US20160024098A1 - Hybrid necroptosis inhibitors - Google Patents

Hybrid necroptosis inhibitors Download PDF

Info

Publication number
US20160024098A1
US20160024098A1 US14/776,852 US201414776852A US2016024098A1 US 20160024098 A1 US20160024098 A1 US 20160024098A1 US 201414776852 A US201414776852 A US 201414776852A US 2016024098 A1 US2016024098 A1 US 2016024098A1
Authority
US
United States
Prior art keywords
compound
optionally substituted
pharmaceutically acceptable
stereoisomer
acceptable salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/776,852
Other languages
English (en)
Inventor
Junying Yuan
Alexei Degterev
Gregory D. Cuny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Organic Chemistry of CAS
Harvard College
University of Houston
Tufts University
Original Assignee
Shanghai Institute of Organic Chemistry of CAS
Harvard College
University of Houston
Tufts University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Organic Chemistry of CAS, Harvard College, University of Houston, Tufts University filed Critical Shanghai Institute of Organic Chemistry of CAS
Priority to US14/776,852 priority Critical patent/US20160024098A1/en
Assigned to UNIVERSITY OF HOUSTON reassignment UNIVERSITY OF HOUSTON ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CUNY, GREGORY D.
Assigned to PRESIDENT AND FELLOWS OF HARVARD COLLEGE, SHANGHAI INSTITUTE OF ORGANIC CHEMISTRY, CHINESE ACADEMY OF SCIENCES reassignment PRESIDENT AND FELLOWS OF HARVARD COLLEGE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YUAN, JUNYING
Assigned to TUFTS UNIVERSITY reassignment TUFTS UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEGTEREV, ALEXEI
Publication of US20160024098A1 publication Critical patent/US20160024098A1/en
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: HARVARD UNIVERSITY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/02Non-specific cardiovascular stimulants, e.g. drugs for syncope, antihypotensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • necrotic and/or necrotic pathways In many diseases, cell death is mediated through apoptotic and/or necrotic pathways. While much is known about the mechanisms of action that control apoptosis, control of necrosis is not as well understood. Understanding the mechanisms regulating both necrosis and apoptosis in cells is essential to being able to treat conditions, such as neurodegenerative diseases, stroke, coronary heart disease, kidney disease, and liver disease. A thorough understanding of necrotic and apoptotic cell death pathways is also crucial to treating AIDS and the conditions associated with AIDS, such as retinal necrosis.
  • Cell death has traditionally been categorized as either apoptotic or necrotic based on morphological characteristics (Wyllie et al., Int. Rev. Cytol. 68: 251 (1980)). These two modes of cell death were also initially thought to occur via regulated (caspase-dependent) and non-regulated processes, respectively. Subsequent studies, however, demonstrate that the underlying cell death mechanisms resulting in these two phenotypes are much more complicated and, under some circumstances, interrelated. Furthermore, conditions that lead to necrosis can occur by either regulated caspase-independent or non-regulated processes.
  • necroptosis One regulated caspase-independent cell death pathway with morphological features resembling necrosis, called necroptosis, has been described (Degterev et al., Nat. Chem. Biol. 1:112 (2005)). This manner of cell death can be initiated with various stimuli (e.g., TNF- ⁇ and Fas ligand) and in an array of cell types (e.g., monocytes, fibroblasts, lymphocytes, macrophages, epithelial cells and neurons).
  • stimuli e.g., TNF- ⁇ and Fas ligand
  • Necroptosis may represent a significant contributor to and, in some cases, predominant mode of cellular demise under pathological conditions involving excessive cell stress, rapid energy loss, and massive oxidative species generation, where the highly energy-dependent apoptosis process is not operative.
  • necrostatins for anti-necroptosis therapeutics.
  • the discovery of compounds that prevent caspase-independent cell death would also provide useful therapeutic agents for treating or preventing conditions in which necrosis occurs. These compounds and methods would be particularly useful for the treatment of neurodegenerative diseases, ischemic brain and heart injuries, and head trauma.
  • the invention features new compounds, pharmaceutical compositions, kits, and methods for treating a condition in which necrosis or necroptosis is likely to play a substantial role, or those in which RIP1 and/or RIP3 protein is a contributing factor.
  • the invention features a compound of the formula
  • n 0 or 1
  • Het 1 is an optionally substituted heteroaryl
  • L 1 is a covalent bond, —O—, —S—, an optionally substituted C1-C4 alkylene, an optionally substituted C2-C4 alkenylene, an optionally substituted C2-C4 alkynylene, an optionally substituted C3-C6 cycloalkyl, or an optionally substituted three-to-six membered heterocyclyl;
  • L 2 is a covalent bond or an optionally substituted C1-C4 alkylene
  • L 3 is —O—, —S—, or NR 2 ;
  • n is an integer between 0-4;
  • o 0 or 1
  • p is 0 or 1;
  • q is 0 or 1
  • r is 0 or 1;
  • s is 0 or 1;
  • each R 1 when present, is independently optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted C3-C9 cycloalkyl, optionally substituted C5-C9 cycloalkenyl, optionally substituted three- to nine-membered heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted five- to eleven-membered heteroaryl, halogen, —OH, N 3 , NO 2 , —CO 2 H, —NC, or CN; or is a group selected from —OC( ⁇ O)R 4A , —C( ⁇ O)R 4A , —OR 4A , —NR 4A C( ⁇ O)R 4B , —C( ⁇ O)NR 4A R 4B , —NR 4A R 4B , —CO 2 R 4A , —OC( ⁇ O)NR 4
  • R 2 is H or optionally substituted C1-C6 alkyl, or R 2 combines with R 3 to form an optionally substituted C1-C3 alkylene moiety;
  • R 3 is H or optionally substituted C1-C6 alkyl, or R 3 combines with R 2 to form an optionally substituted C1-C3 alkylene moiety;
  • a 1 is a fragment that is
  • the compound has a structure according to one of the following formulas:
  • Het 1 is an optionally substituted indole, azaindole, indazole, imidazopyridine, imidazopyrimidine, pyrrolopyrimidine, pyrrolopyridine, pyrazolopyridine, pyrazolopyrimidine, quinoline, or isoquinoline group.
  • Het 1 is unsubstituted or includes 1 or 2 substituents selected from halogen, CN, NO 2 , optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 alkoxy.
  • Het 1 is selected from the group consisting of
  • any of these heterocycles may be substituted by the replacement or one or more hydrogen groups (e.g., the replacement of one or two hydrogen groups) with a group that is selected, independently, from optionally substituted C1-C6 alkyl, halogen, optionally substituted amino, optionally substituted carboxamido, optionally substituted C1-C6 alkoxy, nitro, and cyano.
  • Het 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • L 1 is optionally substituted C1-C2 alkylene, optionally substituted C2 alkenylene, C2 alkynylene, or optionally substituted C3-C6 cycloalkyl (e.g., L 1 is —CH 2 CH 2 —, —C ⁇ C—, —CH ⁇ CH—, or unsubstituted cyclopropyl).
  • each R 1 when present, is independently selected from halogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 alkoxy, or CN,
  • n is 0 or 1.
  • o is 0 or 1.
  • the compound has a structure according to one of the following formulas,
  • R 1 when present, is optionally substituted C1-C2 alkyl.
  • L 2 is optionally substituted C1-C2 alkylene (e.g., L 2 is CH 2 or CH 2 CH 2 ).
  • R 2 is H.
  • R 3 is H.
  • R 2 and R 3 combine to form an optionally substituted C1-C3 alkylene moiety (e.g., R 2 and R 3 combine to form CH 2 CH 2 ).
  • the compound has a structure according to one of the following formulas:
  • L 1 is —CH 2 CH 2 —, —C ⁇ C—, —CH ⁇ CH—, or unsubstituted cyclopropyl.
  • R 1 when present, is optionally substituted C1-C6 alkyl (e.g., CH 3 ).
  • the compound has a structure according to one of the following formulas,
  • the compound has a structure according to a formula selected from the group consisting of:
  • R Het is optionally substituted amido, in which each substituent is, independently, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C9 cycloalkyl, three- to nine-membered heterocyclyl, C6-C10 aryl, or five- to eleven-membered heteroaryl.
  • R 1 when present, is optionally substituted C1-C6 alkyl (e.g., R 1 is CH 3 ).
  • L 2 is optionally substituted C1-C4 alkylene.
  • n 0 and said compound has the following structure,
  • L 1 is C2 alkynyl.
  • o 0.
  • L 2 is optionally substituted C1 alkylene (e.g., CH 2 ).
  • R 3 is H.
  • a 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • n 0.
  • R 9 is H or CH 3 .
  • R 10 is H.
  • X 1 and X 2 are both O.
  • X 3 is O.
  • X 3 is NR 11 .
  • R 11 is H.
  • R 6 , R 7 , and R 8 are each H.
  • R 5 is H, halogen, OH, optionally substituted C1-C3 alkyl, or optionally substituted C1-C3 alkoxy (e.g., R 5 is H, Cl, OH, CH 3 , or OCH 3 ).
  • a 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • R 13 and R 15 are both H
  • R 16 is CN
  • R 14 is H or CH 3 .
  • R 17 is optionally substituted C1-C3 alkyl (e.g., R 17 is CH 3 ).
  • R 19 , R 20 , and R 21 are each H.
  • R 18 and R 22 are each, independently, halogen (e.g., R 18 is fluoro and R 22 is chloro).
  • a 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • R 9 is H or optionally substituted C1 alkyl
  • R 5 is H, halogen, OH, optionally substituted C1-C3 alkyl, or optionally substituted C1-C3 alkoxy (e.g., R 5 is H, Cl, OH, CH 3 , or OCH 3 ).
  • a 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • R 18 and R 22 is, independently, H, F, or Cl (e.g., R 18 is F and R 22 is Cl, or R 18 is F and R 22 is H).
  • the compound is selected from the group consisting of:
  • the invention also features the pharmaceutically acceptable salt of any of the compounds (e.g., a compound according to any of formulas (I)-(XXXII) or any of compounds (1)-(41)) described herein, or the stereoisomer of any of the compounds described herein.
  • a pharmaceutically acceptable salt of any of the compounds e.g., a compound according to any of formulas (I)-(XXXII) or any of compounds (1)-(41) described herein, or the stereoisomer of any of the compounds described herein.
  • the invention features a pharmaceutical composition that includes a pharmaceutically acceptable excipient and any of the compounds described herein (e.g., a compound according to any of formulas (I)-(XXXII) or any of compounds (1)-(41)), or any pharmaceutically acceptable salt thereof, or stereoisomer thereof.
  • a pharmaceutically acceptable excipient e.g., a compound according to any of formulas (I)-(XXXII) or any of compounds (1)-(41)
  • any pharmaceutically acceptable salt thereof e.g., a compound according to any of formulas (I)-(XXXII) or any of compounds (1)-(41)
  • the invention features method of treating a condition in a subject, where the method includes the step of contacting any of the compounds (e.g., a compound according to any of formulas (I)-(XXXII) or any of compounds (1)-(41)) or compositions described herein, or any pharmaceutically acceptable salt thereof, or stereoisomer thereof, to the subject in a dosage sufficient to decrease necroptosis,
  • any of the compounds e.g., a compound according to any of formulas (I)-(XXXII) or any of compounds (1)-(41)
  • compositions described herein or any pharmaceutically acceptable salt thereof, or stereoisomer thereof
  • the invention features a method of treating a condition in a subject, said method comprising the step of contacting any of the compounds (e.g., a compound according to any of formulas (I)-(XXXII) or any of compounds (1)-(41)) or compositions described herein, or any pharmaceutically acceptable salt thereof, or stereoisomer thereof, to said subject in a dosage sufficient to modulate RIP1 and/or RIP3 activity, and wherein said condition is one in which RIP1 and/or RIP3 protein is a contributing factor.
  • any of the compounds e.g., a compound according to any of formulas (I)-(XXXII) or any of compounds (1)-(41)
  • compositions described herein or any pharmaceutically acceptable salt thereof, or stereoisomer thereof
  • the methods of the invention can include administering to a subject any of the compounds (e.g., a compound according to any of formulas (I)-(XXXII) or any of compounds (1)-(41)) or compositions described herein, or any pharmaceutically acceptable salt thereof, or stereoisomer thereof.
  • any of the compounds e.g., a compound according to any of formulas (I)-(XXXII) or any of compounds (1)-(41)
  • compositions described herein or any pharmaceutically acceptable salt thereof, or stereoisomer thereof.
  • the condition is a neurodegenerative disease of the central or peripheral nervous system, the result of retinal neuronal cell death, the result of cell death of cardiac muscle, the result of cell death of cells of the immune system; stroke, liver disease, pancreatic disease, the result of cell death associated with renal failure; heart, mesenteric, retinal, hepatic or brain ischemic injury, ischemic injury during organ storage, head trauma, septic shock, coronary heart disease, cardiomyopathy, myocardial infarction, bone avascular necrosis, sickle cell disease, muscle wasting, gastrointestinal disease, tuberculosis, diabetes, alteration of blood vessels, muscular dystrophy, graft-versus-host disease, viral infection, Crohn's disease, ulcerative colitis, asthma, atherosclerosis, a chronic or acute inflammatory condition, pain, or any condition in which alteration in cell proliferation, differentiation or intracellular signaling is a causative factor, or any condition where RIP1 and/or RIP3 protein is a contributing factor.
  • the condition is a neurodegenerative disease of the central or peripheral nervous system.
  • the condition is hepatic or brain ischemic injury, or ischemic injury during organ storage, head trauma, septic shock, or coronary heart disease.
  • the condition is stroke.
  • the condition is myocardial infarction.
  • the condition is pain (e.g., inflammatory pain, diabetic pain, pain associated with a burn, or pain associated with trauma).
  • pain e.g., inflammatory pain, diabetic pain, pain associated with a burn, or pain associated with trauma.
  • the condition is atherosclerosis.
  • the condition is a chronic or acute inflammatory condition (e.g., rheumatoid arthritis, psoriasis, or Stevens-Johnson syndrome).
  • a chronic or acute inflammatory condition e.g., rheumatoid arthritis, psoriasis, or Stevens-Johnson syndrome.
  • the invention features a method of decreasing necroptosis including contacting a cell with any of the compounds or compositions described herein, or any pharmaceutically acceptable salt thereof, or stereoisomer thereof.
  • the invention features a kit that includes
  • the invention features a kit that includes:
  • C 1-4 alkaryl is meant a C 1-4 alkyl group having an optionally substituted aryl or an optionally substituted heteroaryl located at any position of the carbon chain.
  • the C 1-4 alkyl group may be linear or branched and may also be substituted with, for example, 1, 2, 3, 4, or 5 additional substituents as described herein.
  • alkoxy is meant a group having the structure —O (optionally substituted C1-C6 alkyl), where the optionally substituted C1-C6 alkyl may be branched, linear, or cyclic.
  • the C1-C6 alkyl may be substituted or unsubstituted.
  • a substituted C1-C6 alkyl can have, for example, 1, 2, 3, 4, 5, or 6 substituents located at any position.
  • Exemplary alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy, isopropoxy, tert-butoxy, and the like.
  • C2-C6 alkenyl or “alkenyl” is meant an optionally substituted unsaturated C2-C6 hydrocarbon group having one or more carbon-carbon double bonds.
  • exemplary C2-C6 alkenyl groups include, but are not limited to —CH ⁇ CH (ethenyl), propenyl, 2-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, and the like.
  • a C2-C6 alkenyl may be linear or branched and may be unsubstituted or substituted.
  • a substituted C2-C6 alkenyl may have, for example, 1, 2, 3, 4, 5, or 6 substituents located at any position.
  • C1-C6 alkyl or “alkyl” is meant an optionally substituted C1-C6 saturated hydrocarbon group.
  • An alkyl group may be linear, branched, or cyclic (“cycloalkyl”).
  • alkyl radicals include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, sec-pentyl, iso-pentyl, tert-butyl, n-pentyl, neopentyl, n-hexyl, sec-hexyl, n-heptyl, n-octyl, n-decyl, n-undecyl, dodecyl, and the like, which may bear one or more substituents.
  • Substituted alkyl groups may have, for example, 1, 2, 3, 4, 5, or 6 substituents located at any position.
  • C2-C6 alkynyl or “alkynyl” is meant an optionally substituted unsaturated C2-C6 hydrocarbon group having one or more carbon-carbon triple bonds.
  • exemplary C2-C6 alkynyl groups include, but are not limited to ethynyl, 1-propynyl, and the like
  • alkylene alkenylene
  • alkynylene alkynylene
  • alk divalent or trivalent groups having a specified size, typically C1-C2, C1-C3, C1-C4, C1-C6, or C1-C8 for the saturated groups (e.g., alkylene or alk) and C2-C3, C2-C4, C2-C6, or C2-C8 for the unsaturated groups (e.g., alkenylene or alkynylene).
  • saturated groups e.g., alkylene or alk
  • C2-C3, C2-C4, C2-C6, or C2-C8 unsaturated groups
  • C ⁇ O is a C1 alkylene that is substituted by ⁇ O, for example.
  • alkaryl represents an aryl group, as defined herein, attached to the parent molecular group through an alkylene group, as defined herein
  • alkheteroaryl refers to a heteroaryl group, as defined herein, attached to the parent molecular group through an alkylene group, as defined herein.
  • the alkylene and the aryl or heteroaryl group are each optionally substituted as described herein.
  • amino is meant a group having a structure —NR′R′′, where each R′ and R′′ is selected, independently, from H, optionally substituted C1-C6 alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, or R′ and R′′ combine to form an optionally substituted heterocyclyl.
  • R′ and R′′ may be unsubstituted or substituted with, for example, 1, 2, 3, 4, 5, or 6 substituents.
  • aryl is meant is an optionally substituted C 6 -C 14 cyclic group with [4n+2] ⁇ electrons in conjugation and where n is 1, 2, or 3.
  • aryls include heteroaryls and, for example, benzene, naphthalene, anthracene, and phenanthrene.
  • Aryls also include bi- and tri-cyclic ring systems in which a non-aromatic saturated or partially unsaturated carbocyclic ring (e.g., a cycloalkyl or cycloalkenyl) is fused to an aromatic ring such as benzene or naphthalene.
  • Exemplary aryls fused to a non-aromatic ring include indanyl, tetrahydronaphthyl. Any aryls as defined herein may be unsubstituted or substituted. A substituted aryl may be optionally substituted with, for example, 1, 2, 3, 4, 5, or 6 substituents located at any position of the ring.
  • aryloxy is meant a group having the structure —O (optionally substituted aryl), where aryl is as defined herein.
  • azido is meant a group having the structure —N 3 .
  • carbamate or “carbamoyl” is meant a group having the structure —OCONR′R′′ or —NR′CO 2 R′′, where each R′ and R′′ is selected, independently, from H, optionally substituted C1-C6 alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, or R′ and R′′ combine to form an optionally substituted heterocyclyl.
  • R′ and R′′ may be unsubstituted or substituted with, for example, 1, 2, 3, 4, 5, or 6 substituents.
  • carbonate is meant a group having a the structure —OCO 2 R′, where R′ is selected from H, optionally substituted C1-C6 alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • R′ is selected from H, optionally substituted C1-C6 alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • R′ is selected from H, optionally substituted C1-C6 alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • R′ is not H, R may be unsubstituted or substituted with, for example, 1, 2, 3, 4, 5, or 6 substituents.
  • Carboxamido or “amido” is meant a group having the structure —CONR′R′′ or —NR′C( ⁇ O)R′′, where each R′ and R′′ is selected, independently, from H, optionally substituted C1-C6 alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, or R′ and R′′ combine to form an optionally substituted heterocyclyl.
  • R′ and R′′ may be unsubstituted or substituted with, for example, 1, 2, 3, 4, 5, or 6 substituents.
  • carboxylic group is meant a group having the structure —CO 2 R′, where R′ is selected from H, optionally substituted C1-C6 alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • R′ is selected from H, optionally substituted C1-C6 alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • R′ is not H, R may be unsubstituted or substituted with, for example, 1, 2, 3, 4, 5, or 6 substituents.
  • cyano is meant a group having the structure —CN.
  • C 3-10 cycloalkyl or “cycloalkyl” is meant an optionally substituted, saturated or partially unsaturated 3- to 10-membered monocyclic or polycyclic (e.g., bicyclic, or tricyclic) hydrocarbon ring system.
  • a cycloalkyl is polycyclic, the constituent cycloalkyl rings may be fused together, form a spirocyclic structure, or the polycyclic cycloalkyl may be a bridged cycloalkyl (e.g., adamantyl or norbonanyl).
  • cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl. Cycloalkyls may be unsubstituted or substituted. A substituted cycloalkyl can have, for example, 1, 2, 3, 4, 5, or 6 substituents.
  • cycloalkenyl is meant a non-aromatic, optionally substituted 3- to 10-membered monocyclic or bicyclic hydrocarbon ring system having at least one carbon-carbon double bound.
  • a cycloalkenyl may have 1 or 2 carbon-carbon double bonds.
  • Cycloalkenyls may be unsubstituted or substituted.
  • a substituted cycloalkenyl can have, for example, 1, 2, 3, 4, 5, or 6 substituents.
  • Exemplary cycloalkenyls include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, 1,3-cyclohexadienyl, 1,4-cyclohexadienyl, and the like.
  • an effective amount or “therapeutically effective amount” of an agent is that amount sufficient to effect beneficial or desired results, such as clinical results, and, as such, an effective amount depends upon the context in which it is being applied.
  • an effective amount of an agent is, for example, an amount sufficient to achieve a reduction in necroptosis as compared to the response obtained without administration of the agent.
  • esters is meant a group having a structure selected from —OCOR′, where R′ is selected from H, optionally substituted C1-C6 alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • R′ is not H, R may be unsubstituted or substituted with, for example, 1, 2, 3, 4, 5, or 6 substituents.
  • halogen or “halo” is meant fluorine (—F), chlorine (—Cl), bromine (—Br), or iodine (—I).
  • heteroaryl is mean an aryl group that contains 1, 2, or 3 heteroatoms in the cyclic framework.
  • exemplary heteroaryls include, but are not limited to, furan, thiophene, pyrrole, thiadiazole (e.g., 1,2,3-thiadiazole or 1,2,4-thiadiazole), oxadiazole (e.g., 1,2,3-oxadiazole or 1,2,5-oxadiazole), oxazole, benzoxazole, isoxazole, isothiazole, pyrazole, thiazole, benzthiazole, triazole (e.g., 1,2,4-triazole or 1,2,3-triazole), benzotriazole, pyridines, pyrimidines, pyrazines, quinoline, isoquinoline, purine, pyrazine, pteridine, triazine (e.g, 1,2,3-triazine, 1,2,4-tria
  • heteroaryls include indole, azaindole, indazole, imidazopyridine, imidazopyrimidine, pyrrolopyrimidine, pyrrolopyridine, pyrazolopyridine, pyrazolopyrimidine, quinoline, or isoquinoline groups as described herein.
  • Heteroaryls may be unsubstituted or substituted.
  • Subsituted heteroaryls can have, for example, 1, 2, 3, 4, 5, or 6 subsitutents.
  • heterocyclic or “heterocyclyl” is meant an optionally substituted non-aromatic, partially unsaturated or fully saturated, 3- to 10-membered ring system, which includes single rings of 3 to 8 atoms in size, and polycyclic ring systems (e.g., bi- and tri-cyclic ring systems) which may include an aryl (e.g., phenyl or naphthyl) or heteroaryl group that is fused to a non-aromatic ring (e.g., cycloalkyl, cycloalkenyl, or heterocyclyl), where the ring system contains at least one heteroatom.
  • polycyclic ring systems e.g., bi- and tri-cyclic ring systems
  • aryl e.g., phenyl or naphthyl
  • heteroaryl group e.g., cycloalkyl, cycloalkenyl, or heterocyclyl
  • Heterocyclic rings include those having from one to three heteroatoms independently selected from oxygen, sulfur, and nitrogen, in which the nitrogen and sulfur heteroatoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized or substituted.
  • the term heterocylic refers to a non-aromatic 5-, 6-, or 7-membered monocyclic ring wherein at least one ring atom is a heteroatom selected from O, S, and N (wherein the nitrogen and sulfur heteroatoms may be optionally oxidized), and the remaining ring atoms are carbon, the radical being joined to the rest of the molecule via any of the ring atoms.
  • heterocycle is polycyclic
  • the constituent rings may be fused together, form a spirocyclic structure, or the polycyclic heterocycle may be a bridged heterocycle (e.g., quinuclidyl or.
  • exemplary heterocyclics include, but are not limited to, aziridinyl, azetindinyl, 1,3-diazatidinyl, pyrrolidinyl, piperidinyl, piperazinyl, thiranyl, thietanyl, tetrahydrothiophenyl, dithiolanyl, tetrahydrothiopyranyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, pyranonyl, 3,4-dihydro-2H-pyranyl, chromenyl, 2H-chromen-2-onyl, chromanyl, dioxanyl (e.g., 1,
  • inflammatory condition refers to medical disorders in which inflammation is a causative factor, or in which inflammation is a result (e.g., inflammatory pain associated with rheumatoid arthritis, psoriatic arthritis, psoriatic arthritis, lupus, or other diseases associated with tissue damage).
  • Inflammatory conditions can be chronic or acute, and non-limiting causes of inflammatory conditions include pathogens (e.g., bacterial pathogens or viral infections), tissue injury, persistent foreign bodies, and autoimmune responses.
  • pathogens e.g., bacterial pathogens or viral infections
  • tissue injury e.g., bacterial pathogens or viral infections
  • tissue injury e.g., persistent foreign bodies, and autoimmune responses.
  • inflammation can be related to necrosis or necroptosis, or inflammation can be independent of necrosis or necroptosis.
  • ketone or “acyl” is meant a group having the structure —COR′, where R′ is selected from H, optionally substituted C1-C6 alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • R′ is selected from H, optionally substituted C1-C6 alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • R′ is not H, R may be unsubstituted or substituted with, for example, 1, 2, 3, 4, 5, or 6 substituents.
  • nitro is meant a group having the structure —NO 2 .
  • a “pharmaceutically acceptable excipient” as used herein refers any ingredient other than the compounds described herein (for example, a vehicle capable of suspending or dissolving the active compound) and having the properties of being nontoxic and non-inflammatory in a patient.
  • Excipients may include, for example: antiadherents, antioxidants, binders, coatings, compression aids, disintegrants, dyes (colors), emollients, emulsifiers, fillers (diluents), film formers or coatings, flavors, fragrances, glidants (flow enhancers), lubricants, preservatives, printing inks, sorbents, suspensing or dispersing agents, sweeteners, or waters of hydration.
  • excipients include, but are not limited to: butylated hydroxytoluene (BHT), calcium carbonate, calcium phosphate (dibasic), calcium stearate, croscarmellose, crosslinked polyvinyl pyrrolidone, citric acid, crospovidone, cysteine, ethylcellulose, gelatin, hydroxypropyl cellulose, hydroxypropyl methylcellulose, lactose, magnesium stearate, maltitol, mannitol, methionine, methylcellulose, methyl paraben, microcrystalline cellulose, polyethylene glycol, polyvinyl pyrrolidone, povidone, pregelatinized starch, propyl paraben, retinyl palmitate, shellac, silicon dioxide, sodium carboxymethyl cellulose, sodium citrate, sodium starch glycolate, sorbitol, starch (corn), stearic acid, stearic acid, sucrose, talc, titanium dioxide, vitamin A, B
  • pharmaceutically acceptable salt represents those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and animals without undue toxicity, irritation, allergic response and the like and are commensurate with a reasonable benefit/risk ratio.
  • Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge et al. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66:1-19.
  • the salts can be prepared in situ during the final isolation and purification of the compounds of the invention or separately by reacting the free base group with a suitable organic acid.
  • Representative acid addition salts include acetate, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphersulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptonate, glycerophosphate, hemisulfate, heptonate, hexanoate, hydrobromide, hydrochloride, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pe
  • alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, including, but not limited to ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, ethylamine and the like.
  • solvates refers to compounds that retain non-covalent associations to residual solvent molecules in the solid state.
  • solvates may be prepared by crystallization, recrystallization, or precipitation from a solution that includes organic solvents, water, or a mixture thereof.
  • Solvates include, but are not limited to, compounds that include solvent molecules in the crystal lattice following recrystallization.
  • the molecular stoichiometry of solvation can vary from, for example, 1:1 solvent:compound to 10:1 solvent:compound. These ratios can include a mixture of associated solvent molecules.
  • NMP N-methylpyrrolidinone
  • DMSO dimethyl sulfoxide
  • DMF dimethylacetamide
  • DMAC dimethylacetamide
  • DMEU 1,3-dimethyl-2-imidazolidinone
  • DMPU 1,3-dimethyl-3,
  • composition a composition containing a compound of the invention, formulated with a pharmaceutically acceptable excipient, and manufactured or sold with the approval of a governmental regulatory agency as part of a therapeutic regimen for the treatment of disease in a mammal. Excipients consisting of DMSO are specifically excluded.
  • Pharmaceutical compositions can be formulated, for example, for oral administration in unit dosage form (e.g., a tablet, capsule, caplet, gelcap, or syrup); for topical administration (e.g., as a cream, gel, lotion, or ointment); for intravenous administration (e.g., as a sterile solution free of particulate emboli and in a solvent system suitable for intravenous use); or any other formulation described herein.
  • stereoisomer is meant a diastereomer, enantiomer, or epimer of a compound.
  • a chiral center in a compound may have the S-configuration or the R-configuration.
  • Enantiomers may also be described by the direction in which they rotate polarized light (i.e., (+) or ( ⁇ )).
  • Diastereomers of a compound include stereoisomers in which some, but not all, of the chiral centers have the opposite configuration as well as those compounds in which substituents are differently oriented in space (for example, trans versus cis).
  • substituents which themselves may be substituted, include, but are not limited to: C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C9 cycloalkyl, C5-C9 cycloalkenyl, three- to nine-membered heterocyclyl, C6-C10 aryl, five- to eleven-membered heteroaryl, halogen; azido (—N 3 ), nitro (—NO 2 ), cyano (—CN), acyloxy (—OC( ⁇ O)R′), acyl (—C( ⁇ O)R′), alkoxy (—OR′), amido (—NR′C( ⁇ O)R′′ or —C( ⁇ O)NRR′), amino (—NRR′), carboxylic acid (—CO 2 H), carboxylic ester (—CO 2 R′), carbamoy
  • a substituted group may have, for example, 1, 2, 3, 4, 5, 6, 7, 8, or 9 substituents.
  • each hydrogen in a group may be replaced by a substituent group (e.g., perhaloalkyl groups such as —CF 3 or —CF 2 CF 3 or perhaloaryls such as —C 6 F 5 ).
  • a substituent group may itself be further substituted by replacing a hydrogen of said substituent group with another substituent group such as those described herein. Substituents may be further substituted with, for example, 1, 2, 3, 4, 5, or 6 substituents as defined herein.
  • a lower C1-C6 alkyl or an aryl substituent group e.g., heteroaryl, phenyl, or naphthyl
  • aryl substituent group e.g., heteroaryl, phenyl, or naphthyl
  • 1, 2, 3, 4, 5, or 6 substituents as described herein.
  • FIG. 1 is a chart showing 1 H NMR spectrum of compound 1 in DMSO-d 6 .
  • FIG. 2 is a chart showing 1 H NMR spectrum of compound 2 in DMSO-d 6 .
  • FIG. 3 is a chart showing 1 H NMR spectrum of compound 3 in DMSO-d 6 .
  • FIG. 4 is a chart showing 1 H NMR spectrum of compound 8 in DMSO-d 6 .
  • FIG. 5 is a chart showing 1 H NMR spectrum of compound 28 in DMSO-d 6 .
  • FIG. 6 is a chart showing 1 H NMR spectrum of compound 29 in CDCl 3 .
  • FIG. 7 is a chart showing 1 H NMR spectrum of compound 30 in CDCl 3 .
  • FIG. 8 is a chart showing 1 H NMR spectrum of compound 31 in DMSO-d 6 .
  • FIG. 9 is a chart showing 1 H NMR spectrum of compound 32 in CDCl 3 .
  • FIG. 10 is a chart showing 1 H NMR spectrum of compound 33 in DMSO-d 6 .
  • FIG. 11 is a chart showing 1 H NMR spectrum of compound 34 in DMSO-d 6 .
  • FIG. 12 is a chart showing 1 H NMR spectrum of compound 35 in DMSO-d 6 .
  • FIG. 13 is a chart showing 1 H NMR spectrum of compound 36 in d 4 -methanol.
  • FIG. 14 is a chart showing 1 H NMR spectrum of compound 37 in DMSO-d 6 .
  • FIG. 15 is a chart showing 1 H NMR spectrum of compound 38 in DMSO-d 6 .
  • FIG. 16 is a chart showing 1 H NMR spectrum of compound 40 in DMSO-d 6 .
  • FIG. 17 is a chart showing 1 H NMR spectrum of compound 41 in DMSO-d 6 .
  • heterocyclic derivatives that can inhibit tumor necrosis factor alpha (TNF- ⁇ )-induced necroptosis.
  • the heterocyclic compounds of the invention are described by, e.g., any of Formulas (I)-(XXXII) and include compounds (1)-(41), and can inhibit TNF- ⁇ induced necroptosis in FADD-deficient variant of human Jurkat T cells.
  • Pharmaceutical compositions including the compounds of the invention are also described.
  • the invention also features kits and methods of treatment featuring the compounds and compositions of the invention.
  • the present invention features compounds, pharmaceutical compositions, kits, and methods for treating a range of conditions, e.g., those in which cell or tissue necrosis is a causative factor or result, those in which loss of proliferative capacity is a causative factor or a result, those in which cytokines of the TNF ⁇ family are a causative factor or a result, and those in which RIP1 and/or RIP3 protein is a contributing factor.
  • the compounds of the present invention can be used, for example, as therapeutics to decrease necrosis in a desired cell, to increase cell proliferation, to stimulate immune response, or to modulate inflammation and associated conditions.
  • the compounds of the present invention e.g., a compound according to any of formulas (I)-(XXXII) or any of compounds (1)-(41)
  • Exemplary a conditions in which the compounds of the invention can be useful for treatment include, but are not limited to: neurodegenerative diseases of the central or peripheral nervous system; the result of retinal neuronal cell death; the result of cell death of cardiac muscle; the result of cell death of cells of the immune system; stroke; liver disease; pancreatic disease; the result of cell death associated with renal failure; heart, mesenteric, retinal, hepatic or brain ischemic injury; ischemic injury during organ storage; head trauma; septic shock; coronary heart disease; cardiomyopathy; bone avascular necrosis; sickle cell disease; muscle wasting; gastrointestinal disease; tuberculosis; diabetes; alteration of blood vessels; muscular dystrophy; graft-versus-host disease; viral infection; Crohn's disease; ulcerative colitis; asthma; atherosclerosis; pain (e.g., inflammatory pain, diabetic pain, or pain associated from trauma or burn); chronic or acute inflammatory conditions such as rheumatoid arthritis, psoriasis
  • the invention features compounds that can be described generally by Formula (I)
  • n 0 or 1
  • Het 1 is an optionally substituted heteroaryl
  • L 1 is a covalent bond, —O—, —S—, an optionally substituted C1-C4 alkylene, an optionally substituted C2-C4 alkenylene, an optionally substituted C2-C4 alkynylene, an optionally substituted C3-C6 cycloalkyl, or an optionally substituted three-to-six membered heterocyclyl;
  • L 2 is a covalent bond or an optionally substituted C1-C4 alkylene
  • L 3 is —O—, —S—, or NR 2 ;
  • n is an integer between 0-4;
  • o 0 or 1
  • p is 0 or 1;
  • q is 0 or 1
  • r is 0 or 1;
  • s is 0 or 1;
  • each R 1 when present, is independently optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted C3-C9 cycloalkyl, optionally substituted C5-C9 cycloalkenyl, optionally substituted three- to nine-membered heterocyclyl, optionally substituted C6-C10 aryl, optionally substituted five- to eleven-membered heteroaryl, halogen, —OH, N 3 , NO 2 , —CO 2 H, —NC, or CN; or is a group selected from —OC( ⁇ O)R 4A , —C( ⁇ O)R 4A , —OR 4A , —NR 4A C( ⁇ O)R 4B , —C( ⁇ O)NR 4A R 4B , —NR 4A R 4B , —CO 2 R 4A , —OC( ⁇ O)NR 4
  • R 2 is H or optionally substituted C1-C6 alkyl, or R 2 combines with R 3 to form an optionally substituted C1-C3 alkylene moiety;
  • R 3 is H or optionally substituted C1-C6 alkyl, or R 3 combines with R 2 to form an optionally substituted C1-C3 alkylene moiety;
  • a 1 is a fragment that is
  • R 10 is H or optionally substituted C1-C6 alkyl
  • R Het is optionally substituted amido, in which each substituent is, independently, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C9 cycloalkyl, three- to nine-membered heterocyclyl, C6-C10 aryl, or five- to eleven-membered heteroaryl.
  • substructure A1 is one of the following enantiomers
  • Table 1 also provides exemplary substructures A1 which can be prepared by, e.g., adapting methods known in the art.
  • Substructure A1 Still other compounds that can be featured as Substructure A1 are provided in Table 2. These compounds can be prepared by, e.g., adapting methods known in the art for synthesis of the parent pyrrole compounds such as those described in U.S. Pat. No. 8,278,344 and U.S. Patent Application Publication No. 2012/0309795, each of which is incorporated by reference.
  • RIP1 is a unique death domain-containing kinase that has been shown to interact with Fas and TNFR1.
  • RIP1 contains a N-terminal kinase domain with homology to both Ser/Thr and tyrosine kinases, a C-terminal death domain, and an intermediate domain (IM). Its kinase activity is not required for DR-induced apoptosis nor NF ⁇ B activation, which is regulated by the intermediate domain (IM) of RIP.
  • RIP contributes to a wide range of cellular regulatory paradigms, including cytokines, e.g., TNF ⁇ and IL-1 ⁇ , and Toll-like receptor 3 and 4 mediated induction of NFkB.
  • RIP1 kinase activity of RIP1 is essential for the alternative necrotic cell death pathway mediated by FasL, TNF ⁇ and TRAIL, which we subsequently termed necroptosis (see, e.g., U.S. Pat. No. 8,324,262, and references cited therein, each of which is incorporated by reference). Analysis has been undertaken of the domains of RIP required for the death receptor-induced necroptosis in RIP-deficient clone of Jurkat cells, which are otherwise insensitive to this pathway due to the lack of RIP.
  • screening assays may be performed in which RIP1 is utilized as a target, and candidate compounds are assayed for their ability to bind to or otherwise inhibit RIP1.
  • assays that measure inhibition of autophosphorylation of RIP1 can be used.
  • assays that measure binding of a candidate compound to RIP1 are useful in the methods of the invention.
  • Many other variations of binding assays are known in the art and can be employed.
  • RIP1 binding assays are described, e.g., in U.S. Pat. No. 6,211,337, which is hereby incorporated by reference.
  • screening assays can be performed using multiple targets. For example, for a given candidate compound, the binding, autophosphorylation, or other measure of target activity may be assayed for both RIP1 and RIP2, or alternatively both RIP1 and RIP3, and the results compared.
  • Candidate compounds that exert a greater effect on RIP1 than RIP2, RIP3, or another homologue or other molecule chosen for this purpose, are considered to be specific for RIP1, and may be particularly desirable in the methods of the invention.
  • Other assays are known in the art, and any method for measuring protein interactions or inhibition of the activity of a target molecule (e.g., RIP1) may be utilized.
  • Such methods include, but are not limited to fluorescence polarization assays, mass spectrometry (Nelson and Krone, J. Mol. Recognit., 12:77-93, 1999), surface plasmon resonance (Spiga et al., FEBS Lett., 511:33-35, 2002; Rich and Mizka, J. Mol. Recognit., 14:223-228, 2001; Abrantes et al., Anal. Chem., 73:2828-2835, 2001), fluorescence resonance energy transfer (FRET) (Bader et al., J. Biomol. Screen, 6:255-264, 2001; Song et al., Anal. Biochem.
  • FRET fluorescence resonance energy transfer
  • Compounds of the invention can be formulated into pharmaceutical compositions for administration to human subjects in a biologically compatible form suitable for administration in vivo.
  • the present invention provides a pharmaceutical composition comprising a compound of the invention in admixture with a pharmaceutically acceptable excipient.
  • Conventional procedures and ingredients for the selection and preparation of suitable formulations are described, for example, in Remington's Pharmaceutical Sciences (2003-20 th edition) and in The United States Pharmacopeia: The National Formulary (USP 24 NF19), published in 1999.
  • the compounds of the invention may be used in the form of the free base, in the form of salts, solvates, and as prodrugs. All forms are within the scope of the invention.
  • the described compounds or salts, solvates, or prodrugs thereof may be administered to a patient in a variety of forms depending on the selected route of administration, as will be understood by those skilled in the art.
  • the compounds of the invention may be administered, for example, by oral, parenteral, buccal, sublingual, nasal, rectal, patch, pump, or transdermal administration and the pharmaceutical compositions formulated accordingly.
  • Parenteral administration includes intravenous, intraperitoneal, subcutaneous, intramuscular, transepithelial, nasal, intrapulmonary, intrathecal, rectal, and topical modes of administration. Parenteral administration may be by continuous infusion over a selected period of time.
  • Pharmaceutically acceptable excipients may include, for example: antiadherents, antioxidants, binders, coatings, compression aids, disintegrants, dyes (colors), emollients, emulsifiers, fillers (diluents), film formers or coatings, flavors, fragrances, glidants (flow enhancers), lubricants, preservatives, printing inks, sorbents, suspensing or dispersing agents, sweeteners, or waters of hydration.
  • excipients include, but are not limited to: butylated hydroxytoluene (BHT), calcium carbonate, calcium phosphate (dibasic), calcium stearate, croscarmellose, crosslinked polyvinyl pyrrolidone, citric acid, crospovidone, cysteine, ethylcellulose, gelatin, hydroxypropyl cellulose, hydroxypropyl methylcellulose, lactose, magnesium stearate, maltitol, mannitol, methionine, methylcellulose, methyl paraben, microcrystalline cellulose, polyethylene glycol, polyvinyl pyrrolidone, povidone, pregelatinized starch, propyl paraben, retinyl palmitate, shellac, silicon dioxide, sodium carboxymethyl cellulose, sodium citrate, sodium starch glycolate, sorbitol, starch (corn), stearic acid, stearic acid, sucrose, talc, titanium dioxide, vitamin A, B
  • a compound of the invention may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsules, or it may be compressed into tablets, or it may be incorporated directly with the food of the diet.
  • a compound of the invention may be incorporated with an excipient and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
  • a compound of the invention may also be administered parenterally.
  • the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the form must be sterile and must be fluid to the extent that may be easily administered via syringe.
  • compositions for nasal administration may conveniently be formulated as aerosols, drops, gels, and powders.
  • Aerosol formulations typically include a solution or fine suspension of the active substance in a physiologically acceptable aqueous or non-aqueous solvent and are usually presented in single or multidose quantities in sterile form in a sealed container, which can take the form of a cartridge or refill for use with an atomizing device.
  • the sealed container may be a unitary dispensing device, such as a single dose nasal inhaler or an aerosol dispenser fitted with a metering valve which is intended for disposal after use.
  • the dosage form comprises an aerosol dispenser
  • a propellant which can be a compressed gas, such as compressed air or an organic propellant, such as fluorochlorohydrocarbon.
  • the aerosol dosage forms can also take the form of a pump-atomizer.
  • compositions suitable for buccal or sublingual administration include tablets, lozenges, and pastilles, where the active ingredient is formulated with a carrier, such as sugar, acacia, tragacanth, or gelatin and glycerine.
  • a carrier such as sugar, acacia, tragacanth, or gelatin and glycerine.
  • Compositions for rectal administration are conveniently in the form of suppositories containing a conventional suppository base, such as cocoa butter.
  • the compounds of the invention may be administered to an animal alone or in combination with pharmaceutically acceptable carriers, as noted above, the proportion of which is determined by the solubility and chemical nature of the compound, chosen route of administration, and standard pharmaceutical practice.
  • the amount of active ingredient in the compositions of the invention can be varied.
  • dosage levels of between 0.1 ⁇ g/kg to 100 mg/kg of body weight are administered daily as a single dose or divided into multiple doses.
  • the general dosage range is between 250 ⁇ g/kg to 5.0 mg/kg of body weight per day. Wide variations in the needed dosage are to be expected in view of the differing efficiencies of the various routes of administration.
  • oral administration generally would be expected to require higher dosage levels than administration by intravenous injection. Variations in these dosage levels can be adjusted using standard empirical routines for optimization, which are well known in the art. In general, the precise therapeutically effective dosage will be determined by the attending physician in consideration of the above identified factors.
  • Cell death has traditionally been categorized as either apoptotic or necrotic based on morphological characteristics (Wyllie et al., Int. Rev. Cytol. 68: 251 (1980)). These two modes of cell death were also initially thought to occur via regulated (caspase-dependent) and non-regulated processes, respectively. Subsequent studies, however, demonstrate that the underlying cell death mechanisms resulting in these two phenotypes are much more complicated and under some circumstances interrelated. Furthermore, conditions that lead to necrosis can occur by either regulated caspase-independent or non-regulated processes.
  • necroptosis One regulated caspase-independent cell death pathway with morphological features resembling necrosis, called necroptosis, has been described (Degterev et al., Nat. Chem. Biol. 1:112 (2005)). This manner of cell death can be initiated with various stimuli (e.g., TNF- ⁇ and Fas ligand) and in an array of cell types (e.g., monocytes, fibroblasts, lymphocytes, macrophages, epithelial cells and neurons).
  • TNF- ⁇ and Fas ligand e.g., monocytes, fibroblasts, lymphocytes, macrophages, epithelial cells and neurons.
  • Necroptosis may represent a significant contributor to and in some cases predominant mode of cellular demise under pathological conditions involving excessive cell stress, rapid energy loss and massive oxidative species generation, where the highly energy-dependent apoptosis process is not operative.
  • necrostatins are compounds that prevent caspase-independent cell death (e.g., necrosis or necroptosis) for anti-necroptosis therapeutics.
  • necrostatins can suppress necroptosis by specifically inhibiting receptor interacting protein 1 (RIP1) activity (e.g., Xie et al., Structure, 21(3):493-499, 2013).
  • RIP1 receptor interacting protein 1
  • RIP3 which is a RIP1 family member, has also been implicated in necroptosis (see, e.g., Christofferson et al., Curr. Opin. Cell Biol. 22(2):263-268, 2010). Accordingly, methods by which RIP1 and/or RIP3 activity can be modulated can also be useful for the treatment of conditions in which RIP1 and/or RIP3 protein is a contributing factor.
  • the compounds and compositions disclosed herein can be used to treat disorders where necroptosis is likely to play a substantial role or where RIP1 and/or RIP3 protein is a contributing factor.
  • Exemplary conditions that can be treated using the methods described herein include: cerebral ischemia, traumatic brain injury (Gennarelli et al. In Textbook of Traumatic Brain Injury ; Silver et al., Eds.; American Psychiatric Publishing Inc.: Washington DC, 2005; p 37), a neurodegenerative disease of the central or peripheral nervous system (Martin et al. Brain Res. Bull.
  • organ ischemia such as stroke (Lo et al. Nat. Rev. Neurosci. 2003, 4, 399), myocardial infarction (McCully et al. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H1923), or retinal ischemia (Osborne et al. Prog. Retin. Eye Res. 2004, 23, 91); liver disease (Kaplowitz, J. Hepatol. 2000, 32 (1 Suppl.), 39; Malhi et al. Hepatology 2006, 43 (2 Suppl.
  • pancreatic disease the result of cell death associated with renal failure; heart, mesenteric, retinal, hepatic or brain ischemic injury, ischemic injury during organ storage, head trauma, septic shock, coronary heart disease, cardiomyopathy, myocardial infarction, bone avascular necrosis, sickle cell disease, muscle wasting, gastrointestinal disease, tuberculosis, diabetes, alteration of blood vessels, muscular dystrophy, graft-versus-host disease, viral infection, Crohn's disease, ulcerative colitis, asthma, or any condition in which alteration in cell proliferation, differentiation or intracellular signaling is a causative factor; cancer chemo/radiation therapy-induced necrosis (Giglio et al.
  • Atherosclerosis e.g, Lin et al., Cell Reports, 3:200-210, 2013
  • inflammatory conditions e.g., Wallach et al., Trends in Immunology, 32(11):505-509, 2011; Kang et al., Immunity, 38:27-40, 2013; and Chan, Cold Spring Harb. Perspect. Biol., 1-12, 2012.
  • Compounds of the invention can also be used in screening methods to identify targets of necroptosis and to identify additional inhibitors of necroptosis, as well as in assay development.
  • the compounds e.g., a compound according to any of formulas (I)-(XXXII) or any of compounds (1)-(41)
  • compositions disclosed herein can be evaluated for their pharmacological properties in animal models of disease.
  • the compounds identified to decrease necrosis or necroptosis may be structurally modified and subsequently used to decrease necrosis or necroptosis, or to treat a subject with a condition in which necrosis or necroptosis occurs.
  • the methods used to generate structural derivatives of the small molecules that decrease necrosis or necroptosis are readily known to those skilled in the fields of organic and medicinal chemistry.
  • Treatment may be performed alone or in conjunction with another therapy, for example in combination with apoptosis inhibitors, and may be provided at home, the doctor's office, a clinic, a hospital's outpatient department, or a hospital. Treatment generally begins at a hospital so that the doctor can observe the therapy's effects closely and make any adjustments that are needed. The duration of the therapy depends on the age and condition of the patient, as well as how the patient responds to the treatment. Additionally, a person having a greater risk of developing a condition may receive prophylactic treatment to inhibit or delay symptoms of the disease.
  • the compounds e.g., compounds having a structure according to any of Formulas (I)-(VIII), or any of compounds (1)-(20)
  • compositions described herein can be used to treat any of the following disorders where necroptosis is likely to play a substantial role: a neurodegenerative disease of the central or peripheral nervous system, the result of retinal neuronal cell death, the result of cell death of cardiac muscle, the result of cell death of cells of the immune system; stroke, liver disease, pancreatic disease, the result of cell death associated with renal failure; heart, mesenteric, retinal, hepatic or brain ischemic injury, ischemic injury during organ storage, head trauma, septic shock, coronary heart disease, cardiomyopathy, myocardial infarction, bone avascular necrosis, sickle cell disease, muscle wasting, gastrointestinal disease, tuberculosis, diabetes, alteration of blood vessels, muscular dystrophy, graft-versus-host disease, viral infection, bacterial infection, Crohn's disease
  • Conditions in which alteration in cell proliferation, differentiation or intracellular signaling is a causative factor include cancer and infection, e.g., by viruses (e.g., acute, latent and persistent), bacteria, fungi, or other microbes.
  • viruses e.g., acute, latent and persistent
  • bacteria e.g., fungi, or other microbes.
  • Exemplary viruses are human immunodeficiency virus (HIV), Epstein-Barr virus (EBV), cytomegalovirus (CMV)5 human herpesviruses (HHV), herpes simplex viruses (HSV), human T-Cell leukemia viruses (HTLV)5 Varicella-Zoster virus (VZV), measles virus, papovaviruses (JC and BK), hepatitis viruses, adenovirus, parvoviruses, and human papillomaviruses.
  • Exemplary diseases caused by viral infection include, but are not limited to, chicken pox, Cytomegalovirus infections, genital herpes, Hepatitis B and C, influenza, and shingles.
  • Exemplary bacteria include, but are not limited to Campylobacter jejuni, Enterobacter species, Enterococcus faecium, Enterococcus faecalis, Escherichia coli (e.g., E. coli O 157:H7), Group A streptococci, Haemophilus influenzae, Helicobacter pylori, listeria, Mycobacterium tuberculosis, Pseudomonas aeruginosa, S. pneumoniae, Salmonella, Shigella, Staphylococcus aureus , and Staphylococcus epidermidis .
  • Campylobacter jejuni Enterobacter species
  • Enterococcus faecium Enterococcus faecalis
  • Escherichia coli e.g., E. coli O 157:H7
  • Group A streptococci Haemophilus influenzae
  • Helicobacter pylori listeria
  • Exemplary diseases caused by bacterial infection include, but are not limited to, anthrax, cholera, diphtheria, foodborne illnesses, leprosy, meningitis, peptic ulcer disease, pneumonia, sepsis, tetanus, tuberculosis, typhoid fever, and urinary tract infection.
  • neurodegenerative diseases are Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, HIV-associated dementia, cerebral ischemia, amyotropic lateral sclerosis, multiple sclerosis, Lewy body disease, Menke's disease, Wilson's disease, Creutzfeldt-Jakob disease, Fahr disease, and progressive supranuclear palsy.
  • Exemplary muscular dystrophies or related diseases are Becker's muscular dystrophy, Duchenne muscular dystrophy, myotonic dystrophy, limb-girdle muscular dystrophy, Landouzy-Dejerine muscular dystrophy, facioscapulohumeral muscular dystrophy (Steinert's disease), myotonia congenita, Thomsen's disease, and Pompe's disease.
  • Muscle wasting can be associated with cancer, AIDS, congestive heart failure, and chronic obstructive pulmonary disease, as well as include necrotizing myopathy of intensive care.
  • Exemplary neurodegenerative conditions are Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, HIV-associated dementia, cerebral ischemia, amyotropic lateral sclerosis, multiple sclerosis, Lewy body disease, Menke's disease, Wilson's disease, Creutzfeldt-Jakob disease, Fahr disease, and progressive supranuclear palsy.
  • Exemplary muscular dystrophies or related diseases are Becker's muscular dystrophy, Duchenne muscular dystrophy, myotonic dystrophy, limb-girdle muscular dystrophy, Landouzy-Dejerine muscular dystrophy, facioscapulohumeral muscular dystrophy (Steinert's disease), myotonia congenita, Thomsen's disease, and Pompe's disease.
  • Muscle wasting can be associated with cancer, AIDS, congestive heart failure, and chronic obstructive pulmonary disease, as well as include necrotizing myopathy of intensive care
  • the compounds and compositions described herein can additionally be used to boost the immune system, whether or not the patient being treated has an immunocompromising condition.
  • the compounds described herein can be used in a method to strengthen the immune system during immunization, e.g., by functioning as an adjuvant, or by being combined with an adjuvant.
  • inflammatory conditions which may be, e.g., chronic or acute.
  • inflammatory conditions include: alkylosing spondylitis, arthritis (e.g., osteoarthritis, rheumatoid arthritis (RA), and psoriatic arthritis), asthma, atherosclerosis, Crohn's disease, colitis, dermatitis, diverticulitis, fibromyalgia, hepatitis, irritable bowel syndrome (IBS), psoriasis, Stevens-Johnson syndrome, systemic lupus erythematous (SLE), nephritis, and ulcerative colitis.
  • arthritis e.g., osteoarthritis, rheumatoid arthritis (RA), and psoriatic arthritis
  • asthma atherosclerosis
  • Crohn's disease colitis
  • dermatitis dermatitis
  • diverticulitis fibromyalgia
  • hepatitis irritable bowel syndrome
  • IBS irritable bowel
  • Still other inflammatory conditions include: immunoinflammatory disorders such as acne vulgaris; acute respiratory distress syndrome; Addison's disease; allergic rhinitis; allergic intraocular inflammatory diseases, ANCA-associated small-vessel vasculitis; ankylosing spondylitis; arthritis, asthma; atherosclerosis; atopic dermatitis; autoimmune hemolytic anemia; autoimmune hepatitis; Behcet's disease; Bell's palsy; bullous pemphigoid; cerebral ischaemia; chronic obstructive pulmonary disease; cirrhosis; Cogan's syndrome; contact dermatitis; COPD; Crohn's disease; Cushing's syndrome; dermatomyositis; diabetes mellitus; discoid lupus erythematosus; eosinophilic fasciitis; erythema nodosum; exfoliative dermatitis; fibromyalgia; focal glomerulosclerosis; giant cell arteritis;
  • the compounds and compositions described herein can also be used in the treatment or prevention of pain, including nociceptive pain, inflammatory pain, functional pain and neuropathic pain, all of which may be acute or chronic.
  • the subject e.g., a human
  • the subject may be diagnosed as having peripheral diabetic neuropathy, compression neuropathy, post herpetic neuralgia, trigeminal or glossopharyngeal neuralgia, post traumatic or post surgical nerve damage, lumbar or cervical radiculopathy, AIDS neuropathy, metabolic neuropathy, drug induced neuropathy, complex regional pain syndrome, arachnoiditis, spinal cord injury, bone or joint injury, tissue injury, psoriasis, scleroderma, pruritis, cancer (e.g., prostate, colon, breast, skin, hepatic, or kidney), cardiovascular disease (e.g., myocardial infarction, angina, ischemic or thrombotic cardiovascular disease, peripheral vascular occlusive disease, or peripheral arterial occlus
  • Additional conditions that can be treated using the compounds provided herein include those described in, e.g.: U.S. Pat. Nos. 6,756,394; 7,253,201; 7,491,743; 8,143,300; 8,278,344; and 8,324,262; U.S. Patent Application Publication Nos. 20100087453, 2012/0309795, and 20120122889; and International Publication Nos. WO 2011/133964 and WO/2012/061045; each of which is hereby incorporated by reference in its entirety.
  • treatment with the compounds and compositions described herein can be combined with therapies for the treatment of any of the conditions described herein.
  • Such treatments include surgery, radiotherapy, chemotherapy, or the administration of one or more additional compounds.
  • Exemplary compounds suitable for combination therapy with Nec compounds are described below.
  • apoptosis inhibitors i.e., compounds that inhibit apoptosis, including but not limited to reversible and irreversible caspase inhibitors.
  • An example of an apoptosis inhibitor includes zVAD, IETD, YVAD, DEVD, and LEHD.
  • the compounds of the invention are administered in combination with PARP poly(ADP-ribose) polymerase inhibitors.
  • PARP inhibitors include 6(5H)-phenanthridinone, 4-Amino-1,8-naphthalimide, 1,5-Isoquinolinediol, and 3-Aminobenzamide.
  • Src proteins are mammalian cytoplasmic tyrosine kinases that play an extensive role in signal transduction.
  • Src inhibitors include but are not limited to: PP1 (1-(1,1-dimethylethyl)-1-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine), PP2 (3-(4-chlorophenyl)-1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine), damnacanthal (3-hydroxy-1-methoxy-2-anthra-quinonecarboxaldehyde), and SU-5565.
  • the methods of the invention involve, in some aspects, combinations of compounds that are inhibitors of cellular necrosis (e.g., heterocyclic thiohydantoin, hydantoin, oxazolidinone, thioxo-oxazolidinone, pyrimidinone, or oxazinanone compounds, or combinations thereof) with agents for the treatment of cardiovascular disorders.
  • agents include anti-inflammatory agents, anti-thrombotic agents, anti-platelet agents, fibrinolytic agents, lipid reducing agents, direct thrombin inhibitors, glycoprotein IIb/IIIa receptor inhibitors, agents that bind to cellular adhesion molecules and inhibit the ability of white blood cells to attach to such molecules (e.g. anti-cellular adhesion molecule antibodies), calcium channel blockers, beta-adrenergic receptor blockers, cyclooxygenase-2 inhibitors, angiotensin system inhibitors, and any combinations thereof.
  • One preferred agent is aspirin.
  • Anti-inflammatory agents include alclofenac; alclometasone dipropionate; algestone acetonide; alpha amylase; amcinafal; amcinafide; amfenac sodium; amiprilose hydrochloride; anakinra; anirolac; anitrazafen; apazone; balsalazide disodium; bendazac; benoxaprofen; benzydamine hydrochloride; bromelains; broperamole; budesonide; carprofen; cicloprofen; cintazone; cliprofen; clobetasol propionate; clobetasone butyrate; clopirac; cloticasone propionate; cormethasone acetate; cortodoxone; deflazacort; desonide; desoximetasone; dexamethasone dipropionate; diclofenac potassium; diclofenac sodium; diflorasone diacetate
  • Anti-thrombotic and fibrinolytic agents include plasminogen (to plasmin via interactions of prekallikrein, kininogens, factors XII, XIIIa, plasminogen proactivator, and tissue plasminogen activator (TPA)) streptokinase; urokinase: anisoylated plasminogen-streptokinase activator complex; pro-urokinase (pro-UK); rTPA (alteplase or activase); rPro-UK; abbokinase; eminase; sreptase anagrelide hydrochloride; bivalirudin; dalteparin sodium; danaparoid sodium; dazoxiben hydrochloride; efegatran sulfate; enoxaparin sodium; ifetroban; ifetroban sodium; tinzaparin sodium; retaplase; trifenagrel; war
  • Anti-platelet agents include clopridogrel; sulfinpyrazone; aspirin; dipyridamole; clofibrate; pyridinol carbamate; PGE; glucagon; antiserotonin drugs; caffeine; theophyllin; pentoxifyllin; ticlopidine; and anagrelide.
  • Lipid reducing agents include gemfibrozil, cholystyramine, colestipol, nicotinic acid, probucol, lovastatin, fluvastatin, simvastatin, atorvastatin, pravastatin, and cirivastatin.
  • Direct thrombin inhibitors include hirudin, hirugen, hirulog, agatroban, PPACK, and thrombin aptamers.
  • Glycoprotein IIb/IIIa receptor inhibitors include both antibodies and non-antibodies, and include but are not limited to ReoPro (abcixamab), lamifiban, and tirofiban.
  • Calcium channel blockers are a chemically diverse class of compounds having important therapeutic value in the control of a variety of diseases including several cardiovascular disorders, such as hypertension, angina, and cardiac arrhythmias (Fleckenstein, Cir. Res. 52:13-16 (1983); Fleckenstein, Experimental Facts and Therapeutic Prospects, John Wiley, New York (1983); McCall, D., Curr. Pract. Cardiol. 10:1-11 (1985)).
  • Calcium channel blockers are a heterogenous group of drugs that prevent or slow the entry of calcium into cells by regulating cellular calcium channels. (Remington, The Science and Practice of Pharmacy, Nineteenth Edition, Mack Publishing Company, Eaton, Pa., p. 963 (1995)).
  • the dihydropyridines such as nifedipine
  • the phenyl alkyl amines such as verapamil
  • benzothiazepines such as diltiazem.
  • calcium channel blockers useful according to the invention include, but are not limited to, amrinone, amlodipine, bencyclane, felodipine, fendiline, flunarizine, isradipine, nicardipine, nimodipine, perhexylene, gallopamil, tiapamil and tiapamil analogues (such as 1993RO-11-2933), phenyloin, barbiturates, and the peptides dynorphin, omega-conotoxin, and omega-agatoxin, and pharmaceutically acceptable salts thereof.
  • Beta-adrenergic receptor blocking agents are a class of drugs that antagonize the cardiovascular effects of catecholamines in angina pectoris, hypertension, and cardiac arrhythmias.
  • Beta-adrenergic receptor blockers include, but are not limited to, atenolol, acebutolol, alprenolol, befunolol, betaxolol, bunitrolol, carteolol, celiprolol, hedroxalol, indenolol, labetalol, levobunolol, mepindolol, methypranol, metindol, metoprolol, metrizoranolol, oxprenolol, pindolol, propranolol, practolol, practolol, sotalolnadolol, tiprenolol, tomalolol, timolo
  • Cyclooxygenase-2 (COX-2) is an enzyme complex present in most tissues that produces various prostaglandins and thromboxanes from arachidonic acid.
  • COX-2 inhibitors include, but are not limited to, those described in U.S. Pat. Nos. 5,474,995, 5,521,213, 5,536,752, 5,550,142, 5,552,422, 5,604,253, 5,604,260, 5,639,780, 5,677,318, 5,691,374, 5,698,584, 5,710,140, 5,733,909, 5,789,413, 5,817,700, 5,849,943, 5,861,419, 5,922,742, 5,925,631, and 5,643,933.
  • a number of the above-identified COX-2 inhibitors are prodrugs of selective COX-2 inhibitors and exert their action by conversion in vivo to the active and selective COX-2 inhibitors.
  • the active and selective COX-2 inhibitors formed from the above-identified COX-2 inhibitor prodrugs are described in detail in PCT/WO95/00501, PCT/WO95/18799, and U.S. Pat. No. 5,474,995. Given the teachings of U.S. Pat. No. 5,543,297, a person of ordinary skill in the art would be able to determine whether an agent is a selective COX-2 inhibitor or a precursor of a COX-2 inhibitor.
  • Angiotensin system inhibitors are capable of interfering with the function, synthesis or catabolism of angiotensin II. These agents include, but are not limited to, angiotensin-converting enzyme (ACE) inhibitors, angiotensin II antagonists, angiotensin II receptor antagonists, agents that activate the catabolism of angiotensin II, and agents that prevent the synthesis of angiotensin I from which angiotensin II is ultimately derived.
  • ACE angiotensin-converting enzyme
  • the renin-angiotensin system is involved in the regulation of hemodynamics and water and electrolyte balance. Factors that lower blood volume, renal perfusion pressure, or the concentration of Na + in plasma tend to activate the system, while factors that increase these parameters tend to suppress its function.
  • Angiotensin I and angiotensin II are synthesized by the enzymatic renin-angiotensin pathway. The synthetic process is initiated when the enzyme renin acts on angiotensinogen, pseudoglobulin in blood plasma, to produce the decapeptide angiotensin I.
  • Angiotensin I is converted by angiotensin converting enzyme (ACE) to angiotensin II (angiotensin-[1-8] octapeptide).
  • ACE angiotensin converting enzyme
  • angiotensin II angiotensin-[1-8] octapeptide
  • Angiotensin (renin-angiotensin) system inhibitors are compounds that act to interfere with the production of angiotensin II from angiotensinogen or angiotensin I or interfere with the activity of angiotensin II.
  • Such inhibitors are well known to those of ordinary skill in the art and include compounds that act to inhibit the enzymes involved in the ultimate production of angiotensin II, including renin and ACE. They also include compounds that interfere with the activity of angiotensin II, once produced.
  • classes of such compounds include antibodies (e.g., to renin), amino acids and analogs thereof (including those conjugated to larger molecules), peptides (including peptide analogs of angiotensin and angiotensin I), pro-renin related analogs, etc.
  • renin inhibitors renin inhibitors
  • ACE inhibitors renin inhibitors
  • angiotensin II antagonists renin-angiotensin II antagonists.
  • the renin-angiotensin system inhibitors are renin inhibitors, ACE inhibitors, and angiotensin II antagonists.
  • Angiotensin II antagonists are compounds which interfere with the activity of angiotensin II by binding to angiotensin II receptors and interfering with its activity.
  • Angiotensin II antagonists are well known and include peptide compounds and non-peptide compounds.
  • Most angiotensin II antagonists are slightly modified congeners in which agonist activity is attenuated by replacement of phenylalanine in position 8 with some other amino acid; stability can be enhanced by other replacements that slow degeneration in vivo.
  • angiotensin II antagonists include: peptidic compounds (e.g., saralasin, [(San 1 )(Val 5 )(Ala 8 )] angiotensin-(1-8) octapeptide and related analogs); N-substituted imidazole-2-one (U.S. Pat. No. 5,087,634); imidazole acetate derivatives including 2-N-butyl-4-chloro-1-(2-chlorobenzile) imidazole-5-acetic acid (see Long et al., J. Pharmacol. Exp. Ther.
  • peptidic compounds e.g., saralasin, [(San 1 )(Val 5 )(Ala 8 )] angiotensin-(1-8) octapeptide and related analogs
  • N-substituted imidazole-2-one U.S. Pat. No. 5,087,634
  • ES8891 N-morpholinoacetyl-(-1-naphthyl)-L-alanyl-(4, thiazolyl)-L-alanyl (35, 45)-4-amino-3-hydroxy-5-cyclo-hexapentanoyl-N-hexylamide, Sankyo Company, Ltd., Tokyo, Japan
  • SKF 108566 E-alpha-2-[2-butyl-1-(carboxy phenyl)methyl]1H-imidazole-5-yl[methylane]-2-thiophenepropanoic acid, Smith Kline Beecham Pharmaceuticals, PA); Losartan (DUP753/MK954, DuPont Merck Pharmaceutical Company); Remikirin (RO42-5892, F. Hoffman LaRoche AG); A 2 agonists (Marion Merrill Dow) and certain non-peptide heterocycles (G.D. Searle and Company).
  • Angiotensin converting enzyme is an enzyme which catalyzes the conversion of angiotensin I to angiotensin II.
  • ACE inhibitors include amino acids and derivatives thereof, peptides, including di and tri peptides and antibodies to ACE which intervene in the renin-angiotensin system by inhibiting the activity of ACE thereby reducing or eliminating the formation of pressor substance angiotensin II.
  • ACE inhibitors have been used medically to treat hypertension, congestive heart failure, myocardial infarction and renal disease.
  • Classes of compounds known to be useful as ACE inhibitors include acylmercapto and mercaptoalkanoyl prolines such as captopril (U.S. Pat. No.
  • Renin inhibitors are compounds which interfere with the activity of renin. Renin inhibitors include amino acids and derivatives thereof, peptides and derivatives thereof, and antibodies to renin. Examples of renin inhibitors that are the subject of United States patents are as follows: urea derivatives of peptides (U.S. Pat. No. 5,116,835); amino acids connected by nonpeptide bonds (U.S. Pat. No. 5,114,937); di and tri peptide derivatives (U.S. Pat. No. 5,106,835); amino acids and derivatives thereof (U.S. Pat. Nos. 5,104,869 and 5,095,119); diol sulfonamides and sulfinyls (U.S. Pat. No.
  • polypeptide agents that bind to cellular adhesion molecules and inhibit the ability of white blood cells to attach to such molecules include polypeptide agents.
  • polypeptide agents include polyclonal and monoclonal antibodies, prepared according to conventional methodology. Such antibodies already are known in the art and include anti-ICAM 1 antibodies as well as other such antibodies.
  • anti-ICAM 1 antibodies as well as other such antibodies.
  • the paratrope only a small portion of an antibody molecule, the paratrope, is involved in the binding of the antibody to its epitope (see, in general, Clark, W. R. (1986) The Experimental Foundations of Modern Immunology, Wiley & Sons, Inc., New York; Roitt, I. (1991) Essential Immunology, 7th Ed., Blackwell Scientific Publications, Oxford).
  • the pFc′ and Fc regions are effectors of the complement cascade but are not involved in antigen binding.
  • an antibody from which the Fc region has been enzymatically cleaved, or which has been produced without the Fc region designated an antibody from which the Fc region has been enzymatically cleaved, or which has been produced without the Fc region, designated an Fab fragment, retains one of the antigen binding sites of an intact antibody molecule.
  • Fab fragments consist of a covalently bound antibody light chain and a portion of the antibody heavy chain denoted Fd.
  • the Fd fragments are the major determinant of antibody specificity (a single Fd Fragment may be associated with up to ten different light chains without altering antibody specificity
  • CDRs complementarity determining regions
  • Frs framework regions
  • FR1 through FR4 framework regions
  • CDR1 through CDR3 complementarity determining regions
  • non-CDR regions of a mammalian antibody may be replaced with similar regions of conspecific or heterospecific antibodies while retaining the epitopic specificity of the original antibody.
  • This is most clearly manifested in the development and use of “humanized” antibodies in which non-human CDRs are covalently joined to human FR and/or Fc/pFc′ regions to produce a functional antibody.
  • PCT International Publication Number WO 92/04381 teaches the production and use of humanized murine RSV antibodies in which at least a portion of the murine FR regions have been replaced by FR regions of human origin.
  • Such antibodies, including fragments of intact antibodies with antigen-binding ability, are often referred to as “chimeric” antibodies.
  • the present invention also provides for F(ab′) 2 , Fab, Fv and Fd fragments; chimeric antibodies in which the Fc and/or Fr and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; chimeric F(ab′) 2 fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; chimeric Fab fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; and chimeric Fd fragment antibodies in which the FR and/or CDR1 and/or CDR2 regions have been replaced by homologous human or nonhuman sequences.
  • the present invention also includes so-called single chain antibodies.
  • polypeptides of numerous size and type that bind specifically to cellular adhesion molecules may be derived also from sources other than antibody technology.
  • polypeptide binding agents can be provided by degenerate peptide libraries which can be readily prepared in solution, in immobilized form or as phage display libraries.
  • Combinatorial libraries also can be synthesized of peptides containing one or more amino acids. Libraries further can be synthesized of peptoids and non-peptide synthetic moieties.
  • Phage display can be particularly effective in identifying binding peptides useful according to the invention. Briefly, one prepares a phage library (using, e.g., m13, fd, or lambda phage), displaying inserts from 4 to about 80 amino acid residues using conventional procedures.
  • the inserts may represent, for example, a completely degenerate or biased array.
  • the minimal linear portion of the sequence that binds to the cellular adhesion molecule can be determined.
  • Yeast two-hybrid screening methods also may be used to identify polypeptides that bind to the cellular adhesion molecules.
  • cellular adhesion molecules, or a fragment thereof can be used to screen peptide libraries, including phage display libraries, to identify and select peptide binding partners of the cellular adhesion molecules.
  • any of the compounds described herein e.g., a compound according to any of formulas (I)-(XXXII) or any of compounds (1)-(41)
  • pharmaceutical compositions of the invention can be used together with a set of instructions, i.e., to form a kit.
  • the kit may include instructions for use of the compounds of the invention in a screening method or as a therapy as described herein.
  • standard cross-coupling techniques can be used to assemble the heteroaryl-aryl intermediate D.
  • a suitable electrophilic compound such as heteroaryl bromide A can be transformed to the corresponding alkyne B1 under, e.g., Sonogashira coupling conditions with alkynes such as TMS-C ⁇ CH.
  • Intermediate B1 can then be treated with an electrophilic compound such as phenyliodide C in order to afford the disubstituted alkyne product D.
  • the methyl ester moiety of compound D can provide a useful handle for further modification of the compounds, such as the installation of an amide moiety as shown in compound E, where the tosyloxy group can be nucleophilically displaced by a fragment A 1 precursor such as compound F. In this manner, compounds such as Compound (3) can be prepared.
  • Still other compounds of the invention that include, e.g., various L 2 linker groups can be prepared by variation of the amine starting material used in the amide synthesis step, as shown in Scheme 5.
  • the pyrrole carboxylic ester starting material can be formylated to afford intermediate I1, and the formyl group can be transformed to a nitrile under standard conditions to afford product J1. Hydrolysis and N-alkylation can then yield compound K1. Treatment under amide forming conditions with benzylamine L1 can that afford the desired substructure A1 precursor M1, which can be deprotected and coupled with intermediates such as Compound D.
  • Scheme 7 provides still more methods by which to prepare compounds of the invention by treating carboxylic intermediates such as compound K1 with different benzylamine reagents such as compounds L2 and L3 in order to afford, respectively, intermediates M2 and M3.
  • Still further analogues can be prepared as shown in Scheme 10.
  • Heteroaryl halides such as compound A can be transformed to homopropargyl halides such as compound B, which, in turn, can be used as an alkylating agent when combined with compound F in order to afford compound (21).
  • necroptosis inhibitory activity can be performed using a FADD-deficient variant of human Jurkat T cells treated with TNF- ⁇ as previously described (Degterev et al., Nat. Chem. Biol. 1:112 (2005) and Jagtap et al., J. Med. Chem. 50: 1886 (2007)).
  • cells can be treated with 10 ng/mL of human TNF- ⁇ in the presence of increasing concentration of test compounds for 24 hours followed by ATP-based viability assessment.
  • necroptosis activity can be performed using a FADD-deficient variant of human Jurkat T cells treated with TNF- ⁇ .
  • cells 500,000 cells/mL, 100 ⁇ L per well in a 96-well plate
  • 10 ng/mL of human TNF- ⁇ in the presence of increasing concentration of test compounds for 24 hours at 37° C. in a humidified incubator with 5% CO 2 followed by ATP-based viability assessment.
  • Stock solutions (30 mM) in DMSO can be prepared and then diluted with DMSO to give testing solutions, which were added to each test well. The final DMSO concentration can be 0.5%.
  • Eleven compound test concentrations (0.030-100 ⁇ M) can be used, and each concentration can be done in duplicate.
  • Cell viability assessments can be performed using a commercial luminescent ATP-based assay kit (CellTiter-Glo, Promega, Madison, Wis.) according to the manufacturer's instructions. Briefly, 40 ⁇ L of the cell lysis/ATP detection reagent can be added to each well. Plates can be incubated on a rocking platform for 10 minutes at room temperature and luminescence was measured using a Wallac Victor 3 plate-reader (Perkin Elmer, Wellesley, Mass.). Cell viability can be expressed as a ratio of the signal in the well treated with TNF- ⁇ and compound to the signal in the well treated with compound alone in order to account for nonspecific toxicity. EC 50 values can be calculated using nonlinear regression analysis of sigmoid dose-response (variable slope) curves from plots of log [I] verses viability values.
  • Table 3 shows the results of necroptosis assay of the compounds of the invention.
  • FADD-deficient Jurkat cells were treated with 10 ng/ml human TNFalpha for 24 hr, followed by CellTiter-Glo viability assay (Promega). EC50 values were calculated using non-linear regression in GraphPad Prism software. Eleven concentrations of each compound were tested to generate dose response curves.
  • Microsome stability can be determined in pooled mouse liver microsomes.
  • a test compound (3 ⁇ M final concentration) along with 0.5 mg/mL microsome protein and 1 mM NADPH can be incubated for 0, 5, 15, 30 and 60 minutes. Incubation of test compound and microsomes in the absence of NADPH can serve as a negative control.
  • the C ⁇ RMSD and the backbone RMSD deviations for the model and the template crystal structure were ⁇ 1.0 ⁇ and ⁇ 1.2 ⁇ respectively.
  • the best model was subjected to geometric evaluations using PROCHECK (Laskowski et al., J Biomol NMR 1996, 8(4):477-486) with an overall G-value of ⁇ 0.05. Ramachandran plots indicated that >93% of the residues are in the allowed region of the map (Laskowski et al., J Biomol NMR 1996, 8(4):477-486; and Potteron et al., Acta Crystallogr D Biol Crystallogr 2003, 59 (Pt 7):1131-1137).
  • Glide 4.5 (Sherman et al., J Med Chem 2006, 49(2):534-553; Friesner et al., J Med Chem 2004, 47(7):1739-1749; and Halgren et al., J Med Chem 2004, 47(7):1750-1759) was used for all docking calculations of both DLG-in and DLG-out structures of RIP1. Induced fit docking protocol with a softened-potential docking was performed to generate 20 initial poses. The softened-potential docking consisted of scaling the van der Waals radii by 0.5 except in the event when alanine substitutions were introduced, in which case the receptor scaling was set to 0.7.
  • the Glide hydrogen bond energy cutoff filter was decreased to ⁇ 0.05 kcal/mol. This ensures that all retained poses contain at the very least a weak hydrogen bond with the receptor with backbone amide of Met 74.
  • the Glide Coulomb-vdW energy cutoff filter was increased to 10 kcal/mol, enabling toleration of more steric clashes than in a normal docking run. Poses with an RMSD of less than 0.5 ⁇ and a maximum atomic displacement of less than 1.2 ⁇ were eliminated as redundant in order to increase diversity in the retained ligand poses. An inner grid box of 10 ⁇ was used to fit the ligand center and an outer box size of 20 ⁇ was used.
  • Prime uses the OPLS-AA parameter and a surface Generalized Born implicit solvent model.
  • a list was generated consisting of all residues having at least one atom within 5 ⁇ of an atom in any of the 20 ligand poses. All side chains in the list underwent a conformational search and minimization. Three residues that were mutated to alanine in the initial docking stage were returned to their original identity prior to the search. After convergence to a low-energy solution, an additional minimization was performed allowing all residues in the list (backbone and side chain) and the ligand to be relaxed. The complexes were ranked by Prime energy (molecular mechanics plus solvation) and those within 30 kcal/mol of the minimum energy structure were passed through for a final round of Glide docking and scoring.
  • the minimized ligand used in the first docking step is redocked using Glide with default settings into each of the 10 receptor structures produced in protein refinement step.
  • a composite score that accounts for the protein/ligand interaction energy (GlideScore) (Friesner et al., J Med Chem 2004, 47(7):1739-1749; and Halgren et al., J Med Chem 2004, 47(7):1750-1759)), and the total energy of the system (Prime energy) is calculated using the following equation: (GlideScore)+(0.05 ⁇ PrimeEnergy).

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cardiology (AREA)
  • Neurology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Diabetes (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Pulmonology (AREA)
  • Immunology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Urology & Nephrology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Vascular Medicine (AREA)
  • Virology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Obesity (AREA)
  • Gastroenterology & Hepatology (AREA)
US14/776,852 2013-03-15 2014-03-14 Hybrid necroptosis inhibitors Abandoned US20160024098A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/776,852 US20160024098A1 (en) 2013-03-15 2014-03-14 Hybrid necroptosis inhibitors

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361792891P 2013-03-15 2013-03-15
PCT/US2014/029658 WO2014145022A1 (en) 2013-03-15 2014-03-14 Hybrid necroptosis inhibitors
US14/776,852 US20160024098A1 (en) 2013-03-15 2014-03-14 Hybrid necroptosis inhibitors

Publications (1)

Publication Number Publication Date
US20160024098A1 true US20160024098A1 (en) 2016-01-28

Family

ID=51537863

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/214,360 Active US9725452B2 (en) 2013-03-15 2014-03-14 Substituted indoles and pyrroles as RIP kinase inhibitors
US14/776,852 Abandoned US20160024098A1 (en) 2013-03-15 2014-03-14 Hybrid necroptosis inhibitors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/214,360 Active US9725452B2 (en) 2013-03-15 2014-03-14 Substituted indoles and pyrroles as RIP kinase inhibitors

Country Status (4)

Country Link
US (2) US9725452B2 (de)
EP (1) EP2968276A4 (de)
JP (1) JP2016514693A (de)
WO (1) WO2014145022A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499521B2 (en) 2014-12-11 2016-11-22 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods
US9556152B2 (en) 2013-02-15 2017-01-31 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
US9586880B2 (en) 2008-12-23 2017-03-07 President And Fellows Of Harvard College Small molecule inhibitors of necroptosis
US9643977B2 (en) 2011-03-11 2017-05-09 President And Fellows Of Harvard College Necroptosis inhibitors and methods of use therefor
US9725452B2 (en) 2013-03-15 2017-08-08 Presidents And Fellows Of Harvard College Substituted indoles and pyrroles as RIP kinase inhibitors
WO2018033929A1 (en) 2016-08-18 2018-02-22 Yeda Research And Development Co. Ltd. Diagnostic and therapeutic uses of exosomes
WO2023109918A1 (zh) * 2021-12-17 2023-06-22 中国科学院上海药物研究所 含氮杂环化合物、其制备方法及其用途

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160110357A (ko) 2013-11-15 2016-09-21 더 위스타 인스티튜트 오브 아나토미 앤드 바이올로지 Ebna1 억제제 및 그의 사용 방법
US10208032B2 (en) * 2013-12-24 2019-02-19 Oncotartis Inc. Benzamide and nicotinamide compounds and methods of using same
CN106573006A (zh) * 2014-08-21 2017-04-19 葛兰素史密斯克莱知识产权发展有限公司 作为药物的rip1激酶抑制剂杂环酰胺
CN115197098B (zh) * 2014-12-24 2023-08-08 北京生命科学研究所 细胞坏死抑制剂
ES2815681T3 (es) 2015-01-09 2021-03-30 Bristol Myers Squibb Co Ureas cíclicas como inhibidores de ROCK
KR101640068B1 (ko) 2015-04-30 2016-07-18 아주대학교산학협력단 Rip3-mlkl 경로 차단제를 포함하는 피부 세포 괴사성 질환 예방 또는 치료용 약학적 조성물
US10442763B2 (en) 2015-05-14 2019-10-15 The Wistar Institute Of Anatomy And Biology EBNA1 inhibitors and methods using same
KR102603915B1 (ko) 2015-07-02 2023-11-21 에프. 호프만-라 로슈 아게 이환형 락탐 및 이의 사용 방법
US10709692B2 (en) 2015-12-04 2020-07-14 Denali Therapeutics Inc. Isoxazolidine derived inhibitors of receptor interacting protein kinase 1 (RIPK1)
BR112019003320B1 (pt) 2016-09-15 2024-02-20 Boehringer Ingelheim International Gmbh Compostos de heteroaril carboxamida, sal farmaceuticamente aceitável dos mesmos, composição farmacêutica e seus usos como inibidores de ripk2
EP3526219B1 (de) 2016-10-17 2021-12-15 F. Hoffmann-La Roche AG Bicyclische pyridonlactame und verfahren zur verwendung davon
US11072607B2 (en) 2016-12-16 2021-07-27 Genentech, Inc. Inhibitors of RIP1 kinase and methods of use thereof
EP3781571B1 (de) 2018-04-20 2024-01-17 F. Hoffmann-La Roche AG N-[4-oxo-2,3-dihydro-pyrido[3,2-b][1,4]oxazepin-3-yl]-5,6-dihydro-4h-pyrrolo[1,2-b]pyrazol-2-carboxamid-derivate und ähnliche verbindungen als rip1 kinase inhibitoren zur behandlung von z.b. reizdarmsyndrom (rds)
WO2019213445A1 (en) 2018-05-03 2019-11-07 Rigel Pharmaceuticals, Inc. Rip1 inhibitory compounds and methods for making and using the same
IL278417B2 (en) 2018-05-03 2024-05-01 Rigel Pharmaceuticals Inc RIP1 inhibitory compounds and methods for their preparation and use
US11242338B2 (en) 2018-05-17 2022-02-08 The Wistar Institute EBNA1 inhibitor crystalline forms, and methods of preparing and using same
CA3121202A1 (en) 2018-11-30 2020-06-04 Nuvation Bio Inc. Pyrrole and pyrazole compounds and methods of use thereof
AU2020341708B2 (en) 2019-09-06 2024-01-04 Rigel Pharmaceuticals, Inc. RIP1 inhibitory compounds and methods for making and using the same
EP4025568A1 (de) 2019-09-06 2022-07-13 Rigel Pharmaceuticals, Inc. Rip1-inhibitorverbindungen und verfahren zu ihrer herstellung und verwendung
US11578078B2 (en) 2019-11-07 2023-02-14 Rigel Pharmaceuticals, Inc. Heterocyclic RIP1 inhibitory compounds
US20210147842A1 (en) * 2019-11-13 2021-05-20 President And Fellows Of Harvard College Methods and compositions for inhibiting necroptosis in neurovascular and/or neurodegenerative diseases or disorders
AR121717A1 (es) 2020-04-02 2022-06-29 Rigel Pharmaceuticals Inc Inhibidores de rip1k
AR122703A1 (es) 2020-07-01 2022-09-28 Rigel Pharmaceuticals Inc Inhibidores de rip1k
KR102392587B1 (ko) 2020-09-16 2022-04-29 아주대학교산학협력단 퇴행성 관절염 진단용 바이오마커

Family Cites Families (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3300510A (en) * 1964-03-06 1967-01-24 American Home Prod Hydantoins
US3577420A (en) 1968-01-05 1971-05-04 Pfizer Certain 4-aminofuro(2,3-d)pyrimidines
BE789948A (fr) 1971-10-13 1973-04-11 Sandoz Sa Nouveaux derives du pyrazole, leur preparation et leur application comme medicaments
JPS4966678U (de) 1972-09-26 1974-06-11
US4302386A (en) 1978-08-25 1981-11-24 The Ohio State University Antigenic modification of polypeptides
US4016037A (en) 1975-10-15 1977-04-05 Ajinomoto Co., Inc. Method for producing L-amino acid
US4105776A (en) 1976-06-21 1978-08-08 E. R. Squibb & Sons, Inc. Proline derivatives and related compounds
US4110536A (en) 1977-04-18 1978-08-29 Miles Laboratories, Inc. Derivatives of 5-(indol-3-yl)hydantoin
DE2728523C2 (de) 1977-06-23 1986-02-27 Schering AG, 1000 Berlin und 4709 Bergkamen 4-Methyl-1,2,3-thiadiazol-5-carbonsäure-(cyclohexylmethyl)-amid, Mittel mit herbizider und wachstumsregulatorischer Wirkung enthaltend diese Verbindung sowie Verfahren zu seiner Herstellung
US4356787A (en) 1977-12-30 1982-11-02 Harley Richard C Float construction
US4316906A (en) 1978-08-11 1982-02-23 E. R. Squibb & Sons, Inc. Mercaptoacyl derivatives of substituted prolines
IL58849A (en) 1978-12-11 1983-03-31 Merck & Co Inc Carboxyalkyl dipeptides and derivatives thereof,their preparation and pharmaceutical compositions containing them
JPS5810074B2 (ja) 1979-07-18 1983-02-24 味の素株式会社 新規微生物
US4508729A (en) 1979-12-07 1985-04-02 Adir Substituted iminodiacids, their preparation and pharmaceutical compositions containing them
GB2080803B (en) 1980-07-28 1984-01-18 Pfizer Hypoglycemic 5-substituted oxazolidine-2,4-diones
US4332952A (en) 1980-07-28 1982-06-01 Pfizer Inc. Hypoglycemic 5-substituted oxazolidine-2,4-diones
US4344949A (en) 1980-10-03 1982-08-17 Warner-Lambert Company Substituted acyl derivatives of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acids
ZA817261B (en) 1980-10-23 1982-09-29 Schering Corp Carboxyalkyl dipeptides,processes for their production and pharmaceutical compositions containing them
US4337201A (en) 1980-12-04 1982-06-29 E. R. Squibb & Sons, Inc. Phosphinylalkanoyl substituted prolines
US4410520A (en) 1981-11-09 1983-10-18 Ciba-Geigy Corporation 3-Amino-[1]-benzazepin-2-one-1-alkanoic acids
GB2128984B (en) 1982-05-12 1985-05-22 Hoffmann La Roche Diaza-bicyclic compounds
US4780401A (en) 1984-04-09 1988-10-25 Ciba-Geigy Corporation Novel monoclonal antibodies to human renin and hybridoma cells, processes for their preparation and their applications
EP0164247B1 (de) 1984-06-07 1989-01-11 Pfizer Limited Dihydropyridine
JPS6122081A (ja) 1984-07-10 1986-01-30 Mitsui Toatsu Chem Inc ヒダントイン化合物の製造法
US4845079A (en) 1985-01-23 1989-07-04 Luly Jay R Peptidylaminodiols
US5066643A (en) 1985-02-19 1991-11-19 Sandoz Ltd. Fluorine and chlorine statine or statone containing peptides and method of use
DE3685626T2 (de) 1985-09-26 1993-01-28 Beckmann Research Inst Of The Sequenzierung von peptiden.
US4894437A (en) 1985-11-15 1990-01-16 The Upjohn Company Novel renin inhibiting polypeptide analogs containing S-aryl-D- or L- or DL-cysteinyl, 3-(arylthio)lactic acid or 3-(arylthio)alkyl moieties
US4885292A (en) 1986-02-03 1989-12-05 E. R. Squibb & Sons, Inc. N-heterocyclic alcohol renin inhibitors
CA1334092C (en) 1986-07-11 1995-01-24 David John Carini Angiotensin ii receptor blocking imidazoles
US4772684A (en) 1987-01-20 1988-09-20 Triton Biosciences, Inc. Peptides affecting blood pressure regulation
US4980283A (en) 1987-10-01 1990-12-25 Merck & Co., Inc. Renin-inhibitory pepstatin phenyl derivatives
US5089471A (en) 1987-10-01 1992-02-18 G. D. Searle & Co. Peptidyl beta-aminoacyl aminodiol carbamates as anti-hypertensive agents
US5034512A (en) 1987-10-22 1991-07-23 Warner-Lambert Company Branched backbone renin inhibitors
US5063207A (en) 1987-10-26 1991-11-05 Warner-Lambert Company Renin inhibitors, method for using them, and compositions containing them
US5055466A (en) 1987-11-23 1991-10-08 E. R. Squibb & Sons, Inc. N-morpholino derivatives and their use as anti-hypertensive agents
US5081127A (en) 1988-01-07 1992-01-14 E. I. Du Pont De Nemours And Company Substituted 1,2,3-triazole angiotensin II antagonists
US5036054A (en) 1988-02-11 1991-07-30 Warner-Lambert Company Renin inhibitors containing alpha-heteroatom amino acids
IE940525L (en) 1988-05-25 1989-11-25 Warner Lambert Co Known and selected novel arylmethylenyl derivatives of¹thiazolidinones, imidazolidinones and oxazolidinones useful¹as antiallergy agents and antiinflammatory agents
US5036053A (en) 1988-05-27 1991-07-30 Warner-Lambert Company Diol-containing renin inhibitors
JPH0219363A (ja) 1988-07-06 1990-01-23 Fujisawa Pharmaceut Co Ltd イミダゾリジン誘導体
WO1990004183A1 (en) 1988-10-07 1990-04-19 Commonwealth Scientific And Industrial Research Organisation Method for preparation of thiohydantoins and for protein sequence analysis
DE3841520A1 (de) 1988-12-09 1990-06-13 Hoechst Ag Enzymhemmende harnstoffderivate von dipeptiden, verfahren zu ihrer herstellung, diese enthaltende mittel und ihre verwendung
US5106835A (en) 1988-12-27 1992-04-21 American Cyanamid Company Renin inhibitors
ATE94906T1 (de) 1989-01-02 1993-10-15 Ruetgerswerke Ag Verfahren zur herstellung von l-alphaaminos|uren.
DE4004820A1 (de) 1989-08-05 1991-04-25 Bayer Ag Renininhibitoren, verfahren zur herstellung und ihre verwendung in arzneimitteln
US5064825A (en) 1989-06-01 1991-11-12 Merck & Co., Inc. Angiotensin ii antagonists
US5063208A (en) 1989-07-26 1991-11-05 Abbott Laboratories Peptidyl aminodiol renin inhibitors
US5098924A (en) 1989-09-15 1992-03-24 E. R. Squibb & Sons, Inc. Diol sulfonamide and sulfinyl renin inhibitors
US5104869A (en) 1989-10-11 1992-04-14 American Cyanamid Company Renin inhibitors
US5114937A (en) 1989-11-28 1992-05-19 Warner-Lambert Company Renin inhibiting nonpeptides
US5073566A (en) 1989-11-30 1991-12-17 Eli Lilly And Company Angiotensin ii antagonist 1,3-imidazoles and use thereas
US5075451A (en) 1990-03-08 1991-12-24 American Home Products Corporation Pyrrolimidazolones useful as renin inhibitors
US5095119A (en) 1990-03-08 1992-03-10 American Home Products Corporation Renin inhibitors
US5064965A (en) 1990-03-08 1991-11-12 American Home Products Corporation Renin inhibitors
US5085992A (en) 1990-07-19 1992-02-04 Merck & Co., Inc. Microbial transformation process for antihypertensive products
JPH054910A (ja) 1990-07-31 1993-01-14 Nikka Chem Co Ltd 化粧料組成物
KR100222634B1 (ko) 1990-08-31 1999-10-01 로즈 암스트롱, 크리스틴 에이. 트러트웨인 콜레시스토키닌길항제,그의제조방법및치료학적용도
GB9019812D0 (en) 1990-09-11 1990-10-24 Scotgen Ltd Novel antibodies for treatment and prevention of infection in animals and man
US5087634A (en) 1990-10-31 1992-02-11 G. D. Searle & Co. N-substituted imidazol-2-one compounds for treatment of circulatory disorders
US5071837A (en) 1990-11-28 1991-12-10 Warner-Lambert Company Novel renin inhibiting peptides
NZ286242A (en) 1991-03-26 1997-11-24 Csl Ltd Use of veterinary implant as a single dose vaccination system: rupturable polymer film coating around core of active agent and water soluble excipient
US5693643A (en) 1991-09-16 1997-12-02 Merck & Co., Inc. Hydantoin and succinimide-substituted derivatives of spiroindanylcamphorsulfonyl oxytocin antagonists
EP0545478A1 (de) 1991-12-03 1993-06-09 MERCK SHARP & DOHME LTD. Heterocyclische Verbindungen als Tachykininantagoniste
US5543297A (en) 1992-12-22 1996-08-06 Merck Frosst Canada, Inc. Human cyclooxygenase-2 cDNA and assays for evaluating cyclooxygenase-2 activity
US5474995A (en) 1993-06-24 1995-12-12 Merck Frosst Canada, Inc. Phenyl heterocycles as cox-2 inhibitors
GB9602877D0 (en) 1996-02-13 1996-04-10 Merck Frosst Canada Inc 3,4-Diaryl-2-hydroxy-2,5- dihydrofurans as prodrugs to cox-2 inhibitors
SG43841A1 (en) 1994-01-10 1997-11-14 Merck Frosst Canada Inc Phenyl heterocycles as cox-2 inhibitors
US5521213A (en) 1994-08-29 1996-05-28 Merck Frosst Canada, Inc. Diaryl bicyclic heterocycles as inhibitors of cyclooxygenase-2
AU688980B2 (en) 1994-10-27 1998-03-19 Merck Frosst Company Stilbene derivatives useful as cyclooxygenase-2 inhibitors
US5552422A (en) 1995-01-11 1996-09-03 Merck Frosst Canada, Inc. Aryl substituted 5,5 fused aromatic nitrogen compounds as anti-inflammatory agents
AU4424496A (en) 1995-03-27 1996-10-16 Warner-Lambert Company A method for the synthesis of mixtures of compounds
US6166054A (en) 1995-03-31 2000-12-26 Nihon Nohyaku Co., Ltd. Agricultural and horticultural disease controller and a method for controlling the diseases
US5691374A (en) 1995-05-18 1997-11-25 Merck Frosst Canada Inc. Diaryl-5-oxygenated-2-(5H) -furanones as COX-2 inhibitors
US5639780A (en) 1995-05-22 1997-06-17 Merck Frosst Canada, Inc. N-benzyl indol-3-yl butanoic acid derivatives as cyclooxygenase inhibitors
US5604253A (en) 1995-05-22 1997-02-18 Merck Frosst Canada, Inc. N-benzylindol-3-yl propanoic acid derivatives as cyclooxygenase inhibitors
US5643933A (en) 1995-06-02 1997-07-01 G. D. Searle & Co. Substituted sulfonylphenylheterocycles as cyclooxygenase-2 and 5-lipoxygenase inhibitors
US6846839B1 (en) 1995-06-07 2005-01-25 Sugen, Inc. Methods for treating diseases and disorders related to unregulated angiogenesis and/or vasculogenesis
US5962478A (en) 1995-09-19 1999-10-05 Margolin; Solomon B. Inhibition of tumor necrosis factor α
AU7457796A (en) 1995-10-23 1997-05-15 Tularik Inc. Rip: novel human protein involved in tumor necrosis factor signal transduction, and screening assays
US5789413A (en) 1996-02-01 1998-08-04 Merck Frosst Canada, Inc. Alkylated styrenes as prodrugs to COX-2 inhibitors
US5733909A (en) 1996-02-01 1998-03-31 Merck Frosst Canada, Inc. Diphenyl stilbenes as prodrugs to COX-2 inhibitors
GB9607503D0 (en) 1996-04-11 1996-06-12 Merck Frosst Canada Inc Bisaryl cyclobutenes derivatives as cyclooxygenase inhibitors
US5922742A (en) 1996-04-23 1999-07-13 Merck Frosst Canada Pyridinyl-2-cyclopenten-1-ones as selective cyclooxygenase-2 inhibitors
US5677318A (en) 1996-07-11 1997-10-14 Merck Frosst Canada, Inc. Diphenyl-1,2-3-thiadiazoles as anti-inflammatory agents
FR2750862B1 (fr) 1996-07-12 1998-10-16 Dupin Jean Pierre Utilisation d'heterocycles diazotes fusionnes avec un systeme aromatique ou heteroaromatique pour le traitement des maladies thrombo-emboliques
US5861419A (en) 1996-07-18 1999-01-19 Merck Frosst Canad, Inc. Substituted pyridines as selective cyclooxygenase-2 inhibitors
JPH10152482A (ja) 1996-09-30 1998-06-09 Nippon Nohyaku Co Ltd 1,2,3−チアジアゾール誘導体又はその塩類及び農園芸用病害防除剤ならびにその使用方法
EP0930305B1 (de) 1996-09-30 2003-05-14 Nihon Nohyaku Co., Ltd. 1,2,3-thiadiazol-derivate und ihre salze, mittel zur kontrolle von krankheiten in landwirtschaft und gartenbau und eine methode zu ihrer anwendung
IL130931A0 (en) 1997-03-03 2001-01-28 Boehringer Ingelheim Pharma Small molecules useful in the treatment of inflammatory disease
AU733531B2 (en) 1997-05-08 2001-05-17 Agrevo Uk Limited Fungicides
EP0957099B1 (de) 1998-04-15 2002-11-20 Pfizer Products Inc. Heterocyclische Carboxamide
DE69907331T2 (de) 1998-07-30 2003-10-23 Nihon Nohyaku Co., Ltd. Fungizide Zusammensetzung enthaltend ein 1,2,3-Thiadiazolderivat sowie deren Verwendung
JP2000103710A (ja) 1998-07-30 2000-04-11 Nippon Nohyaku Co Ltd 殺菌剤組成物及びその使用方法
WO2001028493A2 (en) 1999-10-15 2001-04-26 President And Fellows Of Harvard College Small molecule inhibitors of necrosis
US6756394B1 (en) 1999-10-15 2004-06-29 President And Fellow Of Harvard College Small molecule inhibitors of necrosis
US6706766B2 (en) 1999-12-13 2004-03-16 President And Fellows Of Harvard College Small molecules used to increase cell death
WO2001074807A1 (fr) 2000-03-30 2001-10-11 Sagami Chemical Research Center Derives indolylpyrrole et inhibiteurs de mort cellulaire
US20020155172A1 (en) 2000-04-07 2002-10-24 Junying Yuan Methods and compounds for decreasing cell toxicity or death
US6420400B1 (en) 2000-04-07 2002-07-16 Kinetek Pharmaceuticals, Inc. Antiproliferative 1,2,3-thiadiazole compounds
GB0011071D0 (en) 2000-05-08 2000-06-28 Novartis Ag Organic compounds
DE10031390A1 (de) 2000-07-03 2002-01-17 Knoll Ag Pyrimidinderivate und ihre Verwendung zur Prophylaxe und Therapie der zerebralen Ischämie
AU2002220241A1 (en) 2000-12-01 2002-06-11 Iconix Pharmaceuticals, Inc. Parb inhibitors
JP4529338B2 (ja) 2001-03-08 2010-08-25 味の素株式会社 ヒダントイナーゼをコードするdna、n−カルバミル−l−アミノ酸ハイドロラーゼをコードするdna、組み換えdna、形質転換された細胞、タンパク質の製造方法および光学活性アミノ酸の製造方法
US7868204B2 (en) 2001-09-14 2011-01-11 Methylgene Inc. Inhibitors of histone deacetylase
EP1438973A4 (de) 2001-10-05 2005-07-13 Ono Pharmaceutical Co Mittel zur behandlung von stressbedingten erkrankungen mit mitochondrien-benzodiazepin-rezeptorantagonisten
EP1442039A1 (de) 2001-10-31 2004-08-04 Bayer HealthCare AG Pyrimido(4,5-b)indolderivate
MXPA04004830A (es) 2001-11-22 2004-07-30 Ono Pharmaceutical Co Compuestos derivados de piperidin-2-ona, y composiciones farmaceuticas que los contienen como ingredientes activos.
US6797708B2 (en) 2001-12-03 2004-09-28 Wyeth Inhibitors of cytosolic phospholipase A2
JP3659224B2 (ja) 2001-12-26 2005-06-15 村田機械株式会社 インターネットファクシミリ装置
AU2002359359A1 (en) 2001-12-28 2003-07-24 Somatocor Pharmaceuticals, Inc. Imidazolidin-2,4-dione derivatives as non-peptide somatostatin receptor ligands
ATE485275T1 (de) 2002-02-12 2010-11-15 Glaxosmithkline Llc Nicotinamide und deren verwendung als p38 inhibitoren
DE10261131A1 (de) 2002-12-20 2004-07-01 Grünenthal GmbH Substituierte 5-Aminomethyl-1H-pyrrol-2-carbonsäureamide
FR2850652B1 (fr) 2003-01-31 2008-05-30 Aventis Pharma Sa Nouveaux derives d'uree cyclique, leur preparation et leur utilisation pharmaceutique comme inhibiteurs de kinases
GB0302671D0 (en) 2003-02-06 2003-03-12 Astrazeneca Ab Pharmaceutical formulations
US7320986B2 (en) 2003-03-07 2008-01-22 Abbott Labortories Fused tri and tetra-cyclic pyrazole kinase inhibitors
US7465739B2 (en) 2003-06-10 2008-12-16 Solvay Pharmaceuticals B.V. Compounds and their use in therapy
EP1638944A1 (de) 2003-06-12 2006-03-29 Eli Lilly And Company Tachykininrezeptor-antagonisten
CA2536622C (en) * 2003-08-29 2014-02-11 The Brigham And Women's Hospital, Inc. Inhibitors of cellular necrosis
US20080019909A1 (en) 2003-09-17 2008-01-24 Francis Ka-Ming Chan Modulation of Programmed Necrosis
DE10348023A1 (de) 2003-10-15 2005-05-19 Imtm Gmbh Neue Alanyl-Aminopeptidasen-Inhibitoren zur funktionellen Beeinflussung unterschiedlicher Zellen und zur Behandlung immunologischer, entzündlicher, neuronaler und anderer Erkrankungen
US6887993B1 (en) 2003-11-12 2005-05-03 Kosan Biosciences, Inc. 11-O-methylgeldanamycin compounds
WO2005072412A2 (en) 2004-01-29 2005-08-11 Elixir Pharmaceuticals, Inc. Anti-viral therapeutics
JP5134248B2 (ja) 2004-02-19 2013-01-30 バイエル・ファルマ・アクチェンゲゼルシャフト ジヒドロピリジノン誘導体
WO2005082887A1 (ja) 2004-02-26 2005-09-09 Aska Pharmaceutical Co., Ltd. ピリミジン誘導体
US7462612B2 (en) 2004-03-26 2008-12-09 Vertex Pharmaceuticals Incorporated Pyridine inhibitors of ERK2 and uses thereof
SI1773768T1 (sl) 2004-07-30 2018-12-31 Exelixis, Inc. Derivati pirola kot farmacevtske učinkovine
US20090143411A1 (en) 2004-10-20 2009-06-04 Compass Pharmaceuticals Llc Thiophens and Their Use as Anti-Tumor Agents
NZ590359A (en) 2005-01-25 2012-08-31 Synta Pharmaceuticals Corp Pyrazine compounds for inflammation and immune-related uses
WO2006086358A2 (en) 2005-02-10 2006-08-17 Merck & Co., Inc. Mitotic kinesin inhibitors
ZA200707353B (en) 2005-02-24 2009-03-25 Nihon Nohyaku Co Ltd 4-cyclopropyl-1,2,3-thiadiazole compound, agrohorticultural plant disease controlling agent and method of using the same
KR20080066949A (ko) 2005-10-11 2008-07-17 인터뮨, 인크. 바이러스 복제 억제제
US20090022694A1 (en) 2005-10-18 2009-01-22 Distefano Peter Sirt1 inhibition
GB0521373D0 (en) 2005-10-20 2005-11-30 Kudos Pharm Ltd Pthalazinone derivatives
CA2628259A1 (en) 2005-11-01 2007-05-10 Janssen Pharmaceutica N.V. Dihydroisoindolones as allosteric modulators of glucokinase
WO2007059905A2 (en) 2005-11-25 2007-05-31 Develogen Aktiengesellschaft Thienopyrimidines treating inflammatory diseases
CA2633500A1 (en) 2005-12-20 2007-07-05 President And Fellows Of Harvard College Compounds, screens, and methods of treatment
ES2761180T3 (es) * 2005-12-23 2020-05-19 Ariad Pharma Inc Compuestos bicíclicos de heteroarilo
JP2007186435A (ja) 2006-01-12 2007-07-26 Astellas Pharma Inc ニコチンアミド誘導体
JP2009524677A (ja) 2006-01-25 2009-07-02 シンタ ファーマシューティカルズ コーポレーション 炎症および免疫関連使用用のチアゾールおよびチアジアゾール化合物
AU2007211276B2 (en) 2006-01-31 2013-06-06 Synta Pharmaceuticals Corp. Pyridylphenyl compounds for inflammation and immune-related uses
AR056882A1 (es) 2006-02-01 2007-10-31 Bayer Cropscience Sa Derivados del fungicida n- cicloalquil- bencil- amida
US8119643B2 (en) 2006-03-20 2012-02-21 Synta Pharmaceuticals Corp. Benzoimidazolyl-pyrazine compounds for inflammation and immune-related uses
CA2646886A1 (en) 2006-03-23 2007-10-04 Synta Pharmaceuticals Corp. Benzimidazolyl-pyridine compounds for inflammation and immune-related uses
JP2009542777A (ja) 2006-07-13 2009-12-03 4エスツェー アクチェンゲゼルシャフト ベンゾピラノピラゾール
WO2008045406A2 (en) 2006-10-10 2008-04-17 President And Fellows Of Harvard College Compounds, screens, and methods of treatment
CA2670026A1 (en) 2006-11-20 2008-05-29 Alantos Pharmaceuticals Holding, Inc. Heterotricyclic metalloprotease inhibitors
JP4966678B2 (ja) 2007-02-02 2012-07-04 未来工業株式会社 壁孔への固定具
ES2340640T3 (es) 2007-03-23 2010-06-07 Icagen, Inc. Inhibidores de canales de iones.
EP2148678A4 (de) 2007-05-23 2010-08-04 Siga Technologies Inc Antivirale mittel zur behandlung oder vorbeugung von dengue-infektionen
JP5645663B2 (ja) 2007-08-15 2014-12-24 プレジデント アンド フェローズ オブ ハーバード カレッジ ネクロトーシスのヘテロ環式抑制剤
US8642660B2 (en) 2007-12-21 2014-02-04 The University Of Rochester Method for altering the lifespan of eukaryotic organisms
WO2009109983A1 (en) 2008-03-03 2009-09-11 National Chemical Laboratory Thieno[2,3-d]-pyrimidine-4(3h)-one compounds with antifungal properties and process thereof
JP5262728B2 (ja) 2008-03-28 2013-08-14 住友電気工業株式会社 レーザ加工方法
WO2010075290A1 (en) 2008-12-22 2010-07-01 President And Fellows Of Harvard College Unsaturated heterocyclic inhibitors of necroptosis
CA2772760A1 (en) * 2008-12-23 2010-07-01 President And Fellows Of Harvard College Small molecule inhibitors of necroptosis
JP2010275229A (ja) * 2009-05-28 2010-12-09 Ikutoku Gakuen ヒダントイン誘導体
US20130137642A1 (en) 2010-04-23 2013-05-30 Demetrios Vavvas Methods and compositions for preserving photoreceptor and retinal pigment epithelial cells
WO2012061045A2 (en) 2010-11-01 2012-05-10 Massachusetts Eye And Ear Infirmary Methods and compositions for preserving retinal ganglion cells
US9643977B2 (en) 2011-03-11 2017-05-09 President And Fellows Of Harvard College Necroptosis inhibitors and methods of use therefor
WO2014152182A1 (en) 2013-03-15 2014-09-25 President And Fellows Of Harvard College Deuterated heterocyclic inhibitors of necroptosis
EP2968276A4 (de) * 2013-03-15 2017-02-15 President and Fellows of Harvard College Hybride nekroptoseinhibitoren
US9944628B2 (en) 2014-12-11 2018-04-17 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9586880B2 (en) 2008-12-23 2017-03-07 President And Fellows Of Harvard College Small molecule inhibitors of necroptosis
US9643977B2 (en) 2011-03-11 2017-05-09 President And Fellows Of Harvard College Necroptosis inhibitors and methods of use therefor
US10292987B2 (en) 2013-02-15 2019-05-21 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
US9556152B2 (en) 2013-02-15 2017-01-31 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
US9624202B2 (en) 2013-02-15 2017-04-18 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
US10940154B2 (en) 2013-02-15 2021-03-09 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
US10933070B2 (en) 2013-02-15 2021-03-02 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors
US9725452B2 (en) 2013-03-15 2017-08-08 Presidents And Fellows Of Harvard College Substituted indoles and pyrroles as RIP kinase inhibitors
US10508102B2 (en) 2014-12-11 2019-12-17 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods
US9499521B2 (en) 2014-12-11 2016-11-22 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods
US9944628B2 (en) 2014-12-11 2018-04-17 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods
WO2018033929A1 (en) 2016-08-18 2018-02-22 Yeda Research And Development Co. Ltd. Diagnostic and therapeutic uses of exosomes
WO2023109918A1 (zh) * 2021-12-17 2023-06-22 中国科学院上海药物研究所 含氮杂环化合物、其制备方法及其用途

Also Published As

Publication number Publication date
EP2968276A1 (de) 2016-01-20
US20140323489A1 (en) 2014-10-30
US9725452B2 (en) 2017-08-08
JP2016514693A (ja) 2016-05-23
EP2968276A4 (de) 2017-02-15
WO2014145022A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
US9725452B2 (en) Substituted indoles and pyrroles as RIP kinase inhibitors
WO2014152182A1 (en) Deuterated heterocyclic inhibitors of necroptosis
CA2666060C (en) Thieno[2,3-d]pyrimidin-4-one compounds and methods of using the same
US8324262B2 (en) Tricyclic necrostatin compounds
US9757379B2 (en) Inhibition of HIF-2α heterodimerization with HIF1β (ARNT)
JP5331951B2 (ja) 医薬組成物のためのピロロピリミジン
US9775845B2 (en) Carbazole-containing sulfonamides as cryptochrome modulators
US7531320B2 (en) Modulation of β-catenin/TCF-activated transcription
US9012489B2 (en) Phenyl-3-aza-bicyclo[3.1.0]hex-3-yl-methanones and the use thereof as medicament
US20150239905A1 (en) Imidazopyridine compounds
JP2015061853A (ja) ネクロトーシスの小分子阻害剤
WO2012100342A1 (en) Pyrazolopyridine and pyrazolopyrimidine derivatives as melanocortin-4 receptor modulators
JP2012506368A (ja) 新規化合物i
TW200946116A (en) Lipoprotein lipase-activating compositions and benzene compounds
KR20150128768A (ko) 시르투인 조절제로서의 티에노[3,2-d]피리미딘-6-카르복스아미드 및 유사체
JP2020524660A (ja) Ror−ガンマモジュレーターとして有用な2,3−ジヒドロイソインドール−1−カルボキサミド
CA2961424A1 (en) Imidazo[4,5-c]pyridine derived ssao inhibitors
Pan et al. Design, synthesis, and biological evaluation of trizole-based heteroaromatic derivatives as Bcr-Abl kinase inhibitors
US11420957B2 (en) Substituted heterocycles as c-MYC targeting agents
Miah et al. Lead identification and structure–activity relationships of heteroarylpyrazole arylsulfonamides as allosteric CC-chemokine receptor 4 (CCR4) antagonists
Edris Design and synthesis of novel anticancer and antifibrosis compounds

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVERSITY OF HOUSTON, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CUNY, GREGORY D.;REEL/FRAME:036193/0380

Effective date: 20140814

Owner name: SHANGHAI INSTITUTE OF ORGANIC CHEMISTRY, CHINESE A

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YUAN, JUNYING;REEL/FRAME:036193/0439

Effective date: 20140613

Owner name: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, MASSACHU

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YUAN, JUNYING;REEL/FRAME:036193/0439

Effective date: 20140613

Owner name: TUFTS UNIVERSITY, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEGTEREV, ALEXEI;REEL/FRAME:036193/0488

Effective date: 20150630

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:HARVARD UNIVERSITY;REEL/FRAME:039078/0414

Effective date: 20160224

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION