US20150243991A1 - Small organic molecule based flow battery - Google Patents
Small organic molecule based flow battery Download PDFInfo
- Publication number
- US20150243991A1 US20150243991A1 US14/431,175 US201314431175A US2015243991A1 US 20150243991 A1 US20150243991 A1 US 20150243991A1 US 201314431175 A US201314431175 A US 201314431175A US 2015243991 A1 US2015243991 A1 US 2015243991A1
- Authority
- US
- United States
- Prior art keywords
- anthraquinone
- quinone
- rechargeable battery
- hydroquinone
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 claims description 148
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 claims description 102
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 38
- 150000002500 ions Chemical class 0.000 claims description 33
- MSSUFHMGCXOVBZ-UHFFFAOYSA-N anthraquinone-2,6-disulfonic acid Chemical compound OS(=O)(=O)C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 MSSUFHMGCXOVBZ-UHFFFAOYSA-N 0.000 claims description 27
- 229910052794 bromium Inorganic materials 0.000 claims description 27
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 23
- 230000004888 barrier function Effects 0.000 claims description 18
- 229910006069 SO3H Inorganic materials 0.000 claims description 17
- 239000007864 aqueous solution Substances 0.000 claims description 17
- 125000004043 oxo group Chemical group O=* 0.000 claims description 17
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 16
- OKONMFPEKSWGEU-UHFFFAOYSA-N 9,10-dioxoanthracene-2,7-disulfonic acid Chemical group C1=C(S(O)(=O)=O)C=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 OKONMFPEKSWGEU-UHFFFAOYSA-N 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 16
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 claims description 16
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 15
- -1 nitro, carboxyl Chemical group 0.000 claims description 14
- 229910052720 vanadium Inorganic materials 0.000 claims description 14
- 150000004056 anthraquinones Chemical class 0.000 claims description 13
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical group [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 claims description 12
- 230000002829 reductive effect Effects 0.000 claims description 12
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 12
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 claims description 10
- 125000004356 hydroxy functional group Chemical group O* 0.000 claims description 10
- 125000005499 phosphonyl group Chemical group 0.000 claims description 10
- 239000000460 chlorine Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052801 chlorine Inorganic materials 0.000 claims description 8
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- OZTBHAGJSKTDGM-UHFFFAOYSA-N 9,10-dioxoanthracene-1,5-disulfonic acid Chemical compound O=C1C=2C(S(=O)(=O)O)=CC=CC=2C(=O)C2=C1C=CC=C2S(O)(=O)=O OZTBHAGJSKTDGM-UHFFFAOYSA-N 0.000 claims description 6
- IJNPIHLZSZCGOC-UHFFFAOYSA-N 9,10-dioxoanthracene-1,8-disulfonic acid Chemical compound O=C1C2=CC=CC(S(O)(=O)=O)=C2C(=O)C2=C1C=CC=C2S(=O)(=O)O IJNPIHLZSZCGOC-UHFFFAOYSA-N 0.000 claims description 6
- MMNWSHJJPDXKCH-UHFFFAOYSA-N 9,10-dioxoanthracene-2-sulfonic acid Chemical compound C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 MMNWSHJJPDXKCH-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- 239000010941 cobalt Substances 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 6
- 239000011133 lead Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- YHIUFLAYHWBDLL-UHFFFAOYSA-N 1,8-dihydroxy-9,10-dioxoanthracene-2,7-disulfonic acid Chemical compound O=C1C2=CC=C(S(O)(=O)=O)C(O)=C2C(=O)C2=C1C=CC(S(O)(=O)=O)=C2O YHIUFLAYHWBDLL-UHFFFAOYSA-N 0.000 claims description 5
- 229930195733 hydrocarbon Natural products 0.000 claims description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims description 5
- PZTGRDMCBZUJDL-UHFFFAOYSA-N 1,2-naphthoquinone-4-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC(=O)C(=O)C2=C1 PZTGRDMCBZUJDL-UHFFFAOYSA-N 0.000 claims description 4
- CCQSBGJULPBARL-UHFFFAOYSA-N 1,4-dihydroxy-9,10-dioxoanthracene-2-sulfonic acid Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C(O)=C(S(O)(=O)=O)C=C2O CCQSBGJULPBARL-UHFFFAOYSA-N 0.000 claims description 4
- IAGVANYWTGRDOU-UHFFFAOYSA-N 1,4-dioxonaphthalene-2-sulfonic acid Chemical compound C1=CC=C2C(=O)C(S(=O)(=O)O)=CC(=O)C2=C1 IAGVANYWTGRDOU-UHFFFAOYSA-N 0.000 claims description 4
- QVYWFLYYMLNPPH-UHFFFAOYSA-N 3-bromo-1,4-dioxonaphthalene-2-sulfonic acid Chemical compound C1=CC=C2C(=O)C(S(=O)(=O)O)=C(Br)C(=O)C2=C1 QVYWFLYYMLNPPH-UHFFFAOYSA-N 0.000 claims description 4
- VGSQPIPVFVULQH-UHFFFAOYSA-N 3-chloro-1,4-dioxonaphthalene-2-sulfonic acid Chemical compound OS(=O)(=O)C1=C(Cl)C(=O)c2ccccc2C1=O VGSQPIPVFVULQH-UHFFFAOYSA-N 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 4
- OBDVJARAMDHRQG-UHFFFAOYSA-N [9,10-dioxo-3-(sulfomethyl)anthracen-2-yl]methanesulfonic acid Chemical compound OS(=O)(=O)Cc1cc2C(=O)c3ccccc3C(=O)c2cc1CS(O)(=O)=O OBDVJARAMDHRQG-UHFFFAOYSA-N 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 230000007717 exclusion Effects 0.000 claims description 4
- DURBTILWOVXSNP-UHFFFAOYSA-N 1,3,4-trihydroxy-9,10-dioxoanthracene-2-sulfonic acid Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C(O)=C(S(O)(=O)=O)C(O)=C2O DURBTILWOVXSNP-UHFFFAOYSA-N 0.000 claims description 3
- AWVNGKBCZDBCJB-UHFFFAOYSA-N 1,5-dihydroxy-9,10-dioxoanthracene-2,6-disulfonic acid Chemical compound O=C1C2=C(O)C(S(O)(=O)=O)=CC=C2C(=O)C2=C1C=CC(S(O)(=O)=O)=C2O AWVNGKBCZDBCJB-UHFFFAOYSA-N 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 125000002619 bicyclic group Chemical group 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910000428 cobalt oxide Inorganic materials 0.000 claims description 3
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910000464 lead oxide Inorganic materials 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 claims description 3
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 claims description 3
- WWTKPFXBQJLRRR-UHFFFAOYSA-N 2,3,5,6-tetrahydroxybenzene-1,4-disulfonic acid Chemical compound Oc1c(O)c(c(O)c(O)c1S(O)(=O)=O)S(O)(=O)=O WWTKPFXBQJLRRR-UHFFFAOYSA-N 0.000 claims description 2
- FINXYYKSUHDLOT-UHFFFAOYSA-N 2,3,5-trihydroxybenzene-1,4-disulfonic acid Chemical compound Oc1cc(c(O)c(O)c1S(O)(=O)=O)S(O)(=O)=O FINXYYKSUHDLOT-UHFFFAOYSA-N 0.000 claims description 2
- CRWVMFCMDGBXHO-UHFFFAOYSA-N 2,3,5-trihydroxybenzene-1,4-disulfonic acid 2,4,5-trihydroxybenzene-1,3-disulfonic acid Chemical compound Oc1cc(c(O)c(c1O)S(O)(=O)=O)S(O)(=O)=O.Oc1cc(c(O)c(O)c1S(O)(=O)=O)S(O)(=O)=O CRWVMFCMDGBXHO-UHFFFAOYSA-N 0.000 claims description 2
- APFTZGWMGKJYBL-UHFFFAOYSA-N 2,3,6-trihydroxybenzenesulfonic acid Chemical compound OC1=CC=C(O)C(S(O)(=O)=O)=C1O APFTZGWMGKJYBL-UHFFFAOYSA-N 0.000 claims description 2
- BBKIMXIAWFAUMV-UHFFFAOYSA-N 2,4,5,6-tetrahydroxybenzene-1,3-disulfonic acid Chemical compound Oc1c(O)c(c(O)c(c1O)S(O)(=O)=O)S(O)(=O)=O BBKIMXIAWFAUMV-UHFFFAOYSA-N 0.000 claims description 2
- IPJDQEIWFZAWCA-UHFFFAOYSA-N OC1=C(C(=O)c2ccccc2C1=O)S(O)(=O)=O Chemical compound OC1=C(C(=O)c2ccccc2C1=O)S(O)(=O)=O IPJDQEIWFZAWCA-UHFFFAOYSA-N 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 claims description 2
- 125000001475 halogen functional group Chemical group 0.000 claims 2
- 150000004053 quinones Chemical class 0.000 abstract description 30
- 238000004146 energy storage Methods 0.000 abstract description 12
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 abstract description 11
- 238000006243 chemical reaction Methods 0.000 abstract description 11
- 230000008901 benefit Effects 0.000 abstract description 9
- 239000007787 solid Substances 0.000 abstract description 7
- 230000005588 protonation Effects 0.000 abstract description 3
- 230000000295 complement effect Effects 0.000 abstract description 2
- 238000003487 electrochemical reaction Methods 0.000 abstract description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 33
- 239000000243 solution Substances 0.000 description 23
- 239000000126 substance Substances 0.000 description 16
- 239000000376 reactant Substances 0.000 description 14
- 238000006722 reduction reaction Methods 0.000 description 14
- 230000009467 reduction Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- 238000003860 storage Methods 0.000 description 11
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 10
- 239000000446 fuel Substances 0.000 description 10
- 125000005843 halogen group Chemical group 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 9
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 8
- 238000002484 cyclic voltammetry Methods 0.000 description 8
- 229910021397 glassy carbon Inorganic materials 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 230000001351 cycling effect Effects 0.000 description 6
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229920000557 Nafion® Polymers 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- 235000019253 formic acid Nutrition 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 3
- ZRXYMHTYEQQBLN-UHFFFAOYSA-N [Br].[Zn] Chemical compound [Br].[Zn] ZRXYMHTYEQQBLN-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000010411 electrocatalyst Substances 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 230000029553 photosynthesis Effects 0.000 description 3
- 238000010672 photosynthesis Methods 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 3
- 238000000527 sonication Methods 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- WOAHJDHKFWSLKE-UHFFFAOYSA-N 1,2-benzoquinone Chemical group O=C1C=CC=CC1=O WOAHJDHKFWSLKE-UHFFFAOYSA-N 0.000 description 2
- 229940005561 1,4-benzoquinone Drugs 0.000 description 2
- IKQCSJBQLWJEPU-UHFFFAOYSA-N 2,5-dihydroxybenzenesulfonic acid Chemical compound OC1=CC=C(O)C(S(O)(=O)=O)=C1 IKQCSJBQLWJEPU-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- QBPFLULOKWLNNW-UHFFFAOYSA-N chrysazin Chemical compound O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=CC=C2O QBPFLULOKWLNNW-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- CSCLXYAAXMCWLG-UHFFFAOYSA-L disodium;9,10-dioxoanthracene-2,7-disulfonate Chemical compound [Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C(=O)C3=CC(S(=O)(=O)[O-])=CC=C3C(=O)C2=C1 CSCLXYAAXMCWLG-UHFFFAOYSA-L 0.000 description 2
- 238000013023 gasketing Methods 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004151 quinonyl group Chemical group 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 2
- KEQHJBNSCLWCAE-UHFFFAOYSA-N thymoquinone Chemical compound CC(C)C1=CC(=O)C(C)=CC1=O KEQHJBNSCLWCAE-UHFFFAOYSA-N 0.000 description 2
- KEQXNNJHMWSZHK-UHFFFAOYSA-L 1,3,2,4$l^{2}-dioxathiaplumbetane 2,2-dioxide Chemical compound [Pb+2].[O-]S([O-])(=O)=O KEQXNNJHMWSZHK-UHFFFAOYSA-L 0.000 description 1
- NDGUAAJHDUBETK-UHFFFAOYSA-N 1,4-dihydroxycyclohexa-3,5-diene-1,2-disulfonic acid Chemical compound OC1=CC(S(O)(=O)=O)C(O)(S(O)(=O)=O)C=C1 NDGUAAJHDUBETK-UHFFFAOYSA-N 0.000 description 1
- ZYVYEJXMYBUCMN-UHFFFAOYSA-N 1-methoxy-2-methylpropane Chemical compound COCC(C)C ZYVYEJXMYBUCMN-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- XXAXVMUWHZHZMJ-UHFFFAOYSA-L 4,5-dihydroxybenzene-1,3-disulfonate Chemical compound OC1=CC(S([O-])(=O)=O)=CC(S([O-])(=O)=O)=C1O XXAXVMUWHZHZMJ-UHFFFAOYSA-L 0.000 description 1
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 229940076442 9,10-anthraquinone Drugs 0.000 description 1
- JAJIPIAHCFBEPI-UHFFFAOYSA-N 9,10-dioxoanthracene-1-sulfonic acid Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)O JAJIPIAHCFBEPI-UHFFFAOYSA-N 0.000 description 1
- XXAXVMUWHZHZMJ-UHFFFAOYSA-N Chymopapain Chemical compound OC1=CC(S(O)(=O)=O)=CC(S(O)(=O)=O)=C1O XXAXVMUWHZHZMJ-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229920002449 FKM Polymers 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical class O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910018828 PO3H2 Inorganic materials 0.000 description 1
- FKUYMLZIRPABFK-UHFFFAOYSA-N Plastoquinone 9 Natural products CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCC1=CC(=O)C(C)=C(C)C1=O FKUYMLZIRPABFK-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910002848 Pt–Ru Inorganic materials 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- BNOODXBBXFZASF-UHFFFAOYSA-N [Na].[S] Chemical compound [Na].[S] BNOODXBBXFZASF-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229910052924 anglesite Inorganic materials 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- RFINXPNLFFDNFR-UHFFFAOYSA-L disodium 1,8-dihydroxy-9,10-dioxoanthracene-2,7-disulfonate Chemical compound [Na+].[Na+].OC1=C(C=CC=2C(C3=CC=C(C(=C3C(C1=2)=O)O)S(=O)(=O)[O-])=O)S(=O)(=O)[O-] RFINXPNLFFDNFR-UHFFFAOYSA-L 0.000 description 1
- WAMKWBHYPYBEJY-UHFFFAOYSA-N duroquinone Chemical compound CC1=C(C)C(=O)C(C)=C(C)C1=O WAMKWBHYPYBEJY-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 238000001983 electron spin resonance imaging Methods 0.000 description 1
- 230000027721 electron transport chain Effects 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- IJBLJLREWPLEPB-IQSNHBBHSA-N plastoquinol-9 Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC1=CC(O)=C(C)C(C)=C1O IJBLJLREWPLEPB-IQSNHBBHSA-N 0.000 description 1
- FKUYMLZIRPABFK-IQSNHBBHSA-N plastoquinone-9 Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC1=CC(=O)C(C)=C(C)C1=O FKUYMLZIRPABFK-IQSNHBBHSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- BBNQQADTFFCFGB-UHFFFAOYSA-N purpurin Chemical compound C1=CC=C2C(=O)C3=C(O)C(O)=CC(O)=C3C(=O)C2=C1 BBNQQADTFFCFGB-UHFFFAOYSA-N 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/08—Fuel cells with aqueous electrolytes
- H01M8/083—Alkaline fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9008—Organic or organo-metallic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04186—Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/20—Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0002—Aqueous electrolytes
- H01M2300/0005—Acid electrolytes
- H01M2300/0011—Sulfuric acid-based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0002—Aqueous electrolytes
- H01M2300/0014—Alkaline electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04201—Reactant storage and supply, e.g. means for feeding, pipes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention provides an electrochemical cell based on a new chemistry for a flow battery for large scale, e.g., gridscale, electrical energy storage. Electrical energy is stored chemically at an electrochemical electrode by the protonation of small organic molecules called quinones to hydroquinones. The proton is provided by a complementary electrochemical reaction at the other electrode. These reactions are reversed to deliver electrical energy.
- a flow battery based on this concept can operate as a closed system.
- the flow battery architecture has scaling advantages over solid electrode batteries for large scale energy storage. Because quinone-to-hydroquinone cycling occurs rapidly and reversibly in photosynthesis, we expect to be able to employ it to obtain high current density, high efficiency, and long lifetime in a flow battery. High current density drives down power-related costs.
- the other advantages this particular technology would have over other flow batteries include inexpensive chemicals, energy storage in the form of safer liquids, an inexpensive separator, little or no precious metals usage in the electrodes, and other components made of plastic or inexpensive metals with coatings proven to afford corrosion protection
- a quinone-based cell Variations of a quinone-based cell are described.
- One is a quinone/hydroquinone couple as the negative electrode against a positive electrode with a redox active species.
- the positive electrode and the negative electrode are quinone/hydroquinone couples.
- the invention provides a rechargeable battery having first and second electrodes, wherein in its charged state, the battery includes a redox active species in contact with the first electrode and a hydroquinone dissolved or suspended in aqueous solution in contact with the second electrode, wherein during discharge the redox active species is reduced and the hydroquinone is oxidized to a quinone.
- the redox active species is dissolved or suspended in aqueous solution.
- Redox active species may include chlorine, bromine, iodine, oxygen, vanadium, chromium, cobalt, iron, manganese, cobalt, nickel, copper, or lead, in particular, bromine or a manganese oxide, a cobalt oxide or a lead oxide.
- the redox active species is a second quinone dissolved or suspended in aqueous solution, as described herein.
- the hydroquinone and quinone e.g., a water-soluble anthraquinone optionally including one or more sulfonate groups, have a standard electrochemical potential below 0.4 volts with respect to a standard hydrogen electrode.
- the first electrode is separated from the second electrode by a barrier that inhibits the passage of the redox-active species and the hydroquinone, e.g., an ion conducting membrane or a size exclusion membrane.
- the first and second electrodes are separated by an ion conducting barrier, and the redox active species includes bromine.
- the invention features a rechargeable battery including first and second electrodes separated by an ion conducting hydrocarbon barrier or size-exclusion barrier, wherein in its charged state, the battery includes a quinone at the first electrode and a hydroquinone at the second electrode, wherein during discharge, the quinone is reduced, and the hydroquinone is oxidized.
- the invention features a rechargeable battery including first and second electrodes separated by an ion conducting barrier, wherein in its charged state, the battery includes a quinone in aqueous solution at the first electrode and a hydroquinone in aqueous solution at the second electrode, wherein during discharge, the quinone is reduced, and the hydroquinone is oxidized.
- the invention features a rechargeable battery including first and second electrodes separated by an ion conducting barrier, wherein in its charged state, the battery includes bromine at the first electrode and a hydroquinone at the second electrode, wherein during discharge, bromine is reduced, and the hydroquinone is oxidized.
- the invention features a rechargeable battery including first and second electrodes separated by an ion conducting hydrocarbon barrier, wherein in its charged state, the battery includes a quinone at the first electrode and a hydroquinone at the second electrode, wherein during discharge, the quinone is reduced, and the hydroquinone is oxidized.
- the quinone or hydroquinone in oxidized form is, for example, of formula (I) or (II):
- each of R 1 -R 4 is independently selected from H, C 1-6 alkyl, halo, hydroxy, C 1-6 alkoxy, and SO 3 H, or an ion thereof, e.g., H, C 1-6 alkyl, halo, C 1-6 alkoxy, and SO 3 H, or an ion thereof or H, C 1-6 alkyl, C 1-6 alkoxy, and SO 3 H, or an ion thereof.
- the quinone or hydroquinone in oxidized form is, for example, of formula (III):
- each of R 1 -R 8 is independently selected from H, C 1-6 alkyl, halo, hydroxyl, C 1-6 alkoxy, and SO 3 H, or an ion thereof, e.g., H, C 1-6 alkyl, halo, C 1-6 alkoxy, and SO 3 H, or an ion thereof, or H, C 1-6 alkyl, C 1-6 alkoxy, and SO 3 H, or an ion thereof.
- a rechargeable battery of the invention may further include a reservoir for quinone and/or hydroquinone dissolved or suspended in aqueous solution and a mechanism to circulate quinone and/or hydroquinone.
- the rechargeable battery is a flow battery.
- Exemplary quinones or hydroquinones in oxidized form are of formula (A)-(D):
- each of R 1 -R 10 is independently selected from H, optionally substituted C 1-6 alkyl, halo, hydroxy, optionally substituted C 1-6 alkoxy, SO 3 H, amino, nitro, carboxyl, phosphoryl, phosphonyl, and oxo, or an ion thereof, provided that two of R 1 -R 6 for formula (A) are oxo, two or four of R 1 -R 8 for formula (B) are oxo, and two, four, or six of R 1 -R 10 for formulas (C) and (D) are oxo, wherein the dashed lines indicate that the monocylic ring of formula (A), the bicyclic ring of formula (B), and the tricyclic rings of formulas (C) and (D) are fully conjugated.
- R 1 -R 10 is independently selected from H, optionally substituted C 1-6 alkyl, hydroxy, optionally substituted C 1-6 alkoxy, SO 3 H, amino, nitro, carboxyl, phosphoryl, phosphonyl, and oxo, or an ion thereof.
- Exemplary quinones or hydroquinones in oxidized form may also be of formula (I)-(IX):
- each of R 1 -R 8 is independently selected from H, optionally substituted C 1-6 alkyl, halo, hydroxy, optionally substituted C 1-6 alkoxy, SO 3 H, amino, nitro, carboxyl, phosphoryl, phosphonyl, and oxo, or an ion thereof.
- each of R 1 -R 8 is independently selected from H, optionally substituted C 1-6 alkyl, hydroxy, optionally substituted C 1-6 alkoxy, SO 3 H, amino, nitro, carboxyl, phosphoryl, phosphonyl, and oxo, or an ion thereof.
- quinones or hydroquinones in oxidized form include 9,10-anthraquinone-2,7-disulfonic acid, 9,10-anthraquinone-2,6-disulfonic acid, 9,10-anthraquinone-1,8-disulfonic acid, 9,10-anthraquinone-1,5-disulfonic acid, 9,10-anthraquinone-2-sulfonic acid, or a mixture thereof.
- An exemplary quinone for use with any aspect of the invention is 9,10-anthraquinone-2,7-disulfonate.
- Additional quinones or hydroquinones in oxidized form include 2-hydroxy-1,4-naphthoquinone-3-sulfonic acid, 1,2,4-trihydroxybenzene-3-sulfonic acid, 2,4,5-trihydroxybenzene-1,3-disulfonic acid 2,3,5-trihydroxybenzene-1,4-disulfonic acid, 2,4,5,6-tetrahydroxybenzene-1,3-disulfonic acid, 2,3,5-trihydroxybenzene-1,4-disulfonic acid, 2,3,5,6-tetrahydroxybenzene-1,4-disulfonic acid, or a mixture thereof.
- the invention also provides methods for storing electrical energy by applying a voltage across the first and second electrodes and charging any battery of the invention.
- the invention also provides methods for providing electrical energy by connecting a load to the first and second electrodes and allowing any battery of the invention to discharge.
- 4,5-dihydroxy-1,3-benzenedisulfonate and/or 2,5-dihydroxy-benzenedisulfonate are specifically excluded as the hydroquinone or quinone in reduced form for any aspect of the invention.
- quinone includes a compound having one or more conjugated, C 3-10 carbocyclic, fused rings, substituted, in oxidized form, with two or more oxo groups, which are in conjugation with the one or more conjugated rings.
- the number of rings is from one to ten, e.g., one, two, or three, and each ring has 6 members.
- alkyl straight chain or branched saturated groups from 1 to 6 carbons.
- Alkyl groups are exemplified by methyl, ethyl, n- and iso-propyl, n-, sec-, iso- and tert-butyl, neopentyl, and the like, and may be optionally substituted with one, two, three, or, in the case of alkyl groups of two carbons or more, four substituents independently selected from the group consisting of halo, hydroxyl, C 1-6 alkoxy, SO 3 H, amino, nitro, carboxyl, phosphoryl, phosphonyl, and oxo, or an ion thereof.
- alkoxy is meant a group of formula —OR, wherein R is an alkyl group, as defined herein.
- halo is meant, fluoro, chloro, bromo, or iodo.
- hydroxyl is meant —OH.
- amino is meant —NH 2 .
- An exemplary ion of amino is —NH 3 + .
- nitro is meant —NO 2 .
- carboxyl is meant —COOH.
- sulfonyl is meant —SO 3 H.
- An exemplary ion of sulfonyl is —SO 3 ⁇ .
- phosphoryl is meant —PO 3 H 2 .
- exemplary ions of phosphoryl are —PO 3 11 and —PO 3 2 ⁇ .
- phosphonyl is meant —PO 3 R 2 , wherein each R is independent H or alkyl, as defined herein.
- An exemplary ion of phosphoryl is —PO 3 R ⁇ .
- oxo is meant ⁇ O.
- FIG. 1 is a scheme of redox potentials of interest.
- FIG. 2 is scheme of a battery having a hydroquinone at the negative electrode and bromine at the positive electrode.
- FIG. 3 is a set of cyclic voltammograms ( a ) 1 m catechol in 1 N H 2 SO 4 .
- the plot shows the oxidative current density vs. voltage of a 0.149 cm 2 working electrode of flat Pt.
- FIG. 4 is a half-cell cyclic voltammogram for hydroquinone sulfonic acid.
- FIG. 6 is a Levich plot (current vs. rotation rate) of 1 mM AQDS in 1 M H 2 SO 4 . Best fit line has a slope of 0.453(2) ⁇ A s 1/2 rad ⁇ 1/2 .
- FIG. 7 is a Koutec ⁇ -Levich plot (current ⁇ 1 vs. rotation rate ⁇ 1/2 ).
- FIG. 9 is a cyclic voltammogram plot of 9,10-anthraquinone-2,7-disulfonic acid (AQDS) 1 mM in 1 M H 2 SO 4 on a glassy carbon working electrode (black) and of anthraquinone sulfonic acid mixture solution.
- AQDS 9,10-anthraquinone-2,7-disulfonic acid
- FIG. 10 is a cyclic voltammograms of 9,10-anthraquione-2,7-disulfonic acid (AQDS) and 1,8-dihydroxy-9,10-anthraquinone-2,7-disulfonic acid (1,8-(OH) 2 -AQDS), showing that the latter has a 95 mV lower reduction potential.
- AQDS 9,10-anthraquione-2,7-disulfonic acid
- 1,8-(OH) 2 -AQDS 1,8-dihydroxy-9,10-anthraquinone-2,7-disulfonic acid
- FIG. 11 a is a scheme of p-benzoquinone as the positive material and H 2 gas as the negative material for fuel cell tests.
- FIG. 11 b is an image of the cell used.
- FIG. 11 c is a graph of cell potential versus current density for tests in Example 8 using a 0.1 M solution.
- FIG. 11 d is a graph of the cell power density as a function of galvanic current density for Example 8.
- FIG. 12 is a Cell Schematic. Electrolytic/charge mode is shown; the arrows are reversed for galvanic/discharge mode.
- FIG. 13 is ( a ) Cell potential vs. current density at five different states-of-charge. The inset shows a linear increase in cell potential as the state of charge is increased.
- FIG. 14 is ( a ) Cell potential vs. current density at six different states-of-charge for the cell in Example 9. ( b ) Plot of power density vs. current density at the same six states of charge as ( a ).
- FIG. 15 is a plot of cell potential vs. state of charge for Example 9; inset shows stable current cycling over 100 shallow cycles.
- FIG. 16 is a plot of cell potential vs. time from Example 11, measured upon cycling (charge and discharge) ten times at 500 mA cm ⁇ 2 .
- ( b ) The same sample, 20 h after addition of Br 2 .
- ( c ) 1 H NMR of AQDS treated with 2 M HBr and Br 2 and heated to 100° C. for 48 h. The peaks are shifted due to presence of trace HBr which shifted the residual solvent peak due to increased acidity. Coupling constants for each peak are identical to ( a ).
- ( b ) The same sample, 24 h after addition of Br 2 .
- the separator can be a cheap hydrocarbon instead of a fluorocarbon, and reactant crossover will be negligible.
- the electrodes can be inexpensive conductors, conformally coated with a layer of active material so thin as to be negligible in cost [9].
- Many of the structural components can be made of cheap plastic, and components that need to be conducting can be protected with conformally coated ultrathin films.
- Chemical storage can be in the form of cheap, flowing liquids held in cheap plastic tanks and require neither compression nor heating above the liquid's boiling point.
- the electrochemical cells are based on small organic molecules (SOMs) called quinones ( FIG. 1 ). Because quinone-to-hydroquinone cycling occurs rapidly and reversibly in photosynthesis, we are able to employ it to obtain high current density (high current density is very important because the cost per kW of the system is typically dominated by the electrochemical stack's cost per kW, which is inversely proportional to the power density—the product of current density and voltage), high efficiency, and long lifetime in a flow battery. There are hundreds of different quinones spanning a wide range in properties [10-13] such as reduction potential ( FIG. 1 ), solubility and stability in water and other solvents. In addition, there are many structures that can be readily screened computationally and synthesized.
- SOMs small organic molecules
- a full cell includes a low redox potential quinone/hydroquinone couple and a bromine/bromide counterelectrode.
- the full cell includes a high redox potential quinone/hydroquinone couple vs. a low redox potential quinone/hydroquinone couple.
- a performance target is 80% round-trip efficiency in each cell at 0.25 W/cm 2 .
- the organic quinone species e.g., anthraquinones
- the invention is employs a knowledge base in oxygen-free fuel cells [14-16]. There is also a growing knowledge base on SOM electrochemistry for hydrogen storage [17,18].
- Organic-based fuel cells have been the subject of numerous studies, many focusing on alcohols (methanol and ethanol) and formic acid (H + COOH ⁇ ). Cells utilizing these fuels typically rely on high precious metal content catalysts (Pt, Pd, or Ru) [19-21]. Current densities approaching 1 A/cm 2 and power densities exceeding 250 mW/cm 2 have been obtained in direct formic acid fuel cells [19]. Reactant crossover is more important with methanol than formic acid [21].
- quinone-based compounds present a highly promising class of SOMs.
- Quinones are abundant in nature, they play a vital role in oxygen-evolving photosynthesis, and we eat them in green vegetables.
- plastoquinone is reversibly and rapidly reduced to plastoquinol as part of the electron transport chain that ultimately leads to the reduction of NADP+ to NADPH, which is then used in the synthesis of useful organic molecules from CO 2 [25].
- a 2009 publication exploring quinones for flow batteries makes the potential clear for flow batteries based on quinone/hydroquinone couples [26].
- the quinone to hydroquinone reduction reaction consists of converting an oxygen that is doubly bonded (“ ⁇ O”) to an sp 2 C 6 ring into a singly-bonded hydroxyl (“—OH”), as shown in FIG. 2( a ).
- An electrode contributes an electron as the acidic electrolyte provides the proton. This typically occurs with pairs of oxygens in the ortho or para configurations; in aqueous solutions the two oxygen sites undergo the reaction at potentials that are virtually indistinguishable.
- the transition from the hydroquinone to the quinone involves simply removing protons without disrupting the rest of the bonding ( FIG. 2( b )), and so these molecules are exceedingly stable.
- solubility In addition to redox potential, important molecular characteristics include solubility, stability, toxicity, and potential or current market price.
- High solubility is important because the mass transport limitation at high current density in a full cell is directly proportional to the solubility.
- Solubility can be enhanced by attaching polar groups such as the sulfonate groups, as in 1,2-Dihydroxybenzene-3,5-disulfonic acid ( FIG. 1( b )). Stability is important not only to prevent chemical loss for long cycle life, but also because polymerization on the electrode can compromise the electrode's effectiveness.
- Stability against water and polymerization can be enhanced by replacing vulnerable C—H groups adjacent to C+O groups with more stable groups such as C—R, where R is optionally substituted C 1-6 alkyl, hydroxy, optionally substituted C 1-6 alkoxy, SO 3 H, amino, nitro, carboxyl, phosphoryl, or phosphonyl.
- R is optionally substituted C 1-6 alkyl, hydroxy, optionally substituted C 1-6 alkoxy, SO 3 H, amino, nitro, carboxyl, phosphoryl, or phosphonyl.
- quinones or hydroquinones are available commercially on a small scale, and their current market price sets an upper limit on what the price might be at large scale.
- the very common 1,4-parabenzoquinone (“BQ”) for example, currently costs only about $10.53/kWh, assuming a 1-V cell, as shown in Table 2.
- BQ 1,4-parabenzoquinone
- Other quinones can be synthesized.
- each of R 1 -R 10 is independently selected from H, optionally substituted C 1-6 alkyl, halo, hydroxy, C 1-6 alkoxy, SO 3 H, amino, nitro, carboxyl, phosphoryl, phosphonyl, and oxo, or an ion thereof, provided that two of R 1 -R 6 for formula (A) are oxo, two or four of R 1 -R 8 for formula (B) are oxo, and two, four, or six of R 1 -R 10 for formulas (C) and (D) are oxo, wherein the dashed lines indicate that the monocylic ring of formula (A), the bicyclic ring of formula (B), and the tricyclic rings of formulas (C) and (D) are fully conjugated.
- R groups that is not oxo for each of formulas (A)-(D) is not H. In certain embodiments, none of the R groups for formulas (A)-(D) are H.
- Other formulas are (I), (II), and (III):
- each of R 1 -R 8 is independently selected from H, C 1-6 alkyl (e.g., methyl, ethyl, propyl, or isopropyl), halo (e.g., F, Cl, or Br), hydroxy, C 1-6 alkoxy (e.g., methoxy), and SO 3 H, or an ion thereof.
- C 1-6 alkyl e.g., methyl, ethyl, propyl, or isopropyl
- halo e.g., F, Cl, or Br
- hydroxy e.g., methoxy
- SO 3 H or an ion thereof.
- at least one of R 1 —R 8 (R 1 —R 4 for (I) and (II)) is not H. In other embodiments, none of R 1 —R 8 (R 1 —R 4 for (I) and (II)) is H.
- Additional quinones are of any of the following formulas.
- Quinones may be dissolved or suspended in aqueous solution in the batteries.
- concentration of the quinone ranges, for example, from 3 M to liquid quinone, e.g., 3-15 M.
- solutions may include alcohols (e.g., methyl, ethyl, or propyl) and other co-solvents to increase the solubility of a particular quinone.
- the solution of quinone is at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, or 80% water, by mass.
- Alcohol or other co-solvents may be present in an amount required to result in a particular concentration of quinone.
- the pH of the aqueous solution for a quinone may also be adjusted by addition of acid or base, e.g., to aid in solubilizing a quinone.
- This cell is based on a quinone/hydroquinone couple with low redox potential (an example of which is shown in FIG. 2 ) vs. redox active species, e.g., the bromide/bromine couple.
- redox active species include chlorine, iodine, oxygen, vanadium, chromium, cobalt, iron, manganese, cobalt, nickel, copper, or lead, e.g., a manganese oxide, a cobalt oxide or a lead oxide. If the quinone redox potential is ⁇ 0.02 V, then the equilibrium potential will be about 1.1 V, varying with concentration according to the Nernst Equation.
- Examples of quinone/hydroquinone couples with a low redox potential include 2-Methyl-5-iso-propyl-1,4-benzoquinone or 2,6-Methoxyl-1,4-benzoquinone ( FIG. 1( b )).
- This cell is based on the quinone/hydroquinone couple with high redox potential vs. quinone/hydroquinone with low redox potential.
- An all-quinone cell brings many advantages. Many of the structural components could be made of cheap plastic. The molecules are big enough that the separator is expected to be much cheaper than Nafion [32-34], and reactant crossover will still be negligible.
- the electrodes can be inexpensive conductors such as titanium [35] or glassy carbon, conformally coated with layer of active material so thin as to be negligible in cost. Engineering for two-phase flow will be unnecessary. Chemical storage can be in the form of flowing liquids requiring neither compression nor heating above the boiling point of water.
- Electrode materials can be screened for good molecule-specific electrode kinetics. Although evidence indicates that quinone/hydroquinone catalysis is not a significant barrier, some electrode materials are expected to become deactivated due to the chemisorption of molecules or fragments, or the polymerization of reactants. Electrodes for use with a quinone or hydroquinone include any carbon electrode, e.g., carbon paper electrodes, carbon felt electrodes, or carbon nanotube electrodes. Electrodes suitable for other redox active species are known in the art.
- Bromine and quinone electrodes can be made of a high specific surface area conducting material, such as nanoporous metal sponge [35], which has synthesized previously by electrochemical dealloying [36], or conducting metal oxide, which has been synthesized by wet chemical methods and shown to be good for bromine [9,30].
- Chemical vapor deposition can be used for conformal coatings of complex 3D electrode geometries by ultra-thin electrocatalyst films.
- the balance of system around the cell will include fluid handling and storage, and voltage and round-trip energy efficiency measurements can be made.
- Systems instrumented for measurement of catholyte and anolyte flows and pH, pressure, temperature, current density and cell voltage may be included and used to evaluate cells. Testing can be performed as reactant and acid concentrations and the cell temperature are varied. In one series of tests, the current density is measured at which the voltage efficiency drops to 90%. In another, the round-trip efficiency is evaluated by charging and discharging the same number of amp-minutes while tracking the voltage in order to determine the energy conversion efficiency. This is done initially at low current density, and the current density is then systematically increased until the round-trip efficiency drops below 80%.
- Fluids sample ports can be provided to permit sampling of both electrolytes, which will allow for the evaluation of parasitic losses due to reactant crossover or side reactions. Electrolytes can be sampled and analyzed with Inductively Coupled Plasma Mass Spectrometry, and other standard techniques.
- the ion conducting barrier allows the passage of protons but not a significant amount of the quinone, hydroquinone, or other redox active species.
- Example ion conducting barriers are Nafion, i.e., sulfonated tetrafluoroethylene based fluoropolymer-copolymer, hydrocarbons, e.g., polyethylene, and size exclusion barriers, e.g., ultrafiltration or dialysis membranes with a molecular weight cut off of 100, 250, 500, or 1,000 Da. For size exclusion membranes, the molecular weight cut off will be determined based on the molecular weight of the quinone, hydroquinone, or other redox active species employed.
- a battery of the invention may include additional components as is known in the art. Quinones, hydroquinones, and other redox active species dissolved or suspended in aqueous solution will be housed in a suitable reservoir.
- a battery may further include pumps to pump aqueous solutions or suspensions past one or both electrodes. Alternatively, the electrodes may be placed in a reservoir that is stirred or in which the solution or suspension is recirculated by any other method, e.g., convection, sonication, etc. Batteries may also include graphite flow plates and aluminum current collectors.
- HQSA hydroquinone-2-sulfonic acid
- AQDS was subjected to half-cell electrochemical measurements. Cyclic voltammetry of a 1 mM solution of AQDS in 1 M sulfuric acid on a glassy carbon disc working electrode showed current peaks corresponding to reduction and oxidation of the anthraquinone species ( FIG. 5 a ).
- FIG. 5 c a Pourbaix diagram of the equilibrium potential of the AQDS redox couple vs. pH.
- Aqueous 1 mM solutions of AQDS disodium salt were prepared and pH buffered using the following chemicals: sulfuric acid (1 M, pH 0), HSO 4 ⁇ /SO 4 2 ⁇ (0.1 M, pH 1-2), AcOH/AcO ⁇ (0.1 M, pH 2.65-5), H 2 PO 4 ⁇ /HPO 4 2 ⁇ (0.1 M, pH 5.3-8), HPO 4 2 ⁇ /PO 4 3 ⁇ (0.1 M, pH 9.28-11.52), and KOH (0.1 M, pH 13).
- a quinone-hydrogen fuel cell is illustrated by schematic in FIG. 11 a .
- 1,4-benzoquinone was used as the positive electrode material and H 2 gas as the negative material for fuel cell tests.
- H 2 gas was used as the negative material for fuel cell tests.
- the Nafion membrane conducted H + ions towards the cathode.
- the cell reached current densities of about 150 mA/cm 2 and power densities of about 35 mW/cm 2 , which were higher than values previously reported using soluble quinones for the positive electrode in a full cell configuration [26].
- FIG. 11 b shows an image of the cell used.
- the cell featured aluminum endplates, pyrolytic graphite current collectors with serpentine flow channels, a 50 ⁇ m thick Nafion 212 proton exchange membrane (which prior to use was pretreated using methods previously described [9]), and PTFE/Viton tubing and gasketing throughout.
- a commercial Pt—Ru/C carbon paper commercial electrode was used on both sides of the cell.
- the cell was operated in galvanic mode using previously described methods [9], with high-purity hydrogen gas flowed through the negative side of the cell at 5 psig and quinone solution flowed through the positive side using a Cole Parmer Masterflex pump.
- the solution consisted of para-benzoquinone in 1 N H 2 SO 4 .
- an N 2 purge was performed to remove any remaining O 2 and to ensure there were no leaks in the assembly.
- the voltage was allowed to stabilize for a few minutes, after which a DC electronic load was used to draw incrementally higher currents from the cell. In general, in order to allow the voltage to stabilize, we waited about 15 seconds after each change in current.
- FIG. 11 c we show the cell potential versus current density for tests done using a 0.1 M solution. In general, we observed a nearly linear drop in potential with increasing current density indicating robust electrode kinetics for the redox reaction, i.e. relatively low activation overpotentials.
- FIG. 11 d we show the cell power density as a function of galvanic current density. The power density fell off rapidly near the limiting current density.
- the cell was kept on a hot plate and wrapped in a PID-controlled heating element for temperature control, and the liquid electrolyte reservoirs were heated to improve thermal management.
- 35 mL of 1.75 M HBr and 0.9375 M NaHSO 4 were used as the electrolyte solution.
- 0.75 M 2,7-AQDS disodium salt in 1 M H 2 SO 4 were used. These concentrations were used so that, at a 50% state of charge, no pH or total ion concentration gradients exist across the membrane. Measurements shown here were done at 50° C.
- a Masterflex® peristaltic pump was used to circulate the fluids.
- a CHInstruments 1100C potentiostat was used to measure electrochemical properties of the battery.
- FIG. 14 a A potential of 1.5 volts was applied to charge the cell.
- the potential-current response ( FIG. 14 a ), potential-power ( FIG. 14 b ), and open circuit potential ( FIG. 15 ) for various states of charge (SOCs) were measured.
- SOCs states of charge
- the open circuit potential increased linearly from 0.76 V at 0.98 V.
- peak power densities were 77 mW cm ⁇ 2 and 168 mW cm ⁇ 2 at these same SOCs, respectively ( FIG. 14 b ).
- Performance characteristics of a quinone-bromine flow battery were measured under identical conditions to Example 10, except for the following: 120 mL of 2 M HBr and 0.5 M Br 2 were used as the positive electrolyte solution; 1 M 2,7-AQDS in 2 M H 2 SO 4 was used as the negative electrolyte solution.
- the open circuit potential increased linearly from 0.69 V to 0.92 V ( FIG. 13 a , inset).
- peak power densities were 0.246 W cm ⁇ 2 and 0.600 W cm ⁇ 2 at these same SOCs, respectively ( FIG. 13 b ).
- 9,10-anthraquinone-2,7-disulfonic acid demonstrated no reaction with 2 M HBr and bromine when heated to 100° C. for two days ( FIGS. 17 and 18 ), meaning that bromine crossover will not lead to irreversible destruction of AQDS.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Materials Engineering (AREA)
- Fuel Cell (AREA)
- Hybrid Cells (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/431,175 US20150243991A1 (en) | 2012-09-26 | 2013-09-26 | Small organic molecule based flow battery |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261705845P | 2012-09-26 | 2012-09-26 | |
US201361823258P | 2013-05-14 | 2013-05-14 | |
US201361838589P | 2013-06-24 | 2013-06-24 | |
US14/431,175 US20150243991A1 (en) | 2012-09-26 | 2013-09-26 | Small organic molecule based flow battery |
PCT/US2013/062057 WO2014052682A2 (en) | 2012-09-26 | 2013-09-26 | Small organic molecule based flow battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/062057 A-371-Of-International WO2014052682A2 (en) | 2012-09-26 | 2013-09-26 | Small organic molecule based flow battery |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/823,546 Continuation US9966622B2 (en) | 2012-09-26 | 2015-08-11 | Small organic molecule based flow battery |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150243991A1 true US20150243991A1 (en) | 2015-08-27 |
Family
ID=50389135
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/431,175 Abandoned US20150243991A1 (en) | 2012-09-26 | 2013-09-26 | Small organic molecule based flow battery |
US14/823,546 Active US9966622B2 (en) | 2012-09-26 | 2015-08-11 | Small organic molecule based flow battery |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/823,546 Active US9966622B2 (en) | 2012-09-26 | 2015-08-11 | Small organic molecule based flow battery |
Country Status (11)
Country | Link |
---|---|
US (2) | US20150243991A1 (ko) |
EP (1) | EP2901520B1 (ko) |
JP (2) | JP6574382B2 (ko) |
KR (2) | KR102392089B1 (ko) |
CN (2) | CN105308785A (ko) |
AU (2) | AU2013323439A1 (ko) |
CA (1) | CA2885929C (ko) |
ES (1) | ES2968855T3 (ko) |
IN (1) | IN2015DN03105A (ko) |
WO (1) | WO2014052682A2 (ko) |
ZA (1) | ZA201502599B (ko) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160043423A1 (en) * | 2012-09-26 | 2016-02-11 | President And Fellows Of Harvard College | Small organic molecule based flow battery |
US9614245B2 (en) | 2013-06-17 | 2017-04-04 | University Of Southern California | Inexpensive metal-free organic redox flow battery (ORBAT) for grid-scale storage |
CN106654200A (zh) * | 2016-12-08 | 2017-05-10 | 南方科技大学 | 一种电极材料、其制备方法及用途 |
US20180145515A1 (en) * | 2016-11-18 | 2018-05-24 | Industrial Technology Research Institute | Smart charging method |
US20180219241A1 (en) * | 2017-01-27 | 2018-08-02 | President And Fellows Of Harvard College | Flow battery with electrolyte rebalancing system |
US10403895B2 (en) * | 2014-12-23 | 2019-09-03 | Cambridge Display Technology Limited | Organic flow cell batteries and materials for use in same |
WO2019240933A1 (en) * | 2018-06-10 | 2019-12-19 | University Of Southern California | Inexpensive and efficient organic redox flow battery configurations for large-scale energy storage |
US10847829B2 (en) | 2013-09-26 | 2020-11-24 | President And Fellows Of Harvard College | Quinone and hydroquinone based flow battery |
US20210135246A1 (en) * | 2016-11-23 | 2021-05-06 | Lockheed Martin Energy, Llc | Flow Batteries Incorporating Active Materials Containing Doubly Bridged Aromatic Groups |
US20220029188A1 (en) * | 2018-11-29 | 2022-01-27 | Ip2Ipo Innovations Limited | Redox flow battery |
US11245111B2 (en) * | 2017-10-17 | 2022-02-08 | University Of Southern California | Stable positive side material for all-organic flow battery |
US11450854B2 (en) | 2017-02-13 | 2022-09-20 | Cmblu Energy Ag | Redox flow battery electrolytes |
US11557786B2 (en) | 2018-10-01 | 2023-01-17 | President And Fellows Of Harvard College | Extending the lifetime of organic flow batteries via redox state management |
US11646434B2 (en) | 2018-03-12 | 2023-05-09 | University Of Southern California | Crossover resistant materials for aqueous organic redox flow batteries |
US11724980B2 (en) | 2018-02-09 | 2023-08-15 | President And Fellows Of Harvard College | Quinones having high capacity retention for use as electrolytes in aqueous redox flow batteries |
US11773537B2 (en) | 2016-04-07 | 2023-10-03 | Cmblu Energy Ag | Sulfonated lignin-derived compounds and uses thereof |
US11788228B2 (en) | 2017-02-13 | 2023-10-17 | Cmblu Energy Ag | Methods for processing lignocellulosic material |
US11831017B2 (en) * | 2018-02-13 | 2023-11-28 | Cmblu Energy Ag | Redox flow battery electrolytes |
US11891349B2 (en) | 2018-02-13 | 2024-02-06 | Cmblu Energy Ag | Aminated lignin-derived compounds and uses thereof |
US11923581B2 (en) | 2016-08-12 | 2024-03-05 | President And Fellows Of Harvard College | Aqueous redox flow battery electrolytes with high chemical and electrochemical stability, high water solubility, low membrane permeability |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105679985B (zh) | 2014-11-17 | 2019-02-01 | 中国科学院大连化学物理研究所 | 一种醌多卤化物液流电池 |
US20180048011A1 (en) * | 2015-03-06 | 2018-02-15 | President And Fellows Of Harvard College | HIGH pH ORGANIC FLOW BATTERY |
US10253051B2 (en) | 2015-03-16 | 2019-04-09 | Lockheed Martin Energy, Llc | Preparation of titanium catecholate complexes in aqueous solution using titanium tetrachloride or titanium oxychloride |
US20180048008A1 (en) | 2015-03-24 | 2018-02-15 | 3M Innovative Properties Company | Porous Electrodes, Membrane-Electrode Assemblies, Electrode Assemblies, and Electrochemical Cells and Liquid Flow Batteries Therefrom |
KR20170129884A (ko) | 2015-03-24 | 2017-11-27 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 다공성 전극 및 이로부터 제조된 전기화학 전지 및 액체 흐름 배터리 |
CN107431182A (zh) | 2015-03-24 | 2017-12-01 | 3M创新有限公司 | 多孔电极以及由其制造的电化学电池和液流蓄电池 |
WO2016154175A1 (en) | 2015-03-24 | 2016-09-29 | 3M Innovative Properties Company | Membrane assemblies, electrode assemblies, membrane-electrode assemblies and electrochemical cells and liquid flow batteries therefrom |
CN106329033B (zh) * | 2015-06-30 | 2019-04-02 | 中国科学院大连化学物理研究所 | 一种基于水溶性快速反应动力学电对的光电化学储能电池 |
CN106532093A (zh) * | 2015-09-09 | 2017-03-22 | 中国科学院大连化学物理研究所 | 一种醌金属电对液流电池系统 |
US10644342B2 (en) | 2016-03-03 | 2020-05-05 | Lockheed Martin Energy, Llc | Coordination complexes containing monosulfonated catecholate ligands and methods for producing the same |
US10316047B2 (en) | 2016-03-03 | 2019-06-11 | Lockheed Martin Energy, Llc | Processes for forming coordination complexes containing monosulfonated catecholate ligands |
EP3427324B1 (en) | 2016-03-10 | 2020-03-25 | 3M Innovative Properties Company | Electrode solutions and electrochemical cells and batteries therefrom |
JP2019512846A (ja) | 2016-03-17 | 2019-05-16 | スリーエム イノベイティブ プロパティズ カンパニー | 膜アセンブリ、電極アセンブリ、膜電極アセンブリ並びにこれらによる電気化学セル及び液体フロー電池 |
WO2017160972A1 (en) | 2016-03-17 | 2017-09-21 | 3M Innovative Properties Company | Electrode assemblies, membrane-electrode assemblies and electrochemical cells and liquid flow batteries therefrom |
JP2019509600A (ja) | 2016-03-17 | 2019-04-04 | スリーエム イノベイティブ プロパティズ カンパニー | 膜アセンブリ、電極アセンブリ、膜電極アセンブリ並びにこれらによる電気化学セル及び液体フロー電池 |
FR3052598B1 (fr) * | 2016-06-10 | 2018-06-01 | Universite De Rennes 1 | Utilisation de liquides ioniques comme adjuvant en electrochimie |
WO2018016593A1 (ja) * | 2016-07-21 | 2018-01-25 | 日立化成株式会社 | 二次電池、二次電池システム、正極電解液及び発電システム |
WO2018029617A1 (en) | 2016-08-11 | 2018-02-15 | 3M Innovative Properties Company | Membrane-electrode assemblies and electrochemical cells and liquid flow batteries therefrom |
KR102229442B1 (ko) * | 2016-09-22 | 2021-03-17 | 주식회사 엘지화학 | 수계 레독스 플로우 전지용 유기계 양극 활물질 |
US10497958B2 (en) | 2016-12-14 | 2019-12-03 | Lockheed Martin Energy, Llc | Coordinatively unsaturated titanium catecholate complexes and processes associated therewith |
WO2019072385A1 (en) | 2017-10-11 | 2019-04-18 | Cmblu Projekt Ag | REDOX BATTERY ELECTROLYTES |
US20200283380A1 (en) * | 2017-02-13 | 2020-09-10 | Cmblu Projekt Ag | Process For The Production Of Lignin Derived Low Molecular Products |
JP6847446B2 (ja) * | 2017-02-17 | 2021-03-24 | 国立大学法人九州大学 | 電解液および発電装置 |
US20190372145A1 (en) * | 2017-02-17 | 2019-12-05 | Kyushu University, National University Corporation | Electrolytic Solution, Electrolytic Aqueous Solution, and Power Generating Device |
WO2018160618A1 (en) | 2017-02-28 | 2018-09-07 | Wisconsin Alumni Research Foundation | High-and low-potential, water-soluble, robust quinones |
CN109411794A (zh) * | 2017-08-17 | 2019-03-01 | 江苏中安环能新能源科技有限公司 | 一种新型全醌水体系液流电池 |
EP3447827A1 (en) * | 2017-08-25 | 2019-02-27 | RISE Acreo AB | Electrode system with polymer electrode |
WO2019068918A1 (en) | 2017-10-05 | 2019-04-11 | Cmblu Projekt Ag | PROCESSES FOR TREATING LIGNOCELLULOSIC MATERIAL |
JP2019129037A (ja) * | 2018-01-23 | 2019-08-01 | 三菱瓦斯化学株式会社 | 電池用電解液及びレドックスフロー電池 |
WO2020035138A1 (en) | 2018-08-14 | 2020-02-20 | Cmblu Projekt Ag | Redox-active compounds and uses thereof |
WO2020065455A1 (en) | 2018-09-24 | 2020-04-02 | 3M Innovative Properties Company | Porous electrode, membrane-electrode assembly, liquid flow battery and method of making a porous electrode |
WO2020087119A1 (en) * | 2018-10-29 | 2020-05-07 | Newsouth Innovations Pty Limited | Hydrogen-based battery |
KR102039854B1 (ko) * | 2019-02-01 | 2019-11-01 | 서울과학기술대학교 산학협력단 | 레독스 흐름 전지 시스템 및 이를 포함하는 레독스 흐름 전지 |
KR102164666B1 (ko) * | 2019-03-26 | 2020-10-12 | 한국생산기술연구원 | 유기 활물질을 포함하는 바나듐 레독스 흐름전지 |
CN114730902A (zh) * | 2019-09-17 | 2022-07-08 | 路博润公司 | 具有2,5-二巯基-1,3,4-噻二唑(“dmtd”)和其衍生物的氧化还原液流电池电解质 |
JP7252699B2 (ja) * | 2019-09-26 | 2023-04-05 | 日本化薬株式会社 | 電解液及びそれを含むレドックスフロー電池 |
WO2021076548A1 (en) * | 2019-10-14 | 2021-04-22 | Georgia Tech Research Corporation | Electrochemical flow devices and methods of making the same |
EP3840096A1 (en) * | 2019-12-20 | 2021-06-23 | Kemiwatt | New aqueous organic-based electrolyte for redox flow battery |
WO2021164880A1 (en) | 2020-02-20 | 2021-08-26 | Cmblu Energy Ag | Phenazine-based compounds and use thereof as redox flow battery electrolyte |
CN115315837A (zh) * | 2020-03-24 | 2022-11-08 | 日本化药株式会社 | 杂环化合物或其盐、活性物质、电解液以及氧化还原液流电池 |
JP7392947B2 (ja) | 2020-06-24 | 2023-12-06 | 三菱重工業株式会社 | レドックスフロー電池 |
WO2022042735A1 (zh) * | 2020-08-28 | 2022-03-03 | 西湖大学 | 基于吩嗪衍生物的电解质及其在液流电池中的应用 |
JP2024506444A (ja) | 2020-12-24 | 2024-02-14 | ツェーエムブルー エナジー アーゲー | 酸化還元フロー電池のための水性エネルギー貯蔵システム |
CN114975989B (zh) * | 2021-02-23 | 2024-05-17 | 香港科技大学 | 无铅钙钛矿电极及包含该电极的锂离子电池 |
EP4106060A1 (en) * | 2021-06-18 | 2022-12-21 | Kemiwatt | Biobased aqueous organic electrolyte for aqueous organic redox flow battery |
WO2023058658A1 (ja) * | 2021-10-06 | 2023-04-13 | 日本化薬株式会社 | 二次電池用材料、活物質、電解液及び二次電池 |
WO2023120445A1 (ja) | 2021-12-22 | 2023-06-29 | 三菱重工業株式会社 | アントラキノン類活物質 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4578323A (en) * | 1983-10-21 | 1986-03-25 | Corning Glass Works | Fuel cell using quinones to oxidize hydroxylic compounds |
US20070134520A1 (en) * | 2004-03-29 | 2007-06-14 | Ebara Corporation | Method and apparatus of generating electric power |
US20090001737A1 (en) * | 2006-01-24 | 2009-01-01 | Per Salomonsson | Crash Box for a Vehicle |
WO2011131959A1 (en) * | 2010-04-19 | 2011-10-27 | The Queen's University Of Belfast | Redox battery |
US20110284456A1 (en) * | 2010-05-21 | 2011-11-24 | Adrian Brozell | Self-Assembled Surfactant Structures |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3238066A (en) * | 1961-11-22 | 1966-03-01 | Union Oil Co | Method of generating electricity using a polyhydric phenol-oxygen fuel cell |
US3288641A (en) * | 1962-06-07 | 1966-11-29 | Standard Oil Co | Electrical energy storage apparatus |
JPS5028645A (ko) * | 1973-07-20 | 1975-03-24 | ||
FR2309046A1 (fr) * | 1975-04-24 | 1976-11-19 | Alsthom Cgee | Procede de regulation d'un systeme electrochimique du type redox et dispositif de mise en oeuvre |
US4711828A (en) | 1985-05-27 | 1987-12-08 | Babcock-Hitachi Kabushiki Kaisha | Carbon monoxide-oxygen fuel cell |
JPS6273577A (ja) * | 1985-09-26 | 1987-04-04 | Babcock Hitachi Kk | 臭素−銅系レドツクス型燃料電池 |
JPH0758625B2 (ja) * | 1990-05-11 | 1995-06-21 | 工業技術院長 | レドックス電池 |
JP3259751B2 (ja) * | 1994-12-28 | 2002-02-25 | 日本電信電話株式会社 | 温度差電池 |
US6033784A (en) | 1995-04-07 | 2000-03-07 | Jacobsen; Mogens Havsteen | Method of photochemical immobilization of ligands using quinones |
JP3039484B2 (ja) * | 1997-10-24 | 2000-05-08 | 日本電気株式会社 | ポリマー電池 |
JP4704639B2 (ja) * | 1999-06-15 | 2011-06-15 | 川崎化成工業株式会社 | パルプ蒸解方法 |
JP2002100398A (ja) * | 2000-09-20 | 2002-04-05 | Nec Corp | 二次電池及び電気化学キャパシタ並びにそれらの製造方法 |
US20070184309A1 (en) * | 2003-05-30 | 2007-08-09 | Gust Jr John D | Methods for use of a photobiofuel cell in production of hydrogen and other materials |
WO2006129635A1 (ja) * | 2005-05-31 | 2006-12-07 | Matsushita Electric Industrial Co., Ltd. | 二次電池とこれを用いた電源システム、電源システムの使用方法 |
CN101411009B (zh) * | 2006-04-05 | 2011-05-11 | 松下电器产业株式会社 | 二次电池的制造方法和二次电池用正极活性物质的调制方法 |
US8785023B2 (en) * | 2008-07-07 | 2014-07-22 | Enervault Corparation | Cascade redox flow battery systems |
KR101009440B1 (ko) * | 2008-10-10 | 2011-01-19 | 한국과학기술연구원 | 용해 납 레독스 흐름 배터리용 전극 및 이를 이용한 용해 납 레독스 흐름 배터리 |
US8460814B2 (en) * | 2009-07-29 | 2013-06-11 | The Invention Science Fund I, Llc | Fluid-surfaced electrode |
JP2013048012A (ja) * | 2009-12-04 | 2013-03-07 | Waseda Univ | 空気電池 |
FR2989225A1 (fr) | 2012-04-10 | 2013-10-11 | Univ Rennes | Dispositif de pile a combustible a electrolytes circulants, par percolation a travers d'electrodes de structure tridimensionnelle poreuse |
JP6574382B2 (ja) * | 2012-09-26 | 2019-09-11 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 低分子有機化合物ベースのフロー電池 |
US9614245B2 (en) | 2013-06-17 | 2017-04-04 | University Of Southern California | Inexpensive metal-free organic redox flow battery (ORBAT) for grid-scale storage |
JP6643983B2 (ja) | 2013-09-26 | 2020-02-12 | プレジデント アンド フェローズ オブ ハーバード カレッジ | キノン及びヒドロキノン系フロー電池 |
US20180048011A1 (en) | 2015-03-06 | 2018-02-15 | President And Fellows Of Harvard College | HIGH pH ORGANIC FLOW BATTERY |
JP7058625B2 (ja) * | 2019-04-22 | 2022-04-22 | 任天堂株式会社 | 画像処理プログラム、画像処理システム、画像処理装置、および画像処理方法 |
-
2013
- 2013-09-26 JP JP2015534682A patent/JP6574382B2/ja active Active
- 2013-09-26 KR KR1020157010653A patent/KR102392089B1/ko active IP Right Grant
- 2013-09-26 ES ES13841221T patent/ES2968855T3/es active Active
- 2013-09-26 CA CA2885929A patent/CA2885929C/en active Active
- 2013-09-26 EP EP13841221.8A patent/EP2901520B1/en active Active
- 2013-09-26 CN CN201380061081.XA patent/CN105308785A/zh active Pending
- 2013-09-26 AU AU2013323439A patent/AU2013323439A1/en not_active Abandoned
- 2013-09-26 US US14/431,175 patent/US20150243991A1/en not_active Abandoned
- 2013-09-26 IN IN3105DEN2015 patent/IN2015DN03105A/en unknown
- 2013-09-26 CN CN202110624181.5A patent/CN113555594A/zh active Pending
- 2013-09-26 KR KR1020217010191A patent/KR20210041122A/ko not_active Application Discontinuation
- 2013-09-26 WO PCT/US2013/062057 patent/WO2014052682A2/en active Application Filing
-
2015
- 2015-04-17 ZA ZA2015/02599A patent/ZA201502599B/en unknown
- 2015-08-11 US US14/823,546 patent/US9966622B2/en active Active
-
2018
- 2018-05-30 AU AU2018203801A patent/AU2018203801B2/en active Active
-
2019
- 2019-06-26 JP JP2019118766A patent/JP2019179768A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4578323A (en) * | 1983-10-21 | 1986-03-25 | Corning Glass Works | Fuel cell using quinones to oxidize hydroxylic compounds |
US20070134520A1 (en) * | 2004-03-29 | 2007-06-14 | Ebara Corporation | Method and apparatus of generating electric power |
US20090001737A1 (en) * | 2006-01-24 | 2009-01-01 | Per Salomonsson | Crash Box for a Vehicle |
WO2011131959A1 (en) * | 2010-04-19 | 2011-10-27 | The Queen's University Of Belfast | Redox battery |
US20110284456A1 (en) * | 2010-05-21 | 2011-11-24 | Adrian Brozell | Self-Assembled Surfactant Structures |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9966622B2 (en) * | 2012-09-26 | 2018-05-08 | President And Fellows Of Harvard College | Small organic molecule based flow battery |
US20160043423A1 (en) * | 2012-09-26 | 2016-02-11 | President And Fellows Of Harvard College | Small organic molecule based flow battery |
US10566643B2 (en) | 2013-06-17 | 2020-02-18 | University Of Southern California | Inexpensive metal-free organic redox flow battery (ORBAT) for grid-scale storage |
US9614245B2 (en) | 2013-06-17 | 2017-04-04 | University Of Southern California | Inexpensive metal-free organic redox flow battery (ORBAT) for grid-scale storage |
US11532830B2 (en) | 2013-06-17 | 2022-12-20 | University Of Southern California | Inexpensive metal-free organic redox flow battery (ORBAT) for grid-scale storage |
US10847829B2 (en) | 2013-09-26 | 2020-11-24 | President And Fellows Of Harvard College | Quinone and hydroquinone based flow battery |
US10403895B2 (en) * | 2014-12-23 | 2019-09-03 | Cambridge Display Technology Limited | Organic flow cell batteries and materials for use in same |
US11773537B2 (en) | 2016-04-07 | 2023-10-03 | Cmblu Energy Ag | Sulfonated lignin-derived compounds and uses thereof |
US11923581B2 (en) | 2016-08-12 | 2024-03-05 | President And Fellows Of Harvard College | Aqueous redox flow battery electrolytes with high chemical and electrochemical stability, high water solubility, low membrane permeability |
US20180145515A1 (en) * | 2016-11-18 | 2018-05-24 | Industrial Technology Research Institute | Smart charging method |
US12062795B2 (en) * | 2016-11-23 | 2024-08-13 | Lockheed Martin Energy, Llc | Flow batteries incorporating active materials containing doubly bridged aromatic groups |
US20210135246A1 (en) * | 2016-11-23 | 2021-05-06 | Lockheed Martin Energy, Llc | Flow Batteries Incorporating Active Materials Containing Doubly Bridged Aromatic Groups |
CN106654200A (zh) * | 2016-12-08 | 2017-05-10 | 南方科技大学 | 一种电极材料、其制备方法及用途 |
US10840532B2 (en) * | 2017-01-27 | 2020-11-17 | President And Fellows Of Harvard College | Flow battery with electrolyte rebalancing system |
US20180219241A1 (en) * | 2017-01-27 | 2018-08-02 | President And Fellows Of Harvard College | Flow battery with electrolyte rebalancing system |
US11450854B2 (en) | 2017-02-13 | 2022-09-20 | Cmblu Energy Ag | Redox flow battery electrolytes |
US11788228B2 (en) | 2017-02-13 | 2023-10-17 | Cmblu Energy Ag | Methods for processing lignocellulosic material |
US11245111B2 (en) * | 2017-10-17 | 2022-02-08 | University Of Southern California | Stable positive side material for all-organic flow battery |
US11724980B2 (en) | 2018-02-09 | 2023-08-15 | President And Fellows Of Harvard College | Quinones having high capacity retention for use as electrolytes in aqueous redox flow batteries |
US11831017B2 (en) * | 2018-02-13 | 2023-11-28 | Cmblu Energy Ag | Redox flow battery electrolytes |
US11891349B2 (en) | 2018-02-13 | 2024-02-06 | Cmblu Energy Ag | Aminated lignin-derived compounds and uses thereof |
US20230275251A1 (en) * | 2018-03-12 | 2023-08-31 | University Of Southern California | Crossover resistant materials for aqueous organic redox flow batteries |
US11646434B2 (en) | 2018-03-12 | 2023-05-09 | University Of Southern California | Crossover resistant materials for aqueous organic redox flow batteries |
WO2019240933A1 (en) * | 2018-06-10 | 2019-12-19 | University Of Southern California | Inexpensive and efficient organic redox flow battery configurations for large-scale energy storage |
US11557786B2 (en) | 2018-10-01 | 2023-01-17 | President And Fellows Of Harvard College | Extending the lifetime of organic flow batteries via redox state management |
US20220029188A1 (en) * | 2018-11-29 | 2022-01-27 | Ip2Ipo Innovations Limited | Redox flow battery |
Also Published As
Publication number | Publication date |
---|---|
ZA201502599B (en) | 2020-07-29 |
JP6574382B2 (ja) | 2019-09-11 |
AU2013323439A1 (en) | 2015-04-30 |
JP2019179768A (ja) | 2019-10-17 |
JP2015534708A (ja) | 2015-12-03 |
EP2901520A2 (en) | 2015-08-05 |
CN105308785A (zh) | 2016-02-03 |
WO2014052682A3 (en) | 2015-08-20 |
ES2968855T3 (es) | 2024-05-14 |
KR20150063467A (ko) | 2015-06-09 |
WO2014052682A2 (en) | 2014-04-03 |
US20160043423A1 (en) | 2016-02-11 |
AU2018203801B2 (en) | 2020-06-18 |
IN2015DN03105A (ko) | 2015-10-02 |
KR20210041122A (ko) | 2021-04-14 |
CA2885929C (en) | 2021-12-07 |
AU2018203801A1 (en) | 2018-06-21 |
US9966622B2 (en) | 2018-05-08 |
CA2885929A1 (en) | 2014-04-03 |
EP2901520C0 (en) | 2023-11-29 |
KR102392089B1 (ko) | 2022-04-28 |
CN113555594A (zh) | 2021-10-26 |
EP2901520B1 (en) | 2023-11-29 |
EP2901520A4 (en) | 2016-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2018203801B2 (en) | Small organic molecule based flow battery | |
US11532830B2 (en) | Inexpensive metal-free organic redox flow battery (ORBAT) for grid-scale storage | |
US20210083311A1 (en) | Quinone and hydroquinone based flow battery | |
Lai et al. | Stable low-cost organic dye anolyte for aqueous organic redox flow battery | |
Dizaji et al. | Higher voltage redox flow batteries with hybrid acid and base electrolytes | |
Zhen et al. | Redox flow battery | |
Mirle et al. | On Capacity Upgradation and In Situ Capacity Rebalancing in Anthrarufin-Based Alkaline Redox Flow Batteries | |
Torabi | High voltage quinone flow battery with hybrid acid and base electrolytes | |
Santos et al. | Microbially charged redox flow batteries for bioenergy storage | |
Hoober-Burkhardt | Small organic molecules in all-organic redox flow batteries for grid-scale energy storage | |
US20220029188A1 (en) | Redox flow battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, MASSACHU Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ASPURU-GUZIK, ALAN;AZIZ, MICHAEL J.;BETLEY, THEODORE A.;AND OTHERS;SIGNING DATES FROM 20150204 TO 20150317;REEL/FRAME:035348/0088 |
|
AS | Assignment |
Owner name: U.S. DEPARTMENT OF ENERGY, DISTRICT OF COLUMBIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:HARVARD UNIVERISTY;REEL/FRAME:039094/0304 Effective date: 20150415 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCV | Information on status: appeal procedure |
Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER |
|
STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |
|
STCV | Information on status: appeal procedure |
Free format text: BOARD OF APPEALS DECISION RENDERED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |