JPS62126951A - Production of sweetener containing glucide source for proliferation of bifidus bacteria - Google Patents

Production of sweetener containing glucide source for proliferation of bifidus bacteria

Info

Publication number
JPS62126951A
JPS62126951A JP60266110A JP26611085A JPS62126951A JP S62126951 A JPS62126951 A JP S62126951A JP 60266110 A JP60266110 A JP 60266110A JP 26611085 A JP26611085 A JP 26611085A JP S62126951 A JPS62126951 A JP S62126951A
Authority
JP
Japan
Prior art keywords
raffinose
sugar
fraction
syrup
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60266110A
Other languages
Japanese (ja)
Other versions
JPS6365301B2 (en
Inventor
Koji Sayama
晃司 佐山
Kenichi Hashizume
健一 橋爪
Takayuki Muratsubaki
村椿 孝行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Beet Sugar Manufacturing Co Ltd
Original Assignee
Nippon Beet Sugar Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Beet Sugar Manufacturing Co Ltd filed Critical Nippon Beet Sugar Manufacturing Co Ltd
Priority to JP60266110A priority Critical patent/JPS62126951A/en
Publication of JPS62126951A publication Critical patent/JPS62126951A/en
Publication of JPS6365301B2 publication Critical patent/JPS6365301B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-quality sweetener having bifidus-proliferation effect, in high efficiency, eliminating the C-crystallization step of the conventional sugar-refining process and improving the recovery of raffinose, by repeating the crystallization of desalted beet sugar syrup and subjecting the separated crude syrup for crystallization to chromatographic separation. CONSTITUTION:Beet syrup desalted with ion exchange resin is repeatedly crystallized and the separated crude syrup for crystallization is subjected to chromatographic separation. The syrup is separated into a fraction containing supersaturated raffinose at normal temperature, a fraction containing high-purity sucrose and a fraction rich in betaine. The fraction containing high-purity sucrose is recycled to a recovery process and the raffinose fraction is concentrated optionally after converting to an oligosaccharide with a transferase. In the case of mixing a raffinose-containing sugar with powdery sugar, it is preferable to add a reduced sugar solution as a binder to decrease unagreeable feeling of the sweetness on the tongue.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は甜菜糖製造工程中の裾物哨シラツブを利用し
、砂糖の回収を計ると共にラフィノース区分を分離し、
そのま\或いはその中に含まれている/ニークロースを
転移酵素でオリゴ糖に転換し、1−内有用菌の増殖を助
長さす甘味料の型造法に関するものである。
[Detailed Description of the Invention] "Industrial Application Field" This invention utilizes a beet sugar manufacturing process to recover sugar and separate raffinose fractions.
The present invention relates to a method for producing a sweetener that converts necrose directly or contained therein into an oligosaccharide using a transferase and promotes the growth of useful bacteria.

「従来の技術」 甜菜糖製造に供する甜菜中にはラフィノースが剖まFl
、甜菜用製造工場では糖液中に移行したラフィノースを
酵素メリピアーゼにより7ユクロースとガラクトースに
分解しシークロースの増収を計ると共に5f9作業にお
けるラフィノースの作業阻害の防止を計っている。通常
糖液をイオン交換樹脂によって各種不純物を除去するイ
オン交換脱塩法にあっては、′a厚汁を煎糖し製品砂糖
を得た後のAシラツブを再煎糖し、B砂糖とBシラツブ
を得る。このB砂糖は溶解し濃厚汁工程へ戻すが。
``Prior art'' Raffinose is present in sugar beet used for sugar beet production.
At the sugar beet manufacturing factory, the raffinose that has migrated into the sugar solution is broken down into 7-ucrose and galactose using the enzyme melipiase to increase the yield of sucrose and to prevent raffinose from inhibiting the 5f9 process. In the ion-exchange desalting method, in which various impurities are removed from a sugar solution using an ion-exchange resin, 'a thick juice is roasted with sugar to obtain product sugar, then the A syrup is re-roasted, and the B sugar and B sugar Get Shiratsubu. This B sugar will be dissolved and returned to the concentrated juice process.

B/シラツブこれをメリビアーゼ処理を行っているから
、Bシラツブ中に増量したシュクロースは煎糖してC砂
糖として回収後、溶解し濃厚汁工程へ戻す。一般にメリ
ビアーゼ分解前のB/シラツブ中ラフィノースは8〜1
2チ程度であり、メリピアーゼによりその70チ以上が
分解されてシュクロースとして回収され、残りが廃糖蜜
と共に排出されている。
B/Shirabu Since this is treated with melibiase, the increased amount of sucrose in B Shirabu is recovered as C sugar by decocting it, then dissolved and returned to the concentrated juice process. In general, raffinose in B/shiratube before melibiase degradation is 8 to 1.
More than 70 g of it is broken down by melipiase and recovered as sucrose, and the rest is discharged together with blackstrap molasses.

一方、ンユクロースが転移酵素によりオリゴ塘を生成し
、甘味のあるフラクトオリゴ楯を生成したり(特公昭5
9−53834号公fIi参照)、インラフィノースを
生成する(昭和60年度第77回日本蓄産学会大会プロ
グラム第148頁参照)ことは知られており、又前記フ
ラクトオリゴ楯がビフィズス菌の増殖に利用されること
は前記特公昭59−53834号に記載されている外、
前記ラフィノースやインラフィノースも亦ビフィズス菌
が選択的に資化することを知った。
On the other hand, Nyucrose generates oligosaccharides by transferases, producing sweet-tasting fructo-oligo shields (Tokuko Sho 5).
9-53834 (see Publication No. 9-53834 fIi)), it is known that inrafinose is produced (see program page 148 of the 77th Japan Society of Gastrointestinal Research in 1985), and the fructooligo shield is used for the growth of bifidobacteria. In addition to what is stated in the above-mentioned Japanese Patent Publication No. 59-53834,
It has been found that the raffinose and inraffinose are also selectively assimilated by Bifidobacteria.

「発明が解決しようとする問題点」 この発明者らは先にBシラツブをメリビアーゼ処理し、
含有するラフィノースの70係以上をシュクロースとガ
ラクトースに分解、シュクロースは煎糖し製糖工程で回
収し、残りのラフィノースを含むシラツブについては廃
蘭蜜として排出されていた該廃糖蜜中のラフィノースと
7ユクロースに着目し、ビフィズス菌の培地となるラフ
ィノースがフラクトシルトランスフェラーゼで糖蜜中の
/ユクロースをオリゴ糖に転換する条件下においても基
質特異性が弱いためラフィノースの大部分が残存するこ
とから、この甜菜糖宮中のシュクロースをフラクトオリ
ゴ糖に転換し、ラフィノースと共にビフィズス菌増殖促
進を行う甘味料の製造方法を特願昭59−126515
号として特許出頭したが、甜菜糖蜜に残存含有するラフ
ィノースはメリビアーゼ分解工程によりその大部分がシ
ュクロースとガラクトースに転換しているため当初のB
/シラツブ中含有したラフィノース含有量の10〜30
%程度しか利用出来ない欠点があった。
"Problem to be solved by the invention" The inventors first treated B syllabi with melibiase,
More than 70% of the raffinose contained is decomposed into sucrose and galactose, and the sucrose is decanted and recovered in the sugar manufacturing process. 7 Focusing on ucrose, we found that raffinose, which serves as a medium for bifidobacteria, has weak substrate specificity even under conditions where fructosyltransferase converts ucrose in molasses into oligosaccharides, so most of the raffinose remains. Patent application No. 59-126515 for a method for producing a sweetener that converts sucrose in sugar beet into fructooligosaccharide and promotes the growth of bifidobacteria together with raffinose.
However, most of the remaining raffinose in sugar beet molasses was converted into sucrose and galactose through the melibiase decomposition process, so the original B.
/ 10 to 30 of the raffinose content contained in the shirub
There was a drawback that only about % could be used.

1問題点を解決した手段」 この発明は、従来メリビアーゼでラフィノースを分解し
ていたのでラフィノースの回収率が悪かった欠点を排し
、メリビアーゼを1吏用しないで佳良な砂糖を回収する
と共にラフィノース等の有用糖類をも多量に回収せんと
研究を進め、脱塩した甜菜糖液を繰返し煎糖しラフィノ
ース濃度を高くし1分離した化物煎糖用シラツブをクロ
マト分離し、常温ではラフィノースが過飽和となるラフ
ィノース濃厚区分と高純度の蔗糖区分とベメイン等の不
純物を多く含む区分に分け、高純度の蔗糖区分は回収工
程に戻し、ラフィノース区分は転移酵素でオリゴ糖に転
換するか、転換せずして濃縮することにより解決したの
である。
This invention eliminates the drawback of poor recovery of raffinose due to conventional decomposition of raffinose with melibiase, recovers high-quality sugar without using melibiase, and recovers raffinose, etc. We conducted research to recover a large amount of useful sugars, and we repeatedly boiled the desalted beet sugar solution to increase the raffinose concentration, and chromatographically separated the 1-separated sugar beet sugar syrup, which was found to be supersaturated with raffinose at room temperature. The raffinose fraction is divided into a raffinose-rich fraction, a high-purity sucrose fraction, and a fraction containing many impurities such as vemain.The high-purity sucrose fraction is returned to the recovery process, and the raffinose fraction is either converted to oligosaccharide using a transferase or left unconverted. The problem was solved by concentrating it.

この発明の脱塩した甜菜糖液とは甜菜浸出汁を陰陽イオ
ン交換樹脂或いは膜性により脱塩したもので9通常イオ
ン交換樹脂で脱塩する。
The desalted beet sugar solution of the present invention is obtained by desalinating sugar beet juice using an anion-cation exchange resin or a membrane, and is usually desalted using an ion exchange resin.

従来この脱塩したものより甜菜糖の製造は図面の工程表
に示す如く脱塩、脱色して精製した糖汁を濃縮して濃縮
汁を得、濃縮汁を煎糖(A煎糖)してこれより製品砂糖
を得るが、この時分蜜した糖蜜及び洗滌水はAシラツブ
として再び煎糖(B煎糖)LB砂糖とBシラツブを得る
。このB砂糖については更に溶解し濃厚汁に戻しA煎糖
工程で煎糖する。又Bシラツブは従来よりこの糖液中に
含有するラフィノースをメリビアーゼ酵素によりシュク
ロースに転化させてこれを回収していたがこの発明では
前記Bシラツブ中に含有するラフィノースをメリビアー
ゼで分解せず、クロマト用イオン交換樹脂を充填したカ
ラムに60〜70°Cで通液し、ラフィノースの多い区
分を集めるものである。ラフィノースは常温で溶解度が
低く、他の糖類が溶存すると更に低下するが60〜70
°Cではかなり高い@解度を示す。前記クロマト分離に
より得られたラフィノース区分はラフィノースがンユク
ロース溶液中に溶解しており、これをシュ、クロースの
転移条件下におくと基質的特異性が弱いので大部分その
ま\残存する。
Conventionally, the production of beet sugar from this desalted product is as shown in the process chart of the drawing, by concentrating the purified sugar juice by desalting and decolorizing it to obtain concentrated juice, and then decocting the concentrated juice (A decoction sugar). From this, product sugar is obtained, and the molasses and washing water that have been mixed at this time are used as A-shirubu to again obtain roasted sugar (B-roasted sugar), LB sugar, and B-shirubs. This B sugar is further dissolved and returned to a concentrated juice, which is then roasted in the A sugar roasting process. In addition, conventionally, the raffinose contained in the sugar solution was converted into sucrose by melibiase enzyme and recovered in the B-sill tube, but in the present invention, the raffinose contained in the B-sill tube is not decomposed by melibiase and is recovered by chromatography. The liquid is passed through a column filled with ion exchange resin at 60 to 70°C, and the fraction containing a large amount of raffinose is collected. Raffinose has low solubility at room temperature, and it decreases further when other sugars are dissolved, but it has a solubility of 60-70
At °C, it shows a fairly high @solubility. In the raffinose fraction obtained by the chromatographic separation, raffinose is dissolved in a nuclose solution, and when it is placed under conditions of sucrose and sucrose transition, most of it remains as it is because its substrate specificity is weak.

又更にラフィノース自体は甘味がンユークロースの0.
2倍と少ないため、これに他の甘味料を添加する場合、
溶液で混合する場合は問題がないが。
Furthermore, raffinose itself has a sweetness that is 0.0% sweeter than that of euclose.
Since it is twice as small, if you add other sweeteners,
There is no problem when mixing in solution.

結晶等固形化して他の甘味成分と用いるとこれを日中に
入れた時溶解度が異なるので舌に感じる甘味に違和感が
生じることになるが糖蜜、異性化糖等の還元糖の多い液
糖をバインダーとしてラフィノースに粉糖を混和する際
に添加し造粒することが有効な手段となるものである。
If it is solidified as crystals and used with other sweet ingredients, the solubility will be different when it is added during the day, resulting in an unpleasant sweet taste on the tongue. An effective means is to add powdered sugar as a binder to raffinose when mixing it and granulate it.

「作 用」 この発明で使用する丸物煎糖シラツブは脱塩されている
ので不純物が比較的少なく、今図面のB/ランプで示す
化物岨糖/ラップの分析例を示すとブリックス度750
./ニークロース52.5係。
"Function" The round roasted sugar syrup used in this invention has been desalted, so it has relatively few impurities, and an analysis example of the compound sucrose/wrap shown by B/lamp in the drawing has a Brix degree of 750.
.. / Knee Clothes Section 52.5.

ラフィノース10.0%、還元糖1.5係、ベタイ/8
.0%である。これを適当な濃度に調整し60〜70℃
でクロマト用イオン交換樹脂カラムに通夜すると、極め
て良好な分離が行なわれ高い濃度のラフィノース溶液が
得られるものである。
Raffinose 10.0%, reducing sugar 1.5 parts, betai/8
.. It is 0%. Adjust this to an appropriate concentration and hold at 60-70℃.
When the solution is left in an ion exchange resin column for chromatography overnight, very good separation is achieved and a highly concentrated raffinose solution is obtained.

使用するイオン交換樹脂としてはアッパーライ)IR−
120,ダウエックス50 WX 6 + ダイヤイオ
ン5K−IA(いずれも商品名)等のCa型強酸性陽イ
オン交換樹脂又はNa型強酸性陽イオン交換樹脂で、特
に架橋度が4〜61粒度50〜100メツシユのものが
よい。これら樹脂をCaCl2等のmWで処理しCa型
となすか、NaC]等の溶液でNa型とし細長樹脂塔に
充填し化物1)汀糖用シラツブ糖液を通液する。通液温
度は30〜80℃が使用出来るが、製糖工程Bンラノプ
温度である60〜70℃の使用が良い。ついで同温度の
温水で押し出し各フラクション毎に分割ラフィノース区
分を抽出する。
The ion exchange resin used is Upper Rye) IR-
120, DOWEX 50 WX 6 + DIAION 5K-IA (both trade names) Ca-type strong acidic cation exchange resin or Na-type strong acidic cation exchange resin, especially those with a degree of crosslinking of 4 to 61 and a particle size of 50 to The one with 100 meshes is good. These resins are treated with mW of CaCl2 or the like to form a Ca type, or are converted to a Na type with a solution of NaC, etc., and are filled into a long and narrow resin column. The liquid passing temperature can be 30 to 80°C, but it is preferably 60 to 70°C, which is the sugar refining process B temperature. Then, each fraction is extruded with hot water at the same temperature to extract divided raffinose fractions.

今樹脂としてダウエックス50wx6  (商品名)の
Ca型にて通液した結果を第1表に示す。
Table 1 shows the results of passing the resin using Ca type DOWEX 50wx6 (trade name).

第1表  (チ) 上記第1表に示す如くラフィノースの後にシュクロース
が流出し、更に遅れて単糖類1次いでペタインが流出す
るのでラフィノースの多いNol〜No5のフラクショ
ンを集めてラフィノース区分とするとこのラフィノース
区分の#i<71成は次の通りである。
Table 1 (H) As shown in Table 1 above, sucrose flows out after raffinose, and later, monosaccharides first and then petaine flow out, so if the fractions No. 1 to No. 5, which are rich in raffinose, are collected and classified as raffinose, this #i<71 composition of raffinose division is as follows.

第2表 (不明分はケスドースの如きオリゴ糖と色素等である)
上記第2表に示す如くラフィノースを固形分比で22.
4%含有するラフィノース含有率の高い溶液を得ること
ができる。又、第1表中においてフラクションNn6〜
Nn8はシュクロースが多く又ラフィノースは当初の1
7.8%に過ぎないのでこれを工程中の稀薄汁に戻し、
フラクションN n 9〜No13 はペタイン含有区
分としてこれをペタインの製造に利用することができる
Table 2 (Unknown items are oligosaccharides such as Kesdose and pigments, etc.)
As shown in Table 2 above, the solid content ratio of raffinose is 22.
A solution with a high raffinose content of 4% can be obtained. In addition, in Table 1, fraction Nn6~
Nn8 has a lot of sucrose and raffinose is originally 1
Since it is only 7.8%, this is returned to the diluted juice during the process,
Fractions N n 9 to No. 13 can be used as petaine-containing fractions for the production of petaine.

前記ラフィノース含有溶液はこれをこの一!、ま濃縮し
てビフィズス菌増殖選択糖質源甘味料としてもよく、又
濃縮後ラフィノースを析出し、これに粉糖を混和し造粒
せしめ顆粒糖としても良い。この場合は混和に際しバイ
ンダーとして糖蜜、異性化糖などの還元糖の添加が好1
しく、還元糖を添加して造粒した場合と添加しないで造
粒した場合の1有粒糖についてのその甘味の違和感を2
0名のパネラ−によりテストすると第3表のようになる
This is the raffinose-containing solution! It may be concentrated and used as a sugar source sweetener selected for Bifidobacterium growth, or it may be used as granulated sugar by precipitating raffinose after concentration and mixing powdered sugar with it to form granulated sugar. In this case, it is preferable to add reducing sugars such as molasses and high-fructose sugar as a binder during mixing.
We investigated the discomfort of the sweetness of 1 granulated sugar when granulated with and without reducing sugar.
When tested by 0 panelists, the results are as shown in Table 3.

第3表 次に第2表の成分を含むラフィノース過飽和溶液は含有
する/ユクロースを転移酵素によりオリゴ糖に転換しビ
フィズス菌増殖糖質源を多量に含む甘味料とすることが
好ましい。使用する転移酵素は7ユクロースよりオリゴ
糖を生成する酵素又は該酵素を含む菌体であって1例え
ばフラクトシルトランスフェラーゼ又は該酵素生産能を
有するオウレオバシデウム・プルランスAHV9549
菌株を/ユクo−ス20%、 NaN031 % +M
gSO4・7H200,05%、に2HPO40,5%
、コーンステープリカー2q6.尿素4チを含有するp
H6の培地で通気培養し、菌体を遠心分離して洗滌し9
次いで2チアルギン酸ソーダ溶液中で充分混和し、10
係塩化カルシウム溶液中に滴加して粒状とした酵素固定
化菌体である。このようにして製造した固定化菌体酵素
は通常フラクトノルトランスフェラーゼ活性20〜40
単位/■乾物である。
Table 3 A raffinose supersaturated solution containing the components shown in Table 2 preferably contains/Uculose is converted into an oligosaccharide using a transferase to produce a sweetener containing a large amount of bifidobacterium-proliferated carbohydrate source. The transferase used is an enzyme that produces oligosaccharides from 7-ucrose or a bacterial cell containing the enzyme, such as fructosyltransferase or Aureobasidium pullulans AHV9549 that has the ability to produce the enzyme.
Bacterial strain/Yukos 20%, NaN031% +M
gSO4・7H200.05%, 2HPO40.5%
, corn staple liquor 2q6. p containing urea 4t
Aeration culture was carried out in H6 medium, and the bacterial cells were centrifuged and washed.9
Then, it was thoroughly mixed in a sodium thialginate solution, and
This is enzyme-immobilized bacterial cells that are made into granules by being added dropwise to a calcium chloride solution. The immobilized bacterial enzyme produced in this way usually has a fructonortransferase activity of 20 to 40%.
Unit/■Dry matter.

前記ラフィノース過飽和溶液と酵素との反応は固定床方
式、或いは流動床方式で実施でき今その例を示すと内径
10m高さ50crnのジャケット付カラムに前記固定
化菌体酵素3tを充填し、これにpH5に調整した第2
表の組成をもつラフィノース過飽和溶液を60〜70℃
にて菌体酵素容積当り0.2容の流速(600CC/H
)でカラム下部より上昇流にて通液する。これを30日
連続した場合の反応液の平均組成を示すと第4表の通り
である。
The reaction between the raffinose supersaturated solution and the enzyme can be carried out in a fixed bed method or a fluidized bed method. For example, a jacketed column with an inner diameter of 10 m and a height of 50 crn is filled with 3 tons of the immobilized bacterial enzyme. The second pH was adjusted to 5.
A supersaturated raffinose solution with the composition shown in the table was heated at 60-70℃.
at a flow rate of 0.2 volume per bacterial enzyme volume (600 CC/H
) to pass the liquid upward from the bottom of the column. Table 4 shows the average composition of the reaction solution when this was continued for 30 days.

第4表  (チ) ラフィノース含量を異にするフラクトオリゴ糖を意味す
る。
Table 4 (H) Means fructooligosaccharides with different raffinose contents.

第4表より判明する如く被処理液のラフィノース過飽和
液中に存在した大部分のラフィノースが残存し、生成し
たフラクトオリゴ糖を加えると全固形分の59.7%が
ビフィズス菌増殖促進の選択的糖質源となるオリゴ塘を
含む甘味料となっているものである。即ち、第4表のオ
リゴ糖含有甘味料は人工胃液(食塩0.2%、ペプシン
0.32%を含み[)Hl、5  に調整したもの)に
入れ37℃に保持しても単糖類に分解される割合が少く
、保持後中和してビフィドバクテリウム・ロンガム(B
ifidnbacterium Lnngum )の如
きビフィズス菌を培養すると極めて良好な発育を示すも
のである。
As is clear from Table 4, most of the raffinose present in the raffinose supersaturated solution of the treated solution remains, and when the produced fructooligosaccharide is added, 59.7% of the total solid content is the selective sugar that promotes the growth of bifidobacteria. It is a sweetener that contains oligosaccharides that act as a quality source. In other words, the oligosaccharide-containing sweeteners in Table 4 do not convert into monosaccharides even if they are placed in artificial gastric fluid (containing 0.2% salt and 0.32% pepsin [adjusted to 5 Hl]) and kept at 37°C. The rate of decomposition is small, and after retention, it can be neutralized to produce Bifidobacterium longum (B
When Bifidobacterium such as Bifidnbacterium Lnngum is cultured, it shows extremely good growth.

この発明の甘味料はそのまま使用してもよく。The sweetener of this invention may be used as is.

又他の食品と混合使用しても良い。更には他のビフィズ
ス効果を有する糖と混合使用しても良いものである。
It may also be mixed with other foods. Furthermore, it may be used in combination with other sugars having a bifidus effect.

次に実施の例を述べる。Next, an example of implementation will be described.

「実施例1」 内径87crn、高さ250(77+、樹脂層高170
mのジャケット付ステンレスカラムに、粒250〜10
0メツシュのCa型ダウエックス50wx4(商品名)
樹脂を1 m’充填し9図面の工程により製造したBシ
ラツブ調整糖液125tを温度60’CS V O,6
で通液し、60℃の温水で押し出してラフィノース区分
の糖液を得た。次いでこのラフィノース区分糖液をBx
60に濃縮しpH5に調製后その5 Kfを20ノ容の
槽に入れ55℃とし。
"Example 1" Inner diameter 87 crn, height 250 (77+, resin layer height 170 crn)
250 to 10 grains in a jacketed stainless steel column
0 mesh Ca type DOWEX 50wx4 (product name)
125 tons of B syrup-adjusted sugar solution filled with 1 m' of resin and produced by the process shown in 9 drawings was heated to a temperature of 60'CS V O, 6.
and extruded with warm water at 60°C to obtain a raffinose sugar solution. Next, this raffinose fractionated sugar solution was subjected to Bx
After concentrating to pH 60 and adjusting the pH to 5, the 5 Kf was placed in a 20 volume tank and heated to 55°C.

これにフラクトシルトランスフェラーゼを30単位/W
q乾物を含むオウレオパ7デウム・プルランスAHU9
549のアルギン酸カル・/ラム包括固定化菌体500
2を添加し5時間その温度に攪拌保持して反応させた。
Add fructosyltransferase to this at 30 units/W.
q Aureopa7 deum pullulans AHU9 including dry matter
549 alginate Cal/Rum entrapped immobilized bacterial cells 500
2 was added and the mixture was stirred and maintained at that temperature for 5 hours to react.

反応終了後遠心分離によって菌体と糖液を分離し菌体は
再度同じ槽に戻して10回酵素処理反応を繰返し、Bx
60.5で固形公比下記組成を有する処理液を得た。
After the reaction is completed, the bacterial cells and sugar solution are separated by centrifugation, and the bacterial cells are returned to the same tank and the enzyme treatment reaction is repeated 10 times.
A processing solution having a solid common ratio of 60.5 and the following composition was obtained.

第5表 次いで第5表の酵素処理液をBx75まで譲縮し、ラフ
ィノースを含むオリゴ糖純度57.8チの@液を得だ。
Table 5 Next, the enzyme-treated solution shown in Table 5 was reduced to Bx75 to obtain a @ solution containing raffinose with an oligosaccharide purity of 57.8%.

この糖液はされやかな甘味を有するビフィズス菌増殖促
進に好適な甘味料であった。
This sugar solution was a sweetener suitable for promoting the growth of bifidobacteria and had a mild sweet taste.

「実施例2」 実施例1のクロマト分離で得られたラフィノース過飽和
糖液をBx75に濃縮後冷却し、ラフィノースを結晶化
させ、遠心分離してラフィノースの結晶を得た。
"Example 2" The raffinose supersaturated sugar solution obtained by the chromatographic separation in Example 1 was concentrated to Bx75 and then cooled to crystallize raffinose, which was then centrifuged to obtain raffinose crystals.

このラフィノースを乾燥后、粉糖を重量で等量添加し更
に異性化糖を全重量の10%添加し充分に混和したのち
造粒機(不二パウダー社製EXR−60型)を用いて造
粒し次いで流動層乾燥機(不二パウダー社製MDB−1
000型)を用い。
After drying this raffinose, add an equal amount of powdered sugar and 10% of the total weight of high fructose sugar and mix well. After granulation, a fluidized bed dryer (MDB-1 manufactured by Fuji Powder Co., Ltd.
000 type).

75℃で10分間乾燥した。この顆粒糖はされやかな甘
味を有するビフィズス菌増殖甘味料として好適であった
It was dried at 75°C for 10 minutes. This granulated sugar had a mild sweet taste and was suitable as a sweetener for the growth of bifidobacteria.

「効 果」 この発明は甜菜糖製造工程で濃縮されたラフィノースを
クロマト分離し、シュクロース区分は製造工程に戻すの
でわずられしいC煎糖が省略でき。
``Effects'' This invention chromatographs the raffinose concentrated in the beet sugar production process and returns the sucrose separation to the production process, so the troublesome C-boiled sugar can be omitted.

且つ従来のメリビアーゼによる処理工程を必要とせず分
割分離したラフィノース区分から多量のラフィノースを
回収することができる。又ラフィノース区分に含まれる
/ユクロースは転移酵素によりオリゴ糖となしラフィノ
ースと共にビフィズス菌増殖効果をもつ良質の甘味料を
効率よく製造できるものである。
In addition, a large amount of raffinose can be recovered from the divided raffinose fraction without requiring the conventional treatment step using melibiase. In addition, ucrose, which is included in the raffinose category, can be efficiently produced with oligosaccharides and raffinose using a transferase to produce a high-quality sweetener that has a bifidobacteria growth effect.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、従来法と水沫との比較を示す工程図である。 図          面 従来法       本 法 濃厚汁          濃厚汁 ↓     ↓ 製  品    モラセス 手続補正書(方式) 昭和61年 2月ノ?日 The drawing is a process chart showing a comparison between the conventional method and the water droplet method. drawing Conventional law Main law Thick soup Thick soup ↓    ↓ Made of Molasses Procedural amendment (formality) February 1986? Day

Claims (4)

【特許請求の範囲】[Claims] (1)イオン交換樹脂により脱塩した甜菜糖液を繰返し
前糖し、分離した裾物前糖用シラツプをクロマト分離し
、常温ではラフィノースが過飽和となる区分と、高純度
の蔗糖区分とペタインを多く含む区分に分け、高純度の
蔗糖区分は回収工程に戻し、ラフィノース区分は転移酵
素でオリゴ糖に転換するか、転換せずして濃縮すること
を特徴とするビフィズス菌増殖糖質源を含有する甘味料
の製造方法。
(1) Repeated pre-saccharification of the beet sugar solution desalted using an ion exchange resin, and chromatographic separation of the separated pre-saccharide syrup for the base material. The high-purity sucrose fraction is returned to the recovery process, and the raffinose fraction contains a bifidobacteria-propagated carbohydrate source that can be converted into oligosaccharides using a transferase or concentrated without conversion. A method for producing a sweetener.
(2)転移酵素がフラクトシルトランスフェラーゼ又は
β−ガラクトシダーゼであることを特徴とする特許請求
の範囲第1項記載のビフィズス菌増殖糖質源を含有する
甘味料の製造方法。
(2) The method for producing a sweetener containing a bifidobacteria-proliferated carbohydrate source according to claim 1, wherein the transferase is fructosyltransferase or β-galactosidase.
(3)イオン交換樹脂により脱塩した糖液を繰返し前糖
し、分離した裾物前糖用シラツプをクロマト分離し、常
温ではラフィノーズが過飽和となる区分と、高純度の蔗
糖区分とペタインを多く含む区分に分け、高純度の蔗糖
区分は回収工程に戻し、ラフィノース区分は転移酵素に
よりオリゴ糖に転換するか、転換せずに濃縮し、次いで
ラフィノースを含むオリゴ糖を採取し得られた糖を粉糖
と混合し造粒することを特徴とするビフィズス菌増殖糖
質源を含有する甘味料の製造方法。
(3) The sugar solution desalted using an ion exchange resin is repeatedly pre-saccharified, and the separated pre-saccharide syrup is chromatographically separated, and a segment with supersaturated raffinose at room temperature, a segment with high purity sucrose, and a segment with a large amount of petaine are separated. The high-purity sucrose fraction is returned to the recovery process, and the raffinose fraction is either converted to oligosaccharide using a transferase or concentrated without conversion, and then the raffinose-containing oligosaccharide is collected and the resulting sugar is A method for producing a sweetener containing a bifidobacteria-proliferating carbohydrate source, which comprises mixing with powdered sugar and granulating the mixture.
(4)ラフィノースを含む糖と粉糖を混合するに際しバ
インダーとして還元糖溶液を添加することを特徴とする
特許請求の範囲第3項のビフィズス菌増殖糖質源を含有
する甘味料の製造方法。
(4) A method for producing a sweetener containing a bifidobacterium-propagated carbohydrate source according to claim 3, which comprises adding a reducing sugar solution as a binder when mixing raffinose-containing sugar and powdered sugar.
JP60266110A 1985-11-28 1985-11-28 Production of sweetener containing glucide source for proliferation of bifidus bacteria Granted JPS62126951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60266110A JPS62126951A (en) 1985-11-28 1985-11-28 Production of sweetener containing glucide source for proliferation of bifidus bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60266110A JPS62126951A (en) 1985-11-28 1985-11-28 Production of sweetener containing glucide source for proliferation of bifidus bacteria

Publications (2)

Publication Number Publication Date
JPS62126951A true JPS62126951A (en) 1987-06-09
JPS6365301B2 JPS6365301B2 (en) 1988-12-15

Family

ID=17426454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60266110A Granted JPS62126951A (en) 1985-11-28 1985-11-28 Production of sweetener containing glucide source for proliferation of bifidus bacteria

Country Status (1)

Country Link
JP (1) JPS62126951A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138162B2 (en) 2004-06-04 2012-03-20 Horizon Science Pty Ltd. Natural sweetener
WO2013072048A1 (en) * 2011-11-15 2013-05-23 Tiense Suikerraffinaderij N.V. Process for the recovery of betaine from molasses
US8697145B2 (en) 2005-06-03 2014-04-15 Horizon Science Pty. Ltd. Substances having body mass redistribution properties
US9364016B2 (en) 2006-09-19 2016-06-14 The Product Makers (Australia) Pty Ltd Extracts derived from sugar cane and a process for their manufacture
US9572852B2 (en) 2011-02-08 2017-02-21 The Product Makers (Australia) Pty Ltd Sugar extracts
US10350259B2 (en) 2013-08-16 2019-07-16 The Product Makers (Australia) Pty Ltd Sugar cane derived extracts and methods of treatment
US11730178B2 (en) 2012-08-28 2023-08-22 Poly Gain Pte Ltd Extraction method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262301A (en) * 1990-03-13 1991-11-22 Hitachi Metals Ltd Microwave equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138162B2 (en) 2004-06-04 2012-03-20 Horizon Science Pty Ltd. Natural sweetener
US9161562B2 (en) 2004-06-04 2015-10-20 Horizon Science Pty Ltd Natural sweetener
US8697145B2 (en) 2005-06-03 2014-04-15 Horizon Science Pty. Ltd. Substances having body mass redistribution properties
US9364016B2 (en) 2006-09-19 2016-06-14 The Product Makers (Australia) Pty Ltd Extracts derived from sugar cane and a process for their manufacture
US9572852B2 (en) 2011-02-08 2017-02-21 The Product Makers (Australia) Pty Ltd Sugar extracts
US9717771B2 (en) 2011-02-08 2017-08-01 The Product Makers (Australia) Pty Ltd Sugar extract
US10226502B2 (en) 2011-02-08 2019-03-12 The Product Makers (Australia) Pty Ltd Sugar extract
WO2013072048A1 (en) * 2011-11-15 2013-05-23 Tiense Suikerraffinaderij N.V. Process for the recovery of betaine from molasses
US9896410B2 (en) 2011-11-15 2018-02-20 Tiense Suikerraffinaderij N.V. Process for the recovery of betaine from molasses
EA031950B1 (en) * 2011-11-15 2019-03-29 Тьенс Суикерраффинадериж Н.В. Process for the recovery of betaine from molasses
US11730178B2 (en) 2012-08-28 2023-08-22 Poly Gain Pte Ltd Extraction method
US10350259B2 (en) 2013-08-16 2019-07-16 The Product Makers (Australia) Pty Ltd Sugar cane derived extracts and methods of treatment

Also Published As

Publication number Publication date
JPS6365301B2 (en) 1988-12-15

Similar Documents

Publication Publication Date Title
US5084104A (en) Method for recovering xylose
JP3602903B2 (en) Crystal maltitol and method for producing nectar-containing crystals containing the same
CA1246556A (en) Production of fructose syrup
JPS61180797A (en) Production of crystalline maltitose
US7150794B2 (en) Process for the production of crystalline fructose of high purity utilizing fructose syrup having a low content of fructose made from sucrose and product obtained
JPS62126951A (en) Production of sweetener containing glucide source for proliferation of bifidus bacteria
JPS6225950A (en) Sweetener, its production and utilization
JPS62126193A (en) Production of l-rhamnose
JPH04235192A (en) 1-kestose crystal and production thereof
KR100508724B1 (en) How to prepare trehalose and sugar alcohol
KR920004485B1 (en) Process for producing of crystalline maltopentaose
JP5184768B2 (en) Method for recovering sugar solution with high trehalose content and method for producing crystalline trehalose
JP2640577B2 (en) Nistose crystal and method for producing the same
TW200538462A (en) The preparation of high purity lactosucrose
JPH05211900A (en) Production of sweetener
JPH0331294A (en) New oligosaccharide and production thereof
JPS6336754A (en) Production of fructose syrup
JP3081262B2 (en) Method for producing high-purity nystose
JPS61271295A (en) Production of condensed fructose
JPS59227269A (en) Production of slightly carious sweetening agent from beet molasses
US20220380400A1 (en) Improved method for manufacturing allulose
JPS6345191B2 (en)
JPH0614870B2 (en) Method for producing galactooligosaccharide
KR890003717B1 (en) Method for purifing oligosaccharides
GB1572608A (en) Process for recovering useful products from molasses

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees