US20180160767A1 - Shoe soles, compositions, and methods of making the same - Google Patents

Shoe soles, compositions, and methods of making the same Download PDF

Info

Publication number
US20180160767A1
US20180160767A1 US15/836,436 US201715836436A US2018160767A1 US 20180160767 A1 US20180160767 A1 US 20180160767A1 US 201715836436 A US201715836436 A US 201715836436A US 2018160767 A1 US2018160767 A1 US 2018160767A1
Authority
US
United States
Prior art keywords
silane
polyolefin
shoe sole
blend
aspects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/836,436
Other languages
English (en)
Inventor
Krishnamachari Gopalan
Robert J. Lenhart
Gending Ji
Roland Herd-Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cooper Standard Automotive Inc
Original Assignee
Cooper Standard Automotive Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cooper Standard Automotive Inc filed Critical Cooper Standard Automotive Inc
Priority to US15/836,436 priority Critical patent/US20180160767A1/en
Assigned to COOPER-STANDARD AUTOMOTIVE INC. reassignment COOPER-STANDARD AUTOMOTIVE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOPALAN, KRISHNAMACHARI, HERD-SMITH, Roland, JI, Gending, LENHART, ROBERT J
Publication of US20180160767A1 publication Critical patent/US20180160767A1/en
Priority to US16/144,746 priority patent/US20190029361A1/en
Assigned to COOPER-STANDARD AUTOMOTIVE INC. reassignment COOPER-STANDARD AUTOMOTIVE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOPALAN, KRISHNAMACHARI, HERD-SMITH, Roland, JI, Gending, LENHART, ROBERT J.
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: COOPER-STANDARD AUTOMOTIVE INC.
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH reassignment DEUTSCHE BANK AG NEW YORK BRANCH SECURITY AGREEMENT Assignors: COOPER-STANDARD AUTOMOTIVE INC.
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT PATENT SECURITY AGREEMENT Assignors: COOPER-STANDARD AUTOMOTIVE INC.
Assigned to COOPER-STANDARD AUTOMOTIVE INC reassignment COOPER-STANDARD AUTOMOTIVE INC TERMINATION AND RELEASE OF SECURITY INTEREST PREVIOUSLY RECORDED AT REEL/FRAME (052788/0392) Assignors: U.S. BANK TRUST COMPANY, NATIONAL ASSOCIATION (SUCCESSOR IN INTEREST TO U.S. BANK NATIONAL ASSOCIATION), AS COLLATERAL AGENT
Assigned to COOPER-STANDARD AUTOMOTIVE INC. reassignment COOPER-STANDARD AUTOMOTIVE INC. TERMINATION AND RELEASE OF SECURITY INTEREST PREVIOUSLY RECORDED AT REEL/FRAME (052788/0158) Assignors: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/187Resiliency achieved by the features of the material, e.g. foam, non liquid materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/12Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
    • B29D35/122Soles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/028Net structure, e.g. spaced apart filaments bonded at the crossing points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L43/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
    • C08L43/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N5/00Roofing materials comprising a fibrous web coated with bitumen or another polymer, e.g. pitch
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D5/00Roof covering by making use of flexible material, e.g. supplied in roll form
    • E04D5/06Roof covering by making use of flexible material, e.g. supplied in roll form by making use of plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D5/00Roof covering by making use of flexible material, e.g. supplied in roll form
    • E04D5/10Roof covering by making use of flexible material, e.g. supplied in roll form by making use of compounded or laminated materials, e.g. metal foils or plastic films coated with bitumen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0207Materials belonging to B32B25/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/08Closed cell foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/10Composition of foam characterised by the foam pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/72Cured, e.g. vulcanised, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • B32B2437/02Gloves, shoes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/08Low density, i.e. < 0.91 g/cm3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/21Rubbery or elastomeric properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/26Elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0617Polyalkenes

Definitions

  • the present invention generally relates to polymer compositions that may be used to form shoe soles, and more particularly, to foamed silane-crosslinked polyolefin elastomer compositions used to form both midsoles and/or outsoles and methods for manufacturing these shoe soles and compositions.
  • Shoe soles have been traditionally made of natural and synthetic rubbers.
  • the use of sponge soles has been on the rise to keep pace with the increasing demand for lightweight and functional sport shoes and dress shoes alike.
  • Many different synthetic materials used for sponge soles are known including ethylene vinyl acetate (EVA), polyurethanes (PU), and nitrile rubbers.
  • EVA sponges account for the largest market share of sponge sole materials used to form midsoles, outsoles, and aftermarket insoles using techniques that include press foaming and injection foaming processes.
  • the material will need to satisfy a variety of material property requirements based on its end use shoe application, such as density, rebound, grip on various types of surfaces, wear resistance, processability, and/or shock absorbance. From shoes of athletes to the elderly, the sole of the shoe must provide superior comfort, traction, and durability.
  • a shoe sole having a composition comprising a foamed silane-crosslinked polyolefin elastomer having a density less than 0.50 g/cm 3 .
  • the shoe sole exhibits a compression set of from about 5.0% to about 35.0%, as measured according to ASTM D 395 (6 hrs @ 50° C.).
  • a method for making a shoe sole includes: extruding a first polyolefin having a density less than 0.86 g/cm 3 , a second polyolefin, a silane crosslinker and a radical initiator together to form a silane-grafted polyolefin blend; extruding the silane-grafted polyolefin blend, a foaming agent, and a condensation catalyst together to form a crosslinkable polyolefin blend; injection molding the crosslinkable polyolefin blend into a shoe sole element; and crosslinking the crosslinkable polyolefin blend at a temperature greater than 150° C. and an ambient humidity to form a shoe sole having a density less than 0.50 g/cm 3 .
  • a method for making a shoe sole includes: extruding a first polyolefin having a density less than 0.86 g/cm 3 , a second polyolefin, a silane crosslinker and a radical initiator together to form a silane-grafted polyolefin blend; extruding the silane-grafted polyolefin blend, a foaming agent, and a condensation catalyst together to form a crosslinkable polyolefin blend; compression molding the crosslinkable polyolefin blend into a shoe sole element; and crosslinking the crosslinkable polyolefin blend at a temperature above 150° C. and an ambient humidity to form a shoe sole having a density less than 0.50 g/cm 3 .
  • FIG. 1 is a perspective view of a shoe according to some aspects of the present disclosure
  • FIG. 2 is a cross-sectional perspective view of the shoe depicted in FIG. 1 according to some aspects of the present disclosure
  • FIG. 3 is a schematic reaction pathway used to produce a silane-crosslinked polyolefin elastomer according to some aspects of the present disclosure
  • FIG. 4 is a flow diagram of a method for making a midsole with a foamed silane-crosslinked polyolefin elastomer using a two-step Sioplas approach according to some aspects of the present disclosure
  • FIG. 5A is a schematic cross-sectional view a reactive twin-screw extruder according to some aspects of the present disclosure
  • FIG. 5B is a schematic cross-sectional view a single-screw extruder according to some aspects of the present disclosure
  • FIG. 6 is a flow diagram of a method for making a midsole with a foamed silane-crosslinked polyolefin elastomer using a one-step Monosil approach according to some aspects of the present disclosure
  • FIG. 7 is a schematic cross-sectional view a reactive single-screw extruder according to some aspects of the present disclosure.
  • FIG. 8 is a schematic cross-sectional view of a compression mold according to some aspects of the present disclosure.
  • FIG. 9 is a schematic cross-sectional view of an injection mold according to some aspects of the present disclosure.
  • FIG. 10 is a schematic cross-sectional view of an injection compression mold according to some aspects of the present disclosure.
  • FIG. 11 is a schematic cross-sectional view of an extruder equipped with a supercritical fluid injector according to some aspects of the present disclosure
  • FIG. 12 is a micrograph of a cross-sectioned midsole formed using the supercritical fluid process according to some aspects of the present disclosure
  • FIG. 13 is a micrograph of a cross-sectioned midsole formed using a chemical blowing agent according to some aspects of the present disclosure.
  • FIG. 14 is a micrograph of a cross-sectioned midsole formed using a chemical blowing agent according to some aspects of the present disclosure.
  • the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the shoe soles of the disclosure as oriented in the shoe shown in FIG. 1 .
  • the shoe soles, compositions and methods may assume various alternative orientations and step sequences, except where expressly specified to the contrary.
  • the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.
  • a value modified by a term or terms, such as “about” and “substantially,” may not be limited to the precise value specified.
  • the approximating language may correspond to the precision of an instrument for measuring the value.
  • the modifier “about” should also be considered as disclosing the range defined by the absolute values of the two endpoints. For example, the expression “from about 2 to about 4” also discloses the range “from 2 to 4.”
  • the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed.
  • the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
  • the shoe soles of the disclosure generally include a composition having a foamed silane-crosslinked polyolefin elastomer having a density less than 0.50 g/cm 3 .
  • the shoe sole exhibits a compression set of from about 5.0% to about 35.0%, as measured according to ASTM D 395 (6 hrs @ 50° C.).
  • the foamed silane-crosslinked polyolefin elastomer can be produced from a blend including a first polyolefin having a density less than 0.86 g/cm 3 , a second polyolefin having a crystallinity less than 40%, a silane crosslinker, a grafting initiator, a condensation catalyst, and a foaming agent.
  • FIG. 1 a perspective view of a shoe 10 is provided.
  • the shoe 10 includes an outsole 14 coupled to a midsole 18 where the midsole 18 is positioned directly above the outsole 14 .
  • a toe box 22 makes up a front portion of the shoe 10 in combination with a toe cap 26 .
  • the toe box 22 and toe cap 26 are positioned to support and enclose toes of a foot.
  • a tongue 30 works in combination with uppers 34 to support the top of the foot.
  • a collar 38 and a heal counter 42 are positioned at a rear of the shoe 10 and work together to comfortably position and retain a heel in the shoe 10 .
  • the footwear depicted in FIG. 1 is a running shoe, the shoe 10 is not meant to be limiting and the shoe 10 could additionally include, for example, other athletic shoes, sandals, hiking boots, winter boots, dress shoes, and medical orthotic shoes.
  • FIG. 2 a cross-sectional view of the shoe 10 depicted in FIG. 1 is provided.
  • This cross-sectional view provides the respective thickness of the outsole 14 compared to the midsole 18 .
  • the midsole 18 is the part of the shoe 10 that is sandwiched between the outsole 14 and an instep liner 46 that provides cushioning and rebound, while helping protect the foot from feeling hard or sharp objects.
  • the foot is in contact with a sock liner 50 that is positioned as a top layer on the instep liner 46 while the foot's positioning in the interior of the shoe 10 is maintained with the toe box 22 , tongue 30 , and uppers 34 .
  • Midsoles 18 provide stability for the foot, necessitating that the material used to fabricate the midsole 18 be designed to endure all types of challenges typical of foot wear—i.e., terrain, the user's weight, and pressure sources incurred during walking or running, etc.
  • the most common materials used in the manufacture of midsoles are the expanded foam rubber version forms of ethylene vinyl acetate (EVA).
  • EVA ethylene vinyl acetate
  • EVA is soft and flexible, but it is also easy to process and manipulate in the manufacturing of versatile articles (midsoles included) due to its thermoplastic properties.
  • EVA is typically selected as the desired material to produce midsoles because of its “low-temperature” toughness, stress-crack resistance, waterproof properties, and resistance to UV-radiation, the biggest critique against EVA is its short life. Over time, EVA tends to compress and users (runners especially) say that they feel their shoes go flat after a period of time. Currently, the only way to avoid this flattening of the EVA midsole is to replace one'
  • EVA As an alternative to EVA, disclosed herein is a family of foamed, silane-crosslinked polyolefin elastomers.
  • the elastomers of the disclosure provide many of the same advantages as EVA, but they also offer many improved material properties including, for example, density, rebound, compression set, and durability.
  • the foamed silane-crosslinked polyolefin elastomers, and the variety of techniques used to mold midsoles 18 disclosed herein, produce lightweight materials containing thousands of tiny bubbles that provide cushioning and shock absorption to users.
  • One of the properties that makes the disclosed foamed silane-crosslinked polyolefin elastomers better than EVA and other conventional shoe sole materials is the relative lightness of these elastomers.
  • the foamed silane-crosslinked polyolefin elastomers have a low density, making them ideal materials used in footwear where weight is an issue.
  • the disclosure herein focuses on the composition, method of making the composition, and the corresponding material properties for the foamed silane-crosslinked polyolefin elastomer used to make midsoles 18 .
  • the midsole 18 is formed from a silane-grafted polyolefin where the silane-grafted polyolefin may have a catalyst added to form a silane-crosslinkable polyolefin elastomer. This silane-crosslinkable polyolefin may then be crosslinked upon exposure to moisture and/or heat to form the final foamed silane-crosslinked polyolefin elastomer or blend.
  • the foamed silane-crosslinked polyolefin elastomer or blend includes the first polyolefin having a density less than 0.90 g/cm 3 , the second polyolefin having a crystallinity of less than 40%, the silane crosslinker, the graft initiator, the condensation catalyst, and the foaming agent.
  • the first polyolefin can be a polyolefin elastomer including an olefin block copolymer, an ethylene/ ⁇ -olefin copolymer, a propylene/ ⁇ -olefin copolymer, EPDM, EPM, or a mixture of two or more of any of these materials.
  • Exemplary block copolymers include those sold under the trade names INFUSETM, an olefin block co-polymer (the Dow Chemical Company) and SEPTONTM V-SERIES, a styrene-ethylene-butylene-styrene block copolymer (Kuraray Co., LTD.).
  • Exemplary ethylene/ ⁇ -olefin copolymers include those sold under the trade names TAFMERTM (e.g., TAFMER DF710) (Mitsui Chemicals, Inc.), and ENGAGETM (e.g., ENGAGE 8150) (the Dow Chemical Company).
  • Exemplary propylene/ ⁇ -olefin copolymers include those sold under the trade name VISTAMAXXTM 6102 grades (Exxon Mobil Chemical Company), TAFMERTM XM (Mitsui Chemical Company), and VERSIFYTM (Dow Chemical Company).
  • the EPDM may have a diene content of from about 0.5 to about 10 wt %.
  • the EPM may have an ethylene content of 45 wt % to 75 wt %.
  • olefin comonomers refers to olefin comonomers which are suitable for being polymerized with olefin monomers, such as ethylene or propylene monomers.
  • Comonomers may comprise but are not limited to aliphatic C 2 -C 20 ⁇ -olefins. Examples of suitable aliphatic C 2 -C 20 ⁇ -olefins include ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene.
  • the comonomer is vinyl acetate.
  • copolymer refers to a polymer, which is made by linking more than one type of monomer in the same polymer chain.
  • homopolymer refers to a polymer which is made by linking olefin monomers, in the absence of comonomers.
  • the amount of comonomer can, in some embodiments, be from greater than 0 wt % to about 12 wt % based on the weight of the polyolefin, including from greater than 0 wt % to about 9 wt %, and from greater than 0 wt % to about 7 wt %.
  • the comonomer content is greater than about 2 mol % of the final polymer, including greater than about 3 mol % and greater than about 6 mol %.
  • the comonomer content may be less than or equal to about 30 mol %.
  • a copolymer can be a random or block (heterophasic) copolymer.
  • the polyolefin is a random copolymer of propylene and ethylene.
  • the first polyolefin is selected from the group consisting of: an olefin homopolymer, a blend of homopolymers, a copolymer made using two or more olefins, a blend of copolymers each made using two or more olefins, and a combination of olefin homopolymers blended with copolymers made using two or more olefins.
  • the olefin may be selected from ethylene, propylene, 1-butene, 1-propene, 1-hexene, 1-octene, and other higher 1-olefin.
  • the first polyolefin may be synthesized using many different processes (e.g., using gas phase and solution based metallocene catalysis and Ziegler-Natta catalysis) and optionally using a catalyst suitable for polymerizing ethylene and/or ⁇ -olefins.
  • a metallocene catalyst may be used to produce low density ethylene/ ⁇ -olefin polymers.
  • the polyethylene used for the first polyolefin can be classified into several types including, but not limited to, LDPE (Low Density Polyethylene), LLDPE (Linear Low Density Polyethylene), and HDPE (High Density Polyethylene).
  • the polyethylene can be classified as Ultra High Molecular Weight (UHMW), High Molecular Weight (HMW), Medium Molecular Weight (MMW) and Low Molecular Weight (LMW).
  • the polyethylene may be an ultra-low density ethylene elastomer.
  • the first polyolefin may include a LDPE/silane copolymer or blend.
  • the first polyolefin may be polyethylene that can be produced using any catalyst known in the art including, but not limited to, chromium catalysts, Ziegler-Natta catalysts, metallocene catalysts or post-metallocene catalysts.
  • the first polyolefin may have a molecular weight distribution M w /M n of less than or equal to about 5, less than or equal to about 4, from about 1 to about 3.5, or from about 1 to about 3.
  • the first polyolefin may be present in an amount of from greater than 0 wt % to about 100 wt % of the composition. In some embodiments, the amount of polyolefin elastomer is from about 30 wt % to about 70 wt %. In some aspects, the first polyolefin fed to an extruder can include from about 50 wt % to about 80 wt % of an ethylene/ ⁇ -olefin copolymer, including from about 60 wt % to about 75 wt % and from about 62 wt % to about 72 wt %.
  • the first polyolefin may have a melt viscosity in the range of from about 2,000 cP to about 50,000 cP as measured using a Brookfield viscometer at a temperature of about 177° C. In some embodiments, the melt viscosity is from about 4,000 cP to about 40,000 cP, including from about 5,000 cP to about 30,000 cP and from about 6,000 cP to about 18,000 cP.
  • the first polyolefin may have a melt index (T 2 ), measured at 190° C. under a 2.16 kg load, of from about 20.0 g/10 min to about 3,500 g/10 min, including from about 250 g/10 min to about 1,900 g/10 min and from about 300 g/10 min to about 1,500 g/10 min.
  • T 2 melt index
  • the first polyolefin has a fractional melt index of from 0.5 g/10 min to about 3,500 g/10 min.
  • the density of the first polyolefin is less than about 0.90 g/cm 3 , less than about 0.89 g/cm 3 , less than about 0.88 g/cm 3 , less than about 0.87 g/cm 3 , less than about 0.86 g/cm 3 , less than about 0.85 g/cm 3 , less than about 0.84 g/cm 3 , less than about 0.83 g/cm 3 , less than about 0.82 g/cm 3 , less than about 0.81 g/cm 3 , or less than about 0.80 g/cm 3 .
  • the density of the first polyolefin may be from about 0.85 g/cm 3 to about 0.89 g/cm 3 , from about 0.85 g/cm 3 to about 0.88 g/cm 3 , from about 0.84 g/cm 3 to about 0.88 g/cm 3 , or from about 0.83 g/cm 3 to about 0.87 g/cm 3 .
  • the density is at about 0.84 g/cm 3 , about 0.85 g/cm 3 , about 0.86 g/cm 3 , about 0.87 g/cm 3 , about 0.88 g/cm 3 , or about 0.89 g/cm 3 .
  • the percent crystallinity of the first polyolefin may be less than about 60%, less than about 50%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, or less than about 20%.
  • the percent crystallinity may be at least about 10%. In some aspects, the crystallinity is in the range of from about 2% to about 60%.
  • the second polyolefin can be a polyolefin elastomer including an olefin block copolymer, an ethylene/ ⁇ -olefin copolymer, a propylene/ ⁇ -olefin copolymer, EPDM, EPM, or a mixture of two or more of any of these materials.
  • exemplary block copolymers include those sold under the trade names INFUSETM (the Dow Chemical Company) and SEPTONTM V-SERIES (Kuraray Co., LTD.).
  • Exemplary ethylene/ ⁇ -olefin copolymers include those sold under the trade names TAFMERTM (e.g., TAFMER DF710) (Mitsui Chemicals, Inc.) and ENGAGETM (e.g., ENGAGE 8150) (the Dow Chemical Company).
  • Exemplary propylene/ ⁇ -olefin copolymers include those sold under the trade name TAFMERTM XM grades (Mitsui Chemical Company) and VISTAMAXXTM (e.g., VISTAMAXX 6102) (Exxon Mobil Chemical Company).
  • the EPDM may have a diene content of from about 0.5 to about 10 wt %.
  • the EPM may have an ethylene content of 45 wt % to 75 wt %.
  • the second polyolefin is selected from the group consisting of: an olefin homopolymer, a blend of homopolymers, a copolymer made using two or more olefins, a blend of copolymers each made using two or more olefins, and a blend of olefin homopolymers with copolymers made using two or more olefins.
  • the olefin may be selected from ethylene, propylene, 1-butene, 1-propene, 1-hexene, 1-octene, and other higher 1-olefin.
  • the first polyolefin may be synthesized using many different processes (e.g., using gas phase and solution based metallocene catalysis and Ziegler-Natta catalysis) and optionally using a catalyst suitable for polymerizing ethylene and/or ⁇ -olefins.
  • a metallocene catalyst may be used to produce low density ethylene/ ⁇ -olefin polymers.
  • the second polyolefin may include a polypropylene homopolymer, a polypropylene copolymer, a polyethylene-co-propylene copolymer, or a mixture thereof.
  • Suitable polypropylenes include but are not limited to polypropylene obtained by homopolymerization of propylene or copolymerization of propylene and an ⁇ -olefin comonomer.
  • the second polyolefin may have a higher molecular weight and/or a higher density than the first polyolefin.
  • the second polyolefin may have a molecular weight distribution M w /M n of less than or equal to about 5, less than or equal to about 4, from about 1 to about 3.5, or from about 1 to about 3.
  • the second polyolefin may be present in an amount of from greater than 0 wt % to about 100 wt % of the composition. In some embodiments, the amount of polyolefin elastomer is from about 30 wt % to about 70 wt %. In some embodiments, the second polyolefin fed to the extruder can include from about 10 wt % to about 50 wt % polypropylene, from about 20 wt % to about 40 wt % polypropylene, or from about 25 wt % to about 35 wt % polypropylene. The polypropylene may be a homopolymer or a copolymer.
  • the second polyolefin may have a melt viscosity in the range of from about 2,000 cP to about 50,000 cP as measured using a Brookfield viscometer at a temperature of about 177° C.
  • the melt viscosity is from about 4,000 cP to about 40,000 cP, including from about 5,000 cP to about 30,000 cP and from about 6,000 cP to about 18,000 cP.
  • the second polyolefin may have a melt index (T2), measured at 190° C. under a 2.16 kg load, of from about 20.0 g/10 min to about 3,500 g/10 min, including from about 250 g/10 min to about 1,900 g/10 min and from about 300 g/10 min to about 1,500 g/10 min.
  • T2 melt index
  • the polyolefin has a fractional melt index of from 0.5 g/10 min to about 3,500 g/10 min.
  • the density of the second polyolefin is less than about 0.90 g/cm 3 , less than about 0.89 g/cm 3 , less than about 0.88 g/cm 3 , less than about 0.87 g/cm 3 , less than about 0.86 g/cm 3 , less than about 0.85 g/cm 3 , less than about 0.84 g/cm 3 , less than about 0.83 g/cm 3 , less than about 0.82 g/cm 3 , less than about 0.81 g/cm 3 , or less than about 0.80 g/cm 3 .
  • the density of the first polyolefin may be from about 0.85 g/cm 3 to about 0.89 g/cm 3 , from about 0.85 g/cm 3 to about 0.88 g/cm 3 , from about 0.84 g/cm 3 to about 0.88 g/cm 3 , or from about 0.83 g/cm 3 to about 0.87 g/cm 3 .
  • the density is at about 0.84 g/cm 3 , about 0.85 g/cm 3 , about 0.86 g/cm 3 , about 0.87 g/cm 3 , about 0.88 g/cm 3 , or about 0.89 g/cm 3 .
  • the percent crystallinity of the second polyolefin may be less than about 60%, less than about 50%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, or less than about 20%.
  • the percent crystallinity may be at least about 10%.
  • the crystallinity of the second polyolefin is in the range of from about 2% to about 60%.
  • the foamed silane-crosslinked polyolefin elastomer or blend e.g., as employed in midsole 18 (see FIGS. 1-2 ), includes both the first polyolefin and the second polyolefin.
  • the second polyolefin is generally used to modify the hardness and/or processability of the first polyolefin, which has a density less than 0.90 g/cm 3 .
  • more than just the first and second polyolefins may be used to form the foamed silane-crosslinked polyolefin elastomer or blend.
  • one, two, three, four, or more different polyolefins having a density less than 0.90 g/cm 3 , less than 0.89 g/cm 3 , less than 0.88 g/cm 3 , less than 0.87 g/cm 3 , less than 0.86 g/cm 3 , or less than 0.85 g/cm 3 may be substituted and/or used for the first polyolefin.
  • one, two, three, four, or more different polyolefins, polyethylene-co-propylene copolymers may be substituted and/or used for the second polyolefin.
  • the first and second polyolefins may further include one or more TPVs and/or EPDM with or without silane graft moieties where the TPV and/or EPDM polymers are present in an amount of up to 20 wt % of the silane-crosslinked polyolefin elastomer/blend.
  • the grafting initiator (also referred to as “a radical initiator” in the disclosure) can be utilized in the grafting process of at least the first and second polyolefins by reacting with the respective polyolefins to form a reactive species that can react and/or couple with the silane crosslinker molecule.
  • the grafting initiator can include halogen molecules, azo compounds (e.g., azobisisobutyl), carboxylic peroxyacids, peroxyesters, peroxyketals, and peroxides (e.g., alkyl hydroperoxides, dialkyl peroxides, and diacyl peroxides).
  • the grafting initiator is an organic peroxide selected from di-t-butyl peroxide, t-butyl cumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butyl-peroxy)hexyne-3, 1,3-bis(t-butyl-peroxy-isopropyl)benzene, n-butyl-4,4-bis(t-butyl-peroxy)valerate, benzoyl peroxide, t-butylperoxybenzoate, t-butylperoxy isopropyl carbonate, and t-butylperbenzoate, as well as bis(2-methylbenzoyl)peroxide, bis(4-methylbenzoyl)peroxide, t-butyl peroctoate, cumene hydroperoxide, methyl ethyl ketone peroxide, lauryl peroxide, tert-butyl peroxide,
  • the grafting initiator is present in an amount of from greater than 0 wt % to about 2 wt % of the composition, including from about 0.15 wt % to about 1.2 wt % of the composition.
  • the amount of initiator and silane employed may affect the final structure of the silane grafted polymer (e.g., the degree of grafting in the grafted polymer and the degree of crosslinking in the cured polymer).
  • the reactive composition contains at least 100 ppm of initiator, or at least 300 ppm of initiator.
  • the initiator may be present in an amount from 300 ppm to 1500 ppm or from 300 ppm to 2000 ppm.
  • the silane:initiator weight ratio may be from about 20:1 to about 400:1, including from about 30:1 to about 400:1, from about 48:1 to about 350:1, and from about 55:1 to about 333:1.
  • the grafting reaction can be performed under conditions that optimize grafts onto the interpolymer backbone while minimizing side reactions (e.g., the homopolymerization of the grafting agent).
  • the grafting reaction may be performed in a melt, in solution, in a solid-state, and/or in a swollen-state.
  • the silanation may be performed in a wide-variety of equipment (e.g., twin screw extruders, single screw extruders, Brabenders, internal mixers such as Banbury mixers, and batch reactors).
  • the polyolefin, silane, and initiator are mixed in the first stage of an extruder.
  • the melt temperature i.e., the temperature at which the polymer starts melting and begins to flow
  • a silane crosslinker can be used to covalently graft silane moieties onto the first and second polyolefins and the silane crosslinker may include alkoxysilanes, silazanes, siloxanes, or a combination thereof.
  • the grafting and/or coupling of the various potential silane crosslinkers or silane crosslinker molecules is facilitated by the reactive species formed by the grafting initiator reacting with the respective silane crosslinker.
  • the silane crosslinker is a silazane where the silazane may include, for example, hexamethyldisilazane (HMDS) or bis(trimethylsilyl)amine.
  • the silane crosslinker is a siloxane where the siloxane may include, for example, polydimethylsiloxane (PDMS) and octamethylcyclotetrasiloxane.
  • the silane crosslinker is an alkoxysilane.
  • alkoxysilane refers to a compound that comprises a silicon atom, at least one alkoxy group and at least one other organic group, wherein the silicon atom is bonded with the organic group by a covalent bond.
  • the alkoxysilane is selected from alkylsilanes; acryl-based silanes; vinyl-based silanes; aromatic silanes; epoxy-based silanes; amino-based silanes and amines that possess —NH 2 , —NHCH 3 or —N(CH 3 ) 2 ; ureide-based silanes; mercapto-based silanes; and alkoxysilanes which have a hydroxyl group (i.e., —OH).
  • An acryl-based silane may be selected from the group comprising beta-acryloxyethyl trimethoxysilane; beta-acryloxy propyl trimethoxysilane; gamma-acryloxyethyl trimethoxysilane; gamma-acryloxypropyl trimethoxysilane; beta-acryloxyethyl triethoxysilane; beta-acryloxypropyl triethoxysilane; gamma-acryloxyethyl triethoxysilane; gamma-acryloxypropyl triethoxysilane; beta-methacryloxyethyl trimethoxysilane; beta-methacryloxypropyl trimethoxysilane; gamma-methacryloxyethyl trimethoxysilane; gamma-methacryloxypropyl trimethoxysilane; beta-methacryloxyethyl trimethoxysilane; beta-methacryloxypropyl
  • a vinyl-based silane may be selected from the group comprising vinyl trimethoxysilane; vinyl triethoxysilane; p-styryl trimethoxysilane, methylvinyldimethoxysilane, vinyldimethylmethoxysilane, divinyldimethoxysilane, vinyltris(2-methoxyethoxy)silane, and vinylbenzylethylenediaminopropyltrimethoxysilane.
  • An aromatic silane may be selected from phenyltrimethoxysilane and phenyltriethoxysilane.
  • An epoxy-based silane may be selected from the group comprising 3-glycydoxypropyl trimethoxysilane; 3-glycydoxypropylmethyl diethoxysilane; 3-glycydoxypropyl triethoxysilane; 2-(3,4-epoxycyclohexyl)ethyl trimethoxysilane, and glycidyloxypropylmethyldimethoxysilane.
  • An amino-based silane may be selected from the group comprising 3-aminopropyl triethoxysilane; 3-aminopropyl trimethoxysilane; 3-aminopropyldimethyl ethoxysilane; 3-aminopropylmethyldiethoxysilane; 4-aminobutyltriethoxysilane; 3-aminopropyldiisopropyl ethoxysilane; 1-amino-2-(dimethylethoxysilyl)propane; (aminoethylamino)-3-isobutyldimethyl methoxysilane; N-(2-aminoethyl)-3-aminoisobutylmethyl dimethoxysilane; (aminoethylaminomethyl)phenetyl trimethoxysilane; N-(2-aminoethyl)-3-aminopropylmethyl dimethoxysilane; N-(2-amino
  • An ureide-based silane may be 3-ureidepropyl triethoxysilane.
  • a mercapto-based silane may be selected from the group comprising 3-mercaptopropylmethyl dimethoxysilane, 3-mercaptopropyl trimethoxysilane, and 3-mercaptopropyl triethoxysilane.
  • An alkoxysilane having a hydroxyl group may be selected from the group comprising hydroxymethyl triethoxysilane; N-(hydroxyethyl)-N-methylaminopropyl trimethoxysilane; bis(2-hydroxyethyl)-3-aminopropyl triethoxysilane; N-(3-triethoxysilylpropyl)-4-hydroxy butylamide; 1,1-(triethoxysilyl)undecanol; triethoxysilyl undecanol; ethylene glycol acetal; and N-(3-ethoxysilylpropyl)gluconamide.
  • the alkylsilane may be expressed with a general formula: R n Si(ORT) 4 , wherein: n is 1 , 2 or 3; R is a C 1-20 alkyl ora C 2-20 alkenyl; and R′ is an C 1-20 alkyl.
  • R n Si(ORT) 4 a general formula: R n Si(ORT) 4 , wherein: n is 1 , 2 or 3; R is a C 1-20 alkyl ora C 2-20 alkenyl; and R′ is an C 1-20 alkyl.
  • alkyl by itself or as part of another substituent, refers to a straight, branched or cyclic saturated hydrocarbon group joined by single carbon-carbon bonds having 1 to 20 carbon atoms, for example 1 to 10 carbon atoms, for example 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms.
  • C 1-6 alkyl means an alkyl of one to six carbon atoms.
  • alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, f-butyl, 2-methylbutyl, pentyl, iso-amyl and its isomers, hexyl and its isomers, heptyl and its isomers, octyl and its isomer, decyl and its isomer, dodecyl and its isomers.
  • C 2-20 alkenyl by itself or as part of another substituent, refers to an unsaturated hydrocarbyl group, which may be linear, or branched, comprising one or more carbon-carbon double bonds having 2 to 20 carbon atoms.
  • Examples of C2-6 alkenyl groups are ethenyl, 2-propenyl, 2-butenyl, 3-butenyl, 2-pentenyl and its isomers, 2-hexenyl and its isomers, 2,4-pentadienyl and the like.
  • the alkylsilane may be selected from the group comprising methyltrimethoxysilane; methyltriethoxysilane; ethyltrimethoxysilane; ethyltriethoxysilane; propyltrimethoxysilane; propyltriethoxysilane; hexyltrimethoxysilane; hexyltriethoxysilane; octyltrimethoxysilane; octyltriethoxysilane; decyltrimethoxysilane; decyltriethoxysilane; dodecyltrimethoxysilane: dodecyltriethoxysilane; tridecyltrimethoxysilane; dodecyltriethoxysilane; hexadecyltrimethoxysilane; hexadecyltriethoxysilane; octade
  • the alkylsilane compound may be selected from triethoxyoctylsilane, trimethoxyoctylsilane, and a combination thereof.
  • the silane crosslinker can include, but is not limited to, unsaturated silanes which include an ethylenically unsaturated hydrocarbyl group (e.g., a vinyl, allyl, isopropenyl, butenyl, cyclohexenyl or a gamma-(meth)acryloxy allyl group) and a hydrolyzable group (e.g., a hydrocarbyloxy, hydrocarbonyloxy, or hydrocarbylamino group).
  • unsaturated silanes which include an ethylenically unsaturated hydrocarbyl group (e.g., a vinyl, allyl, isopropenyl, butenyl, cyclohexenyl or a gamma-(meth)acryloxy allyl group) and a hydrolyzable group (e.g., a hydrocarbyloxy, hydrocarbonyloxy, or hydrocarbylamino group).
  • Non-limiting examples of hydrolyzable groups include, but are not limited to, methoxy, ethoxy, formyloxy, acetoxy, proprionyloxy, and alkyl, or arylamino groups.
  • the silane crosslinkers are unsaturated alkoxy silanes which can be grafted onto the polymer.
  • additional exemplary silane crosslinkers include vinyltrimethoxysilane, vinyltriethoxysilane, 3-(trimethoxysilyl)propyl methacrylate gamma-(meth)acryloxypropyl trimethoxysilane), and mixtures thereof.
  • the silane crosslinker may be present in the silane-grafted polyolefin elastomer in an amount of from greater than 0 wt % to about 10 wt %, including from about 0.5 wt % to about 5 wt %.
  • the amount of silane crosslinker may be varied based on the nature of the olefin polymer, the silane itself, the processing conditions, the grafting efficiency, the application, and other factors.
  • the amount of silane crosslinker may be at least 2 wt %, including at least 4 wt % or at least 5 wt %, based on the weight of the reactive composition.
  • the amount of silane crosslinker may be at least 10 wt %, based on the weight of the reactive composition.
  • the silane crosslinker content is at least 1% based on the weight of the reactive composition.
  • the silane crosslinker fed to the extruder may include from about 0.5 wt % to about 10 wt % of silane monomer, from about 1 wt % to about 5 wt % silane monomer, or from about 2 wt % to about 4 wt % silane monomer.
  • a condensation catalyst can facilitate both the hydrolysis and subsequent condensation of the silane grafts on the silane-grafted polyolefin elastomer to form crosslinks.
  • the crosslinking can be aided by the use of an electron beam radiation.
  • the condensation catalyst can include, for example, organic bases, carboxylic acids, and organometallic compounds (e.g., organic titanates and complexes or carboxylates of lead, cobalt, iron, nickel, zinc, and tin).
  • the condensation catalyst can include fatty acids and metal complex compounds such as metal carboxylates; aluminum triacetyl acetonate, iron triacetyl acetonate, manganese tetraacetyl acetonate, nickel tetraacetyl acetonate, chromium hexaacetyl acetonate, titanium tetraacetyl acetonate and cobalt tetraacetyl acetonate; metal alkoxides such as aluminum ethoxide, aluminum propoxide, aluminum butoxide, titanium ethoxide, titanium propoxide and titanium butoxide; metal salt compounds such as sodium acetate, tin octylate, lead octylate, cobalt octylate, zinc octylate, calcium octylate, lead naphthenate, cobalt naphthenate, dibutyltin dioctoate, di
  • the condensation catalyst can include ibutyltindilaurate, dioctyltinmaleate, dibutyltindiacetate, dibutyltindioctoate, stannous acetate, stannous octoate, lead naphthenate, zinc caprylate, and cobalt naphthenate.
  • a single condensation catalyst or a mixture of condensation catalysts may be utilized.
  • the condensation catalyst(s) may be present in an amount of from about 0.01 wt % to about 1.0 wt %, including from about 0.25 wt % to about 8 wt %, based on the total weight of the silane-grafted polyolefin elastomer/blend composition.
  • a crosslinking system can include and use one or all of a combination of radiation, heat, moisture, and additional condensation catalyst.
  • the condensation catalyst may be present in an amount of from 0.25 wt % to 8 wt %. In other aspects, the condensation catalyst may be included in an amount of from about 1 wt % to about 10 wt % or from about 2 wt % to about 5 wt %.
  • the foaming agent can be a chemical foaming agent (e.g., organic or inorganic foaming agent) and/or a physical foaming (e.g., gases and volatile low weight molecules) that is added to the silane-grafted polyolefin elastomer and condensation catalyst blend during the extrusion and/or molding process to produce the foamed silane-crosslinked polyolefin elastomer.
  • a chemical foaming agent e.g., organic or inorganic foaming agent
  • a physical foaming e.g., gases and volatile low weight molecules
  • the foaming agent may be a physical foaming agent including the microencapsulated foaming agent, otherwise referred to in the art as a microencapsulated blowing agent (MEBA).
  • MEBAs include a family of physical foaming agents that are defined as a thermo expandable microsphere which is formed by the encapsulation of a volatile hydrocarbon into an acrylic copolymer shell. When the acrylic copolymer shell expands, the volatile hydrocarbon (e.g., butane) creates a foam in the silane-crosslinkable polyolefin elastomer and reduces its weight.
  • the MEBAs have an average particle size of from about 20 ⁇ m to about 30 ⁇ m.
  • Exemplary MEBAs include those sold under the trade name MATSUMOTO F-AC170D.
  • MEBA's may be used in combination with other foaming agents including organic and inorganic foaming agents.
  • the foaming agent may be a combination of endothermic and/or exothermic foaming compounds that can create a cell structure using a water releasing agent to accelerate the curing times, e.g. 40 seconds to 100 seconds, in the mold having a temperature greater than 150° C.
  • Organic foaming agents that may be used can include, for example, azo compounds, such as azodicarbonamide (ADCA), barium azodicarboxylate, azobisisobutyronitrile (AIBN), azocyclohexylnitrile, and azodiaminobenzene, N-nitroso compounds, such as N,N′-dinitrosopentamethylenetetramine (DPT), N,N′-dimethyl-N,N′-dinitrosoterephthalamide, and trinitrosotrimethyltriamine, hydrazide compounds, such as 4,4′-oxybis(benzenesulfonylhydrazide)(OBSH), paratoluene sulfonylhydrazide, diphenylsulfone-3,3′-disulfonylhydrazide, 2,4-toluenedisulfonylhydrazide, p,p-bis(benzenesulfonylhydrazide
  • azo compounds and N-nitroso compounds are used.
  • azodicarbonamide (ADCA) and N,N′-dinitrosopentamethylenetetramine (DPT) are used.
  • the organic foaming agents listed above may be used alone or in any combination of two or more.
  • the decomposition temperature and amount of organic foaming agent used can have important consequences on the density and material properties of the foamed silane-crosslinked polyolefin elastomer.
  • the organic foaming agent has a decomposition temperature of from about 150° C. to about 210° C.
  • the organic foaming agent can be used in an amount of from about 0.1 wt % to about 40 wt %, from about 5 wt % to about 30 wt %, from about 5 wt % to about 20 wt %, from about 10 wt % to about 30 wt %, or from about 1 wt % to about 10 wt % based on the total weight of the polymer blend.
  • organic foaming agent has a decomposition temperature lower than 150° C., early foaming may occur during compounding. Meanwhile, if the organic foaming agent has a decomposition temperature higher than 210° C., it may take longer, e.g., greater than 15 minutes, to mold the foam, resulting in low productivity. Additional foaming agents may include any compound whose decomposition temperature is within the range defined above.
  • the inorganic foaming agents that may be used include, for example, hydrogen carbonate, such as sodium hydrogen carbonate and ammonium hydrogen carbonate; carbonate, such as sodium carbonate and ammonium carbonate; nitrite, such as sodium nitrite and ammonium nitrite; borohydride, such as sodium borohydride; and other known inorganic foaming agents, such as azides.
  • hydrogen carbonate may be used.
  • sodium hydrogen carbonate may be used.
  • the inorganic foaming agents listed above may be used alone or in any combination of two or more.
  • the inorganic foaming agent can be used in an amount of from about 0.1 wt % to about 40 wt %, from about 5 wt % to about 30 wt %, from about 5 wt % to about 20 wt %, from about 10 wt % to about 30 wt %, or from about 1 wt % to about 10 wt % based on the total weight of the polymer blend.
  • Physical blowing agents that may be used include, for example, supercritical carbon dioxide, supercritical nitrogen, butane, pentane, isopentane, cyclopentane.
  • various minerals or inorganic compounds e.g., talc and calcium carbonate may be used as a nucleating agent for the supercritical fluid.
  • the physical foaming agent can be used in an amount of from about 0.1 wt % to about 40 wt %, from about 5 wt % to about 30 wt %, from about 5 wt % to about 20 wt %, from about 10 wt % to about 30 wt %, or from about 1 wt % to about 10 wt % based the total weight of the polymer blend.
  • the foamed silane-crosslinked polyolefin elastomer may optionally include one or more fillers.
  • the filler(s) may be extruded with the silane-grafted polyolefin.
  • the filler(s) may include metal oxides, metal hydroxides, metal carbonates, metal sulfates, metal silicates, clays, talcs, carbon black, and silicas. Depending on the application and/or desired properties, these materials may be fumed or calcined.
  • the metal of the metal oxide, metal hydroxide, metal carbonate, metal sulfate, or metal silicate may be selected from alkali metals (e.g., lithium, sodium, potassium, rubidium, caesium, and francium); alkaline earth metals (e.g., beryllium, magnesium, calcium, strontium, barium, and radium); transition metals (e.g., zinc, molybdenum, cadmium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, yttrium, zirconium, niobium, technetium, ruthernium, rhodium, palladium, silver, hafnium, taltalum, tungsten, rhenium, osmium, indium, platinum, gold, mercury, rutherfordium, dubnium, seaborgium, bohrium, hassium, and copernici
  • alkali metals
  • the filler(s) of the foamed silane-crosslinked polyolefin elastomer or blend may be present in an amount of from greater than 0 wt % to about 50 wt %, including from about 1 wt % to about 20 wt %, and from about 3 wt % to about 10 wt %.
  • the foamed silane-crosslinked polyolefin elastomer and/or the respective articles formed may also include waxes (e.g., paraffin waxes, microcrystalline waxes, HDPE waxes, LDPE waxes, thermally degraded waxes, byproduct polyethylene waxes, optionally oxidized Fischer-Tropsch waxes, and functionalized waxes).
  • the wax(es) are present in an amount of from about 0 wt % to about 10 wt %.
  • Tackifying resins e.g., aliphatic hydrocarbons, aromatic hydrocarbons, modified hydrocarbons, terpens, modified terpenes, hydrogenated terpenes, rosins, rosin derivatives, hydrogenated rosins, and mixtures thereof
  • the tackifying resins may have a ring and ball softening point in the range of from 70° C. to about 150° C. and a viscosity of less than about 3,000 cP at 177° C.
  • the tackifying resin(s) are present in an amount of from about 0 wt % to about 10 wt %.
  • the foamed silane-crosslinked polyolefin elastomer may include one or more oils.
  • oils include white mineral oils and naphthenic oils.
  • the oil(s) are present in an amount of from about 0 wt % to about 10 wt %.
  • the synthesis/production of the foamed silane-crosslinked polyolefin elastomer may be performed by combining the respective components in one extruder using a single-step Monosil process or in two extruders using a two-step Sioplas process which eliminates the need for additional steps of mixing and shipping rubber compounds prior to extrusion.
  • the general chemical process used during both the single-step Monosil process and two-step Sioplas process used to synthesize the foamed silane-crosslinked polyolefin elastomer starts with a grafting step that includes initiation from a grafting initiator followed by propagation and chain transfer with the first and second polyolefins.
  • the grafting initiator in some aspects, a peroxide or azo compound, homolytically cleaves to form two radical initiator fragments that transfer to one of the first and second polyolefins chains through a propagation step.
  • the free radical now positioned on the first or second polyolefin chain, can then transfer to a silane molecule and/or another polyolefin chain. Once the initiator and free radicals are consumed, the silane grafting reaction for the first and second polyolefins is complete.
  • a crosslinking catalyst may then be added to the first and second silane-grafted polyolefins to form the silane-grafted polyolefin elastomer.
  • the crosslinking catalyst may first facilitate the hydrolysis of the silyl group grafted onto the polyolefin backbones to form reactive silanol groups.
  • the silanol groups may then react with other silanol groups on other polyolefin molecules to form a crosslinked network of elastomeric polyolefin polymer chains linked together through siloxane linkages.
  • the density of silane crosslinks throughout the silane-grafted polyolefin elastomer can influence the material properties exhibited by the elastomer.
  • the method 200 may begin with a step 204 that includes extruding (e.g., with a twin screw extruder 252 ) the first polyolefin 240 having a density less than 0.86 g/cm 3 , the second polyolefin 244 , and a silan cocktail 248 including the silane crosslinker (e.g., vinyltrimethoxy silane, VTMO) and the grafting initiator (e.g. dicumyl peroxide) together to form a silane-grafted polyolefin blend.
  • the silane crosslinker e.g., vinyltrimethoxy silane, VTMO
  • grafting initiator e.g. dicumyl peroxide
  • the first polyolefin 240 and second polyolefin 244 may be added to a reactive twin screw extruder 252 using an addition hopper 256 .
  • the silan cocktail 248 may be added to the twin screws 260 further down the extrusion line to help promote better mixing with the first and second polyolefin 240 , 244 blend.
  • a forced volatile organic compound (VOC) vacuum 264 may be used on the reactive twin screw extruder 252 to help maintain a desired reaction pressure.
  • the twin screw extruder 252 is considered reactive because the radical initiator and silane crosslinker are reacting with and forming new covalent bonds with both the first and second polyolefins 240 , 244 .
  • the melted silane-grafted polyolefin blend can exit the reactive twin screw extruder 252 using a gear pump 268 that injects the molten silane-grafted polyolefin blend into a water pelletizer 272 that can form a pelletized silane-grafted polyolefin blend 276 .
  • the molten silane-grafted polyolefin blend may be extruded into pellets, pillows, or any other configuration prior to the incorporation of the condensation catalyst 280 (see FIG. 5B ) and formation of the final article.
  • the reactive twin screw extruder 252 can be configured to have a plurality of different temperature zones (e.g., Z 0 -Z 12 as shown in FIG. 5A ) that extend for various lengths of the twin screw extruder 252 .
  • the respective temperature zones may have temperatures ranging from about room temperature to about 180° C., from about 120° C. to about 170° C., from about 120° C. to about 160° C., from about 120° C. to about 150° C., from about 120° C. to about 140° C., from about 120° C. to about 130° C., from about 130° C. to about 170° C., from about 130° C. to about 160° C., from about 130° C.
  • Z 0 may have a temperature from about 60° C. to about 110° C. or no cooling;
  • Z 1 may have a temperature from about 120° C. to about 130° C.;
  • Z 2 may have a temperature from about 140° C. to about 150° C.;
  • Z 3 may have a temperature from about 150° C. to about 160° C.;
  • Z 4 may have a temperature from about 150° C.
  • Z 5 may have a temperature from about 150° C. to about 160° C.
  • Z 6 may have a temperature from about 150° C. to about 160° C.
  • Z 7 may have a temperature from about 150° C. to about 160° C.
  • Z 8 -Z 12 may have a temperature from about 150° C. to about 160° C.
  • the number average molecular weight of the silane-grafted polyolefin elastomers may be in the range of from about 4,000 g/mol to about 30,000 g/mol, including from about 5,000 g/mol to about 25,000 g/mol and from about 6,000 g/mol to about 14,000 g/mol.
  • the weight average molecular weight of the grafted polymers may be from about 8,000 g/mol to about 60,000 g/mol, including from about 10,000 g/mol to about 30,000 g/mol.
  • the method 200 next includes a step 208 of extruding the silane-grafted polyolefin blend 276 and the condensation catalyst 280 together to form a silane-crosslinkable polyolefin blend 298 .
  • one or more optional additives 284 may be added with the silane-grafted polyolefin blend 276 and the condensation catalyst 280 to adjust the final material properties of the silane-crosslinkable polyolefin blend 298 .
  • the silane-grafted polyolefin blend 276 is mixed with a silanol forming condensation catalyst 280 to form reactive silanol groups on the silane grafts that can subsequently crosslink when exposed to humidity and/or heat.
  • the condensation catalyst 280 can include a mixture of sulfonic acid, antioxidant, process aide, and carbon black for coloring where the ambient moisture is sufficient for this condensation catalyst 280 to crosslink the silane-crosslinkable polyolefin blend 298 over a longer time period (e.g., about 48 hours).
  • the silane-grafted polyolefin blend 276 and the condensation catalyst 280 may be added to a reactive single screw extruder 288 using an addition hopper (similar to the addition hopper 256 depicted in FIG. 5A ) and an addition gear pump 296 .
  • the combination of the silane-grafted polyolefin blend 276 and the condensation catalyst 280 , and in some aspects one or more optional additives 284 may be added to a single screw 292 of the reactive single screw extruder 288 .
  • the single screw extruder 288 is considered reactive because the silane-grafted polyolefin blend 276 and the condensation catalyst 280 are melted and combined together to mix the condensation catalyst 280 thoroughly and evenly throughout the melted silane-grafted polyolefin blend 276 .
  • the melted silane-crosslinkable polyolefin blend 298 can exit the reactive single screw extruder 288 through a die 300 that can inject the molten silane-crosslinkable polyolefin blend 298 into a shoe sole mold 302 .
  • the silane-crosslinkable polyolefin blend 298 may be about 25% cured, about 30% cured, about 35% cured, about 40% cured, about 45% cured, about 50% cured, about 55% cured, about 60% cured, about 65% cured, or about 70% cured, where a gel test (ASTM D2765) can be used to determine the amount of crosslinking in the final foamed silane-crosslinked polyolefin elastomer.
  • a gel test ASTM D2765
  • the method 200 further includes a step 212 of molding the silane-crosslinkable polyolefin blend 298 into the shoe sole mold 302 to form a shoe sole element 314 .
  • the single screw extruder 288 melts and extrudes the silane-crosslinkable polyolefin 298 through a die 300 that can inject the molten silane-crosslinkable polyolefin blend 298 into halves 306 , 310 of the shoe sole mold 302 to form a shoe sole element 314.
  • the single screw extruder 288 melts and extrudes the silane-crosslinkable polyolefin 298 through a die 300 that can inject the molten silane-crosslinkable polyolefin blend 298 into halves 306 , 310 of the shoe sole mold 302 to form a shoe sole element 314.
  • the silane-crosslinkable polyolefin blend 298 and element 314 may also be molded and cured using one of several different molding approaches including: Compression Molding ( FIG. 8 ), Injection Molding ( FIG. 9 ), Injection Compression Molding ( FIG. 10 ), and Supercritical Injection Molding ( FIG. 11 ).
  • the method 200 can further include a step 216 of crosslinking the silane-crosslinkable polyolefin blend 298 and shoe sole element 314 at a temperature between 150° C. and 400° C., between 150° C. and 300° C., between 150° C. and 200° C., greater than 150° C., greater than 175° C., greater than 200° C., about 150° C., about 180° C., or about 200° C. to form the midsole 18 (see FIG. 1 ).
  • the step 216 of crosslinking the silane-crosslinkable polyolefin blend 298 and shoe sole element 314 can additionally be performed at an ambient humidity or under a pressurized steam to form the midsole 18 having a density from about 0.15 g/cm 3 to about 0.40 g/cm 3 .
  • the water hydrolyzes the silane of the silane-crosslinkable polyolefin elastomer to produce a silanol.
  • the silanol groups on various silane grafts can then be condensed to form intermolecular, irreversible Si—O—Si crosslink sites.
  • the amount of crosslinked silane groups, and thus the final polymer properties, can be regulated by controlling the production process, including the amount of catalyst used.
  • the crosslinking/curing of step 216 of the method 200 may occur over a time period of from greater than 0 to about 20 hours.
  • curing takes place over a time period of from about 60 seconds to 400 seconds, 1 hour to about 20 hours, 10 hours to about 20 hours, from about 15 hours to about 20 hours, from about 5 hours to about 15 hours, from about 1 hour to about 8 hours, or from about 3 hours to about 6 hours.
  • the humidity during curing may be from about 30% to about 100%, from about 40% to about 100%, or from about 50% to about 100%.
  • an injection molding setting is used that is capable of injection molding thermoplastic, at an injection molding heat setting close to TPV processing conditions wherein the extrudate crosslinks at ambient conditions becoming a thermoset in properties.
  • this process may be accelerated by steam exposure.
  • the gel content also called the crosslink density
  • the gel content may be about 60%, but after 96 hrs at ambient conditions, the gel content may reach greater than about 95%.
  • the method 400 may begin with a step 404 that includes extruding (e.g., with a single screw extruder 444 ) the first polyolefin 240 having a density less than 0.86 g/cm 3 , the second polyolefin 244 , the silan cocktail 248 including the the silane crosslinker (e.g., vinyltrimethoxy silane, VTMO) and grafting initiator (e.g. dicumyl peroxide), and the condensation catalyst 280 together to form the crosslinkable silane-grafted polyolefin blend 298 .
  • the silane crosslinker e.g., vinyltrimethoxy silane, VTMO
  • grafting initiator e.g. dicumyl peroxide
  • the first polyolefin 240 , second polyolefin 244 , and silan cocktail 248 may be added to the reactive single screw extruder 444 using an addition hopper 440 .
  • the silan cocktail 248 may be added to a single screw 448 further down the extrusion line to help promote better mixing with the first and second polyolefin 240 , 244 blend.
  • one or more optional additives 284 may be added with the first polyolefin 240 , second polyolefin 244 , and silan cocktail 248 to modify the final material properties of the silane-crosslinkable polyolefin blend 298 .
  • the single screw extruder 444 is considered reactive because the radical initiator and silane crosslinker of the silan cocktail 248 are reacting with and forming new covalent bonds with both the first and second polyolefins 240 , 244 .
  • the reactive single screw extruder 444 mixes the condensation catalyst 280 in together with the melted silane-grafted polyolefin blend 276 .
  • the melted silane-crosslinkable polyolefin blend 298 can exit the reactive single screw extruder 444 using a gear pump (not shown) and/or die 300 that can eject the molten silane-crosslinkable polyolefin blend 298 into the shoe sole mold 302 .
  • the silane-crosslinkable polyolefin blend 298 may be about 25% cured, about 30% cured, about 35% cured, about 40% cured, about 45% cured, about 50% cured, about 55% cured, about 60% cured, bout 65% cured, or about 70% as it leaves the reactive single screw extruder 444 .
  • a gel test (ASTM D2765) can be used to determine the amount of crosslinking in the final foamed silane-crosslinked polyolefin elastomer.
  • the reactive single screw extruder 444 can be configured to have a plurality of different temperature zones (e.g., Z 0 -Z 7 as shown in FIG. 7 ) that extend for various lengths along the extruder.
  • the respective temperature zones may have temperatures ranging from about room temperature to about 180° C., from about 120° C. to about 170° C., from about 120° C. to about 160° C., from about 120° C. to about 150° C., from about 120° C. to about 140° C., from about 120° C. to about 130° C., from about 130° C. to about 170° C., from about 130° C. to about 160° C., from about 130° C. to about 150° C., from about 130° C.
  • Z 0 may have a temperature from about 60° C. to about 110° C. or no cooling;
  • Z 1 may have a temperature from about 120° C. to about 130° C.;
  • Z 2 may have a temperature from about 140° C. to about 150° C.;
  • Z 3 may have a temperature from about 150° C. to about 160° C.;
  • Z 4 may have a temperature from about 150° C.
  • Z 5 may have a temperature from about 150° C. to about 160° C.
  • Z 6 may have a temperature from about 150° C. to about 160° C.
  • Z 7 may have a temperature from about 150° C. to about 160° C.
  • the number average molecular weight of the silane-grafted polyolefin elastomers may be in the range of from about 4,000 g/mol to about 30,000 g/mol, including from about 5,000 g/mol to about 25,000 g/mol and from about 6,000 g/mol to about 14,000 g/mol.
  • the weight average molecular weight of the grafted polymers may be from about 8,000 g/mol to about 60,000 g/mol, including from about 10,000 g/mol to about 30,000 g/mol.
  • the method 400 further includes a step 412 of molding the silane-crosslinkable polyolefin blend 298 into shoe sole element 314 in the shoe sole mold 302 .
  • the single screw extruder 444 melts and extrudes the silane-crosslinkable polyolefin 298 through a die 300 that can inject the molten silane-crosslinkable polyolefin blend 298 into halves 306 , 310 of the shoe sole mold 302 .
  • the silane-crosslinkable polyolefin blend 298 and element 314 may also be molded and cured using one of several different molding approaches including: Compression Molding ( FIG. 8 ), Injection Molding ( FIG. 9 ), Injection Compression Molding ( FIG. 10 ), and Supercritical Injection Molding ( FIG. 11 ).
  • the method 400 can further include a step 412 of crosslinking the silane-crosslinkable polyolefin blend 298 and shoe sole element 314 at a mold temperature between 150° C. and 400° C., between 150° C. and 300° C., between 150° C. and 200° C., greater than 150° C., greater than 175° C., greater than 200° C., about 150° C., about 180° C., or about 200° C. to form the midsole 18 (see FIG. 1 ).
  • the step 412 of crosslinking the silane-crosslinkable polyolefin blend 298 and shoe sole element 314 can additionally be performed at an ambient humidity or under a pressurized steam to form the midsole 18 having a from about 0.15 g/cm 3 to about 0.40 g/cm 3 .
  • the amount of crosslinked silane groups, and thus the final polymer properties, can be regulated by controlling the production process, including the amount of catalyst used.
  • the step 412 of crosslinking the silane-crosslinkable polyolefin blend 298 may occur over a time period of from greater than 0 to about 20 hours or it can be 40 seconds to 400 seconds at a temperature greater than 150° C. or about 180° C.
  • curing takes place over a time period of from about 1 hour to about 20 hours, 10 hours to about 20 hours, from about 15 hours to about 20 hours, from about 5 hours to about 15 hours, from about 1 hour to about 8 hours, or from about 3 hours to about 6 hours.
  • the temperature (mold temperature) during the crosslinking and curing may be about room temperature, about 150° C., about 180° C., from about 20° C. to about 225° C., from about 20° C. to about 200° C., from about 25° C. to about 100° C., from about 20° C. to about 75° C.
  • the humidity during curing may be from about 30% to about 100%, from about 40% to about 100%, or from about 50% to about 100%.
  • an injection molding setting is used that is capable of injection molding thermoplastic at an injection molding heat setting close to TPV processing conditions wherein the extrudate crosslinks at ambient conditions or an elevated temperature becoming a thermoset in properties.
  • this process may be accelerated by steam exposure.
  • the gel content also called the crosslink density
  • the gel content may be about 60%, but after 96 hrs at ambient conditions, the gel content may reach greater than about 95%.
  • Injecting or adding the silane-crosslinkable polyolefin elastomer blend 298 into the shoe sole mold 302 to form a shoe sole element 314 may be performed using one of several different approaches. Depending on the molding approach selected, different material properties may be achieved for the midsole 18 .
  • the molding can be performed by using one of the four following processes: Compression Molding ( FIG. 8 ), Injection Molding ( FIG. 9 ), Injection Compression Molding ( FIG. 10 ), and Supercritical Injection Molding ( FIG. 11 ).
  • a schematic cross-sectional view of a compression mold 458 is provided.
  • the silane-crosslinkable polyolefin elastomer 298 (or shoe sole element 314 , not shown) is pressurized in the compression mold or press 458 under predetermined temperature, pressure, and time conditions to obtain a foamed silane-crosslinked polyolefin elastomer in the form of a plate-like sponge (not shown).
  • the compression mold 458 includes an upper mold 460 and a lower mold 464 .
  • the chemical and/or physical foaming agents are activated to form the foamed silane-crosslinked polyolefin elastomer. Portions and/or edges of plate-like sponge may then be skived, cut, and/or ground into a midsole 18 having a desired thickness and shape (see FIGS. 1-2 ).
  • the midsole 18 is again molded in a final mold with the outsole 14 and other respective components under heat and pressure and the assembly is then pressurized during cooling in a closed state of the mold (this process is called “phylon molding” in the shoe industry) to produce a final shoe sole (e.g., shoe sole 10 ).
  • FIG. 9 a schematic cross-sectional view of an injection mold is provided.
  • the reactive single screw extruder 288 , 444 used in either the Sioplas or Monosil process prepares and injects the silane-crosslinkable polyolefin elastomer 298 into the mold 302 having an upper mold 306 and a lower mold 310 .
  • an uncured midsole 18 a is formed as provided in step 1 of FIG. 9 .
  • the uncured midsole 18 a As the uncured midsole 18 a is heated and cured, the chemical and/or physical foaming agents are activated to form the foamed silane-crosslinked polyolefin elastomer.
  • the mold 302 used in these aspects is designed to have a smaller size than the size of the final cured midsole 18 (foamed silane-crosslinked polyolefin elastomer). After foaming and expansion of the silane-crosslinkable polyolefin elastomer, the uncured midsole 18 a is expanded to the desired size of the midsole 18 and the mold 302 releases as provided in step 2 of FIG. 9 .
  • FIG. 10 a schematic cross-sectional view of an injection compression mold is provided.
  • the injection compression mold provides a hybrid approach to forming the midsole 18 by using aspects of both the compression mold described in FIG. 8 and the injection mold described in FIG. 9 .
  • the reactive single screw extruder 288 , 444 used in either the Sioplas or Monosil process prepares and injects a mass of the silane-crosslinkable polyolefin elastomer 298 into the mold 302 having an upper mold 306 and a lower mold 310 as provided in step 1 of FIG. 10 .
  • the mass of silane-crosslinkable polyolefin elastomer 298 is then heated and pressed in the mold 302 to form the uncured midsole 18 a while the chemical and/or physical foaming agents are activated to form the foamed silane-crosslinked polyolefin elastomer making up the final cured midsole 18 as provided in step 2 of FIG. 10 .
  • the mold 302 used in these injection compression processes is designed to have a smaller size than the size of the final cured midsole 18 (foamed silane-crosslinked polyolefin elastomer). After foaming and expansion of the silane-crosslinked polyolefin elastomer, the mold 302 is released to eject the final cured midsole 18 as provided in step 3 of FIG. 10 .
  • FIG. 11 a schematic cross-sectional view of a reactive single screw extruder 480 equipped with a supercritical fluid injector 484 is provided.
  • the process begins by extruding (e.g., with the reactive single screw extruder 480 ) the first polyolefin 240 having a density less than 0.86 g/cm 3 , the second polyolefin 244 , the silan cocktail 248 including the silane crosslinker (e.g., vinyltrimethoxy silane, VTMO), grafting initiator (e.g. dicumyl peroxide), and the condensation catalyst 280 together to form the crosslinkable silane-grafted polyolefin blend 298 .
  • the silane crosslinker e.g., vinyltrimethoxy silane, VTMO
  • grafting initiator e.g. dicumyl peroxide
  • the first polyolefin 240 , second polyolefin 244 , and silan cocktail 248 may be added to the reactive single screw extruder 480 using an addition hopper 440 and gear pump 268 .
  • the silan cocktail 248 may be added to a single screw 448 further down the extrusion line to help promote better mixing with the first and second polyolefin 240 , 244 blend.
  • one or more optional additives 284 may be added with the first polyolefin 240 , second polyolefin 244 , and silan cocktail 248 to tweak the final material properties of the silane-crosslinkable polyolefin blend 298 .
  • the supercritical fluid injector 484 may be used to add a supercritical fluid such as carbon dioxide or nitrogen to the silane-crosslinkable polyolefin blend 298 before it is injected through the die 300 into the mold 302 .
  • the reactive single screw extruder 480 then injects the silane-crosslinkable polyolefin elastomer 298 into the mold 302 having an upper mold 306 and a lower mold 310 .
  • an uncured midsole 18 a is formed as provided in step 1 of FIG. 11 .
  • the supercritical fluid foaming agent expands to form the foamed silane-crosslinked polyolefin elastomer.
  • the mold 302 used in these aspects is designed to have a smaller size than the size of the final cured midsole 18 (foamed silane-crosslinked polyolefin elastomer). After foaming, the foamed silane-crosslinked polyolefin elastomer is expanded to the desired size of the midsole 18 using core pull back to accommodate the expansion, and the mold releases as provided in step 2 of FIG. 11 .
  • thermoplastic is defined to mean a polymer that softens when exposed to heat and returns to its original condition when cooled to room temperature.
  • thermoset is defined to mean a polymer that solidifies and irreversibly “sets” or “crosslinks” when cured. In either of the Monosil or Sioplas processes described above, it is important to understand the careful balance of thermoplastic and thermoset properties of the various different materials used to produce the final thermoset foamed silane-crosslinked polyolefin elastomer or midsole 18 .
  • each of the intermediate polymer materials mixed and reacted using a reactive twin screw extruder, a non-reactive single screw extruder, and a reactive single screw extruder are thermosets. Accordingly, the silane-grafted polyolefin blend and the silane-crosslinkable polyolefin blend are thermoplastics and can be softened by heating so the respective materials can flow. Once the silane-crosslinkable polyolefin blend is extruded, molded, pressed, and/or shaped into the shoe sole mold 302 or other respective article, the silane-crosslinkable polyolefin blend can begin to crosslink or cure at a temperature greater than 150° C.
  • the silane-crosslinkable polyolefin blend can be foamed and crosslinked in a molding time from 40 seconds to 400 seconds, from 40 seconds to 200 seconds, from 40 seconds to 100 seconds, or in about 60 seconds.
  • thermoplastic/thermoset behavior of the silane-crosslinkable polyolefin blend and corresponding foamed silane-crosslinked polyolefin blend are important for the various compositions and articles disclosed herein (e.g., midsole 18 shown in FIG. 1 ) because of the potential energy savings provided using these materials.
  • a manufacturer can save considerable amounts of energy by being able to cure the silane-crosslinkable polyolefin blend at a temperature greater than 150° C. and an ambient humidity. This curing process is typically performed in the industry by applying significant amounts of energy to heat or steam treat crosslinkable polyolefins.
  • the ability to cure the inventive silane-crosslinkable polyolefin blend with a lower relative temperature and/or ambient humidity or by shortening the cure time at elevated temperatures are not properties necessarily intrinsic to crosslinkable polyolefins. Rather, this temperature/humidity curing capability is a property dependent on the relatively low density of the silane-crosslinkable polyolefin blend. In some aspects, no additional curing ovens, heating ovens, steam ovens, or other forms of heat producing machinery other than what was provided in the extruders are used to form the foamed silane-crosslinked polyolefin elastomers.
  • the specific gravity of the foamed silane-crosslinked polyolefin elastomer of the present disclosure may be lower than the specific gravities of existing TPV and EPDM formulations used in the art.
  • the reduced specific gravity of these materials can lead to lower weight shoes, thereby helping shoe manufacturers meet increasing demands for lighter weight shoes.
  • the specific gravity of the foamed silane-crosslinked polyolefin elastomer of the present disclosure may be from about 0.10 g/cm 3 to about 0.50 g/cm 3 , from about 0.15 g/cm 3 to about 0.50 g/cm 3 , from about 0.15 g/cm 3 to about 0.40 g/cm 3 , from about 0.15 g/cm 3 to about 0.35 g/cm 3 , from about 0.20 g/cm 3 to about 0.40 g/cm 3 , from about 0.20 g/cm 3 to about 0.45 g/cm 3 , from about 0.25 g/cm 3 to about 0.35 g/cm 3 , from about 0.30 g/cm 3 to about 0.50 g/cm 3 , from about 0.30 g/cm 3 to about 0.40 g/cm 3 , from about 0.35 g/cm 3 to about 0.40 g/cm 3 , about 0.50
  • the foamed silane-crosslinked polyolefin elastomer may be produced as a closed celled foam.
  • the pore size of the foamed silane-crosslinked polyolefin elastomer may be from about 0.10 mm to about 0.50 mm, from about 0.10 mm to about 0.40 mm, from about 0.10 mm to about 0.30 mm, from about 0.10 mm to about 0.25 mm, from about 0.10 mm to about 0.50 mm, or about 0.10 mm, about 0.12 mm, about 0.14 mm, about 0.16 mm, about 0.18 mm, about 0.20 mm, about 0.22 mm, about 0.24 mm, about 0.26 mm, about 0.28 mm, or about 0.30 mm.
  • the foamed silane-crosslinked polyolefin elastomers of the present disclosure may exhibit greater elasticity and less viscoelasticity (e.g., they have linear curves and exhibit very low energy loss).
  • Embodiments of the foamed silane-crosslinked polyolefin elastomers described herein do not have any filler or plasticizer incorporated into these materials so their corresponding stress/strain curves do not have or display any Mullins effect and/or Payne effect.
  • the lack of Mullins effect for these foamed silane-crosslinked polyolefin elastomers is due to the lack of any filler or plasticizer added to the foamed silane-crosslinked polyolefin blend so the stress/strain curve does not depend on the maximum loading previously encountered where there is no instantaneous and irreversible softening.
  • the lack of Payne effect for these foamed silane-crosslinked polyolefin elastomers is due to the lack of any filler or plasticizer added to the foamed silane-crosslinked polyolefin blend so the stress/strain curve does not depend on the small strain amplitudes previously encountered where there is no change in the viscoelastic storage modulus based on the amplitude of the strain.
  • the foamed silane-crosslinked polyolefin elastomer or midsole 18 can exhibit a compression set of from about 5.0% to about 30.0%, from about 5.0% to about 25.0%, from about 5.0% to about 20.0%, from about 5.0% to about 15.0%, from about 5.0% to about 10.0%, from about 10.0% to about 25.0%, from about 10.0% to about 20.0%, from about 10.0% to about 15.0%, from about 15.0% to about 30.0%, from about 15.0% to about 25.0%, from about 15.0% to about 20.0%, from about 20.0% to about 30.0%, or from about 20.0% to about 25.0%, from about 1.0% to about 40.0%, as measured according to ASTM D 395 (48 hrs @ 23° C., 50° C., 70° C., 80° C., 90° C., 125° C., and/or 175° C.).
  • the foamed silane-crosslinked polyolefin elastomer or midsole 18 can exhibit a compression set of from about 5.0% to about 20.0%, from about 5.0% to about 15.0%, from about 5.0% to about 10.0%, from about 7.0% to about 20.0%, from about 7.0% to about 15.0%, from about 7.0% to about 10.0%, from about 9.0% to about 20.0%, from about 9.0% to about 15.0%, from about 9.0% to about 10.0%, from about 10.0% to about 20.0%, from about 10.0% to about 15.0%, from about 12.0% to about 20.0%, or from about 12.0% to about 15.0%, from about 1.0% to about 50.0%, as measured according to ASTM D 395 (48 hrs @ 23° C., 50° C., 70° C., 80° C., 90° C., 125° C., and/or 175° C.).
  • the foamed silane-crosslinked polyolefin elastomer or midsole 18 may exhibit a crystallinity of from about 5% to about 40%, from about 5% to about 25%, from about 5% to about 15%, from about 10% to about 20%, from about 10% to about 15%, or from about 11% to about 14% as determined using density measurements, differential scanning calorimetry (DSC), X-Ray Diffraction, infrared spectroscopy, and/or solid state nuclear magnetic spectroscopy.
  • DSC differential scanning calorimetry
  • the foamed silane-crosslinked polyolefin elastomer or midsole 18 may exhibit a glass transition temperature of from about ⁇ 75° C. to about ⁇ 25° C., from about ⁇ 65° C. to about ⁇ 40° C., from about ⁇ 60° C. to about ⁇ 50° C., from about ⁇ 50° C. to about ⁇ 25° C., from about ⁇ 50° C. to about ⁇ 30° C., or from about ⁇ 45° C. to about ⁇ 25° C. as measured according to differential scanning calorimetry (DSC) using a second heating run at a rate of 5° C./min or 10° C./min.
  • DSC differential scanning calorimetry
  • a foamed midsole was prepared using a reactive twin-screw extruder 252 (see FIG. 5A ) to extrude 48.7 wt % ENGAGETM XLT8677 or XUS 38677.15 and 48.7 wt % ENGAGETM 8842 together with 2.6 wt % SILAN RHS 14/032 or SILFIN 29 to form the ED108-2A silane-grafted polyolefin elastomer.
  • a reactive single screw extruder 480 (see FIG. 11 ) equipped with the supercritical fluid injector 484 was employed to further process the blend, where the supercritical fluid medium was nitrogen (N 2 ) with a gas flow rate of 0.17 kg/h.
  • the injector open time was 10 sec and the pressure was maintained at 140 bar.
  • a gas load of 0.3 wt % was used with an injection speed of 75 mm/s.
  • the weight of the ED108-2A material used was 153.9 g.
  • Two distinct midsole samples were made using the aforementioned process where the first sample had fewer and larger cells while the second sample had smaller cells.
  • the density of the first sample was 0.609 g/cm 3 and the density of the second sample was 0.477 g/cm 3 , as measured using a density scale. No condensation catalyst was added.
  • Example 1 The material properties for Example 1 are listed below in Table 1 where the compression set values were measured according to ASTM D 395 and the density values were measured by measuring the weight, length, width and thickness of a sample (approximately 9 cm ⁇ 10 cm, and 0.2-0.5 cm in thickness). The compression set data was obtained for each of the Examples provided below by compressing the respective sample by 25% and 50% for 6 hrs at 50° C. where the compression set measurements were then made 30 min, 24 hrs, and 48 hrs after the sample was removed from the testing rig.
  • a foamed midsole was prepared using a reactive twin-screw extruder 252 (see FIG. 5A ) to extrude 48.7 wt % ENGAGETM XLT8677 or XUS 38677.15 and 48.7 wt % ENGAGETM 8842 together with 2.6 wt % SILAN RHS 14/032 or SILFIN 29 to form the ED108-2A silane-grafted polyolefin elastomer.
  • a reactive single screw extruder 480 (see FIG. 11 ) equipped with the supercritical fluid injector 484 was employed to further process the blend, where the supercritical fluid medium was nitrogen (N 2 ) with a gas flow rate of 0.29 kg/h.
  • the injector open time was 10 sec and the pressure was maintained at 140 bar.
  • a gas load of 0.5 wt % was used with an injection speed of 75 mm/s.
  • the weight of the ED108-2A material used was 153.7 g.
  • the resulting sample has a density of 0.392 g/cm 3 , as measured using a density scale. No condensation catalyst was added and the precision opening was 0.7 mm.
  • the material properties for Example 2 are listed below in Table 2, where the compression set values were measured according to ASTM D 395 and the density values were measured by measuring the weight, length, width and thickness of a sample (approximately 9 cm ⁇ 10 cm, and 0.2-0.5 cm in thickness).
  • a foamed midsole was prepared using a reactive twin-screw extruder 252 (see FIG. 5A ) to extrude 48.7 wt % ENGAGETM XLT8677 or XUS 38677.15 and 48.7 wt % ENGAGETM 8842 together with 2.6 wt % SILAN RHS 14/032 or SILFIN 29 to form the ED108-2A silane-grafted polyolefin elastomer.
  • a reactive single screw extruder 480 (see FIG. 11 ) equipped with the supercritical fluid injector 484 was employed to further process the blend, where the supercritical fluid medium was nitrogen (N 2 ) with a gas flow rate of 0.29 kg/h.
  • the injector open time was 10 sec and the pressure was maintained at 140 bar.
  • a gas load of 0.5 wt % was used with an injection speed of 75 mm/s.
  • the weight of the ED108-2A material used was 153.4 g.
  • the resulting sample has a density of 0.382 g/cm 3 , as measured using a density scale. No condensation catalyst was added and the precision opening was 1.5 mm.
  • the material properties for Example 3 are listed below in Table 3, where the compression set values were measured according to ASTM D 395 and the density values were measured by measuring the weight, length, width and thickness of a sample (approximately 9 cm ⁇ 10 cm, and 0.2-0.5 cm in thickness).
  • a foamed midsole was prepared using a reactive twin-screw extruder 252 (see FIG. 5A ) to extrude 48.7 wt % ENGAGETM XLT8677 or XUS 38677.15 and 48.7 wt % ENGAGETM 8842 together with 2.6 wt % SILAN RHS 14/032 or SILFIN 29 to form the ED108-2A silane-grafted polyolefin elastomer.
  • a reactive single screw extruder 480 (see FIG. 11 ) equipped with the supercritical fluid injector 484 was employed to further process the blend, where the supercritical fluid medium was nitrogen (N 2 ) with a gas flow rate of 0.29 kg/h.
  • the injector open time was 10 sec and the pressure was maintained at 140 bar.
  • a gas load of 0.5 wt % was used with an injection speed of 75 mm/s.
  • the weight of the ED108-2A material used was 153.6 g.
  • the resulting sample has a density of 0.373 g/cm 3 , as measured using a density scale. No condensation catalyst was added.
  • the precision opening was 2 mm.
  • a micrograph of a cross-section of a midsole formed using the supercritical fluid process set forth in this example is provided in FIG. 12 .
  • Example 4 The material properties for Example 4 are listed below in Table 4, where the compression set values were measured according to ASTM D 395 and the density values were measured by measuring the weight, length, width and thickness of a sample (approximately 9 cm ⁇ 10 cm, and 0.2-0.5 cm in thickness).
  • a foamed midsole was prepared using a reactive twin-screw extruder 252 (see FIG. 5A ) to extrude 48.7 wt % ENGAGETM XLT8677 or XUS 38677.15 and 48.7 wt % ENGAGETM 8842 together with 2.6 wt % SILAN RHS 14/032 or SILFIN 29 to form the ED108-2A silane-grafted polyolefin elastomer.
  • a reactive single screw extruder 480 (see FIG. 11 ) equipped with the supercritical fluid injector 484 was employed to further process the blend, where the supercritical fluid medium was nitrogen (N 2 ) with a gas flow rate of 0.29 kg/h.
  • the injector open time was 10 sec and the pressure was maintained at 140 bar.
  • a gas load of 0.5 wt % was used with an injection speed of 75 mm/s.
  • the weight of the ED108-2A material used was 153.7 g.
  • the resulting sample has a density of 0.543 g/cm 3 , as measured using a density scale. No condensation catalyst was added and the precision opening was 3.5 mm.
  • the material properties for Example 5 are listed below in Table 5, where the compression set values were measured according to ASTM D 395 and the density values were measured by measuring the weight, length, width and thickness of a sample (approximately 9 cm ⁇ 10 cm, and 0.2-0.5 cm in thickness).
  • a foamed midsole was prepared using a reactive twin-screw extruder 252 (see FIG. 5A ) to extrude 82.55 wt % ENGAGETM 8842 and 14.45 wt % MOSTENTM TB 003 together with 3.0 wt % SILAN RHS 14/032 or SILFIN 29 to form the ED76-4A silane-grafted polyolefin elastomer.
  • a reactive single screw extruder 480 (see FIG. 11 ) equipped with the supercritical fluid injector 484 was employed to further process the blend, where the supercritical fluid medium was nitrogen (N 2 ) with a gas flow rate of 0.29 kg/h.
  • the injector open time was 10 sec and the pressure was maintained at 140 bar.
  • a gas load of 0.5 wt % was used with an injection speed of 75 mm/s.
  • the weight of the ED76-4A material used was 154.3 g.
  • the resulting sample has a density of 0.420 g/cm 3 , as measured using a density scale.
  • RHS 16/001N was added as the condensation catalyst and the precision opening was 2 mm.
  • the material properties for Example 6 are listed below in Table 6, where the compression set values were measured according to ASTM D 395 and the density values were measured by measuring the weight, length, width and thickness of a sample (approximately 9 cm ⁇ 10 cm, and 0.2-0.5 cm in thickness).
  • a foamed midsole was prepared using a reactive twin-screw extruder 252 (see FIG. 5A ) to extrude 60 wt % INFUSE 9530, 30 wt % INFUSE 9817, and 8 wt % PP MI 25 (Polypropylene having a melt index of 25) together with 2.0 wt % SILAN RHS 14/032 or SILFIN 29 to form the RH 17/021 silane-grafted polyolefin elastomer.
  • a reactive single screw extruder 480 see FIG.
  • the supercritical fluid injector 484 was employed to further process the blend, where the supercritical fluid medium was nitrogen (N 2 ) with a gas flow rate of 0.29 kg/h.
  • the injector open time was 10 sec and the pressure was maintained at 140 bar.
  • a gas load of 0.5 wt % was used with an injection speed of 75 mm/s.
  • the weight of the RHS 17/021 material used was 146 g.
  • the resulting sample has a density of 0.449 g/cm 3 , as measured using a density scale. No condensation catalyst was added and the precision opening was 2 mm.
  • Example 7 The material properties for Example 7 are listed below in Table 7, where the compression set values were measured according to ASTM D 395 and the density values were measured by measuring the weight, length, width and thickness of a sample (approximately 9 cm ⁇ 10 cm, and 0.2-0.5 cm in thickness).
  • a foamed midsole was prepared using a reactive twin-screw extruder 252 (see FIG. 5A ) to extrude 82.55 wt % ENGAGETM 8842 and 14.45 wt % MOSTENTM TB 003 together with 3.0 wt % SILAN RHS 14/032 or SILFIN 29 to form the ED76-4A silane-grafted polyolefin elastomer.
  • a reactive single screw extruder 288 was then used to load and extrude silane-grafted polyolefin elastomer, with 1.0 wt % dioctyltin dilaurate (DOTL) condensation catalyst, and 10 wt % MEBA chemical foaming agent.
  • DNL dioctyltin dilaurate
  • FIG. 13 provides three different micrographs of cross-sections of midsoles formed using the MEBA chemical foaming agent according to this example.
  • a foamed midsole was prepared using a reactive twin-screw extruder 252 (see FIG. 5A ) to extrude 82.55 wt % ENGAGETM 8842 and 14.45 wt % MOSTENTM TB 003 together with 3.0 wt % SILAN RHS 14/032 or SILFIN 29 to form the ED76-4A silane-grafted polyolefin elastomer.
  • the reactive single screw extruder 288 was then used to load and extrude silane-grafted polyolefin elastomer, with 1.0 wt % dioctyltin dilaurate (DOTL) condensation catalyst, and 10 wt % MEBA chemical foaming agent.
  • DNL dioctyltin dilaurate
  • FIG. 14 is a micrograph of a cross-sectioned midsole formed using a chemical blowing agent according to this example.
  • the term “coupled” in all of its forms, couple, coupling, coupled, etc. generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
  • elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied.
  • the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
  • Embodiment A is a shoe sole comprising: a composition comprising a foamed silane-crosslinked polyolefin elastomer having a density less than 0.50 g/cm 3 ; wherein the shoe sole exhibits a compression set of from about 1.0% to about 50.0%, as measured according to ASTM D 395 (48 hrs @ 50° C.).
  • Embodiment A wherein the density is less than about 0.30 g/cm 3 .
  • Embodiment A or Embodiment A with any of the intervening features further comprising: a coloring agent.
  • the silane-grafted polyolefin elastomer comprises a first polyolefin having a density less than 0.86 g/cm 3 , a second polyolefin having a crystallinity less than 40%, a silane crosslinker, a grafting initiator, a condensation catalyst, and a foaming agent.
  • Embodiment B is a method for making a shoe sole, the method comprising: extruding a first polyolefin having a density less than 0.86 g/cm 3 , a second polyolefin, a silane crosslinker and a radical initiator together to form a silane-grafted polyolefin blend; extruding the silane-grafted polyolefin blend, a foaming agent, and a condensation catalyst together to form a crosslinkable polyolefin blend; injection molding the crosslinkable polyolefin blend into a shoe sole element; and crosslinking the crosslinkable polyolefin blend at a temperature greater than 150° C. and an ambient humidity to form a shoe sole having a density less than 0.50 g/cm 3 .
  • Embodiment B wherein the shoe sole has a density of less than 0.35 g/cm 3 .
  • Embodiment B or Embodiment B with any of the intervening features wherein the foaming agent comprises a supercritical fluid.
  • Embodiment B The method of Embodiment B or Embodiment B with any of the intervening features wherein the shoe sole exhibits a rebound resilience of at least 60%.
  • silane-grafted polyolefin elastomer comprises from about 60 wt % to about 85 wt % of the first polyolefin and from about 10 wt % to about 35 wt % of the second polyolefin.
  • Embodiment C is a method for making a shoe sole, the method comprising: extruding a first polyolefin having a density less than 0.86 g/cm 3 , a second polyolefin, a silane crosslinker and a radical initiator together to form a silane-grafted polyolefin blend; extruding the silane-grafted polyolefin blend, a foaming agent, and a condensation catalyst together to form a crosslinkable polyolefin blend; compression molding the crosslinkable polyolefin blend into a shoe sole element; and crosslinking the crosslinkable polyolefin blend at a temperature greater than 150° C. and an ambient humidity to form a shoe sole having a density less than 0.50 g/cm 3 .
  • Embodiment C wherein the foaming agent comprises a supercritical fluid.
  • silane-grafted polyolefin elastomer comprises from about 60 wt % to about 85 wt % of the first polyolefin and from about 10 wt % to about 35 wt % of the second polyolefin.
  • Embodiment C or Embodiment C with any of the intervening features wherein the temperature of the crosslinking step is about 180° C. and the crosslinking is performed in a time period from 40 seconds to 100 seconds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Tents Or Canopies (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
US15/836,436 2016-12-10 2017-12-08 Shoe soles, compositions, and methods of making the same Abandoned US20180160767A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/836,436 US20180160767A1 (en) 2016-12-10 2017-12-08 Shoe soles, compositions, and methods of making the same
US16/144,746 US20190029361A1 (en) 2016-12-10 2018-09-27 Shoe soles, compositions, and methods of making the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662497959P 2016-12-10 2016-12-10
US201662497954P 2016-12-10 2016-12-10
US15/836,436 US20180160767A1 (en) 2016-12-10 2017-12-08 Shoe soles, compositions, and methods of making the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/144,746 Continuation US20190029361A1 (en) 2016-12-10 2018-09-27 Shoe soles, compositions, and methods of making the same

Publications (1)

Publication Number Publication Date
US20180160767A1 true US20180160767A1 (en) 2018-06-14

Family

ID=60857179

Family Applications (6)

Application Number Title Priority Date Filing Date
US15/836,417 Abandoned US20180162109A1 (en) 2016-12-10 2017-12-08 Roofing membranes, compositions, and methods of making the same
US15/836,437 Active US10779608B2 (en) 2016-12-10 2017-12-08 Polyolefin elastomer compositions and methods of making the same
US15/836,436 Abandoned US20180160767A1 (en) 2016-12-10 2017-12-08 Shoe soles, compositions, and methods of making the same
US16/144,719 Active 2039-01-29 US11684115B2 (en) 2016-12-10 2018-09-27 Roofing membranes, compositions, and methods of making the same
US16/144,746 Abandoned US20190029361A1 (en) 2016-12-10 2018-09-27 Shoe soles, compositions, and methods of making the same
US16/144,674 Abandoned US20190021441A1 (en) 2016-12-10 2018-09-27 Polyolefin elastomer compositions and methods of making the same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/836,417 Abandoned US20180162109A1 (en) 2016-12-10 2017-12-08 Roofing membranes, compositions, and methods of making the same
US15/836,437 Active US10779608B2 (en) 2016-12-10 2017-12-08 Polyolefin elastomer compositions and methods of making the same

Family Applications After (3)

Application Number Title Priority Date Filing Date
US16/144,719 Active 2039-01-29 US11684115B2 (en) 2016-12-10 2018-09-27 Roofing membranes, compositions, and methods of making the same
US16/144,746 Abandoned US20190029361A1 (en) 2016-12-10 2018-09-27 Shoe soles, compositions, and methods of making the same
US16/144,674 Abandoned US20190021441A1 (en) 2016-12-10 2018-09-27 Polyolefin elastomer compositions and methods of making the same

Country Status (9)

Country Link
US (6) US20180162109A1 (fr)
EP (3) EP3411438A1 (fr)
JP (4) JP2020509260A (fr)
KR (7) KR102136703B1 (fr)
CN (3) CN110352129B (fr)
BR (1) BR112019011570A2 (fr)
CA (1) CA3046013A1 (fr)
MX (1) MX2019006664A (fr)
WO (3) WO2018107066A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3865538A1 (fr) * 2020-02-14 2021-08-18 Sika Technology AG Compositions thermiquement expansibles présentant une meilleure résistance à l'humidité de stockage
JP2021535230A (ja) * 2018-06-29 2021-12-16 ダウ グローバル テクノロジーズ エルエルシー 発泡ビーズ及び焼結発泡構造体
USD969468S1 (en) * 2020-12-18 2022-11-15 Nike, Inc. Shoe
US11518855B2 (en) * 2017-08-25 2022-12-06 Kyoto University Low-density gel product and production method therefor
EP4154750A1 (fr) * 2019-07-24 2023-03-29 NIKE Innovate C.V. Cuir synthétique à base de polyoléfine et articles formés à partir de celui-ci
US11678721B2 (en) 2019-07-24 2023-06-20 Nike, Inc. Polyolefin-based synthetic leather and articles formed therefrom
USD990839S1 (en) 2020-12-18 2023-07-04 Nike, Inc. Shoe

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170044770A1 (en) 2014-04-25 2017-02-16 Firestone Building Products Co., LLC Thermoplastic roofing membranes for fully-adhered roofing systems
WO2016014776A1 (fr) 2014-07-23 2016-01-28 Firestone Building Products Co., LLC Membranes de couverture thermoplastiques pour systèmes de couverture à adhérence totale
CA2974989C (fr) 2015-02-06 2023-01-24 Firestone Building Products Company, Llc Membranes de toiture thermoplastiques pour systemes de toiture a adherence totale
WO2017117329A1 (fr) 2015-12-31 2017-07-06 Firestone Building Products Co., LLC Membranes de toiture thermoplastiques en polyoléfine présentant une résistivité accrue à la combustion
JP7081181B2 (ja) * 2017-03-16 2022-06-07 Mcppイノベーション合同会社 変性ポリオレフィン組成物及び架橋ポリオレフィン組成物
KR102190867B1 (ko) * 2017-11-17 2020-12-14 주식회사 엘지화학 폼 조성물 및 이의 경화물을 포함하는 폼층을 포함하는 폼 테이프
US20190225784A1 (en) 2018-01-24 2019-07-25 Nike, Inc. Sole structures including polyolefin plates and articles of footwear formed therefrom
US20210238370A1 (en) * 2018-04-27 2021-08-05 Dow Global Technologies Llc Foamed Polyolefin Compositions for Wire and Cable Coating
WO2020022848A1 (fr) 2018-07-26 2020-01-30 주식회사 엘지화학 Séparateur de polyoléfine réticulée et procédé de fabrication associé
CN111615422B (zh) * 2018-09-11 2022-05-03 株式会社Lg化学 交联聚烯烃隔膜及其制造方法
EP3850036A4 (fr) * 2018-09-13 2022-09-14 3M Innovative Properties Company Compositions de mousse et procédés de production associés
US20200199349A1 (en) * 2018-09-20 2020-06-25 Cooper-Standard Automotive Inc. Compositions and methods of making thermoset foams for shoe soles
CN109438821B (zh) * 2018-09-28 2021-06-01 陆芊芊 一种高导热石墨烯改性eva发泡材料及其制备方法
RU2770612C1 (ru) 2018-10-02 2022-04-19 Бореалис Аг Высокоскоростное сшивание привитых пластомеров
EP3861034A1 (fr) * 2018-10-02 2021-08-11 Borealis AG Catalyseur de réticulation à faible vitesse pour plastomères greffés au silane
CN112839986A (zh) * 2018-10-08 2021-05-25 李受柾 高弹性挤压泡沫的组合物
US11987986B2 (en) 2019-01-14 2024-05-21 Holcim Technology Ltd Multi-layered thermoplastic roofing membranes
EP3921150A4 (fr) 2019-02-10 2022-10-19 Holcim Technology Ltd Membranes de toiture thermoplastiques pour systèmes de toiture entièrement collés
CA3143366A1 (fr) * 2019-06-27 2020-12-30 Dow Global Technologies Llc Procede de fabrication d'un melange homogene de polyolefine et d'acide organique liquide
US11696620B2 (en) 2019-07-19 2023-07-11 Nike, Inc. Articles of footwear including sole structures and rand
CN110372958B (zh) * 2019-07-19 2022-06-10 南京法宁格节能科技股份有限公司 一种改性epdm/pp共混物闭孔材料及其制备方法
WO2021016037A1 (fr) 2019-07-19 2021-01-28 Nike Innovate C.V. Structures de semelle comprenant des plaques de polyoléfine et articles chaussants formés à partir de celles-ci
JP7447247B2 (ja) * 2019-09-27 2024-03-11 ダウ グローバル テクノロジーズ エルエルシー シラン架橋エチレン/α-オレフィンブロックコポリマービーズ発泡体
USD1024776S1 (en) * 2019-12-11 2024-04-30 Direct Pack, Inc. Produce tray
CN111019183B (zh) * 2019-12-23 2022-05-17 安踏(中国)有限公司 一种微交联弹性体发泡材料、其制备方法和应用
KR102263591B1 (ko) * 2020-05-07 2021-06-11 현대산업 주식회사 재활용 복합수지 및 글라스비드를 활용한 부표용 조성물 및 이를 이용한 부표의 제조방법
EP4172222A4 (fr) * 2020-06-30 2024-02-28 Carlisle Construction Mat Llc Compositions et procédés de fabrication d'une feuille de caoutchouc epdm
JP2023541845A (ja) 2020-09-11 2023-10-04 アムジエン・インコーポレーテツド タンパク質凝集を減少させる材料及び方法
KR102396231B1 (ko) * 2020-09-14 2022-05-10 주식회사 애니켐 친환경 나노상전이물질 냉동팩
WO2022067253A1 (fr) * 2020-09-28 2022-03-31 Cooper-Standard Automotive, Inc. Semelle intercalaire de chaussure
KR102453415B1 (ko) * 2020-12-11 2022-10-12 더블유스코프코리아 주식회사 무기 코팅 분리막의 제조방법
KR102480491B1 (ko) * 2020-12-11 2022-12-23 더블유스코프코리아 주식회사 무기 코팅 분리막 및 그 제조방법
WO2022146809A1 (fr) * 2020-12-30 2022-07-07 Avient Corporation Mélanges de polymères d'élastomère thermoplastique et de polyoléfine greffée par silane réticulé
CN112945001B (zh) * 2021-02-05 2022-05-10 浙江大学 一种具有高鲁棒性的热梯度定向收集器件
CN113002103A (zh) * 2021-03-02 2021-06-22 重庆环球飞利汽车内饰件有限公司 一种隔音材料
CN113057411B (zh) * 2021-04-13 2022-09-23 温州市三盟鞋业有限公司 一种防滑女鞋鞋底及其制备工艺
CN117561171A (zh) * 2021-06-08 2024-02-13 库珀标准汽车公司 用于低滚动阻力轮胎的Fortrex添加剂
WO2023278555A1 (fr) * 2021-06-30 2023-01-05 Avient Corporation Articles thermodurcis comprenant du caoutchouc de silicone

Family Cites Families (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076698A (en) 1956-03-01 1978-02-28 E. I. Du Pont De Nemours And Company Hydrocarbon interpolymer compositions
US3017710A (en) 1958-05-28 1962-01-23 Carl P Carlson Snow mover and utility cart
BE794718Q (fr) 1968-12-20 1973-05-16 Dow Corning Ltd Procede de reticulation d'olefines
US3644315A (en) 1969-03-14 1972-02-22 Exxon Research Engineering Co Moisture-curable polymers
US3682201A (en) 1970-09-22 1972-08-08 Uniroyal Inc Textile-reinforced all-polymeric hose
AR218611A1 (es) 1975-06-23 1980-06-30 Kabel Metallwerke Ghh Procedimiento para la elaboracion de termoplasticos o elastomeros reticulables por injerto de un compuesto de silano en presencia de humedad
DE3071454D1 (de) 1979-11-28 1986-04-03 Wirsbo Bruks Ab Gaseous diffusion resistant article
EP0056705B1 (fr) 1981-01-15 1984-09-26 Courtaulds Plc Un échangeur de chaleur comportant une membrane en matière plastique
JPS57153004A (en) 1981-03-19 1982-09-21 Nippon Oil Co Ltd Production of silane-crosslinked polyolefin
AU560798B2 (en) * 1981-10-12 1987-04-16 Bridgestone Australia Ltd. Vehicle door seal
CA1279167C (fr) 1985-11-30 1991-01-22 Mitsui Chemicals, Incorporated Article moule de polyethylene a poids moleculaire extremement eleve, reticule avec du silane et a molecules orientees, et procede pour sa preparation
US4798864A (en) 1986-06-16 1989-01-17 Union Carbide Corporation Elastomer polyolefin blends
US4759992A (en) 1986-09-10 1988-07-26 Uniroyal Chemical Company, Inc. Process for coating moisture-curable low molecular weight polymers and composites thereof
US4927184A (en) 1986-11-07 1990-05-22 Atochem Pipes base on polyolefin resin for manufacturing pipelines and couplings for assembling them
US4894281A (en) 1987-05-29 1990-01-16 Mitsui Petrochemical Industries, Ltd. Fiber-reinforced polymer molded body
US4806594A (en) 1987-06-17 1989-02-21 Union Carbide Corporation Water curable compositions of silane containing ole36in polymers
JPH0791343B2 (ja) 1987-07-17 1995-10-04 三井石油化学工業株式会社 超高分子量ポリオレフイン変性物の製造方法
US4803244A (en) 1987-11-16 1989-02-07 Union Carbide Corporation Process for the preparation of thermoplastic elastomers
MX172794B (es) 1988-08-01 1994-01-13 Exxon Chemical Patents Inc Mejoras en composicion de aditivos dispersante lubricadores a base de novedosos polimeros etilen alfa-olefinicos sustituidos con acidos mono y dicarboxilicos y proceso para producirlos
US5145628A (en) 1989-12-29 1992-09-08 Rudolph Karg Process for manufacturing a hose clad with ultra-high molecular weight polyethylene
US5272236A (en) 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
US5252660A (en) 1990-12-17 1993-10-12 E. I. Du Pont De Nemours And Company Coating comprising solution organosilane polymer and silane functional dispersed polymer
US5266627A (en) 1991-02-25 1993-11-30 Quantum Chemical Corporation Hydrolyzable silane copolymer compositions resistant to premature crosslinking and process
US5278272A (en) 1991-10-15 1994-01-11 The Dow Chemical Company Elastic substantialy linear olefin polymers
US6399708B2 (en) 1993-07-19 2002-06-04 Visteon Systemes Interieurs S.A.S. Grafted and crosslinkable pulverulent thermoplastic polyolefin composition which has elasticity and flexibility properties
KR100345419B1 (ko) * 1994-04-20 2002-11-29 더 다우 케미칼 캄파니 실질적으로선형인실란가교결합성에틸렌중합체,이의제조방법및이로부터제조된제품
US5883144A (en) 1994-09-19 1999-03-16 Sentinel Products Corp. Silane-grafted materials for solid and foam applications
US5824718A (en) 1995-04-20 1998-10-20 The Dow Chemical Company Silane-crosslinkable, substantially linear ethylene polymers and their uses
DE69608813T2 (de) * 1995-09-29 2000-10-12 Dow Chemical Co Vernetzte polyolefinschäume und verfahren zu ihrer herstellung
IT1286972B1 (it) 1996-04-19 1998-07-24 Finproject Spa Processo di stampaggio per iniezione di suole realizzate con composti a base di "eva" espandibile e reticolabile
IT1286973B1 (it) 1996-04-19 1998-07-24 Finproject Spa Processo di stampaggio per iniezione di suole realizzate con composti a base di "eva" espandibile e reticolabile
IT1286974B1 (it) 1996-04-19 1998-07-24 Finproject Spa Metodo per stampare ad iniezione suole realizzate con composti a base di "eva" espandibile e reticolabile e recanti sulla pianta di
CA2203595A1 (fr) * 1996-04-26 1997-10-26 Robert F. Hurley Ruban de polyolefine reticule
US6361842B1 (en) 1996-05-30 2002-03-26 United States Brass Corporation Reformed crosslinked polyethylene articles
EP0827994B1 (fr) 1996-09-04 2002-12-18 Degussa AG Utilisation de polyoléfines amorphes greffées par des silanes comme matière première d'adhésifs et comme adhésifs
CA2190050A1 (fr) 1996-11-12 1998-05-12 G. Ronald Brown Homopolymeres et copolymeres a base de de chlorure de vinyle, reticules par l'humidite
DE69721042T2 (de) 1996-12-13 2004-02-05 Dupont Dow Elastomers L.L.C., Wilmington Silanvernetzbare polymer und polymermischungzusammensetzungen mit abrasionwiderstand
FR2759018B1 (fr) 1997-02-05 1999-05-14 Hutchinson Produit composite thermoplastique-elastomere, tel par exemple qu'un tuyau de transport de refrigerant pour circuit de climatisation
IT1292567B1 (it) 1997-06-13 1999-02-08 Finproject Spa Suola per calzature corredata di un cuscinetto ammortizzante in grado di assicurare l'aerazione forzata del vano interno delle stesse
EP0913427A1 (fr) * 1997-11-01 1999-05-06 Bernhard Rustige GmbH und Co. Kommanditgesellschaft Compositions polymère thermoplastiques multiphasiques
US5986002A (en) 1997-12-05 1999-11-16 Becton, Dickinson And Company Medical article of improved sterilizability
DE19808886A1 (de) 1998-03-03 1999-09-09 Huels Chemische Werke Ag Vernetzbare Formmasse
FR2781720B1 (fr) 1998-07-31 2000-10-13 Hutchinson Produit composite thermoplastique-elastomere,tel par exemple qu'un tuyau de transport de refrigerant pour circuit de climatisation
CN100432137C (zh) 1999-03-16 2008-11-12 三井化学株式会社 可交联的橡胶组合物及其应用
US6124370A (en) * 1999-06-14 2000-09-26 The Dow Chemical Company Crosslinked polyolefinic foams with enhanced physical properties and a dual cure process of producing such foams
US6476132B1 (en) 1999-07-23 2002-11-05 Advanced Elastomer Systems, L.P. Use of a silane grafted polyolefin in EPDM/polyolefin thermoplastic vulcanizates to improve compression set
EP1254191A2 (fr) 1999-12-03 2002-11-06 The Dow Chemical Company Compositions thermoplastiques greffees et articles fabriques a partir de ces dernieres
JP3760864B2 (ja) * 2000-03-01 2006-03-29 Jsr株式会社 熱可塑性エラストマー組成物並びにこれを用いた発泡体及び発泡体の製造方法
EP1199161A1 (fr) 2000-10-20 2002-04-24 SOLVAY POLYOLEFINS EUROPE - BELGIUM (Société Anonyme) Tuyau en polyéthylène
US6794453B2 (en) 2000-11-06 2004-09-21 Shawcor Ltd. Crosslinked, predominantly polypropylene-based compositions
DE60142680D1 (de) 2001-05-11 2010-09-09 Borealis Tech Oy Verfahren zur Vernetzung von Polymerartikeln
JP4868665B2 (ja) * 2001-07-12 2012-02-01 株式会社アサヒコーポレーション ランニングシューズ
US6828011B2 (en) 2001-07-24 2004-12-07 Cooper Technology Services, Llc Moisture crosslinkable thermoplastics in the manufacture of vehicle weather strips
US20040157053A1 (en) 2001-07-24 2004-08-12 Cooper Technology Services Llc Moisture crosslinkable thermoplastics in the manufacture of vehicle weather strips
US20050095374A1 (en) 2001-07-24 2005-05-05 Liggett Cothran Composites containing crosslinkable thermoplastic and TPV show layer
US6803417B2 (en) * 2001-10-11 2004-10-12 Dupont Dow Elastomers L.L.C. Polyolefin powder, processes for making and using slush molded articles made from the same
US20040006179A1 (en) 2002-07-01 2004-01-08 Cooper Technology Services Llc Reducing friction of EPDM and related rubbers
JP4615181B2 (ja) * 2002-07-10 2011-01-19 三井化学株式会社 組成物およびその用途
US7086421B2 (en) 2002-07-23 2006-08-08 Noveon Ip Holdings Corp. Crosslinked polyethylene pipe having a high density polyethylene liner
ES2399364T3 (es) 2002-10-02 2013-03-27 Dow Global Technologies Llc Composiciones poliméricas que comprenden un extendedor de etileno/alfa-olefina homogéneamente ramificado, de baja viscosidad
US20060185750A1 (en) 2002-10-31 2006-08-24 Mestemacher Steven A Polymeric pipes and liners suitable for transporting oil and gas materials and made from blends of polyolefins and polyamides
US7285333B2 (en) 2003-03-03 2007-10-23 Fiberspar Corporation Tie-layer materials, articles and methods for making and using same
JP4075705B2 (ja) 2003-06-26 2008-04-16 豊田合成株式会社 ウエザストリップ及びその製造方法
IL156870A0 (en) * 2003-07-10 2004-02-08 Carmel Olefines Ltd Process for making thermoplastic vulcanizates
JP4087304B2 (ja) * 2003-07-23 2008-05-21 三井化学株式会社 発泡体用オレフィン系エラストマー組成物及びその用途
EP1512711B1 (fr) 2003-09-05 2013-11-06 Borealis Technology Oy Un tuyau préparé à partir d'une composition réticulable contenant du polyéthylène haute pression
US20050100747A1 (en) 2003-11-12 2005-05-12 Krishnamachari Gopalan Weatherstrip for automotive glass window and the like
US7281547B2 (en) 2004-01-31 2007-10-16 Fluid Routing Solutions, Inc. Multi-layered flexible tube
DE602005019988D1 (de) 2004-03-17 2010-04-29 Dow Global Technologies Inc Katalysatorzusammensetzung mit shuttlung-mittel für die herstellung von ethylen-multiblockcopolymer
US7524911B2 (en) * 2004-03-17 2009-04-28 Dow Global Technologies Inc. Adhesive and marking compositions made from interpolymers of ethylene/α-olefins
US8883057B2 (en) * 2004-06-07 2014-11-11 Acushnet Company Non-ionomeric silane crosslinked polyolefin golf ball layers
US7279529B2 (en) 2004-06-07 2007-10-09 Acushnet Company Non-ionomeric silane crosslinked polyolefin golf ball layers
WO2006017391A2 (fr) 2004-08-05 2006-02-16 Dow Global Technologies Inc. Composition de réticulation à base de silane réticulable par l’humidité
EP2246390B1 (fr) 2004-11-25 2012-12-26 Mitsui Chemicals, Inc. Composition de résine en propylène et utilisation associée
AU2006269238B2 (en) 2005-07-11 2012-04-26 Dow Global Technologies Llc Silane-grafted olefin polymers, compositions and articles prepared therefrom, and methods for making the same
US7232604B2 (en) * 2005-07-28 2007-06-19 Equistar Chemicals, Lp Flame retardant crosslinkable compositions and articles
US7999038B2 (en) 2005-09-30 2011-08-16 Shin-Etsu Polymer Co., Ltd. Weatherstrip
BRPI0619264A2 (pt) 2005-11-30 2011-09-27 Parker Hannifin Corp mangueira de direção hidráulica termoplástico resistente à alta temperatura
RU2433144C2 (ru) 2005-12-29 2011-11-10 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи Сополимеры этилена с низкой молекулярной массой, способы получения и их применение
CN101426847B (zh) 2006-03-31 2012-01-11 三井化学株式会社 热塑性聚合物组合物、热塑性聚合物组合物的制造方法、由热塑性聚合物组合物得到的成型体和电线
JP2007275275A (ja) * 2006-04-06 2007-10-25 Sri Sports Ltd 靴及び靴の製造方法。
PL1849816T3 (pl) 2006-04-26 2008-12-31 Borealis Tech Oy Sieciowalna kompozycja poliolefinowa zawierająca katalizator kondensacji silanowej o dużej masie cząsteczkowej
ATE445649T1 (de) 2006-11-16 2009-10-15 Borealis Tech Oy Verfahren zur herstellung eines ethylen-silan- copolymeren
AR064668A1 (es) * 2006-12-21 2009-04-15 Dow Global Technologies Inc Composiciones de poliolefina y articulos preparados a partir de las mismas y metodos para prepararlas
US8205391B2 (en) 2007-09-20 2012-06-26 Toyoda Gosei Co., Ltd. Automobile weather strip
CN101874072A (zh) 2007-09-24 2010-10-27 陶氏环球技术公司 可湿固化的组合物及制备该组合物的方法
EP2203513B1 (fr) * 2007-10-22 2012-02-29 Basell Poliolefine Italia S.r.l. Elastomères d'oléfine thermoplastiques réticulables et élastomères d'oléfine thermodurcis réticulés obtenus à partir de celles-ci
US8785553B2 (en) 2007-12-04 2014-07-22 Exxonmobil Chemical Patents Inc. Moisture curable propylene-α-olefin copolymers
EP2083047A1 (fr) 2008-01-24 2009-07-29 Borealis Technology OY Composition de polypropylène partiellement réticulé comportant un catalyseur de condensation au silanol acide
GB0812186D0 (en) * 2008-07-03 2008-08-13 Dow Corning Modified polyolefins
GB0812187D0 (en) 2008-07-03 2008-08-13 Dow Corning Modified polyethylene
EP2143984A1 (fr) 2008-07-08 2010-01-13 Eaton Fluid Power GmbH Tuyau flexible renforcé
DE102008041919A1 (de) 2008-09-09 2010-03-11 Evonik Degussa Gmbh Verwendung von Silicium enthaltenden Vorläuferverbindungen einer organischen Säure als Katalysator zur Vernetzung von gefüllten und ungefüllten Polymer-Compounds
DE102008041918A1 (de) 2008-09-09 2010-03-11 Evonik Degussa Gmbh Silanolkondensationskatalysatoren zur Vernetzung von gefüllten und ungefüllten Polymer-Compounds
US8728600B1 (en) 2008-10-31 2014-05-20 E I Du Pont De Nemours And Company Highly abrasion-resistant grafted polyolefin pipe
WO2010074916A1 (fr) 2008-12-23 2010-07-01 Dow Global Technologies Inc. Compositions isolantes durcissant à température et humidité ambiantes et procédés associés
US8726611B2 (en) 2008-12-30 2014-05-20 Saint-Gobain Performance Plastics Corporation Method of installing a roofing membrane
JP5394757B2 (ja) * 2009-01-13 2014-01-22 旭化成ケミカルズ株式会社 架橋発泡用組成物及び架橋発泡体、並びにそれを用いた履物及び積層体
IT1392789B1 (it) 2009-02-13 2012-03-23 Finproject Spa Elemento di seduta stampato in materiale poliolefinico espandibile e reticolabile.
AU2010247012A1 (en) 2009-05-12 2011-11-03 Fitt S.P.A. Reinforced flexible hose with high pressure strenght and method for its manufacturing
EP2443944A4 (fr) 2009-06-17 2014-09-03 Japan Tobacco Inc Produit du tabac à usage oral
CA2768970C (fr) * 2009-07-24 2018-06-05 Bostik, Inc. Adhesif thermofusible a base de copolymeres sequences d?olefines
DE102009026254A1 (de) 2009-07-27 2011-02-03 Contitech Mgw Gmbh Schlauch mit medienbeständiger Innenschicht, seine Verwendung und Verfahren zu dessen Herstellung
US20120178868A1 (en) 2009-09-16 2012-07-12 Mohamed Esseghir Crosslinked, Melt-Shapped Articles and Compositions for Producing Same
BR112012006463B1 (pt) 2009-09-22 2022-04-19 Union Carbide Corporation Artigo moldado ou extrusado e composição semicondutiva
EP2512801B1 (fr) 2009-12-17 2014-05-14 Dow Global Technologies LLC Structures stratifiées composites et leur utilisation
ES2583329T3 (es) 2010-03-08 2016-09-20 Asahi Kasei Chemicals Corporation Composición de espuma, procedimiento para producirla y espuma
BR112012025380A2 (pt) 2010-04-26 2017-11-28 Momentive Performance Mat Inc cloro-resistente reticulável de composições de poliolefina e artigos feitos a partir destes
WO2011147068A1 (fr) * 2010-05-24 2011-12-01 Dow Global Technologies Llc Composition retardatrice de flamme, exempte d'halogène, comprenant silane-g-eva réticulé
WO2012106401A1 (fr) 2011-02-04 2012-08-09 Dow Global Technologies Llc Composition de polyoléfine réticulable pour applications de peau texturée formée
ITMC20110024A1 (it) 2011-05-04 2012-11-05 Finproject Srl Stampo per la formatura di fondi per calzature e di altri manufatti composti da due strati sovrapposti di materiali poliolefinici espandibili e reticolabili.
JP5640889B2 (ja) 2011-05-20 2014-12-17 日立金属株式会社 電線・ケーブル
JP5614375B2 (ja) 2011-06-09 2014-10-29 日立金属株式会社 シラン架橋ポリオレフィン絶縁電線
WO2013005858A1 (fr) 2011-07-07 2013-01-10 東レ・ダウコーニング株式会社 Composition de silicium durcissable, produit durcissable réalisé à partir de cette composition et dispositif semi-conducteur optique
JP5895492B2 (ja) 2011-12-07 2016-03-30 三菱化学株式会社 シラン架橋ポリオレフィン樹脂及びその製造方法
CN104245807B (zh) * 2012-03-16 2017-09-05 陶氏环球技术有限责任公司 可发泡组合物、泡沫体及其制品
JP5813565B2 (ja) 2012-04-25 2015-11-17 東海興業株式会社 ガラスランチャンネル
EP2914655B1 (fr) * 2012-09-07 2017-10-25 Dow Global Technologies LLC Composition de polyolefine thermoplastique chargée avec un matériau insonorisant moulable par injection
WO2014192145A1 (fr) * 2013-05-31 2014-12-04 株式会社アシックス Élément pour semelles de chaussures
US10040888B1 (en) 2013-06-14 2018-08-07 Cooper-Standard Automotive Inc. Composition including silane-grafted polyolefin
US10100139B2 (en) 2013-08-01 2018-10-16 Cooper-Standard Automotive Inc. Hose, composition including silane-grafted polyolefin, and process of making a hose
CN105473645B (zh) 2013-09-27 2019-01-15 古河电气工业株式会社 耐热性硅烷交联树脂成型体及其制造方法、耐热性硅烷交联性树脂组合物及其制造方法
WO2015054893A1 (fr) 2013-10-18 2015-04-23 Dow Global Technologies Llc Composants de câble à fibre optique
US10308829B2 (en) 2013-11-25 2019-06-04 Dow Global Technologies Llc Moisture-and peroxide-crosslinkable polymeric compositions
US10704254B2 (en) * 2014-02-18 2020-07-07 3M Innovative Properties Company Easy to apply air and water barrier articles
FR3019180B1 (fr) * 2014-03-26 2016-03-25 Saint Gobain Composition d'elastomere thermoplastique pour encapsulation
US10371292B2 (en) 2014-07-02 2019-08-06 Cooper-Standard Automotive Inc. Hose, abrasion resistant composition, and process of making a hose
KR101466388B1 (ko) * 2014-07-16 2014-11-28 화인케미칼 주식회사 콘크리트 펌프 세척용 폼
US10314364B2 (en) * 2014-08-27 2019-06-11 Nike, Inc. Soil-shedding article of footwear, and method of using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11518855B2 (en) * 2017-08-25 2022-12-06 Kyoto University Low-density gel product and production method therefor
JP2021535230A (ja) * 2018-06-29 2021-12-16 ダウ グローバル テクノロジーズ エルエルシー 発泡ビーズ及び焼結発泡構造体
JP7198839B2 (ja) 2018-06-29 2023-01-04 ダウ グローバル テクノロジーズ エルエルシー 発泡ビーズ及び焼結発泡構造体
US11866567B2 (en) 2018-06-29 2024-01-09 Dow Global Technologies Llc Foam bead and sintered foam structure
EP4154750A1 (fr) * 2019-07-24 2023-03-29 NIKE Innovate C.V. Cuir synthétique à base de polyoléfine et articles formés à partir de celui-ci
US11678721B2 (en) 2019-07-24 2023-06-20 Nike, Inc. Polyolefin-based synthetic leather and articles formed therefrom
EP3865538A1 (fr) * 2020-02-14 2021-08-18 Sika Technology AG Compositions thermiquement expansibles présentant une meilleure résistance à l'humidité de stockage
WO2021160852A1 (fr) * 2020-02-14 2021-08-19 Sika Technology Ag Compositions thermo-expansibles présentant une résistance améliorée au stockage à l'humidité
USD969468S1 (en) * 2020-12-18 2022-11-15 Nike, Inc. Shoe
USD990839S1 (en) 2020-12-18 2023-07-04 Nike, Inc. Shoe

Also Published As

Publication number Publication date
US11684115B2 (en) 2023-06-27
CN110352129A (zh) 2019-10-18
JP6792645B2 (ja) 2020-11-25
BR112019011570A2 (pt) 2019-10-22
EP3551003A1 (fr) 2019-10-16
CA3046013A1 (fr) 2018-06-14
JP7316408B2 (ja) 2023-07-27
JP2022105032A (ja) 2022-07-12
US20180163024A1 (en) 2018-06-14
KR20190008200A (ko) 2019-01-23
KR20190140096A (ko) 2019-12-18
EP3551453A1 (fr) 2019-10-16
US20190021441A1 (en) 2019-01-24
US10779608B2 (en) 2020-09-22
KR20200091479A (ko) 2020-07-30
MX2019006664A (es) 2019-10-09
KR102149379B1 (ko) 2020-08-28
WO2018107118A1 (fr) 2018-06-14
KR20190009285A (ko) 2019-01-28
KR102161086B1 (ko) 2020-10-05
KR20190093215A (ko) 2019-08-08
WO2018107073A1 (fr) 2018-06-14
US20190045881A1 (en) 2019-02-14
US20180162109A1 (en) 2018-06-14
JP2020500650A (ja) 2020-01-16
KR20200103852A (ko) 2020-09-02
KR102191752B1 (ko) 2020-12-16
US20190029361A1 (en) 2019-01-31
KR102161087B1 (ko) 2020-09-29
WO2018107066A1 (fr) 2018-06-14
KR102149382B1 (ko) 2020-08-28
CN110352129B (zh) 2021-09-03
EP3411438A1 (fr) 2018-12-12
JP2019520450A (ja) 2019-07-18
KR20190140097A (ko) 2019-12-18
JP2020509260A (ja) 2020-03-26
WO2018107073A8 (fr) 2018-07-12
KR102136703B1 (ko) 2020-07-22
CN109310179A (zh) 2019-02-05
CN109563329A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
JP7316408B2 (ja) 靴底、組成物、およびそれらを作製する方法
US20220056257A1 (en) Compositions and methods of making thermoset foams for shoe soles
US11377514B2 (en) Combined seals, compositions, and methods of making the same
WO2021076090A1 (fr) Compositions et procédés de fabrication de mousses thermodurcissables pour semelles de chaussures
US20230363492A1 (en) Shoe midsole

Legal Events

Date Code Title Description
AS Assignment

Owner name: COOPER-STANDARD AUTOMOTIVE INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOPALAN, KRISHNAMACHARI;LENHART, ROBERT J;JI, GENDING;AND OTHERS;REEL/FRAME:044342/0809

Effective date: 20171208

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: COOPER-STANDARD AUTOMOTIVE INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOPALAN, KRISHNAMACHARI;LENHART, ROBERT J.;JI, GENDING;AND OTHERS;REEL/FRAME:049684/0256

Effective date: 20171208

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, MICHIGAN

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:COOPER-STANDARD AUTOMOTIVE INC.;REEL/FRAME:052788/0392

Effective date: 20200529

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:COOPER-STANDARD AUTOMOTIVE INC.;REEL/FRAME:052788/0158

Effective date: 20200529

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:COOPER-STANDARD AUTOMOTIVE INC.;REEL/FRAME:052797/0812

Effective date: 20200529

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: COOPER-STANDARD AUTOMOTIVE INC, MICHIGAN

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST PREVIOUSLY RECORDED AT REEL/FRAME (052788/0392);ASSIGNOR:U.S. BANK TRUST COMPANY, NATIONAL ASSOCIATION (SUCCESSOR IN INTEREST TO U.S. BANK NATIONAL ASSOCIATION), AS COLLATERAL AGENT;REEL/FRAME:062540/0108

Effective date: 20230127

AS Assignment

Owner name: COOPER-STANDARD AUTOMOTIVE INC., MICHIGAN

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST PREVIOUSLY RECORDED AT REEL/FRAME (052788/0158);ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:062539/0706

Effective date: 20230127