US20160230287A1 - Reductive electroless gold plating solution, and electroless gold plating method using the plating solution - Google Patents
Reductive electroless gold plating solution, and electroless gold plating method using the plating solution Download PDFInfo
- Publication number
- US20160230287A1 US20160230287A1 US15/025,321 US201515025321A US2016230287A1 US 20160230287 A1 US20160230287 A1 US 20160230287A1 US 201515025321 A US201515025321 A US 201515025321A US 2016230287 A1 US2016230287 A1 US 2016230287A1
- Authority
- US
- United States
- Prior art keywords
- electroless
- gold
- plated
- film
- plating solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
- C23C18/44—Coating with noble metals using reducing agents
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
- C23C18/1637—Composition of the substrate metallic substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1646—Characteristics of the product obtained
- C23C18/165—Multilayered product
- C23C18/1651—Two or more layers only obtained by electroless plating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/32—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
Definitions
- the invention disclosed in the present filing relates to an electroless gold plating solution, an electroless gold plating method using the electroless gold plating solution, and a plated product obtained by plating by the electroless gold plating method. More specifically, the invention relates to reductive electroless gold plating technology capable of plating directly a surface of a plating target.
- plating is undergone as the surface treatment for wiring pads that are mounting portions and terminal portions of circuits on printed wiring boards.
- the plating includes a technology of carrying out nickel plating, palladium plating and gold plating in order on a circuit pattern formed of a metal having a low electric resistance such as copper.
- a plated nickel film is to prevent the erosion of a copper circuit by soldering; and a plated palladium film is to prevent the diffusion of nickel constituting the plated nickel film to a plated gold film. Then, the plated gold film is formed in order to provide excellent wetting performance of a solder, realizing a low electric resistance.
- Patent Literature 1 As conventional technologies of the above-mentioned plating technology, there are, for example, Patent Literature 1 to Patent Literature 3 described below.
- An electroless gold plating method described in Patent Literature 1 is a method of forming a plated gold film on nickel by using an electroless gold plating solution containing a reducing agent, and involves formation of an immersion plated gold film as a catalyst for electroless gold plating on nickel.
- an electroless gold plating method described in Patent Literature 2 is a method of forming an electroless plated gold film of a plated film laminate in which an electroless plated nickel film is formed on a surface to be plated of an electronic component through a catalyst; an electroless plated palladium film is formed on the electroless plated nickel film; and the electroless plated gold film is further formed on the electroless plated palladium film, and involves the formation of the electroless plated gold film by first electroless gold plating using an electroless gold plating bath containing a water-soluble gold compound, a complexing agent, formaldehyde and/or a formaldehyde bisulfite salt adduct, and a specific amine compound.
- a reductive deposition-type electroless gold plating solution for a palladium film described in Patent Literature 3 is an electroless gold plating solution enabling the direct formation of a plated gold film on the palladium film, and is composed of an aqueous solution containing a water-soluble gold compound, a reducing agent and a complexing agent, wherein at least one compound selected from the group consisting of formaldehyde bisulfites, Rongalite and hydrazines is contained as the reducing agent.
- the electroless gold plating method of the Patent Literature 1 has such a problem gold dissolves and corrodes substrate nickel, and nickel thereby diffuses in a plated gold film, however, since the immersion plated gold film is formed by depositing gold by utilizing the difference in redox potential between nickel that is a substrate and gold ions in the plating bath. When nickel diffuses in the plated gold film, there arises a problem that the gold-gold junction strength in wire bonding decreases. In order to prevent such disadvantages, Patent Literature 1 forms an electroless plated gold film on an immersion plated gold film to make the gold film thickness large to thereby suppress a decrease in wire bondability.
- the technology poses a problem of causing a rise in cost and poor productivity, however, since formation of the immersion plated gold film is essentially needed.
- the reductive electroless gold plating solution according to the present invention is used for the formation of an electroless plated gold film on a surface of a plating target, and contains a water-soluble gold compound, citric acid or a citrate salt, ethylenediaminetetraacetic acid or an ethylenediaminetetraacetate salt, hexamethylenetetramine, and a chain polyamine having an alkyl group having 3 or more carbon atoms and 3 or more amino groups.
- the reductive electroless gold plating solution according to the present invention has preferably a pH of 7.0 to a pH of 9.0.
- the chain polyamine is preferably 3,3′-diamino-N-methyldipropylamine or N,N′-bis(3-aminopropyl)ethylenediamine.
- the reductive electroless gold plating solution according to the present invention preferably further contains a thallium compound as a deposition accelerator.
- the method of electroless gold plating according to the present invention includes forming an electroless plated gold film on a surface of a plating target using the above-mentioned reductive electroless gold plating solution.
- one of copper, palladium, gold and nickel is preferably present on the surface of the plating target.
- the surface of the plating target preferably includes an electroless plated palladium film formed on a surface of an electroless plated nickel film.
- the plated product according to the present invention is obtained by electroless gold plating by the above-mentioned electroless gold plating method.
- the reductive electroless gold plating solution of the present invention contains a water-soluble gold compound, citric acid or a citrate salt, ethylenediaminetetraacetic acid or an ethylenediaminetetraacetate salt, hexamethylenetetramine, and a chain polyamine having an alkyl group having 3 or more carbon atoms and 3 or more amino groups, it becomes easy for a plated gold film to be thickly deposited on a surface of a plating target.
- the plated gold film can be formed quickly on the surface of the plated palladium film without being influenced by the film thickness of the plated palladium film.
- the reductive electroless gold plating solution of the present invention even in the case where an electroless plated gold film is formed on a surface of an electroless plated palladium film formed on a surface of an electroless plated nickel film, the dissolution of nickel can greatly be suppressed as compared with the case where an immersion plated gold film is formed, and the diffusion of nickel in the plated gold film is enabled to be prevented.
- the reductive electroless gold plating solution of the present invention when the reductive electroless gold plating solution of the present invention is used, a plated gold film capable of realizing high junction reliability of wire bonding can be obtained.
- the reductive electroless gold plating solution of the present invention has higher stability as a solution as compared with conventional electroless gold plating solutions and contains neither formaldehyde nor formaldehyde bisulfite salt adduct, which is strongly toxic, it becomes easy for the safety in plating work to be secured.
- the reductive electroless gold plating solution of the present invention since the deposition reaction of gold occurs only on the surface of gold, palladium, nickel, copper or the like, which can become a catalytic nucleus, and does not occur on portions having no catalytic nucleus, the selective deposition property is excellent. Therefore, the plating solution can avoid the formation of a plated gold film on portions having no need of the deposition of gold, and is beneficial in that the raw material can be saved.
- FIG. 1 is a graph showing a relation between the plating time and the plated film thickness of a reductive electroless plated gold film of an Example sample group 1A.
- FIG. 2 is a graph showing a relation between the plating time and the plated film thickness of a reductive electroless plated gold film of Example 2.
- FIG. 3 is diagrams showing relations between the film thickness of a substrate plated palladium film and the deposition rate of a plated gold film in the case of using electroless gold plating solutions of Example 1 and Comparative Example 1.
- FIG. 4 shows electron microscope photographs ( ⁇ 10,000 and ⁇ 30,000) of a reductive electroless plated gold film of an Example sample 1A-2.
- FIG. 5 shows electron microscope photographs ( ⁇ 30,000) of reductive electroless plated gold films of an Example sample 2-2 and Comparative Example 2.
- FIG. 6 shows an electron microscope photograph ( ⁇ 5,000) of the surface of a plated nickel film after peeling-off of a reductive electroless plated gold film and an electroless plated palladium film from a plated film of an Example sample 1A-2.
- FIG. 7 shows electron microscope photographs ( ⁇ 3,000) of surfaces of plated nickel films after peeling-off of reductive electroless plated gold films from plated films of an Example sample 2-2 and Comparative Example 2.
- FIG. 8 is a cross-sectional observation photograph ( ⁇ 30,000) of a reductive electroless plated gold film of an Example sample 1A-6.
- FIG. 9 shows electron microscope photographs ( ⁇ 500) of an end portion and a central portion of a plated product in which a plated film was formed under the same condition as in an Example sample 1A-6.
- FIG. 10 is a diagram showing relations of nickel dissolution amounts in gold plating solutions in the case of using electroless gold plating solutions of Example 1 and Comparative Example 1.
- FIG. 11 is a diagram showing deviations of the film thicknesses of electroless plated gold films of Example 2 and Comparative Example 2.
- FIG. 12 is a diagram showing the wire bonding performance of electroless plated gold films of Example 2 and Comparative Example 2.
- the reductive electroless gold plating solution according to the present invention is used for the formation of an electroless plated gold film on a surface of a plating target, and contains “a water-soluble gold compound”, “citric acid or a citrate salt”, “ethylenediaminetetraacetic acid or an ethylenediaminetetraacetate salt”, “hexamethylenetetramine”, and “a chain polyamine having an alkyl group having 3 or more carbon atoms and 3 or more amino groups”.
- a water-soluble gold compound “citric acid or a citrate salt”
- ethylenediaminetetraacetic acid or an ethylenediaminetetraacetate salt “hexamethylenetetramine”
- a chain polyamine having an alkyl group having 3 or more carbon atoms and 3 or more amino groups a chain polyamine having an alkyl group having 3 or more carbon atoms and 3 or more amino groups
- any water-soluble gold compound of cyanide-based gold salts and non-cyanide-based gold salts as long as the compound is soluble in the plating solution and can provide a specific concentration can be used.
- specific water-soluble gold compounds of cyanide-based gold salts potassium gold cyanide, sodium gold cyanide and ammonium gold cyanide can be exemplified.
- specific water-soluble gold compounds of non-cyanide-based gold salts chloroaurate salts, gold sulfite salts and gold thiosulfate salts can be exemplified.
- potassium gold cyanide is especially preferable.
- the water-soluble gold compounds may be used singly or in a combination of two or more.
- the water-soluble gold compounds are not limited to the gold compounds exemplified here.
- the concentration of a water-soluble gold compound in the reductive electroless gold plating solution according to the present invention is preferably 0.0025 mol/L to 0.0075 mol/L. This is because when the concentration of a water-soluble gold compound is lower than 0.0025 mol/L, the deposition rate of a plated gold film is slow and a desired-thickness plated gold film is hardly obtained. This is because when the concentration of a water-soluble gold compound is higher than 0.0075 mol/L, there arises a risk that the stability of the plating solution decreases, and the high concentration is an economical drawback.
- the reductive electroless gold plating solution according to the present invention contains citric acid or a citrate salt. These citric acid and citrate salt are used as a complexing agent capable of forming a complex with gold ions.
- the concentration of citric acid or a citrate salt in the reductive electroless gold plating solution according to the present invention is preferably 0.05 mol/L to 0.15 mol/L.
- the reductive electroless gold plating solution according to the present invention contains ethylenediaminetetraacetic acid (EDTA) or an ethylenediaminetetraacetate salt. These ethylenediaminetetraacetic acid and ethylenediaminetetraacetate salt are complexing agents used by in combination with the above-mentioned citric acid or citrate salt.
- the concentration of ethylenediaminetetraacetic acid or an ethylenediaminetetraacetate salt in the reductive electroless gold plating solution according to the present invention is preferably 0.03 mol/L to 0.1 mol/L.
- the reductive electroless gold plating solution according to the present invention contains hexamethylenetetramine.
- the hexamethylenetetramine is used as a reducing agent which reduces gold ions in the plating solution and causes gold to deposit on a surface of a plating target.
- the concentration of hexamethylenetetramine in the reductive electroless gold plating solution according to the present invention is preferably 0.003 mol/L to 0.009 mol/L. This is because when the concentration of hexamethylenetetramine is lower than 0.003 mol/L, the deposition rate of a plated gold film is slow and a desired-thickness plated gold film is hardly obtained; and this is because when the concentration of hexamethylenetetramine is higher than 0.009 mol/L, the reduction reaction rapidly progresses and the gold salt in the plating solution may abnormally deposit, and the solution stability is inferior and the high concentration is an economical drawback.
- the reductive electroless gold plating solution according to the present invention contains a chain polyamine having an alkyl group having 3 or more carbon atoms and 3 or more amino groups.
- the chain polyamine is an amine compound which acts as a reduction auxiliary agent assisting the reduction of gold ions in the plating solution.
- As the chain polyamine specifically, there can be used 3,3′-diamino-N-methyldipropylamine, N,N′-bis(3-aminopropyl)ethylenediamine and the like. This is because these are especially preferable from the viewpoint of the performance of an obtained plated film, and the economic efficiency.
- the concentration of the chain polyamine in the reductive electroless gold plating solution according to the present invention is preferably 0.02 mol/L to 0.06 mol/L.
- concentration of a chain polyamine in the range of 0.02 mol/L to 0.06 mol/L, a high deposition rate can be maintained without affecting the substrate metal film thickness. Further the throwing power of a plated gold film can be improved and the plated gold film can have a large thickness of 0.2 lam or larger. Further the solution stability can be greatly enhanced.
- the reductive electroless gold plating solution according to the present invention in addition to a water-soluble gold compound, citric acid or a citrate salt, ethylenediaminetetraacetic acid or an ethylenediaminetetraacetate salt, hexamethylenetetramine, and a chain polyamine having an alkyl group having 3 or more carbon atoms and 3 or more amino groups, as described above, may contain a deposition accelerator.
- the deposition accelerator used here includes thallium compounds and lead compounds. It is preferable to use a thallium compound from the viewpoint of making a thick plated gold film.
- the concentration of a thallium compound as the deposition accelerator in the reductive electroless gold plating solution according to the present invention is preferably 1 mg/L to 10 mg/L.
- concentration of a thallium compound as the deposition accelerator is lower than 1 mg/L, it becomes difficult to make a plated gold film thick. Further when the concentration of a thallium compound as the deposition accelerator is higher than 10 mg/L, making the thickness larger than that cannot be accomplished and the high concentration would be an economical drawback.
- the reductive electroless gold plating solution according to the present invention may contain additives such as a pH regulator, an antioxidant, a surfactant and a brightening agent.
- the pH regulator is not especially limited, but includes potassium hydroxide, sodium hydroxide, an ammonia water solution, sulfuric acid and phosphoric acid.
- the pH is preferably maintained at 7.0 to 9.0. This is because when the pH of the reductive electroless gold plating solution is lower than 7.0, it becomes easy for the plating solution to be decomposed; and when the pH is higher than 9.0, the plating solution becomes too stable and the plating deposition rate becomes slow, and it needs to take much time for a plated gold film to be made thick. Further by regulating the pH condition at 7.0 to 9.0, even a plating target constituted from a material weak to alkali can be plated. Further as the additives such as an antioxidant, a surfactant and a brightening agent, known ones can be used.
- the gold plating condition using the reductive electroless gold plating solution according to the present invention is not especially limited, but the solution temperature is preferably 40° C. to 90° C., and especially preferably 75° C. to 85° C.
- the plating time also is neither especially limited, but 1 min to 2 hours is preferable, and 2 min to 1 hour is especially preferable.
- the reductive electroless gold plating solution according to the present invention comprises, as essential components, a water-soluble gold compound, citric acid or a citrate salt, ethylenediaminetetraacetic acid or an ethylenediaminetetraacetate salt, hexamethylenetetramine, and a chain polyamine having an alkyl group having 3 or more carbon atoms and 3 or more amino groups as described above, it becomes easy for a plated gold film to be thickly deposited on a surface of a plating target by the electroless plating method.
- the plated gold film can be formed quickly on the surface of the plated palladium film without being influenced by the film thickness of the plated palladium film by using the reductive electroless gold plating solution according to the present invention.
- an electroless plated gold film is formed on a surface of an electroless plated palladium film formed on a surface of an electroless plated nickel film, by using the reductive electroless gold plating solution of the present invention, the dissolution of nickel can greatly be suppressed as compared with the case where an immersion plated gold film is formed, and the diffusion of nickel in the plated gold film can be prevented. Therefore, when the reductive electroless gold plating solution of the present invention is used, a plated gold film capable of realizing high junction reliability of wire bonding can be provided.
- the reductive electroless gold plating solution of the present invention is high in the solution stability as compared with conventional electroless gold plating solutions.
- the metal turnover MTO, in which the case where gold in a plating solution in making-up of an electrolytic bath is all deposited is taken as 1 turn
- MTO is 2.0 to 3.0 turns in the case of conventional reductive electroless gold plating solutions
- an MTO of 5.0 turns or more is enabled to be realized in the reductive electroless gold plating solution of the present invention.
- the reductive electroless gold plating solution of the present invention contains neither formaldehyde nor a formaldehyde bisulfite salt adduct, which is strongly toxic and which is contained in conventional reductive electroless gold plating solutions, it becomes easy for the safety in plating work to be secured.
- the reductive electroless gold plating solution of the present invention since the deposition reaction of gold occurs only on the surface of gold, palladium, nickel, copper or the like, which can become a catalytic nucleus, and does not occur on portions having no catalytic nucleus, the selective deposition property is excellent. Therefore, the plating solution can avoid the formation of a plated gold film on portions having no need of the deposition of gold, and is beneficial in that the raw material can be saved.
- the electroless gold plating method according to the present invention uses one of the reductive electroless gold plating solutions described above and carries out electroless gold plating on a surface of a plating target to thereby form a plated gold film.
- the electroless gold plating method carries out plating by a method of immersing a plating target in an electroless gold plating solution as in usual reductive electroless plating methods.
- one of copper, palladium, gold and nickel is present on a surface of a plating target, which is an object of the treatment.
- the presence form thereof may be any one as long as one of copper, palladium, gold and nickel is present on a surface of a plating target. It is more preferable to use particularly a plating target itself constituted from copper or a plating target having any film composed of copper, palladium, gold, nickel or an alloy containing these metals on the surface of the plating target.
- the alloy containing these metals may include, for example, gold cobalt.
- Gold, palladium, nickel, copper or an alloy containing these metals becomes a substrate metal for electroless gold plating in the present invention, and exhibits a catalytically active effect to hexamethylenetetramine as a reducing agent contained in the above-mentioned reductive electroless gold plating solution.
- a plating target particularly an electroless plated palladium film
- an immersion plated gold film or a plated copper film is used as the film to be formed on a surface of a plating target.
- an electroless plated palladium film is formed on the surface of the electroless plated nickel film. This is because when the plated nickel film has a plated palladium film formed on its surface, it is especially effective in that the plated nickel film is prevented from being diffused in the plated gold film.
- the plated product according to the present invention is characterized in that a surface of a plating target undergoes electroless gold plating by using one of the above-mentioned electroless gold plating solutions and by the above-mentioned electroless gold plating method. It is preferable to make a surface of a plating target undergo electroless gold plating particularly by using the reductive electroless gold plating solution having a pH of 7.0 to 9.0. Further, the presence form thereof may be any one as long as one of copper, palladium, gold and nickel is present on a surface of a plating target.
- a plating target itself constituted from copper or a plating target having any film composed of copper, palladium, gold, nickel or an alloy containing these metals on the surface of the plating target. It is preferable that as the film to be formed on a surface of a plating target, particularly an electroless plated palladium film, an immersion plated gold film or a plated copper film is used. It is preferable that a plating target including an electroless plated palladium film on its surface is particularly one having an electroless plated nickel film as an underlayer of the electroless plated palladium film formed on its surface. This is because the plating using the above-mentioned reductive electroless gold plating solution can especially suitably be used for the formation of plated films of electric connection sites.
- Example 1 and Example 2 of plated gold films fabricated by using the reductive electroless gold plating solution of the present invention Comparative Example 1 of a plated gold film fabricated by using an immersion electroless gold plating solution, and Comparative Example 2 of a plated gold film fabricated by using a conventional reductive electroless plating solution. Note that, it should be mentioned by way of caution that the present invention is not limited to Examples described in the below.
- Example 1 by using a reductive electroless gold plating solution to which the present invention was applied and using a copper plate as a substrate, plated films composed of an electroless plated nickel film/electroless plated palladium film/electroless plated gold film were formed on the substrate.
- Preparation of the reductive electroless gold plating solution The composition of the reductive electroless gold plating solution used in the present Example is shown in the below.
- the plating condition (pH, solution temperature) is shown together with the composition.
- Citric acid 0.15 mol/L
- Samples with a plated film as Example 1 were composed of an Example sample group 1A to an Example sample group 1D. These Example sample group 1A to Example sample group 1D were divided according to differences in electroless plated palladium film thickness.
- the Example sample group 1A was composed of an Example sample 1A-1 to an Example sample 1A-6; and the each Example sample was made by forming an electroless plated nickel film of 5 ⁇ m in film thickness on the surface of the copper plate, and thereafter forming an electroless plated palladium film of 0.1 ⁇ m in film thickness on the surface of the electroless plated nickel film. Thereafter, a reductive electroless plated gold film was formed on the surface of the electroless plated palladium film by using the above-mentioned reductive electroless gold plating solution according to the condition of a corresponding plating time.
- the plating time conditions in the reductive electroless plated gold film formation were made to be 10 min, 20 min, 30 min, 40 min, 50 min and 60 min, respectively, to thereby obtain samples with a plated gold film.
- the Example sample group 1B was composed of an Example sample 1B-1 to an Example sample 1B-6, and fabricated as in the Example sample group 1A, except that the film thickness of the electroless plated palladium film was 0.2 ⁇ m.
- the plating time conditions in the reductive electroless plated gold film formation were made different, as in the Example sample 1A-1 to the Example sample 1A-6.
- the Example sample group 1C was composed of an Example sample 1C-1 to an Example sample 1C-6, and fabricated as in the Example sample group 1A, except that the film thickness of the electroless plated palladium film was 0.4 ⁇ m.
- the plating time conditions in the reductive electroless plated gold film formation were made different, as in the Example sample 1A-1 to the Example sample 1A-6.
- the Example sample group 1D was composed of an Example sample 1D-1 to an Example sample 1D-6, and fabricated as in the Example sample group 1A, except that the film thickness of the electroless plated palladium film was 0.6 ⁇ m.
- the plating time conditions in the reductive electroless plated gold film formation were made different, as in the Example sample 1A-1 to the Example sample 1A-6.
- Example 2 by using the reductive electroless gold plating solution as in Example 1 and using a copper plate as a substrate, plated films composed of an electroless plated nickel film/immersion electroless plated gold film/reductive electroless plated gold film were formed on the substrate.
- Samples with a plated film as Example 2 were composed of an Example sample 2-1 to an Example sample 2-6.
- the Example sample 2-1 to the Example sample 2-6 were each made by forming an electroless plated nickel film of 5 ⁇ m in film thickness on the surface of the copper plate, and thereafter forming an immersion electroless plated gold film of 0.07 ⁇ m in film thickness on the surface of the electroless plated nickel film.
- a reductive electroless plated gold film was formed on the surface of the immersion electroless plated gold film by using the above-mentioned reductive electroless gold plating solution according to the condition of a corresponding plating time.
- the plating time conditions in the reductive electroless plated gold film formation were made different, as in the Example sample 1A-1 to the Example sample 1A-6.
- Comparative Example 1 by using an immersion electroless gold plating solution and using a copper plate as a substrate as in Example 1, plated films composed of an electroless plated nickel film/electroless plated palladium film/electroless plated gold film were fabricated on the substrate.
- Citric acid 0.15 mol/L
- Samples with a plated film as Comparative Example 1 are composed of a comparative sample group 1A to a comparative sample group 1D. These comparative sample group 1A to comparative sample group 1D are divided according to differences in electroless plated palladium film thickness.
- the comparative sample group 1A was composed of a comparative sample 1A-1 to a comparative sample 1A-6; and the each comparative sample was made by forming an electroless plated nickel film of 5 ⁇ m in film thickness on the surface of the copper plate, and thereafter forming an electroless plated palladium film of 0.1 ⁇ m in film thickness on the surface of the electroless plated nickel film. Thereafter, an immersion electroless plated gold film was formed on the surface of the electroless plated palladium film by using the above-mentioned immersion electroless gold plating solution according to the condition of a corresponding plating time.
- the plating time conditions in the immersion electroless plated gold film formation were made to be 10 min, 20 min, 30 min, 40 min, 50 min and 60 min, respectively, to thereby obtain samples with a plated gold film.
- the comparative sample group 1B was composed of a comparative sample 1B-1 to a comparative sample 1B-6, and fabricated as in the comparative sample group 1A, except that the film thickness of the electroless plated palladium film was 0.2 ⁇ m.
- the plating time conditions in the immersion electroless plated gold film formation were made different, as in the comparative sample 1A-1 to the comparative sample 1A-6.
- the comparative sample group 1C was composed of a comparative sample 1C-1 to a comparative sample 1C-6, and fabricated as in the comparative sample group 1A, except that the film thickness of the electroless plated palladium film was 0.4 ⁇ m.
- the plating time conditions in the immersion electroless plated gold film formation were made different, as in the comparative sample 1A-1 to the comparative sample 1A-6.
- the comparative sample group 1D was composed of a comparative sample 1D-1 to a comparative sample 1D-6, and fabricated as in the comparative sample group 1A, except that the film thickness of the electroless plated palladium film was 0.6 ⁇ m.
- the plating time conditions in the immersion electroless plated gold film formation were made different, as in the comparative sample 1A-1 to the comparative sample 1A-6.
- Comparative Example 2 by using a conventional reductive electroless gold plating solution and using a copper plate as a substrate as in Example 2, plated films composed of an electroless plated nickel film/immersion electroless plated gold film/conventional reductive electroless plated gold film were formed on the substrate.
- Lead compound 5 mg/L (in terms of lead)
- Example 1 and Example 2 fabricated by using the reductive electroless gold plating solution of the present invention were evaluated for the deposition rate, the surface form and the like.
- these evaluations will be described specifically, if required, by comparing Example 1 and Example 2 with Comparative Example 1 of the plated gold films fabricated by using the immersion electroless gold plating solution and Comparative Example 2 of the plated gold film fabricated by using the conventional reductive electroless plating solution.
- FIG. 1 a relation between the plating time and the plated film thickness of the plated gold films of the Example sample group 1A (the Example sample 1A-1 to the Example sample 1A-6) in Example 1 using the reductive electroless gold plating solution according to the present invention.
- FIG. 2 a relation between the plating time and the plated film thickness of the plated gold films of Example 2 (the Example sample 2-1 to the Example sample 2-6) using the reductive electroless gold plating solution according to the present invention.
- FIG. 2 there is shown an electron microscope photograph ( ⁇ 10,000) of the plated gold film of the Example sample 2-2 obtained by making the plating time to be 20 min.
- FIG. 3 shows a relation between the film thickness of the electroless plated palladium film and the deposition rate of the plated gold film in the Example sample group 1A (the Example sample 1A-1 to the Example sample 1A-6) to the Example sample group 1D (the Example sample 1D-1 to the Example sample 1D-6) each in which the plated gold film was formed on the surface of the electroless plated palladium film by using the reductive electroless gold plating solution.
- FIG. 3 shows a relation between the film thickness of the electroless plated palladium film and the deposition rate of the plated gold film in the Example sample group 1A (the Example sample 1A-1 to the Example sample 1A-6) to the Example sample group 1D (the Example sample 1D-1 to the Example sample 1D-6) each in which the plated gold film was formed on the surface of the electroless plated palladium film by using the reductive electroless gold plating solution.
- FIG 3 also shows, together with the relation, a relation between the film thickness of the electroless plated palladium film and the deposition rate of the plated gold film in the comparative sample group 1A (the comparative sample 1A-1 to the comparative sample 1A-6) to the comparative sample group 1D (the comparative sample 1D-1 to the comparative sample 1D-6) each in which the plated gold film was formed on the surface of the electroless plated palladium film by using the immersion electroless gold plating solution.
- FIG. 4 shows electron microscope photographs ( ⁇ 10,000 and ⁇ 30,000) of the plated gold film surface of the Example sample 1A-2 in which the reductive electroless plated gold film was formed in a film thickness of 0.1 ⁇ m out of Example 1.
- the surface form of the reductive electroless plated gold film formed on the surface of the immersion electroless plated gold film by using the reductive electroless gold plating solution of the present invention was further observed.
- FIG. 5 shows an electron microscope photograph ( ⁇ 30,000) of the plated gold film surface of the Example sample 2-2 in which the reductive electroless plated gold film was formed in a film thickness of 0.13 ⁇ m out of Example 2.
- FIG. 5 shows an electron microscope photograph ( ⁇ 30,000) of the plated gold film surface of Comparative Example 2 in which the reductive electroless plated gold film was formed in a film thickness of 0.13 ⁇ m.
- the electroless plated gold film was densely formed not only by using the reductive electroless gold plating solution of the present invention, but by using the conventional reductive electroless gold plating solution.
- FIG. 6 shows an electron microscope photograph ( ⁇ 5,000) of the plated nickel film surface after the electroless plated gold film and the electroless plated palladium film were peeled off from the state of FIG. 4 .
- FIG. 7 shows electron microscope photographs ( ⁇ 3,000) of the plated nickel film surfaces after the electroless plated gold film was peeled off from the state of FIG. 5 .
- FIG. 8 shows a cross-sectional photograph ( ⁇ 30,000) of the plated film of the Example sample 1A-6, in which the reductive electroless plated gold film was formed in a film thickness of 0.3 ⁇ m. It can be confirmed from FIG.
- the reductive electroless gold plating solution of the present invention was excellent in the selective deposition property of the electroless plated gold film.
- Influence of the nickel dissolution in the gold plating solution Then, with respect to Example 1, in which the plated gold film was formed on the surface of the electroless plated palladium film by using the reductive electroless gold plating solution of the present invention, there was investigated the influence of the dissolution of the electroless nickel into the reductive electroless gold plating solution. Specifically, there was examined the dissolution amount of the substrate nickel into the electroless gold plating solution in the case where 1 g of gold was deposited on the surface of the electroless plated palladium film, by using ICP.
- FIG. 10 shows a dissolution amount of the electroless nickel of Example 1 using the reductive electroless gold plating solution and a dissolution amount of the substrate nickel of Comparative Example 1 using the immersion electroless gold plating solution.
- FIG. 10 indicates, for the either case, a value when the dissolution amount of Ni into the gold plating solution in the case where 1 g of gold was deposited was examined by using ICP.
- Example 1 in which 1 g of the plated gold film was deposited by using the immersion electroless gold plating solution, Ni used as the substrate metal dissolved out in 162 ppm into the immersion electroless gold plating solution.
- Example 1 in which 1 g of the plated gold film was deposited by using the reductive electroless gold plating solution of present application, Ni used as the substrate metal dissolved out in 0.2 ppm only into the reductive electroless gold plating solution.
- the reductive electroless gold plating solution according to the present application could greatly suppress the dissolution of the substrate nickel through the plated palladium film as compared with the case of forming the immersion plated gold film, and nickel was enabled to be prevented from diffusing into the plated gold film.
- Deviation in film thickness of the plated gold film there was investigated the deviation in film thickness of the plated gold film formed by using the reductive electroless gold plating solution on the surface of the immersion electroless plated gold film.
- the film thickness of the reductive electroless plated gold film of the Example sample 2-2 of Example 2 as an example using the reductive electroless gold plating solution according to the present invention.
- the film thickness of the reductive electroless plated gold film of Comparative Example 2 using the conventional reductive electroless gold plating solution.
- the results by the examination of the film thickness of 20 points are collectively shown in Table 1. Further FIG. 11 shows the deviation states.
- Example 2 (Example Comparative sample 2-2) Example 2 Plating Time 20 min 1.5 min Film Average Value ( ⁇ m) 0.199 0.206 Thickness Maximum Value ( ⁇ m) 0.204 0.218 Minimum Value ( ⁇ m) 0.194 0.182 Maximum ⁇ Minimum 0.01 0.036 ( ⁇ m) Standard Deviation 0.004 0.013
- the average value of the film thickness of the electroless plated gold film of the Example sample 2-2 using the reductive electroless gold plating solution according to the present invention was 0.199 ⁇ m; the difference between the maximum value and the minimum value was 0.01 ⁇ m; and the standard deviation was pretty much as low as 0.004.
- the average value of the film thickness of the electroless plated gold film of Comparative Example 2 using the conventional reductive electroless gold plating solution was 0.206 ⁇ m; the difference between the maximum value and the minimum value was 0.036 ⁇ m; and the standard deviation was 0.013.
- the electroless plated gold film having a low deviation in a considerably high level, that is, being uniform, across the entire region. From the results, by using the reductive electroless gold plating solution according to the present invention, the entire of the surface of the plating target was enabled to undergo plating more uniformly and the quality could be improved. Further since the electroless plated gold film could be formed in a required thickness, the formation of the electroless plated gold film exceeding the required thickness was suppressed and an excess burden of gold was enabled to be greatly reduced.
- Wire bonding performance of the plated gold film Then, there was investigated the wire bonding performance of the plated gold film formed by using the reductive electroless gold plating solution according to the present invention. There was examined the strength of wire bonding of the reductive electroless plated gold film of the Example sample 2-2 of Example 2 as an example using the reductive electroless gold plating solution according to the present invention. As a comparison, there was examined the strength of wire bonding of the reductive electroless plated gold film of Comparative Example 2 using the conventional reductive electroless gold plating solution.
- a gold wire of 25 ⁇ m in wire diameter was joined to the reductive electroless plated film of the Example sample 2-2 and Comparative Example 2 each by using a wire bonding apparatus; the wire was pulled by a pull tester and the strength of the wire bonding was examined. For the each case, 20 points were examined and the maximum value, the minimum value and the average value of the wire bonding strength were determined. The examination results are shown in FIG. 12 .
- the maximum value of the wire bonding strength of the electroless plated gold film of Example 2 (the Example sample 2-2) using the reductive electroless plating solution according to the present invention was 6.0 gf; the minimum value thereof was 4.8 gf; and the average value thereof was 5.3 gf.
- the maximum value of the wire bonding strength of the electroless plated gold film of Comparative Example 2 using the conventional reductive electroless plating solution was 6.0 gf; the minimum value thereof was 4.8 gf; and the average value thereof was 5.3 gf.
- the electroless plated gold film obtained by using the reductive electroless plating solution according to the present invention provided an excellent wire bonding strength, almost the same as the case using the conventional reductive electroless plating solution.
- the reductive electroless gold plating solution of the present invention enables to provide a plated gold film capable of realizing the high junction reliability of wire bonding.
- the reductive electroless gold plating solution of the present invention greatly suppresses the dissolution of the substrate metal such as nickel and palladium, and enables the plated gold film to be deposited at a high deposition rate in a thick deposition on the surface of the substrate metal.
- the present invention enables the plated gold film high in the wire bonding junction reliability to be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemically Coating (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014170558 | 2014-08-25 | ||
JP2014-170558 | 2014-08-25 | ||
PCT/JP2015/073551 WO2016031723A1 (ja) | 2014-08-25 | 2015-08-21 | 還元型無電解金めっき液及び当該めっき液を用いた無電解金めっき方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160230287A1 true US20160230287A1 (en) | 2016-08-11 |
Family
ID=55399615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/025,321 Abandoned US20160230287A1 (en) | 2014-08-25 | 2015-08-21 | Reductive electroless gold plating solution, and electroless gold plating method using the plating solution |
Country Status (7)
Country | Link |
---|---|
US (1) | US20160230287A1 (zh) |
JP (1) | JP6017726B2 (zh) |
KR (1) | KR101733119B1 (zh) |
CN (1) | CN105745355B (zh) |
PH (1) | PH12016500567A1 (zh) |
TW (1) | TWI567234B (zh) |
WO (1) | WO2016031723A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018215057A1 (en) | 2017-05-23 | 2018-11-29 | Saxonia Edelmetalle Gmbh | Noble metal salt preparation, a method for production thereof and use for electroplating |
US20200232099A1 (en) * | 2015-09-21 | 2020-07-23 | Atotech Deutschland Gmbh | Plating bath composition for electroless plating of gold and a method for depositing a gold layer |
CN117987815A (zh) * | 2024-01-31 | 2024-05-07 | 珠海斯美特电子材料有限公司 | 一种高稳定性的还原型化学镀金溶液及其应用 |
US12018378B2 (en) | 2017-06-28 | 2024-06-25 | Kojima Chemicals, Co., Ltd. | Electroless plating process |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107190251B (zh) * | 2017-06-19 | 2018-11-16 | 广东东硕科技有限公司 | 一种镀金液及其制备方法 |
JP6474860B2 (ja) * | 2017-06-28 | 2019-02-27 | 小島化学薬品株式会社 | 無電解ニッケルストライクめっき液及びニッケルめっき皮膜の成膜方法 |
EP3763851A4 (en) * | 2018-03-07 | 2021-12-15 | Sumitomo Electric Industries, Ltd. | CLADDING LAYER AND CLADDED ELEMENT |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3589916A (en) * | 1964-06-24 | 1971-06-29 | Photocircuits Corp | Autocatalytic gold plating solutions |
US5364460A (en) * | 1993-03-26 | 1994-11-15 | C. Uyemura & Co., Ltd. | Electroless gold plating bath |
US5767574A (en) * | 1996-03-26 | 1998-06-16 | Samsung Aerospace Industries, Ltd. | Semiconductor lead frame |
US5803957A (en) * | 1993-03-26 | 1998-09-08 | C. Uyemura & Co.,Ltd. | Electroless gold plating bath |
US6336962B1 (en) * | 1997-10-08 | 2002-01-08 | Atotech Deutschland Gmbh | Method and solution for producing gold coating |
US20020096765A1 (en) * | 2001-01-22 | 2002-07-25 | Jamin Ling | Electroless ni/pd/au metallization structure for copper interconnect substrate and method therefor |
US20040028833A1 (en) * | 2000-09-18 | 2004-02-12 | Akio Takahashi | Electroless gold plating solution and method for electroless plating |
JP2009149958A (ja) * | 2007-12-21 | 2009-07-09 | Ne Chemcat Corp | パターンめっき及びパターンめっきの形成方法 |
US20120129005A1 (en) * | 2010-07-20 | 2012-05-24 | Takanobu Asakawa | Electroless gold plating solution and electroless gold plating method |
US20140072706A1 (en) * | 2012-09-11 | 2014-03-13 | Ernest Long | Direct Electroless Palladium Plating on Copper |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5948951B2 (ja) * | 1978-08-05 | 1984-11-29 | 日本特殊陶業株式会社 | 無電解金メッキ液 |
DE4021681A1 (de) * | 1989-07-12 | 1991-03-14 | Kojima Chemicals Co Ltd | Nichtelektrolytische goldplattierloesung |
JPH05222541A (ja) | 1992-02-07 | 1993-08-31 | Hitachi Ltd | 金めっき方法 |
JPH05295558A (ja) * | 1992-04-17 | 1993-11-09 | Okuno Chem Ind Co Ltd | 高速置換型無電解金めっき液 |
JP2927142B2 (ja) * | 1993-03-26 | 1999-07-28 | 上村工業株式会社 | 無電解金めっき浴及び無電解金めっき方法 |
JP3565302B2 (ja) * | 1996-11-18 | 2004-09-15 | 日立化成工業株式会社 | 無電解金めっき方法 |
JP3566498B2 (ja) * | 1997-05-14 | 2004-09-15 | 株式会社大和化成研究所 | 置換金めっき浴 |
JP3466521B2 (ja) * | 1999-10-04 | 2003-11-10 | 新光電気工業株式会社 | 置換型無電解金めっき液及び無電解金めっき方法 |
JP2003518552A (ja) * | 1999-11-05 | 2003-06-10 | シップレーカンパニー エル エル シー | 無電解金めっき組成物及びその使用方法 |
AU2001278794A1 (en) * | 2000-08-21 | 2002-03-04 | Learonal Japan Inc. | Electroless displacement gold plating solution and additive for preparing said plating solution |
JP5526440B2 (ja) | 2007-01-17 | 2014-06-18 | 奥野製薬工業株式会社 | パラジウム皮膜用還元析出型無電解金めっき液を用いて形成されたプリント配線板 |
JP5013077B2 (ja) | 2007-04-16 | 2012-08-29 | 上村工業株式会社 | 無電解金めっき方法及び電子部品 |
JP2011168837A (ja) * | 2010-02-18 | 2011-09-01 | Japan Pure Chemical Co Ltd | 無電解金めっき液及びそれを用いて得られた金皮膜 |
CN103038390B (zh) * | 2010-10-04 | 2015-01-07 | 森邦夫 | 金属膜形成方法及具有金属膜的制品 |
-
2015
- 2015-08-21 CN CN201580001912.3A patent/CN105745355B/zh active Active
- 2015-08-21 JP JP2016509202A patent/JP6017726B2/ja active Active
- 2015-08-21 WO PCT/JP2015/073551 patent/WO2016031723A1/ja active Application Filing
- 2015-08-21 US US15/025,321 patent/US20160230287A1/en not_active Abandoned
- 2015-08-21 KR KR1020167008689A patent/KR101733119B1/ko active IP Right Grant
- 2015-08-24 TW TW104127451A patent/TWI567234B/zh active
-
2016
- 2016-03-28 PH PH12016500567A patent/PH12016500567A1/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3589916A (en) * | 1964-06-24 | 1971-06-29 | Photocircuits Corp | Autocatalytic gold plating solutions |
US5364460A (en) * | 1993-03-26 | 1994-11-15 | C. Uyemura & Co., Ltd. | Electroless gold plating bath |
US5803957A (en) * | 1993-03-26 | 1998-09-08 | C. Uyemura & Co.,Ltd. | Electroless gold plating bath |
US5767574A (en) * | 1996-03-26 | 1998-06-16 | Samsung Aerospace Industries, Ltd. | Semiconductor lead frame |
US6336962B1 (en) * | 1997-10-08 | 2002-01-08 | Atotech Deutschland Gmbh | Method and solution for producing gold coating |
US20040028833A1 (en) * | 2000-09-18 | 2004-02-12 | Akio Takahashi | Electroless gold plating solution and method for electroless plating |
US20020096765A1 (en) * | 2001-01-22 | 2002-07-25 | Jamin Ling | Electroless ni/pd/au metallization structure for copper interconnect substrate and method therefor |
JP2009149958A (ja) * | 2007-12-21 | 2009-07-09 | Ne Chemcat Corp | パターンめっき及びパターンめっきの形成方法 |
US20120129005A1 (en) * | 2010-07-20 | 2012-05-24 | Takanobu Asakawa | Electroless gold plating solution and electroless gold plating method |
US20140072706A1 (en) * | 2012-09-11 | 2014-03-13 | Ernest Long | Direct Electroless Palladium Plating on Copper |
Non-Patent Citations (1)
Title |
---|
"N, N'-bis(3-aminopropyl)ethylenediamine" in Chemical Book, chemicalbook.com, pages 1-2, retrieved 2/7/2017. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200232099A1 (en) * | 2015-09-21 | 2020-07-23 | Atotech Deutschland Gmbh | Plating bath composition for electroless plating of gold and a method for depositing a gold layer |
WO2018215057A1 (en) | 2017-05-23 | 2018-11-29 | Saxonia Edelmetalle Gmbh | Noble metal salt preparation, a method for production thereof and use for electroplating |
US12018378B2 (en) | 2017-06-28 | 2024-06-25 | Kojima Chemicals, Co., Ltd. | Electroless plating process |
CN117987815A (zh) * | 2024-01-31 | 2024-05-07 | 珠海斯美特电子材料有限公司 | 一种高稳定性的还原型化学镀金溶液及其应用 |
Also Published As
Publication number | Publication date |
---|---|
PH12016500567B1 (en) | 2016-05-30 |
CN105745355A (zh) | 2016-07-06 |
KR20160145533A (ko) | 2016-12-20 |
JPWO2016031723A1 (ja) | 2017-04-27 |
TWI567234B (zh) | 2017-01-21 |
PH12016500567A1 (en) | 2016-05-30 |
JP6017726B2 (ja) | 2016-11-02 |
KR101733119B1 (ko) | 2017-05-08 |
TW201623687A (zh) | 2016-07-01 |
WO2016031723A1 (ja) | 2016-03-03 |
CN105745355B (zh) | 2018-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160230287A1 (en) | Reductive electroless gold plating solution, and electroless gold plating method using the plating solution | |
CN101319318B (zh) | 无电镀金浴、无电镀金方法及电子部件 | |
US8562727B2 (en) | Electroless palladium plating solution | |
CN106399983B (zh) | 无氰化学镀金浴及化学镀金方法 | |
US12018378B2 (en) | Electroless plating process | |
CN102482781B (zh) | 锡和锡合金的无电镀覆方法 | |
JP5288362B2 (ja) | 多層めっき皮膜及びプリント配線板 | |
US7264848B2 (en) | Non-cyanide electroless gold plating solution and process for electroless gold plating | |
CN109563624B (zh) | 无电解镀钯金工艺 | |
CN108866548B (zh) | 一种金属镀层及其制备方法和应用 | |
US20200123660A1 (en) | Electroless nickel strike plating solution and method for forming nickel film | |
US20160108254A1 (en) | Zinc immersion coating solutions, double-zincate method, method of forming a metal plating film, and semiconductor device | |
JP5978587B2 (ja) | 半導体パッケージ及びその製造方法 | |
CN104789999A (zh) | 一种铁件直接电镀酸铜溶液 | |
US8771409B2 (en) | Electroless gold plating solution and electroless gold plating method | |
TWI790062B (zh) | 具備Ni電鍍皮膜之鍍敷結構體及含有該鍍敷結構體之引線框 | |
TWI439581B (zh) | Electroless gold plating solution for the formation of gold - plated film for line lap bonding | |
KR101197987B1 (ko) | 주석 합금 형성용 도금액 및 이를 이용한 주석 합금 피막의 형성방법 | |
KR101092666B1 (ko) | 무시안 AuSn 합금 도금욕 | |
CN103290399B (zh) | 一种使用复合稳定剂的化学镀钯液 | |
JPWO2016208340A1 (ja) | 電解硬質金めっき液用置換防止剤及びそれを含む電解硬質金めっき液 | |
JP2012241260A (ja) | 電解パラジウム−リン合金めっき液、めっき被膜及びめっき製品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KOJIMA CHEMICALS CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KATO, TOMOHITO;WATANABE, HIDETO;REEL/FRAME:038111/0717 Effective date: 20160328 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |