US20150201660A1 - Extraction Method - Google Patents

Extraction Method Download PDF

Info

Publication number
US20150201660A1
US20150201660A1 US14/423,995 US201314423995A US2015201660A1 US 20150201660 A1 US20150201660 A1 US 20150201660A1 US 201314423995 A US201314423995 A US 201314423995A US 2015201660 A1 US2015201660 A1 US 2015201660A1
Authority
US
United States
Prior art keywords
extract
ethanol
food
sugar cane
supernatant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/423,995
Inventor
David Kannar
Barry James Kitchen
Lance Sparrow
Gregory Yu Foo Szto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Product Makers Australia Pty Ltd
Original Assignee
Product Makers Australia Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50182261&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20150201660(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from AU2012903726A external-priority patent/AU2012903726A0/en
Application filed by Product Makers Australia Pty Ltd filed Critical Product Makers Australia Pty Ltd
Assigned to THE PRODUCT MAKERS (AUSTRALIA) PTY LTD reassignment THE PRODUCT MAKERS (AUSTRALIA) PTY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PHYTOLIN PTY LTD
Assigned to PHYTOLIN PTY LTD reassignment PHYTOLIN PTY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SZTO, Gregory Yu Foo, KITCHEN, BARRY JAMES, SPARROW, LANCE, KANNAR, DAVID
Publication of US20150201660A1 publication Critical patent/US20150201660A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • A23L1/3002
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/60Sweeteners
    • A23L1/2363
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/899Poaceae or Gramineae (Grass family), e.g. bamboo, corn or sugar cane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B10/00Production of sugar juices
    • C13B10/02Expressing juice from sugar cane or similar material, e.g. sorghum saccharatum
    • C13B10/06Sugar-cane crushers
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B10/00Production of sugar juices
    • C13B10/14Production of sugar juices using extracting agents other than water, e.g. alcohol or salt solutions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L21/00Marmalades, jams, jellies or the like; Products from apiculture; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to extracts derived from sugar cane and the subsequent processing streams (e.g., raw sugar, molasses, bagasse, mill mud and field trash).
  • the present invention also relates to processes for producing the extracts.
  • the present invention further relates to use of the extracts to reduce the available calorific value and/or glycaemic index of foods and beverages, and to use of the extracts in methods of treating or preventing diseases such as diabetes and metabolic syndrome as well as underlying conditions including but not limited to inflammation.
  • sugar cane After being mechanically harvested, sugar cane is transported to a primary mill and crushed between serrated rollers. The crushed sugar cane is then pressed to extract the raw sugar juice, while the bagasse (leftover fibrous material) is used for fuel. The raw juice is then heated to its boiling point to extract any impurities, then lime and bleaching agents are added and mill mud is removed. The raw juice is further heated under vacuum to concentrate and increase Brix value. The concentrated syrup is seeded to produce bulk sugar crystals and a thick syrup known as molasses. The two are separated by a centrifuge and the molasses waste stream is collected for use as a low-grade animal feedstock.
  • bagasse leftover fibrous material
  • the sugar refining process thus generates a large number of products including raw juice, bagasse, mill mud, clarified juice, molasses, dunder and sugar crystals.
  • Dunder is produced when sugar or molasses is fermented under controlled conditions to produce ethanol.
  • the bulk sugar crystals from the above process are further refined to produce many commercially available sugar products.
  • the further refining may include mixing the bulk sugar crystals with a hot concentrated syrup to soften the outer coating on the crystals.
  • the crystals are then recovered by centrifuge and subsequently dissolved in hot water, a step that is sometimes called affination.
  • This sugar liquor is then further purified by carbonation or phosfloatation, filtration, decolourisation and then seeded with fine sugar crystals.
  • the crystals are separated from the syrup by centrifugation, then dried, graded and packaged. There may be several repetitions of recovering sugar crystals from the sugar liquor.
  • the dark sugar syrup which is left after all of the sugar crystals have been recovered is also called refinery molasses.
  • Molasses and other products of the sugar refining process are complex mixtures of substances. Typically they are difficult to refine further and there are often substances in the compositions that poison standard separating materials. Molasses and the other thick syrups and juices typically comprise polyphenols, polysaccharides, flavonoids, peptides and proteins, minerals, organic acids, and mono and disaccharides. Complex polymers are also formed during processing (e.g., melanoidins).
  • the key consideration with a primary sugar milling operation is to maximise the extract and recovery of sucrose.
  • sugar refineries processing primary mill sugar is to improve sucrose purity.
  • Ethanol has been used in the recovery of sucrose from waste streams such as molasses (U.S. Pat. No. 1,730,473) and removal of impurities (U.S. Pat. No. 4,116,712; U.S. Pat. No. 2,000,202).
  • Ethanol has also been used in the isolation of individual polyphenols from dunder, including tricin, luteolin or apigenin (WO 2004/014159).
  • ethanol was first used in a crude clean up step to crash out impurities and then as part of a solvent mixture to chromatographically isolate fractions comprising specific polyphenols.
  • Molasses, golden syrup and treacle have been used as a health food since the early 20th century and there have been claims that they are good therapies or cures for a wide range of disorders.
  • Recent evidence demonstrates that novel sugar cane phytochemicals contained in, the products of the sugar cane refining process reduce glycaemic index (GI) and therefore reduce the risk of obesity and diabetes.
  • GI glycaemic index
  • the strong taste of these sugar cane derived products containing high molecular weight colourants makes them unpalatable to many people and the high viscosity of treacle and molasses makes them difficult to handle and unstable for incorporation into other foodstuffs.
  • the other products of cane sugar refining such as bagasse and mill mud are known to include potentially useful substances but their hitherto intractable nature and instability has meant that they are usually thrown away as waste.
  • Extracts derived from sugar cane containing isolated polyphenols have been produced previously but are not as effective as complex mixtures of polyphenols and flavonoids derived from sugar cane products. Extracts derived from sugar cane containing mixtures of polyphenols and flavonoids have been produced previously but are dark coloured and bitter tasting, thus reducing the palatability and/or appearance of the finished food or beverage to which they are added. Accordingly, it is desirable to develop an improved extraction method that results in a sugar cane derived extract having an increased concentration of polyphenols, lower colour and decreased bitterness to avoid the palatability problems associated with known extracts. Extracts with these improved properties would find broader use in foods, nutraceuticals and pharmaceuticals compared to current offerings.
  • the present inventors have developed a process for producing a sugar cane derived extract comprising polyphenols and/or flavonoids in more functionally effective amounts and having improved taste, lower colour and polysaccharide content.
  • the extracts of the present invention are believed to provide a synergistic combination of polyphenols and other components that are not contemplated in the prior art. As a consequence, the extract can be added back to foods or beverages in smaller quantities without significantly affecting the palatability and/or colour of the product.
  • the present invention provides a process for producing an extract derived from sugar cane, the process comprising:
  • the extract may be a powder, including a freeze dried powder or dehydrated powder.
  • the extract is a liquid extract, more preferably an aqueous extract.
  • the process may further include:
  • a preliminary extraction mixture e.g., comprising at least about 25% v/v ethanol
  • the preliminary supernatant may then be subjected to the process of the invention described above.
  • isopropanol can be used in place of ethanol.
  • any suitable food grade polar solvents could also be used in place of ethanol.
  • Suitable food grade polar solvents include butanol, acetone, ethyl acetate and/or propyl acetate.
  • the process further comprises removing water from the extract, preferably by evaporation under vacuum, to produce an aqueous extract having about 65° Bx (Brix).
  • the sugar cane derived product is selected from molasses, bagasse, first expressed juice, mill mud, clarified sugar juice, clarified syrup, treacle, golden syrup, field trash, cane strippings and/or dunder.
  • the sugar cane derived product is molasses or dunder, preferably molasses.
  • the sugar cane derived product is mixed with water in order to enable efficient and/or uniform mixing of the sugar cane product with ethanol to form the extraction mixture.
  • the sugar cane derived product comprises a mixture of water with a product selected from molasses, bagasse, first expressed juice, mill mud, clarified sugar juice, clarified syrup, treacle, golden syrup, field trash, cane strippings and/or dunder.
  • the sugar cane derived product comprises solid components, it may be desirable to first blend or homogenise the sugar cane derived product prior to mixing it with ethanol to form the extraction mixture.
  • the sugar cane derived product is bagasse, field trash and/or cane strippings blended or homogenised with water.
  • the skilled person can readily determine a suitable period of time for allowing the precipitate to form in the reaction mixture.
  • the precipitate is allowed to form for about 10 minutes to about 24 hours prior to removing the precipitate.
  • the extraction mixture is maintained at a temperature of about 20° C. to about 30° C.
  • the ethanol is removed from the supernatant by evaporation under vacuum.
  • the process is performed in batch. In an alternative embodiment, the process is performed in continuous flow.
  • the process further comprises subjecting the supernatant to membrane filtration and/or ion exchange, hydrophobic or size exclusion chromatography and collecting one or more flavonoid and/or polyphenol containing fractions to produce the extract derived from sugar cane.
  • the extract derived from sugar cane comprises a mixture of flavonoids and/or polyphenols. More preferably, the extract further includes components that exist with flavonoids and/or polyphenols in sugar cane including minerals, vitamins, carbohydrates, organic acids and/or fiber. More preferably, the extract comprises a mixture of flavonoids and/or polyphenols as glycones and aglycones.
  • the supernatant is subject to size exclusion membrane filtration or size exclusion chromatography.
  • the process further comprises subjecting the supernatant to ion exchange chromatography, hydrophobic interaction chromatography, liquid chromatography-mass spectrometry (LCMS) and/or matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) to produce the extract, preferably hydrophobic interaction chromatography.
  • LCMS liquid chromatography-mass spectrometry
  • MALDI-TOF matrix-assisted laser desorption/ionization-time of flight
  • the extraction mixture comprises about 70% to about 85% ethanol.
  • the extract comprises one or more of tricin, apigenin, luteolin, caffeic acid, hydroxycinnamic acids, sinapic acid, and derivatives thereof.
  • the extract produced by the process of the invention has reduced colour per unit concentration of polyphenols when compared to prior art compositions.
  • the colour of the extract may be analysed by measuring the absorbance of the supernatant at 420 nm.
  • the supernatant has an absorbance at 420 nm of about 800 to about 140 milliabsorbance (mAU) units.
  • the colour of the extract may also be analysed using the ICUMSA protocol.
  • the present invention provides an extract produced by the process of the invention.
  • the extract produced by the process of the invention comprises at least 25 mg/ml flavonoids and/or at least 25 mg/ml polyphenols.
  • the extract produced by the process of the invention comprises one or more of tricin, apigenin, luteolin, caffeic acid, hydroxycinnamic acids, sinapic acid, and derivatives thereof.
  • the extract produced by the process of the invention has ⁇ -glucosidase inhibitory activity and/or ⁇ -amylase inhibitory activity.
  • the extract produced by the process of the invention has anti-inflammatory activity.
  • the extract produced by the process of the invention has calorific value reduction properties and/or activity which slows the flux of carbohydrates, particularly monosaccharides, from the gut into the blood.
  • the extract also has glycemix index reduction properties.
  • the present invention provides an extract derived from sugar cane, wherein the extract comprises at least 25 mg/ml flavanoids, and/or at least 25 mg/ml polyphenols.
  • the extract derived from sugar cane comprises one or more of tricin, apigenin, luteolin, caffeic acid, hydroxycinnamic acids, sinapic acid, and derivatives thereof.
  • the extract derived from sugar cane has anti-inflammatory activity.
  • the present invention provides a composition comprising the extract of the invention.
  • the composition may include one or more additional active ingredients.
  • Active ingredients may include, but are not limited to, fucodian and arcabose. It is believed that such combinations may have a synergistic effect.
  • the present invention provides a food or beverage comprising the extract of the invention or the composition of the invention.
  • the food or beverage is selected from a bakery product, crystallised sugar, confectionary, breakfast cereal, naturally derived fiber, chemically derived fiber, dairy product, soft drink, water, coffee, cocoa, tea, or alcoholic beverage.
  • the food or beverage is a soft drink selected from a fruit juice containing beverage and a carbonated soft drink.
  • the food or beverage is selected from a bakery product, crystallised sugar, confectionary, breakfast cereal, naturally derived fiber, chemically derived fiber, diary product, soft drink, water, coffee, cocoa, tea, or alcoholic beverage.
  • the food is crystallised sugar.
  • the present invention provides a method of treating or preventing disease in a subject, the method comprising administering to the subject the extract of the invention, the composition of the invention, and/or the food or beverage of the invention.
  • the disease that is treated or prevented is diabetes and/or metabolic syndrome.
  • the diabetes is type II diabetes.
  • the diabetes is type I diabetes.
  • the present invention provides the extract of the invention, the composition of the invention, and/or the food or beverage of the invention, for use in the treatment or prevention of disease.
  • the present invention provides use of the extract of the invention, the composition of the invention, and/or the food or beverage of the invention in the manufacture of a medicament for the treatment or prevention of disease.
  • FIG. 1 Analysis of polyphenols, tricin and colour (A 420 nm) in ethanolic supernatant samples.
  • Sample 1 0% ethanol
  • sample 2 50% ethanol
  • sample 3 66% ethanol
  • sample 4 75% ethanol
  • sample 5 80% ethanol
  • sample 6 83% ethanol
  • sample 7 86% ethanol.
  • FIG. 2 Plot of % glucosidase inhibition vs. log 1.4 ⁇ g/ml for fucoidan (control), dunder (sample 6) and molasses (sample 3).
  • FIG. 3 Comparison of % PGE2 inhibition for aspirin (control), ibuprofen (control), dunder (sample 6) and molasses (sample 3).
  • FIG. 4 HPLC spectra of (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6; (g) phenolics at various retention times; and (h) flavonoids at various retention times.
  • FIG. 5 Plots of % polyphenol (PP) recovery vs. % ethanol and % colour removal vs. % ethanol of molassess feedstock samples having 25° Brix and 48° Brix.
  • x axis % ethanol;
  • y axis % polyphenol recovery and % colour removal.
  • administering as used herein is to be construed broadly and includes administering an extract or composition comprising the extract as described herein to a subject as well as providing an extract or composition comprising the extract as described herein to a cell.
  • treating include administering a therapeutically effective amount of an extract or composition comprising the extract as described herein sufficient to reduce or delay the onset or progression of a specified disease, or to reduce or eliminate at least one symptom of the disease.
  • the terms “preventing”, “prevent” or “prevention” include administering a therapeutically effective amount of an extract or composition comprising the extract sufficient to stop or hinder the development of at least one symptom of the specified condition.
  • dietary supplement as used herein is to be construed broadly and means a preparation or formulation which is added to or otherwise included in a subject's normal diet, and is present in addition to the normal diet.
  • a dietary supplement may be administered to a subject prior to, in conjunction with, or after consumption of a food or beverage.
  • sugar cane After being mechanically harvested, sugar cane is transported to a mill and crushed between serrated rollers. The crushed sugar cane is then pressed to extract the raw sugar juice, while the bagasse (leftover fibrous material) is typically used for fuel. The raw juice is then heated to its boiling point to extract any impurities, then lime and bleaching agents are added and mill mud is removed. The raw juice is further heated under vacuum to concentrate and increase Brix value. The concentrated syrup is seeded to produce bulk sugar crystals and a thick syrup known as molasses. The two are separated by a centrifuge and typically the molasses waste stream is collected for use as a low-grade animal feedstock.
  • bagasse leftover fibrous material
  • the extract produced according to the process of the invention can be derived from any sugar cane derived product, including those produced during the sugar cane milling process, the sugar cane refining process and other processes using sugar cane products.
  • sugar cane derived product refers to products of the sugar cane milling and refining processes including molasses, bagasse, first expressed juice, mill mud, clarified sugar juice, clarified syrup, treacle, golden syrup, field trash, cane strippings, growing tips, pulp and dunder.
  • sugar cane derived products comprise complex mixtures of substances including flavonoids, flavones, and polyphenols (Duarte-Almeida et al., 2006; Colombo et al., 2006; Payet et al., 2006; US 2012/0115941) as well as phytosterols, oligosaccharides, polysaccharides, mono and disaccharides, organic acids (e.g. cis and trans aconitic acid), peptides and proteins.
  • the type and amount of these components vary between the different sugar cane derived products. For example, molasses includes mono and disaccharides whereas dunder is almost free of sugar components.
  • Extracts that comprise complex mixtures of substances display improved characteristics compared with extracts of isolated components, such as tricin, luteolin or apigenin, or combinations of synthetic compounds.
  • Extracts according to the invention therefore can comprise one or more of tricin, apigenin, luteolin, caffeic acid, hydroxycinnamic acids, sinapic acid, and derivatives thereof. It is believed that natural biological mixtures can have a synergistic effect and may be better than synthetic or individually isolated natural products.
  • the sugar cane derived product is used as a feedstock and mixed with ethanol to form the extraction mixture.
  • Ethanol is used to extract a mixture of flavonoids and/or polyphenols.
  • the prior art uses ethanol to crash out impurities either in the extraction of sucrose or during the isolation of individual polyphenols (WO 2004/014159).
  • the rate of mixing the feedstock with ethanol may need to be controlled as well as the degree of mixing, ie homogeneity.
  • the sugar cane derived product may need to be mixed with a liquid, typically water, and/or heated in order to achieve a desired viscosity.
  • molasses is viscous at room temperature and, as a consequence, mixing of molasses and ethanol may be difficult to achieve consistently, efficiently or uniformly unless the viscosity of the molasses is adjusted.
  • the molasses may be mixed with water at a ratio of molasses to water of from about 75:25 to about 25:75. In one embodiment, the ratio of molasses to water is about 50:50.
  • the sugar cane derived product may be heated to decrease viscosity.
  • the sugar cane derived product may be heated to about 25° C. to about 60° C., more preferably about 25° C. to about 40° C., more preferably about 26° C. to about 30° C.
  • sugar cane derived products comprising solid material such as bagasse, field trash and cane strippings
  • the product is first blended or homogenised with water prior to mixing with ethanol to form the extraction mixture.
  • the amount of water with which the sugar cane derived product is blended or homogenised can be readily determined by the skilled person in order to achieve a sugar cane derived product having a suitable viscosity for mixing with ethanol to form an extraction mixture.
  • the sugar cane derived product will have a viscosity less than or equal to about 100 centipoise, more preferably between about 50 to about 100 centipoise.
  • the high viscosity of molasses is as a result of the high total solids (particularly soluble carbohydrates) and this is typically measured by determination of Brix degrees.
  • the sugar cane derived product will have about 20° to about 50° Brix.
  • Feedstocks with high Brix (>50°) behave differently to lower Brix feedstocks ( ⁇ 30°) with respect to the separation of polyphenols and colour by increasing levels of ethanol. This observation is crucial in both small and large scale separation processes.
  • the extraction mixture has a pH of about pH 4 to about pH 7.5.
  • the extract derived from the process of the invention may be used without further purification.
  • the extract may be subjected to purification, preferably hydrophobic interaction chromatography.
  • the purification step removes impurities, such as pigments that contribute to the colour of the extract.
  • the prior art uses chromatography to isolate fractions of individual polyphenols (WO 2004/014159).
  • the sugar cane derived product is mixed with ethanol to form an extraction mixture.
  • the present inventors have found that producing an extraction mixture comprising at least 50% v/v ethanol results in an increase in precipitate formation in the reaction mixture.
  • the retained supernatant advantageously has reduced colour and bitterness compared to a supernatant prepared from an extraction mixture comprising less than 50% v/v ethanol.
  • the extraction mixture comprises at least 50% v/v ethanol.
  • the extraction mixture comprises at least 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 65%, 70%, or 75% v/v ethanol, or at least 80%, 81%, 82%, 83%, 84% or 85 ethanol v/v.
  • the optimal concentration of ethanol in the extraction mixture for removing colour in the supernatant while minimising reduction in polyphenols is about 75% to about 85% v/v. Accordingly, in one embodiment, the extraction mixture comprises about 75% to about 85% v/v ethanol. In another embodiment, the extraction mixture comprises about 83% v/v ethanol.
  • the present inventors also found that while colour removal was substantially achieved with a reaction mixture comprising about 70% v/v ethanol, an extraction mixture comprising about 80% to about 83% v/v ethanol produced an extract that was stable and produced no precipitate over a 6 month period.
  • the extraction mixture comprises about 80% to about 83% v/v ethanol.
  • the precipitate may be removed from the mixture by any suitable method known in the art.
  • the precipitate may be removed by centrifugation and the supernatant obtained.
  • the precipitate may be allowed to settle for a time sufficient to allow the supernatant to be obtained while leaving precipitate behind, such as by sedimentation under gravity for example.
  • Other techniques such as filtration can be used alone or in combination with centrifugation or sedimentation in order to produce the extract derived from sugar cane.
  • the ethanol is removed using techniques known in the art.
  • the ethanol may be removed from the supernatant by evaporation, such as by using a rotary evaporator with a heating bath at approximately 45° C. or higher.
  • the process comprises multiple extractions.
  • a sugar cane derived product is mixed with ethanol to produce a preliminary extraction mixture (e.g., comprising at least about 25% v/v ethanol), a precipitate is allowed to form in the preliminary extraction mixture and the precipitate is removed from the preliminary extraction mixture to obtain a preliminary supernatant.
  • a preliminary extraction mixture e.g., comprising at least about 25% v/v ethanol
  • the preliminary supernatant is mixed with ethanol to produce a further extraction mixture comprising at least about 50% v/v ethanol, a precipitate is allowed to form in the further extraction mixture, the precipitate is removed from the further extraction mixture to obtain a further supernatant and ethanol is removed from the further supernatant to produce an extract derived from sugar cane.
  • Further ethanol can be added to a 50% extract supernatant to an ethanol level between 75-83% ethanol.
  • a further precipitate forms and can be recovered. The supernatant can become the final extract.
  • Separation of components in the supernatant or extract may also be achieved using chromatographic techniques or combinations of techniques such as ion exchange chromatography, hydrophobic interaction chromatography, such as for example on XAD or preferably a food grade resin such as FPX66 resin, which may use fractional elution by stepwise increase in pH or with suitable solvents, liquid chromatography-mass spectrometry (LCMS) and/or matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) to produce the extract.
  • LCMS liquid chromatography-mass spectrometry
  • MALDI-TOF matrix-assisted laser desorption/ionization-time of flight
  • the supernatants or extracts may be further processed by standard techniques such as but not limited to microfiltration, reverse osmosis, gel permeation, vacuum evaporation and freeze drying, spray drying and tunnel drying.
  • Sugar cane derived extracts according to the invention may be tested for biological activity using known techniques and assays.
  • an extract according to the invention can be tested for enzymatic activity.
  • the extracts may be tested for ⁇ -glucosidase inhibitory activity and/or ⁇ -amylase inhibitory activity.
  • ⁇ -glucosidase inhibitory activity can be measured as the ability of test samples to prevent the hydrolysis of 4-methylumbelliferyl- ⁇ -D-glucopyranosidase by yeast ( Saccharomyces cerevisiae ) ⁇ -glucosidase using known techniques.
  • yeast Saccharomyces cerevisiae
  • acarbose can be included in the assay as a positive control.
  • ⁇ -amylase inhibitory activity may be measured by the ability of samples to slow the rate at which porcine pancreatic amylase hydrolyses labelled starch (E-11954, Molecular Probes).
  • porcine pancreatic amylase hydrolyses labelled starch E-11954, Molecular Probes.
  • acarbose may be included in the assay as a positive control.
  • an extract according to the invention can also be tested for anti-inflammatory activity.
  • the extracts may be tested for prostaglandin E2 (PGE2) activity.
  • PGE2 inhibitory activity can be measured by the ability of test samples to inhibit PGE2 production in 3T3 cells when stimulated with calcium ionophore.
  • aspirin and ibuprofen may be included in the assay as a positive control.
  • the extracts produced according to the process of the invention can be used in a wide variety of economically useful applications.
  • an extract produced by the process of the invention is included in a food or beverage product.
  • Food or beverages according to the invention can be prepared by the skilled person using known techniques. Non-limiting examples of such food or beverage products are baked goods, dairy type foods and drinks, snacks, etc.
  • the amount of the extract to be used in a food or beverage can be variable as the extracts themselves are nutrients.
  • the extract may be used in any food or food product such as but not limited to sugar, for example crystallised sugar, confectioneries, snacks (sweet and savoury), cocoa-containing foods, flavours, dairy products including cheeses, butter, ice cream, yoghurt, and other dairy spreads; fat-based products including margarines, spreads, mayonnaise, shortenings, cooking and frying oils, and dressings; cereal-based and bakery products including breads and pastas whether these goods are cooked, baked or otherwise processed; confectioneries including chocolate, candies, chewing gum, desserts, non-dairy toppings, sorbets, icings and other fillings; and other miscellaneous food products including eggs and egg products, processed foods such as soups and pre-prepared pastas.
  • sugar for example crystallised sugar, confectioneries, snacks (sweet and savoury), cocoa-containing foods, flavours, dairy products including cheeses, butter, ice cream, yoghurt, and other dairy spreads
  • fat-based products including mar
  • the extract may be incorporated into or added to processed foods including but not limited to: breads, pastas, biscuits, sauces, soups, bars, dairy products (for example, milk, yoghurts, cheese, ice cream), cakes, ready-to-eat prepared meals, and breakfast cereals.
  • processed foods including but not limited to: breads, pastas, biscuits, sauces, soups, bars, dairy products (for example, milk, yoghurts, cheese, ice cream), cakes, ready-to-eat prepared meals, and breakfast cereals.
  • the extracts may be used in beverages, whether hot or cold including coffee, tea, cocoa, cereal, chicory and other plant extract based beverages, alcoholic or non-alcoholic beverages and including colas and other carbonated and non-carbonated soft drinks, fruit juices, juice drinks, dairy-based beverages, and meal replacement drinks.
  • the extracts may also be added to food grade ingedients such as soluble fiber (e.g. oligofructosaccharide), insoluble fiber (e.g. cocoa bean fiber, sugar cane fiber, oatbran), naturally derived fibers (e.g., hemicelluloses, lignocelluloses), chemically derived fibers (e.g., inulin), flour, starch, modified starch, gelatine, or other food, to produce a unique composition or ingredient with enhanced levels of polyphenols, flavonoids, and/or other phytochemicals derived from sugarcane.
  • soluble fiber e.g. oligofructosaccharide
  • insoluble fiber e.g. cocoa bean fiber, sugar cane fiber, oatbran
  • naturally derived fibers e.g., hemicelluloses, lignocelluloses
  • chemically derived fibers e.g., inulin
  • flour starch, modified starch, gelatine, or other food
  • the extract according to the invention is particularly useful for increasing the active phytochemical content of coffee products without increasing bitterness.
  • Roasting coffee beans causes the development of the myriad desired flavours of coffee.
  • the roasting also causes the bitter taste of coffee which is related to an increase in the level of the antioxidants, chlorogenic acid lactones and phenylindanes.
  • the extract of the invention can be used to increase the level of active phytochemicals (such as polyphenols) in coffee products.
  • the food or beverage of the present invention can include additional ingredients including an orally ingestible diluent or carrier.
  • an orally ingestible diluent or carrier are known in the food sciences. These include, but are not limited to, manufactured cereals, fruit or vegetable products, beverages or beverage concentrates, ground meat products or vegetable analogues thereof, and any inert diluent, carrier, or excipient known in the pharmaceutical art.
  • the extract produced according to the process of the invention may be added to or included in a nutritional supplement.
  • a “nutritional supplement” is an orally ingestible product consumed to improve overall nutrition, health, well-being, or performance of a subject in an activity and/or an orally ingestible product which provides additional perceived nutritional or biological benefit to a subject.
  • the nutritional supplement may be provided in a concentrated form, thus allowing for the addition of the nutritional supplement to a food or drink product to allow for the consumption of a desired quantity of an extract of the invention in a reasonable serving size.
  • the nutritional supplement is a sports nutrition product.
  • the extract may be added to a sports nutrition product including, by way of non-limiting examples, sports powders, sports drinks, energy drinks, pre-mixes, juices, energy bars, energy gels, isotonic drinks and gelatine, starch based or pectin jellies.
  • the nutritional supplements and sports nutrition products of the current invention can include additional ingredients.
  • more than one of the extracts of the current invention can be included in the same nutritional supplement or sports nutrition formulation.
  • Other additional ingredients include any ingestible product.
  • Preferred additional ingredients include, but are not limited to, other active food supplement ingredients such as micro-nutrients such as vitamins and minerals or macro-nutrients such as polyunsaturated fatty acids or fiber.
  • the food additive may also include acceptable dispersing and suspending agents, and water.
  • Other conventional nutritional supplements can also be included if desired.
  • the nutritional supplement or sports nutrition product can take many forms including, but not limited to, powders, liquids, tablets, capsules, solutions, concentrates, syrups, suspensions, or dispersions.
  • the glycaemic index or GI ranks carbohydrates according to their effect on blood glucose levels. The lower the GI, the slower the rise in blood glucose level will be when the food is consumed. Some research has shown that by eating a diet with a lower GI, people with diabetes, for example, can reduce their average blood glucose levels. This is important in reducing the risk of developing diabetes-related complications.
  • GI rating To determine a food's GI rating, measured portions of the food containing 10-50 grams of carbohydrate are fed to at least 10 healthy people after an overnight fast. Finger-prick blood samples are taken at 15-30 minute intervals over the next two hours. These blood samples are used to construct a blood sugar response curve for the two hour period. The area under the curve (AUC) is calculated to reflect the total rise in blood glucose levels after eating the test food. The GI rating (%) is calculated by dividing the AUC for the test food by the AUC for the reference food (usually glucose or white bread) and multiplying by 100. A GI value of 55 or less is considered ‘low’, 56-69 is considered “medium” and over 70 is “high”.
  • a lower glycemic index suggests slower rates of digestion and absorption of carbohydrates and is believed to equate to a lower insulin demand, better long-term blood glucose control and a reduction in blood lipids. It has been shown that individuals who followed a low GI diet over many years were at a significantly lower risk for developing both type 2 diabetes and associated conditions such as cataracts as well as coronary heart disease. High blood glucose levels or repeated glycemic “spikes” following a meal may promote these diseases by both increasing oxidative damage to the vasculature and via the direct increase in insulin levels. Postprandial hyperglycemia has been considered a risk factor mainly associated with diabetes but it is now that it also presents an increased risk for atherosclerosis and other conditions in the non-diabetic population.
  • Low-GI foods by virtue of their slow digestion and absorption, produce gradual rises in blood sugar and insulin levels and have been shown to improve both glucose and lipid levels in people with diabetes (type 1 and type 2) and have benefits for weight control as they help control appetite and delay hunger. Low GI diets also reduce insulin levels and insulin resistance.
  • the extracts produced according to the process of the present invention may be used in food or beverages, for example, to lower or reduce the GI of the food or beverage.
  • the extracts according to the present invention in the form of a liquid extract can be sprayed onto standard sugar (whether derived from sugar cane or sugar beets) to produce a low GI sugar.
  • the extracts according to the present invention in the form of a liquid extract can also be sprayed onto other carriers such as flour, starch, bagasse or fiber thus increasing the levels of polyphenols and/or flavonoids in these food ingredients.
  • Endogenous and “adsorbed” polyphenols and other sugarcane phytochemicals use the fibers to protect these compounds from early metabolic changes in the gut and increase delivery to specific sites in the colon where these compounds reduce inflammation and other disease processes including cyclooxygenase enzymes involved with intestinal carcinogenesis or polyp formation (Cai et al.).
  • the available calorific value of a food or beverage relates to the amount of energy available from the food or beverage when digested.
  • chocolate is a low-GI food, it contains a high number of calories and therefore has a high available calorific value as determined by conventional methods including bomb calorimetry.
  • the extracts according to the present invention in the form of a liquid extract can be sprayed onto standard sugar (whether derived from sugar cane or sugar beets) to produce a reduced available calorific value sugar (sucrose).
  • standard sugar whether derived from sugar cane or sugar beets
  • sugar beets a reduced available calorific value sugar
  • the extracts according to the present invention in the form of a liquid extract can also be sprayed onto other carriers such as flour, starch or fiber thus increasing the levels of polyphenols and/or flavonoids in these food ingredients.
  • a powder such as a freeze dried powder or dehydrated powder, can be used in place of a liquid extract.
  • dietary calories are derived from carbohydrate. Approximately half are from simple sugars (glucose, fructose, sucrose, lactose, maltose and trehalose) with the remainder coming from complex carbohydrates (hemicelluloses, galactans, mannans and starch). Complex carbohydrates other than starch are referred to as dietary fiber which is either partly or totally digested in the large intestine.
  • the digestion of dietary carbohydrates is a physiologically regulated process in the gastrointestinal tract.
  • Important enzymes in this process include salivary and pancreatic ⁇ -amylase and intestinal ⁇ -glucosidase. Beginning in the mouth, food is chewed and mixed with salivary ⁇ -amylase. Starch released begins to break down immediately. This hydrolysis process slows or stops in the stomach because of the change in pH but resumes again in the duodenum where pancreatic ⁇ -amylase is secreted. The result is to produce maltose and maltotriose from amylase and maltose, maltotriose, glucose and dextrin from amylopectin.
  • the principal enzymes responsible for the breakdown of carbohydrates in the human body are ⁇ -amylase and ⁇ -glucosidase and so inhibition of one or both of these enzymes can result in the GI of foods being reduced.
  • the extracts of the invention which demonstrate inhibition of the activity of ⁇ -glucosidase and ⁇ -amylase in vitro will delay carbohydrate absorption in vivo, thus reducing post-prandial increase in blood glucose.
  • the extracts of the invention are able to lower the GI of a food or beverage.
  • pharmaceutically acceptable carrier is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration.
  • the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, such media can be used in the compositions of the invention. Supplementary active compounds can also be incorporated into the compositions.
  • the current extract is higher in concentration (polyphenols (mg)/extract (ml)) of polyphenols and lower in colour relative to other extracts from sugar, the extracts are “more effective” in delivering a therapeutic amount of biologically active compounds.
  • concentration polyphenols (mg)/extract (ml)
  • extracts are “more effective” in delivering a therapeutic amount of biologically active compounds.
  • the lower colour and organoleptic astringency of some syrups prepared according to the present invention broaden their possible use and application in a range of foods and carriers.
  • the final volume was 200 ml.
  • a 1 ml sample was removed and diluted with 1 ml water, mixed well and then a drop was placed on a Ella refractometer.
  • the Brix reading was 48.
  • the feedstock (200 ml) was placed in a glass beaker on a magnetic stirrer and adjusted so that a clear vortex was formed, ethanol was slowly added into the vortex to ensure rapid mixing of the feedstock with the ethanol. Over a period of about 30 minutes, 950 ml of ethanol was added. The temperature was maintained at 26-28° C. This resulted in the final ethanol level in the mixture being 83% v/v. The mixture was stirred for another 30 minutes. A number of sub-samples were taken during the addition of the ethanol to support the observations as the solution changed in colour and different coloured precipitates formed as the ethanol % increased.
  • the final mixture was turbid and had a coagulated black gelatinous precipitate visibly present in the bottom of the beaker.
  • the supernatant was removed and centrifuged at 4000 rpm (2500 ⁇ g), for 5 minutes. The clear yellow supernatant was decanted leaving the black precipitate plug in the centrifuge tube. About 950 ml of the mixture was centrifuged and the final volume of supernatant recovered was 880 ml.
  • Ethanol was removed using a Buchi rotary evaporator under vacuum. The bath temperature was 45° C. The final concentrate (free of any ethanol odour) volume was 62 ml and the Brix level was 64-65. Ethanol, its azeotroph and water were all removed during this process.
  • the final bioactive extract was a dark/yellow colour, free of any particulate material and with a fresh sweet flavour similar to that of golden syrup or treacle.
  • the supernatant was recovered in the same way as described in Example 1.
  • the volume was 1050 ml.
  • Table 5 lists the samples tested. Each sample (0.5 mL) was weighed and freeze-dried to determine its % dry matter. The samples were then resuspended in either dimethyl sulfoxide (DMSO) or DMSO:water (1:1) to a concentration of 15 mg/mL, after which the samples were serially diluted.
  • DMSO dimethyl sulfoxide
  • the reaction was stopped by the addition of 100 mM sodium glycine buffer (100 ⁇ L, pH 10.6), the plate was shaken for a further 30 seconds, and the fluorescence intensity was measured at ⁇ ex 355 nm and ⁇ en 460 nm. Fucoidan was used as a positive control and sodium acetate buffer (pH 5.5) was used as a negative control.
  • the in vitro production of PEG2 from 3T3 cells was measured using the Cayman Chemical Prostaglandin E2 monoclonal EIA (Enzyme Immuno Assay) kit.
  • the cells were exposed to samples 3 and 6 and stimulated with calcium ionophore.
  • the cell supernatants were then assayed for PEG2 production.
  • the cell cytotoxicity of the samples was tested against 3T3 cells to confirm that the observed PEG2 inhibition was not due to cell cytotoxicity.
  • Aspirin and ibuprofen were used as positive controls.
  • sample 3 and sample 6 The highest PEG2 inhibition observed for sample 3 and sample 6 was 29.90% and 42.33%, respectively, at 0.488 ⁇ g/mL. As shown in FIG. 3 , the PEG2 inhibitory response of sample 6 was similar to that of ibuprofen (42.14% at 0.488 ⁇ g/mL). Inhibition of PEG2 production in the cells, relative to control cells not exposed to the samples, indicates that the samples act as an anti-inflammatory agent in vitro.
  • the resin is then washed with an alkaline pH 12-13 solution which removes the bound polyphenols and flavonoids, and this effluent is adjusted to pH 6.5 to 7.0 with acid or preferably it is passed through an acidic resin column to “exchange” the alkali for H + ions so the effluent pH is less than 7. This process was reproduced in the laboratory on a small scale.
  • Liquid chromatography profiles of polyphenols were monitored initially in the affination liquor (pH 5.0-6.0) and then in the alkaline resin extracts (pH 12-13) and then after adjusting these extracts (pH 6.5-7.0).
  • Polyphenols are extremely sensitive to high pH conditions forming flavones. Such changes can modify the bioactivity of these compounds and even reversing the pH from alkaline to neutral does not necessarily return them to their previous bioactive properties.
  • Liquid chromatography fingerprints from-alkaline pH 12-13 extracts were significantly different to fingerprints from the same extracts but adjusted to pH 6.5-7.0. A number of major peaks in the alkaline extracts seemed to have shifted to lower elution times on the chromatogram, possibly reflecting the structural change to flavones. When the pH of these alkaline extracts was adjusted to neutral pH, the peaks shifted to longer elution times and aligned themselves with peaks obtained from the original liquor feedstock.
  • the present inventors have surprisingly found that colour can be removed efficiently without significant loss of polyphenols. When ethanol concentration was increased beyond 40% a more suitable extract was produced.
  • Sample 1 Townsville Terminal Molasses, which has been clarified by centrifugation.
  • the crude molasses (about 75 Brix) was adjusted to 25 Brix with water and centrifuged (4,000 rpm for 10 mins). The precipitate was discarded.
  • the initial clarified feedstock was still 25 Brix and used to produce a 75% ethanol supernatant, which is Sample 2.
  • 200 ml of this clarified feedstock was used to make the 75% super extract.
  • Total CE/100 g 808 mg.
  • Sample 4 This 75% super was made by initially removing the 50% precipitate, recovering the 50% super and then adding more ethanol to 75%. Precipitate removed, 75% super recovered and ethanol removed. The final volume was 80 ml and it was 32 Brix.
  • Sample 5 Hydrophobic chromatography extract of Sample 4.
  • FPX66 material recovered from 15 ml of Sample 4. The peak removed with 70% ethanol was bulked (aliquots were combined) and the ethanol removed. Final volume was 25 ml.
  • Sample 6 Hydrophobic chromatography extract of Sample 2.
  • FPX66 material recovered from 15 ml of Sample 2. The peak removed with 70% ethanol was bulked (aliquots were combined) and the ethanol removed. Final volume was 40 ml.
  • FIG. 4 shows the HPLC fingerprints of the samples as well as some spectra of unidentified phenolics and flavonoids at various retention times.
  • the present inventors also observed that, when molasses is diluted to 25 Brix and then 48 Brix and extraction is broken into two stages, the colour of the final extract is lower and polyphenol recovery is higher. Therefore, an extraction method to produce a standardised extract is as set out in FIG. 6 .

Abstract

The present invention relates to a process for producing an extract derived from sugar cane, the process comprising: i) mixing a sugar cane derived product with ethanol to produce an extraction mixture comprising at least about 50% v/v ethanol; ii) allowing a precipitate to form in the extraction mixture; iii) removing the precipitate from the extraction mixture to obtain a supernatant; and iv) removing ethanol from the supernatant to produce the extract derived from sugar cane. The present invention further relates to extracts produced according to the process of the invention. The invention also relates to the use of such extracts in a method of lowering the available calorific value of a food or beverage, in treating or preventing disease, and as a nutritional supplement, dietary supplement, sports nutrition product, food coating or pharmaceutical product.

Description

    FIELD OF THE INVENTION
  • The present invention relates to extracts derived from sugar cane and the subsequent processing streams (e.g., raw sugar, molasses, bagasse, mill mud and field trash). The present invention also relates to processes for producing the extracts. The present invention further relates to use of the extracts to reduce the available calorific value and/or glycaemic index of foods and beverages, and to use of the extracts in methods of treating or preventing diseases such as diabetes and metabolic syndrome as well as underlying conditions including but not limited to inflammation.
  • BACKGROUND
  • After being mechanically harvested, sugar cane is transported to a primary mill and crushed between serrated rollers. The crushed sugar cane is then pressed to extract the raw sugar juice, while the bagasse (leftover fibrous material) is used for fuel. The raw juice is then heated to its boiling point to extract any impurities, then lime and bleaching agents are added and mill mud is removed. The raw juice is further heated under vacuum to concentrate and increase Brix value. The concentrated syrup is seeded to produce bulk sugar crystals and a thick syrup known as molasses. The two are separated by a centrifuge and the molasses waste stream is collected for use as a low-grade animal feedstock. The sugar refining process thus generates a large number of products including raw juice, bagasse, mill mud, clarified juice, molasses, dunder and sugar crystals. Dunder is produced when sugar or molasses is fermented under controlled conditions to produce ethanol.
  • The bulk sugar crystals from the above process are further refined to produce many commercially available sugar products. For example, the further refining may include mixing the bulk sugar crystals with a hot concentrated syrup to soften the outer coating on the crystals. The crystals are then recovered by centrifuge and subsequently dissolved in hot water, a step that is sometimes called affination. This sugar liquor is then further purified by carbonation or phosfloatation, filtration, decolourisation and then seeded with fine sugar crystals. Once the crystals have grown to the requisite size, the crystals are separated from the syrup by centrifugation, then dried, graded and packaged. There may be several repetitions of recovering sugar crystals from the sugar liquor. The dark sugar syrup which is left after all of the sugar crystals have been recovered is also called refinery molasses.
  • Molasses and other products of the sugar refining process, especially the thick syrups and juices, are complex mixtures of substances. Typically they are difficult to refine further and there are often substances in the compositions that poison standard separating materials. Molasses and the other thick syrups and juices typically comprise polyphenols, polysaccharides, flavonoids, peptides and proteins, minerals, organic acids, and mono and disaccharides. Complex polymers are also formed during processing (e.g., melanoidins).
  • The key consideration with a primary sugar milling operation is to maximise the extract and recovery of sucrose. Similarly, the key consideration for sugar refineries processing primary mill sugar is to improve sucrose purity. Ethanol has been used in the recovery of sucrose from waste streams such as molasses (U.S. Pat. No. 1,730,473) and removal of impurities (U.S. Pat. No. 4,116,712; U.S. Pat. No. 2,000,202). Ethanol has also been used in the isolation of individual polyphenols from dunder, including tricin, luteolin or apigenin (WO 2004/014159). In this prior art process, ethanol was first used in a crude clean up step to crash out impurities and then as part of a solvent mixture to chromatographically isolate fractions comprising specific polyphenols.
  • Molasses, golden syrup and treacle have been used as a health food since the early 20th century and there have been claims that they are good therapies or cures for a wide range of disorders. Recent evidence demonstrates that novel sugar cane phytochemicals contained in, the products of the sugar cane refining process reduce glycaemic index (GI) and therefore reduce the risk of obesity and diabetes. However the strong taste of these sugar cane derived products containing high molecular weight colourants makes them unpalatable to many people and the high viscosity of treacle and molasses makes them difficult to handle and unstable for incorporation into other foodstuffs. The other products of cane sugar refining such as bagasse and mill mud are known to include potentially useful substances but their hitherto intractable nature and instability has meant that they are usually thrown away as waste.
  • Extracts derived from sugar cane containing isolated polyphenols have been produced previously but are not as effective as complex mixtures of polyphenols and flavonoids derived from sugar cane products. Extracts derived from sugar cane containing mixtures of polyphenols and flavonoids have been produced previously but are dark coloured and bitter tasting, thus reducing the palatability and/or appearance of the finished food or beverage to which they are added. Accordingly, it is desirable to develop an improved extraction method that results in a sugar cane derived extract having an increased concentration of polyphenols, lower colour and decreased bitterness to avoid the palatability problems associated with known extracts. Extracts with these improved properties would find broader use in foods, nutraceuticals and pharmaceuticals compared to current offerings.
  • SUMMARY OF THE INVENTION
  • The present inventors have developed a process for producing a sugar cane derived extract comprising polyphenols and/or flavonoids in more functionally effective amounts and having improved taste, lower colour and polysaccharide content. The extracts of the present invention are believed to provide a synergistic combination of polyphenols and other components that are not contemplated in the prior art. As a consequence, the extract can be added back to foods or beverages in smaller quantities without significantly affecting the palatability and/or colour of the product.
  • Accordingly, in one aspect the present invention provides a process for producing an extract derived from sugar cane, the process comprising:
  • i) mixing a sugar cane derived product with ethanol to produce an extraction mixture comprising at least about 50% v/v ethanol;
  • ii) allowing a precipitate to form in the extraction mixture;
  • iii) removing the precipitate from the extraction mixture to obtain a supernatant; and
  • iv) removing ethanol from the supernatant to produce the extract derived from sugar cane.
  • The extract may be a powder, including a freeze dried powder or dehydrated powder. Preferably, the extract is a liquid extract, more preferably an aqueous extract.
  • In one embodiment, the process may further include:
  • i) mixing the sugar cane derived product with ethanol to produce a preliminary extraction mixture (e.g., comprising at least about 25% v/v ethanol);
  • ii) allowing a precipitate to form in the preliminary extraction mixture; and
  • iii) removing the precipitate from the preliminary extraction mixture to obtain a preliminary supernatant.
  • The preliminary supernatant may then be subjected to the process of the invention described above.
  • As will be apparent to the skilled person, isopropanol can be used in place of ethanol. As will also be apparent to the skilled person, any suitable food grade polar solvents could also be used in place of ethanol. Suitable food grade polar solvents include butanol, acetone, ethyl acetate and/or propyl acetate.
  • In one embodiment, the process further comprises removing water from the extract, preferably by evaporation under vacuum, to produce an aqueous extract having about 65° Bx (Brix).
  • Any suitable waste product from the sugar cane milling or refining process may be used as the sugar cane derived product in the process of the invention. In one embodiment, the sugar cane derived product is selected from molasses, bagasse, first expressed juice, mill mud, clarified sugar juice, clarified syrup, treacle, golden syrup, field trash, cane strippings and/or dunder.
  • In one particular embodiment, the sugar cane derived product is molasses or dunder, preferably molasses.
  • The skilled person will appreciate that in some instances the sugar cane derived product is mixed with water in order to enable efficient and/or uniform mixing of the sugar cane product with ethanol to form the extraction mixture. Accordingly, in one embodiment, the sugar cane derived product comprises a mixture of water with a product selected from molasses, bagasse, first expressed juice, mill mud, clarified sugar juice, clarified syrup, treacle, golden syrup, field trash, cane strippings and/or dunder.
  • In instances where the sugar cane derived product comprises solid components, it may be desirable to first blend or homogenise the sugar cane derived product prior to mixing it with ethanol to form the extraction mixture. Thus, in another embodiment, the sugar cane derived product is bagasse, field trash and/or cane strippings blended or homogenised with water.
  • The skilled person can readily determine a suitable period of time for allowing the precipitate to form in the reaction mixture. In one embodiment, the precipitate is allowed to form for about 10 minutes to about 24 hours prior to removing the precipitate.
  • In one embodiment, the precipitate is removed from the extraction mixture by filtration, centrifugation, and/or by allowing the precipitate to settle.
  • In another embodiment, the extraction mixture is maintained at a temperature of about 20° C. to about 30° C.
  • In yet another embodiment, the ethanol is removed from the supernatant by evaporation under vacuum.
  • In one embodiment, the process is performed in batch. In an alternative embodiment, the process is performed in continuous flow.
  • In another embodiment, the process further comprises subjecting the supernatant to membrane filtration and/or ion exchange, hydrophobic or size exclusion chromatography and collecting one or more flavonoid and/or polyphenol containing fractions to produce the extract derived from sugar cane.
  • Preferably, the extract derived from sugar cane comprises a mixture of flavonoids and/or polyphenols. More preferably, the extract further includes components that exist with flavonoids and/or polyphenols in sugar cane including minerals, vitamins, carbohydrates, organic acids and/or fiber. More preferably, the extract comprises a mixture of flavonoids and/or polyphenols as glycones and aglycones.
  • In one embodiment, the supernatant is subject to size exclusion membrane filtration or size exclusion chromatography.
  • In another embodiment, the process further comprises subjecting the supernatant to ion exchange chromatography, hydrophobic interaction chromatography, liquid chromatography-mass spectrometry (LCMS) and/or matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) to produce the extract, preferably hydrophobic interaction chromatography.
  • In one embodiment, the process further comprises subjecting the supernatant to hydrophobic interaction chromatography on food grade resin, preferably FPX66 or similar grades.
  • In one embodiment of the process of the invention, the extraction mixture comprises about 70% to about 85% ethanol.
  • In one embodiment, the extract comprises one or more of tricin, apigenin, luteolin, caffeic acid, hydroxycinnamic acids, sinapic acid, and derivatives thereof.
  • In one embodiment, the extract produced by the process of the invention has reduced colour per unit concentration of polyphenols when compared to prior art compositions. The colour of the extract may be analysed by measuring the absorbance of the supernatant at 420 nm. Preferably, the supernatant has an absorbance at 420 nm of about 800 to about 140 milliabsorbance (mAU) units. The colour of the extract may also be analysed using the ICUMSA protocol.
  • In another aspect, the present invention provides an extract produced by the process of the invention.
  • In one embodiment, the extract produced by the process of the invention comprises at least 25 mg/ml flavonoids and/or at least 25 mg/ml polyphenols.
  • In one particular embodiment, the extract produced by the process of the invention comprises one or more of tricin, apigenin, luteolin, caffeic acid, hydroxycinnamic acids, sinapic acid, and derivatives thereof.
  • In one embodiment, the extract produced by the process of the invention has α-glucosidase inhibitory activity and/or α-amylase inhibitory activity.
  • In one embodiment, the extract produced by the process of the invention has anti-inflammatory activity.
  • In one embodiment, the extract produced by the process of the invention has calorific value reduction properties and/or activity which slows the flux of carbohydrates, particularly monosaccharides, from the gut into the blood. Optionally, the extract also has glycemix index reduction properties.
  • In yet another aspect, the present invention provides an extract derived from sugar cane, wherein the extract comprises at least 25 mg/ml flavanoids, and/or at least 25 mg/ml polyphenols.
  • In one embodiment, the extract derived from sugar cane comprises one or more of tricin, apigenin, luteolin, caffeic acid, hydroxycinnamic acids, sinapic acid, and derivatives thereof.
  • In another embodiment, the extract derived from sugar cane has α-glucosidase inhibitory activity and/or α-amylase inhibitory activity.
  • In one embodiment, the extract derived from sugar cane has anti-inflammatory activity.
  • In one embodiment, the extract derived from sugar cane has calorific value reduction properties and/or activity which slows the flux of carbohydrates, particularly monosaccharides, from the gut into the blood. Optionally, the extract also has glycemix index reduction properties.
  • In another aspect, the present invention provides a composition comprising the extract of the invention.
  • In one embodiment, the composition is a nutraceutical, dietary supplement, sports nutrition product, food coating or pharmaceutical composition. Preferably, the composition is a dietary supplement or a pharmaceutical composition.
  • In another embodiment, the composition may include one or more additional active ingredients. Active ingredients may include, but are not limited to, fucodian and arcabose. It is believed that such combinations may have a synergistic effect.
  • In another aspect, the present invention provides a food or beverage comprising the extract of the invention or the composition of the invention.
  • In one embodiment, the food or beverage is selected from a bakery product, crystallised sugar, confectionary, breakfast cereal, naturally derived fiber, chemically derived fiber, dairy product, soft drink, water, coffee, cocoa, tea, or alcoholic beverage.
  • In another embodiment, the food or beverage is a soft drink selected from a fruit juice containing beverage and a carbonated soft drink.
  • In another aspect, the present invention provides a method of lowering the glycaemic index of a food or beverage, the method comprising adding the extract of the invention, and/or the composition of the invention, to the food or beverage.
  • In another aspect, the present invention provides a method of reducing the available calorific value of a food or beverage, the method comprising adding the extract of the invention, and/or the composition of the invention, to the food or beverage. In addition, or alternatively, the method comprises administering the composition of the invention to a subject prior to, in conjunction with, or after consumption of the food or beverage.
  • In one embodiment, the food or beverage is selected from a bakery product, crystallised sugar, confectionary, breakfast cereal, naturally derived fiber, chemically derived fiber, diary product, soft drink, water, coffee, cocoa, tea, or alcoholic beverage.
  • In one particular embodiment, the food is crystallised sugar.
  • In another aspect, the present invention provides a method of treating or preventing disease in a subject, the method comprising administering to the subject the extract of the invention, the composition of the invention, and/or the food or beverage of the invention.
  • In one embodiment, the disease that is treated or prevented is diabetes and/or metabolic syndrome. In one particular embodiment, the diabetes is type II diabetes. In another embodiment, the diabetes is type I diabetes.
  • In another aspect, the present invention provides the extract of the invention, the composition of the invention, and/or the food or beverage of the invention, for use in the treatment or prevention of disease.
  • In another aspect, the present invention provides use of the extract of the invention, the composition of the invention, and/or the food or beverage of the invention in the manufacture of a medicament for the treatment or prevention of disease.
  • As will be apparent, preferred features and characteristics of one aspect of the invention are applicable to many other aspects of the invention.
  • Throughout this specification the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
  • The invention is hereinafter described by way of the following non-limiting Examples and with reference to the accompanying figures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1. Analysis of polyphenols, tricin and colour (A 420 nm) in ethanolic supernatant samples. Sample 1=0% ethanol, sample 2=50% ethanol, sample 3=66% ethanol, sample 4=75% ethanol, sample 5=80% ethanol, sample 6=83% ethanol, sample 7=86% ethanol.
  • FIG. 2. Plot of % glucosidase inhibition vs. log 1.4 μg/ml for fucoidan (control), dunder (sample 6) and molasses (sample 3).
  • FIG. 3. Comparison of % PGE2 inhibition for aspirin (control), ibuprofen (control), dunder (sample 6) and molasses (sample 3).
  • FIG. 4. HPLC spectra of (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6; (g) phenolics at various retention times; and (h) flavonoids at various retention times.
  • FIG. 5. Plots of % polyphenol (PP) recovery vs. % ethanol and % colour removal vs. % ethanol of molassess feedstock samples having 25° Brix and 48° Brix. x axis=% ethanol; y axis=% polyphenol recovery and % colour removal.
  • FIG. 6. Flow chart of an extraction method to produce a standardised extract according to the invention.
  • DETAILED DESCRIPTION General Techniques and Definitions
  • Unless specifically defined otherwise, all technical and scientific terms used herein shall be taken to have the same meaning as commonly understood by one of ordinary skill in the art (e.g., chemistry, biochemistry, food and nutritional science, cell culture, molecular biology, and immunology).
  • [66] Unless otherwise indicated, the recombinant protein, cell culture, and immunological techniques utilized in the present invention are standard procedures, well known to those skilled in the art. Such techniques are described and explained throughout the literature in sources such as, J. Perbal, A Practical Guide to Molecular Cloning, John Wiley and Sons (1984), J. Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rdedn, Cold Spring Harbour Laboratory Press (2001), R. Scopes, Protein Purification—Principals and Practice, 3rd edn, Springer (1994), T. A. Brown (editor), Essential Molecular Biology: A Practical Approach, Volumes 1 and 2, IRL Press (1991), D. M. Glover and B. D. Hames (editors), DNA Cloning: A Practical Approach, Volumes 1-4, IRL Press (1995 and 1996), and F. M. Ausubel et al. (editors), Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience (1988, including all updates until present), Ed Harlow and David Lane (editors) Antibodies: A Laboratory Manual, Cold Spring Harbour Laboratory, (1988), and J. E. Coligan et al. (editors) Current Protocols in Immunology, John Wiley & Sons (including all updates until present).
  • “Administering” as used herein is to be construed broadly and includes administering an extract or composition comprising the extract as described herein to a subject as well as providing an extract or composition comprising the extract as described herein to a cell.
  • As used herein, the terms “treating”, “treat” or “treatment” include administering a therapeutically effective amount of an extract or composition comprising the extract as described herein sufficient to reduce or delay the onset or progression of a specified disease, or to reduce or eliminate at least one symptom of the disease.
  • As used herein, the terms “preventing”, “prevent” or “prevention” include administering a therapeutically effective amount of an extract or composition comprising the extract sufficient to stop or hinder the development of at least one symptom of the specified condition.
  • The term “about” as used herein refers to a range of +1-5% of the specified value.
  • The term “dietary supplement” as used herein is to be construed broadly and means a preparation or formulation which is added to or otherwise included in a subject's normal diet, and is present in addition to the normal diet. A dietary supplement may be administered to a subject prior to, in conjunction with, or after consumption of a food or beverage.
  • Process for Producing Extract Derived from Sugar Cane
  • Feedstock for the Extraction Process
  • After being mechanically harvested, sugar cane is transported to a mill and crushed between serrated rollers. The crushed sugar cane is then pressed to extract the raw sugar juice, while the bagasse (leftover fibrous material) is typically used for fuel. The raw juice is then heated to its boiling point to extract any impurities, then lime and bleaching agents are added and mill mud is removed. The raw juice is further heated under vacuum to concentrate and increase Brix value. The concentrated syrup is seeded to produce bulk sugar crystals and a thick syrup known as molasses. The two are separated by a centrifuge and typically the molasses waste stream is collected for use as a low-grade animal feedstock.
  • The extract produced according to the process of the invention can be derived from any sugar cane derived product, including those produced during the sugar cane milling process, the sugar cane refining process and other processes using sugar cane products.
  • Accordingly, the term “sugar cane derived product” as used herein refers to products of the sugar cane milling and refining processes including molasses, bagasse, first expressed juice, mill mud, clarified sugar juice, clarified syrup, treacle, golden syrup, field trash, cane strippings, growing tips, pulp and dunder. These sugar cane derived products comprise complex mixtures of substances including flavonoids, flavones, and polyphenols (Duarte-Almeida et al., 2006; Colombo et al., 2006; Payet et al., 2006; US 2012/0115941) as well as phytosterols, oligosaccharides, polysaccharides, mono and disaccharides, organic acids (e.g. cis and trans aconitic acid), peptides and proteins. The type and amount of these components vary between the different sugar cane derived products. For example, molasses includes mono and disaccharides whereas dunder is almost free of sugar components. This improves the palatability of extracts derived from molasses compared with those derived from dunder, which are bitter and less palatable. This also affects the composition of, for example, polyphenols in extracts derived from molasses compared with dunder. Molasses comprises polyphenols that link to the carbohydrate backbone of mono, di and polysaccharides and cellulose and hemicellulosic materials such as lignans etc. Accordingly, the composition of polyphenols in molasses and dunder differ. Extracts containing compounds such as polyphenols and flavonoids extracted from a sugar cane derived product can be used in the production of, for example, functional foods and beverages and nutritional supplements. Advantageously, extracts that comprise complex mixtures of substances display improved characteristics compared with extracts of isolated components, such as tricin, luteolin or apigenin, or combinations of synthetic compounds. Extracts according to the invention therefore can comprise one or more of tricin, apigenin, luteolin, caffeic acid, hydroxycinnamic acids, sinapic acid, and derivatives thereof. It is believed that natural biological mixtures can have a synergistic effect and may be better than synthetic or individually isolated natural products.
  • In the process of the invention, the sugar cane derived product is used as a feedstock and mixed with ethanol to form the extraction mixture. Ethanol is used to extract a mixture of flavonoids and/or polyphenols. In contrast, the prior art uses ethanol to crash out impurities either in the extraction of sucrose or during the isolation of individual polyphenols (WO 2004/014159). The skilled person will understand that in order to facilitate extraction of a mixture of flavonoids and/or polyphenols the rate of mixing the feedstock with ethanol may need to be controlled as well as the degree of mixing, ie homogeneity.
  • The skilled person will understand that in order to facilitate mixing of the sugar cane derived product with ethanol, the sugar cane derived product may need to be mixed with a liquid, typically water, and/or heated in order to achieve a desired viscosity. By way of example, molasses is viscous at room temperature and, as a consequence, mixing of molasses and ethanol may be difficult to achieve consistently, efficiently or uniformly unless the viscosity of the molasses is adjusted. In embodiments of the invention in which the sugar cane derived product is molasses, for example, the molasses may be mixed with water at a ratio of molasses to water of from about 75:25 to about 25:75. In one embodiment, the ratio of molasses to water is about 50:50.
  • The sugar cane derived product, either mixed with water or not, may be heated to decrease viscosity. For example, the sugar cane derived product may be heated to about 25° C. to about 60° C., more preferably about 25° C. to about 40° C., more preferably about 26° C. to about 30° C.
  • For sugar cane derived products comprising solid material such as bagasse, field trash and cane strippings, it is desirable that the product is first blended or homogenised with water prior to mixing with ethanol to form the extraction mixture. The amount of water with which the sugar cane derived product is blended or homogenised can be readily determined by the skilled person in order to achieve a sugar cane derived product having a suitable viscosity for mixing with ethanol to form an extraction mixture.
  • Preferably the sugar cane derived product will have a viscosity less than or equal to about 100 centipoise, more preferably between about 50 to about 100 centipoise.
  • The high viscosity of molasses is as a result of the high total solids (particularly soluble carbohydrates) and this is typically measured by determination of Brix degrees. Preferably the sugar cane derived product will have about 20° to about 50° Brix. Feedstocks with high Brix (>50°) behave differently to lower Brix feedstocks (<30°) with respect to the separation of polyphenols and colour by increasing levels of ethanol. This observation is crucial in both small and large scale separation processes.
  • In the process of the invention, it is also desirable that extremes of pH be avoided in the extraction mixture. Extreme pH can have a deleterious effect on the components of the extraction mixture. Accordingly, in one embodiment the extraction mixture has a pH of about pH 4 to about pH 7.5.
  • The extract derived from the process of the invention may be used without further purification. Optionally, the extract may be subjected to purification, preferably hydrophobic interaction chromatography. The purification step removes impurities, such as pigments that contribute to the colour of the extract. In contrast, the prior art uses chromatography to isolate fractions of individual polyphenols (WO 2004/014159).
  • Addition of Ethanol to the Sugar Cane Derived Product
  • To extract compounds such as polyphenols and flavonoids, the sugar cane derived product is mixed with ethanol to form an extraction mixture. The present inventors have found that producing an extraction mixture comprising at least 50% v/v ethanol results in an increase in precipitate formation in the reaction mixture. Upon removal of the precipitate, the retained supernatant advantageously has reduced colour and bitterness compared to a supernatant prepared from an extraction mixture comprising less than 50% v/v ethanol.
  • In addition, the present inventors found that increasing the concentration of ethanol in the extraction mixture above 50% v/v resulted in further reduction in the colour of the retained supernatant once the precipitate had been removed (FIG. 1). Accordingly, in one embodiment, the extraction mixture comprises at least 50% v/v ethanol. In another embodiment, the extraction mixture comprises at least 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 65%, 70%, or 75% v/v ethanol, or at least 80%, 81%, 82%, 83%, 84% or 85 ethanol v/v.
  • The present inventors have found that the optimal concentration of ethanol in the extraction mixture for removing colour in the supernatant while minimising reduction in polyphenols is about 75% to about 85% v/v. Accordingly, in one embodiment, the extraction mixture comprises about 75% to about 85% v/v ethanol. In another embodiment, the extraction mixture comprises about 83% v/v ethanol.
  • The present inventors also found that while colour removal was substantially achieved with a reaction mixture comprising about 70% v/v ethanol, an extraction mixture comprising about 80% to about 83% v/v ethanol produced an extract that was stable and produced no precipitate over a 6 month period. Thus, in one embodiment of the process according to the invention, the extraction mixture comprises about 80% to about 83% v/v ethanol.
  • Removal of Precipitate and Ethanol
  • Following the formation of precipitate in the extraction mixture, the precipitate may be removed from the mixture by any suitable method known in the art. For example the precipitate may be removed by centrifugation and the supernatant obtained. Alternatively, the precipitate may be allowed to settle for a time sufficient to allow the supernatant to be obtained while leaving precipitate behind, such as by sedimentation under gravity for example. The skilled person will understand that other techniques such as filtration can be used alone or in combination with centrifugation or sedimentation in order to produce the extract derived from sugar cane.
  • Once the supernatant has been obtained the ethanol is removed using techniques known in the art. By way of non-limiting example, the ethanol may be removed from the supernatant by evaporation, such as by using a rotary evaporator with a heating bath at approximately 45° C. or higher. In some instances it may be desirable to further remove water from the supernatant to obtain an aqueous extract having about 64-65° Bx (degrees Brix).
  • Multiple Extraction Process
  • In one embodiment of the process of the invention, the process comprises multiple extractions.
  • In a preliminary extraction, a sugar cane derived product is mixed with ethanol to produce a preliminary extraction mixture (e.g., comprising at least about 25% v/v ethanol), a precipitate is allowed to form in the preliminary extraction mixture and the precipitate is removed from the preliminary extraction mixture to obtain a preliminary supernatant.
  • Then, in a further extraction, the preliminary supernatant is mixed with ethanol to produce a further extraction mixture comprising at least about 50% v/v ethanol, a precipitate is allowed to form in the further extraction mixture, the precipitate is removed from the further extraction mixture to obtain a further supernatant and ethanol is removed from the further supernatant to produce an extract derived from sugar cane. Further ethanol can be added to a 50% extract supernatant to an ethanol level between 75-83% ethanol. A further precipitate forms and can be recovered. The supernatant can become the final extract.
  • Fractionation of the Extract
  • In one embodiment of the process of the invention, the supernatant comprising ethanol, or the extract from which ethanol has been removed, is fractionated to produce the extract derived from sugar cane. By way of non-limiting example, the supernatant or extract may be subject to membrane filtration, size exclusion chromatography, ion exchange chromatography, and or hydrophobic interaction chromatography.
  • There are several techniques known in the art for separating compounds based on size. For example, it is known in the art that components of a supernatant or extract falling within a specific molecular weight range may be separated by size exclusion processing methods such as gel permeation chromatography or ultrafiltration.
  • Separation of components in the supernatant or extract may also be achieved using chromatographic techniques or combinations of techniques such as ion exchange chromatography, hydrophobic interaction chromatography, such as for example on XAD or preferably a food grade resin such as FPX66 resin, which may use fractional elution by stepwise increase in pH or with suitable solvents, liquid chromatography-mass spectrometry (LCMS) and/or matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) to produce the extract.
  • The supernatants or extracts may be further processed by standard techniques such as but not limited to microfiltration, reverse osmosis, gel permeation, vacuum evaporation and freeze drying, spray drying and tunnel drying.
  • Testing Extracts for Biological Activity
  • Sugar cane derived extracts according to the invention may be tested for biological activity using known techniques and assays. For example, an extract according to the invention can be tested for enzymatic activity. By way of non-limiting examples, the extracts may be tested for α-glucosidase inhibitory activity and/or α-amylase inhibitory activity.
  • As known in the art, α-glucosidase inhibitory activity can be measured as the ability of test samples to prevent the hydrolysis of 4-methylumbelliferyl-α-D-glucopyranosidase by yeast (Saccharomyces cerevisiae) α-glucosidase using known techniques. As will be understood by the skilled person, acarbose can be included in the assay as a positive control.
  • In addition, α-amylase inhibitory activity may be measured by the ability of samples to slow the rate at which porcine pancreatic amylase hydrolyses labelled starch (E-11954, Molecular Probes). As understood in the art, acarbose may be included in the assay as a positive control.
  • An extract according to the invention can also be tested for anti-inflammatory activity. By way of a non-limiting example, the extracts may be tested for prostaglandin E2 (PGE2) activity. As known in the art, PGE2 inhibitory activity can be measured by the ability of test samples to inhibit PGE2 production in 3T3 cells when stimulated with calcium ionophore. As understood in the art, aspirin and ibuprofen may be included in the assay as a positive control.
  • Uses of the Extracts Derived from Sugar Cane
  • The extracts produced according to the process of the invention can be used in a wide variety of economically useful applications.
  • Food and Beverages
  • In one embodiment of the invention, an extract produced by the process of the invention is included in a food or beverage product. Food or beverages according to the invention can be prepared by the skilled person using known techniques. Non-limiting examples of such food or beverage products are baked goods, dairy type foods and drinks, snacks, etc. The amount of the extract to be used in a food or beverage can be variable as the extracts themselves are nutrients.
  • Thus, the extract may be used in any food or food product such as but not limited to sugar, for example crystallised sugar, confectioneries, snacks (sweet and savoury), cocoa-containing foods, flavours, dairy products including cheeses, butter, ice cream, yoghurt, and other dairy spreads; fat-based products including margarines, spreads, mayonnaise, shortenings, cooking and frying oils, and dressings; cereal-based and bakery products including breads and pastas whether these goods are cooked, baked or otherwise processed; confectioneries including chocolate, candies, chewing gum, desserts, non-dairy toppings, sorbets, icings and other fillings; and other miscellaneous food products including eggs and egg products, processed foods such as soups and pre-prepared pastas.
  • Thus, the extract may be incorporated into or added to processed foods including but not limited to: breads, pastas, biscuits, sauces, soups, bars, dairy products (for example, milk, yoghurts, cheese, ice cream), cakes, ready-to-eat prepared meals, and breakfast cereals.
  • In addition, the extracts may be used in beverages, whether hot or cold including coffee, tea, cocoa, cereal, chicory and other plant extract based beverages, alcoholic or non-alcoholic beverages and including colas and other carbonated and non-carbonated soft drinks, fruit juices, juice drinks, dairy-based beverages, and meal replacement drinks.
  • The extracts may also be added to food grade ingedients such as soluble fiber (e.g. oligofructosaccharide), insoluble fiber (e.g. cocoa bean fiber, sugar cane fiber, oatbran), naturally derived fibers (e.g., hemicelluloses, lignocelluloses), chemically derived fibers (e.g., inulin), flour, starch, modified starch, gelatine, or other food, to produce a unique composition or ingredient with enhanced levels of polyphenols, flavonoids, and/or other phytochemicals derived from sugarcane.
  • The extract according to the invention is particularly useful for increasing the active phytochemical content of coffee products without increasing bitterness. Roasting coffee beans causes the development of the myriad desired flavours of coffee. The roasting also causes the bitter taste of coffee which is related to an increase in the level of the antioxidants, chlorogenic acid lactones and phenylindanes. The more that coffee beans are roasted, the more chlorogenic lactones and phenylindanes are produced. The extract of the invention can be used to increase the level of active phytochemicals (such as polyphenols) in coffee products.
  • The food or beverage of the present invention can include additional ingredients including an orally ingestible diluent or carrier. Many orally ingestible diluents or carriers are known in the food sciences. These include, but are not limited to, manufactured cereals, fruit or vegetable products, beverages or beverage concentrates, ground meat products or vegetable analogues thereof, and any inert diluent, carrier, or excipient known in the pharmaceutical art.
  • Nutritional Supplements and Sports Nutrition Products
  • The extract produced according to the process of the invention may be added to or included in a nutritional supplement. As used herein, a “nutritional supplement” is an orally ingestible product consumed to improve overall nutrition, health, well-being, or performance of a subject in an activity and/or an orally ingestible product which provides additional perceived nutritional or biological benefit to a subject. As would be understood, the nutritional supplement may be provided in a concentrated form, thus allowing for the addition of the nutritional supplement to a food or drink product to allow for the consumption of a desired quantity of an extract of the invention in a reasonable serving size.
  • In one embodiment the nutritional supplement is a sports nutrition product. Thus, the extract may be added to a sports nutrition product including, by way of non-limiting examples, sports powders, sports drinks, energy drinks, pre-mixes, juices, energy bars, energy gels, isotonic drinks and gelatine, starch based or pectin jellies.
  • The nutritional supplements and sports nutrition products of the current invention can include additional ingredients. In some embodiments, more than one of the extracts of the current invention can be included in the same nutritional supplement or sports nutrition formulation. Other additional ingredients include any ingestible product. Preferred additional ingredients include, but are not limited to, other active food supplement ingredients such as micro-nutrients such as vitamins and minerals or macro-nutrients such as polyunsaturated fatty acids or fiber. The food additive may also include acceptable dispersing and suspending agents, and water. Other conventional nutritional supplements can also be included if desired. The nutritional supplement or sports nutrition product can take many forms including, but not limited to, powders, liquids, tablets, capsules, solutions, concentrates, syrups, suspensions, or dispersions.
  • Low GI Products
  • The glycaemic index or GI ranks carbohydrates according to their effect on blood glucose levels. The lower the GI, the slower the rise in blood glucose level will be when the food is consumed. Some research has shown that by eating a diet with a lower GI, people with diabetes, for example, can reduce their average blood glucose levels. This is important in reducing the risk of developing diabetes-related complications.
  • To determine a food's GI rating, measured portions of the food containing 10-50 grams of carbohydrate are fed to at least 10 healthy people after an overnight fast. Finger-prick blood samples are taken at 15-30 minute intervals over the next two hours. These blood samples are used to construct a blood sugar response curve for the two hour period. The area under the curve (AUC) is calculated to reflect the total rise in blood glucose levels after eating the test food. The GI rating (%) is calculated by dividing the AUC for the test food by the AUC for the reference food (usually glucose or white bread) and multiplying by 100. A GI value of 55 or less is considered ‘low’, 56-69 is considered “medium” and over 70 is “high”.
  • A lower glycemic index suggests slower rates of digestion and absorption of carbohydrates and is believed to equate to a lower insulin demand, better long-term blood glucose control and a reduction in blood lipids. It has been shown that individuals who followed a low GI diet over many years were at a significantly lower risk for developing both type 2 diabetes and associated conditions such as cataracts as well as coronary heart disease. High blood glucose levels or repeated glycemic “spikes” following a meal may promote these diseases by both increasing oxidative damage to the vasculature and via the direct increase in insulin levels. Postprandial hyperglycemia has been considered a risk factor mainly associated with diabetes but it is now that it also presents an increased risk for atherosclerosis and other conditions in the non-diabetic population.
  • Low-GI foods, by virtue of their slow digestion and absorption, produce gradual rises in blood sugar and insulin levels and have been shown to improve both glucose and lipid levels in people with diabetes (type 1 and type 2) and have benefits for weight control as they help control appetite and delay hunger. Low GI diets also reduce insulin levels and insulin resistance.
  • Thus, the extracts produced according to the process of the present invention may be used in food or beverages, for example, to lower or reduce the GI of the food or beverage. By way of example, the extracts according to the present invention in the form of a liquid extract can be sprayed onto standard sugar (whether derived from sugar cane or sugar beets) to produce a low GI sugar. The extracts according to the present invention in the form of a liquid extract can also be sprayed onto other carriers such as flour, starch, bagasse or fiber thus increasing the levels of polyphenols and/or flavonoids in these food ingredients.
  • Endogenous and “adsorbed” polyphenols and other sugarcane phytochemicals use the fibers to protect these compounds from early metabolic changes in the gut and increase delivery to specific sites in the colon where these compounds reduce inflammation and other disease processes including cyclooxygenase enzymes involved with intestinal carcinogenesis or polyp formation (Cai et al.).
  • Low Available Calorific Value Products
  • The available calorific value of a food or beverage relates to the amount of energy available from the food or beverage when digested. The calories in a food or beverage, as well as the GI of the food or beverage, which affects the rate of digestion and absorption, contribute to the available calorific value of the food or beverage. For example, although chocolate is a low-GI food, it contains a high number of calories and therefore has a high available calorific value as determined by conventional methods including bomb calorimetry.
  • The extracts produced according to the process of the present invention may be used in food or beverages, for example, to lower or reduce the available calorific value of the food or beverage. In addition, or alternatively, the process of the present invention may be used to lower or reduce the available calorific value of a food or beverage by administering the composition of the invention, including the dietary supplement and/or pharmaceutical composition, to a subject prior to, in conjunction with, or after consumption of the food or beverage. In this way when the food or beverage is digested the amount of carbohydrate absorbed is reduced. This effectively reduces the amount of energy available from the food or beverage when digested. By way of example, the extracts according to the present invention in the form of a liquid extract can be sprayed onto standard sugar (whether derived from sugar cane or sugar beets) to produce a reduced available calorific value sugar (sucrose). The extracts according to the present invention in the form of a liquid extract can also be sprayed onto other carriers such as flour, starch or fiber thus increasing the levels of polyphenols and/or flavonoids in these food ingredients. As will be apparent to a skilled person, a powder, such as a freeze dried powder or dehydrated powder, can be used in place of a liquid extract.
  • Therapeutic and Prophylactic Methods
  • In the Western diet, 50-70% of dietary calories are derived from carbohydrate. Approximately half are from simple sugars (glucose, fructose, sucrose, lactose, maltose and trehalose) with the remainder coming from complex carbohydrates (hemicelluloses, galactans, mannans and starch). Complex carbohydrates other than starch are referred to as dietary fiber which is either partly or totally digested in the large intestine.
  • The digestion of dietary carbohydrates is a physiologically regulated process in the gastrointestinal tract. Important enzymes in this process include salivary and pancreatic α-amylase and intestinal α-glucosidase. Beginning in the mouth, food is chewed and mixed with salivary α-amylase. Starch released begins to break down immediately. This hydrolysis process slows or stops in the stomach because of the change in pH but resumes again in the duodenum where pancreatic α-amylase is secreted. The result is to produce maltose and maltotriose from amylase and maltose, maltotriose, glucose and dextrin from amylopectin.
  • In the 1960's and 70's, debate began about the possible contributory role of sucrose and fructose in diabetes, obesity and cardiovascular disease. Many research groups suggested that sugar and fructose increased risk of diabetes and heart disease by demonstrating that consuming large amounts elevated blood lipids, glucose, insulin and uric acid. Accordingly the US Senate Select Committee on Nutrition recommended that individuals reduce the amount of sugar in their diets.
  • Analysis of sugar consumption from 1980 to 2003 in Australia, the United Kingdom and United States of America reveals that per capita consumption of refined sucrose decreased by 23%, 10% and 20% respectively. Prevalence of obesity over the same timeframe has increased 3 fold in Australians. When all sources of nutritive sweeteners, including high fructose corn syrups, were considered, per capita consumption still decreased in Australia (−16%) and the UK (−5%), but increased in the USA (+23%). This suggests that once total energy intake has been accounted for, per capita changes in energy from sucrose may not explain changes in the incidence of obesity. When sucrose, glucose, or starch were replaced with >100 g of fructose/day, a weight gain of 0.44 kg/week was observed in adults. Recent evidence demonstrates that novel sugar cane phytochemicals reduce GI and therefore reduce the risk of obesity and diabetes.
  • The principal enzymes responsible for the breakdown of carbohydrates in the human body are α-amylase and α-glucosidase and so inhibition of one or both of these enzymes can result in the GI of foods being reduced. The extracts of the invention which demonstrate inhibition of the activity of α-glucosidase and α-amylase in vitro will delay carbohydrate absorption in vivo, thus reducing post-prandial increase in blood glucose. In addition, the extracts of the invention are able to lower the GI of a food or beverage.
  • Thus, the extracts produced by the process of the invention are of use in the modulation of biological pathways associated with disease including diabetes and metabolic syndrome. Thus, in one aspect, the present invention provides methods of treating or preventing disease by administering to a subject an extract of the invention, a composition of the invention, and/or a food or beverage of the invention.
  • Compositions and Administration
  • In certain embodiments, the present invention provides compositions comprising an extract of the invention and a suitable carrier or excipient. In one embodiment, the composition is a pharmaceutical composition comprising a pharmaceutically acceptable carrier. The extracts are incorporated into pharmaceutical compositions suitable for administration to a mammalian subject, e.g., a human. The extracts may be incorporated into the pharmaceutical compositions by way of coating a dosage form. Such compositions typically comprise the “active” compound (i.e. the extract derived from sugar cane) and a “pharmaceutically acceptable carrier”. As used hereinafter the language “pharmaceutically acceptable carrier” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, such media can be used in the compositions of the invention. Supplementary active compounds can also be incorporated into the compositions.
  • Because the current extract is higher in concentration (polyphenols (mg)/extract (ml)) of polyphenols and lower in colour relative to other extracts from sugar, the extracts are “more effective” in delivering a therapeutic amount of biologically active compounds. The lower colour and organoleptic astringency of some syrups prepared according to the present invention, broaden their possible use and application in a range of foods and carriers.
  • EXAMPLES Example 1 Preparation of Extract Feedstock Preparation
  • 100 ml of Mackay terminal molasses was measured into a glass beaker at room temperature (RT). The weight was 140 g. Then 100 mls of distilled water was added and stirred manually with a glass stirring rod until most of the viscous molasses was mixed with the water. The beaker was then placed on a magnetic stirrer and mixed for 10-15 minutes. The temperature was held at 26-28° C. The pH of this solution was 5.4-5.6.
  • The final volume was 200 ml. A 1 ml sample was removed and diluted with 1 ml water, mixed well and then a drop was placed on a Ella refractometer. The Brix reading was 48.
  • Treatment with AR Ethanol (100% v/v)
  • The feedstock (200 ml) was placed in a glass beaker on a magnetic stirrer and adjusted so that a clear vortex was formed, ethanol was slowly added into the vortex to ensure rapid mixing of the feedstock with the ethanol. Over a period of about 30 minutes, 950 ml of ethanol was added. The temperature was maintained at 26-28° C. This resulted in the final ethanol level in the mixture being 83% v/v. The mixture was stirred for another 30 minutes. A number of sub-samples were taken during the addition of the ethanol to support the observations as the solution changed in colour and different coloured precipitates formed as the ethanol % increased.
  • Recovery of the 83% Ethanol Supernatant/Extract
  • The final mixture was turbid and had a coagulated black gelatinous precipitate visibly present in the bottom of the beaker. The supernatant was removed and centrifuged at 4000 rpm (2500×g), for 5 minutes. The clear yellow supernatant was decanted leaving the black precipitate plug in the centrifuge tube. About 950 ml of the mixture was centrifuged and the final volume of supernatant recovered was 880 ml.
  • Removal of Ethanol from the Supernatant
  • Ethanol was removed using a Buchi rotary evaporator under vacuum. The bath temperature was 45° C. The final concentrate (free of any ethanol odour) volume was 62 ml and the Brix level was 64-65. Ethanol, its azeotroph and water were all removed during this process.
  • Bioactive Extract
  • The final bioactive extract was a dark/yellow colour, free of any particulate material and with a fresh sweet flavour similar to that of golden syrup or treacle.
  • Example 2 Preparation of Extract Preparation of Feedstock
  • 200 ml of feedstock was prepared from Mackay terminal molasses as previously described in Example 1. The Brix level was 48.
  • Addition of AR Ethanol (100%)
  • 1000 ml of ethanol was added in 200 ml increments so the formation, colour and appearance of the precipitate could be observed as the percentage of ethanol increased. Observations were made at 50, 66, 75, 80 and 83% ethanol (v/v), but no samples were collected. The final mixture volume (83% ethanol, v/v) was 1200 ml and this was left standing at 20-25° C. overnight (approximately 18 hours). As before, the ethanol was slowly added into a stirring vortex created by rapid magnetic stirring of the mixture.
  • Recovery of the 83% Supernatant
  • The supernatant was recovered in the same way as described in Example 1. The volume was 1050 ml.
  • Removal of Ethanol
  • Ethanol was removed at 45° C. under vacuum as described in Example 1. The final syrup volume was 78 ml and the Brix level was 63-65. It had a similar, almost identical dark/yellow colour and taste to the syrup recovered from Example 1.
  • Observations
  • At 50% v/v ethanol, an amorphous like floc/precipitate forms and the mixture is a dark to gray colour. Its graininess is similar to the look of curdled milk in coffee.
  • Further addition of ethanol to 66% v/v results in a significant change as a sticky, gelatinous black mass comes out of solution and starts to settle spontaneously. It appears to be adhering to the glass beaker sides but it also rapidly sediments to the bottom of the beaker. As this black precipitate forms the mixture takes on a clearer yellow but still turbid appearance. The gray amorphous precipitate that formed at 50% seems to have disappeared or it has been “captured” by this new black precipitate. Another possibility is that the 50% precipitate changes (or even redissolves) between 50 and 66% ethanol. These first 2 precipitates up to 66% ethanol are quite significant in terms of the amount of material removed from solution.
  • As more ethanol is added, further cloudy caramel coloured fine precipitates formed (small amounts) up until the final 83% supernatant was reached. Between 66% to 75% ethanol, a further small sticky black precipitate formed, similar to the one occurring up to 66% ethanol.
  • Example 3 Preparation of Extract Preparation of Feedstock
  • 100 ml of molasses from a primary sugar mill was used. The crude molasses had a Brix of 78 using an Atago-Pal 2 digital refractometer. The weight of the material was 145 g. As described in the previous experiments, 100 ml of distilled water was added to the 100 ml of molasses, mixed and stirred for 15 minutes to ensure a homogeneous feedstock. The final feedstock had a Brix of 49-50.
  • Effect of Adding Increasing Amounts of Ethanol (100% v/v)
  • Two separate lots of 7 centrifuge tubes were used and 10 ml of feedstock was added to each. To the first 7 tubes, distilled water was added as follows: 0, 10, 20, 30, 40, 50 and 60 ml. To the second 7 tubes, 100% v/v ethanol was added as follows: 0, 10, 20, 30, 40, 50 and 60 ml. All tubes were mixed and shaken 3 times during standing at room temperature (25° C.) for 90 minutes.
  • Removal of Precipitates
  • All tubes were centrifuged as described previously. Supernatants were recovered and measured. The appearance of initial mixtures as well as the supernatants and precipitates were recorded by photography (data not shown) and visual descriptions.
  • Summary of Increasing Ethanol Levels on the Feedstock
  • The grey precipitate that formed at 50% ethanol was comparably larger than all of the others and quite different in appearance. Increasing ethanol to 66% resulted in a compact black precipitate which was smaller in volume and any signs of the initial grey precipitate which formed initially at 50% ethanol disappeared. At 66% ethanol, the supernatant was clear and dark yellow. As the ethanol level increased, a similar black precipitate resulted, probably slightly more than that formed at 66%. As the percentage ethanol increased, the supernatants became lighter yellow. All supernatants from 66% up were clear (free of any retained turbidity). A summary of these observations is provided in Table 1.
  • TABLE 1
    Summary of observations (ppt = precipitate)
    Feedstock Super ppt. Vol.
    Tube Vol. mls Ethanol added mls % Ethanol Vol. mls mls Comments
    1 10 0 0 9.5 0.2-0.3 Small ppt
    2 10 10 50 15.5 4-5 Grey ppt large
    3 10 20 66 27   3-3.5 Black ppt smaller
    4 10 30 75 29.5 4 Black ppt
    5 10 40 80 46 4 Black ppt
    6 10 50 83 55 5 Black ppt
    7 10 60 86 65 6 Black ppt
  • Example 4 Analysis of Extract Polyphenols and Colour
  • Supernatants were analysed for polyphenols (colorimetric) and colour (A 420 nm) to determine recoveries of polyphenols and degree of removal of colour with increasing levels of ethanol. An analysis of polyphenol levels in supernatants is provided in Table 2, an analysis of tricin in the supernatant samples is provided in Table 3, and an analysis of supernatant sample colour is provided in Table 4.
  • TABLE 2
    Analysis of polyphenols (PP) in supernatant samples.
    % Supernatant Solids PP Total PP Recovery PP (mg/mL) per
    Sample EtOH (mL) % (mg/mL) (mg) % unit solids
    1 0 9.5 44.8 12.71 120.70 100 28.36
    2 50 15.5 33.6 5.71 88.57 73 17.01
    3 66 27 13.5 2.99 80.61 67 22.12
    4 75 36 8.8 1.89 67.96 56 21.45
    5 80 46 6.3 1.39 64.06 53 22.11
    6 83 55 4.8 0.97 53.54 44 20.28
    7 86 65 4.2 0.83 54.08 45 19.81
  • TABLE 3
    Analysis of tricin in supernatant samples.
    Supernatant Tricin per unit Tricin
    Sample % EtOH Vol (mL) mg/g solids in supematant (mg) % Recovery
    1 0 9.5 0.113 0.252 1.25 100
    2 50 15.5 0.062 0.186 0.92 74
    3 66 27 0.039 0.288 0.92 74
    4 75 36 0.018 0.206 0.45 61
    5 80 46 0.016 0.246 0.60 48
    6 83 55 0.010 0.200 0.43 35
    7 86 65 0.006 0.149 0.33 26
  • TABLE 4
    Analysis of supernatant sample colour (colour units at A 420)
    Supernatant Colour Total
    Sample % EtOH Vol (mL) units/ml colour % Recovery
    1 0 9.5 318.8 3028.5 100
    2 50 15.5 106.5 1650.1 54
    3 66 27 40.0 1080.0 36
    4 75 36 19.2 689.8 23
    5 80 46 4.5 207.6 7
    6 83 55 3.1 167.9 6
    7 86 65 2.5 160.6 5
  • Example 5 α-Glucosidase Inhibition
  • α-Glucosidase inhibitory activity is measured as the ability of test samples to prevent the hydrolysis of 4-methylumbelliferyl-α-D-glucopyranosidase by yeast (Saccharomyces cerevisiae) α-glucosidase.
  • Table 5 lists the samples tested. Each sample (0.5 mL) was weighed and freeze-dried to determine its % dry matter. The samples were then resuspended in either dimethyl sulfoxide (DMSO) or DMSO:water (1:1) to a concentration of 15 mg/mL, after which the samples were serially diluted.
  • TABLE 5
    Composition of samples tested
    Sample Sample Description % Dry matter Solvent
    1 Molasses, clarified 27.50 DMSO
    2 Molasses, 50-75% ppt in H2O 10.91 DMSO—H2O
    3 Molasses, 75% supernatant 43.46 DMSO
    4 Dunder, clarified 22.42 DMSO
    5 Dunder, 50-75% ppt in H2O 23.92 DMSO—H2O
    6 Dunder, 75% supernatant 32.07 DMSO
  • The substrate, 4-methylumbelliferyl-α-D-glucopyranoside, and enzyme, yeast α-glucosidase, were prepared in the assay buffer, sodium acetate buffer (pH 5.5). The substrate (final concentration 83 μM, 45 μL) was added to 96-well plates containing 45 μL enzyme (final concentration 1.7 mU/mL) and 10 μL of sample. The plate was mixed on an orbital shaker for 30 seconds and incubated for 20 minutes at 37° C. The reaction was stopped by the addition of 100 mM sodium glycine buffer (100 μL, pH 10.6), the plate was shaken for a further 30 seconds, and the fluorescence intensity was measured at λex 355 nm and λen 460 nm. Fucoidan was used as a positive control and sodium acetate buffer (pH 5.5) was used as a negative control.
  • All of the samples showed some degree of α-glucosidase inhibitory activity. The highest activity was observed in sample 4 with IC50=64 μg/mL and the lowest activity was observed in sample 3 with IC50=1,037 μg/mL. All of the samples showed less activity than the positive control fucoidan (IC50=0.17 μg/mL). Sample 6 produced a more effective reduction in enzyme activity than sample 3. The skilled person would recognise that, with further concentration, the extracts could contain higher amounts of polyphenols and hence be even more effective in inhibiting α-glucosidase activity.
  • Example 6 PEG2 Inhibition
  • The in vitro production of PEG2 from 3T3 cells was measured using the Cayman Chemical Prostaglandin E2 monoclonal EIA (Enzyme Immuno Assay) kit. The cells were exposed to samples 3 and 6 and stimulated with calcium ionophore. The cell supernatants were then assayed for PEG2 production. The cell cytotoxicity of the samples was tested against 3T3 cells to confirm that the observed PEG2 inhibition was not due to cell cytotoxicity. Aspirin and ibuprofen were used as positive controls.
  • The highest PEG2 inhibition observed for sample 3 and sample 6 was 29.90% and 42.33%, respectively, at 0.488 μg/mL. As shown in FIG. 3, the PEG2 inhibitory response of sample 6 was similar to that of ibuprofen (42.14% at 0.488 μg/mL). Inhibition of PEG2 production in the cells, relative to control cells not exposed to the samples, indicates that the samples act as an anti-inflammatory agent in vitro.
  • Example 7 Extraction of Polyphenols from Molasses Using Ion-Exchange Resins
  • Ion exchange resins are sometimes used in sugar refineries to remove waste colourants from affination liquor which is produced after the first step towards producing a white sugar. These colourants include melanoidins, caramels (these are Maillard reaction products generated by the reaction between sugars and amino acids driven by temperature and alkaline pH), and natural colourants such as polyphenols and flavonoids. The affination liquor is treated with a resin and sugars and a minor amount of colourants pass through and then this material is further processed to produce food grade molasses (quite different to primary mill molasses). The resin is regenerated with an acid wash and the washings containing some of the colourants and a small amount of polyphenols are discarded. The resin is then washed with an alkaline pH 12-13 solution which removes the bound polyphenols and flavonoids, and this effluent is adjusted to pH 6.5 to 7.0 with acid or preferably it is passed through an acidic resin column to “exchange” the alkali for H+ions so the effluent pH is less than 7. This process was reproduced in the laboratory on a small scale.
  • Liquid chromatography profiles of polyphenols were monitored initially in the affination liquor (pH 5.0-6.0) and then in the alkaline resin extracts (pH 12-13) and then after adjusting these extracts (pH 6.5-7.0). Polyphenols are extremely sensitive to high pH conditions forming flavones. Such changes can modify the bioactivity of these compounds and even reversing the pH from alkaline to neutral does not necessarily return them to their previous bioactive properties.
  • Liquid chromatography fingerprints from-alkaline pH 12-13 extracts were significantly different to fingerprints from the same extracts but adjusted to pH 6.5-7.0. A number of major peaks in the alkaline extracts seemed to have shifted to lower elution times on the chromatogram, possibly reflecting the structural change to flavones. When the pH of these alkaline extracts was adjusted to neutral pH, the peaks shifted to longer elution times and aligned themselves with peaks obtained from the original liquor feedstock.
  • Storing the alkaline extracts for up to 14 days at room temperature did not significantly alter the liquid chromatography fingerprints suggesting that no further changes to flavones was occurring with time. Further, if alkaline extracts were immediately returned back to neutrality, polyphenol peaks also remained stable over 14 days storage.
  • Example 8 Colour Reduction and Polyphenol Recovery
  • The present inventors have surprisingly found that colour can be removed efficiently without significant loss of polyphenols. When ethanol concentration was increased beyond 40% a more suitable extract was produced.
  • Table 6 details the various samples tested.
  • TABLE 6
    Properties of samples tested
    ICUMSA Total Phenolics
    Sample Colour (mg CE/100 g)
    1 32240 808
    2 37710 1356
    3 65210 1169
    4 66030 1797
    5 32440 943
    6 10960 349
  • Sample 1: Townsville Terminal Molasses, which has been clarified by centrifugation. The crude molasses (about 75 Brix) was adjusted to 25 Brix with water and centrifuged (4,000 rpm for 10 mins). The precipitate was discarded. The initial clarified feedstock was still 25 Brix and used to produce a 75% ethanol supernatant, which is Sample 2. 200 ml of this clarified feedstock was used to make the 75% super extract. Total CE/100 g=808 mg. ICUMSA 32,240.
  • Sample 2: This 75% super was made by initially removing the 50% precipitate, recovering the 50% super and then adding more ethanol to 75%. Precipitate removed, 75% super recovered and ethanol removed. The final volume was 80 ml and it was 40 Brix. Total CE/100mg=1356mg. ICUMSA 37,710.
  • Sample 3: Dunder with 22 Brix (as all the sugar had been removed). The dunder was centrifuged as above and any precipitate was discarded. 200 ml of this clarified dunder was used to make the 75% super extract (Sample 4). Total CE/100 mg=1169 mg. ICUMSA 65,210.
  • Sample 4: This 75% super was made by initially removing the 50% precipitate, recovering the 50% super and then adding more ethanol to 75%. Precipitate removed, 75% super recovered and ethanol removed. The final volume was 80 ml and it was 32 Brix.
  • Sample 5: Hydrophobic chromatography extract of Sample 4. FPX66 material recovered from 15 ml of Sample 4. The peak removed with 70% ethanol was bulked (aliquots were combined) and the ethanol removed. Final volume was 25 ml.
  • Sample 6: Hydrophobic chromatography extract of Sample 2. FPX66 material recovered from 15 ml of Sample 2. The peak removed with 70% ethanol was bulked (aliquots were combined) and the ethanol removed. Final volume was 40 ml.
  • The polyphenol recovery and colour reduction calculations are detailed below.
  • Samples 1 & 2: (i) Polyphenol recovery—200 ml of 25 Brix Molasses=808 mg CE. After dilution, extraction and reduction, 25 Brix increased to 40 Brix (40/25=1.6) and volume reduced from 200 ml to 80 ml (200/80=2.5). Therefore, if 100% recovery of phenols was achieved, total phenolics would have increased to 808 mg CE×2.5=2020 CE. Total phenolics of 1356 CE was detected which means 1356 CE/2020 CE×100=67.13% of total CE was recovered. (ii) Colour reduction—Colour should have theoretically increased 2.5× from 32,240 to 80,600 ICUMSA. Colour detected was however only 37,710 ICUMSA. Colour was therefore reduced by (80,600/37,710) 2.14 times or 42,890 ICUMSA units.
  • Samples 3 & 4: (i) Polyphenol recovery—200 ml of 22 Brix Dunder=1,169 mg CE. After dilution, extraction and reduction, 22 Brix increased to 32 Brix (32/22=1.45) and volume reduced from 200 ml to 80 ml (200/80=2.5). Therefore, if 100% recovery of phenols was achieved, total phenolics would have increased to 1,169 mg CE×2.5=2,922 CE. Total phenolics of 1,797 CE was detected which means 1,797 CE/2,922 CE×100=61.5% of total CE was recovered. (ii) Colour reduction—Colour should have theoretically increased 2.5× from 65,210 to 163,025 ICUMSA. Colour detected was however only 66,030 ICUMSA. Colour was therefore reduced by (163,025/66,030) 2.5 times or 96,995 ICUMSA units.
  • Sample 5: (i) Polyphenol recovery—25 ml of Sample 4 made from 15 ml starting volume. Theoretical dilution of phenolics was therefore (15 ml/25 ml=0.6) or 1,797×0.6=1,078 mg CE. Analysis of Sample 5 was 943 mg CE. This means (943 mg CE/1,078 mg CE) 87.5% of total phenolics were recovered (12.5% were lost). (ii) Colour reduction—Colour should have theoretically decreased 40% from 66,030 to 39,618 ICUMSA. Colour detected was however 32,440 ICUMSA. Colour was therefore reduced by (39,618−32,440=7,178/39,618=18.1%) or 7,178 ICUMSA units. The FPX66 chromatographic method was therefore more effective at reducing Dunder colour without equivalent loss of phenolics. 12.5/18.1=69.1%. This means that for every ICUMSA colour unit removed only 30.9% of the phenolics were removed.
  • Sample 6: (i) Polyphenol recovery—40 ml of Sample 2 made from 15 ml starting volume. Theoretical dilution of phenolics was therefore (15 ml/40 ml=0.375) or 1,356×0.375=508 mg CE. Analysis of Sample 6 was 349 mg CE. This means (349 mg CE/508 mg CE) 68.7% of total phenolics were recovered (31.3% were lost). (ii) Colour reduction—Colour should have theoretically decreased 31.3% from 37,710 to 25,907 ICUMSA. Colour detected was however 10,960 ICUMSA. Colour was therefore reduced by (25,907−10,960=14,947/25,907=57.7%) or 14,947 ICUMSA units. The FPX66 chromatographic method was therefore very effective at reducing molasses colour without equivalent loss of phenolics. 57.7/31.3=54.25% This means that for every ICUMSA colour unit removed only 54.25% of the phenolics were removed.
  • FIG. 4 shows the HPLC fingerprints of the samples as well as some spectra of unidentified phenolics and flavonoids at various retention times.
  • As shown in FIG. 5, the present inventors observed that 75-85% EtOH is the optimal concentration (which differs from that reported in WO 2004/014159) as it yields maximal colour reduction without significant loss of polyphenols.
  • The present inventors also observed that, when molasses is diluted to 25 Brix and then 48 Brix and extraction is broken into two stages, the colour of the final extract is lower and polyphenol recovery is higher. Therefore, an extraction method to produce a standardised extract is as set out in FIG. 6.
  • It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the above-described embodiments, without departing from the broad general scope of the present disclosure. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
  • The steps, features, integers, compositions and/or compounds disclosed herein or indicated in the specification of this application individually or collectively, and any and all combinations of two or more of said steps or features.
  • All publications discussed and/or referenced herein are incorporated herein in their entirety.
  • Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.
  • REFERENCES
    • Colombo et al. (2006) Phytochem Anal, 17:337-343.
    • Duarte-Almeida et al. (2006) Plant Foods for Human Nutrition, 61:187-192.
    • Cai H et al. (2005) Mol Cancer Ther, 4:1287-1292.
    • Payet et al. (2006) J Agric Food Chem, 54:7270-7276.

Claims (19)

1. A process for producing an extract derived from sugar cane, the process comprising:
i) mixing a sugar cane derived product with ethanol to produce an extraction mixture comprising at least about 50% v/v ethanol;
ii) allowing a precipitate to form in the extraction mixture;
iii) removing the precipitate from the extraction mixture to obtain a supernatant; and
iv) removing ethanol from the supernatant to produce the extract derived from sugar cane.
2. The process of claim 1, wherein the process further comprises removing water from the extract to produce an aqueous extract having about 65° Bx (Brix).
3. The process of claim 1 or claim 2, wherein the sugar cane derived product is selected from molasses, bagasse, first expressed juice, mill mud, clarified sugar juice, clarified syrup, treacle, golden syrup, field trash, cane strippings and/or dunder.
4. The process of any one of the preceding claims, wherein the process further comprises subjecting the supernatant to ion exchange chromatography, hydrophobic interaction chromatography, liquid LCMS and/or MALDI-TOF to produce the extract.
5. The process of any one of the preceding claims, wherein the extraction mixture comprises about 70% to about 85% ethanol.
6. The process of any one of the preceding claims, wherein the process further comprises a preliminary extraction.
7. The process of claim 6, wherein the preliminary extraction comprises:
i) mixing a sugar cane derived product with ethanol to produce a preliminary extraction mixture;
ii) allowing a precipitate to form in the preliminary extraction mixture;
iii) removing the precipitate from the preliminary extraction mixture to obtain a preliminary supernatant; and
iv) subjecting the preliminary supernatant to the process described in any one of claims 1 to 5.
8. The process of claim 7, wherein the preliminary extraction mixture comprises at least about 25% v/v ethanol.
9. An extract produced by the process of any one of the preceding claims.
10. The extract of claim 9, wherein the extract comprises at least 25 mg/ml flavonoids, and/or at least 25 mg/ml polyphenols.
11. The extract of claim 9 or 10 which comprises one or more of tricin, apigenin, luteolin, caffeic acid, hydroxycinnamic acids, sinapic acid, and derivatives thereof.
12. The extract of any one of claims 9 to 11, wherein the extract has α-glucosidase inhibitory activity and/or α-amylase inhibitory activity.
13. The extract of any one of claims 9 to 12, wherein the extract has anti-inflammatory activity.
14. A composition comprising the extract of any one of claims 9 to 13 which is a nutritional supplement, dietary supplement, sports nutrition product, food coating or pharmaceutical composition.
15. A food or beverage comprising the extract of any one of claims 9 to 13 or the composition of claim 14.
16. A method of lowering the available calorific value of a food or beverage, the method comprising adding the extract of any one of claims 9 to 13, and/or the composition of claim 14, to the food or beverage.
17. A method of treating or preventing disease in a subject, the method comprising administering to the subject the extract of any one of claims 9 to 13, the composition of claim 14, and/or the food or beverage of claim 15.
18. The extract of any one of claims 9 to 13, the composition of claim 14, and/or the food or beverage of claim 15, for use in the treatment or prevention of disease.
19. Use of the extract of any one of claims 9 to 13, the composition of claim 14, and/or the food or beverage of claim 15 in the manufacture of a medicament for the treatment or prevention of disease.
US14/423,995 2012-08-28 2013-08-28 Extraction Method Abandoned US20150201660A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2012903726A AU2012903726A0 (en) 2012-08-28 Extraction method
AU2012903726 2012-08-28
PCT/AU2013/000964 WO2014032100A1 (en) 2012-08-28 2013-08-28 Extraction method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2013/000964 A-371-Of-International WO2014032100A1 (en) 2012-08-28 2013-08-28 Extraction method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/197,733 Continuation US20190183149A1 (en) 2012-08-28 2018-11-21 Extraction method

Publications (1)

Publication Number Publication Date
US20150201660A1 true US20150201660A1 (en) 2015-07-23

Family

ID=50182261

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/423,995 Abandoned US20150201660A1 (en) 2012-08-28 2013-08-28 Extraction Method
US16/197,733 Abandoned US20190183149A1 (en) 2012-08-28 2018-11-21 Extraction method
US17/502,784 Active 2033-10-07 US11730178B2 (en) 2012-08-28 2021-10-15 Extraction method

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/197,733 Abandoned US20190183149A1 (en) 2012-08-28 2018-11-21 Extraction method
US17/502,784 Active 2033-10-07 US11730178B2 (en) 2012-08-28 2021-10-15 Extraction method

Country Status (11)

Country Link
US (3) US20150201660A1 (en)
EP (2) EP2890467B1 (en)
JP (1) JP6239622B2 (en)
CN (1) CN104780987B (en)
AU (2) AU2013308395C1 (en)
BR (1) BR112015004520B1 (en)
EA (1) EA031427B1 (en)
MY (1) MY171216A (en)
PH (2) PH12015500408B1 (en)
SG (1) SG11201501044RA (en)
WO (1) WO2014032100A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10226502B2 (en) 2011-02-08 2019-03-12 The Product Makers (Australia) Pty Ltd Sugar extract
US11078548B2 (en) 2015-01-07 2021-08-03 Virdia, Llc Method for producing xylitol by fermentation
CN115038337A (en) * 2019-11-29 2022-09-09 葡萄牙天主教大学Ucp Multifunctional extract of sugarcane straw or bagasse and application thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014179845A1 (en) 2013-05-09 2014-11-13 Zeenar Enterprises Pty Ltd Niacin formulation
JP6521435B2 (en) * 2015-04-03 2019-05-29 鹿児島県 Method for fractionating oxygenated compounds and salts contained in molasses
MX2019000952A (en) * 2016-07-27 2019-09-16 Nutrition Science Design Pte Ltd Process for sugar production.
CN106539088B (en) * 2016-10-31 2021-01-01 华南理工大学 Preparation method of functional sucrose with blood sugar reducing function
SG11202010265VA (en) * 2018-05-11 2020-11-27 The Product Makers Australia Pty Ltd Sugar cane extracts for use in animal feeds
GB201807968D0 (en) * 2018-05-16 2018-07-04 Naturex Sa Eutectic extract formation and purification
JP7356250B2 (en) * 2019-04-01 2023-10-04 Dm三井製糖株式会社 muscle enhancer
JP7356253B2 (en) * 2019-04-09 2023-10-04 Dm三井製糖株式会社 Bone metabolism improving agent
US20210172032A1 (en) * 2018-07-30 2021-06-10 Nutrition Science Design Pte. Ltd Process for sugar production
WO2020256570A2 (en) * 2019-02-04 2020-12-24 TRICARICO, Giorgio Antioxidant and anticarcinogenic sugarcane extract and production thereof
EP3827672A1 (en) * 2019-11-29 2021-06-02 Universidade Católica Portuguesa - UCP Multifunctional extracts of sugarcane straw or bagasse and uses thereof
JPWO2021167012A1 (en) * 2020-02-18 2021-08-26
JP2023550768A (en) * 2020-11-23 2023-12-05 ポリー ゲイン プライベート リミテッド Use of sugarcane-derived extracts to treat or prevent microbial infections and dysbiosis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454875A (en) * 1994-07-01 1995-10-03 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Softening and purification of molasses or syrup
WO2004014159A1 (en) * 2002-08-07 2004-02-19 Queen Bioactives Pty Ltd Method of lowering glycaemic index of foods
US20050175674A1 (en) * 2002-08-07 2005-08-11 Queen Bioactives Pty Ltd Method of lowering Glycaemic Index of foods
US8138162B2 (en) * 2004-06-04 2012-03-20 Horizon Science Pty Ltd. Natural sweetener
US9364016B2 (en) * 2006-09-19 2016-06-14 The Product Makers (Australia) Pty Ltd Extracts derived from sugar cane and a process for their manufacture

Family Cites Families (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1730473A (en) 1925-12-22 1929-10-08 California Packing Corp Process of recovering sucrose from cane molasses
US2000202A (en) 1932-07-20 1935-05-07 Vasques Eugenio Antonio Process for the recovery of sugar and salts from sugar cane molasses
US2170713A (en) 1936-11-12 1939-08-22 Fattinger Hans Stock food and method of producing the same
US2342162A (en) 1940-05-13 1944-02-22 Musher Sidney Extraction of food and similar antioxygens from cane and beet molasses
US3174877A (en) 1963-05-16 1965-03-23 Sun Oil Co Decolorizing sugar by extracting coloring matter therefrom with a methanol solution of a hydrocarbon
US3325308A (en) 1963-06-19 1967-06-13 Donald F Othmer Process for the refining of sugar with two or more solvents
US3619293A (en) 1970-02-18 1971-11-09 Nippon Shiryo Kogyo Kk Granular sucrose products and process for producing same
DE2362211C3 (en) 1973-12-14 1978-05-11 Sueddeutsche Zucker Ag, 6800 Mannheim Process for processing molasses
CH622004A5 (en) 1975-04-10 1981-03-13 Pfeifer & Langen
US4101338A (en) 1975-06-02 1978-07-18 Sucrest Corporation Process for recovering useful products from carbohydrate-containing materials
JPS5359044A (en) 1976-11-06 1978-05-27 Sumitomo Cement Co Process for refining dilute solution of waste molasses
US4102646A (en) 1977-04-06 1978-07-25 Sleeter Ronald T Quantitative analysis of carbohydrates by infrared spectroscopy
US4116712A (en) 1977-09-06 1978-09-26 Othmer Donald F Solvent refining of sugar
US4359430A (en) 1980-02-29 1982-11-16 Suomen Sokeri Osakeyhtio Betaine recovery process
US4333770A (en) 1980-09-08 1982-06-08 Uop Inc. Extraction of sucrose from molasses
FR2490676B1 (en) 1980-09-19 1985-07-19 Rhone Poulenc Spec Chim PROCESS FOR PURIFYING SUGAR CANE JUICE
JPS58116650A (en) 1981-12-28 1983-07-11 Erika Kk Preparation of tonic food using sugar cane as raw material
JPS58144382A (en) 1982-02-19 1983-08-27 Agency Of Ind Science & Technol Separation of tocopherol and tocotrienol
JPS5920223A (en) 1982-07-24 1984-02-01 Osaka Chem Lab Preventing agent for obesity
US4404037A (en) 1982-08-12 1983-09-13 Uop Inc. Sucrose extraction from aqueous solutions featuring simulated moving bed
US4523999A (en) 1983-12-16 1985-06-18 Ajinomoto Co., Inc. Ultrafiltration method
JPS6169727A (en) 1984-09-14 1986-04-10 Osaka Chem Lab Saccharide absorption inhibitor and food containing same
JPS6183130A (en) 1984-10-01 1986-04-26 Hiroshi Hikino Polysaccharide, its separation and use
JPS61139400A (en) 1984-12-11 1986-06-26 第一製糖株式会社 Purification of molasses
JPS61265068A (en) 1985-05-20 1986-11-22 Osaka Chem Lab Anti-obesity food
JPS61268200A (en) 1985-05-24 1986-11-27 オルガノ株式会社 Separation of non-sugar component and sugar component
JPS62126951A (en) 1985-11-28 1987-06-09 Nippon Beet Sugar Mfg Co Ltd Production of sweetener containing glucide source for proliferation of bifidus bacteria
JP2516006B2 (en) 1987-02-20 1996-07-10 オリエンタル酵母工業株式会社 How to decolorize molasses
JP2672138B2 (en) 1987-08-21 1997-11-05 フレクショネイテッド ケイン テクノロジー リミテッド A low-cholesterol diet containing sugar cane soft tissue cell walls
JPH0767398B2 (en) 1988-01-22 1995-07-26 三菱化成エンジニアリング株式会社 How to treat beet sugar solution
JPH0633396B2 (en) 1988-04-23 1994-05-02 第一製糖株式会社 Extraction method of cane lipid component
FI86416C (en) 1988-06-09 1992-08-25 Suomen Sokeri Oy Procedure for extracting betaine from molasses
JPH0220300A (en) 1988-07-06 1990-01-23 Sanehisa Nakamura Recovery of sacchrose from end molasses of sweet potato
GB8907313D0 (en) 1989-03-31 1989-05-17 British Sugar Plc Sweetener composition
JP2816725B2 (en) 1989-10-31 1998-10-27 万田発酵株式会社 Sugar absorption inhibitor
EP0481603A1 (en) 1990-10-15 1992-04-22 The Dow Chemical Company Separation of weak organic acids from liquid mixtures
US5096594A (en) 1990-12-20 1992-03-17 Israel Rabinowitz Chromatographic method of purifying cyclitols
JPH04320691A (en) 1991-04-22 1992-11-11 Sumitomo Chem Co Ltd Method for purifying fermented organic acid
US5382294A (en) 1991-08-26 1995-01-17 Rimedio; Nicholas T. Chromatographic separation of organic non-sugars, colloidal matterials and inorganic-organic complexes from juices, liquors, syrups and/or molasses
JPH074277B2 (en) 1991-09-10 1995-01-25 北海道糖業株式会社 Method for producing sweetener
CU22229A1 (en) 1992-09-29 1996-01-31 Dalmer Lab Sa Polycosanol, a mixture of superior primary aliphatic as platelet hyperclumping, ischemic accidents, thrombosis and also effective against chemically induced gastric and procedure for its preparation from sugar cane.alcohols for treating atherosclerotic complications such
JP3581157B2 (en) 1992-08-19 2004-10-27 株式会社ミツカングループ本社 Foods for people with low glucose tolerance
DE4231149C1 (en) 1992-09-17 1993-12-16 Amino Gmbh Process for the further processing of technical processes in the molasses processing industry
WO1994012057A1 (en) 1992-11-25 1994-06-09 Fujisawa Pharmaceutical Co., Ltd. Diet sweetener
FI96225C (en) 1993-01-26 1996-05-27 Cultor Oy Process for fractionation of molasses
CA2139033C (en) 1993-12-27 2004-04-20 Masatake Tanimura Method of separation into three components using a simulated moving bed
JPH0840912A (en) 1994-08-03 1996-02-13 Res Inst For Prod Dev Saccharide absorption inhibitor
RU2048847C1 (en) 1994-08-18 1995-11-27 Татьяна Евгеньевна Митченко Ion-exchange method of molasses complex processing
US5795398A (en) 1994-09-30 1998-08-18 Cultor Ltd. Fractionation method of sucrose-containing solutions
US5482631A (en) 1994-10-06 1996-01-09 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Separation of inositols from sugars and sugar alcohols
US5578336A (en) 1995-06-07 1996-11-26 Monte; Woodrow C. Confection carrier for vitamins, enzymes, phytochemicals and ailmentary vegetable compositions and method of making
JPH0925290A (en) 1995-07-13 1997-01-28 Tokiwa Kanpo Seiyaku:Kk New compound included in sugar beet, medical composition and function food
US6261565B1 (en) 1996-03-13 2001-07-17 Archer Daniels Midland Company Method of preparing and using isoflavones
US5955269A (en) 1996-06-20 1999-09-21 Rutgers, The State University Of New Jersey Methods of screening foods for nutraceuticals
DK0912614T3 (en) 1996-06-24 2002-09-09 Nestle Sa Pectin based gelling agent
IL119924A0 (en) 1996-12-27 1997-03-18 Tate & Lyle Plc A process for treating a sucrose syrup
RU2114177C1 (en) 1997-06-02 1998-06-27 Товарищество с ограниченной ответственностью Центр содействия развитию новых технологий "Кантэк" Method of production of sugar syrup from sugar-containing raw
AUPO821397A0 (en) 1997-07-24 1997-08-14 Commonwealth Scientific And Industrial Research Organisation Process for the purification of nutrients from food process streams
JP3383193B2 (en) 1997-08-29 2003-03-04 日本甜菜製糖株式会社 Liquid sweetener and method for producing the same
AUPP115597A0 (en) 1997-12-23 1998-01-29 Bureau Of Sugar Experiment Stations On-line measuring system and method
JP3539470B2 (en) 1997-12-25 2004-07-07 オルガノ株式会社 How to recover betaine
JPH11318405A (en) 1998-05-08 1999-11-24 Asama Kasei Kk Preservative for food and food preservation method
JP2000032954A (en) 1998-07-17 2000-02-02 Gosho:Kk Anthocyanin-based red rice extract and powder and their production
MY134878A (en) 1998-09-24 2007-12-31 Palm Oil Res And Dev Board Treatment of liquors derived from oil-bearing fruit.
ES2342449T3 (en) 1998-10-09 2010-07-06 Mitsui Sugar Co., Ltd. PROPHILACTICS / DRUGS FOR INFECTION, ANTI-ENDOTOXIN AGENTS, VACCINE ADJUSTERS AND GROWTH STIMULATORS.
IL127371A (en) 1998-12-02 2004-08-31 Adumin Chemicals Ltd Method for selectively obtaining antioxidant rich extracts from citrus fruits
JP4484267B2 (en) 1999-04-12 2010-06-16 三井製糖株式会社 Cancer immunostimulant and allergy immunosuppressant
US6723369B2 (en) 1999-05-27 2004-04-20 James M. Burgess Carbonated beverage for strengthening acid resistancy of teeth
EP1767097A3 (en) 1999-08-16 2007-04-04 DSMIP Assets B.V. Green tea extracts
US6174378B1 (en) 1999-08-19 2001-01-16 Tate Life Industries, Limited Process for production of extra low color cane sugar
US6406548B1 (en) 2000-07-18 2002-06-18 Tate & Lyle Industries, Limited Sugar cane membrane filtration process
US6406547B1 (en) 2000-07-18 2002-06-18 Tate & Lyle Industries, Limited Sugar beet membrane filtration process
FR2797688B1 (en) 1999-08-19 2001-11-02 Marc Dubernet METHOD AND DEVICE FOR OBJECTIVE QUALITATIVE ANALYSIS OF GRAPE MUST AND / OR WINE BY BROADBAND INFRARED SPECTROMETRY
FI113453B (en) 1999-09-17 2004-04-30 Sohkar Oy Chromatographic fractionation of plant material
JP3455481B2 (en) 1999-10-15 2003-10-14 ラシェル製薬株式会社 Dietary supplement containing brown sugar extract
JP4678904B2 (en) 1999-11-02 2011-04-27 アサヒビール株式会社 Weight gain inhibitor from hops
MXPA02004621A (en) 1999-11-17 2004-09-10 Tate & Lyle Ind Ltd PREPARATION OF A RELAXED SiGe LAYER ON AN INSULATOR.
JP4358957B2 (en) 2000-01-21 2009-11-04 三井製糖株式会社 Agent for scavenging or reducing free radicals or active oxygen
TWI261497B (en) 2000-03-10 2006-09-11 Yakult Honsha Kk alpha-amylase activity inhibitor
US6774111B1 (en) 2000-03-14 2004-08-10 Abbott Laboratories Carbohydrate system and a method for providing nutrition to a diabetic
KR100350576B1 (en) 2000-04-14 2002-08-30 박 군 Warmer for medical treatment and its control method
JP4737796B2 (en) 2000-04-21 2011-08-03 三井製糖株式会社 Liver function enhancer
JP2002020306A (en) 2000-07-03 2002-01-23 Chisso Corp Radical eliminating substance and radical eliminant using the same
CN1268351C (en) 2000-08-01 2006-08-09 奥力榨油化株式会社 Sugar absorption inhibitors and process for producing the same
EP1254209B1 (en) 2000-08-17 2006-03-15 Sabinsa Corporation Composition comprising hydroxycitric acid and garcinol for weight-loss
AUPQ987400A0 (en) 2000-09-04 2000-09-28 Food Ingredients Technologies Intangibles (Bermuda) Limited Process for selectively extracting bioactive components
FI20002149A (en) 2000-09-29 2002-03-30 Xyrofin Oy Purification of saccharides by chromatographic separation
FI20002150A (en) 2000-09-29 2002-03-30 Finnfeeds Finland Oy Procedure for recycling products from process solutions
JP3793779B2 (en) 2000-11-27 2006-07-05 沖縄県 Method for producing sugarcane polyphenol-containing material
PT1366198E (en) 2000-12-28 2012-03-28 Danisco Separation process
US20030031772A1 (en) 2001-03-28 2003-02-13 Zehner Lee R. Mixtures of fructose and lactose as a low-calorie bulk sweetener with reduced glyemic index
US20020187219A1 (en) 2001-03-29 2002-12-12 The Procter & Gamble Co. Low glycemic response compositions
US7022368B2 (en) 2001-06-26 2006-04-04 Ocean Spray Cranberries, Inc. Process for producing sugars and acids-rich juice and phytochemical-rich juice
WO2003010116A2 (en) 2001-07-24 2003-02-06 Cargill, Incorporated Process for isolating phenolic compounds
JP2003116486A (en) 2001-08-09 2003-04-22 Meiji Milk Prod Co Ltd Food composition having inhibitory action on postprandial elevation of blood glucose
JP5002097B2 (en) 2001-08-28 2012-08-15 独立行政法人農業・食品産業技術総合研究機構 Preventive / therapeutic agent for human or animal disease caused by coccidium and adjuvant agent for immunization of human or animal against mild coccidium infection
US6869625B2 (en) 2001-10-09 2005-03-22 Council Of Scientific And Industrial Research Method of treating diabetes using plant argyrolobium roseum extract, and a process for the isolation of extract from the said plant
JP4199448B2 (en) 2001-10-30 2008-12-17 琉球セメント株式会社 Pharmaceutical agent comprising sugarcane polyphenol-containing substance as active ingredient and use thereof
US6706305B2 (en) 2001-10-31 2004-03-16 Conagra Foods Inc. Low glycemic index bread
US6899892B2 (en) 2001-12-19 2005-05-31 Regents Of The University Of Minnesota Methods to reduce body fat
US20030165574A1 (en) 2002-03-01 2003-09-04 Ward Loren Spencer Compositions and methods for treatment of body weight conditions
GB0205182D0 (en) 2002-03-06 2002-04-17 Molecularnature Ltd Process for extracting polar phytochemicals
GB0205186D0 (en) 2002-03-06 2002-04-17 Molecularnature Ltd Method for monitoring the quality of a herbal medicine
GB0205184D0 (en) 2002-03-06 2002-04-17 Molecularnature Ltd Process for scavenging phytochemicals
GB0205185D0 (en) 2002-03-06 2002-04-17 Molecularnature Ltd Process for extracting non-polar phytochemicals
KR20040089733A (en) 2002-03-12 2004-10-21 카운슬 오브 사이언티픽 앤드 인더스트리얼 리서치 Bioavailability/Bioefficacy Enhancing Activity of Cuminum Cyminum and Extracts and Fractions Thereof
US7524526B2 (en) 2002-04-10 2009-04-28 Archer-Daniels-Midland Company Process for producing high purity isoflavones
US20030198694A1 (en) 2002-04-22 2003-10-23 Chou Chung Chi Preparation antioxidants enriched functional food products from sugar cane and beet
CN100544715C (en) 2002-04-30 2009-09-30 尤尼根制药公司 As there not being the compositions that replaces B lopps flavone and flavane mixture comprising of therapeutic agent
US7074440B2 (en) 2002-05-01 2006-07-11 Rulin Xiu Compositions and methods for body weight loss
US6929817B2 (en) 2002-05-14 2005-08-16 National Starch & Chemical Investment Holding Corporation Slowly digestible starch product
US6890571B2 (en) 2002-05-14 2005-05-10 National Starch And Chemical Investment Holding Corporation Slowly digestible starch product
KR100594353B1 (en) 2002-05-28 2006-07-03 주식회사 엠디바이오알파 Active fraction having anti-cancer and anti-metastic activity isolated from leaves and stems of Ginseng
FI20021251A0 (en) 2002-06-26 2002-06-26 Finnfeeds Finland Oy Method for the recovery of betaine
JP3644938B2 (en) 2002-08-01 2005-05-11 株式会社東洋新薬 healthy food
CN1398979A (en) * 2002-08-16 2003-02-26 维京仲华(上海)生物医药科技有限公司 Fermentation process of ash tree flower and production process of its polyglycopeptide
JP2004075612A (en) 2002-08-19 2004-03-11 National Agriculture & Bio-Oriented Research Organization Immunological function-enhancing agent
US20040131749A1 (en) 2002-08-29 2004-07-08 Archer-Daniels-Midland Company Phytochemicals from edible bean process streams
US20040052915A1 (en) 2002-09-13 2004-03-18 Carlson Ting L. Use of low glycemic index sweeteners in food and beverage compositions
CN1262201C (en) 2002-09-25 2006-07-05 周重吉 Preparation method of functional food enriched with anti-oxydation group from sugar cane and beet
WO2004041003A1 (en) 2002-11-06 2004-05-21 Danisco Sugar Oy Edible flavor improver, process for its production and use
US20040097429A1 (en) 2002-11-18 2004-05-20 Nieuwenhuizen Arie Gijsbert Method for the reduction of the mammalian appetite
EP1447013A1 (en) 2003-02-14 2004-08-18 Wacker-Chemie GmbH Method for reducing the glycemic index of food
EP1447014A1 (en) 2003-02-14 2004-08-18 Wacker-Chemie GmbH Method for reducing the glycemic index for food
JP2004331512A (en) 2003-04-30 2004-11-25 Rasheru Seiyaku Kk Cosmetic composition
US20060121158A1 (en) 2003-06-04 2006-06-08 Mario Ferruzzi Weight management beverage
AU2003903058A0 (en) 2003-06-18 2003-07-03 Phytopharm Australia Ltd A process and apparatus for the modification of plant extracts
GB0316550D0 (en) 2003-07-15 2003-08-20 Forum Bioscience Holdings Ltd Sucrose substitute
GB2408262B (en) 2003-11-24 2007-09-12 British Sugar Plc A method of preparation of L-arabinose
WO2005074962A1 (en) 2004-02-10 2005-08-18 Asahi Breweries, Ltd. Muscular tension-elevating agent
JP4903436B2 (en) 2004-02-17 2012-03-28 サントリーホールディングス株式会社 Lipase activity inhibitor, tea extract containing high-molecular polyphenol fraction, and method for producing the same
DE112005000488T5 (en) 2004-03-04 2007-02-01 Gökhan, Cem Artificial fruits
WO2005089784A1 (en) 2004-03-19 2005-09-29 Toyo Shinyaku Co., Ltd. Composition for oral cavity
WO2005089066A2 (en) 2004-03-23 2005-09-29 Rimonest Ltd. Pharmaceutical compositions, methods of formulation thereof and methods of use thereof
JP4182524B2 (en) 2004-03-26 2008-11-19 北海道糖業株式会社 Method for producing beet-containing sugar
US20050214419A1 (en) 2004-03-29 2005-09-29 Aberle Rick A Method and apparatus for providing instantaneous, real-time data for extrusion process control
JP4948162B2 (en) 2004-04-30 2012-06-06 富士産業株式会社 New arabinogalactans and antidiabetics
JP2005343843A (en) 2004-06-04 2005-12-15 Osaka Yakuhin Kenkyusho:Kk Cosmetic composition comprising black sugar extract and soybean extract
JP2006028020A (en) 2004-07-12 2006-02-02 Osaka Yakuhin Kenkyusho:Kk Cosmetic composition comprising collagen and raw sugar extract
WO2006014028A1 (en) 2004-08-06 2006-02-09 Mochida Pharmaceutical Co., Ltd. Sweet potato stem extract and use thereof
US20090047368A1 (en) 2004-11-04 2009-02-19 University Of Tsukuba Polymeric polyphenol extracted from fermented tea, therapeutic agent for mitochondrial disease, preventive/therapeutic agent for diabetes mellitus, and food or beverage
JP3671190B1 (en) 2004-11-09 2005-07-13 松浦薬業株式会社 Extract obtained from lotus plant, method for producing the extract and anti-obesity agent
WO2006052007A1 (en) 2004-11-11 2006-05-18 Takeda Pharmaceutical Company Limited Glycemic controlling agent
CN1685929A (en) 2005-05-08 2005-10-26 颜怀玮 Normal energy metabolism composite essential vitamin micro element and nutritive type white sugar product and manufacturing method
US7943190B2 (en) 2005-05-13 2011-05-17 Her Majesty the Queen in Right in Canada as Represented by the Minister of Agriculture and Agri-Food Canada Extraction of phytochemicals
JP5340520B2 (en) 2005-05-20 2013-11-13 ポッカサッポロフード&ビバレッジ株式会社 Weight gain inhibitor
EP1885455A1 (en) 2005-06-03 2008-02-13 Horizon Science Pty. Ltd. Delivery systems
EP2450084B1 (en) 2005-06-03 2014-02-19 Horizon Science Pty Ltd Substances having body mass redistribution properties
JP2007043940A (en) 2005-08-09 2007-02-22 Hokkaido Univ Method for collecting inositol
JP5563181B2 (en) 2005-09-01 2014-07-30 ポッカサッポロフード&ビバレッジ株式会社 Insulin resistance improving agent and blood glucose level lowering agent
WO2007041817A1 (en) 2005-10-07 2007-04-19 Dulcini S/A Tood composition, use of an effective amount of sugar and biopolymer, and product
US8864995B2 (en) 2006-01-10 2014-10-21 Dupont Nutrition Biosciences Aps Method for separating betaine
KR101563528B1 (en) 2006-02-10 2015-10-27 마나테크, 인코포레이티드 All natural multivitamin and multimineral dietary supplement formulations for enhanced absorption and biological utilization
JP2008044872A (en) 2006-08-11 2008-02-28 Nippon Supplement Kk Health food containing isolariciresinol, blood cholesterol-reducing agent and body fat-reducing agent
AU2011204847B2 (en) 2006-09-19 2013-12-19 Poly Gain Pte Ltd Extracts derived from sugar cane and a process for their manufacture
JP2008222656A (en) 2007-03-14 2008-09-25 Orient Herb Kk Obesity ameliorating and preventing composition and health food
GB0719545D0 (en) 2007-10-08 2007-11-14 Barry Callebaut Ag Novel use of cocoa extract
GB0719542D0 (en) 2007-10-08 2007-11-14 Barry Callebaut Ag Use of cocoa extract
CN101686963A (en) 2007-05-04 2010-03-31 营养保健商业咨询公司 Compositions with lipolytic activity, the purposes of its production method and compositions
US20080286254A1 (en) 2007-05-17 2008-11-20 Kaneka Corporation Composition comprising licorice polyphenol
ES2311401B1 (en) 2007-05-22 2009-12-22 Ges-Biolives, S.L. PROCEDURE FOR OBTAINING EXTRACTS WITH HIGH CONTENT IN HYDROXYTIROSOL FROM PRODUCTS DERIVED FROM OLIVA.
AU2008310307B2 (en) 2007-10-10 2013-04-18 Langtech International Pty Ltd Method to recover bioactive compounds
WO2009049428A1 (en) 2007-10-16 2009-04-23 The University Of British Columbia Alpha-amylase inhibitors: the montbretins and uses thereof
KR100954217B1 (en) 2007-12-14 2010-04-21 (주)세전 Method for production of the extract containing L-arabinose by using organic acid
FR2929852B1 (en) 2008-04-09 2010-08-13 Alvend PROCESS FOR THE PREPARATION OF VEGETABLE EXTRACT RICH IN POLYPHENOLS, EXTRACT OBTAINED FROM THE PROCESS, COMPOSITIONS COMPRISING SAID EXTRACT AND INSTALLATION FOR CARRYING OUT THE PROCESS
ES2543708T3 (en) 2008-05-08 2015-08-21 Indus Biotech Private Limited Compositions comprising galactomannan and a process thereof
US8288364B2 (en) 2008-05-09 2012-10-16 Indus Biotech Private Limited Botanically derived composition and a process thereof
JP2009298769A (en) 2008-05-14 2009-12-24 Asahi Breweries Ltd Fat accumulation-suppressing composition
CN101317850B (en) 2008-05-20 2012-07-04 淮北中润生物能源技术开发有限公司 Sucrose absorption inhibitor
KR100894911B1 (en) 2008-09-12 2009-04-30 (주)세전 Sugar food composition containing sbp extract
US20100112099A1 (en) 2008-11-04 2010-05-06 Metaproteomics, Llc Phytochemical compositions and methods for activating amp-kinase
US20100196549A1 (en) 2009-02-03 2010-08-05 Tropicana Products, Inc. Microencapsulated citrus phytochemicals and application to sports drinks
FI20095144A0 (en) 2009-02-17 2009-02-17 Danisco Sugar Oy food Product
FR2942224B1 (en) 2009-02-18 2012-11-30 Centre De Cooperation Internationale En Rech Agronomique Pour Le Developpement Cirad PROCESS FOR EXTRACTING PHENOLIC COMPOUNDS FROM WATER OF VEGETATION OF OLIVE AND PREPARATION OF TITLE EXTRACT OF OLIVE AND GRAPE POLYPHENOLS
KR20120005037A (en) 2009-04-17 2012-01-13 사크론 이노베이션즈 피티와이 리미티드 Compounds affecting glycemic index
AU2012214104C1 (en) * 2011-02-08 2017-08-03 Poly Gain Pte Ltd Sugar extracts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454875A (en) * 1994-07-01 1995-10-03 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Softening and purification of molasses or syrup
WO2004014159A1 (en) * 2002-08-07 2004-02-19 Queen Bioactives Pty Ltd Method of lowering glycaemic index of foods
US20050175674A1 (en) * 2002-08-07 2005-08-11 Queen Bioactives Pty Ltd Method of lowering Glycaemic Index of foods
US8138162B2 (en) * 2004-06-04 2012-03-20 Horizon Science Pty Ltd. Natural sweetener
US9364016B2 (en) * 2006-09-19 2016-06-14 The Product Makers (Australia) Pty Ltd Extracts derived from sugar cane and a process for their manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10226502B2 (en) 2011-02-08 2019-03-12 The Product Makers (Australia) Pty Ltd Sugar extract
US11078548B2 (en) 2015-01-07 2021-08-03 Virdia, Llc Method for producing xylitol by fermentation
CN115038337A (en) * 2019-11-29 2022-09-09 葡萄牙天主教大学Ucp Multifunctional extract of sugarcane straw or bagasse and application thereof

Also Published As

Publication number Publication date
EP2890467B1 (en) 2019-09-25
BR112015004520B1 (en) 2021-10-05
EP3569298B1 (en) 2021-08-11
EP2890467A1 (en) 2015-07-08
EA201590458A8 (en) 2018-01-31
EA031427B1 (en) 2018-12-28
PH12015500408A1 (en) 2015-04-20
EA201590458A1 (en) 2015-10-30
BR112015004520A2 (en) 2017-07-04
PH12018502169A1 (en) 2019-06-24
AU2013308395B2 (en) 2016-11-10
AU2013308395A1 (en) 2015-03-05
CN104780987A (en) 2015-07-15
AU2017200670A1 (en) 2017-02-23
WO2014032100A1 (en) 2014-03-06
US20190183149A1 (en) 2019-06-20
SG11201501044RA (en) 2015-05-28
PH12015500408B1 (en) 2015-04-20
CN104780987B (en) 2018-10-30
JP6239622B2 (en) 2017-11-29
EP2890467A4 (en) 2016-05-25
AU2013308395C1 (en) 2018-03-15
EP3569298A1 (en) 2019-11-20
MY171216A (en) 2019-10-02
JP2015528448A (en) 2015-09-28
US20220279820A1 (en) 2022-09-08
US11730178B2 (en) 2023-08-22

Similar Documents

Publication Publication Date Title
US11730178B2 (en) Extraction method
JP5112859B2 (en) Natural sweetener
JP5639221B2 (en) Extracts derived from sugarcane and methods for producing them
WO2009084275A1 (en) Composition for oral administration
EP3035949B1 (en) Sugar cane derived extracts and uses
US20100247638A1 (en) organoleptically improved dietary fiber composition and a process thereof (teestar)
JP2023531741A (en) Plant fiber hydrolyzate and its use in human and animal diets
AU2011202974A1 (en) Natural sweetener

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE PRODUCT MAKERS (AUSTRALIA) PTY LTD, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PHYTOLIN PTY LTD;REEL/FRAME:035811/0287

Effective date: 20141222

Owner name: PHYTOLIN PTY LTD, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KANNAR, DAVID;KITCHEN, BARRY JAMES;SPARROW, LANCE;AND OTHERS;SIGNING DATES FROM 20140407 TO 20140704;REEL/FRAME:035872/0134

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION