US20160247833A1 - Array substrate, manufacturing method thereof, display panel and display device - Google Patents

Array substrate, manufacturing method thereof, display panel and display device Download PDF

Info

Publication number
US20160247833A1
US20160247833A1 US14/443,542 US201414443542A US2016247833A1 US 20160247833 A1 US20160247833 A1 US 20160247833A1 US 201414443542 A US201414443542 A US 201414443542A US 2016247833 A1 US2016247833 A1 US 2016247833A1
Authority
US
United States
Prior art keywords
insulation layer
display area
thin film
film transistor
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/443,542
Other languages
English (en)
Inventor
Cuili GAI
Xiaodi LIU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd filed Critical BOE Technology Group Co Ltd
Assigned to BOE TECHNOLOGY GROUP CO., LTD. reassignment BOE TECHNOLOGY GROUP CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Liu, Xiaodi, GAI, CUILI
Publication of US20160247833A1 publication Critical patent/US20160247833A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1237Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a different composition, shape, layout or thickness of the gate insulator in different devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136204Arrangements to prevent high voltage or static electricity failures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L2029/42388Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor characterised by the shape of the insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection

Definitions

  • the present invention belongs to the field of display technology, and particularly relates to an array substrate, a manufacturing method thereof, a display panel including the array substrate and a display device.
  • Static electricity exists everywhere during manufacturing, packaging, testing and using an array substrate including thin film transistors, accumulated electrostatic charges are released within nanoseconds to microseconds in the current of several amperes or tens of amperes, the instantaneous power is up to hundreds of kilowatts, and the discharge energy can reach millijoule, so that the destruction strength on the thin film transistors is very large.
  • an electrostatic protection design in the thin film transistor design directly relates to the stability of the function of a chip and is very important.
  • the gate insulation layer is usually made from silicon dioxide, the dielectric strength of which is approximately 8 ⁇ 10 6 V/cm, thus the breakdown voltage of the gate insulation layer with a thickness of 10 nm is about 8 V.
  • breakdown voltage is more than twice of 3.3 V supply voltage, the peak voltage of static electricity caused by all kinds of factors can be far higher than 8V, so that the insulation layer may be broken down.
  • the parasitic resistance of the device is reduced, so that the protection capacity of preventing electrostatic discharge is greatly weakened.
  • the electrostatic protection for the thin film transistor needs to be improved.
  • an array substrate includes a display area for displaying and a driving area located around the display area.
  • thin film transistors located on a base substrate 1 are provided in both the display area and the driving area of the array substrate, each thin film transistor is provided with an insulation layer 3 between a gate electrode 2 and an active layer 5 , an etching stop layer 4 is further arranged on the active layer 5 , source/drain electrodes 6 are arranged on the etching stop layer 4 , and the source/drain electrodes 6 are electrically connected with the active layer 5 through vias 7 , respectively.
  • An electrostatic protection structure is arranged in the driving area of the array substrate to release the electrostatic charges, but when too many charges are accumulated, the electrostatic discharge current is quite large and will cause electrostatic discharge at the vias 7 of the thin film transistor in the driving area, so that the gate electrode and the source/drain electrodes 6 may be short circuited due to the breakdown of the insulation layer 3 . Therefore, increasing the thickness of the insulation layer 3 of the thin film transistor in the driving area becomes an important measure for preventing electrostatic discharge, but in the thin film transistor in the display area of the array substrate, adverse effects such as a reduced migration rate and threshold voltage drift will be caused due to the increased thickness of the insulation layer 3 , so the thickness of the insulation layer 3 of the thin film transistor in the display area cannot be too large.
  • the insulation layer 3 including the insulation layers in the display area and the driving area of the array substrate as shown in FIG. 1
  • a used mask is shown in FIG. 2 , and the mask includes a display area mask 9 corresponding to the display area and four driving area masks 8 corresponding to the surrounding driving areas respectively.
  • the above-mentioned masks are spliced and exposure is carried out, and then development and etching are performed to simultaneously obtain patterns of the insulation layers in the display area and the driving areas.
  • the object of the present invention is to provide an array substrate, a manufacturing method thereof, a display panel including the array substrate, and a display device, which can prevent the insulation layer of the thin film transistor in a driving area from being broken down and can well maintain properties of the thin film transistor in a display area.
  • Embodiments of the present invention provide an array substrate, including a display area for displaying and a driving area located around the display area, wherein thin film transistors are provided in both the display area and the driving area, and the thin film transistors are provided with insulation layers between gate electrodes and active layers, wherein a thickness of the insulation layer of the thin film transistor in the driving area is larger than a thickness of the insulation layer of the thin film transistor in the display area.
  • the insulation layer of the thin film transistor in the driving area includes a first insulation layer and a second insulation layer
  • the insulation layer of the thin film transistor in the display area includes the second insulation layer.
  • the second insulation layer of the thin film transistor in the driving area is located on the first insulation layer.
  • a thickness of the second insulation layer is 1000-3000 ⁇ .
  • a thickness of the first insulation layer is 2000-6000 ⁇ .
  • the embodiments of the present invention further provide a manufacturing method of an array substrate, including a step of forming insulation layers in a driving area and a display area of the array substrate, wherein
  • thin film transistors are provided in both the display area and the driving area; a insulation layers are arranged between gate electrodes and active layers of the thin film transistors; and a thickness of the insulation layer of the thin film transistor in the driving area is larger than the thickness of the insulation layer of the thin film transistor in the display area.
  • the step of forming the insulation layers in the driving area and the display area of the array substrate includes:
  • a step of forming a pattern including a second insulation layer of the thin film transistors in the driving area and the display area through a patterning process is a step of forming a pattern including a second insulation layer of the thin film transistors in the driving area and the display area through a patterning process.
  • the same display area mask is adopted, and the display area mask includes a blank part without a pattern and a pattern part with a pattern corresponding to the second insulation layer in the display area;
  • a photoresist layer in the display area is exposed for multiple times to form the pattern required.
  • the blank part and the pattern part of the display area mask each symmetrically occupy a half of the display area respectively.
  • the embodiments of the present invention further provide a display panel, including the above-mentioned array substrate.
  • the embodiments of the present invention further provide a display device, including the above-mentioned display panel.
  • the array substrate, the display panel and the display device of the present invention include the display area and the driving area, and the thickness of the insulation layer of the thin film transistor in the driving area is larger than the thickness of the insulation layer of the thin film transistor in the display area. Therefore, when electrostatic discharge occurs between the gate electrode and the source/drain electrodes of the driving area, breakdown of the insulation layer can be prevented, thereby resulting in no short circuit of the gate electrode and the source/drain electrodes; in addition, the insulation layer is also a dielectric layer for a storage capacitor (the capacitor formed between the gate electrode and the source/drain electrodes), and since the thickness of the insulation layer of the thin film transistor in the display area is small, the storage capacitance of the display area can be maintained or increased; meanwhile, since the thickness of the insulation layer of the thin film transistor in the display area is small, adverse effects such as a reduced migration rate and threshold voltage drift of the thin film transistor in the display area will not be caused.
  • FIG. 1 is a schematic sectional view of a structure of a thin film transistor of an array substrate in the prior art.
  • FIG. 2 is a schematic diagram of a structure of a mask used for preparing an insulation layer of an array substrate in the prior art.
  • FIG. 3 is a schematic sectional view of structures of thin film transistors in a display area and a driving area of an array substrate according to a first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a mask used for forming an insulation layer of a thin film transistor of an array substrate according to a second embodiment of the present invention.
  • FIG. 5 is a schematic top view of an array substrate according to the second embodiment of the present invention after formation of a pattern of a first insulation layer.
  • FIG. 6 is a schematic top view of the array substrate according to the second embodiment of the present invention after formation a pattern of a second insulation layer.
  • the so called patterns in the present invention refer to various structures formed by a patterning process.
  • FIG. 3 is a schematic sectional view of structures of thin film transistors of a display area and a driving area of an array substrate according to the embodiment of the present invention.
  • the array substrate in the embodiment includes a display area for displaying and a driving area located around the display area, wherein thin film transistors are provided in both the display area and the driving area; the thin film transistors are provided with insulation layers 3 between gate electrodes 2 and active layers 5 , and a thickness of the insulation layer 3 of the thin film transistor in the driving area is larger than a thickness of the insulation layer 3 of the thin film transistor in the display area.
  • the insulation layer 3 of the thin film transistor in the driving area is larger than the thickness of the insulation layer 3 of the thin film transistor in the display area, breakdown of the insulation layer 3 can be prevented when electrostatic discharge occurs between the gate electrode 2 and source/drain electrodes 6 of the driving area, thereby resulting in no short circuit of the gate electrode and the source/drain electrodes;
  • the insulation layer 3 is also a dielectric layer for a storage capacitor (the capacitor formed between the gate electrode and the source/drain electrodes), and since the thickness of the insulation layer 3 of the thin film transistor in the display area is small, the storage capacitance of the display area can be maintained or increased; meanwhile, since the thickness of the insulation layer 3 of the thin film transistor in the display area is small, adverse effects such as a reduced migration rate and threshold voltage drift of the thin film transistor in the display area will not be caused.
  • the present invention is specifically described with a bottom gate type thin film transistor as an example. However, it should be understood that the present invention is also applicable to top gate type thin film transistors.
  • the array substrate includes a base substrate 1 , wherein the gate electrode 2 is arranged on the base substrate 1 ; the insulation layer 3 is arranged on the gate electrode 2 ; the active layer 5 is arranged on the insulation layer 3 ; an etching stop layer 4 is arranged on the active layer 5 ; the source/drain electrodes 6 are arranged on the etching stop layer 4 in a same layer at interval; and the source/drain electrodes 6 are electrically connected with the active layer 5 through vias 7 formed in the etching stop layer 4 , respectively. It is important to note that the total thickness of the insulation layers 3 of the thin film transistor in the driving area is larger than the thickness of the insulation layer 3 of the thin film transistor in the display area.
  • the array substrate can further include other known structures, such as a gate line, a data line, a pixel electrode and the like, and no detailed description will be given herein.
  • the insulation layer 3 of the thin film transistor in the driving area may include a first insulation layer 31 and a second insulation layer 32 , while the insulation layer 3 of the thin film transistor in the display area only includes a second insulation layer 32 . That is to say, during preparation, the second insulation layers 32 can be simultaneously formed in the thin film transistors in the display area and the driving area, and the first insulation layer 31 is only formed in the thin film transistor in the driving area.
  • the thicknesses of the second insulation layers 32 of the thin film transistors in the display area and the driving area are equal, and the first insulation layer 31 is further formed in the thin film transistor in the driving area, so the total thickness of the insulation layer 3 of the thin film transistor in the driving area is larger than the thickness of the insulation layer 3 of the thin film transistor in the display area.
  • the second insulation layer 32 of the thin film transistor in the driving area is preferably located on the first insulation layer 31 (or, for the bottom gate type thin film transistor, the second insulation layer 32 of the thin film transistor in the driving area is closer to the active layer 5 than the first insulation layer 31 ), and this is because such a structure is relatively easy to manufacture (a detailed description will be given in the following manufacturing method).
  • the thickness of the first insulation layer 31 can be independently adjusted conveniently, namely, when the thickness of the insulation layer 3 of the thin film transistor in the driving area is to be increased, no influence is generated on the thickness of the insulation layer 3 of the thin film transistor in the display area.
  • the insulation layer 3 in the display area can also be configured by gradient exposure to have such a thickness that does not affect the property of the thin film transistor, and meanwhile the thickness of the insulation layer 3 of the thin film transistor in the driving area can be controlled according to specific application conditions. That is to say, the insulation layers 3 in the display area and the driving area can also be formed in one patterning process, but need to be configured by gradient exposure to have different thicknesses.
  • the thickness of the second insulation layer 32 is 1000-3000 ⁇ , while the thickness of the first insulation layer 31 can be adjusted according to different application conditions of the array substrate and is generally set to 2000-6000 ⁇ .
  • the thickness of the second insulation layer 32 can make basic features of the thin film transistor in the display area meet the application requirements, and the thickness of the first insulation layer 31 can ensure that the insulation layer 3 of the thin film transistor in the driving area is not broken down.
  • the embodiment provides a manufacturing method of the above-mentioned array substrate, including a step of forming the above-mentioned insulation layers in the driving area and the display area of the array substrate, wherein the thickness of the insulation layer of the thin film transistor in the driving area is larger than the thickness of the insulation layer of the thin film transistor in the display area.
  • the array substrate as shown in FIG. 3 is manufactured in the following steps:
  • a gate metal layer may be deposited on the base substrate 1 in a sputtering or thermal evaporation method.
  • the material of the gate metal layer can be metals such as Cr (chromium), W (wolframium), Ta (tantalum), Mo (molybdenum), Al (aluminum), Cu (copper) and alloys thereof.
  • a pattern of the gate electrode 2 is formed by a patterning process.
  • the “patterning process” refers to a process of firstly forming a complete film layer and then removing a part of the film layer to enable the remaining film layer to form the pattern required.
  • the removal step therein is achieved by photoetching, and the photoetching usually includes the following steps: coating a photoresist (namely, forming an integral photoresist layer covering the above film layer); exposing (illuminating a part of the area of the photoresist layer by using a mask to change the properties of the photoresist layers on these positions); developing (removing the illuminated part or non-illuminated part in the photoresist layer to expose a part of the film layer); etching (removing the part of the film layer uncovered by the photoresist layer, namely achieving the effect of “removing a part of the film layer”); and stripping the photoresist (removing the remaining photoresist layer, to expose the remaining film layer and form the pattern required).
  • a material of the first insulation layer 31 may be deposited on the base substrate 1 processed in step S 01 by using a plasma enhanced chemical vapor deposition (PECVD) method, and then the first insulation layer 31 is formed by a patterning process.
  • the material of the first insulation layer 31 may be an oxide or a nitride or an oxynitride.
  • the second insulation layers 32 are formed in both the display area and the driving area, but the first insulation layer 31 is only formed in the driving area, namely, when the first insulation layer 31 is formed, a step of removing the material of the entire first insulation layer 31 in the display area must be included. Therefore, if the second insulation layers 32 (which are formed in both the display area and the driving area) are formed at first, when the first insulation layer 31 is prepared, the material of the first insulation layer 31 inevitably covers the second insulation layer 32 in the display area, so that in the etching step, the material of the first insulation layer 31 in the display area cannot be separately removed without damaging the formed second insulation layer 32 (because the materials of the insulation layers are similar or same, thus the insulation layers will be removed together when being etched).
  • a material of the second insulation layer 32 may be deposited on the base substrate 1 processed in step S 02 by using the plasma enhanced chemical vapor deposition (PECVD) method, and then the second insulation layer 32 is formed by a patterning process.
  • the material of the second insulation layer 32 may be an oxide or a nitride or an oxynitride.
  • the same display area mask 9 can be adopted, as shown in FIG. 4 .
  • the mask shown in FIG. 4 includes the display area mask 9 corresponding to the display area and four driving area masks 8 corresponding to the surrounding driving areas respectively.
  • the display area mask 9 includes a blank part 91 without a pattern and a pattern part 92 with a pattern corresponding to the second insulation layer 32 in the display area; and in each step, the photoresist layer in the display area is exposed for multiple times to form the pattern required.
  • the blank part 91 and the pattern part 92 of the display area mask 9 each symmetrically occupy a half of the display area respectively, for example, as shown in FIG. 4 , respectively occupy the upper half part and the lower half part.
  • the patterns of the first insulation layer 31 and the second insulation layer 32 are same, and thus they can be prepared by using the same driving area mask 8 .
  • the patterns of the first insulation layer 31 and the second insulation layer 32 are different in the display area (specifically in the display area, only the second insulation layer 32 is formed, and no first insulation layer 31 is formed), therefore, in preparation of the first insulation layer 31 and the second insulation layer 32 , different display area masks need to be used, which increases the cost.
  • a special display area mask 9 is preferably used in the embodiment, the display area mask 9 including the blank part 91 (namely, a part without a pattern, and can be a part which is completely light transmissive or completely light tight) and the pattern part 92 (namely, a part with a pattern corresponding to the second insulation layer 32 in the display area; a part of positions of the pattern part 92 is light transmissive and a part of positions is light tight), and the display area mask 9 is used twice for exposure in formation of each insulation layer (in the case where the blank part 91 and the pattern part 92 each occupy a half respectively), to achieve the purpose of preparing different patterns in the display area by using the one display area mask 9 .
  • the method of using the above-mentioned display area mask 9 may be as the follows.
  • step S 02 is completed.
  • no pattern (the material of the first insulation layer 31 is etched off) is formed in the display area located at the center on the array substrate, and the pattern of the first insulation layer 31 is formed in the surrounding driving areas.
  • step S 03 is completed.
  • the pattern of the second insulation layers 32 are formed in the display area at the center of the array substrate and the driving areas surrounding the display area.
  • the blank part 91 and the pattern part 92 of the display area mask 9 each respectively occupy a half of the display area, but it is also feasible if the proportions of the two parts are different, but more times of exposure may be needed in one step.
  • the display area mask 9 and the driving area masks 8 may be spliced together, in order to simultaneously expose the display area and the driving areas; or, the display area mask 9 and the driving area masks 8 may also be separated, in order to respectively expose the display area and the driving areas.
  • steps S 02 and S 03 since the display area mask 9 including the blank part 91 and the pattern part 92 is adopted, an insulation layer structure, in which the thickness of the insulation layer of the thin film transistor in the driving area is larger than the thickness of the insulation layer of the thin film transistor in the display area, is obtained without increasing the cost of the mask.
  • the thickness of the second insulation layer 32 is 1000-3000 ⁇ , while the thickness of the first insulation layer 31 can be adjusted according to different application conditions of the array substrate and is generally set to 2000-6000 ⁇ .
  • the thickness of the second insulation layer 32 can make basic features of the thin film transistor in the display area meet the application requirements, and the thickness of the first insulation layer 31 can ensure that the insulation layer 3 of the thin film transistor in the driving area is not broken down.
  • a material layer of the active layer 5 can be firstly deposited on the base substrate 1 processed in step S 03 by magnetron sputtering, thermal evaporation or other film forming method, and then a pattern of the active layer 5 is formed by a patterning process.
  • a material layer of the etching stop layer 4 can be firstly deposited on the base substrate 1 processed in step S 04 by magnetron sputtering, thermal evaporation or other film forming method, and then patterns of the etching stop layer 4 and the vias 7 are formed by a patterning process.
  • a material layer of source/drain electrodes 6 can be firstly deposited on the base substrate 1 processed in step S 05 by magnetron sputtering, thermal evaporation or other film forming method, and patterns of the source/drain electrodes 6 are formed by a patterning process.
  • the display area mask 9 including the blank part 91 and the pattern part 92 is adopted, an insulation layer structure, in which the thickness of the insulation layer 3 of the thin film transistor in the driving area is larger than the thickness of the insulation layer 3 of the thin film transistor in the display area, is obtained without increasing the cost of the mask.
  • the embodiment provides a display panel, including the above-mentioned array substrate.
  • the embodiment provides a display device, including the above-mentioned display panel.
  • the thickness of the insulation layer of the thin film transistor in the driving area is larger than the thickness of the insulation layer of the thin film transistor in the display area. Therefore, when electrostatic discharge occurs between the gate electrode and the source/drain electrodes of the driving area, breakdown of the insulation layer can be prevented, thereby resulting in no short circuit of the gate electrode and the source/drain electrodes; in addition, the insulation layer is also a dielectric layer for a storage capacitor (the capacitor formed between the gate electrode and the source/drain electrodes), and since the thickness of the insulation layer of the thin film transistor in the display area is small, the storage capacitance of the display area can be maintained or increased; meanwhile, since the thickness of the insulation layer of the thin film transistor in the display area is small, adverse effects such as a reduced migration rate and threshold voltage drift of the thin film transistor in the display area will not be caused.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Ceramic Engineering (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)
US14/443,542 2014-06-17 2014-09-19 Array substrate, manufacturing method thereof, display panel and display device Abandoned US20160247833A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201410270423.5 2014-06-17
CN201410270423.5A CN104078469B (zh) 2014-06-17 2014-06-17 一种阵列基板及其制备方法,显示面板、显示装置
PCT/CN2014/086921 WO2015192504A1 (zh) 2014-06-17 2014-09-19 阵列基板及其制备方法、显示面板和显示装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086921 A-371-Of-International WO2015192504A1 (zh) 2014-06-17 2014-09-19 阵列基板及其制备方法、显示面板和显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/826,184 Division US10490573B2 (en) 2014-06-17 2017-11-29 Array substrate, manufacturing method thereof, display panel and display device

Publications (1)

Publication Number Publication Date
US20160247833A1 true US20160247833A1 (en) 2016-08-25

Family

ID=51599640

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/443,542 Abandoned US20160247833A1 (en) 2014-06-17 2014-09-19 Array substrate, manufacturing method thereof, display panel and display device
US15/826,184 Active 2034-11-21 US10490573B2 (en) 2014-06-17 2017-11-29 Array substrate, manufacturing method thereof, display panel and display device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/826,184 Active 2034-11-21 US10490573B2 (en) 2014-06-17 2017-11-29 Array substrate, manufacturing method thereof, display panel and display device

Country Status (3)

Country Link
US (2) US20160247833A1 (zh)
CN (1) CN104078469B (zh)
WO (1) WO2015192504A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460164B (zh) * 2014-12-31 2018-03-27 厦门天马微电子有限公司 一种薄膜晶体管阵列基板、液晶显示装置及其制造方法
CN109920800A (zh) * 2019-02-28 2019-06-21 武汉华星光电半导体显示技术有限公司 一种显示装置及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608357B1 (en) * 1998-07-16 2003-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device equipped with semiconductor circuits composed of semiconductor elements and process for production thereof
US20110170274A1 (en) * 2008-09-26 2011-07-14 Sharp Kabushiki Kaisha Circuit substrate and display device
US20140124750A1 (en) * 2012-11-02 2014-05-08 Apple Inc. Device and method for improving amoled driving

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3358526B2 (ja) * 1998-02-18 2002-12-24 日本電気株式会社 高耐圧薄膜トランジスタの駆動方法
JP4439766B2 (ja) * 2001-08-02 2010-03-24 シャープ株式会社 薄膜トランジスタ装置及びその製造方法
JP2003188183A (ja) * 2001-12-20 2003-07-04 Fujitsu Display Technologies Corp 薄膜トランジスタ装置、その製造方法及び液晶表示装置
KR100870013B1 (ko) * 2002-08-27 2008-11-21 삼성전자주식회사 박막 트랜지스터 어레이 기판 및 그 제조 방법
JP3991883B2 (ja) * 2003-02-20 2007-10-17 日本電気株式会社 薄膜トランジスタ基板の製造方法
JP2005183408A (ja) * 2003-12-15 2005-07-07 Seiko Epson Corp 電気光学装置、その駆動回路および電子機器
CN100345310C (zh) * 2004-04-26 2007-10-24 统宝光电股份有限公司 薄膜晶体管及其制作方法
JP2006332400A (ja) * 2005-05-27 2006-12-07 Nec Corp 薄膜半導体装置およびその製造方法
KR101252001B1 (ko) * 2006-06-15 2013-04-08 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
US7947981B2 (en) * 2007-01-30 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Display device
KR101485585B1 (ko) * 2008-02-14 2015-01-23 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
JP2014010355A (ja) * 2012-06-29 2014-01-20 Sharp Corp 表示装置
CN202886795U (zh) * 2012-11-14 2013-04-17 京东方科技集团股份有限公司 一种阵列基板的外围电路、阵列基板及显示装置
CN204029806U (zh) * 2014-06-17 2014-12-17 京东方科技集团股份有限公司 一种阵列基板、显示面板、显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608357B1 (en) * 1998-07-16 2003-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device equipped with semiconductor circuits composed of semiconductor elements and process for production thereof
US20110170274A1 (en) * 2008-09-26 2011-07-14 Sharp Kabushiki Kaisha Circuit substrate and display device
US20140124750A1 (en) * 2012-11-02 2014-05-08 Apple Inc. Device and method for improving amoled driving

Also Published As

Publication number Publication date
US20180083050A1 (en) 2018-03-22
US10490573B2 (en) 2019-11-26
CN104078469B (zh) 2017-01-25
CN104078469A (zh) 2014-10-01
WO2015192504A1 (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
US9406664B2 (en) Array substrate, method for fabricating the same and display device
EP2953165B1 (en) Oxide thin film transistor array substrate, manufacturing method thereof, and display panel
CN109686793A (zh) 薄膜晶体管及制备方法、阵列基板、显示装置
US8999771B2 (en) Protection layer for halftone process of third metal
TWI360885B (en) Pixel structure and fabrication method thereof
WO2017198077A1 (zh) 静电释放组件、阵列基板及其制备方法、显示面板
US10177257B2 (en) Thin film transistor, method for fabricating the same, display substrate and display device
US8748320B2 (en) Connection to first metal layer in thin film transistor process
JP6437574B2 (ja) 薄膜トランジスタおよびその製造方法、アレイ基板、並びに表示装置
KR20100041687A (ko) 박막 트랜지스터 이미지 센서 어레이를 위한 esd 유도 결함 감소 설계
CN108231595B (zh) 薄膜晶体管及其制备方法、阵列基板、显示装置
KR20150076405A (ko) 디스플레이 장치의 정전기 방지 장치와 이의 제조 방법
US9721978B2 (en) Thin film transistor device, manufacturing method thereof, and display apparatus
US9859269B2 (en) Array substrate and method of preparing the same
US10490573B2 (en) Array substrate, manufacturing method thereof, display panel and display device
CN106098789A (zh) 一种薄膜晶体管及其制备方法、阵列基板、显示装置
KR20150011650A (ko) 산화물 박막 트랜지스터 어레이 기판 및 이의 제조 방법
CN204029806U (zh) 一种阵列基板、显示面板、显示装置
TWI249855B (en) Circuit array substrate
CN109659238B (zh) 一种薄膜晶体管及其制造方法
US20210408069A1 (en) Tft array substrate and manufacturing method thereof
EP1704443B1 (en) Liquid crystal display device having esd protection circuit and method for manufacturing the same
US20240213277A1 (en) Array substrate and display panel
KR102337784B1 (ko) 표시장치용 투명 전도막, 그 제조방법, 및 이를 구비한 디스플레이 장치
KR102197854B1 (ko) 박막 트랜지스터, 이를 포함하는 표시기판 및 이의 제조방법

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GAI, CUILI;LIU, XIAODI;SIGNING DATES FROM 20150514 TO 20150515;REEL/FRAME:035669/0031

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION