており、熱源流体
の温度が低くなるほど、排出口11に近い流入口15か
ら熱源流体を流入させるように制御される。例えば、高
温用にSi−Ge系、中温用にPb−Te系やCo−S
b系、低温用にBi−Te系の材料を使用したモジュー
ルを用いた場合、熱源流体の温度が450℃以上では最
も排出口11から遠い流入口15から、450℃〜25
0℃では真ん中の流入口15から、250℃以下では最
も排出口11に近い流入口15から熱源流体を流入させ
るように、流路制御弁16を制御する。また、流路切り
替えの制御に用いる情報としては、自動車等の場合、熱
源流体の温度の他、エンジンの負荷状態などを用いても
よい。
Each of the inlets 15 is provided with a flow path control valve 16 for controlling the inflow of the heat source fluid. The lower the temperature of the heat source fluid, the more the heat source fluid flows from the inlet 15 closer to the outlet 11. It is controlled to flow. For example, Si-Ge system for high temperature, Pb-Te system or Co-S for medium temperature
When a module using a Bi-Te-based material for the b-type and low-temperature is used, when the temperature of the heat source fluid is 450 ° C. or higher, 450 ° C. to 25 ° C. from the inlet 15 farthest from the outlet 11.
At 0 ° C., the flow path control valve 16 is controlled so that the heat source fluid flows from the middle inlet 15 at 250 ° C. or lower from the inlet 15 closest to the outlet 11. In addition, in the case of an automobile or the like, in addition to the temperature of the heat source fluid, the load state of the engine may be used as the information used for controlling the flow path switching.

【0016】図1(b)は、真ん中の流入口15から熱
源流体を流入させたときの、吸熱器10内部での熱源流
体の流れを模式的に示している。円筒形状の吸熱器10
の円周に沿って熱源流体を流入させることにより、吸熱
器10内部に、熱源流体の螺旋流が生じ、高い熱交換性
能を得ることができる。
FIG. 1B schematically shows the flow of the heat source fluid inside the heat absorber 10 when the heat source fluid flows in from the middle inlet 15. Cylindrical heat absorber 10
By flowing the heat source fluid along the circumference of the heat sink 10, a spiral flow of the heat source fluid is generated inside the heat absorber 10, and high heat exchange performance can be obtained.

【0017】(第2の実施の形態)図2(a)は、本発
明による熱電発電器の第2の実施の形態を示す図であ
る。第2の実施の形態は、排出口21付近にテーパー2
7をつけてコーン状にすることにより、排出口21付近
の熱源流体の流れをスムーズにして、逆流を防止する構
造になっている。
(Second Embodiment) FIG. 2A is a diagram showing a thermoelectric generator according to a second embodiment of the present invention. In the second embodiment, a taper 2 is provided near the outlet 21.
By forming a cone shape with 7, the flow of the heat source fluid in the vicinity of the discharge port 21 is made smooth to prevent the backflow.

【0018】図2(b)は、図1(b)と同様に、真ん
中の流入口25から熱源流体を流入させたときの、吸熱
器20内部での熱源流体の流れを模式的に示したもので
ある。
FIG. 2 (b) schematically shows the flow of the heat source fluid inside the heat absorber 20 when the heat source fluid flows in from the middle inlet 25, as in FIG. 1 (b). Things.

【0019】(第3の実施の形態)図3(a)は、本発
明による熱電発電器の第3の実施の形態を示す図であ
る。第3の実施の形態では、排出口31が、底面ではな
く、円筒側面に、接線方向に熱源流体を流出させる位置
に取り付けられており、排出口31付近の熱源流体の流
れをスムーズにして、逆流を防止する構造になってい
る。
(Third Embodiment) FIG. 3A is a diagram showing a third embodiment of a thermoelectric generator according to the present invention. In the third embodiment, the outlet 31 is attached to a position where the heat source fluid flows out tangentially, not on the bottom surface, but on the side surface of the cylinder, so that the flow of the heat source fluid near the outlet 31 is made smooth, The structure prevents backflow.

【0020】図3(b)は、図1(b)と同様に、真ん
中の流入口35から熱源流体を流入させたときの、吸熱
器30内部での熱源流体の流れを模式的に示したもので
ある。
FIG. 3 (b) schematically shows the flow of the heat source fluid inside the heat absorber 30 when the heat source fluid flows in from the middle inflow port 35, similarly to FIG. 1 (b). Things.

【0021】(第4の実施の形態)図4は、本発明によ
る熱電発電器の第4の実施の形態を示す図である。第4
の実施の形態は、熱源流体の流入口45a付近に、熱源
流体の逆流を防止する目的でルーバー隔壁48を設置し
たものである。
(Fourth Embodiment) FIG. 4 is a diagram showing a fourth embodiment of the thermoelectric generator according to the present invention. 4th
In this embodiment, a louver partition 48 is provided near the heat source fluid inlet 45a for the purpose of preventing the backflow of the heat source fluid.

【0022】吸熱器40上段の流入口45aから熱源流
体を流入させたとき、吸熱器40下段への熱源流体の流
入が効果的に防止される。一方、吸熱器40下段の流入
口45bから熱源流体を流入させたときには、スムーズ
に吸熱器40上段に熱源流体が流入する。
When the heat source fluid flows from the inlet 45a in the upper stage of the heat absorber 40, the flow of the heat source fluid into the lower stage of the heat absorber 40 is effectively prevented. On the other hand, when the heat source fluid flows from the inflow port 45b at the lower stage of the heat absorber 40, the heat source fluid smoothly flows into the upper stage of the heat absorber 40.

【0023】(第5の実施の形態)図5は、本発明によ
る熱電発電器の第5の実施の形態を示す図である。第5
の実施の形態は、吸熱器50内部の熱源流体の螺旋流を
誘導する熱交換フィン59を、吸熱器50内部に設置し
たものである。
(Fifth Embodiment) FIG. 5 is a view showing a fifth embodiment of the thermoelectric generator according to the present invention. Fifth
In this embodiment, the heat exchange fins 59 for guiding the spiral flow of the heat source fluid inside the heat absorber 50 are installed inside the heat absorber 50.

【0024】吸熱器50の側面内側に螺旋状の熱交換フ
ィン59が設置されており、熱交換性能が向上するとと
もに、熱源流体の逆流防止効果、吸熱器50の強度を高
める効果もある。また、第4の実施の形態で説明したル
ーバー隔壁48との併用も可能である。
Helical heat exchange fins 59 are provided inside the side surface of the heat absorber 50 to improve heat exchange performance, prevent heat source fluid from flowing back, and increase the strength of the heat absorber 50. Further, it can be used in combination with the louver partition wall 48 described in the fourth embodiment.

【0025】[0025]

【発明の効果】本発明の請求項1に係る熱電発電器によ
れば、吸熱器を円筒形状とした上、円周接線方向から熱
源流体を流入させるような流入口を設けたことにより、
吸熱器内部の熱源流体の流れが、旋回流あるいは螺旋流
になるため、熱交換性能が著しく向上する。
According to the thermoelectric generator according to the first aspect of the present invention, the heat absorber is formed in a cylindrical shape, and the inflow port for inflow of the heat source fluid from the circumferential tangential direction is provided.
Since the flow of the heat source fluid inside the heat absorber becomes a swirling flow or a spiral flow, the heat exchange performance is significantly improved.

【0026】また、この旋回流あるいは螺旋流により十
分な熱交換性能が得られるため、吸熱器内部に設ける熱
交換フィンを小型化あるいは省略することができて、熱
電発電器の大幅な小型・軽量化を達成することができ
る。
Also, since sufficient heat exchange performance can be obtained by the swirling flow or the spiral flow, heat exchange fins provided inside the heat absorber can be reduced in size or omitted, and the thermoelectric generator can be significantly reduced in size and weight. Can be achieved.

【0027】更に、熱源流体の排出口を一個所とし、吸
熱器の側面外側に、排出口に近い側から、最適動作温度
の異なる2種類以上の熱電発電モジュールを、最適動作
温度の低い順に階層的に設置し、各階層の最も排出口か
ら遠い端に上記流入口を各階層毎に設け、熱源流体の温
度が低くなるに従って、より排出口に近い流入口から熱
源流体を流入させるように制御することにより、熱源流
体の温度変化に応じて最適な発電性能が維持されるとと
もに、低温用熱電発電モジュールの高温の熱源流体によ
る破壊も回避できるようになり、熱電発電器全体の信頼
性が高くなる。
Further, the outlet of the heat source fluid is provided at one location, and two or more types of thermoelectric power generation modules having different optimum operating temperatures are arranged on the outside of the side surface of the heat absorber from the side near the outlet in the order of lowest optimum operating temperature. The inflow port is provided at each end at the end farthest from the discharge port of each level, and the heat source fluid is controlled to flow in from the inflow port closer to the discharge port as the temperature of the heat source fluid decreases. By doing so, the optimal power generation performance is maintained in accordance with the temperature change of the heat source fluid, and the destruction of the low-temperature thermoelectric power generation module by the high-temperature heat source fluid can be avoided, which increases the reliability of the entire thermoelectric generator. Become.

【0028】本発明の請求項2に係る熱源流体の排出口
の位置によれば、熱源流体が高温のときは、排出口から
遠い位置に設置した流入口から熱源流体を流入させるこ
とにより、高温用熱電発電モジュール部および低温用熱
電発電モジュール部に最適な熱量を供給することがで
き、熱源流体が低温のときは、排出口に近い位置に設置
した流入口から熱源流体を流入させることにより、高温
用熱電発電モジュール部をバイパスして低温用熱電発電
モジュール部のみに熱量を供給することができ、常に最
適な発電性能を維持することができるという効果を最大
限に活かしたまま、小型・軽量化を達成することができ
る。
According to the position of the outlet of the heat source fluid according to the second aspect of the present invention, when the heat source fluid is at a high temperature, the heat source fluid is caused to flow in from the inlet provided at a position far from the outlet, thereby increasing the temperature of the heat source fluid. The optimal amount of heat can be supplied to the thermoelectric power generation module section for low temperature and the thermoelectric power generation module section for low temperature, and when the heat source fluid is low temperature, the heat source fluid flows in from the inlet installed near the outlet, It is possible to supply heat only to the low-temperature thermoelectric generation module by bypassing the high-temperature thermoelectric generation module, and to keep the optimal power generation performance at all times while minimizing its size and weight. Can be achieved.

【0029】更に、本発明の請求項3に係る熱電発電器
によれば、円筒形状の吸熱器の外側に階層的に設置した
各モジュール部の境界付近の吸熱器内部にルーバー隔壁
を設置することにより、熱源流体が低温のとき、高温用
熱電発電モジュール部をバイパスする効果が、より確実
なものとなり、最適な発電性能を維持することができ
る。
Further, according to the thermoelectric generator according to the third aspect of the present invention, the louver partition is installed inside the heat absorber near the boundary of each module portion hierarchically installed outside the cylindrical heat absorber. Accordingly, when the heat source fluid is at a low temperature, the effect of bypassing the thermoelectric power generation module for high temperature becomes more reliable, and optimal power generation performance can be maintained.

【0030】また更に、本発明の請求項4に係る熱電発
電器によれば、円筒形状の吸熱器の側面内側に、熱源流
体の螺旋流を誘導するようなフィンを設置することによ
り、やはり、熱源流体が低温のとき、高温用熱電発電モ
ジュール部をバイパスする効果が確実なものとなり、最
適な発電性能を維持することができる上、熱源流体との
熱交換性能が一層向上し、高い熱−電気変換効率を得る
ことができる。
Further, according to the thermoelectric generator according to the fourth aspect of the present invention, by disposing fins for inducing a spiral flow of the heat source fluid inside the side surface of the cylindrical heat absorber, When the heat source fluid is at a low temperature, the effect of bypassing the thermoelectric power generation module for high temperature is ensured, so that the optimum power generation performance can be maintained, and the heat exchange performance with the heat source fluid is further improved, and the high heat- Electricity conversion efficiency can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による熱電発電器の第1の実施の形態を
説明する図である。
FIG. 1 is a diagram illustrating a thermoelectric generator according to a first embodiment of the present invention.

【図2】本発明による熱電発電器の第2の実施の形態を
説明する図である。
FIG. 2 is a diagram illustrating a second embodiment of a thermoelectric generator according to the present invention.

【図3】本発明による熱電発電器の第3の実施の形態を
説明する図である。
FIG. 3 is a diagram illustrating a third embodiment of a thermoelectric generator according to the present invention.

【図4】本発明による熱電発電器の第4の実施の形態を
説明する図である。
FIG. 4 is a diagram illustrating a fourth embodiment of a thermoelectric generator according to the present invention.

【図5】本発明による熱電発電器の第5の実施の形態を
説明する図である。
FIG. 5 is a diagram illustrating a thermoelectric generator according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10,20,30,40,50 吸熱器 11,21,31 排出口 12,22,32 低温用熱電発電モジュール 13,23,33 中温用熱電発電モジュール 14,24,34 高温用熱電発電モジュール 15,25,35,45a,45b,55a,55b
流入口 16 流路制御弁 27 テーパー 48 ルーバー隔壁 59 螺旋状の熱交換フィン
10, 20, 30, 40, 50 Heat absorber 11, 21, 31 Outlet 12, 22, 32 Thermoelectric power module for low temperature 13, 23, 33 Thermoelectric power module for medium temperature 14, 24, 34 Thermoelectric power module for high temperature 15, 25, 35, 45a, 45b, 55a, 55b
Inlet 16 Flow control valve 27 Taper 48 Louver partition 59 Spiral heat exchange fin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古谷 健司 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kenji Furuya 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Inside Nissan Motor Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 単一の熱源流体排出口を有する円筒形状
の吸熱器の側面外側に、前記排出口に近い側から、最適
動作温度の異なる2種類以上の熱電発電モジュールを、
最適動作温度の低い順に階層的に設置し、各階層の最も
前記排出口から遠い端に接線方向から前記熱源流体を流
入させる流入口を各階層毎に設けるとともに、前記熱源
流体の温度が低くなるに従って、より前記排出口に近い
前記流入口から前記熱源流体を流入させるように制御す
る機構を有することを特徴とする熱電発電器。
1. A thermoelectric generator module comprising two or more thermoelectric power generation modules having different optimum operating temperatures from the side close to the outlet on the outer side of a cylindrical heat absorber having a single heat source fluid outlet.
The layers are installed in a hierarchy in the order of the optimum operating temperature, and an inlet for inflow of the heat source fluid from a tangential direction is provided for each floor at an end farthest from the discharge port of each floor, and the temperature of the heat source fluid decreases. Wherein the thermoelectric generator has a mechanism for controlling the heat source fluid to flow from the inlet closer to the discharge port.
【請求項2】 請求項1に記載の熱電発電器において、 前記熱源流体排出口が、前記円筒形状の吸熱器の高さ方
向に沿って底面に設置されているか、あるいは、底面付
近の円筒の接線方向に沿って側面に設置されていること
を特徴とする熱電発電器。
2. The thermoelectric generator according to claim 1, wherein the heat source fluid outlet is provided on a bottom surface along a height direction of the cylindrical heat absorber, or the heat source fluid outlet is provided on a cylinder near the bottom surface. A thermoelectric generator installed on a side surface along a tangential direction.
【請求項3】 請求項1または2に記載の熱電発電器に
おいて、 前記円筒形状の吸熱器の内部に階層的に設置した前記モ
ジュールの境界付近に、前記熱源流体の逆流を抑制する
ルーバー隔壁を設置したことを特徴とする熱電発電器。
3. The thermoelectric generator according to claim 1, wherein a louver partition that suppresses backflow of the heat source fluid is provided near a boundary between the modules that are hierarchically provided inside the cylindrical heat absorber. A thermoelectric generator characterized by being installed.
【請求項4】 請求項1乃至3のいずれかに記載の熱電
発電器において、 前記円筒形状の吸熱器の側面内側に、前記熱源流体の螺
旋流を誘導する熱交換フィンを設置したことを特徴とす
る熱電発電器。
4. The thermoelectric generator according to claim 1, wherein heat exchange fins for guiding a helical flow of the heat source fluid are provided inside a side surface of the cylindrical heat absorber. And thermoelectric generator.
JP11008802A 1999-01-18 1999-01-18 Thermoelectric generator Pending JP2000208823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11008802A JP2000208823A (en) 1999-01-18 1999-01-18 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11008802A JP2000208823A (en) 1999-01-18 1999-01-18 Thermoelectric generator

Publications (1)

Publication Number Publication Date
JP2000208823A true JP2000208823A (en) 2000-07-28

Family

ID=11702992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11008802A Pending JP2000208823A (en) 1999-01-18 1999-01-18 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP2000208823A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296077A (en) * 2005-04-08 2006-10-26 Kyoto Univ Thermoelectric generator and heat exchanger
JP2008547370A (en) * 2005-06-28 2008-12-25 ビーエスエスティー エルエルシー Thermoelectric generator for fluctuating heat power
CN102165614A (en) * 2008-07-29 2011-08-24 Bsst有限责任公司 Thermoelectric power generator for variable thermal power source
JP2012080761A (en) * 2010-09-10 2012-04-19 Toshiba Corp Temperature difference power generation apparatus and thermoelectric conversion element frame
JP2012522176A (en) * 2009-03-31 2012-09-20 ルノー・トラックス Energy recovery system for an internal combustion engine device comprising a thermoelectric device
JP2013002661A (en) * 2011-06-13 2013-01-07 Panasonic Environmental Systems & Engineering Co Ltd Boiler waste heat utilization system
US8495884B2 (en) 2001-02-09 2013-07-30 Bsst, Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
JP5248710B2 (en) * 2010-08-04 2013-07-31 北海道特殊飼料株式会社 Thermoelectric generator
WO2014080475A1 (en) * 2012-11-21 2014-05-30 Moriya Shigeto Air-cooled thermoelectric power generation apparatus and solar thermal power generation apparatus using air-cooled thermoelectric power generation apparatus
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
US9276188B2 (en) 2009-07-24 2016-03-01 Gentherm Incorporated Thermoelectric-based power generation systems and methods
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
US9310112B2 (en) 2007-05-25 2016-04-12 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
US9719701B2 (en) 2008-06-03 2017-08-01 Gentherm Incorporated Thermoelectric heat pump
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8495884B2 (en) 2001-02-09 2013-07-30 Bsst, Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
JP4534060B2 (en) * 2005-04-08 2010-09-01 国立大学法人京都大学 Thermoelectric generator, heat exchanger
JP2006296077A (en) * 2005-04-08 2006-10-26 Kyoto Univ Thermoelectric generator and heat exchanger
US8445772B2 (en) 2005-06-28 2013-05-21 Bsst, Llc Thermoelectric power generator with intermediate loop
JP2008547370A (en) * 2005-06-28 2008-12-25 ビーエスエスティー エルエルシー Thermoelectric generator for fluctuating heat power
US9006556B2 (en) 2005-06-28 2015-04-14 Genthem Incorporated Thermoelectric power generator for variable thermal power source
JP2013233086A (en) * 2005-06-28 2013-11-14 Bsst Llc Thermoelectric generator for varying heat power source
US10464391B2 (en) 2007-05-25 2019-11-05 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
US9310112B2 (en) 2007-05-25 2016-04-12 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
US9366461B2 (en) 2007-05-25 2016-06-14 Gentherm Incorporated System and method for climate control within a passenger compartment of a vehicle
US10473365B2 (en) 2008-06-03 2019-11-12 Gentherm Incorporated Thermoelectric heat pump
US9719701B2 (en) 2008-06-03 2017-08-01 Gentherm Incorporated Thermoelectric heat pump
CN102165614A (en) * 2008-07-29 2011-08-24 Bsst有限责任公司 Thermoelectric power generator for variable thermal power source
JP2012522176A (en) * 2009-03-31 2012-09-20 ルノー・トラックス Energy recovery system for an internal combustion engine device comprising a thermoelectric device
US9276188B2 (en) 2009-07-24 2016-03-01 Gentherm Incorporated Thermoelectric-based power generation systems and methods
JP5248710B2 (en) * 2010-08-04 2013-07-31 北海道特殊飼料株式会社 Thermoelectric generator
JP2012080761A (en) * 2010-09-10 2012-04-19 Toshiba Corp Temperature difference power generation apparatus and thermoelectric conversion element frame
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
JP2013002661A (en) * 2011-06-13 2013-01-07 Panasonic Environmental Systems & Engineering Co Ltd Boiler waste heat utilization system
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
WO2014080475A1 (en) * 2012-11-21 2014-05-30 Moriya Shigeto Air-cooled thermoelectric power generation apparatus and solar thermal power generation apparatus using air-cooled thermoelectric power generation apparatus
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
US10784546B2 (en) 2013-01-30 2020-09-22 Gentherm Incorporated Thermoelectric-based thermal management system
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11075331B2 (en) 2018-07-30 2021-07-27 Gentherm Incorporated Thermoelectric device having circuitry with structural rigidity
US11223004B2 (en) 2018-07-30 2022-01-11 Gentherm Incorporated Thermoelectric device having a polymeric coating
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board

Similar Documents

Publication Publication Date Title
JP2000208823A (en) Thermoelectric generator
US8445772B2 (en) Thermoelectric power generator with intermediate loop
JP4281789B2 (en) Exhaust heat recovery device
CN100334793C (en) Drive device
EP1884634B1 (en) Support structure of exhaust system heat exchanger
KR101316268B1 (en) Variable Capacity Core type Heat Exchanger Unit
JP2006214350A (en) Thermoelectric generator
JP2015524894A (en) High efficiency thermoelectric power generation
JPH10290590A (en) Exhaust heat energy collector
KR20120042997A (en) Thermoelectric device comprising tube bundles
JP6157908B2 (en) Automotive laminated thermoelectric generator
JP2011122818A (en) Heat exchanger having tube bundle
JPH11313406A (en) Cooler for hybrid vehicle
JP4103887B2 (en) Hybrid vehicle
JP2003175720A (en) On-vehicle air-conditioning system
JP2000352313A (en) Exhaust heat power generation system for automobile
JPH0730450U (en) Battery cooling device for electric vehicles
JP4656014B2 (en) Exhaust system structure
KR20180077459A (en) Thermoelectric generating apparatus of vehicle and control method thereof
JP2002004860A (en) Cooling device for hybrid electric vehicle
JP4311272B2 (en) Cooling medium circulation device
JP4285144B2 (en) Waste heat energy recovery device
JP5789433B2 (en) Waste heat recovery unit
JP2003161209A (en) Egr cooler
JP2006083725A (en) Exhaust heat power generator