WO2014080475A1 - Air-cooled thermoelectric power generation apparatus and solar thermal power generation apparatus using air-cooled thermoelectric power generation apparatus - Google Patents

Air-cooled thermoelectric power generation apparatus and solar thermal power generation apparatus using air-cooled thermoelectric power generation apparatus Download PDF

Info

Publication number
WO2014080475A1
WO2014080475A1 PCT/JP2012/080171 JP2012080171W WO2014080475A1 WO 2014080475 A1 WO2014080475 A1 WO 2014080475A1 JP 2012080171 W JP2012080171 W JP 2012080171W WO 2014080475 A1 WO2014080475 A1 WO 2014080475A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
air
heat
heat medium
cooled
Prior art date
Application number
PCT/JP2012/080171
Other languages
French (fr)
Japanese (ja)
Inventor
成人 守谷
Original Assignee
Moriya Shigeto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moriya Shigeto filed Critical Moriya Shigeto
Priority to CN201280040673.9A priority Critical patent/CN104641546A/en
Priority to PCT/JP2012/080171 priority patent/WO2014080475A1/en
Publication of WO2014080475A1 publication Critical patent/WO2014080475A1/en
Priority to HK15106133.8A priority patent/HK1205595A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/02Devices for producing mechanical power from solar energy using a single state working fluid
    • F03G6/04Devices for producing mechanical power from solar energy using a single state working fluid gaseous
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to an air-cooled thermoelectric generator and a solar power generator using the air-cooled thermoelectric generator.
  • the first is a tower type solar power generation
  • the second is a trough type solar power generation
  • the third is a dish type solar power generation.
  • the tower type solar thermal power generation system concentrates sunlight on a collector installed at the top of the tower installed in the center with a plurality of plane mirrors installed around the tower, heats the collector, and heats the heated heat medium to the tower. It is a system that generates electricity by sending it to the bottom, evaporating water and turning a steam turbine.
  • An example of a power generation device used in tower-type solar power generation is shown in Patent Literature 1 and Non-Patent Literature 1.
  • Trough-type solar power generation heats the heat medium by installing a pipe through which the heat medium flows in the solar heat collector, and sends the heated heat medium to the steam turbine to evaporate water and rotate the steam turbine to generate electricity. It is a method to perform.
  • An example of a power generator used in trough solar power generation is shown in Patent Document 2.
  • Dish type solar thermal power generation is a power generation method that generates power by installing a mirror so that it becomes a parabolic surface and concentrating sunlight on a Stirling engine installed at the focal point of the parabolic surface.
  • An example of a power generator used in dish type solar thermal power generation is shown in Patent Literature 3 and Non-Patent Literature 2.
  • the steam turbine is rotated by either the tower type solar power generation or the trough type solar power generation, a large power generation device is required.
  • the solar power generation device can be made smaller than the tower type solar power generation and the trough type solar power generation, but there is a limit to downsizing such as the mirror must be installed in a parabolic curved surface. is there. Also, if the sun is not coming out, it cannot generate electricity and has the same disadvantages as solar power generation.
  • thermoelectric power generation using a thermoelectric power generation element is a power generation performed using the property that power is generated when a temperature difference occurs between opposing surfaces of the thermoelectric power generation element. Solar heating is used to heat one surface. This is what causes the temperature difference.
  • thermoelectric power generation unit including the thermoelectric power generation element is disposed at the focal position of the parabolic reflection panel, and sunlight is collected there and reflected by the thermoelectric power generation element.
  • the surface facing the panel is heated.
  • a pipe through which cooling water flows is arranged on the surface opposite to the surface to be heated of the thermoelectric generator, and cools the surface opposite to the heating surface of the thermoelectric generator. As a result, a temperature difference is generated between the two opposing surfaces of the thermoelectric generator, thereby generating power.
  • thermoelectric power generation element since the thermoelectric power generation element is heated by condensing by a parabolic reflection panel, power generation cannot be performed at night without sunlight as in the case of solar power generation. Moreover, since the cooling water itself must be cooled by adopting a so-called water cooling method in which the thermoelectric power generation element is cooled by flowing cooling water through the pipe, there is a demerit that the size of the equipment tends to increase.
  • the present inventor has adopted a so-called air cooling method in a power generation method using a thermoelectric power generation element, and can be downsized, and a solar thermal power generation device using the air cooling thermoelectric power generation device.
  • a so-called air cooling method in a power generation method using a thermoelectric power generation element and can be downsized, and a solar thermal power generation device using the air cooling thermoelectric power generation device.
  • the 1st invention is a solar thermal power generation apparatus provided with the solar-heat collector which heats a heat medium by irradiation of sunlight, an air-cooled thermoelectric power generation apparatus, and the heat medium conveyance pipe which conveys the said heated heat medium
  • the air-cooled thermoelectric generator has a housing having an air intake port for taking in air, and an air-cooled thermoelectric generator unit that generates power by the heat of the heat medium.
  • the heated heat medium raises the temperature of an arbitrary surface of the thermoelectric power generating element, from the air intake port.
  • power is generated by the thermoelectric power generation element by lowering the temperature of the surface different from the heating surface of the thermoelectric power generation element by the air taken in and the heat radiating plate.
  • the surface of the thermoelectric power generation element is heated by a heat medium heated by solar heat, and the other surface of the thermoelectric power generation element is cooled by the air flowing inside the housing. A difference is produced, and as a result, power generation can be performed.
  • the power generator can be reduced in size.
  • power generation is not immediately stopped even when there is no sunlight irradiation. Power generation can be performed for a certain amount of time, eliminating the disadvantages of solar power generation. can do.
  • the power generator can be made smaller because it is air-cooled.
  • the air-cooled thermoelectric generator unit is a solar thermoelectric generator, in which the thermoelectric generator is installed around the heat medium, and the heat sink is installed on a surface different from the heating surface of the thermoelectric generator. It can also be configured.
  • the air-cooled thermoelectric power generation unit is provided with the thermoelectric power generation element around a storage portion for storing the transported heat medium, and is a surface different from a heating surface of the thermoelectric power generation element, It can also be configured as a solar thermal power generation device in which the heat radiating plate is installed closer to the inner wall surface side of the housing than the thermoelectric power generation element.
  • thermoelectric power generation element By configuring as in the present invention, it becomes easier to cause a temperature difference of the thermoelectric power generation element.
  • the air-cooled thermoelectric power generation unit further includes a flow pipe that stores the heat medium flowing through the heat medium transport pipe, and a heat insulating material that covers a part of the outer surface of the flow pipe.
  • the thermoelectric power generation element is installed on an outer surface of the flow tube that is not covered with the heat insulating material, and the heat radiating plate is different from the surface of the thermoelectric power generation device on the flow tube side. It can also be configured like a solar power generator installed on the surface.
  • Structuring according to the present invention can suppress the temperature of the heat medium from being lowered, so that power can be generated for a longer time.
  • the heat medium transport pipe passes through the flow tube, and a portion of the heat medium transport pipe located inside the flow tube is provided with a plurality of holes, It can also be configured as a solar thermal power generation apparatus in which the heat medium can flow in and out between the medium transport pipe and the flow pipe.
  • the configuration of the present invention makes it possible to suppress the occurrence of heat unevenness and generate high-quality power.
  • the air-cooled thermoelectric generator is configured as a solar thermoelectric generator in which the air intake port is provided near the lower part of the casing and the upper surface of the casing is open. You can also.
  • thermoelectric generator of the present invention Since the air-cooled thermoelectric generator of the present invention is air-cooled, it is possible to promote air discharge by opening the upper surface.
  • the above-described invention can also be configured as a solar thermal power generation apparatus provided with a fan near the open upper surface of the casing.
  • the fan rotates naturally by the rising airflow, which further encourages air discharge and enhances the cooling effect.
  • the air-cooled thermoelectric generator can also be configured as a solar thermoelectric generator provided with spiral rectifying fins on the inner wall surface of the casing.
  • a rising airflow can be created gently, so that turbulence can be prevented.
  • the air-cooled thermoelectric generator can be configured as a solar thermoelectric generator including an electric fan that creates an air flow inside the casing.
  • Structuring according to the present invention can artificially create an air flow inside the casing, so that the cooling effect can be enhanced. Therefore, the temperature difference in the thermoelectric power generation element becomes large, and the power generation efficiency can be improved.
  • the air-cooled thermoelectric generator can be configured as a solar thermoelectric generator provided with a spray device for spraying cooling water above the casing.
  • the radiating fin can be artificially cooled. Therefore, the temperature difference in the thermoelectric power generation element becomes large, and the power generation efficiency can be improved.
  • the solar thermal power generation device further includes a heat storage device that stores a heat medium heated by the solar heat collection device, and the solar heat collection device, the heat storage device, and the air-cooled thermoelectric power generation device include: It can also be configured like a solar thermal power generation apparatus that is connected by the heat medium transport pipe and allows the heat medium to circulate.
  • the heat medium can be stored and stored, so that the temperature decrease of the heat medium can be suppressed, and long-term power generation is possible even in a time zone where there is no sunlight irradiation. Can continue.
  • a power generation method using the solar thermal power generation device wherein the solar thermal collector is installed on a roof, the air-cooled thermoelectric generator is installed in a garden, and the solar thermal collector and the air-cooled thermoelectric generator It can also be configured as a power generation method using a solar thermal power generation apparatus that performs solar thermal power generation by connecting the heat medium with a heat medium transport pipe and circulating the heat medium.
  • the solar thermal power generation apparatus of the present invention can be easily downsized, it can be installed in a house or the like, similar to the solar power generation apparatus. Therefore, it is possible to generate power at home by configuring as in the present invention.
  • the present invention is an air-cooled thermoelectric generator that generates power using a thermoelectric generator, and the air-cooled thermoelectric generator has a casing formed so that air flows in an inner space, and a temperature using heat of a heat medium. And a thermoelectric power generation element that generates power by the difference, the temperature of an arbitrary surface of the thermoelectric power generation element is increased by a heated heat medium, and the air flowing inside the casing is used to increase the temperature of the thermoelectric power generation element.
  • power is generated by the thermoelectric element by lowering the temperature of the surface different from the heating surface to be lower than that of the heating surface.
  • thermoelectric power generation element As in the present invention, one surface of the thermoelectric power generation element is heated by a heated heat medium, and the other surface of the thermoelectric power generation element is cooled by the air flowing inside the housing, so that a temperature difference is generated in the thermoelectric power generation element. As a result, it can generate electricity. With such a configuration, the power generator can be reduced in size. In addition, since heat is retained by the heat medium, power generation is not immediately stopped even if the heat medium cannot be heated. Power generation can be performed for a certain period of time, eliminating the disadvantages of solar power generation. Can do. Unlike water-cooled thermoelectric generators, the power generator can be made smaller because it is air-cooled.
  • the heat medium can be heated by solar heat.
  • the air-cooled thermoelectric power generator used in solar thermal power generation
  • the air-cooled thermoelectric power generator includes a housing having an air intake port for taking in air and an air-cooled thermoelectric power generation unit that generates power by the heat of the heat medium.
  • the air-cooled thermoelectric power generation unit includes a thermoelectric power generation element that generates power due to a temperature difference, and a heat radiating plate that radiates the temperature of the thermoelectric power generation element.
  • the temperature of the surface is increased, and the temperature of the surface different from the heating surface of the thermoelectric power generation element is made lower than that of the heating surface by the air taken in from the air intake port and the heat radiating plate.
  • This is an air-cooled thermoelectric generator that is used in solar thermal power generation.
  • thermoelectric generator of the present invention can eliminate the disadvantages of solar power generation and can be downsized.
  • thermoelectric generator of the present invention by applying the air-cooled thermoelectric generator of the present invention to solar thermal power generation, the conventionally large solar thermal power generator can be reduced to a size that can be installed at home, for example. Furthermore, since the heat medium is heated instead of directly using the sunlight irradiation, the power generation can be performed while the heat medium is stored even if the sunlight irradiation disappears.
  • FIG. 10 is a transverse sectional view taken along the line ⁇ - ⁇ in FIG.
  • FIG. 14 is a transverse sectional view taken along the line ⁇ - ⁇ in FIG. 13.
  • FIG. 15 is a longitudinal sectional view taken along the line ⁇ - ⁇ in FIG. 14. It is a longitudinal cross-sectional view of an air-cooled thermoelectric generator when a cooling electric fan is provided.
  • thermoelectric generator with a spray device. It is a schematic perspective view of another embodiment of a solar power generation device. It is a block diagram of another embodiment of a solar thermal power generation device. It is a block diagram of another embodiment of a solar thermal power generation device. It is a figure which shows an example at the time of installing a solar thermal power generation device in a house.
  • FIG. 1 shows an outline of this basic configuration.
  • FIG. 2 shows a longitudinal sectional view of the air-cooled thermoelectric generator of FIG.
  • the basic configuration of the air-cooled thermoelectric generator A according to the present invention includes a casing C formed so that air flows inside, and a thermoelectric generator B inside the casing C.
  • a part or the whole of the upper surface is opened (or an opening is provided near the upper part), and a part or the whole of the lower surface is opened (or an opening is provided near the lower part).
  • the lower surface is opened, it is installed so that the lower surface of the casing C does not directly contact the ground or a stand so that air flows inside the casing C.
  • a heat medium E such as ethylglycogen, glycerin, oil, water, etc. heated by a heating device (not shown) is stored in the storage part D inside the casing C, and an arbitrary surface of the thermoelectric power generation element B around it.
  • Heat This heating device may be any device that can heat the heat medium E.
  • a solar heat collector there is a solar heat collector, but it is not limited thereto.
  • thermoelectric generator B preferably the surface opposite to the heating surface
  • the surface different from the heating surface of the thermoelectric generator B is cooled by the air flowing inside the casing C.
  • thermoelectric power generation element B a temperature difference is generated between the surface heated by the heat medium E and the surface cooled by air, so that electric power is generated and power generation can be performed.
  • the air-cooled thermoelectric generator A can generate power by heating the heat medium E by various methods.
  • the heat medium E is heated by solar heat and transported and stored in the storage part D is a representative example, but is not limited thereto.
  • the heat medium can be heated by sunlight, geothermal heat or high-temperature steam.
  • thermoelectric generator 1 of the present invention is used as the solar thermal generator 2
  • the solar power generation device 2 collects sunlight with the solar heat collection device 3 to heat the heat medium and generate power by utilizing the temperature difference between both surfaces of the thermoelectric power generation element.
  • the solar thermal power generation apparatus 2 has a plurality of embodiments depending on the configuration of each apparatus, each embodiment will be described below.
  • the solar thermal power generation apparatus 2 is not limited to the following embodiments, and various modifications can be made within the scope of the technical idea of the invention. It is also possible to configure the solar power generation device 2 by combining the configurations of the respective embodiments.
  • FIG. 3 shows a schematic perspective view of the solar thermal power generation apparatus 2 of the first embodiment. Moreover, the block diagram of the solar thermal power generation apparatus 2 is shown in FIG.
  • the solar thermal power generation device 2 includes a solar thermal collector 3, an air-cooled thermoelectric power generation device 1, a heat medium transport pipe 4, a circulation pump 5, an expansion tank 6, a temperature sensor 7, a support frame 8, and a gantry 9 With.
  • the solar heat collector 3 is a panel that collects solar heat, and includes a heat medium transport pipe 4c through which the heat medium flows.
  • the heat medium transport pipe 4 is connected to the heat medium transport pipes 4 a to 4 d, and the heat medium can be circulated by the circulation pump 5. Therefore, the heat medium flowing through the heat medium transport pipe 4c disposed in the solar heat collecting device 3 is heated by the solar heat and circulates, thereby increasing the temperature of the entire heat medium.
  • the solar heat collecting device 3 may have any configuration as long as the heat medium in the heat medium transport pipe 4c can be heated by solar heat.
  • FIG. 5 shows a longitudinal sectional view of the solar heat collecting device 3.
  • FIG. 6 is an enlarged view of the vicinity of A in FIG.
  • the solar heat collecting apparatus 3 includes a casing 31, a light transmission plate 32, a heat collecting part 33, a plate 34, a packing 35, and a packing 36.
  • the housing 31 is formed in a box shape, and one surface thereof is open so that it can be irradiated with sunlight.
  • an edge 312 is formed on the outer periphery of the opening portion of the housing 31, and a portion that is fixed by a plate clasp 34 when a light transmission plate 32 to be described later is attached to the housing 31.
  • the heat collecting part 33 is a part for collecting solar heat.
  • the heat collecting section 33 has a double weaving structure with metal wires and / or carbon yarns as warp and weft, and sandwiches the heat medium transport pipe 4c therebetween. Note that the heat collecting unit 33 is not limited to a double weave structure as long as the heat medium transport pipe 4c can be heated, and the heat collecting unit 33 may not be provided.
  • the heat medium transport pipe 4c is connected to heat medium transport pipes 4a and 4b for circulating the heat medium between the air-cooled thermoelectric generator 1 described later.
  • the heat collection unit 33 sandwiching the heat medium transport pipe 4 c is fixed by a heat collection unit fixture 311 provided on the inner wall surface of the housing 31.
  • the light transmission plate 32 is installed so as to cover the opening of the housing 31, and the opening of the housing 31 is closed. Further, the edge of the light transmission plate 32 and the edge 312 of the housing 31 are fixed so as to be sandwiched between the U-shaped plate clasps 34. In order to increase the degree of adhesion between the edge portion of the light transmission plate 32 and the edge portion 312 of the housing 31, the space between the light transmission plate 32 and the edge portion 312 and the space between the light transmission plate 32 and the plate clasp 34 are provided. , And tightly packed with rubber packing 35, 36, respectively. A fin-shaped protrusion 37 is formed by the edge of the light transmission plate 32, the edge 312 of the housing 31, the packings 35 and 36, and the plate clasp 34.
  • a vacuum valve (not shown) is provided in the casing 31, and a vacuum pump is attached to the casing 31 so that the inside of the casing 31 is evacuated.
  • the heat collected by the heat collecting section 33 is difficult to escape from the light transmission plate 32 and the like.
  • the fin-like projections 37 are tightly fixed by the plate clasps 34, packings 35, 36, etc., it is difficult for air to escape from the gaps, and the heat collecting effect can be enhanced.
  • the air-cooled thermoelectric generator 1 is a device that generates power using a heat medium heated by the solar heat collector 3.
  • An example of the air-cooled thermoelectric generator 1 is shown in FIG. FIG. 7 shows a state in which a part of the upper portion of the housing 11 is opened to show the internal structure, but actually this portion is also covered by the housing 11 described later.
  • FIG. 8 is a side view of the air-cooled thermoelectric generator 1. Further, FIG. 9 is a longitudinal sectional view of the vicinity of the upper portion of the air-cooled thermoelectric generator 1, and FIG. 10 is a transverse sectional view taken along the line ⁇ - ⁇ in FIG.
  • the air-cooled thermoelectric generator 1 has a cylindrical or prismatic casing 11 and one or a plurality of air-cooled thermoelectric generator units 12 inside thereof.
  • a plurality of openings for taking air into the housing 11 are provided as air intake ports 13.
  • a fan 15 and support members 16 a and 16 b for supporting the fan 15 are installed. The fan 15 naturally rotates due to the rising airflow of the air taken in from the air intake port 13, and promotes the discharge of the air taken inside the housing 11.
  • the outside of the housing 11 is formed of a metal or resin air cooling conduit 110, and a conduit heat insulating material 111 is attached to the inner wall surface of the air cooling conduit 110 to insulate it.
  • a spiral rectifying fin 14 is attached along the inner wall surface (conduit insulation 111) of the housing 11. The air taken in from the air intake port 13 by the spiral rectifying fins 14 becomes an ascending airflow rectified along the rectifying fins 14 to prevent turbulent flow and further promote discharge.
  • Holes 112 (112aa and 112b) for passing the heat medium transport pipe 4 are provided in the upper and lower portions of the housing 11, and the heat medium transport is performed in the vertical direction around the center of the housing 11 through the holes 112.
  • the service pipe 4d is passed.
  • One or a plurality of air-cooled thermoelectric generator units 12 are attached in the vertical direction around the heat medium transport pipe 4d.
  • the air-cooled thermoelectric power generation unit 12 includes a flow tube 120, a thermoelectric power generation element 121, heat insulating materials 122 and 123, and a heat sink 126.
  • the flow tube 120 is formed of, for example, a hollow metal cylinder or prism, and a hole for inserting the heat transfer pipe 4d is provided in the vicinity of the center of the top and bottom surfaces.
  • a plurality of holes 40 are provided in the heat medium transport pipe 4 d in the air-cooled thermoelectric power generation unit 12, so that the heat medium can enter and exit between the heat medium transport pipe 4 d and the flow pipe 120. Through this hole 40, the heat medium flows from the heat medium transport pipe 4 d to the flow pipe 120, and from the flow pipe 120 to the heat medium transport pipe 4 d, and flows through the heat medium stored in the flow pipe 120 and the heat medium transport pipe 4 d. The temperature of the heat medium becomes uniform.
  • the heat medium conveying pipe 4d may be integrally formed with the flow pipe 120 without being inserted through the inside of the flow pipe 120, connected to the holes on the top and bottom surfaces of the flow pipe 120.
  • the upper surface and the bottom surface of the flow tube 120 are covered with a heat insulating material 123 formed in a concave shape, such as polystyrene foam or resin.
  • a thin layer of a heat insulating material 122 such as silicon coat or hard urethane exists between the heat insulating material 123 and the flow tube 120 and covers the periphery of the flow tube 120. That is, it is formed from the center by each layer of the flow pipe 120, the heat insulating material 122, and the heat insulating material 123.
  • thermoelectric power generation elements 121 are installed on the outer wall surface of the flow pipe 120 at predetermined intervals in the vertical direction. That is, the thermoelectric generator 121 and the heat insulating materials 122 and 123 are preferably attached to the outer wall surface of the flow tube 120. In order to enhance the heat insulation effect, the outer wall surface of the flow pipe 120 other than the location where the thermoelectric power generation element 121 is attached is preferably covered with the heat insulation materials 122 and 123. In the present embodiment, the thermoelectric generators 121 are arranged without being continuous in the vertical direction. However, in the case where the thermoelectric generators 121 that are not easily affected by the heat of the other thermoelectric generators 121 are used, the thermoelectric generators 121 are arranged. You may arrange
  • a heat sink 126 made of a material such as metal (for example, aluminum or copper) or carbon is attached to the outside of the thermoelectric generator 121 and the heat insulating material 123.
  • portions on the thermoelectric generator 121 and the heat insulating material 123 side are formed in an uneven shape so as to follow the shapes of these members. Note that the thermoelectric generator 121 and the heat sink 126 are formed to fit with each other, and the heat insulating material 123 and the heat sink 126 are formed to have a size such that an air layer 124 can be formed with a gap therebetween.
  • the inner wall surface side of the housing 11 of the heat sink 126 is formed in a fin shape in the vertical direction, and the surface on the heat sink 126 side of the thermoelectric generator 121 is cooled by the air flowing inside the housing 11.
  • the heat sink 126 and the heat insulating material 123 attached to the outer wall side surface of the flow pipe 120 are fixed with a heat sink tightening screw 125.
  • thermoelectric power generation unit 12 formed as described above is supported by a unit support portion 127 attached to the inner wall surface of the casing 11.
  • thermoelectric power generation units 12 are installed in the vertical direction along the heat medium transport pipe 4d.
  • the circulation pump 5 circulates the heat medium flowing through the heat medium transport pipe 4 between the solar heat collector 3 and the air-cooled thermoelectric generator 1.
  • the expansion tank 6 is a tank for temporarily storing the heat medium because it is expanded by being heated.
  • the temperature sensor 7 measures the temperature of the heat medium in the air-cooled thermoelectric generator 1 and controls the operation of the circulation pump 5 on / off. That is, when the heat medium in the air-cooled thermoelectric generator 1 becomes a certain temperature or less, the circulation pump 5 is turned on, and the heat medium circulates in the heat medium transport pipe 4. When the temperature reaches a predetermined temperature or more, the circulation pump 5 is turned off to stop the heat medium from circulating in the heat medium transport pipe 4.
  • the support frame 8 is a frame for supporting the solar heat collecting apparatus 3.
  • the gantry 9 is a base for supporting the support frame 8 and the solar heat collecting device 3 and fixing them to the installation location.
  • the solar heat collector 3 and the air-cooled thermoelectric generator 1 in the solar thermal power generator 2 are installed as shown in FIG. 3, for example.
  • the solar heat collector 3 and the air-cooled thermoelectric generator 1 are connected by a heat medium transport pipe 4 (4a to 4d) so that the heat medium circulates between these devices.
  • thermoelectric generators 1 When there are a plurality of air-cooled thermoelectric generators 1, the air-cooled thermoelectric generators 1 are connected to each other by a heat medium transport pipe 4 so that the heat medium circulates between the solar heat collector 3. .
  • the solar power generation device 2 configured as described above, when solar heat is collected by the solar heat collector 3, the heat medium flowing through the heat medium transport pipe 4c disposed in the solar heat collector 3 is heated.
  • the heat medium flows through the heat medium transport pipe 4a or 4b and flows to the heat medium transport pipe 4d, the temperature of the heat medium increases.
  • thermoelectric power generation apparatus 1 increases, so that the thermoelectric power generation element 121 installed on the outer wall surface of the flow pipe 120 The surface on the flow tube 120 side is heated.
  • FIG. 11 is a diagram schematically showing a state in which the air flowing in from the air intake port 13 provided in the lower part of the casing 11 of the air-cooled thermoelectric generator 1 is rectified by the spiral rectifying fins 14.
  • FIG. 3 is a diagram schematically showing the air flow in the air-cooled thermoelectric power generation unit 12.
  • outside air flows from the air intake port 13 provided in the lower part of the casing 11 of the air-cooled thermoelectric generator 1, and becomes an upward airflow upward of the casing 11.
  • the ascending air current is rectified so as to rise smoothly while rotating slowly inside the casing 11 by the spiral rectifying fins 14 installed along the inner wall surface of the casing 11.
  • the rising air is quickly discharged from the upper portion of the housing 11 without causing turbulent flow.
  • thermoelectric power generation element 121 On the surface opposite to the surface on the flow tube 120 side of the thermoelectric power generation element 121 (the surface on the inner wall surface side of the housing 11), the heat of the thermoelectric power generation device 121 is radiated from the heat radiating plate 126, and the housing 11 It is cooled by the rising airflow that flows inside. As a result, the surface of the thermoelectric generator 121 opposite to the surface on the flow tube 120 side is cooled, and the temperature decreases. As a result, a temperature difference occurs between the surface of the thermoelectric generator 121 on the flow tube 120 side and the surface on the opposite side, and electric power is generated.
  • the solar thermal power generation device 2 can be downsized by configuring the solar thermal power generation device 2 using the air-cooled thermoelectric power generation device 1 of the present invention. Moreover, since the temperature does not drop immediately by heating the heat medium and circulating it through the heat medium transport pipe 4, it is possible to generate power even in the absence of sunlight.
  • FIG. 13 shows a longitudinal sectional view near the upper portion of the air-cooled thermoelectric generator 1 ′ in this case.
  • FIG. 14 shows a cross-sectional view taken along line ⁇ - ⁇ in FIG.
  • FIG. 15 is a longitudinal sectional view taken along the line ⁇ - ⁇ in FIG.
  • the air-cooled thermoelectric power generation unit 12 'in this embodiment includes a flow pipe 120', a thermoelectric power generation element 121, heat insulating materials 122 and 123, and a heat radiating plate 126 '.
  • description may be abbreviate
  • the flow pipe 120 ′ is formed of, for example, a hollow metal hexagonal column, and a hole for inserting the heat medium transport pipe 4 is provided in the vicinity of the center of the upper surface and the bottom surface.
  • a plurality of holes 40 are provided in the heat medium transport pipe 4d in the air-cooled thermoelectric power generation unit 12 ′, so that the heat medium can enter and exit between the heat medium transport pipe 4d and the flow pipe 120 ′. .
  • the heat medium flows from the heat medium transport pipe 4 d to the flow pipe 120 ′ and from the flow pipe 120 ′ to the heat medium transport pipe 4 d, and the heat medium inside the flow pipe 120 ′ and the heat medium transport pipe 4 d
  • the temperature of the heat medium flowing through the chamber becomes uniform.
  • the upper surface and the bottom surface of the flow tube 120 ′ are covered with a heat insulating material 123 formed in a concave shape.
  • a thin layer of heat insulating material 122 exists between the heat insulating material 123 and the flow pipe 120 ', and covers the outer surface of the flow pipe 120'.
  • Thermoelectric power generation elements 121 are installed on the outer wall surface of the flow pipe 120 ′ at predetermined intervals in the vertical direction. That is, the thermoelectric generator 121 and the heat insulating materials 122 and 123 are preferably attached to the outer wall surface of the flow pipe 120 '. In order to enhance the heat insulating effect, the outer wall surface of the flow pipe 120 ′ other than the portion where the thermoelectric generator 121 is attached is preferably covered with the heat insulating materials 122 and 123.
  • a heat radiating plate 126 ′ is attached outside the thermoelectric generator 121 and the heat insulating material 123.
  • portions on the thermoelectric generator 121 and the heat insulating material 123 side are formed in an uneven shape so as to follow the shapes of these members.
  • the thermoelectric generator 121 and the heat radiating plate 126 ′ are formed to fit with each other, and the heat insulating material 123 and the heat radiating plate 126 ′ are formed to have a space between them so that the air layer 124 can be formed.
  • the heat radiating plate 126 ′ On the inner wall surface side of the casing 11 of the heat radiating plate 126 ′, the heat radiating plate 126 ′ is formed radially in six directions from the position corresponding to each apex of the flow tube 120 ′. A radiation plate 126 ′ is further formed in a fin shape in a direction perpendicular to the outer wall surface. As a result, the surface of the thermoelectric generator 121 on the side of the heat radiating plate 126 ′ is cooled by the air flowing inside the housing 11.
  • the heat sink 126 ′ and the heat insulating material 123 attached to the outer wall side surface of the flow pipe 120 ′ are fixed with a heat sink tightening screw 125 (not shown).
  • the air-cooled thermoelectric power generation unit 12 ′ formed as described above is supported by a unit support portion 127 attached to the inner wall surface of the housing 11.
  • thermoelectric power generation units 12 ' are installed in the vertical direction along the heat medium transport pipe 4d.
  • the air-cooled thermoelectric generator unit 12 ' can also be formed by using a hexagonal flow tube as in this embodiment.
  • the shape of the flow tube 120 ′ may be an arbitrary prism or cylinder, and the shape is not limited.
  • the material is not limited, but a material that efficiently conducts heat is good.
  • thermoelectric power generation element 121 and the heat radiating plate 126 ′ attached to the flow tube 120 ′ may not be attached to all the outer surfaces of the flow tube 120 ′, but only attached to some outer surfaces.
  • shape of the fins of the heat sinks 126 and 126 ' is not limited to the shape of the present specification.
  • thermoelectric generator 1 natural air cooling is used.
  • an electric cooling fan 128 may be installed below the air-cooled thermoelectric generator unit 12 and air may flow upward from below.
  • a longitudinal sectional view of the housing 11 in this case is shown in FIG. Note that when the cooling electric fan 128 is installed, air can be allowed to flow from the upper side to the lower side.
  • an electric cooling fan 128 may be installed below or above the housing 11 to create an air flow inside the housing 11.
  • the cooling effect of the heat radiation fins 126 and 126 ′ can be enhanced, so that the temperature difference of the thermoelectric power generation element 121 is increased, and the power generation efficiency can be improved.
  • cooling effect of the radiation fins 126 and 126 ′ may be enhanced by installing the spray device 129 above the housing 11.
  • a longitudinal sectional view of the housing 11 in this case is shown in FIG.
  • a hole 112c is provided in the side surface of the housing 11, and a pipe 1291 for spraying water or the like is passed therethrough.
  • a plurality of small holes are formed near the tip of the pipe 1291.
  • the spraying device 129 is provided with a motor (not shown). Water or the like flows through the pipe 1291 by the motor and sprays from a hole near the tip of the pipe 1291. As a result, the radiation fins 126 and 126 'are cooled.
  • the surface is preferably coated so that rust and deterioration do not occur in order to prevent the heat radiating fins 126, 126 'from deteriorating.
  • the cooling effect of the heat radiation fins 126 and 126 ′ can be enhanced, so that the temperature difference of the thermoelectric power generation element 121 is increased, and the power generation efficiency can be improved.
  • FIG. 1 A schematic perspective view of the solar thermal power generation apparatus 2 of the present embodiment is shown in FIG. Moreover, the block diagram of the solar thermal power generation apparatus 2 in this case is shown in FIG.
  • the framework of the gantry 9 is combined into a cube or a rectangular parallelepiped. Then, the solar heat collecting device 3 is installed on the gantry 9 by attaching the support frame 8 to the frame which is the side of the upper surface. Further, the air-cooled thermoelectric generator 1 is installed inside a cube or a rectangular parallelepiped formed by the gantry 9.
  • the solar thermal power generation device 2 By configuring the solar thermal power generation device 2 as described above, it can be installed even in a space-saving manner.
  • thermoelectric power generation apparatus 2 Another embodiment of the solar thermal power generation apparatus 2 will be described.
  • the heat medium is heated in the heat medium transport pipe 4 and power is generated by the thermoelectric power generation element 121.
  • the solar heat collecting device 3 when the solar heat collecting device 3 is not irradiated with sunlight, heat can be collected. Since it is not easy, the power generation efficiency by the thermoelectric power generation element 121 may be slightly reduced.
  • FIG. 20 shows a configuration diagram of the solar thermal power generation apparatus 2 in this case.
  • the solar thermal power generation apparatus 2 of the present embodiment further includes a heat storage device 10.
  • the heat storage device 10 is configured by a heat-insulating housing so that the heat medium is stored inside and the accumulated heat does not escape.
  • the heat storage device 10 is connected to the solar heat collector 3 and the air-cooled thermoelectric generator 1 so that the heat medium transport pipe 4 is connected so that the heat medium can be circulated.
  • the heat medium circulates between the air-cooled thermoelectric generator 1 and the heat storage device 10.
  • the heated heat medium in the heat medium transport pipe 4 is sent to the heat storage device 10 by the circulation pump 5. Therefore, the heat medium in the heat storage device 10 is also heated. Then, the heat medium in the heat storage device 10 is sent to the air-cooled thermoelectric generator 1 by the circulation pump 5.
  • thermoelectric power generation element 121 in the air-cooled thermoelectric power generation device 1 even when the solar heat collection device 3 is not irradiated with sunlight. Since the temperature of the surface in contact with can be raised, a temperature difference is produced and power generation can be performed.
  • the heat storage in the heat storage device 10 may be used not only for power generation but also for hot water supply, for example, when water is used as the heat medium.
  • the air-cooled thermoelectric power generation device 1 of the present invention is used for the solar thermal power generation device 2 and can be downsized. Therefore, it can be installed at home, for example. An example is shown in FIG.
  • the solar heat collector 3 is installed on the roof, while the air-cooled thermoelectric generator 1 and the heat storage device 10 are installed in the garden.
  • a storage unit (not shown) for storing the heat medium in the heat storage device 10 and use water as the heat medium there. That is, water as a heat medium is stored in the storage unit of the heat storage device 10 and heated by a heat medium (for example, ethyl glycogen) sent to the heat storage device 10 through the heat medium transport pipe 4.
  • a heat medium for example, ethyl glycogen
  • the heat medium transport pipe 4 is disposed around the storage part, thereby heating the storage part).
  • water which is a heat medium in the heat storage device 10 is heated to become hot water.
  • the solar heat collector 3, the air-cooled thermoelectric generator 1, and the heat storage device 10 are connected to each other by a heat medium transport pipe 4, and the heat medium is circulated by a circulation pump 5 (not shown). That is, the heat medium heated by the solar heat collecting device 3 installed on the roof flows through the heat medium transport pipes 4 a and 4 b disposed along the roof and the wall and is sent to the heat storage device 10. Then, the heat medium is further sent to the air-cooled thermoelectric power generator 1, and power is generated by the thermoelectric power generation element 121 of the air-cooled thermoelectric power generator 1. Moreover, the hot water stored by the heat storage apparatus 10 flows from a household faucet by connecting the storage part which stores a heat medium (water) with the heat storage apparatus 10 and a domestic water pipe, and is used as water supply. You can also
  • the power generation apparatus of the present invention eliminates the disadvantages of solar power generation and enables downsizing.
  • a conventionally large solar power generation device can be reduced to a size that can be installed in a home, for example. Furthermore, since the heat medium is heated instead of directly using the sunlight irradiation, the power generation can be performed while the heat medium is stored even if the sunlight irradiation disappears.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The purpose of the present invention is to provide an air-cooled thermoelectric power generation apparatus and a solar thermal power generation apparatus using the air-cooled thermoelectric power generation apparatus. This solar thermal power generation apparatus is provided with a solar heat collecting apparatus that heats a heat medium by means of solar light irradiation, an air-cooled thermoelectric power generation apparatus, and a heat medium transfer pipe that transfers the heat medium thus heated. The air-cooled thermoelectric power generation apparatus has a housing that is provided with an air inlet for taking in air, and an air-cooled thermoelectric power generation unit that generates power using heat of the heat medium. The air-cooled thermoelectric power generation unit is provided with a thermoelectric power generation element that generates power by means of a temperature difference, and a heat sink that dissipates heat from the thermoelectric power generation element. A temperature of a discretionary surface of the thermoelectric power generation element is increased by means of the heated heat medium, and a temperature of a thermoelectric power generation element surface, which is different from the heated surface of the thermoelectric power generation element, is reduced to be lower than the temperature of the heated surface by means of the heat sink and the air taken in from the air inlet, thereby generating power by means of the thermoelectric power generation element.

Description

空冷熱電発電装置および空冷熱電発電装置を用いた太陽熱発電装置Air-cooled thermoelectric generator and solar power generator using the air-cooled thermoelectric generator
 本発明は,空冷熱電発電装置および空冷熱電発電装置を用いた太陽熱発電装置に関する。 The present invention relates to an air-cooled thermoelectric generator and a solar power generator using the air-cooled thermoelectric generator.
 環境に対する関心の高まりから自然エネルギーを活用した発電に関心が集まっている。自然エネルギーを活用した発電としては,太陽光発電,太陽熱発電,地熱発電,波力発電などが知られている。しかしこれらの発電方法は大型の装置が必要なものが多く,太陽光発電が唯一,小型化されて家庭でも普及しているにとどまる。 ∙ The growing interest in the environment has attracted interest in power generation using natural energy. Solar power generation, solar thermal power generation, geothermal power generation, wave power generation, and the like are known as power generation utilizing natural energy. However, many of these power generation methods require large-sized devices, and solar power generation is the only one that has been downsized and has become popular in the home.
 しかし太陽光発電の場合,夜間には発電をできないなどのデメリットがある。そのため,家庭でも設置が可能な自然エネルギーを用いた発電装置が望まれている。そこで,太陽光発電と同様に太陽を利用する発電方式である太陽熱発電も近年,注目を浴びてきている。 However, in the case of solar power generation, there are disadvantages such as being unable to generate power at night. Therefore, a power generation device using natural energy that can be installed at home is desired. Therefore, solar thermal power generation, which is a power generation method that uses the sun as well as solar power generation, has recently attracted attention.
 太陽熱発電には主に3通りの方式がある。第1がタワー式太陽熱発電であり,第2がトラフ式太陽熱発電であり,第3がディッシュ式太陽熱発電である。 There are three main types of solar thermal power generation. The first is a tower type solar power generation, the second is a trough type solar power generation, and the third is a dish type solar power generation.
 タワー式太陽熱発電は,中央に設置したタワー上部に備えた集熱器に,タワー周辺に設置した複数の平面鏡で太陽光を集中させ,集熱器を加熱させ,そこで加熱された熱媒体をタワー下部に送り,水を蒸発させて蒸気タービンを回すことで発電を行う方式である。タワー式太陽熱発電で用いる発電装置の一例を特許文献1,非特許文献1に示す。 The tower type solar thermal power generation system concentrates sunlight on a collector installed at the top of the tower installed in the center with a plurality of plane mirrors installed around the tower, heats the collector, and heats the heated heat medium to the tower. It is a system that generates electricity by sending it to the bottom, evaporating water and turning a steam turbine. An example of a power generation device used in tower-type solar power generation is shown in Patent Literature 1 and Non-Patent Literature 1.
 トラフ式太陽熱発電は,太陽熱集熱装置に熱媒体が流れるパイプを設置することで熱媒体を加熱し,加熱された熱媒体を蒸気タービンに送ることで水を蒸発させて蒸気タービンを回して発電を行う方式である。トラフ式太陽熱発電で用いる発電装置の一例を特許文献2に示す。 Trough-type solar power generation heats the heat medium by installing a pipe through which the heat medium flows in the solar heat collector, and sends the heated heat medium to the steam turbine to evaporate water and rotate the steam turbine to generate electricity. It is a method to perform. An example of a power generator used in trough solar power generation is shown in Patent Document 2.
 ディッシュ式太陽熱発電は,放物曲面になるように鏡を設置し,放物曲面の焦点に設置したスターリングエンジンなどに太陽光を集中させることで発電を行う発電方式である。ディッシュ式太陽熱発電で用いる発電装置の一例を特許文献3,非特許文献2に示す。 Dish type solar thermal power generation is a power generation method that generates power by installing a mirror so that it becomes a parabolic surface and concentrating sunlight on a Stirling engine installed at the focal point of the parabolic surface. An example of a power generator used in dish type solar thermal power generation is shown in Patent Literature 3 and Non-Patent Literature 2.
 タワー式太陽熱発電,トラフ式太陽熱発電のいずれの方式によっても蒸気タービンを回転させることから,大型の発電装置が必要となる。一方,ディッシュ式太陽熱発電では太陽熱発電装置をタワー式太陽熱発電,トラフ式太陽熱発電よりも小型化することはできるが,鏡を放物曲面状に設置しなければならないなど,小型化には限度がある。また,太陽が出ていないと発電することができず,太陽光発電と同じデメリットもある。 Since the steam turbine is rotated by either the tower type solar power generation or the trough type solar power generation, a large power generation device is required. On the other hand, in the dish type solar power generation, the solar power generation device can be made smaller than the tower type solar power generation and the trough type solar power generation, but there is a limit to downsizing such as the mirror must be installed in a parabolic curved surface. is there. Also, if the sun is not coming out, it cannot generate electricity and has the same disadvantages as solar power generation.
 そこで小型化および太陽が出ていない場合でも発電が可能となるように,たとえば特許文献4に示すように,熱電発電素子を用いた,新たな太陽熱発電の方式も考えられている。熱電発電素子を用いた太陽熱発電は,熱電発電素子の相対する面に温度差が生じた場合に発電が行われる特性を利用して行われる発電であり,一方の面の加熱を太陽熱を用いて行うことでその温度差を生じせしめるものである。 Therefore, for example, as shown in Patent Document 4, a new solar thermal power generation method using a thermoelectric power generation element is also considered so that power generation is possible even when the size is reduced and the sun is not emitted. Solar thermal power generation using a thermoelectric power generation element is a power generation performed using the property that power is generated when a temperature difference occurs between opposing surfaces of the thermoelectric power generation element. Solar heating is used to heat one surface. This is what causes the temperature difference.
特開2012-117411号公報JP 2012-117411 A 特開2007-132330号公報JP 2007-132330 A 特開2009-79510号公報JP 2009-79510 A 特開2011-87416号公報JP 2011-87416 A
 特許文献4の熱電発電素子を用いた太陽熱発電の場合,パラボラ型の反射パネルの焦点位置に熱電発電素子を備えた熱発電部を配置し,そこに太陽光が集光され熱電発電素子の反射パネルと相対する面が加熱される。そして熱電発電素子の加熱される面とは反対側の面に,冷却水が流れるパイプが配置され,熱電発電素子の加熱面の反対面を冷却する。これによって熱電発電素子の相対する2つの面で温度差を生じせしめ,発電を行う。 In the case of solar thermal power generation using the thermoelectric power generation element disclosed in Patent Document 4, a thermoelectric power generation unit including the thermoelectric power generation element is disposed at the focal position of the parabolic reflection panel, and sunlight is collected there and reflected by the thermoelectric power generation element. The surface facing the panel is heated. A pipe through which cooling water flows is arranged on the surface opposite to the surface to be heated of the thermoelectric generator, and cools the surface opposite to the heating surface of the thermoelectric generator. As a result, a temperature difference is generated between the two opposing surfaces of the thermoelectric generator, thereby generating power.
 特許文献4の構成の場合,パラボラ型の反射パネルにより集光して熱電発電素子を加熱するため,太陽光発電と同様に,太陽光のない夜間には発電を行うことができない。またパイプ内に冷却水を流すことで熱電発電素子を冷却する,いわゆる水冷方式を採ることで,冷却水自体を冷却しなければならないため,設備が大型化しやすいデメリットがある。 In the case of the configuration of Patent Document 4, since the thermoelectric power generation element is heated by condensing by a parabolic reflection panel, power generation cannot be performed at night without sunlight as in the case of solar power generation. Moreover, since the cooling water itself must be cooled by adopting a so-called water cooling method in which the thermoelectric power generation element is cooled by flowing cooling water through the pipe, there is a demerit that the size of the equipment tends to increase.
 上述のように環境に配慮した発電が行える発電方式に関心が高まっているものの,現状では,太陽光発電以外の発電方式である太陽熱発電,地熱発電,波力発電などでは装置の小型化を行えず,発電装置を家庭に設置することができていない。しかし太陽光発電では上述のデメリットがある。そのため,太陽光発電におけるデメリットを解消した,家庭にも設置可能な,環境に配慮した発電が行える発電装置が望まれている。 As mentioned above, there is growing interest in power generation methods that can generate power in consideration of the environment, but currently, solar power generation, geothermal power generation, wave power generation, and other power generation methods other than solar power generation can reduce the size of the device. Therefore, the power generator cannot be installed at home. However, solar power generation has the disadvantages described above. Therefore, there is a demand for a power generation device that eliminates the disadvantages of solar power generation and that can be installed at home and can generate power in consideration of the environment.
 本発明者は上記課題に鑑み,熱電発電素子を用いた発電方式において,いわゆる空冷方式を採用することで,小型化することが可能な空冷熱電発電装置および空冷熱電発電装置を用いた太陽熱発電装置を発明した。 In view of the above problems, the present inventor has adopted a so-called air cooling method in a power generation method using a thermoelectric power generation element, and can be downsized, and a solar thermal power generation device using the air cooling thermoelectric power generation device. Was invented.
 第1の発明は,太陽光の照射により熱媒体を加熱する太陽熱集熱装置と空冷熱電発電装置と前記加熱した熱媒体を搬送する熱媒体搬送用パイプとを備える太陽熱発電装置であって,前記空冷熱電発電装置は,空気を取り込む空気取込口を備えた筐体と,前記熱媒体の熱により発電する空冷熱電発電ユニットと,を有しており,前記空冷熱電発電ユニットは,温度差により発電をする熱電発電素子と,前記熱電発電素子の温度を放熱する放熱板とを備え,前記加熱された熱媒体により,前記熱電発電素子の任意の面の温度を高め,前記空気取込口から取り込んだ空気および前記放熱板により,前記熱電発電素子の加熱面とは異なる面の温度を,前記加熱面よりも低くすることで,前記熱電発電素子により発電を行う,太陽熱発電装置である。 1st invention is a solar thermal power generation apparatus provided with the solar-heat collector which heats a heat medium by irradiation of sunlight, an air-cooled thermoelectric power generation apparatus, and the heat medium conveyance pipe which conveys the said heated heat medium, The air-cooled thermoelectric generator has a housing having an air intake port for taking in air, and an air-cooled thermoelectric generator unit that generates power by the heat of the heat medium. A thermoelectric power generating element for generating power; and a heat radiating plate for dissipating the temperature of the thermoelectric power generating element. The heated heat medium raises the temperature of an arbitrary surface of the thermoelectric power generating element, from the air intake port. In the solar thermal power generation apparatus, power is generated by the thermoelectric power generation element by lowering the temperature of the surface different from the heating surface of the thermoelectric power generation element by the air taken in and the heat radiating plate.
 本発明のように,太陽熱によって加熱された熱媒体によって熱電発電素子のある面を加熱し,筐体の内側を流れる空気によって熱電発電素子のほかの面を冷却することで,熱電発電素子に温度差を生じさせられ,その結果,発電が行える。このような構成によって,発電装置を小型化することができる。また熱媒体で熱を保温するので,太陽光の照射がない場合であってもすぐに発電が行われなくなるものではなく,ある程度の時間は発電を行うことができ,太陽光発電のデメリットを解消することができる。また水冷式の熱電発電装置とは異なり,空冷式なので発電装置を小型化することもできる。 As in the present invention, the surface of the thermoelectric power generation element is heated by a heat medium heated by solar heat, and the other surface of the thermoelectric power generation element is cooled by the air flowing inside the housing. A difference is produced, and as a result, power generation can be performed. With such a configuration, the power generator can be reduced in size. In addition, since heat is kept in a heat medium, power generation is not immediately stopped even when there is no sunlight irradiation. Power generation can be performed for a certain amount of time, eliminating the disadvantages of solar power generation. can do. Unlike water-cooled thermoelectric generators, the power generator can be made smaller because it is air-cooled.
 上述の発明において,前記空冷熱電発電ユニットは,前記熱媒体の周辺に前記熱電発電素子を設置し,前記熱電発電素子の加熱面とは異なる面に前記放熱板を設置する,太陽熱発電装置のように構成することもできる。 In the above-described invention, the air-cooled thermoelectric generator unit is a solar thermoelectric generator, in which the thermoelectric generator is installed around the heat medium, and the heat sink is installed on a surface different from the heating surface of the thermoelectric generator. It can also be configured.
 放熱板を加熱面とは異なる面に設置することで温度差を生じさせやすくなる。 It becomes easy to cause a temperature difference by installing the heat sink on a surface different from the heating surface.
 上述の発明において,前記空冷熱電発電ユニットは,前記搬送した熱媒体を貯留する貯留部の周辺に前記熱電発電素子を設置し,前記熱電発電素子の加熱面とは異なる面であって,前記貯留部および前記熱電発電素子よりも前記筐体の内壁面側に前記放熱板を設置する,太陽熱発電装置のように構成することもできる。 In the above-described invention, the air-cooled thermoelectric power generation unit is provided with the thermoelectric power generation element around a storage portion for storing the transported heat medium, and is a surface different from a heating surface of the thermoelectric power generation element, It can also be configured as a solar thermal power generation device in which the heat radiating plate is installed closer to the inner wall surface side of the housing than the thermoelectric power generation element.
 本発明のように構成することで,さらに熱電発電素子の温度差を生じさせやすくなる。 By configuring as in the present invention, it becomes easier to cause a temperature difference of the thermoelectric power generation element.
 上述の発明において,前記空冷熱電発電ユニットは,さらに,前記熱媒体搬送用パイプを流れる前記熱媒体を貯留する流動管と,前記流動管の外側面の一部を覆う断熱材と,を備えており,前記熱電発電素子は,前記流動管の外側面のうち,前記断熱材で被覆されていない外側面に設置され,前記放熱板は,前記熱電発電素子の前記流動管側の面とは異なる面に設置される,太陽熱発電装置のように構成することもできる。 In the above-described invention, the air-cooled thermoelectric power generation unit further includes a flow pipe that stores the heat medium flowing through the heat medium transport pipe, and a heat insulating material that covers a part of the outer surface of the flow pipe. The thermoelectric power generation element is installed on an outer surface of the flow tube that is not covered with the heat insulating material, and the heat radiating plate is different from the surface of the thermoelectric power generation device on the flow tube side. It can also be configured like a solar power generator installed on the surface.
 本発明のように構成することで,熱媒体の温度が下がることが抑止できるので,より長時間,発電することができる。 Structuring according to the present invention can suppress the temperature of the heat medium from being lowered, so that power can be generated for a longer time.
 上述の発明において,前記熱媒体搬送用パイプは前記流動管を挿通しており,前記熱媒体搬送用パイプのうち,前記流動管の内側に位置する部分には複数の孔が設けられ,前記熱媒体搬送用パイプと前記流動管との間で前記熱媒体が流出入可能である,太陽熱発電装置のように構成することもできる。 In the above-described invention, the heat medium transport pipe passes through the flow tube, and a portion of the heat medium transport pipe located inside the flow tube is provided with a plurality of holes, It can also be configured as a solar thermal power generation apparatus in which the heat medium can flow in and out between the medium transport pipe and the flow pipe.
 本発明のように構成することで熱ムラの発生を抑えることができ,品質の良い電力を発生させることができる。 The configuration of the present invention makes it possible to suppress the occurrence of heat unevenness and generate high-quality power.
 上述の発明において,前記空冷熱電発電装置は,前記空気取込口は,前記筐体の下方付近に設けられており,前記筐体の上面は開放されている,太陽熱発電装置のように構成することもできる。 In the above-described invention, the air-cooled thermoelectric generator is configured as a solar thermoelectric generator in which the air intake port is provided near the lower part of the casing and the upper surface of the casing is open. You can also.
 本発明の空冷熱電発電装置は空冷式なので,上面を開放することで空気の排出を促すことができる。 Since the air-cooled thermoelectric generator of the present invention is air-cooled, it is possible to promote air discharge by opening the upper surface.
 上述の発明において,前記筐体の開放された上面付近にファンを備える,太陽熱発電装置のように構成することもできる。 In the above-described invention, it can also be configured as a solar thermal power generation apparatus provided with a fan near the open upper surface of the casing.
 ファンは上昇気流によって自然に回転するが,それによって,さらに空気の排出が促され,冷却効果を高めることができる。 The fan rotates naturally by the rising airflow, which further encourages air discharge and enhances the cooling effect.
 上述の発明において,前記空冷熱電発電装置は,前記筐体の内壁面に螺旋状の整流フィンを備える,太陽熱発電装置のように構成することもできる。 In the above-described invention, the air-cooled thermoelectric generator can also be configured as a solar thermoelectric generator provided with spiral rectifying fins on the inner wall surface of the casing.
 本発明のように筐体の内壁面に螺旋状の整流フィンを備えることで,緩やかに上昇気流をつくれるので,乱流を防止できる。 Supplied with a spiral rectifying fin on the inner wall surface of the housing as in the present invention, a rising airflow can be created gently, so that turbulence can be prevented.
 上述の発明において,前記空冷熱電発電装置は,前記筐体の内側で空気の流れを作り出す電動ファンを備える,太陽熱発電装置のように構成することもできる。 In the above-described invention, the air-cooled thermoelectric generator can be configured as a solar thermoelectric generator including an electric fan that creates an air flow inside the casing.
 本発明のように構成することで,筐体の内側で空気の流れを人工的に作り出せるので,冷却効果を高めることができる。そのため,熱電発電素子における温度差が大きくなり,発電効率を向上させることができる。 Structuring according to the present invention can artificially create an air flow inside the casing, so that the cooling effect can be enhanced. Therefore, the temperature difference in the thermoelectric power generation element becomes large, and the power generation efficiency can be improved.
 上述の発明において,前記空冷熱電発電装置は,前記筐体の上方に,冷却水を噴霧するための噴霧装置を備える,太陽熱発電装置のように構成することもできる。 In the above-described invention, the air-cooled thermoelectric generator can be configured as a solar thermoelectric generator provided with a spray device for spraying cooling water above the casing.
 本発明のように構成することで,放熱フィンを人工的に冷却することができる。そのため,熱電発電素子における温度差が大きくなり,発電効率を向上させることができる。 構成 By configuring as in the present invention, the radiating fin can be artificially cooled. Therefore, the temperature difference in the thermoelectric power generation element becomes large, and the power generation efficiency can be improved.
 上述の発明において,前記太陽熱発電装置は,さらに,前記太陽熱集熱装置で加熱した熱媒体を貯留する蓄熱装置を備えており,前記太陽熱集熱装置と前記蓄熱装置と前記空冷熱電発電装置とが前記熱媒体搬送用パイプで連結され,前記熱媒体を循環可能にする,太陽熱発電装置のように構成することもできる。 In the above-described invention, the solar thermal power generation device further includes a heat storage device that stores a heat medium heated by the solar heat collection device, and the solar heat collection device, the heat storage device, and the air-cooled thermoelectric power generation device include: It can also be configured like a solar thermal power generation apparatus that is connected by the heat medium transport pipe and allows the heat medium to circulate.
 本発明のように構成することで,熱媒体を貯留して蓄熱をすることができるので,熱媒体の温度低下を抑止でき,太陽光の照射がない時間帯であっても,長時間の発電を継続することができる。 By configuring as in the present invention, the heat medium can be stored and stored, so that the temperature decrease of the heat medium can be suppressed, and long-term power generation is possible even in a time zone where there is no sunlight irradiation. Can continue.
 上述の各発明における太陽熱発電装置を用いた発電方法であって,前記太陽熱集熱装置を屋根に設置し,前記空冷熱電発電装置を庭に設置し,前記太陽熱集熱装置と前記空冷熱電発電装置との間を前記熱媒体搬送用パイプで連結して前記熱媒体を循環させる,ことで太陽熱発電を行う,太陽熱発電装置を用いた発電方法のように構成することもできる。 A power generation method using the solar thermal power generation device according to each of the above-described inventions, wherein the solar thermal collector is installed on a roof, the air-cooled thermoelectric generator is installed in a garden, and the solar thermal collector and the air-cooled thermoelectric generator It can also be configured as a power generation method using a solar thermal power generation apparatus that performs solar thermal power generation by connecting the heat medium with a heat medium transport pipe and circulating the heat medium.
 本発明の太陽熱発電装置は小型化することが容易であるので,太陽光発電装置と同様に,家などに設置することが可能となる。そのため,本発明のように構成をして自宅での発電も可能となる。 Since the solar thermal power generation apparatus of the present invention can be easily downsized, it can be installed in a house or the like, similar to the solar power generation apparatus. Therefore, it is possible to generate power at home by configuring as in the present invention.
 本発明は,熱電発電素子を用いて発電を行う空冷熱電発電装置であって,前記空冷熱電発電装置は,内側空間を空気が流れるように形成した筐体と,熱媒体の熱を用いた温度差により発電をする熱電発電素子と,を備えており,加熱された熱媒体により,前記熱電発電素子の任意の面の温度を高め,前記筐体の内側を流れる空気により,前記熱電発電素子の加熱面とは異なる面の温度を,前記加熱面よりも低くすることで,前記熱電発電素子により発電を行う,空冷熱電発電装置である。 The present invention is an air-cooled thermoelectric generator that generates power using a thermoelectric generator, and the air-cooled thermoelectric generator has a casing formed so that air flows in an inner space, and a temperature using heat of a heat medium. And a thermoelectric power generation element that generates power by the difference, the temperature of an arbitrary surface of the thermoelectric power generation element is increased by a heated heat medium, and the air flowing inside the casing is used to increase the temperature of the thermoelectric power generation element. In the air-cooled thermoelectric generator, power is generated by the thermoelectric element by lowering the temperature of the surface different from the heating surface to be lower than that of the heating surface.
 本発明のように,加熱された熱媒体によって熱電発電素子のある面を加熱し,筐体の内側を流れる空気によって熱電発電素子のほかの面を冷却することで,熱電発電素子に温度差を生じさせられ,その結果,発電が行える。このような構成によって,発電装置を小型化することができる。また熱媒体で熱を保温するので,熱媒体の加熱が行えなくなってもすぐに発電が行われなくなるものではなく,ある程度の時間は発電を行うことができ,太陽光発電のデメリットを解消することができる。また水冷式の熱電発電装置とは異なり,空冷式なので発電装置を小型化することもできる。 As in the present invention, one surface of the thermoelectric power generation element is heated by a heated heat medium, and the other surface of the thermoelectric power generation element is cooled by the air flowing inside the housing, so that a temperature difference is generated in the thermoelectric power generation element. As a result, it can generate electricity. With such a configuration, the power generator can be reduced in size. In addition, since heat is retained by the heat medium, power generation is not immediately stopped even if the heat medium cannot be heated. Power generation can be performed for a certain period of time, eliminating the disadvantages of solar power generation. Can do. Unlike water-cooled thermoelectric generators, the power generator can be made smaller because it is air-cooled.
 上述の空冷熱電発電装置について,熱媒体を太陽熱で加熱することができる。すなわち,太陽熱発電で用いる空冷熱電発電装置であって,前記空冷熱電発電装置は,空気を取り込む空気取込口を備えた筐体と,熱媒体の熱により発電する空冷熱電発電ユニットと,を備えており,前記空冷熱電発電ユニットは,温度差により発電をする熱電発電素子と,前記熱電発電素子の温度を放熱する放熱板とを備え,加熱された熱媒体により,前記熱電発電素子の任意の面の温度を高め,前記空気取込口から取り込んだ空気および前記放熱板により,前記熱電発電素子の加熱面とは異なる面の温度を,前記加熱面よりも低くすることで,前記熱電発電素子により発電を行う,太陽熱発電で用いる空冷熱電発電装置である。 For the above-described air-cooled thermoelectric generator, the heat medium can be heated by solar heat. That is, an air-cooled thermoelectric power generator used in solar thermal power generation, the air-cooled thermoelectric power generator includes a housing having an air intake port for taking in air and an air-cooled thermoelectric power generation unit that generates power by the heat of the heat medium. The air-cooled thermoelectric power generation unit includes a thermoelectric power generation element that generates power due to a temperature difference, and a heat radiating plate that radiates the temperature of the thermoelectric power generation element. The temperature of the surface is increased, and the temperature of the surface different from the heating surface of the thermoelectric power generation element is made lower than that of the heating surface by the air taken in from the air intake port and the heat radiating plate. This is an air-cooled thermoelectric generator that is used in solar thermal power generation.
 本発明のように構成しても,同様の技術的効果を達成することができる。 Even if configured as in the present invention, the same technical effect can be achieved.
 本発明の空冷熱電発電装置によって,太陽光発電におけるデメリット解消するとともに,小型化することが可能となる。 The air-cooled thermoelectric generator of the present invention can eliminate the disadvantages of solar power generation and can be downsized.
 また,本発明の空冷熱電発電装置を太陽熱発電に適用することによって,従来,大型であった太陽熱発電装置を,たとえば家庭に設置できるような大きさに小型化することができる。さらに,太陽光の照射を直接用いるのではなく,熱媒体を加熱して発電をするので,太陽光の照射がなくなっても熱媒体で蓄熱されている間は発電を行うことができる。 Also, by applying the air-cooled thermoelectric generator of the present invention to solar thermal power generation, the conventionally large solar thermal power generator can be reduced to a size that can be installed at home, for example. Furthermore, since the heat medium is heated instead of directly using the sunlight irradiation, the power generation can be performed while the heat medium is stored even if the sunlight irradiation disappears.
空冷熱電発電装置の基本的構成の外観を示す図である。It is a figure which shows the external appearance of the basic composition of an air-cooled thermoelectric generator. 図1の空冷熱電発電装置の縦断面図である。It is a longitudinal cross-sectional view of the air-cooled thermoelectric generator of FIG. 太陽熱発電装置の一例の概略斜視図である。It is a schematic perspective view of an example of a solar thermal power generation device. 太陽熱発電装置の一例の構成図である。It is a block diagram of an example of a solar thermal power generation device. 太陽熱集熱装置の縦断面図である。It is a longitudinal cross-sectional view of a solar thermal collector. 図5のA付近の拡大図である。It is an enlarged view of A vicinity of FIG. 空冷熱電発電装置の一例を示す図である。It is a figure which shows an example of an air-cooled thermoelectric generator. 空冷熱電発電装置の側面図である。It is a side view of an air-cooled thermoelectric generator. 空冷熱電発電装置の上部付近の縦断面図である。It is a longitudinal cross-sectional view of the upper part vicinity of an air-cooled thermoelectric generator. 図9のα-α線における横断面図である。FIG. 10 is a transverse sectional view taken along the line α-α in FIG. 空冷熱電発電装置の筐体の下部に設けた空気取込口から流入した空気が螺旋状の整流フィンによって整流される状態を模式的に示す図である。It is a figure which shows typically the state by which the air which flowed in from the air intake provided in the lower part of the housing | casing of an air-cooled thermoelectric generator is rectified by the helical rectification fin. 空冷熱電発電ユニットにおける空気の流れを模式的に示す図である。It is a figure which shows typically the flow of the air in an air-cooling thermoelectric power generation unit. 空冷熱電発電ユニットの別の実施態様の上部付近の縦断面図である。It is a longitudinal cross-sectional view of the upper part vicinity of another embodiment of an air-cooled thermoelectric power generation unit. 図13のβ-β線における横断面図である。FIG. 14 is a transverse sectional view taken along the line β-β in FIG. 13. 図14のγ-γ線における縦断面図である。FIG. 15 is a longitudinal sectional view taken along the line γ-γ in FIG. 14. 冷却用電動ファンを設けた場合の空冷熱電発電装置の縦断面図である。It is a longitudinal cross-sectional view of an air-cooled thermoelectric generator when a cooling electric fan is provided. 噴霧装置を設けた場合の空冷熱電発電装置の縦断面図である。It is a longitudinal cross-sectional view of the air-cooled thermoelectric generator with a spray device. 太陽熱発電装置の別の実施態様の概略斜視図である。It is a schematic perspective view of another embodiment of a solar power generation device. 太陽熱発電装置の別の実施態様の構成図である。It is a block diagram of another embodiment of a solar thermal power generation device. 太陽熱発電装置の別の実施態様の構成図である。It is a block diagram of another embodiment of a solar thermal power generation device. 太陽熱発電装置を家に設置した場合の一例を示す図である。It is a figure which shows an example at the time of installing a solar thermal power generation device in a house.
 以下に本発明の熱電発電素子Bを用いた空冷熱電発電装置Aの基本的構成を説明する。この基本的構成の概略を示すのが図1である。また図2に,図1の空冷熱電発電装置の縦断面図を示す。 Hereinafter, a basic configuration of the air-cooled thermoelectric generator A using the thermoelectric generator B of the present invention will be described. FIG. 1 shows an outline of this basic configuration. FIG. 2 shows a longitudinal sectional view of the air-cooled thermoelectric generator of FIG.
 本発明の空冷熱電発電装置Aの基本的構成は,その内側で空気が流れるように形成された筐体Cと,その筐体Cの内側に熱電発電素子Bとを備える。筐体Cには,たとえば上面の一部または全部を開放し(あるいは上部付近に開口部を設け),下面の一部または全部を開放する(あるいは下部付近には開口部を設ける)ことで,筐体Cの内側を空気が流れる。なお,下面を開放する場合には,筐体Cの内側に空気が流れるように,筐体Cの下面が直接,地面や架台などに接しないように設置する。 The basic configuration of the air-cooled thermoelectric generator A according to the present invention includes a casing C formed so that air flows inside, and a thermoelectric generator B inside the casing C. In the case C, for example, a part or the whole of the upper surface is opened (or an opening is provided near the upper part), and a part or the whole of the lower surface is opened (or an opening is provided near the lower part). Air flows inside the housing C. When the lower surface is opened, it is installed so that the lower surface of the casing C does not directly contact the ground or a stand so that air flows inside the casing C.
 そして,加熱装置(図示せず)で加熱したエチルグリコーゲン,グリセリン,油,水などの熱媒体Eを筐体Cの内側の貯留部Dで貯留し,その周辺に熱電発電素子Bの任意の面を加熱する。この加熱装置は,熱媒体Eを加熱できるものであれば如何なる装置であっても良い。たとえば後述するように,太陽熱集熱装置があるが,それに限定されない。 Then, a heat medium E such as ethylglycogen, glycerin, oil, water, etc. heated by a heating device (not shown) is stored in the storage part D inside the casing C, and an arbitrary surface of the thermoelectric power generation element B around it. Heat. This heating device may be any device that can heat the heat medium E. For example, as will be described later, there is a solar heat collector, but it is not limited thereto.
 一方,熱電発電素子Bの加熱面とは異なる面(好ましくは加熱面とは反対する面)は,筐体Cの内側を流れる空気によって冷却される。 On the other hand, the surface different from the heating surface of the thermoelectric generator B (preferably the surface opposite to the heating surface) is cooled by the air flowing inside the casing C.
 このような構成によって,熱電発電素子Bでは,熱媒体Eで加熱された面と,空気によって冷却された面との間で温度差が生じるので,電力が発生し,発電を行える。 With such a configuration, in the thermoelectric power generation element B, a temperature difference is generated between the surface heated by the heat medium E and the surface cooled by air, so that electric power is generated and power generation can be performed.
 本発明の空冷熱電発電装置Aは,熱媒体Eをさまざまな方法で加熱することで発電が行える。たとえば太陽熱によって熱媒体Eを加熱し,それが搬送され貯留部Dで貯留することがその代表例であるが,それに限定されるものではない。たとえば太陽光や地熱や高温の蒸気などによって熱媒体を加熱することもできる。 The air-cooled thermoelectric generator A according to the present invention can generate power by heating the heat medium E by various methods. For example, the heat medium E is heated by solar heat and transported and stored in the storage part D is a representative example, but is not limited thereto. For example, the heat medium can be heated by sunlight, geothermal heat or high-temperature steam.
 以下に,より具体的な実施例を説明する。以下の説明では,熱媒体を加熱する方法として太陽熱による場合を説明するが,上述のようにそれに限定されない。 Hereinafter, more specific examples will be described. In the following description, the case of using solar heat will be described as a method for heating the heat medium, but the method is not limited thereto as described above.
 本発明の空冷熱電発電装置1を太陽熱発電装置2として用いた場合を説明する。太陽熱発電装置2は,太陽熱集熱装置3で太陽光を集熱することで,熱媒体を加熱し,熱電発電素子の両面の温度差を利用することによって発電を行う。 The case where the air-cooled thermoelectric generator 1 of the present invention is used as the solar thermal generator 2 will be described. The solar power generation device 2 collects sunlight with the solar heat collection device 3 to heat the heat medium and generate power by utilizing the temperature difference between both surfaces of the thermoelectric power generation element.
 太陽熱発電装置2は各装置の構成によって複数の実施態様があるので,以下に実施態様ごとに説明をする。なお,太陽熱発電装置2は,以下の各実施態様に限られるのではなく,その発明の技術的思想の範囲内でさまざまな変形を行うことが可能である。また各実施例の構成を組み合わせて太陽熱発電装置2を構成することも可能である。 Since the solar thermal power generation apparatus 2 has a plurality of embodiments depending on the configuration of each apparatus, each embodiment will be described below. In addition, the solar thermal power generation apparatus 2 is not limited to the following embodiments, and various modifications can be made within the scope of the technical idea of the invention. It is also possible to configure the solar power generation device 2 by combining the configurations of the respective embodiments.
 まず,第1の実施例の太陽熱発電装置2の概略斜視図を図3に示す。また太陽熱発電装置2の構成図を図4に示す。 First, FIG. 3 shows a schematic perspective view of the solar thermal power generation apparatus 2 of the first embodiment. Moreover, the block diagram of the solar thermal power generation apparatus 2 is shown in FIG.
 太陽熱発電装置2は,太陽熱集熱装置3と,空冷熱電発電装置1と,熱媒体搬送用パイプ4と,循環ポンプ5と,膨張タンク6と,温度センサー7と,支持フレーム8と,架台9とを備える。 The solar thermal power generation device 2 includes a solar thermal collector 3, an air-cooled thermoelectric power generation device 1, a heat medium transport pipe 4, a circulation pump 5, an expansion tank 6, a temperature sensor 7, a support frame 8, and a gantry 9 With.
 太陽熱集熱装置3は,太陽熱を集熱するパネルであり,その内部には熱媒体が流れる熱媒体搬送用パイプ4cを備えている。熱媒体搬送用パイプ4は,熱媒体搬送用パイプ4a乃至4dが連結しており,循環ポンプ5によって熱媒体が循環可能となっている。そのため,太陽熱集熱装置3に配設した熱媒体搬送用パイプ4cを流れる熱媒体が太陽熱によって加熱され,循環することで,熱媒体全体の温度が上がることとなる。太陽熱集熱装置3は,その熱媒体搬送用パイプ4c内の熱媒体を太陽熱によって加熱することができる装置であれば如何なる構成であっても良い。 The solar heat collector 3 is a panel that collects solar heat, and includes a heat medium transport pipe 4c through which the heat medium flows. The heat medium transport pipe 4 is connected to the heat medium transport pipes 4 a to 4 d, and the heat medium can be circulated by the circulation pump 5. Therefore, the heat medium flowing through the heat medium transport pipe 4c disposed in the solar heat collecting device 3 is heated by the solar heat and circulates, thereby increasing the temperature of the entire heat medium. The solar heat collecting device 3 may have any configuration as long as the heat medium in the heat medium transport pipe 4c can be heated by solar heat.
 太陽熱集熱装置3の縦断面図を図5に示す。また,図5のA付近の拡大図が図6である。太陽熱集熱装置3は,筐体31と,光透過板32と,集熱部33と,板留34と,パッキング35と,パッキング36とを有する。 Fig. 5 shows a longitudinal sectional view of the solar heat collecting device 3. FIG. 6 is an enlarged view of the vicinity of A in FIG. The solar heat collecting apparatus 3 includes a casing 31, a light transmission plate 32, a heat collecting part 33, a plate 34, a packing 35, and a packing 36.
 筐体31は箱状に形成されており,その一面は太陽光の照射を受けられるように開口している。また,筐体31のうち,開口部分の外周には,外側に向かって縁部312が形成されており,後述する光透過板32を筐体31に取り付ける際に板留34によって固定する部位となる。 The housing 31 is formed in a box shape, and one surface thereof is open so that it can be irradiated with sunlight. In addition, an edge 312 is formed on the outer periphery of the opening portion of the housing 31, and a portion that is fixed by a plate clasp 34 when a light transmission plate 32 to be described later is attached to the housing 31. Become.
 筐体31の内部には,集熱部33が設置される。集熱部33は太陽熱を集熱する部位である。集熱部33は金属線および/またはカーボン糸を縦糸,横糸として二重織りの構造とし,その間に熱媒体搬送用パイプ4cを挟み込む。なお,集熱部33は熱媒体搬送用パイプ4cを加熱できればよいので,二重織りの構造には限定されず,また集熱部33を設けなくても良い。 Inside the housing 31, a heat collecting unit 33 is installed. The heat collecting part 33 is a part for collecting solar heat. The heat collecting section 33 has a double weaving structure with metal wires and / or carbon yarns as warp and weft, and sandwiches the heat medium transport pipe 4c therebetween. Note that the heat collecting unit 33 is not limited to a double weave structure as long as the heat medium transport pipe 4c can be heated, and the heat collecting unit 33 may not be provided.
 熱媒体搬送用パイプ4cは,後述する空冷熱電発電装置1との間で熱媒体を循環させるための熱媒体搬送用パイプ4a,4bと連結している。熱媒体搬送用パイプ4cを挟み込んだ集熱部33は,筐体31の内壁面に設けられた集熱部固定具311で固定する。 The heat medium transport pipe 4c is connected to heat medium transport pipes 4a and 4b for circulating the heat medium between the air-cooled thermoelectric generator 1 described later. The heat collection unit 33 sandwiching the heat medium transport pipe 4 c is fixed by a heat collection unit fixture 311 provided on the inner wall surface of the housing 31.
 筐体31の開口部を覆うように光透過板32を設置し,筐体31の開口部を閉塞する。また,光透過板32の辺縁部と筐体31の縁部312とを,コの字状の板留34で挟み込むように固定する。なお,光透過板32の辺縁部と筐体31の縁部312との密着度合いを高めるため,光透過板32と縁部312との間,光透過板32と板留34の間とを,それぞれゴムなどのパッキング35,36で密着させる。光透過板32の辺縁部と筐体31の縁部312とパッキング35,36と板留34で形成されるのがひれ状突起部37である。 The light transmission plate 32 is installed so as to cover the opening of the housing 31, and the opening of the housing 31 is closed. Further, the edge of the light transmission plate 32 and the edge 312 of the housing 31 are fixed so as to be sandwiched between the U-shaped plate clasps 34. In order to increase the degree of adhesion between the edge portion of the light transmission plate 32 and the edge portion 312 of the housing 31, the space between the light transmission plate 32 and the edge portion 312 and the space between the light transmission plate 32 and the plate clasp 34 are provided. , And tightly packed with rubber packing 35, 36, respectively. A fin-shaped protrusion 37 is formed by the edge of the light transmission plate 32, the edge 312 of the housing 31, the packings 35 and 36, and the plate clasp 34.
 このようにして構成した太陽熱集熱装置3において,集熱効果を高めるため,筐体31に真空バルブ(図示せず)を設け,そこに真空ポンプを取り付けて筐体31の内部を真空とすると,集熱部33で集熱した熱が光透過板32などから逃げにくくなる。また,ひれ状突起部37は板留34やパッキング35,36などで密着固定されているので,隙間からも空気が逃げにくくなり,集熱効果を高めることができる。 In the solar heat collecting apparatus 3 configured as described above, in order to enhance the heat collecting effect, a vacuum valve (not shown) is provided in the casing 31, and a vacuum pump is attached to the casing 31 so that the inside of the casing 31 is evacuated. , The heat collected by the heat collecting section 33 is difficult to escape from the light transmission plate 32 and the like. In addition, since the fin-like projections 37 are tightly fixed by the plate clasps 34, packings 35, 36, etc., it is difficult for air to escape from the gaps, and the heat collecting effect can be enhanced.
 空冷熱電発電装置1は,太陽熱集熱装置3で加熱した熱媒体を用いて発電を行う装置である。空冷熱電発電装置1の一例を図7に示す。図7では,内部構造を示すため筐体11の上方の一部が開放された状態を示しているが,実際にはこの部分も後述する筐体11によって覆われている。図8が空冷熱電発電装置1の側面図である。また,空冷熱電発電装置1の上部付近の縦断面図を図9に,図9のα-α線における横断面図を図10に示す。 The air-cooled thermoelectric generator 1 is a device that generates power using a heat medium heated by the solar heat collector 3. An example of the air-cooled thermoelectric generator 1 is shown in FIG. FIG. 7 shows a state in which a part of the upper portion of the housing 11 is opened to show the internal structure, but actually this portion is also covered by the housing 11 described later. FIG. 8 is a side view of the air-cooled thermoelectric generator 1. Further, FIG. 9 is a longitudinal sectional view of the vicinity of the upper portion of the air-cooled thermoelectric generator 1, and FIG. 10 is a transverse sectional view taken along the line α-α in FIG.
 空冷熱電発電装置1は,円柱または角柱による筐体11と,その内側に一または複数の空冷熱電発電ユニット12とを有している。筐体11の下部付近には,筐体11の内側に空気を取り込むための複数の開口部が空気取込口13として設けられる。また筐体11の上部付近には,ファン15およびファン15を支持するための支持部材16a,16bが設置される。ファン15は,空気取込口13から取り込まれた空気の上昇気流によって自然に回転し,筐体11の内側に取り込まれた空気の排出を促進する。 The air-cooled thermoelectric generator 1 has a cylindrical or prismatic casing 11 and one or a plurality of air-cooled thermoelectric generator units 12 inside thereof. In the vicinity of the lower portion of the housing 11, a plurality of openings for taking air into the housing 11 are provided as air intake ports 13. Further, near the upper portion of the housing 11, a fan 15 and support members 16 a and 16 b for supporting the fan 15 are installed. The fan 15 naturally rotates due to the rising airflow of the air taken in from the air intake port 13, and promotes the discharge of the air taken inside the housing 11.
 筐体11はその外側を金属または樹脂製の空冷用導管110で形成し,空冷用導管110の内壁面に導管用断熱材111を取り付け,断熱する。また,筐体11の内壁面(導管用断熱材111)に沿って螺旋状の整流フィン14を取り付ける。螺旋状の整流フィン14によって,空気取込口13から取り込まれた空気は,整流フィン14に沿って整流された上昇気流となり,乱流を防止し,さらに排出が促される。 The outside of the housing 11 is formed of a metal or resin air cooling conduit 110, and a conduit heat insulating material 111 is attached to the inner wall surface of the air cooling conduit 110 to insulate it. A spiral rectifying fin 14 is attached along the inner wall surface (conduit insulation 111) of the housing 11. The air taken in from the air intake port 13 by the spiral rectifying fins 14 becomes an ascending airflow rectified along the rectifying fins 14 to prevent turbulent flow and further promote discharge.
 筐体11の上部および下部には熱媒体搬送用パイプ4を通すための孔112(112aa,112b)が設けられ,この孔112を通り,筐体11の中心付近を上下方向に,熱媒体搬送用パイプ4dが通される。熱媒体搬送用パイプ4dを中心として,上下方向に一または複数の空冷熱電発電ユニット12が取り付けられる。 Holes 112 (112aa and 112b) for passing the heat medium transport pipe 4 are provided in the upper and lower portions of the housing 11, and the heat medium transport is performed in the vertical direction around the center of the housing 11 through the holes 112. The service pipe 4d is passed. One or a plurality of air-cooled thermoelectric generator units 12 are attached in the vertical direction around the heat medium transport pipe 4d.
 空冷熱電発電ユニット12は,流動管120と熱電発電素子121と断熱材122,123と放熱板126とを備える。 The air-cooled thermoelectric power generation unit 12 includes a flow tube 120, a thermoelectric power generation element 121, heat insulating materials 122 and 123, and a heat sink 126.
 流動管120は,たとえば中空状の金属製の円柱または角柱で形成されており,上面および底面の中心付近には熱媒体搬送用パイプ4dを挿通するための孔が設けられている。空冷熱電発電ユニット12内における熱媒体搬送用パイプ4dには複数の孔40が設けられており,熱媒体搬送用パイプ4dと流動管120との間で,熱媒体が出入り可能となっている。この孔40によって熱媒体が熱媒体搬送用パイプ4dから流動管120に,流動管120から熱媒体搬送用パイプ4dに流入し,流動管120に貯留する熱媒体と熱媒体搬送用パイプ4dを流れる熱媒体の温度が均一となる。なお,ここでは,流動管120を熱媒体搬送用パイプ4dが挿通し,熱媒体搬送用パイプ4dの孔40によって熱媒体が流出入する場合を示しているが,熱媒体搬送用パイプ4dが,流動管120の上面および底面の孔と連結し,熱媒体搬送用パイプ4dが流動管120の内側を挿通せずに,流動管120と一体的に形成されていても良い。 The flow tube 120 is formed of, for example, a hollow metal cylinder or prism, and a hole for inserting the heat transfer pipe 4d is provided in the vicinity of the center of the top and bottom surfaces. A plurality of holes 40 are provided in the heat medium transport pipe 4 d in the air-cooled thermoelectric power generation unit 12, so that the heat medium can enter and exit between the heat medium transport pipe 4 d and the flow pipe 120. Through this hole 40, the heat medium flows from the heat medium transport pipe 4 d to the flow pipe 120, and from the flow pipe 120 to the heat medium transport pipe 4 d, and flows through the heat medium stored in the flow pipe 120 and the heat medium transport pipe 4 d. The temperature of the heat medium becomes uniform. Here, the case where the heat medium transport pipe 4d is inserted through the flow pipe 120 and the heat medium flows in and out through the hole 40 of the heat medium transport pipe 4d is shown, but the heat medium transport pipe 4d is The heat medium conveying pipe 4d may be integrally formed with the flow pipe 120 without being inserted through the inside of the flow pipe 120, connected to the holes on the top and bottom surfaces of the flow pipe 120.
 また流動管120の上面および底面は,凹面状に形成された,発泡スチロールや樹脂等の断熱材123で被覆されている。また断熱材123と流動管120との間にはシリコンコート,硬質ウレタンなどの薄い断熱材122の層が存在しており,流動管120の周囲を覆っている。すなわち中心から,流動管120,断熱材122,断熱材123の各層により形成されている。 Further, the upper surface and the bottom surface of the flow tube 120 are covered with a heat insulating material 123 formed in a concave shape, such as polystyrene foam or resin. In addition, a thin layer of a heat insulating material 122 such as silicon coat or hard urethane exists between the heat insulating material 123 and the flow tube 120 and covers the periphery of the flow tube 120. That is, it is formed from the center by each layer of the flow pipe 120, the heat insulating material 122, and the heat insulating material 123.
 また流動管120の外壁面には,縦方向に所定間隔をおいて熱電発電素子121が設置されている。すなわち,流動管120の外壁面には,好ましくは熱電発電素子121と,断熱材122,123が取り付けれている。断熱効果を高めるため,熱電発電素子121を取り付ける箇所以外の流動管120の外壁面は,断熱材122,123によって被覆されていると良い。本実施例では熱電発電素子121を縦方向に連続させずに配置しているが,ほかの熱電発電素子121の熱の影響を受けにくい熱電発電素子121を用いる場合には,熱電発電素子121を縦方向に連続的に(断熱材122,123を縦方向に挟まずに)配置しても良い。 Further, thermoelectric power generation elements 121 are installed on the outer wall surface of the flow pipe 120 at predetermined intervals in the vertical direction. That is, the thermoelectric generator 121 and the heat insulating materials 122 and 123 are preferably attached to the outer wall surface of the flow tube 120. In order to enhance the heat insulation effect, the outer wall surface of the flow pipe 120 other than the location where the thermoelectric power generation element 121 is attached is preferably covered with the heat insulation materials 122 and 123. In the present embodiment, the thermoelectric generators 121 are arranged without being continuous in the vertical direction. However, in the case where the thermoelectric generators 121 that are not easily affected by the heat of the other thermoelectric generators 121 are used, the thermoelectric generators 121 are arranged. You may arrange | position continuously (without pinching the heat insulating materials 122 and 123 vertically) in the vertical direction.
 熱電発電素子121および断熱材123の外側には,金属(たとえばアルミニウム製,銅製など)またはカーボンなどの素材による放熱板126を取り付ける。放熱板126のうち,熱電発電素子121および断熱材123側の部分はこれらの部材の形状に沿うように凹凸状に形成されている。なお熱電発電素子121と放熱板126とは嵌合する大きさで形成され,断熱材123と放熱板126とはその間に間隙を設けて空気層124が形成できる大きさで形成される。 A heat sink 126 made of a material such as metal (for example, aluminum or copper) or carbon is attached to the outside of the thermoelectric generator 121 and the heat insulating material 123. Of the heat radiating plate 126, portions on the thermoelectric generator 121 and the heat insulating material 123 side are formed in an uneven shape so as to follow the shapes of these members. Note that the thermoelectric generator 121 and the heat sink 126 are formed to fit with each other, and the heat insulating material 123 and the heat sink 126 are formed to have a size such that an air layer 124 can be formed with a gap therebetween.
 放熱板126の筐体11の内壁面側は,垂直方向にフィン状に形成しており,熱電発電素子121の放熱板126側の面を,筐体11の内側を流れる空気によって冷却する。 The inner wall surface side of the housing 11 of the heat sink 126 is formed in a fin shape in the vertical direction, and the surface on the heat sink 126 side of the thermoelectric generator 121 is cooled by the air flowing inside the housing 11.
 流動管120の外壁側面に取り付けられる放熱板126や断熱材123は,放熱板締付ビス125で固定をする。 The heat sink 126 and the heat insulating material 123 attached to the outer wall side surface of the flow pipe 120 are fixed with a heat sink tightening screw 125.
 以上のように形成された空冷熱電発電ユニット12は,筐体11の内壁面に取り付けたユニット支持部127で支持をされる。 The air-cooled thermoelectric power generation unit 12 formed as described above is supported by a unit support portion 127 attached to the inner wall surface of the casing 11.
 このような空冷熱電発電ユニット12を,熱媒体搬送用パイプ4dに沿って,縦方向に一または複数個設置する。 One or a plurality of such air-cooled thermoelectric power generation units 12 are installed in the vertical direction along the heat medium transport pipe 4d.
 循環ポンプ5は,熱媒体搬送用パイプ4を流れる熱媒体を,太陽熱集熱装置3と空冷熱電発電装置1との間で循環させる。 The circulation pump 5 circulates the heat medium flowing through the heat medium transport pipe 4 between the solar heat collector 3 and the air-cooled thermoelectric generator 1.
 膨張タンク6は,熱媒体は加熱されることで膨張するので,それを一時的に貯留するためのタンクである。 The expansion tank 6 is a tank for temporarily storing the heat medium because it is expanded by being heated.
 温度センサー7は,空冷熱電発電装置1内の熱媒体の温度を計測し,循環ポンプ5の作動のオン・オフを制御する。すなわち,空冷熱電発電装置1内の熱媒体が一定温度以下になった場合には循環ポンプ5をオンにし,熱媒体が熱媒体搬送用パイプ4内を循環する。また,あらかじめ定められた温度以上になった場合には循環ポンプ5をオフにし,熱媒体が熱媒体搬送用パイプ4内を循環するのを中止させる。 The temperature sensor 7 measures the temperature of the heat medium in the air-cooled thermoelectric generator 1 and controls the operation of the circulation pump 5 on / off. That is, when the heat medium in the air-cooled thermoelectric generator 1 becomes a certain temperature or less, the circulation pump 5 is turned on, and the heat medium circulates in the heat medium transport pipe 4. When the temperature reaches a predetermined temperature or more, the circulation pump 5 is turned off to stop the heat medium from circulating in the heat medium transport pipe 4.
 支持フレーム8は,太陽熱集熱装置3を支持するためのフレームである。 The support frame 8 is a frame for supporting the solar heat collecting apparatus 3.
 架台9は,支持フレーム8および太陽熱集熱装置3を支持し,設置場所に固定するための土台である。 The gantry 9 is a base for supporting the support frame 8 and the solar heat collecting device 3 and fixing them to the installation location.
 つぎに太陽熱発電装置2を用いた発電を説明する。 Next, power generation using the solar thermal power generation apparatus 2 will be described.
 太陽熱発電装置2における太陽熱集熱装置3と空冷熱電発電装置1とを,たとえば図3に示すように設置する。そして太陽熱集熱装置3と空冷熱電発電装置1とを熱媒体搬送用パイプ4(4a乃至4d)で連結し,それらの各装置の間を熱媒体が循環するように構成する。 The solar heat collector 3 and the air-cooled thermoelectric generator 1 in the solar thermal power generator 2 are installed as shown in FIG. 3, for example. The solar heat collector 3 and the air-cooled thermoelectric generator 1 are connected by a heat medium transport pipe 4 (4a to 4d) so that the heat medium circulates between these devices.
 また複数の空冷熱電発電装置1がある場合には,その空冷熱電発電装置1同士を熱媒体搬送用パイプ4で連結し,太陽熱集熱装置3との間で熱媒体が循環するように構成する。 When there are a plurality of air-cooled thermoelectric generators 1, the air-cooled thermoelectric generators 1 are connected to each other by a heat medium transport pipe 4 so that the heat medium circulates between the solar heat collector 3. .
 このように構成した太陽熱発電装置2において,太陽熱集熱装置3で太陽熱を集熱すると,太陽熱集熱装置3に配設した熱媒体搬送用パイプ4cを流れる熱媒体が加熱される。この熱媒体が熱媒体搬送用パイプ4aまたは4bを流れ,熱媒体搬送用パイプ4dまで流れることで,熱媒体の温度が高くなる。 In the solar power generation device 2 configured as described above, when solar heat is collected by the solar heat collector 3, the heat medium flowing through the heat medium transport pipe 4c disposed in the solar heat collector 3 is heated. When the heat medium flows through the heat medium transport pipe 4a or 4b and flows to the heat medium transport pipe 4d, the temperature of the heat medium increases.
 それに伴い,空冷熱電発電装置1内の熱媒体搬送用パイプ4dと流動管120との間を出入りする熱媒体も温度が高くなるので,流動管120の外壁面に設置された熱電発電素子121の流動管120側の面が加熱される。 Accordingly, the temperature of the heat medium entering and exiting between the heat medium conveying pipe 4d and the flow pipe 120 in the air-cooled thermoelectric power generation apparatus 1 also increases, so that the thermoelectric power generation element 121 installed on the outer wall surface of the flow pipe 120 The surface on the flow tube 120 side is heated.
 一方,空冷熱電発電装置1は以下のように作用する。図11は,空冷熱電発電装置1の筐体11の下部に設けた空気取込口13から流入した空気が螺旋状の整流フィン14によって整流される状態を模式的に示す図であり,図12は空冷熱電発電ユニット12における空気の流れを模式的に示す図である。 On the other hand, the air-cooled thermoelectric generator 1 operates as follows. FIG. 11 is a diagram schematically showing a state in which the air flowing in from the air intake port 13 provided in the lower part of the casing 11 of the air-cooled thermoelectric generator 1 is rectified by the spiral rectifying fins 14. FIG. 3 is a diagram schematically showing the air flow in the air-cooled thermoelectric power generation unit 12.
 図11および図12に示すように,空冷熱電発電装置1の筐体11の下部に設けた空気取込口13からは外気が流入し,筐体11の上方に向かって上昇気流となる。この上昇気流は,筐体11の内壁面に沿って設置した螺旋状の整流フィン14によって,筐体11の内側をゆっくりと回転しながら滑らかに上昇するように整流される。これによって,上昇する空気は乱流を起こさずに,速やかに筐体11の上部から排出される。 As shown in FIG. 11 and FIG. 12, outside air flows from the air intake port 13 provided in the lower part of the casing 11 of the air-cooled thermoelectric generator 1, and becomes an upward airflow upward of the casing 11. The ascending air current is rectified so as to rise smoothly while rotating slowly inside the casing 11 by the spiral rectifying fins 14 installed along the inner wall surface of the casing 11. As a result, the rising air is quickly discharged from the upper portion of the housing 11 without causing turbulent flow.
 また,熱電発電素子121の流動管120側の面とは反対側の面(筐体11の内壁面側の面)では放熱板126から熱電発電素子121の熱が放熱されるとともに,筐体11の内側に流入した上昇気流によって冷却される。これによって,熱電発電素子121の流動管120側の面とは反対側の面が冷却され,温度が下がる。その結果,熱電発電素子121の流動管120側の面と,その反対側の面とで温度差が生じ,電力が発生する。 Further, on the surface opposite to the surface on the flow tube 120 side of the thermoelectric power generation element 121 (the surface on the inner wall surface side of the housing 11), the heat of the thermoelectric power generation device 121 is radiated from the heat radiating plate 126, and the housing 11 It is cooled by the rising airflow that flows inside. As a result, the surface of the thermoelectric generator 121 opposite to the surface on the flow tube 120 side is cooled, and the temperature decreases. As a result, a temperature difference occurs between the surface of the thermoelectric generator 121 on the flow tube 120 side and the surface on the opposite side, and electric power is generated.
 以上のように,本発明の空冷熱電発電装置1を用いて太陽熱発電装置2を構成することで,太陽熱発電装置2を小型化することができる。また,熱媒体を加熱し,それを熱媒体搬送用パイプ4で循環させることで,直ちにその温度が下がらないので,太陽光による照射がない状態であっても発電を行うことができる。 As described above, the solar thermal power generation device 2 can be downsized by configuring the solar thermal power generation device 2 using the air-cooled thermoelectric power generation device 1 of the present invention. Moreover, since the temperature does not drop immediately by heating the heat medium and circulating it through the heat medium transport pipe 4, it is possible to generate power even in the absence of sunlight.
 太陽熱発電装置2の別の実施例を説明する。実施例1では流動管120の形状が四角柱の場合であったが,本実施例では,流動管120’の形状が六角柱の場合を説明する。この場合の空冷熱電発電装置1’の上部付近の縦断面図を図13に示す。また図13のβ-β線における横断面図を図14に示す。また,図14のγ-γ線における縦断面図を図15に示す。 Another embodiment of the solar thermal power generation apparatus 2 will be described. In the first embodiment, the shape of the flow tube 120 is a quadrangular column, but in this embodiment, the case where the shape of the flow tube 120 ′ is a hexagonal column will be described. FIG. 13 shows a longitudinal sectional view near the upper portion of the air-cooled thermoelectric generator 1 ′ in this case. FIG. 14 shows a cross-sectional view taken along line β-β in FIG. FIG. 15 is a longitudinal sectional view taken along the line γ-γ in FIG.
 本実施例における空冷熱電発電ユニット12’は,流動管120’と熱電発電素子121と断熱材122,123と放熱板126’とを備える。なお,実施例1の空冷熱電発電ユニット12と同じ構成の部分については説明を省略している場合もある。 The air-cooled thermoelectric power generation unit 12 'in this embodiment includes a flow pipe 120', a thermoelectric power generation element 121, heat insulating materials 122 and 123, and a heat radiating plate 126 '. In addition, description may be abbreviate | omitted about the part of the same structure as the air-cooling thermoelectric power generation unit 12 of Example 1. FIG.
 流動管120’は,たとえば中空状の金属製の六角柱で形成されており,上面および底面の中心付近には熱媒体搬送用パイプ4を挿通するための孔が設けられている。空冷熱電発電ユニット12’における熱媒体搬送用パイプ4dには複数の孔40が設けられており,熱媒体搬送用パイプ4dと流動管120’との間で,熱媒体が出入り可能となっている。この孔40によって熱媒体が熱媒体搬送用パイプ4dから流動管120’に,流動管120’から熱媒体搬送用パイプ4dに流入し,流動管120’内側の熱媒体と熱媒体搬送用パイプ4dを流れる熱媒体の温度が均一となる。 The flow pipe 120 ′ is formed of, for example, a hollow metal hexagonal column, and a hole for inserting the heat medium transport pipe 4 is provided in the vicinity of the center of the upper surface and the bottom surface. A plurality of holes 40 are provided in the heat medium transport pipe 4d in the air-cooled thermoelectric power generation unit 12 ′, so that the heat medium can enter and exit between the heat medium transport pipe 4d and the flow pipe 120 ′. . Through this hole 40, the heat medium flows from the heat medium transport pipe 4 d to the flow pipe 120 ′ and from the flow pipe 120 ′ to the heat medium transport pipe 4 d, and the heat medium inside the flow pipe 120 ′ and the heat medium transport pipe 4 d The temperature of the heat medium flowing through the chamber becomes uniform.
 また流動管120’の上面および底面は,凹面状に形成された断熱材123で被覆されている。また断熱材123と流動管120’との間には薄い断熱材122の層が存在しており,流動管120’の外側面を覆っている。 Further, the upper surface and the bottom surface of the flow tube 120 ′ are covered with a heat insulating material 123 formed in a concave shape. In addition, a thin layer of heat insulating material 122 exists between the heat insulating material 123 and the flow pipe 120 ', and covers the outer surface of the flow pipe 120'.
 流動管120’の外壁面には,縦方向に所定間隔をおいて熱電発電素子121が設置されている。すなわち,流動管120’の外壁面には,好ましくは熱電発電素子121と,断熱材122,123が取り付けられている。また断熱効果を高めるため,熱電発電素子121が取り付けられている箇所以外の流動管120’の外壁面は,断熱材122,123で被覆されていると良い。 Thermoelectric power generation elements 121 are installed on the outer wall surface of the flow pipe 120 ′ at predetermined intervals in the vertical direction. That is, the thermoelectric generator 121 and the heat insulating materials 122 and 123 are preferably attached to the outer wall surface of the flow pipe 120 '. In order to enhance the heat insulating effect, the outer wall surface of the flow pipe 120 ′ other than the portion where the thermoelectric generator 121 is attached is preferably covered with the heat insulating materials 122 and 123.
 熱電発電素子121および断熱材123の外側には,放熱板126’を取り付ける。放熱板126’のうち,熱電発電素子121および断熱材123側の部分はこれらの部材の形状に沿うように凹凸状に形成されている。なお熱電発電素子121と放熱板126’とは嵌合する大きさで形成され,断熱材123と放熱板126’とはその間に間隙を設けて空気層124が形成できる大きさで形成される。 A heat radiating plate 126 ′ is attached outside the thermoelectric generator 121 and the heat insulating material 123. Of the heat radiating plate 126 ′, portions on the thermoelectric generator 121 and the heat insulating material 123 side are formed in an uneven shape so as to follow the shapes of these members. The thermoelectric generator 121 and the heat radiating plate 126 ′ are formed to fit with each other, and the heat insulating material 123 and the heat radiating plate 126 ′ are formed to have a space between them so that the air layer 124 can be formed.
 放熱板126’の筐体11の内壁面側においては,流動管120’の各頂点に対応する位置から6方向に放射状に放熱板126’が形成され,その各領域において,流動管120’の外壁面に対して垂直方向にフィン状に放射板126’がさらに形成されている。これによって,熱電発電素子121の放熱板126’側の面を,筐体11の内側を流れる空気によって冷却する。 On the inner wall surface side of the casing 11 of the heat radiating plate 126 ′, the heat radiating plate 126 ′ is formed radially in six directions from the position corresponding to each apex of the flow tube 120 ′. A radiation plate 126 ′ is further formed in a fin shape in a direction perpendicular to the outer wall surface. As a result, the surface of the thermoelectric generator 121 on the side of the heat radiating plate 126 ′ is cooled by the air flowing inside the housing 11.
 流動管120’の外壁側面に取り付けられる放熱板126’や断熱材123は,図示しない放熱板締付ビス125で固定をする。以上のように形成された空冷熱電発電ユニット12’は,筐体11の内壁面に取り付けられたユニット支持部127で支持をされる。 The heat sink 126 ′ and the heat insulating material 123 attached to the outer wall side surface of the flow pipe 120 ′ are fixed with a heat sink tightening screw 125 (not shown). The air-cooled thermoelectric power generation unit 12 ′ formed as described above is supported by a unit support portion 127 attached to the inner wall surface of the housing 11.
 このような空冷熱電発電ユニット12’を,熱媒体搬送用パイプ4dに沿って,縦方向に一または複数個設置する。 One or a plurality of such air-cooled thermoelectric power generation units 12 'are installed in the vertical direction along the heat medium transport pipe 4d.
 このように,空冷熱電発電ユニット12’は本実施例のように六角流動管を用いることで形成することもできる。なお,流動管120’の形状はほかにも,任意の角柱,円柱形状であっても良いし,その形状に限定はない。また素材にも限定はないが,熱を効率よく伝える素材が良い。 Thus, the air-cooled thermoelectric generator unit 12 'can also be formed by using a hexagonal flow tube as in this embodiment. In addition, the shape of the flow tube 120 ′ may be an arbitrary prism or cylinder, and the shape is not limited. The material is not limited, but a material that efficiently conducts heat is good.
 また流動管120’に取り付ける熱電発電素子121,放熱板126’は,流動管120’のすべての外側面に取り付けるのではなく,一部の外側面に取り付けるだけであっても良い。さらに,放熱板126,126’のフィンの形状は,本明細書の形状に限定されない。 Further, the thermoelectric power generation element 121 and the heat radiating plate 126 ′ attached to the flow tube 120 ′ may not be attached to all the outer surfaces of the flow tube 120 ′, but only attached to some outer surfaces. Furthermore, the shape of the fins of the heat sinks 126 and 126 'is not limited to the shape of the present specification.
 上述の空冷熱電発電装置1では自然空冷としたが,たとえば空冷熱電発電ユニット12の下方に冷却用電動ファン128を設置し,下方から上方へ空気を流れさせても良い。この場合の筐体11の縦断面図を図16に示す。なお,冷却用電動ファン128を設置する場合には上方から下方へ空気を流れさせることもできるので,上方に設置しても良い。 In the above-described air-cooled thermoelectric generator 1, natural air cooling is used. However, for example, an electric cooling fan 128 may be installed below the air-cooled thermoelectric generator unit 12 and air may flow upward from below. A longitudinal sectional view of the housing 11 in this case is shown in FIG. Note that when the cooling electric fan 128 is installed, air can be allowed to flow from the upper side to the lower side.
 また各空冷熱電発電ユニット12に冷却用電動ファンを設置するのではなく,筐体11の下方または上方に冷却用電動ファン128を設置し,筐体11の内側で空気の流れを作り出しても良い。 Further, instead of installing an electric cooling fan in each air-cooled thermoelectric generator unit 12, an electric cooling fan 128 may be installed below or above the housing 11 to create an air flow inside the housing 11. .
 このような構成とすることで,放熱フィン126,126’の冷却効果が高められるので,熱電発電素子121の温度差が大きくなり,発電効率の向上につなげることができる。 By adopting such a configuration, the cooling effect of the heat radiation fins 126 and 126 ′ can be enhanced, so that the temperature difference of the thermoelectric power generation element 121 is increased, and the power generation efficiency can be improved.
 さらに,筐体11の上方に噴霧装置129を設置することで,放熱フィン126,126’の冷却効果を高めても良い。この場合の筐体11の縦断面図を図17に示す。 Furthermore, the cooling effect of the radiation fins 126 and 126 ′ may be enhanced by installing the spray device 129 above the housing 11. A longitudinal sectional view of the housing 11 in this case is shown in FIG.
 図17の噴霧装置129では,筐体11の側面に孔112cを設け,そこに水などを噴霧するためのパイプ1291を通す。パイプ1291の先端付近には複数の小さな孔が穿設されている。噴霧装置129にはモーター(図示せず)が設けられており,モーターによってパイプ1291内を水などが流れ,パイプ1291の先端付近の孔から噴霧される。これによって,放熱フィン126,126’が冷却される。 In the spraying device 129 of FIG. 17, a hole 112c is provided in the side surface of the housing 11, and a pipe 1291 for spraying water or the like is passed therethrough. A plurality of small holes are formed near the tip of the pipe 1291. The spraying device 129 is provided with a motor (not shown). Water or the like flows through the pipe 1291 by the motor and sprays from a hole near the tip of the pipe 1291. As a result, the radiation fins 126 and 126 'are cooled.
 このような構成を採った場合,放熱フィン126,126’などの劣化を防止するため,錆や劣化などが発生しないようにその表面がコーティングされていると良い。 When such a configuration is adopted, the surface is preferably coated so that rust and deterioration do not occur in order to prevent the heat radiating fins 126, 126 'from deteriorating.
 このような構成とすることで,放熱フィン126,126’の冷却効果が高められるので,熱電発電素子121の温度差が大きくなり,発電効率の向上につなげることができる。 By adopting such a configuration, the cooling effect of the heat radiation fins 126 and 126 ′ can be enhanced, so that the temperature difference of the thermoelectric power generation element 121 is increased, and the power generation efficiency can be improved.
 太陽熱発電装置2の別の実施例を説明する。本実施例では,上述の各太陽熱発電装置2において,架台9に空冷熱電発電装置1を設置することで設置スペースを節約することができる構成である。本実施例の太陽熱発電装置2の概略斜視図を図18に示す。またこの場合の太陽熱発電装置2の構成図を図19に示す。 Another embodiment of the solar thermal power generation apparatus 2 will be described. In the present embodiment, in each of the solar thermal power generation apparatuses 2 described above, the installation space can be saved by installing the air-cooled thermoelectric power generation apparatus 1 on the gantry 9. A schematic perspective view of the solar thermal power generation apparatus 2 of the present embodiment is shown in FIG. Moreover, the block diagram of the solar thermal power generation apparatus 2 in this case is shown in FIG.
 本実施例では図18および図19に示すように,架台9の骨組みを立方体乃至直方体状に組み合わせる。そして,上面の辺となる骨組みに,支持フレーム8を取り付けることで,架台9の上に太陽熱集熱装置3を設置する。また架台9によって形成される立方体乃至直方体の内側に空冷熱電発電装置1を設置する。 In this embodiment, as shown in FIGS. 18 and 19, the framework of the gantry 9 is combined into a cube or a rectangular parallelepiped. Then, the solar heat collecting device 3 is installed on the gantry 9 by attaching the support frame 8 to the frame which is the side of the upper surface. Further, the air-cooled thermoelectric generator 1 is installed inside a cube or a rectangular parallelepiped formed by the gantry 9.
 以上のように太陽熱発電装置2を構成することで,省スペースでも設置することができる。 By configuring the solar thermal power generation device 2 as described above, it can be installed even in a space-saving manner.
 太陽熱発電装置2の別の実施例を説明する。上述の各実施例では熱媒体搬送用パイプ4において熱媒体を加熱し,熱電発電素子121によって発電を行っていたが,太陽熱集熱装置3に太陽光が照射されない場合には集熱することが容易ではないため,熱電発電素子121による発電効率が若干,低下することがある。 Another embodiment of the solar thermal power generation apparatus 2 will be described. In each of the above-described embodiments, the heat medium is heated in the heat medium transport pipe 4 and power is generated by the thermoelectric power generation element 121. However, when the solar heat collecting device 3 is not irradiated with sunlight, heat can be collected. Since it is not easy, the power generation efficiency by the thermoelectric power generation element 121 may be slightly reduced.
 そこで本実施例では,上述の各実施例の太陽熱発電装置2に,さらに,蓄熱装置10を備えた場合を説明する。なお,本実施例の以下の説明では実施例1に蓄熱装置10を付加した場合を説明するが,それ以外の実施例の場合でも同様に実現できる。 Therefore, in this embodiment, a case will be described in which the solar power generation device 2 of each of the above-described embodiments is further provided with a heat storage device 10. In the following description of the present embodiment, the case where the heat storage device 10 is added to the first embodiment will be described, but the same can be realized in the other embodiments.
 この場合の太陽熱発電装置2の構成図を図20に示す。本実施例の太陽熱発電装置2ではさらに蓄熱装置10を備える。蓄熱装置10はその内側に熱媒体を貯留し,蓄積した熱が逃げないように,断熱構造の筐体で構成されている。 FIG. 20 shows a configuration diagram of the solar thermal power generation apparatus 2 in this case. The solar thermal power generation apparatus 2 of the present embodiment further includes a heat storage device 10. The heat storage device 10 is configured by a heat-insulating housing so that the heat medium is stored inside and the accumulated heat does not escape.
 蓄熱装置10は,太陽熱集熱装置3,空冷熱電発電装置1との間で熱媒体が循環可能なように熱媒体搬送用パイプ4が接続しており,循環ポンプ5によって,太陽熱集熱装置3,空冷熱電発電装置1,蓄熱装置10の間を熱媒体が循環する。これによって,太陽熱集熱装置3によって集熱された結果,加熱された熱媒体搬送用パイプ4内の熱媒体は循環ポンプ5によって蓄熱装置10まで送られる。従って,蓄熱装置10内の熱媒体も加熱されている。そして蓄熱装置10内の熱媒体が循環ポンプ5によって空冷熱電発電装置1に送られる。 The heat storage device 10 is connected to the solar heat collector 3 and the air-cooled thermoelectric generator 1 so that the heat medium transport pipe 4 is connected so that the heat medium can be circulated. The heat medium circulates between the air-cooled thermoelectric generator 1 and the heat storage device 10. As a result, as a result of collecting heat by the solar heat collecting device 3, the heated heat medium in the heat medium transport pipe 4 is sent to the heat storage device 10 by the circulation pump 5. Therefore, the heat medium in the heat storage device 10 is also heated. Then, the heat medium in the heat storage device 10 is sent to the air-cooled thermoelectric generator 1 by the circulation pump 5.
 このような構成によって蓄熱装置10に熱を蓄えることができるので,太陽熱集熱装置3に太陽光の照射がない場合であっても,空冷熱電発電装置1内の熱電発電素子121の流動管120と接する面の温度を上げることができるので,温度差を生じさせ,発電を行うことができる。 Since heat can be stored in the heat storage device 10 with such a configuration, the flow tube 120 of the thermoelectric power generation element 121 in the air-cooled thermoelectric power generation device 1 even when the solar heat collection device 3 is not irradiated with sunlight. Since the temperature of the surface in contact with can be raised, a temperature difference is produced and power generation can be performed.
 なお,蓄熱装置10での蓄熱は,熱媒体としてたとえば水を用いた場合,発電用途のほか,たとえば給湯用にも使用することができても良い。 It should be noted that the heat storage in the heat storage device 10 may be used not only for power generation but also for hot water supply, for example, when water is used as the heat medium.
 本発明の空冷熱電発電装置1を太陽熱発電装置2に用いることで,従来の太陽熱発電装置2とは異なり,小型化することができる。そのため,たとえば自宅に設置することも可能となる。その一例を図21に示す。 Unlike the conventional solar thermal power generation device 2, the air-cooled thermoelectric power generation device 1 of the present invention is used for the solar thermal power generation device 2 and can be downsized. Therefore, it can be installed at home, for example. An example is shown in FIG.
 図21の場合には太陽熱集熱装置3を屋根に設置し,一方,空冷熱電発電装置1および蓄熱装置10を庭に設置した場合である。本実施例の場合,蓄熱装置10に熱媒体を貯留するための貯留部(図示せず)を設け,そこに熱媒体としての水を用いることが好ましい。すなわち,蓄熱装置10の貯留部には熱媒体としての水を貯留しておき,それを熱媒体搬送用パイプ4を介して蓄熱装置10に送られた熱媒体(たとえばエチルグリコーゲンなど)で加熱する(この場合,貯留部の周辺に熱媒体搬送用パイプ4を配設し,それによって貯留部を加熱する)。これによって,蓄熱装置10内の熱媒体である水が加熱されて温水となる。その結果,熱媒体としての保温の維持と,熱媒体の利用という2つの目的を達成することができる。 In the case of FIG. 21, the solar heat collector 3 is installed on the roof, while the air-cooled thermoelectric generator 1 and the heat storage device 10 are installed in the garden. In the case of the present embodiment, it is preferable to provide a storage unit (not shown) for storing the heat medium in the heat storage device 10 and use water as the heat medium there. That is, water as a heat medium is stored in the storage unit of the heat storage device 10 and heated by a heat medium (for example, ethyl glycogen) sent to the heat storage device 10 through the heat medium transport pipe 4. (In this case, the heat medium transport pipe 4 is disposed around the storage part, thereby heating the storage part). Thereby, water which is a heat medium in the heat storage device 10 is heated to become hot water. As a result, it is possible to achieve two purposes of maintaining heat insulation as a heat medium and using the heat medium.
 太陽熱集熱装置3,空冷熱電発電装置1,蓄熱装置10はそれぞれ熱媒体搬送用パイプ4で連結しており,図示しない循環ポンプ5によって熱媒体が循環する。すなわち屋根に設置した太陽熱集熱装置3で加熱された熱媒体が,屋根および壁に沿って配設された熱媒体搬送用パイプ4a,4bを流れ蓄熱装置10に送られる。そして熱媒体はさらに空冷熱電発電装置1に送られ,空冷熱電発電装置1の熱電発電素子121によって発電を行う。また,蓄熱装置10で熱媒体(水)を貯留する貯留部と家庭内の水道管とを連結することで,蓄熱装置10で貯留した温水が,家庭の蛇口から流れるようになり,水道として用いることもできる。 The solar heat collector 3, the air-cooled thermoelectric generator 1, and the heat storage device 10 are connected to each other by a heat medium transport pipe 4, and the heat medium is circulated by a circulation pump 5 (not shown). That is, the heat medium heated by the solar heat collecting device 3 installed on the roof flows through the heat medium transport pipes 4 a and 4 b disposed along the roof and the wall and is sent to the heat storage device 10. Then, the heat medium is further sent to the air-cooled thermoelectric power generator 1, and power is generated by the thermoelectric power generation element 121 of the air-cooled thermoelectric power generator 1. Moreover, the hot water stored by the heat storage apparatus 10 flows from a household faucet by connecting the storage part which stores a heat medium (water) with the heat storage apparatus 10 and a domestic water pipe, and is used as water supply. You can also
 本発明の発電装置によって,太陽光発電におけるデメリット解消するとともに,小型化することが可能となる。 The power generation apparatus of the present invention eliminates the disadvantages of solar power generation and enables downsizing.
 また,本発明の発電装置を太陽熱発電に適用することによって,従来,大型であった太陽熱発電装置を,たとえば家庭に設置できるような大きさに小型化することができる。さらに,太陽光の照射を直接用いるのではなく,熱媒体を加熱して発電をするので,太陽光の照射がなくなっても熱媒体で蓄熱されている間は発電を行うことができる。 Further, by applying the power generation device of the present invention to solar power generation, a conventionally large solar power generation device can be reduced to a size that can be installed in a home, for example. Furthermore, since the heat medium is heated instead of directly using the sunlight irradiation, the power generation can be performed while the heat medium is stored even if the sunlight irradiation disappears.
 A:発電装置
 B:熱電発電素子
 C:筐体
 D:貯留部
 E:熱媒体
 1:空冷熱電発電装置
 2:太陽熱発電装置
 3:太陽熱集熱装置
 4:熱媒体搬送用パイプ
 5:循環ポンプ
 6:膨張タンク
 7:温度センサー
 8:支持フレーム
 9:架台
10:蓄熱装置
11:筐体
12:空冷熱電発電ユニット
13:空気取込口
14:整流フィン
15:ファン
16:支持部材
31:筐体
32:光透過板
33:集熱部
34:板留
35:パッキング
36:パッキング
37:ひれ状突起部
40:孔
110:空冷用導管
111:導管用断熱材
112:孔
120:流動管
121:熱電発電素子
122:断熱材
123:断熱材
124:空気層
125:放熱板締付ビス
126:放熱板
127:ユニット支持部
128:冷却用電動ファン
129:噴霧装置
1291:パイプ
311:集熱部固定具
312:縁部
A: Power generation device B: Thermoelectric power generation element C: Housing D: Reservoir E: Heat medium 1: Air-cooled thermoelectric power generation device 2: Solar thermal power generation device 3: Solar heat collection device 4: Heat medium transfer pipe 5: Circulation pump 6 : Expansion tank 7: Temperature sensor 8: Support frame 9: Base 10: Heat storage device 11: Housing 12: Air-cooled thermoelectric generator unit 13: Air intake 14: Rectification fin 15: Fan 16: Support member 31: Housing 32 : Light transmission plate 33: Heat collecting section 34: Plate holder 35: Packing 36: Packing 37: Fin-like projection 40: Hole 110: Air cooling conduit 111: Insulation material for conduit 112: Hole 120: Flow pipe 121: Thermoelectric power generation Element 122: Heat insulating material 123: Heat insulating material 124: Air layer 125: Heat radiation plate fastening screw 126: Heat radiation plate 127: Unit support portion 128: Electric fan for cooling 129: Spraying device 1291: Pipe 311 : Heat collector fixture 312: Edge

Claims (14)

  1.  太陽光の照射により熱媒体を加熱する太陽熱集熱装置と空冷熱電発電装置と前記加熱した熱媒体を搬送する熱媒体搬送用パイプとを備える太陽熱発電装置であって,
     前記空冷熱電発電装置は,
     空気を取り込む空気取込口を備えた筐体と,
     前記熱媒体の熱により発電する空冷熱電発電ユニットと,を有しており,
     前記空冷熱電発電ユニットは,
     温度差により発電をする熱電発電素子と,前記熱電発電素子の温度を放熱する放熱板とを備え,
     前記加熱された熱媒体により,前記熱電発電素子の任意の面の温度を高め,前記空気取込口から取り込んだ空気および前記放熱板により,前記熱電発電素子の加熱面とは異なる面の温度を,前記加熱面よりも低くすることで,前記熱電発電素子により発電を行う,
     ことを特徴とする太陽熱発電装置。
    A solar thermal power generation apparatus comprising: a solar heat collector that heats a heat medium by irradiation of sunlight; an air-cooled thermoelectric power generation apparatus; and a heat medium transport pipe that transports the heated heat medium,
    The air-cooled thermoelectric generator is
    A housing with an air intake for taking in air;
    An air-cooled thermoelectric power generation unit that generates power by the heat of the heat medium,
    The air-cooled thermoelectric generator unit is
    A thermoelectric power generation element that generates power due to a temperature difference; and a radiator plate that dissipates the temperature of the thermoelectric power generation element,
    The temperature of an arbitrary surface of the thermoelectric power generation element is increased by the heated heat medium, and the temperature of the surface different from the heating surface of the thermoelectric power generation element is increased by the air taken in from the air intake port and the heat radiating plate. , By generating lower than the heating surface, power is generated by the thermoelectric generator,
    A solar power generator characterized by that.
  2.  前記空冷熱電発電ユニットは,
     前記熱媒体の周辺に前記熱電発電素子を設置し,
     前記熱電発電素子の加熱面とは異なる面に前記放熱板を設置する,
     ことを特徴とする請求項1に記載の太陽熱発電装置。
    The air-cooled thermoelectric generator unit is
    Installing the thermoelectric generator around the heat medium;
    Installing the heat sink on a surface different from the heating surface of the thermoelectric generator,
    The solar thermal power generation apparatus of Claim 1 characterized by the above-mentioned.
  3.  前記空冷熱電発電ユニットは,
     前記搬送した熱媒体を貯留する貯留部の周辺に前記熱電発電素子を設置し,
     前記熱電発電素子の加熱面とは異なる面であって,前記貯留部および前記熱電発電素子よりも前記筐体の内壁面側に前記放熱板を設置する,
     ことを特徴とする請求項1または請求項2に記載の太陽熱発電装置。
    The air-cooled thermoelectric generator unit is
    Installing the thermoelectric power generation element around a storage section for storing the transported heat medium;
    The heating surface of the thermoelectric power generation element is different from the heating surface, and the heat sink is installed on the inner wall surface side of the housing from the reservoir and the thermoelectric power generation element.
    The solar thermal power generation apparatus of Claim 1 or Claim 2 characterized by the above-mentioned.
  4.  前記空冷熱電発電ユニットは,さらに,
     前記熱媒体搬送用パイプを流れる前記熱媒体を貯留する流動管と,
     前記流動管の外側面の一部を覆う断熱材と,を備えており,
     前記熱電発電素子は,前記流動管の外側面のうち,前記断熱材で被覆されていない外側面に設置され,
     前記放熱板は,前記熱電発電素子の前記流動管側の面とは異なる面に設置される,
     ことを特徴とする請求項1から請求項3のいずれかに記載の太陽熱発電装置。
    The air-cooled thermoelectric generator unit further includes:
    A flow pipe for storing the heat medium flowing through the heat medium transport pipe;
    And a heat insulating material covering a part of the outer surface of the flow pipe,
    The thermoelectric generator is installed on the outer surface of the flow tube that is not covered with the heat insulating material,
    The heat sink is installed on a surface different from the surface on the flow tube side of the thermoelectric generator,
    The solar thermal power generation device according to any one of claims 1 to 3, wherein
  5.  前記熱媒体搬送用パイプは前記流動管を挿通しており,
     前記熱媒体搬送用パイプのうち,前記流動管の内側に位置する部分には複数の孔が設けられ,
     前記熱媒体搬送用パイプと前記流動管との間で前記熱媒体が流出入可能である,
     ことを特徴とする請求項1から請求項4のいずれかに記載の太陽熱発電装置。
    The heat transfer pipe is inserted through the flow pipe;
    A plurality of holes are provided in a portion located inside the flow pipe of the heat medium transport pipe,
    The heat medium can flow in and out between the heat medium transport pipe and the flow pipe.
    The solar thermal power generation device according to any one of claims 1 to 4, wherein the solar thermal power generation device is provided.
  6.  前記空冷熱電発電装置は,
     前記空気取込口は,前記筐体の下方付近に設けられており,
     前記筐体の上面は開放されている,
     ことを特徴とする請求項1から請求項5のいずれかに記載の太陽熱発電装置。
    The air-cooled thermoelectric generator is
    The air intake port is provided near the lower part of the housing,
    The upper surface of the housing is open,
    The solar thermal power generation device according to any one of claims 1 to 5, wherein
  7.  前記筐体の開放された上面付近にファンを備える,
     ことを特徴とする請求項6に記載の太陽熱発電装置。
    A fan is provided in the vicinity of the upper surface of the housing,
    The solar thermal power generation apparatus of Claim 6 characterized by the above-mentioned.
  8.  前記空冷熱電発電装置は,
     前記筐体の内壁面に螺旋状の整流フィンを備える,
     ことを特徴とする請求項1から請求項7のいずれかに記載の太陽熱発電装置。
    The air-cooled thermoelectric generator is
    A spiral rectifying fin is provided on the inner wall surface of the housing;
    The solar thermal power generation device according to any one of claims 1 to 7, wherein
  9.  前記空冷熱電発電装置は,
     前記筐体の内側で空気の流れを作り出す電動ファンを備える,
     ことを特徴とする請求項1から請求項8のいずれかに記載の太陽熱発電装置。
    The air-cooled thermoelectric generator is
    An electric fan that creates an air flow inside the housing;
    The solar thermal power generation device according to any one of claims 1 to 8, wherein
  10.  前記空冷熱電発電装置は,
     前記筐体の上方に,冷却水を噴霧するための噴霧装置を備える,
     ことを特徴とする請求項1から請求項9のいずれかに記載の太陽熱発電装置。
    The air-cooled thermoelectric generator is
    A spray device for spraying cooling water is provided above the housing.
    The solar thermal power generation device according to any one of claims 1 to 9, characterized by things.
  11.  前記太陽熱発電装置は,さらに,
     前記太陽熱集熱装置で加熱した熱媒体を貯留する蓄熱装置を備えており,
     前記太陽熱集熱装置と前記蓄熱装置と前記空冷熱電発電装置とが前記熱媒体搬送用パイプで連結され,前記熱媒体を循環可能にする,
     ことを特徴とする請求項1から請求項10のいずれかに記載の太陽熱発電装置。
    The solar thermal power generator further comprises:
    A heat storage device for storing a heat medium heated by the solar heat collector;
    The solar heat collecting device, the heat storage device, and the air-cooled thermoelectric power generation device are connected by the heat medium transport pipe, and the heat medium can be circulated.
    The solar thermal power generation device according to any one of claims 1 to 10, wherein
  12.  請求項1から請求項11のいずれかに記載の太陽熱発電装置を用いた発電方法であって,
     前記太陽熱集熱装置を屋根に設置し,
     前記空冷熱電発電装置を庭に設置し,
     前記太陽熱集熱装置と前記空冷熱電発電装置との間を前記熱媒体搬送用パイプで連結して前記熱媒体を循環させる,ことで太陽熱発電を行う,
     ことを特徴とする太陽熱発電装置を用いた発電方法。
    A power generation method using the solar thermal power generation device according to any one of claims 1 to 11,
    Installing the solar heat collector on the roof;
    Installing the air-cooled thermoelectric generator in the garden;
    The solar thermal power generation is performed by connecting the solar thermal collector and the air-cooled thermoelectric power generator with the heat medium transport pipe and circulating the heat medium.
    A power generation method using a solar thermal power generation device.
  13.  熱電発電素子を用いて発電を行う空冷熱電発電装置であって,
     前記空冷熱電発電装置は,
     内側空間を空気が流れるように形成した筐体と,
     熱媒体の熱を用いた温度差により発電をする熱電発電素子と,を備えており,
     加熱された熱媒体により,前記熱電発電素子の任意の面の温度を高め,前記筐体の内側を流れる空気により,前記熱電発電素子の加熱面とは異なる面の温度を,前記加熱面よりも低くすることで,前記熱電発電素子により発電を行う,
     ことを特徴とする空冷熱電発電装置。
    An air-cooled thermoelectric generator that generates electricity using a thermoelectric generator,
    The air-cooled thermoelectric generator is
    A housing formed to allow air to flow through the inner space;
    A thermoelectric power generating element that generates power by a temperature difference using heat of the heat medium,
    The temperature of an arbitrary surface of the thermoelectric power generation element is increased by the heated heat medium, and the temperature of the surface different from the heating surface of the thermoelectric power generation element is set higher than the heating surface by the air flowing inside the housing. By lowering, power is generated by the thermoelectric generator,
    An air-cooled thermoelectric generator characterized by that.
  14.  太陽熱発電で用いる空冷熱電発電装置であって,
     前記空冷熱電発電装置は,
     空気を取り込む空気取込口を備えた筐体と,
     熱媒体の熱により発電する空冷熱電発電ユニットと,を備えており,
     前記空冷熱電発電ユニットは,
     温度差により発電をする熱電発電素子と,前記熱電発電素子の温度を放熱する放熱板とを備え,
     加熱された熱媒体により,前記熱電発電素子の任意の面の温度を高め,前記空気取込口から取り込んだ空気および前記放熱板により,前記熱電発電素子の加熱面とは異なる面の温度を,前記加熱面よりも低くすることで,前記熱電発電素子により発電を行う,
     ことを特徴とする太陽熱発電で用いる空冷熱電発電装置。
    An air-cooled thermoelectric generator used in solar thermal power generation,
    The air-cooled thermoelectric generator is
    A housing with an air intake for taking in air;
    An air-cooled thermoelectric power generation unit that generates power by the heat of the heat medium,
    The air-cooled thermoelectric generator unit is
    A thermoelectric power generation element that generates power due to a temperature difference; and a radiator plate that dissipates the temperature of the thermoelectric power generation element,
    The temperature of an arbitrary surface of the thermoelectric power generation element is increased by the heated heat medium, and the temperature of the surface different from the heating surface of the thermoelectric power generation element by the air taken in from the air intake port and the heat radiating plate, By making it lower than the heating surface, power is generated by the thermoelectric generator,
    An air-cooled thermoelectric generator used in solar thermal power generation.
PCT/JP2012/080171 2012-11-21 2012-11-21 Air-cooled thermoelectric power generation apparatus and solar thermal power generation apparatus using air-cooled thermoelectric power generation apparatus WO2014080475A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280040673.9A CN104641546A (en) 2012-11-21 2012-11-21 Air-cooled thermoelectric power generation apparatus and solar thermal power generation apparatus using air-cooled thermoelectric power generation apparatus
PCT/JP2012/080171 WO2014080475A1 (en) 2012-11-21 2012-11-21 Air-cooled thermoelectric power generation apparatus and solar thermal power generation apparatus using air-cooled thermoelectric power generation apparatus
HK15106133.8A HK1205595A1 (en) 2012-11-21 2015-06-29 Air-cooled thermoelectric power generation apparatus and solar thermal power generation apparatus using air-cooled thermoelectric power generation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080171 WO2014080475A1 (en) 2012-11-21 2012-11-21 Air-cooled thermoelectric power generation apparatus and solar thermal power generation apparatus using air-cooled thermoelectric power generation apparatus

Publications (1)

Publication Number Publication Date
WO2014080475A1 true WO2014080475A1 (en) 2014-05-30

Family

ID=50775680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080171 WO2014080475A1 (en) 2012-11-21 2012-11-21 Air-cooled thermoelectric power generation apparatus and solar thermal power generation apparatus using air-cooled thermoelectric power generation apparatus

Country Status (3)

Country Link
CN (1) CN104641546A (en)
HK (1) HK1205595A1 (en)
WO (1) WO2014080475A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511160A (en) * 2019-01-31 2020-08-07 深圳富桂精密工业有限公司 Energy-saving data center

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137588U (en) * 1987-02-25 1988-09-09
JP2000208823A (en) * 1999-01-18 2000-07-28 Nissan Motor Co Ltd Thermoelectric generator
JP2006145168A (en) * 2004-11-24 2006-06-08 Toyota Motor Corp Dehumidifying cold air blower
JP2009077551A (en) * 2007-09-21 2009-04-09 Toshiba Plant Systems & Services Corp Temperature-difference power generating system
JP2011102105A (en) * 2009-11-12 2011-05-26 Toyota Motor Corp Braking device for vehicle
JP2012210041A (en) * 2011-03-29 2012-10-25 Tadahiko Yoshida Power generation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137588U (en) * 1987-02-25 1988-09-09
JP2000208823A (en) * 1999-01-18 2000-07-28 Nissan Motor Co Ltd Thermoelectric generator
JP2006145168A (en) * 2004-11-24 2006-06-08 Toyota Motor Corp Dehumidifying cold air blower
JP2009077551A (en) * 2007-09-21 2009-04-09 Toshiba Plant Systems & Services Corp Temperature-difference power generating system
JP2011102105A (en) * 2009-11-12 2011-05-26 Toyota Motor Corp Braking device for vehicle
JP2012210041A (en) * 2011-03-29 2012-10-25 Tadahiko Yoshida Power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511160A (en) * 2019-01-31 2020-08-07 深圳富桂精密工业有限公司 Energy-saving data center
CN111511160B (en) * 2019-01-31 2022-09-30 深圳富联富桂精密工业有限公司 Energy-saving data center

Also Published As

Publication number Publication date
CN104641546A (en) 2015-05-20
HK1205595A1 (en) 2015-12-18

Similar Documents

Publication Publication Date Title
Ghadikolaei Solar photovoltaic cells performance improvement by cooling technology: An overall review
US10461205B2 (en) Solar panel housing
Avezov et al. A review on photovoltaic-thermal (PV-T) air and water collectors
US6244062B1 (en) Solar collector system
WO2006038508A1 (en) Solar cell system and combined heat/electricity solar cell system
CN105705873B (en) Solar refrigeration system
WO2009113073A2 (en) Concentrated solar heating
KR20120119259A (en) Solar panel cooling without power consumption
CN102563891A (en) Capillary tube radiation cooling type photovoltaic electricity and heat combined using device
KR20110001457A (en) Radiation cooling device for photovoltaic module
YEŞİLYURT et al. Techniques for enhancing and maintaining electrical efficiency of photovoltaic systems
Anderson et al. Heat pipe cooling of concentrating photovoltaic (CPV) systems
Christopher et al. 2E (energy and exergy) analysis of solar evacuated tube-compound parabolic concentrator with different configurations of thermal energy storage system
KR100904666B1 (en) Solar power generator using thermoelectric generator
WO2014013782A1 (en) Solar thermal power generation device
WO2014080475A1 (en) Air-cooled thermoelectric power generation apparatus and solar thermal power generation apparatus using air-cooled thermoelectric power generation apparatus
US6857425B2 (en) Solar energy collector system
JP2011058319A (en) Louver
Qays et al. A review on improved performance for solar photovoltaic cells by various cooling methods
JP2012231099A (en) Thermoelectric generator
JP2009182103A (en) Heat sink for solar power generation, and system for solar power generation
Makki Innovative heat pipe-based photovoltaic/thermoelectric (PV/TEG) generation system
Al-Waeli et al. PV/T principles and design
JP2013179138A (en) Photovoltaic power generation device and photovoltaic power generation system including the same
KR20130071830A (en) Photovoltaic module cooling apparatus and the manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP