US20140186998A1 - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- US20140186998A1 US20140186998A1 US14/199,222 US201414199222A US2014186998A1 US 20140186998 A1 US20140186998 A1 US 20140186998A1 US 201414199222 A US201414199222 A US 201414199222A US 2014186998 A1 US2014186998 A1 US 2014186998A1
- Authority
- US
- United States
- Prior art keywords
- oxide semiconductor
- semiconductor layer
- oxygen
- film
- transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 420
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 207
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 183
- 239000001301 oxygen Substances 0.000 claims abstract description 183
- 239000000758 substrate Substances 0.000 claims description 116
- 238000000034 method Methods 0.000 claims description 102
- 230000015572 biosynthetic process Effects 0.000 claims description 30
- 238000004519 manufacturing process Methods 0.000 claims description 27
- 238000010438 heat treatment Methods 0.000 claims description 21
- 239000011701 zinc Substances 0.000 claims description 16
- 229910052733 gallium Inorganic materials 0.000 claims description 13
- 229910052738 indium Inorganic materials 0.000 claims description 10
- 229910052725 zinc Inorganic materials 0.000 claims description 9
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 8
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 6
- 238000002425 crystallisation Methods 0.000 claims 3
- 230000008025 crystallization Effects 0.000 claims 3
- 238000007669 thermal treatment Methods 0.000 abstract description 86
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 abstract description 63
- 238000002513 implantation Methods 0.000 abstract description 33
- 239000000203 mixture Substances 0.000 abstract description 21
- 230000018044 dehydration Effects 0.000 abstract description 14
- 238000006297 dehydration reaction Methods 0.000 abstract description 14
- 238000006356 dehydrogenation reaction Methods 0.000 abstract description 14
- 239000010410 layer Substances 0.000 description 408
- 239000010408 film Substances 0.000 description 261
- 239000000463 material Substances 0.000 description 50
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 48
- 229910052814 silicon oxide Inorganic materials 0.000 description 47
- 229910052739 hydrogen Inorganic materials 0.000 description 43
- 239000001257 hydrogen Substances 0.000 description 43
- 239000012535 impurity Substances 0.000 description 42
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 38
- 239000004973 liquid crystal related substance Substances 0.000 description 34
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 31
- 229910007541 Zn O Inorganic materials 0.000 description 30
- 239000007789 gas Substances 0.000 description 29
- 238000004544 sputter deposition Methods 0.000 description 28
- 239000012298 atmosphere Substances 0.000 description 25
- 230000006870 function Effects 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 21
- 229910052786 argon Inorganic materials 0.000 description 19
- -1 moisture Substances 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 239000011521 glass Substances 0.000 description 15
- 230000002829 reductive effect Effects 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000005468 ion implantation Methods 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 12
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 12
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 11
- 229910021417 amorphous silicon Inorganic materials 0.000 description 11
- 150000002431 hydrogen Chemical class 0.000 description 11
- 239000011229 interlayer Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 11
- 229910052581 Si3N4 Inorganic materials 0.000 description 10
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 239000011810 insulating material Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 239000010409 thin film Substances 0.000 description 9
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 8
- 229910003437 indium oxide Inorganic materials 0.000 description 8
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 7
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- 239000002356 single layer Substances 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 229910052805 deuterium Inorganic materials 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 239000001307 helium Substances 0.000 description 6
- 229910052734 helium Inorganic materials 0.000 description 6
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- 239000000565 sealant Substances 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 238000003917 TEM image Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 description 5
- 229910052735 hafnium Inorganic materials 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000003094 microcapsule Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 229910007264 Si2H6 Inorganic materials 0.000 description 4
- 229910003818 SiH2Cl2 Inorganic materials 0.000 description 4
- 229910003822 SiHCl3 Inorganic materials 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 239000005380 borophosphosilicate glass Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 4
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 4
- 150000004678 hydrides Chemical class 0.000 description 4
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 229910052754 neon Inorganic materials 0.000 description 4
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 239000005360 phosphosilicate glass Substances 0.000 description 4
- 238000009832 plasma treatment Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000012798 spherical particle Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 229910019092 Mg-O Inorganic materials 0.000 description 3
- 229910019395 Mg—O Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- 238000001237 Raman spectrum Methods 0.000 description 3
- 229910003910 SiCl4 Inorganic materials 0.000 description 3
- 229910004014 SiF4 Inorganic materials 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920002620 polyvinyl fluoride Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000003252 repetitive effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 229910052990 silicon hydride Inorganic materials 0.000 description 3
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 3
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- UWCWUCKPEYNDNV-LBPRGKRZSA-N 2,6-dimethyl-n-[[(2s)-pyrrolidin-2-yl]methyl]aniline Chemical compound CC1=CC=CC(C)=C1NC[C@H]1NCCC1 UWCWUCKPEYNDNV-LBPRGKRZSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 206010052128 Glare Diseases 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 description 2
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003098 cholesteric effect Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 229910001195 gallium oxide Inorganic materials 0.000 description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 229910052743 krypton Inorganic materials 0.000 description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 2
- 238000007645 offset printing Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical group [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 108091006149 Electron carriers Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910006160 GeF4 Inorganic materials 0.000 description 1
- 108010083687 Ion Pumps Proteins 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004990 Smectic liquid crystal Substances 0.000 description 1
- 229910020923 Sn-O Inorganic materials 0.000 description 1
- 239000004974 Thermotropic liquid crystal Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- AZWHFTKIBIQKCA-UHFFFAOYSA-N [Sn+2]=O.[O-2].[In+3] Chemical compound [Sn+2]=O.[O-2].[In+3] AZWHFTKIBIQKCA-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000005407 aluminoborosilicate glass Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000023077 detection of light stimulus Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 description 1
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052986 germanium hydride Inorganic materials 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 1
- 229910021334 nickel silicide Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- PPMWWXLUCOODDK-UHFFFAOYSA-N tetrafluorogermane Chemical compound F[Ge](F)(F)F PPMWWXLUCOODDK-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- OYQCBJZGELKKPM-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O-2].[Zn+2].[O-2].[In+3] OYQCBJZGELKKPM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66969—Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78606—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
- H01L29/78693—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
Definitions
- the present invention relates to a semiconductor device and a method of manufacturing the semiconductor device.
- the semiconductor device in this specification refers to all devices that can function by utilizing semiconductor characteristics, and electro-optic devices, semiconductor circuits, and electronic appliances are all semiconductor devices.
- TFT thin film transistor
- IC integrated circuit
- display device display device
- a silicon-based semiconductor material is widely known as a material for a semiconductor thin film applicable to a transistor.
- an oxide semiconductor material has been attracting attention.
- a transistor whose active layer is formed using an amorphous oxide containing indium (In), gallium (Ga), and zinc (Zn) and having an electron carrier concentration lower than 10 18 /cm 3 is disclosed (see Patent Document 1).
- the electric conductivity of a semiconductor device including an oxide semiconductor changes when hydrogen or moisture forming an electron donor contaminates the oxide semiconductor in a process of forming a thin film of the oxide semiconductor.
- the electric conductivity might also change when the formed oxide semiconductor thin film includes an oxygen vacancy. Such a phenomenon causes variation in the electric characteristics of a transistor formed using the oxide semiconductor.
- an object is to provide a highly reliable semiconductor device which is formed using an oxide semiconductor and has stable electric characteristics.
- a semiconductor device includes an amorphous oxide semiconductor layer including a region containing oxygen in a proportion higher than that in the stoichiometric composition (that is, stoichiometrically excessive oxygen), and an aluminum oxide film provided over the amorphous oxide semiconductor layer.
- the amorphous oxide semiconductor layer is formed as follows: oxygen implantation treatment is performed on a crystalline or amorphous oxide semiconductor layer which has been subjected to dehydration or dehydrogenation treatment, and then thermal treatment is performed on the oxide semiconductor layer provided with an aluminum oxide film at a temperature which allows the amorphous state to be maintained.
- the temperature of the thermal treatment is lower than or equal to 450° C.
- the following structure can be employed for example.
- One embodiment of the present invention is a semiconductor device which includes an amorphous oxide semiconductor layer including a region containing oxygen in a proportion higher than that in a stoichiometric composition, a source electrode and a drain electrode that are electrically connected to the amorphous oxide semiconductor layer, a gate electrode overlapping with the amorphous oxide semiconductor layer, a gate insulating layer provided between the amorphous oxide semiconductor layer and the gate electrode, and an aluminum oxide film provided over the amorphous oxide semiconductor layer.
- Another embodiment of the present invention is a semiconductor device which includes an amorphous oxide semiconductor layer including a region containing oxygen in a proportion higher than that in a stoichiometric composition, a source electrode and a drain electrode that are electrically connected to the amorphous oxide semiconductor layer, a gate insulating layer provided over the amorphous oxide semiconductor layer so as to cover the source electrode and the drain electrode, a gate electrode provided over the gate insulating layer so as to overlap with the amorphous oxide semiconductor layer, and an aluminum oxide film provided over and in contact with the gate electrode.
- Another embodiment of the present invention is a semiconductor device which includes a gate electrode, a gate insulating layer provided over the gate electrode, an amorphous oxide semiconductor layer that is provided over the gate insulating layer so as to overlap with the gate electrode and includes a region containing oxygen in a proportion higher than that in a stoichiometric composition, a source electrode and a drain electrode that are electrically connected to the amorphous oxide semiconductor layer, and an aluminum oxide film provided over the amorphous oxide semiconductor layer so as to be in contact with at least part of the amorphous oxide semiconductor layer.
- the gate insulating layer preferably includes a region containing oxygen in a proportion higher than that in a stoichiometric composition.
- an oxide insulating film be further provided between the aluminum oxide film and the amorphous oxide semiconductor layer and that the oxide insulating film include a region containing oxygen in a proportion higher than that in a stoichiometric composition.
- a gate electrode over a gate insulating layer does not exclude the case where a component is placed between the gate insulating layer and the gate electrode. The same applies to the term “below”.
- electrode does not limit the function of a component.
- an “electrode” is sometimes used as part of a “wiring”, and vice versa.
- the term “electrode” or “wiring” can also mean a combination of a plurality of “electrodes” or “wirings”, for example.
- Oxygen implantation is performed so that excess oxygen is contained in an amorphous oxide semiconductor layer, and thermal treatment is performed in a state where an aluminum oxide film is provided over the amorphous oxide semiconductor layer in order to prevent the oxygen in the amorphous oxide semiconductor layer from being released, whereby it is possible to prevent generation or increase of defects in the amorphous oxide semiconductor and at interfaces between the amorphous oxide semiconductor and layers which are over/under and in contact with the amorphous oxide semiconductor. That is, the excess oxygen contained in the amorphous oxide semiconductor layer acts to fill an oxygen-vacancy defect, so that a highly reliable semiconductor device having stable electric characteristics can be provided.
- FIGS. 1A to 1C are a plan view and cross-sectional views which illustrate one embodiment of a semiconductor device
- FIGS. 2A to 2C are a plan view and cross-sectional views which illustrate one embodiment of a semiconductor device
- FIGS. 3A to 3D are cross-sectional views which illustrate one embodiment of a method of manufacturing a semiconductor device
- FIGS. 4A to 4D are cross-sectional views which illustrate one embodiment of a method of manufacturing a semiconductor device
- FIGS. 5A to 5C are a plan view and cross-sectional views which illustrate one embodiment of a semiconductor device
- FIGS. 6A to 6C are a plan view and cross-sectional views which illustrate one embodiment of a semiconductor device
- FIGS. 7A to 7D are cross-sectional views which illustrate one embodiment of a method of manufacturing a semiconductor device
- FIGS. 8A to 8D are cross-sectional views which illustrate one embodiment of a method of manufacturing a semiconductor device
- FIGS. 9A to 9C each illustrate one embodiment of a semiconductor device
- FIG. 10 illustrates one embodiment of a semiconductor device
- FIG. 11 illustrates one embodiment of a semiconductor device
- FIG. 12 illustrates one embodiment of a semiconductor device
- FIGS. 13A and 13B illustrate one embodiment of a semiconductor device
- FIGS. 14A to 14F illustrate electronic appliances
- FIGS. 15 A 1 , 15 A 2 , 15 B 1 , and 15 B 2 show results of SIMS measurement performed on a sample fabricated in Example 1;
- FIGS. 16 A 1 , 16 A 2 , 16 B 1 , and 16 B 2 show results of SIMS measurement performed on a sample fabricated in Example 1;
- FIGS. 17A to 17D show results of TDS measurement performed on samples fabricated in Example 1;
- FIGS. 18A to 18D show results of TDS measurement performed on samples fabricated in Example 1.
- FIGS. 19A to 19C are TEM images of samples fabricated in Example 2.
- FIGS. 1A to 1C one embodiment of a semiconductor device and one embodiment of a method of manufacturing the semiconductor device will be described with reference to FIGS. 1A to 1C , FIGS. 2A to 2C , and FIGS. 3A to 3D .
- FIGS. 1A to 1C are a plan view and cross-sectional views which illustrate a top-gate transistor 510 as an example of a semiconductor device.
- FIG. 1A is a plan view of the transistor 510
- FIGS. 1B and 1C are cross-sectional views along line A-B and line C-D in FIG. 1A , respectively. Note that in FIG. 1A , some components of the transistor 510 (e.g., a gate insulating layer 406 ) are not illustrated for brevity.
- the transistor 510 illustrated in FIGS. 1A to 1C includes, over a substrate 400 having an insulating surface, a base insulating layer 402 , an amorphous oxide semiconductor layer 404 , a source electrode 405 a , a drain electrode 405 b , the gate insulating layer 406 , a gate electrode 410 , and an insulating layer 412 .
- the amorphous oxide semiconductor layer 404 includes a region containing oxygen in a proportion higher than that in the stoichiometric composition (hereinafter also referred to as an oxygen-excess region).
- oxygen which is one of main components of the amorphous oxide semiconductor layer 404 , dynamically repeats bonding to and dissociation from metal elements that are other main components in the layer.
- a metal element from which oxygen is dissociated has a dangling bond; therefore, it is supposed that a certain number of oxygen vacancies caused by dissociation of oxygen exist in the amorphous oxide semiconductor layer.
- excess oxygen contained in the amorphous oxide semiconductor layer 404 can immediately compensate a defect (oxygen defect) due to an oxygen vacancy in the amorphous oxide semiconductor layer 404 . Consequently, a highly reliable semiconductor device having stable electric characteristics can be provided.
- the amorphous oxide semiconductor layer 404 has an amorphous structure in whole.
- a layer including an aluminum oxide film is provided as the insulating layer 412 . Since aluminum oxide has a barrier property and thus is less likely to transmit hydrogen, moisture, oxygen, and another impurity, entry of an impurity such as moisture from the outside after completion of the device can be prevented.
- the insulating layer 412 includes at least an aluminum oxide film and may have a stacked structure including the aluminum oxide film and a film containing another inorganic insulating material.
- the film containing another inorganic insulating material be positioned on the amorphous oxide semiconductor layer 404 side and be an oxide insulating film including an oxygen-excess region.
- the insulating layer 412 can have a structure in which a silicon oxide film including an oxygen-excess region and the aluminum oxide film are stacked in this order from the amorphous oxide semiconductor layer 404 side.
- the gate insulating layer 406 include an oxygen-excess region for the following reason.
- oxygen can be prevented from moving from the amorphous oxide semiconductor layer 404 to the gate insulating layer 406 , and oxygen can be supplied from the gate insulating layer 406 to the amorphous oxide semiconductor layer 404 .
- the base insulating layer 402 also include an oxygen-excess region.
- An insulating layer may be further provided over the transistor 510 . Further, an opening may be formed in the gate insulating layer 406 or the like in order that the source electrode 405 a or the drain electrode 405 b may be electrically connected to a wiring. Note that the amorphous oxide semiconductor layer 404 is not necessarily processed into an island shape.
- FIGS. 2A to 2C illustrate another structure example of a transistor according to this embodiment.
- FIG. 2A is a plan view of a transistor 520
- FIGS. 2B and 2C are cross-sectional views along line E-F and line G-H in FIG. 2A , respectively. Note that in FIG. 2A , some components of the transistor 520 (e.g., the gate insulating layer 406 ) are omitted for brevity.
- the transistor 520 illustrated in FIGS. 2A to 2C includes, over the substrate 400 having an insulating surface, the base insulating layer 402 , the amorphous oxide semiconductor layer 404 , the source electrode 405 a , the drain electrode 405 b , the gate insulating layer 406 , the gate electrode 410 , and the insulating layer 412 .
- a difference between the transistor 520 illustrated in FIGS. 2A to 2C and the transistor 510 illustrated in FIGS. 1A to 1C is the stacking order of the source and drain electrodes 405 a and 405 b and the amorphous oxide semiconductor layer 404 . That is, the transistor 520 includes the source electrode 405 a and the drain electrode 405 b which are in contact with the base insulating layer 402 , and the amorphous oxide semiconductor layer 404 provided over the source electrode 405 a and the drain electrode 405 b .
- the other components are similar to those of the transistor 510 , and thus the description of the transistor 510 can be referred to for the details.
- the transistor 520 can be manufactured in a process similar to that of the transistor 510 except for the stacking order of the source and drain electrodes 405 a and 405 b and the amorphous oxide semiconductor layer 404 .
- the base insulating layer 402 is formed over the substrate 400 having an insulating surface.
- a substrate that can be used as the substrate 400 having an insulating surface as long as it has heat resistance high enough to withstand thermal treatment performed later.
- a glass substrate of barium borosilicate glass, aluminoborosilicate glass, or the like, a ceramic substrate, a quartz substrate, or a sapphire substrate can be used.
- a single crystal semiconductor substrate or a polycrystalline semiconductor substrate of silicon, silicon carbide, or the like; a compound semiconductor substrate of silicon germanium or the like; an SOI substrate; or the like can be used as the substrate 400 .
- any of these substrates over which a semiconductor element is provided may be used as the substrate 400 .
- a flexible substrate may be used as the substrate 400 .
- a transistor including an oxide semiconductor film may be directly formed over the flexible substrate, or a transistor including an oxide semiconductor film may be formed over a different manufacturing substrate and then separated to be transferred to the flexible substrate. Note that in order to separate the transistor from the manufacturing substrate and transfer it to the flexible substrate, a separation layer may be provided between the manufacturing substrate and the transistor including the oxide semiconductor film.
- the base insulating layer 402 can have a single-layer or stacked structure including one or more films selected from those containing silicon oxide, silicon nitride, silicon oxynitride, silicon nitride oxide, aluminum oxide, aluminum nitride, aluminum oxynitride, aluminum nitride oxide, hafnium oxide, gallium oxide, and a mixed material of any of these materials.
- the base insulating layer 402 is formed as a stacked structure including an oxide insulating film, it is preferred that the oxide insulating film be in contact with the amorphous oxide semiconductor layer 404 formed later.
- a silicon oxide film is formed as the base insulating layer 402 by a plasma CVD method, a sputtering method, or the like.
- the base insulating layer 402 preferably includes an oxygen-excess region because an oxygen vacancy in the amorphous oxide semiconductor layer 404 can be compensated by excess oxygen contained in the base insulating layer 402 .
- the base insulating layer 402 preferably includes an oxygen-excess region at least in a layer in contact with the amorphous oxide semiconductor layer 404 .
- the base insulating layer 402 may be formed in an oxygen atmosphere.
- the oxygen-excess region may be formed by implanting oxygen (including at least one of an oxygen radical, an oxygen atom, and an oxygen ion) into the base insulating layer 402 after its formation.
- oxygen can be implanted by an ion implantation method, an ion doping method, a plasma immersion ion implantation method, plasma treatment, or the like.
- an amorphous oxide semiconductor layer 404 a having a thickness greater than or equal to 2 nm and less than or equal to 200 nm, preferably greater than or equal to 5 nm and less than or equal to 30 nm, is formed (see FIG. 3A ).
- a metal oxide material containing two or more kinds selected from In, Ga, Zn, and Sn may be used as an oxide semiconductor material.
- a four-component metal oxide such as an In—Sn—Ga—Zn—O-based material
- a three-component metal oxide such as an In—Ga—Zn—O-based material, an In—Sn—Zn—O-based material, an In—Al—Zn—O-based material, a Sn—Ga—Zn—O-based material, an Al—Ga—Zn—O-based material, a Sn—Al—Zn—O-based material, or a Hf—In—Zn—O-based material
- a two-component metal oxide such as an In—Zn—O-based material, a Sn—Zn—O-based material, an Al—Zn—O-based material, a Zn—Mg—O-based material, a Sn—Mg—O-based material, an In—Mg—O
- an In—Ga—Zn—O-based oxide semiconductor means an oxide semiconductor containing indium (In), gallium (Ga), and zinc (Zn) and there is no particular limitation on the composition ratio thereof.
- a thin film of a material represented by the chemical formula, InMO 3 (ZnO) m (m>0), can be used as the amorphous oxide semiconductor layer 404 a .
- M represents one or more metal elements selected from Zn, Ga, Al, Mn, and Co.
- M can be Ga, Ga and Al, Ga and Mn, or Ga and Co.
- the relation of Z 1 . 5 X+Y is satisfied.
- the amorphous oxide semiconductor layer 404 a is preferably formed by a sputtering method.
- the concentration of hydrogen contained in the amorphous oxide semiconductor layer 404 a is preferably reduced as much as possible.
- a high-purity rare gas typically argon
- high-purity oxygen or a high-purity mixed gas of a rare gas and oxygen, from which impurities such as hydrogen, water, a compound having a hydroxyl group, and a hydride are removed
- Evacuation of the treatment chamber is preferably performed using a cryopump having a high capability in evacuating water or a sputter ion pump having a high capability in evacuating hydrogen.
- the base insulating layer 402 and the amorphous oxide semiconductor layer 404 a be successively formed without exposure to the air.
- the following steps may be performed: impurities containing hydrogen attached to a surface of the substrate 400 are removed by thermal treatment or plasma treatment, and then the base insulating layer 402 and the amorphous oxide semiconductor layer 404 a are successively formed in this order without exposure to the air.
- impurities containing hydrogen attached to a surface of the base insulating layer 402 can be reduced and an atmospheric component can be prevented from being attached to an interface between the substrate 400 and the base insulating layer 402 and an interface between the base insulating layer 402 and the amorphous oxide semiconductor layer 404 a .
- the amorphous oxide semiconductor layer 404 a is formed by a sputtering method
- powder substances also referred to as particles or dust
- the reverse sputtering is a method in which voltage is applied to a substrate side, not to a target side, in an argon atmosphere by using an RF power source and plasma is generated in the vicinity of the substrate to modify a surface.
- a nitrogen atmosphere, a helium atmosphere, an oxygen atmosphere, or the like may be used instead of an argon atmosphere.
- thermal treatment is performed on the amorphous oxide semiconductor layer 404 a in order to remove hydrogen (including water and a hydroxyl group) (dehydration or dehydrogenation).
- the thermal treatment is performed at a temperature at which the amorphous oxide semiconductor layer 404 a is not crystallized, typically, higher than or equal to 250° C. and lower than or equal to 450° C., preferably lower than or equal to 300° C.
- Hydrogen which is an n-type impurity, can be removed from the oxide semiconductor by the thermal treatment; thus, the oxide semiconductor can be highly purified so as to contain as few impurities as possible.
- the concentration of hydrogen contained in the amorphous oxide semiconductor layer 404 a after the dehydration or dehydrogenation treatment can be lower than or equal to 5 ⁇ 10 19 /cm 3 or lower than or equal to 5 ⁇ 10 18 /cm 3 .
- the thermal treatment for dehydration or dehydrogenation is preferably performed before the amorphous oxide semiconductor layer 404 a is processed into an island shape because oxygen contained in the base insulating layer 402 can be prevented from being released by the thermal treatment.
- water, hydrogen, and the like be not contained in nitrogen or a rare gas such as helium, neon, or argon.
- the purity of nitrogen or a rare gas such as helium, neon, or argon which is introduced into a thermal treatment apparatus is preferably higher than or equal to 6N (99.9999%), further preferably higher than or equal to 7N (99.99999%) (that is, the impurity concentration is preferably lower than or equal to 1 ppm, further preferably lower than or equal to 0.1 ppm).
- the amorphous oxide semiconductor layer 404 a is processed into the island-shaped amorphous oxide semiconductor layer 404 in a photolithography step.
- a resist mask for forming the island-shaped amorphous oxide semiconductor layer 404 may be formed by an inkjet method. Formation of the resist mask by an inkjet method needs no photomask; thus, the manufacturing cost of the semiconductor device can be reduced.
- a conductive film which is to be a source electrode and a drain electrode (including a wiring formed in the same layer as the source electrode and the drain electrode) is formed over the amorphous oxide semiconductor layer 404 and is processed, so that the source electrode 405 a and the drain electrode 405 b are formed (see FIG. 3B ).
- the conductive film used for the source electrode 405 a and the drain electrode 405 b is formed using a material that can withstand a thermal treatment step performed later.
- a metal film containing an element selected from Al, Cr, Cu, Ta, Ti, Mo, and W, or a metal nitride film containing any of these elements as a component can be used.
- a film of a high-melting-point metal such as Ti, Mo, or W or a metal nitride film of any of these elements may be stacked on one or both of a bottom side and a top side of a metal film of Al, Cu, or the like.
- the conductive film used for the source electrode and the drain electrode may be formed using a conductive metal oxide.
- indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), indium oxide-tin oxide (In 2 O 3 —SnO 2 , abbreviated to ITO), indium oxide-zinc oxide (In 2 O 3 —ZnO), or any of these metal oxide materials containing silicon oxide can be used.
- etching conditions be optimized so that the amorphous oxide semiconductor layer 404 is not etched and divided when the conductive film is etched.
- the gate insulating layer 406 which covers the source electrode 405 a and the drain electrode 405 b and is in contact with part of the amorphous oxide semiconductor layer 404 is formed.
- the gate insulating layer 406 is preferably formed by a plasma CVD method or a sputtering method, and can be formed as a silicon oxide film, a gallium oxide film, an aluminum oxide film, a silicon nitride film, a silicon oxynitride film, an aluminum oxynitride film, a silicon nitride oxide film, or the like.
- a high-k material such as hafnium oxide, yttrium oxide, lanthanum oxide, hafnium silicate (HfSi x O y (x>0, y>0)), hafnium aluminate (HfAl x O y (x>0, y>0)), hafnium silicate to which nitrogen is added, or hafnium aluminate to which nitrogen is added may be used.
- hafnium oxide, yttrium oxide, lanthanum oxide, hafnium silicate (HfSi x O y (x>0, y>0)), hafnium aluminate (HfAl x O y (x>0, y>0)), hafnium silicate to which nitrogen is added, or hafnium aluminate to which nitrogen is added may be used.
- the gate insulating layer 406 preferably includes an oxygen-excess region because an oxygen vacancy in the amorphous oxide semiconductor layer 404 can be compensated by excess oxygen contained in the gate insulating layer 406 .
- oxygen 421 is implanted into the amorphous oxide semiconductor layer 404 from above the gate insulating layer 406 , so that an oxygen-excess region is formed (see FIG. 3C ).
- oxygen in the amorphous oxide semiconductor layer 404 which is decreased in concentration through the above thermal treatment for dehydration or dehydrogenation, can be supplied.
- the amorphous oxide semiconductor layer 404 can be highly purified and become an electrically i-type (intrinsic) semiconductor.
- formation of the oxygen-excess region in the amorphous oxide semiconductor layer 404 enables an oxygen vacancy to be compensated.
- charge trapping centers in the amorphous oxide semiconductor layer 404 can be reduced.
- a method of implanting the oxygen 421 a method by which the oxygen 421 can be implanted into the inside or an interface of the amorphous oxide semiconductor layer 404 is employed.
- an ion implantation method or an ion doping method can be used.
- a source gas is made into plasma, ion species included in this plasma are extracted and mass-separated, and ion species with predetermined mass are accelerated and implanted into an object to be processed as an ion beam.
- a source gas is made into plasma, ion species are extracted from the plasma by application of a predetermined electric field, and the extracted ion species are accelerated without mass separation and implanted into an object to be processed as an ion beam.
- an impurity such as a metal element can be prevented from being added, together with the oxygen 421 , to the amorphous oxide semiconductor layer 404 .
- an ion doping method enables ion-beam irradiation to a larger area than an ion implantation method; therefore, when the implantation of the oxygen 421 is performed by an ion doping method, the takt time can be shortened.
- a plasma immersion ion implantation method may be used as a method of implanting the oxygen 421 .
- the oxygen 421 can be implanted efficiently even when the amorphous oxide semiconductor layer 404 has an uneven shape.
- an example is shown in which the oxygen 421 is implanted into the amorphous oxide semiconductor layer 404 through the gate insulating layer 406 .
- Implantation of the oxygen 421 into the amorphous oxide semiconductor layer 404 through a film stacked over the amorphous oxide semiconductor layer 404 is advantageous in that the depth at which the oxygen is implanted (implantation region) can be controlled more easily, so that the oxygen 421 can be efficiently implanted into the amorphous oxide semiconductor layer 404 .
- an embodiment of the present invention is not limited to this manner; it is also possible to perform the implantation in a state where a surface of the amorphous oxide semiconductor layer 404 is exposed (i.e., before the conductive film which is to be the source electrode 405 a and the drain electrode 405 b is formed) or after the insulating layer 412 is formed.
- the depth at which the oxygen 421 is implanted may be controlled by appropriately setting an implantation condition such as acceleration voltage or a dose amount, or the thickness of the gate insulating layer 406 through which the oxygen passes.
- the oxygen implantation treatment is performed so that the amount of oxygen contained in the amorphous oxide semiconductor layer 404 exceeds that in the stoichiometric composition.
- a peak of the concentration of oxygen in the amorphous oxide semiconductor layer 404 which is introduced by the oxygen implantation treatment, is preferably higher than or equal to 1 ⁇ 10 18 /cm 3 and lower than or equal to 5 ⁇ 10 21 /cm 3 .
- the oxygen 421 for implantation includes an oxygen radical, an oxygen atom, and/or an oxygen ion. Note that the oxygen-excess region may exist in part (including an interface) of the amorphous oxide semiconductor layer 404 .
- Oxygen is one of main components of an oxide semiconductor. Therefore, it is difficult to accurately estimate the oxygen concentration of an oxide semiconductor film by a method such as secondary ion mass spectrometry (SIMS). That is, it is difficult to determine whether oxygen is intentionally added to the amorphous oxide semiconductor layer.
- SIMS secondary ion mass spectrometry
- isotopes such as 17 O and 18 O exist in oxygen and that the proportions of 17 O and 18 O in all of the oxygen atoms in nature are 0.037% and 0.204%, respectively. That is to say, it is possible to measure the concentrations of these isotopes in the amorphous oxide semiconductor layer by a method such as SIMS; therefore, the oxygen concentration of the amorphous oxide semiconductor layer may be able to be estimated more accurately by measuring the concentration of such an isotope. Thus, the concentration of the isotope may be measured to determine whether oxygen is intentionally added to the amorphous oxide semiconductor layer.
- Part of the oxygen 421 added to (contained in) the amorphous oxide semiconductor layer 404 may have a dangling bond in the oxide semiconductor. This is because such a dangling bond is bonded with hydrogen remaining in the layer so that hydrogen can be fixed (made to be an immovable ion).
- a conductive film which is to be a gate electrode is formed over the gate insulating layer 406 and is processed, so that the gate electrode 410 is formed.
- the gate electrode 410 can be formed by a plasma CVD method, a sputtering method, or the like with the use of a metal material such as molybdenum, titanium, tantalum, tungsten, aluminum, copper, neodymium, or scandium, or an alloy material containing any of these materials as a main component.
- a semiconductor film typified by a polycrystalline silicon film doped with an impurity element such as phosphorus, or a silicide film such as a nickel silicide film may be used for the gate electrode 410 .
- the gate electrode 410 may have either a single-layer structure or a stacked structure.
- the insulating layer 412 which covers the gate electrode 410 is formed (see FIG. 3D ).
- a layer including an aluminum oxide film can be used as the insulating layer 412 . That is, the insulating layer 412 contains aluminum oxide.
- An aluminum oxide film has a barrier property and thus is less likely to transmit moisture, oxygen, and another impurity. Therefore, by providing an aluminum oxide film over the amorphous oxide semiconductor layer 404 , the aluminum oxide film functions as a passivation film and prevents an impurity such as moisture from entering the amorphous oxide semiconductor layer 404 from the outside after completion of the device. Moreover, release of oxygen from the amorphous oxide semiconductor layer 404 can be prevented.
- the insulating layer 412 may have a stacked structure including the aluminum oxide film and an oxide insulating film (e.g., a silicon oxide film or a silicon oxynitride film) including an oxygen-excess region.
- an oxide insulating film e.g., a silicon oxide film or a silicon oxynitride film
- the insulating layer 412 has a thickness of at least 1 nm and can be formed by a method by which impurities such as water and hydrogen do not enter the insulating layer 412 , such as a sputtering method, as appropriate.
- a sputtering method such as a sputtering method.
- hydrogen may possibly enter the amorphous oxide semiconductor layer 404 or abstract oxygen in the amorphous oxide semiconductor layer 404 . Therefore, it is important to employ a film formation method in which hydrogen is not used so that the insulating layer 412 does not contain hydrogen as much as possible.
- a high-purity gas from which impurities such as hydrogen, water, a compound having a hydroxyl group, and a hydride are removed be used as a sputtering gas for the formation of the insulating layer 412 .
- thermal treatment is performed.
- the thermal treatment is performed at a temperature at which the amorphous oxide semiconductor layer 404 is not crystallized, preferably higher than or equal to 250° C. and lower than or equal to 450° C.
- the thermal treatment may be performed in an atmosphere of nitrogen, oxygen, ultra-dry air (air in which the water content is less than or equal to 20 ppm, preferably less than or equal to 1 ppm, further preferably less than or equal to 10 ppb), or a rare gas (such as argon or helium). Note that it is preferable that water, hydrogen, and the like be not contained in the atmosphere of nitrogen, oxygen, ultra-dry air, a rare gas, or the like.
- the purity of nitrogen, oxygen, or a rare gas which is introduced into a thermal treatment apparatus is preferably higher than or equal to 6N (99.9999%), further preferably higher than or equal to 7N (99.99999%) (that is, the impurity concentration is preferably lower than or equal to 1 ppm, further preferably lower than or equal to 0.1 ppm).
- the timing of the thermal treatment (second thermal treatment) performed after the oxygen implantation treatment is not limited to that in this embodiment, the thermal treatment needs to be performed at least after the insulating layer 412 is formed. This is because, since the aluminum oxide film used as the insulating layer 412 has a high blocking effect and thus is less likely to transmit both oxygen and impurities such as hydrogen and moisture, release of oxygen from the amorphous oxide semiconductor layer 404 can be prevented by performing the thermal treatment after the insulating layer 412 is formed.
- oxygen may be supplied to the amorphous oxide semiconductor layer 404 from the insulating film (e.g., the gate insulating layer 406 or the base insulating layer 402 ) which contains oxygen and is in contact with the amorphous oxide semiconductor layer 404 .
- the insulating film e.g., the gate insulating layer 406 or the base insulating layer 402
- the transistor 510 is formed (see FIG. 3D ).
- impurities such as hydrogen, water, a hydroxyl group, and a hydride (also referred to as a hydrogen compound) can be intentionally removed from the amorphous oxide semiconductor layer; by the subsequent oxygen implantation treatment, oxygen, which is decreased in concentration through the thermal treatment for dehydration or dehydrogenation, can be supplied to the amorphous oxide semiconductor layer.
- oxygen which is decreased in concentration through the thermal treatment for dehydration or dehydrogenation, can be supplied to the amorphous oxide semiconductor layer.
- the amorphous oxide semiconductor layer can be highly purified and become an electrically i-type (intrinsic) semiconductor.
- an oxygen-excess region is formed by the oxygen implantation treatment, whereby formation of an oxygen vacancy in the amorphous oxide semiconductor layer or at the interface thereof can be suppressed and the number of donor levels in the energy gap due to oxygen vacancies can be reduced or the donor levels can be substantially removed. Therefore, variation in the electric characteristics of the transistor 510 is suppressed, and the transistor 510 is electrically stable.
- the amorphous oxide semiconductor layer has an amorphous structure in whole, and thus has uniform film quality as compared with a partly crystallized oxide semiconductor layer.
- a semiconductor device which includes an amorphous oxide semiconductor and has stable electric characteristics can be provided. Further, a highly reliable semiconductor device can be provided.
- Embodiment 1 a method of manufacturing the transistor 510 , which is different from that in Embodiment 1, will be described with reference to FIGS. 4A to 4D .
- the same portions as Embodiment 1 or portions having functions similar to those of Embodiment 1 can be formed as in Embodiment 1, and also the same steps as Embodiment 1 or steps similar to those of Embodiment 1 can be performed as in Embodiment 1; therefore, repetitive description thereof is omitted. In addition, detailed description of the same portions is not repeated.
- the base insulating layer 402 is formed over the substrate 400 having an insulating surface, and then an oxide semiconductor layer 401 a is formed in contact with the base insulating layer 402 (see FIG. 4A ).
- the oxide semiconductor layer 401 a can be formed using a material similar to that described in Embodiment 1.
- the oxide semiconductor layer 401 a may have an amorphous structure or include a crystalline region.
- the concentration of hydrogen contained in the oxide semiconductor layer 401 a is preferably reduced as much as possible.
- a high-purity rare gas typically argon
- high-purity oxygen or a high-purity mixed gas of a rare gas and oxygen, from which impurities such as hydrogen, water, a compound having a hydroxyl group, and a hydride are removed, is supplied into a treatment chamber of a sputtering apparatus as an atmosphere gas, as appropriate.
- the oxide semiconductor layer 401 a In order to reduce the concentration of impurities contained in the oxide semiconductor layer 401 a , it is also effective to form the oxide semiconductor layer 401 a while the substrate 400 is kept at a high temperature.
- the temperature at which the substrate 400 is heated may be higher than or equal to 150° C. and lower than or equal to 450° C.; the substrate temperature is preferably higher than or equal to 200° C. and lower than or equal to 350° C. Note that when the substrate is heated at a high temperature during the film formation, an oxide semiconductor layer including a crystalline region may be formed.
- the oxide semiconductor layer 401 a is formed to include a crystalline region at least partly, by heating the substrate during the film formation.
- the formed oxide semiconductor layer 401 a is subjected to thermal treatment (first thermal treatment) for dehydration or dehydrogenation.
- the first thermal treatment is performed at a temperature higher than or equal to 250° C. and lower than or equal to 700° C., preferably higher than or equal to 450° C. and lower than or equal to 600° C. or lower than the strain point of the substrate.
- the first thermal treatment is preferably performed at a high temperature (e.g., a temperature higher than 400° C.) because release of an impurity from the oxide semiconductor layer 401 a is enhanced. Note that, when the first thermal treatment is performed at a high temperature, part of the oxide semiconductor layer 401 a might be crystallized or the crystalline region might be expanded.
- the oxygen 421 is implanted into the oxide semiconductor layer 401 a .
- the oxygen 421 can be implanted as in Embodiment 1.
- a crystal structure included in the oxide semiconductor layer 401 a is broken to be an amorphous structure, so that the amorphous oxide semiconductor layer 404 a including an oxygen-excess region is formed (see FIG. 4B ).
- oxygen in the amorphous oxide semiconductor layer 404 a which is decreased in concentration through the above thermal treatment for dehydration or dehydrogenation, can be supplied.
- the amorphous oxide semiconductor layer 404 a can be highly purified and become an electrically i-type (intrinsic) semiconductor.
- formation of the oxygen-excess region in the amorphous oxide semiconductor layer 404 a enables an oxygen vacancy therein to be compensated.
- charge trapping centers in the amorphous oxide semiconductor layer 404 a can be reduced.
- an example is shown in which the oxygen 421 is implanted with a surface of the oxide semiconductor layer 401 a exposed. Note that an embodiment of the present invention is not limited to this manner; it is also possible to implant oxygen into the amorphous oxide semiconductor layer 404 through the gate insulating layer 406 or the insulating layer 412 .
- the amorphous oxide semiconductor layer 404 a is processed into the island-shaped amorphous oxide semiconductor layer 404 in a photolithography step.
- a conductive film which is to be a source electrode and a drain electrode (including a wiring formed in the same layer as the source electrode and the drain electrode) is formed over the amorphous oxide semiconductor layer 404 and is processed, so that the source electrode 405 a and the drain electrode 405 b are formed.
- the gate insulating layer 406 which covers the source electrode 405 a and the drain electrode 405 b and is in contact with part of the amorphous oxide semiconductor layer 404 is formed (see FIG. 4C ).
- a conductive film which is to be a gate electrode (including a wiring formed in the same layer as the gate electrode) is formed over the gate insulating layer 406 and is processed, so that the gate electrode 410 is formed. After that, the insulating layer 412 which covers the gate electrode 410 is formed (see FIG. 4D ).
- thermal treatment (second thermal treatment) is performed.
- the thermal treatment is performed at a temperature at which the amorphous oxide semiconductor layer 404 is not crystallized, preferably higher than or equal to 250° C. and lower than or equal to 450° C.
- the transistor 510 is formed (see FIG. 4D ). Variation in the electric characteristics of the transistor 510 is suppressed, and the transistor 510 is electrically stable.
- a semiconductor device which includes an amorphous oxide semiconductor and has stable electric characteristics can be provided. Further, a highly reliable semiconductor device can be provided.
- FIGS. 5A to 5C , FIGS. 6A to 6C , and FIGS. 7A to 7D Note that the same portions as the above embodiment or portions having functions similar to those of the above embodiment can be formed as in the above embodiment, and also the same steps as the above embodiment or steps similar to those of the above embodiment can be performed as in the above embodiment; therefore, repetitive description thereof is omitted. In addition, detailed description of the same portions is not repeated.
- FIGS. 5A to 5C are a plan view and cross-sectional views which illustrate a bottom-gate transistor 530 as an example of a semiconductor device.
- FIG. 5A is a plan view
- FIGS. 5B and 5C are cross-sectional views along line I-J and line K-L in FIG. 5A , respectively. Note that in FIG. 5A , some components of the transistor 530 (e.g., the insulating layer 412 ) are omitted for brevity.
- the transistor 530 illustrated in FIGS. 5A to 5C includes, over the substrate 400 having an insulating surface, the gate electrode 410 , the gate insulating layer 406 , the amorphous oxide semiconductor layer 404 , the source electrode 405 a , the drain electrode 405 b , and the insulating layer 412 .
- the amorphous oxide semiconductor layer 404 has been subjected to oxygen implantation treatment and includes an oxygen-excess region.
- oxygen implantation treatment By performing oxygen implantation treatment, a sufficient amount of oxygen can be contained in the amorphous oxide semiconductor layer 404 , so that the transistor 530 can have higher reliability.
- the gate insulating layer 406 which is an insulating layer in contact with the amorphous oxide semiconductor layer 404 preferably includes an oxygen-excess region.
- oxygen can be prevented from moving from the amorphous oxide semiconductor layer 404 to the gate insulating layer 406 , and oxygen can be supplied from the gate insulating layer 406 to the amorphous oxide semiconductor layer 404 .
- the insulating layer 412 have a stacked structure including an aluminum oxide film and an oxide insulating film (such as a silicon oxide film or a silicon oxynitride film) which is in contact with the amorphous oxide semiconductor layer 404 and includes an oxygen-excess region.
- an oxide insulating film such as a silicon oxide film or a silicon oxynitride film
- an oxygen vacancy in the amorphous oxide semiconductor layer 404 can be compensated by excess oxygen contained in the oxide insulating film.
- FIGS. 6A to 6C illustrate another structure example of a transistor according to this embodiment.
- FIG. 6A is a plan view of a transistor 540
- FIGS. 6B and 6C are cross-sectional views along line M-N and line O-P in FIG. 6A , respectively. Note that in FIG. 6A , some components of the transistor 540 (e.g., the insulating layer 412 ) are omitted for brevity.
- the transistor 540 illustrated in FIGS. 6A to 6C includes, over the substrate 400 having an insulating surface, the gate electrode 410 , the gate insulating layer 406 , the amorphous oxide semiconductor layer 404 , the source electrode 405 a , the drain electrode 405 b , and the insulating layer 412 .
- a difference between the transistor 540 illustrated in FIGS. 6A to 6C and the transistor 530 illustrated in FIGS. 5A to 5C is the stacking order of the source and drain electrodes 405 a and 405 b and the amorphous oxide semiconductor layer 404 . That is, the transistor 540 includes the source electrode 405 a and the drain electrode 405 b which are in contact with the gate insulating layer 406 , and the amorphous oxide semiconductor layer 404 which is provided over the source electrode 405 a and the drain electrode 405 b and is at least partly in contact with the gate insulating layer 406 .
- the other components are similar to those of the transistor 530 , and thus the description of the transistor 530 can be referred to for the details.
- FIGS. 7A to 7D illustrate an example of a method of manufacturing the transistor 530 .
- the transistor 540 can be manufactured in a process similar to that of the transistor 530 except for the stacking order of the source and drain electrodes 405 a and 405 b and the amorphous oxide semiconductor layer 404 .
- a conductive film is formed over the substrate 400 having an insulating surface, and then the gate electrode 410 is formed in a photolithography step.
- an insulating layer serving as a base film may be provided between the substrate 400 and the gate electrode 410 .
- the base film has a function of preventing diffusion of an impurity element from the substrate 400 , and can be formed to have a single-layer or stacked structure including one or more films selected from a silicon nitride film, a silicon oxide film, a silicon nitride oxide film, and a silicon oxynitride film.
- the gate insulating layer 406 is formed over the gate electrode 410 , and the amorphous oxide semiconductor layer 404 a having a thickness greater than or equal to 2 nm and less than or equal to 200 nm, preferably greater than or equal to 5 nm and less than or equal to 30 nm, is formed over the gate insulating layer 406 (see FIG. 7A ).
- the amorphous oxide semiconductor layer 404 a can be formed as in the step in FIG. 3A .
- the gate insulating layer 406 and the amorphous oxide semiconductor layer 404 a be successively formed without exposure to the air.
- the following steps may be performed: impurities containing hydrogen attached to a surface of the substrate 400 and a surface of the gate electrode 410 are removed by thermal treatment or plasma treatment, and then the gate insulating layer 406 and the amorphous oxide semiconductor layer 404 a are successively formed in this order without exposure to the air.
- the transistor 530 having favorable electric characteristics and high reliability. Also in the case where the insulating layer serving as a base film is formed, it is preferable that the insulating layer, the gate insulating layer 406 , and the amorphous oxide semiconductor layer 404 a be successively formed without exposure to the air.
- thermal treatment is performed on the amorphous oxide semiconductor layer 404 a in order to remove hydrogen (including water and a hydroxyl group) (dehydration or dehydrogenation).
- the thermal treatment is performed at a temperature at which the amorphous oxide semiconductor layer 404 a is not crystallized, typically, higher than or equal to 250° C. and lower than or equal to 450° C., preferably lower than or equal to 300° C.
- the oxygen 421 is implanted into the amorphous oxide semiconductor layer 404 a (see FIG. 7B ).
- the oxygen 421 can be implanted as in Embodiment 1.
- the implantation treatment of the oxygen 421 is performed with a surface of the amorphous oxide semiconductor layer 404 a exposed; therefore, plasma treatment may be carried out so that the amorphous oxide semiconductor layer 404 a is exposed in an atmosphere of the plasmatized oxygen 421 , instead of the above implantation method.
- these methods may be combined.
- oxygen in the amorphous oxide semiconductor layer 404 a which is decreased in concentration through the above thermal treatment for dehydration or dehydrogenation, can be supplied.
- the amorphous oxide semiconductor layer 404 a can be highly purified and become an electrically i-type (intrinsic) semiconductor.
- formation of an oxygen-excess region in the amorphous oxide semiconductor layer 404 a enables an oxygen vacancy to be compensated.
- charge trapping centers in the amorphous oxide semiconductor layer 404 a can be reduced.
- an example is shown in which the oxygen 421 is implanted with the surface of the amorphous oxide semiconductor layer 404 a exposed. Note that an embodiment of the present invention is not limited to this manner; it is also possible to implant oxygen into the amorphous oxide semiconductor layer 404 through the insulating layer 412 .
- the amorphous oxide semiconductor layer 404 a is processed into the island-shaped amorphous oxide semiconductor layer 404 in a photolithography step. After that, a conductive film which is to be a source electrode and a drain electrode (including a wiring formed in the same layer as the source electrode and the drain electrode) is formed over the amorphous oxide semiconductor layer 404 and is processed, so that the source electrode 405 a and the drain electrode 405 b are formed (see FIG. 7C ).
- the insulating layer 412 which covers the source electrode 405 a and the drain electrode 405 b is formed (see FIG. 7D ).
- thermal treatment (second thermal treatment) is performed.
- the thermal treatment is performed at a temperature at which the amorphous oxide semiconductor layer 404 is not crystallized, preferably higher than or equal to 250° C. and lower than or equal to 450° C.
- the transistor 530 is formed (see FIG. 7D ). Variation in the electric characteristics of the transistor 530 is suppressed, and the transistor 530 is electrically stable.
- a semiconductor device which includes an amorphous oxide semiconductor and has stable electric characteristics can be provided. Further, a highly reliable semiconductor device can be provided.
- a method of manufacturing the transistor 530 which is different from that in Embodiment 3, will be described with reference to FIGS. 8A to 8D .
- the same portions as the above embodiment or portions having functions similar to those of the above embodiment can be formed as in the above embodiment, and also the same steps as the above embodiment or steps similar to those of the above embodiment can be performed as in the above embodiment; therefore, repetitive description thereof is omitted. In addition, detailed description of the same portions is not repeated.
- a conductive film is formed over the substrate 400 having an insulating surface, and then the gate electrode 410 is formed in a photolithography step.
- the gate insulating layer 406 is formed over the gate electrode 410 , and the oxide semiconductor layer 401 a having a thickness greater than or equal to 2 nm and less than or equal to 200 nm, preferably greater than or equal to 5 nm and less than or equal to 30 nm, is formed over the gate insulating layer 406 (see FIG. 8A ).
- the oxide semiconductor layer 401 a can be formed as in the step in FIG. 4A .
- the oxide semiconductor layer 401 a may have an amorphous structure or include a crystalline region.
- the oxide semiconductor layer 401 a is formed to include a crystalline region at least partly, by heating the substrate during the film formation.
- the formed oxide semiconductor layer 401 a is subjected to thermal treatment (first thermal treatment) for dehydration or dehydrogenation.
- first thermal treatment is performed at a temperature higher than or equal to 250° C. and lower than or equal to 700° C., preferably higher than or equal to 450° C. and lower than or equal to 600° C. or lower than the strain point of the substrate.
- the first thermal treatment is preferably performed at a high temperature (e.g., a temperature higher than 400° C.) because release of an impurity from the oxide semiconductor layer 401 a is enhanced. Note that, when the first thermal treatment is performed at a high temperature, part of the oxide semiconductor layer 401 a might be crystallized or the crystalline region might be expanded.
- the oxide semiconductor layer 401 a is processed into an island-shaped oxide semiconductor layer 401 in a photolithography step.
- a conductive film which is to be a source electrode and a drain electrode (including a wiring formed in the same layer as the source electrode and the drain electrode) is formed over the oxide semiconductor layer 401 and is processed, so that the source electrode 405 a and the drain electrode 405 b are formed.
- the insulating layer 412 which covers the source electrode 405 a and the drain electrode 405 b and is in contact with part of the oxide semiconductor layer 401 is formed (see FIG. 8B ).
- the oxygen 421 is implanted into the oxide semiconductor layer 401 through the insulating layer 412 (see FIG. 8C ).
- the oxygen implantation treatment a crystal structure included in the oxide semiconductor layer 401 is broken to be an amorphous structure, so that the amorphous oxide semiconductor layer 404 including an oxygen-excess region is formed.
- the amorphous oxide semiconductor layer 404 can be highly purified and become an electrically i-type (intrinsic) semiconductor. Further, formation of the oxygen-excess region in the amorphous oxide semiconductor layer 404 enables an oxygen vacancy therein to be compensated. Thus, charge trapping centers in the amorphous oxide semiconductor layer 404 can be reduced.
- thermal treatment (second thermal treatment) is performed.
- the thermal treatment is performed at a temperature at which the amorphous oxide semiconductor layer 404 is not crystallized, preferably higher than or equal to 250° C. and lower than or equal to 450° C.
- the transistor 530 is formed (see FIG. 8D ). Variation in the electric characteristics of the transistor 530 is suppressed, and the transistor 530 is electrically stable.
- a semiconductor device which includes an amorphous oxide semiconductor and has stable electric characteristics can be provided. Further, a highly reliable semiconductor device can be provided.
- a semiconductor device having a display function (also referred to as a display device) can be manufactured using any of the transistors described in Embodiments 1 to 4. Moreover, some or all of driver circuits which include transistors can be formed over a substrate where a pixel portion is formed, whereby a system-on-panel can be obtained.
- a sealant 4005 is provided so as to surround a pixel portion 4002 provided over a first substrate 4001 , and the pixel portion 4002 is sealed by using a second substrate 4006 .
- a signal line driver circuit 4003 and a scan line driver circuit 4004 which are each formed using a single crystal semiconductor film or a polycrystalline semiconductor film over a substrate separately prepared are mounted in a region that is different from the region surrounded by the sealant 4005 over the first substrate 4001 .
- Various signals and potentials which are provided to the pixel portion 4002 through the signal line driver circuit 4003 and the scan line driver circuit 4004 are supplied from flexible printed circuits (FPCs) 4018 a and 4018 b.
- FPCs flexible printed circuits
- the sealant 4005 is provided so as to surround the pixel portion 4002 and the scan line driver circuit 4004 which are provided over the first substrate 4001 .
- the second substrate 4006 is provided over the pixel portion 4002 and the scan line driver circuit 4004 . Consequently, the pixel portion 4002 and the scan line driver circuit 4004 are sealed together with a display element, by the first substrate 4001 , the sealant 4005 , and the second substrate 4006 .
- the signal line driver circuit 4003 which is formed using a single crystal semiconductor film or a polycrystalline semiconductor film over a substrate separately prepared is mounted in a region that is different from the region surrounded by the sealant 4005 over the first substrate 4001 .
- various signals and potentials which are provided to the pixel portion 4002 through the signal line driver circuit 4003 and the scan line driver circuit 4004 are supplied from an FPC 4018 .
- FIGS. 9B and 9C each illustrate an example in which the signal line driver circuit 4003 is formed separately and mounted on the first substrate 4001 , one embodiment of the present invention is not limited to this structure.
- the scan line driver circuit may be separately formed and then mounted, or only part of the signal line driver circuit or part of the scan line driver circuit may be separately formed and then mounted.
- FIG. 9A illustrates an example in which the signal line driver circuit 4003 and the scan line driver circuit 4004 are mounted by a COG method.
- FIG. 9B illustrates an example in which the signal line driver circuit 4003 is mounted by a COG method.
- FIG. 9C illustrates an example in which the signal line driver circuit 4003 is mounted by a TAB method.
- the display device includes a panel in which the display element is sealed, and a module in which an IC including a controller or the like is mounted on the panel.
- a display device in this specification means an image display device, a display device, or a light source (including a lighting device). Furthermore, the display device also includes not only a panel in which the display element is sealed but also the following modules in its category: a module to which a connector such as an FPC, a TAB tape, or a TCP is attached; a module having a TAB tape or a TCP at the tip of which a printed wiring board is provided; and a module in which an integrated circuit (IC) is directly mounted on a display element by a COG method.
- a module to which a connector such as an FPC, a TAB tape, or a TCP is attached
- a module having a TAB tape or a TCP at the tip of which a printed wiring board is provided and a module in which an integrated circuit (IC) is directly mounted on a display element by a COG method.
- IC integrated circuit
- the pixel portion and the scan line driver circuit which are provided over the first substrate include a plurality of transistors; any of the transistors described in Embodiments 1 to 4 can be applied thereto.
- a liquid crystal element also referred to as a liquid crystal display element
- a light-emitting element also referred to as a light-emitting display element
- the light-emitting element includes, in its category, an element whose luminance is controlled by current or voltage, and specifically includes an inorganic electroluminescent (EL) element, an organic EL element, and the like.
- a display medium whose contrast is changed by an electric effect such as an electronic ink display (electronic paper), can be used.
- FIG. 10 , FIG. 11 , and FIG. 12 correspond to cross-sectional views along line Q-R in FIG. 9B .
- the semiconductor device includes a connection terminal electrode 4015 and a terminal electrode 4016 .
- the connection terminal electrode 4015 and the terminal electrode 4016 are electrically connected to a terminal included in the FPC 4018 through an anisotropic conductive film 4019 .
- connection terminal electrode 4015 is formed using the same conductive film as a first electrode 4030
- terminal electrode 4016 is formed using the same conductive film as source electrodes and drain electrodes of transistors 4010 and 4011 .
- the pixel portion 4002 and the scan line driver circuit 4004 which are provided over the first substrate 4001 include a plurality of transistors.
- FIG. 10 , FIG. 11 , and FIG. 12 illustrate the transistor 4010 included in the pixel portion 4002 and the transistor 4011 included in the scan line driver circuit 4004 as an example.
- an insulating layer 4020 and an insulating layer 4024 are provided over the transistors 4010 and 4011 .
- an insulating layer 4021 is further provided. Note that an insulating layer 4023 in FIGS. 10 to 12 is an insulating layer serving as a base film.
- any of the transistors described in Embodiments 1 to 4 can be applied to the transistor 4010 and the transistor 4011 .
- Each of the transistor 4010 and the transistor 4011 includes a highly purified amorphous oxide semiconductor layer including an oxygen-excess region. Therefore, variation in the electric characteristics of the transistor 4010 and the transistor 4011 is suppressed, and the transistor 4010 and the transistor 4011 are electrically stable.
- a conductive layer 4037 is provided over the insulating layer so as to overlap with a channel formation region of the amorphous oxide semiconductor layer in the transistor 4011 for the driver circuit, whereby the amount of change in the threshold voltage of the transistor 4011 can be further reduced.
- the potential of the conductive layer 4037 may be the same as or different from that of a gate electrode 4039 of the transistor 4011 .
- the conductive layer 4037 can also function as a second gate electrode.
- the potential of the conductive layer 4037 may be GND or 0V, or the conductive layer 4037 may be in a floating state.
- the conductive layer 4037 functions to block an external electric field, that is, to prevent an external electric field (particularly, to prevent static electricity) from affecting the inside (a circuit portion including a thin film transistor).
- the blocking function of the conductive layer 4037 can prevent variation in the electric characteristics of the transistor 4011 due to the influence of an external electric field such as static electricity.
- the transistor 4010 provided in the pixel portion 4002 is electrically connected to a display element to form a display panel.
- a variety of display elements can be used as the display element as long as display can be performed.
- a liquid crystal element 4013 includes the first electrode 4030 , a second electrode 4031 , and a liquid crystal layer 4008 .
- an insulating layer 4032 and an insulating layer 4033 which function as alignment films are provided so that the liquid crystal layer 4008 is interposed therebetween.
- the second electrode 4031 is provided on the second substrate 4006 side.
- the first electrode 4030 and the second electrode 4031 are stacked with the liquid crystal layer 4008 interposed therebetween.
- a columnar spacer denoted by reference numeral 4035 is obtained by selective etching of an insulating layer and is provided in order to control the thickness (cell gap) of the liquid crystal layer 4008 .
- a spherical spacer may be used.
- thermotropic liquid crystal In the case where a liquid crystal element is used as the display element, a thermotropic liquid crystal, a ferroelectric liquid crystal, an anti-ferroelectric liquid crystal, or the like can be used. These liquid crystals may be any of a compound with a low molecular weight and a polymer. Such a liquid crystal material exhibits a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, or the like depending on conditions.
- a liquid crystal exhibiting a blue phase for which an alignment film is unnecessary may be used.
- a blue phase is one of liquid crystal phases, which appears just before a cholesteric phase changes into an isotropic phase while the temperature of a cholesteric liquid crystal is increased. Since the blue phase appears only in a narrow temperature range, a liquid crystal composition in which several weight percent or more of a chiral agent is mixed is used for the liquid crystal layer in order to improve the temperature range.
- the liquid crystal composition which includes a liquid crystal exhibiting a blue phase and a chiral agent has a short response time, and has optical isotropy, which contributes to the exclusion of the alignment process and reduction of viewing angle dependence.
- the specific resistivity of the liquid crystal material is higher than or equal to 1 ⁇ 10 9 ⁇ cm, preferably higher than or equal to 1 ⁇ 10 11 ⁇ cm, further preferably higher than or equal to 1 ⁇ 10 12 ⁇ cm. Note that the specific resistivity in this specification is measured at 20° C.
- the size of a storage capacitor formed in the liquid crystal display device is set considering the leakage current of the transistor provided in the pixel portion 4002 or the like so that charge can be held for a predetermined period.
- the size of the storage capacitor may be set considering the off-state current of the transistor or the like.
- the current in an off state (off-state current) can be decreased. Accordingly, an electric signal such as an image signal can be held for a longer time, and a writing interval can be set longer. Accordingly, the frequency of refresh operation can be reduced, which leads to suppression of power consumption.
- the transistor used in this embodiment which includes a highly purified amorphous oxide semiconductor layer in which formation of an oxygen vacancy is suppressed, can have relatively high field-effect mobility and thus can operate at high speed.
- a switching transistor in a pixel portion and a driver transistor in a driver circuit portion can be formed over one substrate.
- a high-quality image can be provided.
- a twisted nematic (TN) mode for the liquid crystal display device, a twisted nematic (TN) mode, an in-plane-switching (IPS) mode, a fringe field switching (FFS) mode, an axially symmetric aligned micro-cell (ASM) mode, an optical compensated birefringence (OCB) mode, a ferroelectric liquid crystal (FLC) mode, an anti-ferroelectric liquid crystal (AFLC) mode, or the like
- TN twisted nematic
- IPS in-plane-switching
- FFS fringe field switching
- ASM axially symmetric aligned micro-cell
- OBC optical compensated birefringence
- FLC ferroelectric liquid crystal
- AFLC anti-ferroelectric liquid crystal
- a normally black liquid crystal display device such as a transmissive liquid crystal display device utilizing a vertical alignment (VA) mode may be used.
- a vertical alignment mode for example, a multi-domain vertical alignment (MVA) mode, a patterned vertical alignment (PVA) mode, or an ASV mode can be employed.
- MVA multi-domain vertical alignment
- PVA patterned vertical alignment
- ASV ASV mode
- this embodiment can be applied to a VA liquid crystal display device.
- the VA liquid crystal display device utilizes one of the alignment modes of liquid crystal molecules of a liquid crystal display panel.
- liquid crystal molecules are aligned in a vertical direction with respect to a panel surface when no voltage is applied.
- it is possible to use a method called domain multiplication or multi-domain design in which a pixel is divided into some regions (subpixels) and molecules are aligned in different directions in their respective regions.
- a black matrix (light-blocking layer), an optical member (optical substrate) such as a polarizing member, a retardation member, or an anti-reflection member, and the like are provided as appropriate.
- an optical member optical substrate
- circular polarization may be obtained by using a polarizing substrate and a retardation substrate.
- a backlight, a side light, or the like may be used as a light source.
- a progressive method, an interlace method, or the like can be employed as a display method in the pixel portion.
- color elements controlled in a pixel at the time of color display are not limited to three colors: R, G, and B (R, G, and B correspond to red, green, and blue, respectively).
- R, G, B, and W W corresponds to white
- R, G, B, and one or more of yellow, cyan, magenta, and the like can be used.
- the sizes of display regions may differ between respective dots of color elements. Note that one embodiment of the invention disclosed herein is not limited to the application to a display device for color display; one embodiment of the invention disclosed herein can also be applied to a display device for monochrome display.
- a light-emitting element utilizing electroluminescence can be used as the display element included in the display device.
- Light-emitting elements utilizing electroluminescence are classified according to whether a light-emitting material is an organic compound or an inorganic compound. In general, the former is referred to as an organic EL element, and the latter is referred to as an inorganic EL element.
- an organic EL element by application of voltage to a light-emitting element, electrons and holes are separately injected from a pair of electrodes into a layer containing a light-emitting organic compound, and current flows.
- the carriers (electrons and holes) are recombined, and thus the light-emitting organic compound is excited.
- the light-emitting organic compound returns to a ground state from the excited state, thereby emitting light. Owing to such a mechanism, this light-emitting element is referred to as a current-excitation light-emitting element.
- Inorganic EL elements are classified according to their element structures into a dispersion-type inorganic EL element and a thin-film inorganic EL element.
- a dispersion-type inorganic EL element has a light-emitting layer in which particles of a light-emitting material are dispersed in a binder, and its light emission mechanism is donor-acceptor recombination type light emission that utilizes a donor level and an acceptor level.
- a thin-film inorganic EL element has a structure where a light-emitting layer is interposed between dielectric layers, which are further interposed between electrodes, and its light emission mechanism is localized type light emission that utilizes inner-shell electron transition of metal ions. Note that description is made here using an organic EL element as a light-emitting element.
- At least one of the pair of electrodes has a light-transmitting property.
- a transistor and the light-emitting element are formed over a substrate.
- the light-emitting element can have a top emission structure in which light emission is extracted through a surface opposite to the substrate; a bottom emission structure in which light emission is extracted through a surface on the substrate side; or a dual emission structure in which light emission is extracted through the surface opposite to the substrate and the surface on the substrate side.
- a light-emitting element having any of these emission structures can be used.
- FIG. 11 An example of a light-emitting device using a light-emitting element as a display element is illustrated in FIG. 11 .
- a light-emitting element 4513 is electrically connected to the transistor 4010 provided in the pixel portion 4002 .
- the structure of the light-emitting element 4513 is not limited to that shown in FIG. 11 , which has a stacked structure including the first electrode 4030 , an electroluminescent layer 4511 , and the second electrode 4031 .
- the structure of the light-emitting element 4513 can be changed as appropriate depending on the direction in which light is extracted from the light-emitting element 4513 , or the like.
- a partition wall 4510 is formed using an organic insulating material or an inorganic insulating material. It is particularly preferable that the partition wall 4510 be formed using a photosensitive resin material to have an opening over the first electrode 4030 so that a sidewall of the opening has a tilted surface with continuous curvature.
- the electroluminescent layer 4511 may be formed using a single layer or a plurality of layers stacked.
- a protective film may be formed over the second electrode 4031 and the partition wall 4510 in order to prevent entry of oxygen, hydrogen, moisture, carbon dioxide, and the like into the light-emitting element 4513 .
- a silicon nitride film, a silicon nitride oxide film, a DLC film, or the like can be formed.
- a filler 4514 is provided for sealing.
- the light-emitting element is packaged (sealed) with the protective film (such as a laminate film or an ultraviolet curable resin film) or a cover material with high air-tightness and little degasification so that the light-emitting element is not exposed to the outside air.
- the protective film such as a laminate film or an ultraviolet curable resin film
- a cover material with high air-tightness and little degasification so that the light-emitting element is not exposed to the outside air.
- an ultraviolet curable resin or a thermosetting resin can be used as well as an inert gas such as nitrogen or argon.
- an inert gas such as nitrogen or argon.
- PVC poly(vinyl chloride)
- acrylic resin acrylic resin
- polyimide acrylic resin
- epoxy resin epoxy resin
- silicone resin poly(vinyl butyral)
- EVA copolymer of ethylene with vinyl acetate
- an optical film such as a polarizing plate, a circularly polarizing plate (including an elliptically polarizing plate), a retardation plate (quarter-wave plate or half-wave plate), or a color filter may be provided as appropriate on a light-emitting surface of the light-emitting element.
- the polarizing plate or the circularly polarizing plate may be provided with an anti-reflection film. For example, anti-glare treatment by which reflected light can be diffused by projections and depressions on the surface so as to reduce the glare can be performed.
- Electronic paper in which electronic ink is driven can be provided as the display device.
- the electronic paper is also referred to as an electrophoretic display device (electrophoretic display) and is advantageous in that it has the same level of readability as plain paper, it has lower power consumption than other display devices, and it can be made thin and lightweight.
- An electrophoretic display device can have various modes.
- An electrophoretic display device includes a plurality of microcapsules dispersed in a solvent, and each microcapsule contains first particles which are positively charged and second particles which are negatively charged. By applying an electric field to the microcapsules, the particles in the microcapsules move in opposite directions to each other and only the color of the particles gathering on one side is displayed. Note that the first particles and the second particles each contain a pigment and do not move in the absence of an electric field. The first particles and the second particles have different colors (which may be colorless).
- a dispersion of the above microcapsules in a solvent is referred to as electronic ink.
- the use of a color filter or particles that have a pigment enables color display.
- a display device using a twisting ball display system can be used.
- spherical particles each colored in black and white are arranged between a first electrode and a second electrode which are electrodes used for a display element, and a potential difference is generated between the first electrode and the second electrode to control the orientation of the spherical particles, so that display is performed.
- FIG. 12 illustrates active matrix electronic paper as one embodiment of a semiconductor device.
- the electronic paper in FIG. 12 is an example of a display device using a twisting ball display system.
- spherical particles 4613 each including a black region 4615 a , a white region 4615 b , and a cavity 4612 which is filled with liquid around the black region 4615 a and the white region 4615 b .
- a space around the spherical particles 4613 is filled with a filler 4614 such as a resin.
- the second electrode 4031 corresponds to a common electrode (counter electrode).
- the second electrode 4031 is electrically connected to a common potential line.
- a flexible substrate as well as a glass substrate can be used as the first substrate 4001 and the second substrate 4006 .
- a plastic substrate having a light-transmitting property can be used.
- a fiberglass-reinforced plastics (FRP) plate, a poly(vinyl fluoride) (PVF) film, a polyester film, or an acrylic resin film can be used.
- FRP fiberglass-reinforced plastics
- PVF poly(vinyl fluoride)
- polyester film a polyester film
- acrylic resin film acrylic resin film
- a sheet with a structure in which an aluminum foil is interposed between PVF films or polyester films can be used.
- a silicon oxide film is used as the insulating layer 4020
- an aluminum oxide film is used as the insulating layer 4024 .
- the insulating layer 4020 and the insulating layer 4024 can be formed by a sputtering method or a plasma CVD method.
- the insulating layer 4020 in contact with the amorphous oxide semiconductor layer preferably includes an oxygen-excess region.
- the aluminum oxide film provided as the insulating layer 4024 over the amorphous oxide semiconductor layer has a high blocking effect and thus is less likely to transmit both oxygen and impurities such as hydrogen and moisture.
- the aluminum oxide film functions as a protective film that prevents entry of impurities such as hydrogen and moisture, which can cause variation, into the amorphous oxide semiconductor layer and release of oxygen from the amorphous oxide semiconductor layer during and after the manufacturing process.
- Each of the transistor 4010 and the transistor 4011 includes a highly purified amorphous oxide semiconductor layer in which an oxygen-excess region is provided for suppression of formation of an oxygen vacancy.
- the transistor 4010 and the transistor 4011 each include a silicon oxide film as a gate insulating layer.
- the amorphous oxide semiconductor layer included in each of the transistor 4010 and the transistor 4011 is obtained in such a manner that a region containing oxygen in a proportion higher than that in the stoichiometric composition is formed by oxygen implantation treatment, and thermal treatment is performed after the implantation in a state where the aluminum oxide film or a film including the aluminum oxide film is provided as the insulating layer 4024 over the amorphous oxide semiconductor layer; therefore, oxygen can be prevented from being released from the amorphous oxide semiconductor layer by the thermal treatment. Accordingly, the obtained amorphous oxide semiconductor layer can be a film which includes a region containing oxygen in a proportion higher than that in the stoichiometric composition.
- the amorphous oxide semiconductor layer included in each of the transistor 4010 and the transistor 4011 is a highly purified film which is dehydrated or dehydrogenated and in which an oxygen vacancy is compensated. Accordingly, by using the amorphous oxide semiconductor layer for each of the transistor 4010 and the transistor 4011 , it is possible to reduce variation in the threshold voltage V th of the transistors due to an oxygen vacancy and suppress a shift of the threshold voltage.
- the insulating layer 4021 functioning as a planarizing insulating layer can be formed using an organic material having heat resistance, such as an acrylic resin, a polyimide, a benzocyclobutene-based resin, a polyamide, or an epoxy resin. Other than such organic materials, it is also possible to use a low-dielectric constant material (low-k material) such as a siloxane-based resin, phosphosilicate glass (PSG), or borophosphosilicate glass (BPSG). Note that the insulating layer 4021 may be formed by stacking a plurality of insulating layers formed using any of these materials.
- an organic material having heat resistance such as an acrylic resin, a polyimide, a benzocyclobutene-based resin, a polyamide, or an epoxy resin.
- a low-dielectric constant material such as a siloxane-based resin, phosphosilicate glass (PSG), or borophosphosilicate glass (BPSG).
- the insulating layer 4021 may
- the method of forming the insulating layer 4021 there is no particular limitation on the method of forming the insulating layer 4021 , and the following method can be used depending on the material: a sputtering method, an SOG method, spin coating, dipping, spray coating, a droplet discharge method (such as an inkjet method), screen printing, offset printing, or the like.
- the first electrode 4030 and the second electrode 4031 can be formed, for example, using a light-transmitting conductive material such as indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, ITO, indium zinc oxide, indium tin oxide to which silicon oxide is added, or graphene.
- a light-transmitting conductive material such as indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, ITO, indium zinc oxide, indium tin oxide to which silicon oxide is added, or graphene.
- the first electrode 4030 and the second electrode 4031 can be formed using one or more materials selected from metals such as tungsten (W), molybdenum (Mo), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), cobalt (Co), nickel (Ni), titanium (Ti), platinum (Pt), aluminum (Al), copper (Cu), and silver (Ag); an alloy of any of these metals; and a nitride of any of these metals.
- metals such as tungsten (W), molybdenum (Mo), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), cobalt (Co), nickel (Ni), titanium (Ti), platinum (Pt), aluminum (Al), copper (Cu), and silver (Ag); an alloy of any of
- a conductive composition including a conductive polymer can be used for the first electrode 4030 and the second electrode 4031 .
- a so-called ⁇ -electron conjugated conductive polymer can be used.
- polyaniline or a derivative thereof, polypyrrole or a derivative thereof, polythiophene or a derivative thereof, and a copolymer of two or more of aniline, pyrrole, and thiophene or a derivative thereof can be given.
- a protective circuit for protecting the driver circuit may be provided.
- the protective circuit is preferably formed using a nonlinear element.
- a semiconductor device having an image sensor function of reading information on an object can be manufactured using any of the transistors described in Embodiments 1 to 4.
- FIG. 13A illustrates an example of a semiconductor device having an image sensor function.
- FIG. 13A is an equivalent circuit diagram of a photosensor
- FIG. 13B is a cross-sectional view illustrating part of the photosensor.
- One electrode of a photodiode 602 is electrically connected to a photodiode reset signal line 658 , and the other electrode of the photodiode 602 is electrically connected to a gate of a transistor 640 .
- One of a source and a drain of the transistor 640 is electrically connected to a photosensor reference signal line 672 , and the other of the source and the drain of the transistor 640 is electrically connected to one of a source and a drain of a transistor 656 .
- a gate of the transistor 656 is electrically connected to a gate signal line 659 , and the other of the source and the drain of the transistor 656 is electrically connected to a photosensor output signal line 671 .
- a transistor including an amorphous oxide semiconductor layer is denoted by a symbol “OS” so that it can be identified as a transistor formed using an amorphous oxide semiconductor layer.
- the transistor 640 and the transistor 656 are each a transistor including an amorphous oxide semiconductor layer in which an oxygen-excess region is formed by oxygen implantation treatment, like the transistors described in Embodiments 1 to 4.
- FIG. 13B is a cross-sectional view of the photodiode 602 and the transistor 640 in the photosensor.
- the photodiode 602 functioning as a sensor and the transistor 640 are provided over a substrate 601 (TFT substrate) having an insulating surface.
- a substrate 613 is provided over the photodiode 602 and the transistor 640 with the use of an adhesive layer 608 .
- An insulating layer 631 , an insulating layer 632 , an interlayer insulating film 633 , and an interlayer insulating film 634 are provided over the transistor 640 .
- the photodiode 602 is provided over the interlayer insulating film 633 .
- a first semiconductor film 606 a , a second semiconductor film 606 b , and a third semiconductor film 606 c are sequentially stacked from the interlayer insulating film 633 side, between electrodes 641 a and 641 b formed over the interlayer insulating film 633 and an electrode 642 formed over the interlayer insulating film 634 .
- the electrode 641 b is electrically connected to a conductive layer 643 formed over the interlayer insulating film 634 , and the electrode 642 is electrically connected to an electrode 645 through the electrode 641 a .
- the electrode 645 is electrically connected to a gate electrode of the transistor 640 , and thus the photodiode 602 is electrically connected to the transistor 640 .
- a pin photodiode in which a semiconductor film having p-type conductivity as the first semiconductor film 606 a , a high-resistance semiconductor film (i-type semiconductor film) as the second semiconductor film 606 b , and a semiconductor film having n-type conductivity as the third semiconductor film 606 c are stacked is illustrated as an example.
- the first semiconductor film 606 a is a p-type semiconductor film and can be formed using an amorphous silicon film containing an impurity element imparting p-type conductivity.
- the first semiconductor film 606 a is formed by a plasma CVD method with the use of a semiconductor source gas containing an impurity element belonging to Group 13 (e.g., boron (B)).
- a semiconductor source gas containing an impurity element belonging to Group 13 (e.g., boron (B)
- the semiconductor source gas silane (SiH 4 ) may be used.
- Si 2 H 6 , SiH 2 Cl 2 , SiHCl 3 , SiCl 4 , SiF 4 , or the like may be used.
- an amorphous silicon film which does not contain an impurity element may be formed, and then an impurity element may be introduced into the amorphous silicon film by a diffusion method or an ion implantation method. Heating or the like may be conducted after introducing the impurity element by an ion implantation method or the like in order to diffuse the impurity element.
- a method of forming the amorphous silicon film an LPCVD method, a vapor deposition method, a sputtering method, or the like may be used as a method of forming the amorphous silicon film.
- the first semiconductor film 606 a is preferably formed to have a thickness greater than or equal to 10 nm and less than or equal to 50 nm.
- the second semiconductor film 606 b is an i-type semiconductor film (intrinsic semiconductor film) and is formed using an amorphous silicon film.
- an amorphous silicon film is formed by a plasma CVD method with the use of a semiconductor source gas.
- the semiconductor source gas silane (SiH 4 ) may be used.
- Si 2 H 6 , SiH 2 Cl 2 , SiHCl 3 , SiCl 4 , SiF 4 , or the like may be used.
- the second semiconductor film 606 b may be formed by an LPCVD method, a vapor deposition method, a sputtering method, or the like.
- the second semiconductor film 606 b is preferably formed to have a thickness greater than or equal to 200 nm and less than or equal to 1000 nm.
- the third semiconductor film 606 c is an n-type semiconductor film and is formed using an amorphous silicon film containing an impurity element imparting n-type conductivity.
- the third semiconductor film 606 c is formed by a plasma CVD method with the use of a semiconductor source gas containing an impurity element belonging to Group 15 (e.g., phosphorus (P)).
- a semiconductor source gas containing an impurity element belonging to Group 15 (e.g., phosphorus (P)
- the semiconductor source gas silane (SiH 4 ) may be used.
- Si 2 H 6 , SiH 2 Cl 2 , SiHCl 3 , SiCl 4 , SiF 4 , or the like may be used.
- an amorphous silicon film which does not contain an impurity element may be formed, and then an impurity element may be introduced into the amorphous silicon film by a diffusion method or an ion implantation method. Heating or the like may be conducted after introducing the impurity element by an ion implantation method or the like in order to diffuse the impurity element.
- a method of forming the amorphous silicon film an LPCVD method, a vapor deposition method, a sputtering method, or the like may be used as a method of forming the amorphous silicon film.
- the third semiconductor film 606 c is preferably formed to have a thickness greater than or equal to 20 nm and less than or equal to 200 nm.
- the first semiconductor film 606 a , the second semiconductor film 606 b , and the third semiconductor film 606 c are not necessarily formed using an amorphous semiconductor, and may be formed using a polycrystalline semiconductor or a microcrystalline semiconductor (semi-amorphous semiconductor: SAS).
- the microcrystalline semiconductor belongs to a metastable state of an intermediate between amorphous and single crystalline when Gibbs free energy is considered. That is, the microcrystalline semiconductor is a semiconductor having a third state which is thermodynamically stable and has a short range order and lattice distortion. Columnar-like or needle-like crystals grow in a normal direction with respect to a substrate surface.
- the Raman spectrum of microcrystalline silicon which is a typical example of a microcrystalline semiconductor, is located in lower wavenumbers than 520 cm ⁇ 1 , which represents a peak of the Raman spectrum of single crystal silicon. That is, the peak of the Raman spectrum of microcrystalline silicon exists between 520 cm ⁇ 1 which represents single crystal silicon and 480 cm ⁇ 1 which represents amorphous silicon.
- microcrystalline silicon contains at least 1 at. % or more of hydrogen or halogen in order to terminate a dangling bond.
- microcrystalline silicon contains a rare gas element such as helium, argon, krypton, or neon to further promote lattice distortion, so that stability is increased and a favorable microcrystalline semiconductor film can be obtained.
- This microcrystalline semiconductor film can be formed by a high-frequency plasma CVD method with a frequency of several tens of megahertz to several hundreds of megahertz or using a microwave plasma CVD apparatus with a frequency of 1 GHz or higher.
- the microcrystalline semiconductor film can be typically formed using a dilution of silicon hydride such as SiH 4 , Si 2 H 6 , SiH 2 Cl 2 , or SiHCl 3 with hydrogen. With a dilution of a silicon hydride with one or plural kinds of rare gas elements selected from helium, argon, krypton, and neon in addition to hydrogen, the microcrystalline semiconductor film can be formed.
- the flow ratio of hydrogen to silicon hydride is greater than or equal to 5:1 and less than or equal to 200:1, preferably greater than or equal to 50:1 and less than or equal to 150:1, further preferably 100:1.
- a hydrocarbon gas such as CH 4 or C 2 H 6
- a germanium gas such as GeH 4 or GeF 4 , F 2 , or the like may be mixed into the gas containing silicon.
- a pin photodiode has better characteristics when a surface on the p-type semiconductor film side is used as a light-receiving plane.
- a surface on the p-type semiconductor film side is used as a light-receiving plane.
- Light from the semiconductor film having a conductivity type opposite to that of the semiconductor film on the light-receiving plane is disturbance light; therefore, the electrode is preferably formed using a light-blocking conductive film.
- the n-type semiconductor film side may alternatively be a light-receiving plane.
- the insulating layer 632 , the interlayer insulating film 633 , and the interlayer insulating film 634 can be formed, depending on the material, using a method such as a sputtering method, a plasma CVD method, an SOG method, spin coating, dipping, spray coating, a droplet discharge method (such as an inkjet method), screen printing, or offset printing.
- a method such as a sputtering method, a plasma CVD method, an SOG method, spin coating, dipping, spray coating, a droplet discharge method (such as an inkjet method), screen printing, or offset printing.
- an aluminum oxide film is used as the insulating layer 631 .
- the insulating layer 631 can be formed by a sputtering method or a plasma CVD method.
- the aluminum oxide film provided as the insulating layer 631 over the amorphous oxide semiconductor layer has a high blocking effect and thus is less likely to transmit both oxygen and impurities such as hydrogen and moisture.
- the aluminum oxide film functions as a protective film that prevents entry of impurities such as hydrogen and moisture, which can cause variation, into the amorphous oxide semiconductor layer and release of oxygen from the amorphous oxide semiconductor layer during and after the manufacturing process.
- the transistor 640 includes a highly purified amorphous oxide semiconductor layer in which an oxygen-excess region is provided for suppression of formation of an oxygen vacancy.
- the transistor 640 includes a silicon oxide film as a gate insulating layer.
- the amorphous oxide semiconductor layer included in the transistor 640 is obtained in such a manner that a region containing oxygen in a proportion higher than that in the stoichiometric composition is formed by oxygen implantation treatment, and thermal treatment is performed after the implantation in a state where the aluminum oxide film is provided as the insulating layer 631 over the amorphous oxide semiconductor layer; therefore, oxygen can be prevented from being released from the amorphous oxide semiconductor layer by the thermal treatment.
- the obtained amorphous oxide semiconductor layer can be a film which includes a region containing oxygen in a proportion higher than that in the stoichiometric composition.
- the amorphous oxide semiconductor layer included in the transistor 640 is a highly purified film which is dehydrated or dehydrogenated by thermal treatment performed after formation of the amorphous oxide semiconductor layer. Accordingly, by using the amorphous oxide semiconductor layer for the transistor 640 , it is possible to reduce variation in the threshold voltage V th of the transistor due to an oxygen vacancy and suppress a shift of the threshold voltage.
- the insulating layer 632 can be formed using an inorganic insulating material and can have a single-layer or stacked structure including any of oxide insulating films such as a silicon oxide layer, a silicon oxynitride layer, an aluminum oxide layer, and an aluminum oxynitride layer; and nitride insulating films such as a silicon nitride layer, a silicon nitride oxide layer, an aluminum nitride layer, and an aluminum nitride oxide layer.
- oxide insulating films such as a silicon oxide layer, a silicon oxynitride layer, an aluminum oxide layer, and an aluminum oxynitride layer
- nitride insulating films such as a silicon nitride layer, a silicon nitride oxide layer, an aluminum nitride layer, and an aluminum nitride oxide layer.
- an insulating layer functioning as a planarizing insulating layer is preferably used as each of the interlayer insulating films 633 and 634 .
- an organic insulating material having heat resistance such as a polyimide, an acrylic resin, a benzocyclobutene-based resin, a polyamide, or an epoxy resin, can be used.
- organic insulating materials it is possible to use a single layer or stacked layers of any of low-dielectric constant materials (low-k material) such as a siloxane-based resin, phosphosilicate glass (PSG), and borophosphosilicate glass (BPSG).
- a light source such as a backlight can be used at the time of reading information on an object to be detected.
- a transistor which includes a highly purified amorphous oxide semiconductor layer containing excess oxygen that compensates an oxygen vacancy has less variation in electric characteristics and is electrically stable.
- a highly reliable semiconductor device can be provided.
- a semiconductor device disclosed in this specification can be applied to a variety of electronic appliances (including a game machine).
- electronic appliances are a television device (also referred to as a television or a television receiver), a monitor of a computer or the like, a camera such as a digital camera or a digital video camera, a digital photo frame, a mobile phone (also referred to as a cellular phone or a mobile phone device), a portable game machine, a personal digital assistant, an audio reproducing device, and a large-sized game machine such as a pachinko machine.
- Examples of electronic appliances each including the semiconductor device described in any of the above embodiments will be described.
- FIG. 14A illustrates a laptop personal computer which includes a main body 3001 , a housing 3002 , a display portion 3003 , a keyboard 3004 , and the like.
- the semiconductor device described in any of the above embodiments is applied to the display portion 3003 , whereby the laptop personal computer can be highly reliable.
- FIG. 14B illustrates a personal digital assistant (PDA) which includes a main body 3021 provided with a display portion 3023 , an external interface 3025 , an operation button 3024 , and the like.
- a stylus 3022 is provided as an accessory for operation.
- the semiconductor device described in any of the above embodiments is applied to the display portion 3023 , whereby the personal digital assistant (PDA) can be highly reliable.
- FIG. 14C illustrates an example of an e-book reader.
- the e-book reader includes two housings, a housing 2701 and a housing 2703 .
- the housing 2701 and the housing 2703 are combined with a hinge 2711 so that the e-book reader can be opened and closed using the hinge 2711 as an axis.
- the e-book reader can operate like a paper book.
- a display portion 2705 and a display portion 2707 are incorporated in the housing 2701 and the housing 2703 , respectively.
- the display portion 2705 and the display portion 2707 may display one image or different images.
- text can be displayed on the right display portion (the display portion 2705 in FIG. 14C ) and graphics can be displayed on the left display portion (the display portion 2707 in FIG. 14C ).
- the semiconductor device described in any of the above embodiments is applied to the display portion 2705 and the display portion 2707 , whereby the e-book reader can be highly reliable.
- the e-book reader may be used in a comparatively bright environment; therefore, a solar cell may be provided so that power generation by the solar cell and charge by a battery can be performed.
- a lithium ion battery is used as the battery, there are advantages of downsizing and the like.
- FIG. 14C illustrates an example in which the housing 2701 is provided with an operation portion and the like.
- the housing 2701 is provided with a power switch 2721 , an operation key 2723 , and a speaker 2725 .
- the operation key 2723 pages can be turned.
- a keyboard, a pointing device, or the like may also be provided on the surface of the housing, on which the display portion is provided.
- an external connection terminal such as an earphone terminal or a USB terminal
- a recording medium insertion portion, or the like may be provided on the back surface or the side surface of the housing.
- the e-book reader may have a function of an electronic dictionary.
- the e-book reader may transmit and receive data wirelessly. Through wireless communication, desired book data or the like can be purchased and downloaded from an e-book server.
- FIG. 14D illustrates a mobile phone which includes two housings, a housing 2800 and a housing 2801 .
- the housing 2801 includes a display panel 2802 , a speaker 2803 , a microphone 2804 , a pointing device 2806 , a camera lens 2807 , an external connection terminal 2808 , and the like.
- the housing 2800 includes a solar cell 2810 having a function of charge of the portable information terminal, an external memory slot 2811 , and the like.
- an antenna is incorporated in the housing 2801 .
- the semiconductor device described in any of the above embodiments is applied to the display panel 2802 , whereby the mobile phone can be highly reliable.
- the display panel 2802 is provided with a touch panel.
- a plurality of operation keys 2805 displayed as images is illustrated by dashed lines in FIG. 14D . Note that a boosting circuit by which voltage output from the solar cell 2810 is increased to be sufficiently high for each circuit is also provided.
- the display direction can be appropriately changed depending on a usage pattern.
- the mobile phone is provided with the camera lens 2807 on the same surface as the display panel 2802 , and thus it can be used as a video phone.
- the speaker 2803 and the microphone 2804 can be used for videophone calls, recording and playing sound, and the like as well as voice calls.
- the housings 2800 and 2801 in a state where they are developed as illustrated in FIG. 14D can shift by sliding so that one is lapped over the other; therefore, the size of the mobile phone can be reduced, which makes the mobile phone suitable for being carried.
- the external connection terminal 2808 can be connected to an AC adapter and various types of cables such as a USB cable, and charge and data communication with a personal computer or the like are possible. Moreover, a large amount of data can be stored by inserting a storage medium into the external memory slot 2811 and can be moved.
- an infrared communication function may be provided.
- FIG. 14E illustrates a digital video camera which includes a main body 3051 , a display portion A 3057 , an eyepiece portion 3053 , an operation switch 3054 , a display portion B 3055 , a battery 3056 , and the like.
- the semiconductor device described in any of the above embodiments is applied to the display portion A 3057 and the display portion B 3055 , whereby the digital video camera can be highly reliable.
- FIG. 14F illustrates an example of a television device.
- a display portion 9603 is incorporated in a housing 9601 .
- the display portion 9603 can display images.
- the housing 9601 is supported by a stand 9605 .
- the semiconductor device described in any of the above embodiments is applied to the display portion 9603 , whereby the television device can be highly reliable.
- the television device can be operated by an operation switch of the housing 9601 or a separate remote controller. Further, the remote controller may be provided with a display portion for displaying data output from the remote controller.
- the television device is provided with a receiver, a modem, and the like. With the use of the receiver, general television broadcasting can be received. Moreover, when the television device is connected to a communication network with or without wires via the modem, one-way (from a sender to a receiver) or two-way (between a sender and a receiver or between receivers) data communication can be performed.
- FIGS. 15 A 1 , 15 A 2 , 15 B 1 , and 15 B 2 properties of an aluminum oxide film used as a barrier film in a semiconductor device according to one embodiment of the invention disclosed herein were evaluated. The results are shown in FIGS. 15 A 1 , 15 A 2 , 15 B 1 , and 15 B 2 , FIGS. 16 A 1 , 16 A 2 , 16 B 1 , and 16 B 2 , FIGS. 17A to 17D , and FIGS. 18A to 18D .
- SIMS secondary ion mass spectrometry
- TDS thermal desorption spectrometry
- a comparative sample A was fabricated in such a manner that a silicon oxide film was formed to a thickness of 100 nm over a glass substrate by a sputtering method.
- An example sample A was fabricated in such a manner that a silicon oxide film was formed to a thickness of 100 nm over a glass substrate by a sputtering method, and an aluminum oxide film was formed to a thickness of 100 nm over the silicon oxide film by a sputtering method.
- the silicon oxide film was formed under the following conditions: a silicon oxide (SiO 2 ) target was used as a target, the distance between the glass substrate and the target was 60 mm, the pressure was 0.4 Pa, the power of the power source was 1.5 kW, the atmosphere was an oxygen atmosphere (the oxygen flow rate was 50 sccm), and the substrate temperature was 100° C.
- a silicon oxide (SiO 2 ) target was used as a target
- the distance between the glass substrate and the target was 60 mm
- the pressure was 0.4 Pa
- the power of the power source was 1.5 kW
- the atmosphere was an oxygen atmosphere (the oxygen flow rate was 50 sccm)
- the substrate temperature was 100° C.
- the aluminum oxide film was formed under the following conditions: an aluminum oxide (Al 2 O 3 ) target was used as a target, the distance between the glass substrate and the target was 60 mm, the pressure was 0.4 Pa, the power of the power source was 1.5 kW, the atmosphere was a mixed atmosphere containing argon and oxygen (the argon flow rate was 25 sccm and the oxygen flow rate was 25 sccm), and the substrate temperature was 250° C.
- Al 2 O 3 aluminum oxide
- the distance between the glass substrate and the target was 60 mm
- the pressure was 0.4 Pa
- the power of the power source was 1.5 kW
- the atmosphere was a mixed atmosphere containing argon and oxygen (the argon flow rate was 25 sccm and the oxygen flow rate was 25 sccm)
- the substrate temperature was 250° C.
- the comparative sample A and the example sample A were each subjected to a pressure cooker test (PCT).
- PCT pressure cooker test
- SIMS substrate side depth profile
- FIG. 15 A 1 shows H-atom and D-atom concentration profiles of the comparative sample A before the PCT
- FIG. 15 A 2 shows H-atom and D-atom concentration profiles of the comparative sample A after the PCT, which were obtained using SIMS analysis.
- an expected D-atom concentration (D expected) profile is a calculated concentration profile of the D atom, which was obtained using the H-atom concentration profile on the assumption that the abundance ratio of the D atom thereto is 0.015%. Therefore, the amount of the D atom absorbed in the sample by the PCT equals the difference between the measured D-atom concentration (D profile) and the expected D-atom concentration (D expected).
- FIG. 15 B 1 shows a D-atom concentration profile before the PCT, which was obtained by subtracting the expected D-atom concentration from the measured D-atom concentration
- FIG. 15 B 2 shows a D-atom concentration profile after the PCT, which was obtained by subtracting the expected D-atom concentration from the measured D-atom concentration.
- FIG. 16 A 1 shows H-atom and D-atom concentration profiles of the example sample A before the PCT, which was obtained by SIMS
- FIG. 16 A 2 shows H-atom and D-atom concentration profiles of the example sample A after the PCT, which was obtained by SIMS
- FIG. 16 B 1 shows a D-atom concentration profile before the PCT, which was obtained by subtracting the expected D-atom concentration from the measured D-atom concentration
- FIG. 16 B 2 shows a D-atom concentration profile after the PCT, which was obtained by subtracting the expected D-atom concentration from the measured D-atom concentration.
- the measured D-atom concentration profile overlaps with the expected D-atom concentration profile before the PCT, the measured D-atom concentration greatly increases after the PCT; accordingly, it is found that the D atom was absorbed into the silicon oxide film. Therefore, it is confirmed that the silicon oxide film of the comparative sample has a low bather property with respect to moisture (H 2 O and D 2 O) from the outside.
- an example sample B was fabricated in such a manner that a silicon oxide film was formed to a thickness of 100 nm over a glass substrate by a sputtering method, and an aluminum oxide film was formed to a thickness of 20 nm over the silicon oxide film by a sputtering method.
- a comparative sample B was fabricated in such a manner that after the example sample B was measured by TDS analysis, the aluminum oxide film thereof was removed, and only the silicon oxide film was left over the glass substrate.
- the silicon oxide film was formed under the following conditions: a silicon oxide (SiO 2 ) target was used as a target, the distance between the glass substrate and the target was 60 mm, the pressure was 0.4 Pa, the power of the power source was 1.5 kW, the atmosphere was an oxygen atmosphere (the oxygen flow rate was 50 sccm), and the substrate temperature was 100° C.
- a silicon oxide (SiO 2 ) target was used as a target
- the distance between the glass substrate and the target was 60 mm
- the pressure was 0.4 Pa
- the power of the power source was 1.5 kW
- the atmosphere was an oxygen atmosphere (the oxygen flow rate was 50 sccm)
- the substrate temperature was 100° C.
- the aluminum oxide film was formed under the following conditions: an aluminum oxide (Al 2 O 3 ) target was used as a target, the distance between the glass substrate and the target was 60 mm, the pressure was 0.4 Pa, the power of the power source was 1.5 kW, the atmosphere was a mixed atmosphere containing argon and oxygen (the argon flow rate was 25 sccm and the oxygen flow rate was 25 sccm), and the substrate temperature was 250° C.
- Al 2 O 3 aluminum oxide
- the distance between the glass substrate and the target was 60 mm
- the pressure was 0.4 Pa
- the power of the power source was 1.5 kW
- the atmosphere was a mixed atmosphere containing argon and oxygen (the argon flow rate was 25 sccm and the oxygen flow rate was 25 sccm)
- the substrate temperature was 250° C.
- FIG. 17B shows that of the comparative sample B subjected to thermal treatment at 300° C.
- FIG. 17C shows that of the comparative sample B subjected to thermal treatment at 450° C.
- FIG. 17D shows that of the comparative sample B subjected to thermal treatment at 600° C.
- FIG. 17B shows that of the comparative sample B subjected to thermal treatment at 300° C.
- FIG. 17C shows that of the comparative sample B subjected to thermal treatment at 450° C.
- FIG. 17D shows that of the comparative sample B subjected to thermal treatment at 600° C.
- FIG. 18B shows that of the example sample B subjected to thermal treatment at 300° C.
- FIG. 18C shows that of the example sample B subjected to thermal treatment at 450° C.
- FIG. 18D shows that of the example sample B subjected to thermal treatment at 600° C.
- FIGS. 17A to 17D it can be seen in FIG. 17A that oxygen was released from the silicon oxide film of the comparative sample B which was not subjected to thermal treatment. However, the amount of oxygen released was greatly decreased in the comparative sample B subjected to the thermal treatment at 300° C. as shown in FIG. 17B . Furthermore, the amount of the released oxygen was smaller than or equal to a background level of TDS measurement in the case of comparative samples B subjected to the thermal treatment at 450° C. and 600° C. as shown in FIGS. 17C and 17D , respectively.
- FIGS. 17A to 17D indicate that 90% or more of excess oxygen contained in the silicon oxide film was released outside the silicon oxide film by the thermal treatment at 300° C. and that substantially all of the excess oxygen contained in the silicon oxide film was released outside the silicon oxide film by the thermal treatment at 450° C. and 600° C. Therefore, it is confirmed that the silicon oxide film has a low bather property with respect to oxygen.
- FIGS. 18A to 18D indicate that when the aluminum oxide film was formed over the silicon oxide film, the excess oxygen contained in the silicon oxide film was not easily released to the outside by thermal treatment and the state where the excess oxygen was contained in the silicon oxide film was held to a considerable extent. Therefore, it is confirmed that the aluminum oxide film has a high barrier property with respect to oxygen.
- the aluminum oxide film has both a high barrier property with respect to hydrogen and moisture and a high barrier property with respect to oxygen, and functions suitably as a barrier film with respect to hydrogen, moisture, and oxygen.
- the aluminum oxide film can function as a protective film that prevents entry of impurities such as hydrogen and moisture, which can cause variation, into an amorphous oxide semiconductor layer and release of oxygen from the amorphous oxide semiconductor layer during and after the manufacturing process of a transistor including the amorphous oxide semiconductor layer.
- the amorphous oxide semiconductor layer has high purity because impurities such as hydrogen and moisture do not enter the amorphous oxide semiconductor layer, and includes a region containing oxygen in a proportion higher than that in the stoichiometric composition of the amorphous oxide semiconductor layer in a crystalline state because oxygen is prevented from being released. Accordingly, by using the amorphous oxide semiconductor layer for a transistor, it is possible to reduce variation in the threshold voltage V th of the transistor due to an oxygen vacancy and suppress a shift of the threshold voltage.
- An example sample C1 was fabricated as a sample as follows: a 300-nm-thick silicon oxide film was formed over a glass substrate by a sputtering method, a 100-nm-thick In—Ga—Zn—O film was formed over the silicon oxide film by a sputtering method, and a 100-nm-thick aluminum oxide film was formed over the In—Ga—Zn—O film by a sputtering method.
- the silicon oxide film was formed under the following conditions: a silicon oxide (SiO 2 ) target was used as a target, the distance between the glass substrate and the target was 60 mm, the pressure was 0.4 Pa, the power of the RF power source was 1.5 kW, the atmosphere was a mixed atmosphere containing argon and oxygen (the argon flow rate was 25 sccm and the oxygen flow rate was 25 sccm), and the substrate temperature was 100° C.
- a silicon oxide (SiO 2 ) target was used as a target
- the distance between the glass substrate and the target was 60 mm
- the pressure was 0.4 Pa
- the power of the RF power source was 1.5 kW
- the atmosphere was a mixed atmosphere containing argon and oxygen (the argon flow rate was 25 sccm and the oxygen flow rate was 25 sccm)
- the substrate temperature was 100° C.
- the silicon oxide film and the In—Ga—Zn—O film were successively formed without exposure to the air, and then thermal treatment (first thermal treatment) was performed thereon at 400° C. for 30 minutes in a reduced pressure atmosphere.
- the aluminum oxide film was formed under the following conditions: an aluminum oxide (Al 2 O 3 ) target was used as a target, the distance between the glass substrate and the target was 60 mm, the pressure was 0.4 Pa, the power of the RF power source was 2.5 kW, the atmosphere was a mixed atmosphere containing argon and oxygen (the argon flow rate was 25 sccm and the oxygen flow rate was 25 sccm), and the substrate temperature was 250° C.
- Al 2 O 3 aluminum oxide
- the distance between the glass substrate and the target was 60 mm
- the pressure was 0.4 Pa
- the power of the RF power source was 2.5 kW
- the atmosphere was a mixed atmosphere containing argon and oxygen (the argon flow rate was 25 sccm and the oxygen flow rate was 25 sccm)
- the substrate temperature was 250° C.
- an example sample C2 was fabricated by implanting oxygen into the In—Ga—Zn—O film through the aluminum oxide film of the example sample C1.
- an oxygen ( 18 O) ion was implanted into the In—Ga—Zn—O film through the aluminum oxide film by an ion implantation method.
- the oxygen ( 18 O) ion was implanted under conditions of an acceleration voltage of 80 kV and a dose of 1.0 ⁇ 10 16 ions/cm 2 .
- an example sample C3 was fabricated by performing thermal treatment (second thermal treatment) on the example sample C2 at 450° C. for 1 hour in a nitrogen atmosphere.
- FIGS. 19A to 19C are TEM images of the example samples C1 to C3, respectively.
- FIG. 19A is a TEM image at 8 million-fold magnification of the interface between the In—Ga—Zn—O film and the aluminum oxide film of the example sample C1.
- FIG. 19B is a TEM image at 8 million-fold magnification of the interface between the In—Ga—Zn—O film and the aluminum oxide film of the example sample C2.
- FIG. 19C is a TEM image at 8 million-fold magnification of the interface between the In—Ga—Zn—O film and the aluminum oxide film of the example sample C3.
- a lattice image can be observed in the In—Ga—Zn—O film in FIG. 19A , which indicates that the example sample C1 includes a crystalline region.
- oxygen implantation on an oxide semiconductor layer including a crystalline region transforms the crystalline region into an amorphous state, and subsequent thermal treatment at a temperature lower than or equal to 450° C. allows the amorphous state to be maintained.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thin Film Transistor (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Liquid Crystal (AREA)
Abstract
A highly reliable semiconductor device which is formed using an oxide semiconductor and has stable electric characteristics is provided. A semiconductor device which includes an amorphous oxide semiconductor layer including a region containing oxygen in a proportion higher than that in the stoichiometric composition, and an aluminum oxide film provided over the amorphous oxide semiconductor layer is provided. The amorphous oxide semiconductor layer is formed as follows: oxygen implantation treatment is performed on a crystalline or amorphous oxide semiconductor layer which has been subjected to dehydration or dehydrogenation treatment, and then thermal treatment is performed on the oxide semiconductor layer provided with an aluminum oxide film at a temperature lower than or equal to 450° C.
Description
- 1. Field of the Invention
- The present invention relates to a semiconductor device and a method of manufacturing the semiconductor device.
- It is to be noted that the semiconductor device in this specification refers to all devices that can function by utilizing semiconductor characteristics, and electro-optic devices, semiconductor circuits, and electronic appliances are all semiconductor devices.
- 2. Description of the Related Art
- Attention has been focused on a technique for forming a transistor (also referred to as a thin film transistor (TFT)) with the use of a semiconductor thin film formed over a substrate having an insulating surface. Such a transistor is applied to a wide range of electronic devices such as an integrated circuit (IC) or an image display device (display device). A silicon-based semiconductor material is widely known as a material for a semiconductor thin film applicable to a transistor. As another material, an oxide semiconductor material has been attracting attention.
- For example, a transistor whose active layer is formed using an amorphous oxide containing indium (In), gallium (Ga), and zinc (Zn) and having an electron carrier concentration lower than 1018/cm3 is disclosed (see Patent Document 1).
-
- [Patent Document 1] Japanese Published Patent Application No. 2006-165528
- However, the electric conductivity of a semiconductor device including an oxide semiconductor changes when hydrogen or moisture forming an electron donor contaminates the oxide semiconductor in a process of forming a thin film of the oxide semiconductor. The electric conductivity might also change when the formed oxide semiconductor thin film includes an oxygen vacancy. Such a phenomenon causes variation in the electric characteristics of a transistor formed using the oxide semiconductor.
- In view of the above problem, an object is to provide a highly reliable semiconductor device which is formed using an oxide semiconductor and has stable electric characteristics.
- A semiconductor device according to one embodiment of the invention disclosed herein includes an amorphous oxide semiconductor layer including a region containing oxygen in a proportion higher than that in the stoichiometric composition (that is, stoichiometrically excessive oxygen), and an aluminum oxide film provided over the amorphous oxide semiconductor layer. The amorphous oxide semiconductor layer is formed as follows: oxygen implantation treatment is performed on a crystalline or amorphous oxide semiconductor layer which has been subjected to dehydration or dehydrogenation treatment, and then thermal treatment is performed on the oxide semiconductor layer provided with an aluminum oxide film at a temperature which allows the amorphous state to be maintained. The temperature of the thermal treatment is lower than or equal to 450° C. Specifically, the following structure can be employed for example.
- One embodiment of the present invention is a semiconductor device which includes an amorphous oxide semiconductor layer including a region containing oxygen in a proportion higher than that in a stoichiometric composition, a source electrode and a drain electrode that are electrically connected to the amorphous oxide semiconductor layer, a gate electrode overlapping with the amorphous oxide semiconductor layer, a gate insulating layer provided between the amorphous oxide semiconductor layer and the gate electrode, and an aluminum oxide film provided over the amorphous oxide semiconductor layer.
- Another embodiment of the present invention is a semiconductor device which includes an amorphous oxide semiconductor layer including a region containing oxygen in a proportion higher than that in a stoichiometric composition, a source electrode and a drain electrode that are electrically connected to the amorphous oxide semiconductor layer, a gate insulating layer provided over the amorphous oxide semiconductor layer so as to cover the source electrode and the drain electrode, a gate electrode provided over the gate insulating layer so as to overlap with the amorphous oxide semiconductor layer, and an aluminum oxide film provided over and in contact with the gate electrode.
- Another embodiment of the present invention is a semiconductor device which includes a gate electrode, a gate insulating layer provided over the gate electrode, an amorphous oxide semiconductor layer that is provided over the gate insulating layer so as to overlap with the gate electrode and includes a region containing oxygen in a proportion higher than that in a stoichiometric composition, a source electrode and a drain electrode that are electrically connected to the amorphous oxide semiconductor layer, and an aluminum oxide film provided over the amorphous oxide semiconductor layer so as to be in contact with at least part of the amorphous oxide semiconductor layer.
- In any one of the above semiconductor devices, the gate insulating layer preferably includes a region containing oxygen in a proportion higher than that in a stoichiometric composition.
- In any one of the above semiconductor devices, it is preferable that an oxide insulating film be further provided between the aluminum oxide film and the amorphous oxide semiconductor layer and that the oxide insulating film include a region containing oxygen in a proportion higher than that in a stoichiometric composition.
- Note that the term “over” in this specification and the like does not necessarily mean that a component is placed “directly on” another component. For example, the expression “a gate electrode over a gate insulating layer” does not exclude the case where a component is placed between the gate insulating layer and the gate electrode. The same applies to the term “below”.
- In this specification and the like, the term “electrode” or “wiring” does not limit the function of a component. For example, an “electrode” is sometimes used as part of a “wiring”, and vice versa. In addition, the term “electrode” or “wiring” can also mean a combination of a plurality of “electrodes” or “wirings”, for example.
- Oxygen implantation is performed so that excess oxygen is contained in an amorphous oxide semiconductor layer, and thermal treatment is performed in a state where an aluminum oxide film is provided over the amorphous oxide semiconductor layer in order to prevent the oxygen in the amorphous oxide semiconductor layer from being released, whereby it is possible to prevent generation or increase of defects in the amorphous oxide semiconductor and at interfaces between the amorphous oxide semiconductor and layers which are over/under and in contact with the amorphous oxide semiconductor. That is, the excess oxygen contained in the amorphous oxide semiconductor layer acts to fill an oxygen-vacancy defect, so that a highly reliable semiconductor device having stable electric characteristics can be provided.
- In the accompanying drawings:
-
FIGS. 1A to 1C are a plan view and cross-sectional views which illustrate one embodiment of a semiconductor device; -
FIGS. 2A to 2C are a plan view and cross-sectional views which illustrate one embodiment of a semiconductor device; -
FIGS. 3A to 3D are cross-sectional views which illustrate one embodiment of a method of manufacturing a semiconductor device; -
FIGS. 4A to 4D are cross-sectional views which illustrate one embodiment of a method of manufacturing a semiconductor device; -
FIGS. 5A to 5C are a plan view and cross-sectional views which illustrate one embodiment of a semiconductor device; -
FIGS. 6A to 6C are a plan view and cross-sectional views which illustrate one embodiment of a semiconductor device; -
FIGS. 7A to 7D are cross-sectional views which illustrate one embodiment of a method of manufacturing a semiconductor device; -
FIGS. 8A to 8D are cross-sectional views which illustrate one embodiment of a method of manufacturing a semiconductor device; -
FIGS. 9A to 9C each illustrate one embodiment of a semiconductor device; -
FIG. 10 illustrates one embodiment of a semiconductor device; -
FIG. 11 illustrates one embodiment of a semiconductor device; -
FIG. 12 illustrates one embodiment of a semiconductor device; -
FIGS. 13A and 13B illustrate one embodiment of a semiconductor device; -
FIGS. 14A to 14F illustrate electronic appliances; - FIGS. 15A1, 15A2, 15B1, and 15B2 show results of SIMS measurement performed on a sample fabricated in Example 1;
- FIGS. 16A1, 16A2, 16B1, and 16B2 show results of SIMS measurement performed on a sample fabricated in Example 1;
-
FIGS. 17A to 17D show results of TDS measurement performed on samples fabricated in Example 1; -
FIGS. 18A to 18D show results of TDS measurement performed on samples fabricated in Example 1; and -
FIGS. 19A to 19C are TEM images of samples fabricated in Example 2. - Hereinafter, embodiments and examples of the invention disclosed in this specification will be described in detail with reference to the accompanying drawings. Note that the invention disclosed in this specification is not limited to the following description, and it is easily understood by those skilled in the art that modes and details of the invention can be modified in various ways. Therefore, the invention disclosed in this specification is not limited to the description of the following embodiments and examples.
- Note that the ordinal numbers such as “first” and “second” in this specification and the like are used for convenience and do not denote the order of steps or the stacking order of layers. In addition, the ordinal numbers in this specification and the like do not denote particular names which specify the invention.
- In this embodiment, one embodiment of a semiconductor device and one embodiment of a method of manufacturing the semiconductor device will be described with reference to
FIGS. 1A to 1C ,FIGS. 2A to 2C , andFIGS. 3A to 3D . -
FIGS. 1A to 1C are a plan view and cross-sectional views which illustrate atop-gate transistor 510 as an example of a semiconductor device.FIG. 1A is a plan view of thetransistor 510, andFIGS. 1B and 1C are cross-sectional views along line A-B and line C-D inFIG. 1A , respectively. Note that inFIG. 1A , some components of the transistor 510 (e.g., a gate insulating layer 406) are not illustrated for brevity. - The
transistor 510 illustrated inFIGS. 1A to 1C includes, over asubstrate 400 having an insulating surface, abase insulating layer 402, an amorphousoxide semiconductor layer 404, asource electrode 405 a, adrain electrode 405 b, thegate insulating layer 406, agate electrode 410, and an insulatinglayer 412. - In the
transistor 510 illustrated inFIGS. 1A to 1C , the amorphousoxide semiconductor layer 404 includes a region containing oxygen in a proportion higher than that in the stoichiometric composition (hereinafter also referred to as an oxygen-excess region). In general, oxygen, which is one of main components of the amorphousoxide semiconductor layer 404, dynamically repeats bonding to and dissociation from metal elements that are other main components in the layer. A metal element from which oxygen is dissociated has a dangling bond; therefore, it is supposed that a certain number of oxygen vacancies caused by dissociation of oxygen exist in the amorphous oxide semiconductor layer. In the transistor according to one embodiment of the present invention, however, excess oxygen contained in the amorphousoxide semiconductor layer 404 can immediately compensate a defect (oxygen defect) due to an oxygen vacancy in the amorphousoxide semiconductor layer 404. Consequently, a highly reliable semiconductor device having stable electric characteristics can be provided. - The amorphous
oxide semiconductor layer 404 has an amorphous structure in whole. - In the
transistor 510, a layer including an aluminum oxide film is provided as the insulatinglayer 412. Since aluminum oxide has a barrier property and thus is less likely to transmit hydrogen, moisture, oxygen, and another impurity, entry of an impurity such as moisture from the outside after completion of the device can be prevented. Note that the insulatinglayer 412 includes at least an aluminum oxide film and may have a stacked structure including the aluminum oxide film and a film containing another inorganic insulating material. In the case where the insulatinglayer 412 has a stacked structure including the aluminum oxide film and a film containing another inorganic insulating material, it is preferable that the film containing another inorganic insulating material be positioned on the amorphousoxide semiconductor layer 404 side and be an oxide insulating film including an oxygen-excess region. For example, the insulatinglayer 412 can have a structure in which a silicon oxide film including an oxygen-excess region and the aluminum oxide film are stacked in this order from the amorphousoxide semiconductor layer 404 side. - It is preferable that the
gate insulating layer 406 include an oxygen-excess region for the following reason. When thegate insulating layer 406 includes an oxygen-excess region, oxygen can be prevented from moving from the amorphousoxide semiconductor layer 404 to thegate insulating layer 406, and oxygen can be supplied from thegate insulating layer 406 to the amorphousoxide semiconductor layer 404. It is preferable that thebase insulating layer 402 also include an oxygen-excess region. - An insulating layer may be further provided over the
transistor 510. Further, an opening may be formed in thegate insulating layer 406 or the like in order that thesource electrode 405 a or thedrain electrode 405 b may be electrically connected to a wiring. Note that the amorphousoxide semiconductor layer 404 is not necessarily processed into an island shape. -
FIGS. 2A to 2C illustrate another structure example of a transistor according to this embodiment.FIG. 2A is a plan view of atransistor 520, andFIGS. 2B and 2C are cross-sectional views along line E-F and line G-H inFIG. 2A , respectively. Note that inFIG. 2A , some components of the transistor 520 (e.g., the gate insulating layer 406) are omitted for brevity. - As in the case of the
transistor 510 illustrated inFIGS. 1A to 1C , thetransistor 520 illustrated inFIGS. 2A to 2C includes, over thesubstrate 400 having an insulating surface, thebase insulating layer 402, the amorphousoxide semiconductor layer 404, thesource electrode 405 a, thedrain electrode 405 b, thegate insulating layer 406, thegate electrode 410, and the insulatinglayer 412. - A difference between the
transistor 520 illustrated inFIGS. 2A to 2C and thetransistor 510 illustrated inFIGS. 1A to 1C is the stacking order of the source and drainelectrodes oxide semiconductor layer 404. That is, thetransistor 520 includes thesource electrode 405 a and thedrain electrode 405 b which are in contact with thebase insulating layer 402, and the amorphousoxide semiconductor layer 404 provided over thesource electrode 405 a and thedrain electrode 405 b. The other components are similar to those of thetransistor 510, and thus the description of thetransistor 510 can be referred to for the details. - An example of a manufacturing process of the
transistor 510 will be described below with reference toFIGS. 3A to 3D . Note that thetransistor 520 can be manufactured in a process similar to that of thetransistor 510 except for the stacking order of the source and drainelectrodes oxide semiconductor layer 404. - First, the
base insulating layer 402 is formed over thesubstrate 400 having an insulating surface. There is no particular limitation on a substrate that can be used as thesubstrate 400 having an insulating surface as long as it has heat resistance high enough to withstand thermal treatment performed later. For example, a glass substrate of barium borosilicate glass, aluminoborosilicate glass, or the like, a ceramic substrate, a quartz substrate, or a sapphire substrate can be used. A single crystal semiconductor substrate or a polycrystalline semiconductor substrate of silicon, silicon carbide, or the like; a compound semiconductor substrate of silicon germanium or the like; an SOI substrate; or the like can be used as thesubstrate 400. Alternatively, any of these substrates over which a semiconductor element is provided may be used as thesubstrate 400. - A flexible substrate may be used as the
substrate 400. In the case of using a flexible substrate, a transistor including an oxide semiconductor film may be directly formed over the flexible substrate, or a transistor including an oxide semiconductor film may be formed over a different manufacturing substrate and then separated to be transferred to the flexible substrate. Note that in order to separate the transistor from the manufacturing substrate and transfer it to the flexible substrate, a separation layer may be provided between the manufacturing substrate and the transistor including the oxide semiconductor film. - The
base insulating layer 402 can have a single-layer or stacked structure including one or more films selected from those containing silicon oxide, silicon nitride, silicon oxynitride, silicon nitride oxide, aluminum oxide, aluminum nitride, aluminum oxynitride, aluminum nitride oxide, hafnium oxide, gallium oxide, and a mixed material of any of these materials. When thebase insulating layer 402 is formed as a stacked structure including an oxide insulating film, it is preferred that the oxide insulating film be in contact with the amorphousoxide semiconductor layer 404 formed later. In this embodiment, a silicon oxide film is formed as thebase insulating layer 402 by a plasma CVD method, a sputtering method, or the like. - Further, the
base insulating layer 402 preferably includes an oxygen-excess region because an oxygen vacancy in the amorphousoxide semiconductor layer 404 can be compensated by excess oxygen contained in thebase insulating layer 402. In the case of having a stacked structure, thebase insulating layer 402 preferably includes an oxygen-excess region at least in a layer in contact with the amorphousoxide semiconductor layer 404. In order to provide the oxygen-excess region in thebase insulating layer 402, for example, thebase insulating layer 402 may be formed in an oxygen atmosphere. Alternatively, the oxygen-excess region may be formed by implanting oxygen (including at least one of an oxygen radical, an oxygen atom, and an oxygen ion) into thebase insulating layer 402 after its formation. Oxygen can be implanted by an ion implantation method, an ion doping method, a plasma immersion ion implantation method, plasma treatment, or the like. - Next, over the
base insulating layer 402, an amorphousoxide semiconductor layer 404 a having a thickness greater than or equal to 2 nm and less than or equal to 200 nm, preferably greater than or equal to 5 nm and less than or equal to 30 nm, is formed (seeFIG. 3A ). - A metal oxide material containing two or more kinds selected from In, Ga, Zn, and Sn may be used as an oxide semiconductor material. For example, a four-component metal oxide such as an In—Sn—Ga—Zn—O-based material; a three-component metal oxide such as an In—Ga—Zn—O-based material, an In—Sn—Zn—O-based material, an In—Al—Zn—O-based material, a Sn—Ga—Zn—O-based material, an Al—Ga—Zn—O-based material, a Sn—Al—Zn—O-based material, or a Hf—In—Zn—O-based material; a two-component metal oxide such as an In—Zn—O-based material, a Sn—Zn—O-based material, an Al—Zn—O-based material, a Zn—Mg—O-based material, a Sn—Mg—O-based material, an In—Mg—O-based material, or an In—Ga—O-based material; an In—O-based material; a Sn—O-based material; or a Zn—O-based material may be used. In addition, any of the above oxide semiconductors may contain an element other than In, Ga, Sn, and Zn, for example, SiO2.
- Here, for example, an In—Ga—Zn—O-based oxide semiconductor means an oxide semiconductor containing indium (In), gallium (Ga), and zinc (Zn) and there is no particular limitation on the composition ratio thereof.
- In addition, as the amorphous
oxide semiconductor layer 404 a, a thin film of a material represented by the chemical formula, InMO3(ZnO)m (m>0), can be used. Here, M represents one or more metal elements selected from Zn, Ga, Al, Mn, and Co. For example, M can be Ga, Ga and Al, Ga and Mn, or Ga and Co. - In the case where an In—Sn—Zn—O-based material is used as an oxide semiconductor, a target to be used may have a composition ratio of In:Sn:Zn=1:2:2, In:Sn:Zn=2:1:3, In:Sn:Zn=1:1:1, or the like in an atomic ratio.
- In the case where an In—Zn—O-based material is used as an oxide semiconductor, a target to be used has a composition ratio of In:Zn=50:1 to 1:2 in an atomic ratio (In2O3:ZnO=25:1 to 1:4 in a molar ratio), preferably In:Zn=20:1 to 1:1 in an atomic ratio (In2O3:ZnO=10:1 to 1:2 in a molar ratio), further preferably In:Zn=15:1 to 1.5:1 in an atomic ratio (In2O3:ZnO=15:2 to 3:4 in a molar ratio). For example, in a target used for formation of an In—Zn—O-based oxide semiconductor which has an atomic ratio of In:Zn:O=X:Y:Z, the relation of Z 1.5X+Y is satisfied.
- The amorphous
oxide semiconductor layer 404 a is preferably formed by a sputtering method. In addition, in the formation of the amorphousoxide semiconductor layer 404 a by a sputtering method, the concentration of hydrogen contained in the amorphousoxide semiconductor layer 404 a is preferably reduced as much as possible. In order to reduce the hydrogen concentration, a high-purity rare gas (typically argon), high-purity oxygen, or a high-purity mixed gas of a rare gas and oxygen, from which impurities such as hydrogen, water, a compound having a hydroxyl group, and a hydride are removed, is supplied into a treatment chamber of a sputtering apparatus as an atmosphere gas, as appropriate. Evacuation of the treatment chamber is preferably performed using a cryopump having a high capability in evacuating water or a sputter ion pump having a high capability in evacuating hydrogen. - It is preferable that the
base insulating layer 402 and the amorphousoxide semiconductor layer 404 a be successively formed without exposure to the air. For example, the following steps may be performed: impurities containing hydrogen attached to a surface of thesubstrate 400 are removed by thermal treatment or plasma treatment, and then thebase insulating layer 402 and the amorphousoxide semiconductor layer 404 a are successively formed in this order without exposure to the air. In this manner, impurities containing hydrogen attached to a surface of thebase insulating layer 402 can be reduced and an atmospheric component can be prevented from being attached to an interface between thesubstrate 400 and thebase insulating layer 402 and an interface between the baseinsulating layer 402 and the amorphousoxide semiconductor layer 404 a. As a result, it is possible to manufacture thetransistor 510 having favorable electric characteristics and high reliability. - Note that before the amorphous
oxide semiconductor layer 404 a is formed by a sputtering method, powder substances (also referred to as particles or dust) which are attached to the surface of thebase insulating layer 402 are preferably removed by reverse sputtering in which an argon gas is introduced and plasma is generated. The reverse sputtering is a method in which voltage is applied to a substrate side, not to a target side, in an argon atmosphere by using an RF power source and plasma is generated in the vicinity of the substrate to modify a surface. Note that instead of an argon atmosphere, a nitrogen atmosphere, a helium atmosphere, an oxygen atmosphere, or the like may be used. - Next, thermal treatment (first thermal treatment) is performed on the amorphous
oxide semiconductor layer 404 a in order to remove hydrogen (including water and a hydroxyl group) (dehydration or dehydrogenation). The thermal treatment is performed at a temperature at which the amorphousoxide semiconductor layer 404 a is not crystallized, typically, higher than or equal to 250° C. and lower than or equal to 450° C., preferably lower than or equal to 300° C. - Hydrogen, which is an n-type impurity, can be removed from the oxide semiconductor by the thermal treatment; thus, the oxide semiconductor can be highly purified so as to contain as few impurities as possible. For example, the concentration of hydrogen contained in the amorphous
oxide semiconductor layer 404 a after the dehydration or dehydrogenation treatment can be lower than or equal to 5×1019/cm3 or lower than or equal to 5×1018/cm3. - Note that the thermal treatment for dehydration or dehydrogenation is preferably performed before the amorphous
oxide semiconductor layer 404 a is processed into an island shape because oxygen contained in thebase insulating layer 402 can be prevented from being released by the thermal treatment. - Further, it is preferable that in the thermal treatment, water, hydrogen, and the like be not contained in nitrogen or a rare gas such as helium, neon, or argon. The purity of nitrogen or a rare gas such as helium, neon, or argon which is introduced into a thermal treatment apparatus is preferably higher than or equal to 6N (99.9999%), further preferably higher than or equal to 7N (99.99999%) (that is, the impurity concentration is preferably lower than or equal to 1 ppm, further preferably lower than or equal to 0.1 ppm).
- Next, the amorphous
oxide semiconductor layer 404 a is processed into the island-shaped amorphousoxide semiconductor layer 404 in a photolithography step. Note that a resist mask for forming the island-shaped amorphousoxide semiconductor layer 404 may be formed by an inkjet method. Formation of the resist mask by an inkjet method needs no photomask; thus, the manufacturing cost of the semiconductor device can be reduced. - Next, a conductive film which is to be a source electrode and a drain electrode (including a wiring formed in the same layer as the source electrode and the drain electrode) is formed over the amorphous
oxide semiconductor layer 404 and is processed, so that thesource electrode 405 a and thedrain electrode 405 b are formed (seeFIG. 3B ). - The conductive film used for the
source electrode 405 a and thedrain electrode 405 b is formed using a material that can withstand a thermal treatment step performed later. For example, a metal film containing an element selected from Al, Cr, Cu, Ta, Ti, Mo, and W, or a metal nitride film containing any of these elements as a component (titanium nitride film, molybdenum nitride film, or tungsten nitride film) can be used. Alternatively, a film of a high-melting-point metal such as Ti, Mo, or W or a metal nitride film of any of these elements (titanium nitride film, molybdenum nitride film, or tungsten nitride film) may be stacked on one or both of a bottom side and a top side of a metal film of Al, Cu, or the like. Further alternatively, the conductive film used for the source electrode and the drain electrode may be formed using a conductive metal oxide. As the conductive metal oxide, indium oxide (In2O3), tin oxide (SnO2), zinc oxide (ZnO), indium oxide-tin oxide (In2O3—SnO2, abbreviated to ITO), indium oxide-zinc oxide (In2O3—ZnO), or any of these metal oxide materials containing silicon oxide can be used. - Note that it is preferable that etching conditions be optimized so that the amorphous
oxide semiconductor layer 404 is not etched and divided when the conductive film is etched. However, it is difficult to obtain conditions under which only the conductive film is etched and the amorphousoxide semiconductor layer 404 is not etched at all. For that reason, in some cases, part of the amorphousoxide semiconductor layer 404 is etched to be an amorphous oxide semiconductor layer having a groove (depressed portion) when the conductive film is etched. - Next, the
gate insulating layer 406 which covers thesource electrode 405 a and thedrain electrode 405 b and is in contact with part of the amorphousoxide semiconductor layer 404 is formed. - The
gate insulating layer 406 is preferably formed by a plasma CVD method or a sputtering method, and can be formed as a silicon oxide film, a gallium oxide film, an aluminum oxide film, a silicon nitride film, a silicon oxynitride film, an aluminum oxynitride film, a silicon nitride oxide film, or the like. Alternatively, as a material for thegate insulating layer 406, a high-k material such as hafnium oxide, yttrium oxide, lanthanum oxide, hafnium silicate (HfSixOy (x>0, y>0)), hafnium aluminate (HfAlxOy (x>0, y>0)), hafnium silicate to which nitrogen is added, or hafnium aluminate to which nitrogen is added may be used. Use of such a high-k material enables a reduction in gate leakage current. Note that thegate insulating layer 406 may have either a single-layer structure or a stacked structure. - Note that the
gate insulating layer 406 preferably includes an oxygen-excess region because an oxygen vacancy in the amorphousoxide semiconductor layer 404 can be compensated by excess oxygen contained in thegate insulating layer 406. - Next,
oxygen 421 is implanted into the amorphousoxide semiconductor layer 404 from above thegate insulating layer 406, so that an oxygen-excess region is formed (seeFIG. 3C ). By the implantation treatment of theoxygen 421, oxygen in the amorphousoxide semiconductor layer 404, which is decreased in concentration through the above thermal treatment for dehydration or dehydrogenation, can be supplied. Thus, the amorphousoxide semiconductor layer 404 can be highly purified and become an electrically i-type (intrinsic) semiconductor. Further, formation of the oxygen-excess region in the amorphousoxide semiconductor layer 404 enables an oxygen vacancy to be compensated. Thus, charge trapping centers in the amorphousoxide semiconductor layer 404 can be reduced. - As a method of implanting the
oxygen 421, a method by which theoxygen 421 can be implanted into the inside or an interface of the amorphousoxide semiconductor layer 404 is employed. For example, an ion implantation method or an ion doping method can be used. In an ion implantation method, a source gas is made into plasma, ion species included in this plasma are extracted and mass-separated, and ion species with predetermined mass are accelerated and implanted into an object to be processed as an ion beam. In an ion doping method, a source gas is made into plasma, ion species are extracted from the plasma by application of a predetermined electric field, and the extracted ion species are accelerated without mass separation and implanted into an object to be processed as an ion beam. When the implantation of theoxygen 421 is performed by an ion implantation method involving mass separation, an impurity such as a metal element can be prevented from being added, together with theoxygen 421, to the amorphousoxide semiconductor layer 404. On the other hand, an ion doping method enables ion-beam irradiation to a larger area than an ion implantation method; therefore, when the implantation of theoxygen 421 is performed by an ion doping method, the takt time can be shortened. - Alternatively, as a method of implanting the
oxygen 421, a plasma immersion ion implantation method may be used. By a plasma immersion ion implantation method, theoxygen 421 can be implanted efficiently even when the amorphousoxide semiconductor layer 404 has an uneven shape. - In this embodiment, an example is shown in which the
oxygen 421 is implanted into the amorphousoxide semiconductor layer 404 through thegate insulating layer 406. Implantation of theoxygen 421 into the amorphousoxide semiconductor layer 404 through a film stacked over the amorphousoxide semiconductor layer 404 is advantageous in that the depth at which the oxygen is implanted (implantation region) can be controlled more easily, so that theoxygen 421 can be efficiently implanted into the amorphousoxide semiconductor layer 404. Note that an embodiment of the present invention is not limited to this manner; it is also possible to perform the implantation in a state where a surface of the amorphousoxide semiconductor layer 404 is exposed (i.e., before the conductive film which is to be thesource electrode 405 a and thedrain electrode 405 b is formed) or after the insulatinglayer 412 is formed. - The depth at which the
oxygen 421 is implanted may be controlled by appropriately setting an implantation condition such as acceleration voltage or a dose amount, or the thickness of thegate insulating layer 406 through which the oxygen passes. The oxygen implantation treatment is performed so that the amount of oxygen contained in the amorphousoxide semiconductor layer 404 exceeds that in the stoichiometric composition. For example, a peak of the concentration of oxygen in the amorphousoxide semiconductor layer 404, which is introduced by the oxygen implantation treatment, is preferably higher than or equal to 1×1018/cm3 and lower than or equal to 5×1021/cm3. Theoxygen 421 for implantation includes an oxygen radical, an oxygen atom, and/or an oxygen ion. Note that the oxygen-excess region may exist in part (including an interface) of the amorphousoxide semiconductor layer 404. - Oxygen is one of main components of an oxide semiconductor. Therefore, it is difficult to accurately estimate the oxygen concentration of an oxide semiconductor film by a method such as secondary ion mass spectrometry (SIMS). That is, it is difficult to determine whether oxygen is intentionally added to the amorphous oxide semiconductor layer.
- It is known that isotopes such as 17O and 18O exist in oxygen and that the proportions of 17O and 18O in all of the oxygen atoms in nature are 0.037% and 0.204%, respectively. That is to say, it is possible to measure the concentrations of these isotopes in the amorphous oxide semiconductor layer by a method such as SIMS; therefore, the oxygen concentration of the amorphous oxide semiconductor layer may be able to be estimated more accurately by measuring the concentration of such an isotope. Thus, the concentration of the isotope may be measured to determine whether oxygen is intentionally added to the amorphous oxide semiconductor layer.
- Part of the
oxygen 421 added to (contained in) the amorphousoxide semiconductor layer 404 may have a dangling bond in the oxide semiconductor. This is because such a dangling bond is bonded with hydrogen remaining in the layer so that hydrogen can be fixed (made to be an immovable ion). - Next, a conductive film which is to be a gate electrode (including a wiring formed in the same layer as the gate electrode) is formed over the
gate insulating layer 406 and is processed, so that thegate electrode 410 is formed. Thegate electrode 410 can be formed by a plasma CVD method, a sputtering method, or the like with the use of a metal material such as molybdenum, titanium, tantalum, tungsten, aluminum, copper, neodymium, or scandium, or an alloy material containing any of these materials as a main component. Alternatively, a semiconductor film typified by a polycrystalline silicon film doped with an impurity element such as phosphorus, or a silicide film such as a nickel silicide film may be used for thegate electrode 410. Thegate electrode 410 may have either a single-layer structure or a stacked structure. - Next, the insulating
layer 412 which covers thegate electrode 410 is formed (seeFIG. 3D ). A layer including an aluminum oxide film can be used as the insulatinglayer 412. That is, the insulatinglayer 412 contains aluminum oxide. An aluminum oxide film has a barrier property and thus is less likely to transmit moisture, oxygen, and another impurity. Therefore, by providing an aluminum oxide film over the amorphousoxide semiconductor layer 404, the aluminum oxide film functions as a passivation film and prevents an impurity such as moisture from entering the amorphousoxide semiconductor layer 404 from the outside after completion of the device. Moreover, release of oxygen from the amorphousoxide semiconductor layer 404 can be prevented. - Further, the insulating
layer 412 may have a stacked structure including the aluminum oxide film and an oxide insulating film (e.g., a silicon oxide film or a silicon oxynitride film) including an oxygen-excess region. - The insulating
layer 412 has a thickness of at least 1 nm and can be formed by a method by which impurities such as water and hydrogen do not enter the insulatinglayer 412, such as a sputtering method, as appropriate. When hydrogen is contained in the insulatinglayer 412, hydrogen may possibly enter the amorphousoxide semiconductor layer 404 or abstract oxygen in the amorphousoxide semiconductor layer 404. Therefore, it is important to employ a film formation method in which hydrogen is not used so that the insulatinglayer 412 does not contain hydrogen as much as possible. It is preferable that a high-purity gas from which impurities such as hydrogen, water, a compound having a hydroxyl group, and a hydride are removed be used as a sputtering gas for the formation of the insulatinglayer 412. - After the insulating
layer 412 is formed, thermal treatment (second thermal treatment) is performed. The thermal treatment is performed at a temperature at which the amorphousoxide semiconductor layer 404 is not crystallized, preferably higher than or equal to 250° C. and lower than or equal to 450° C. The thermal treatment may be performed in an atmosphere of nitrogen, oxygen, ultra-dry air (air in which the water content is less than or equal to 20 ppm, preferably less than or equal to 1 ppm, further preferably less than or equal to 10 ppb), or a rare gas (such as argon or helium). Note that it is preferable that water, hydrogen, and the like be not contained in the atmosphere of nitrogen, oxygen, ultra-dry air, a rare gas, or the like. The purity of nitrogen, oxygen, or a rare gas which is introduced into a thermal treatment apparatus is preferably higher than or equal to 6N (99.9999%), further preferably higher than or equal to 7N (99.99999%) (that is, the impurity concentration is preferably lower than or equal to 1 ppm, further preferably lower than or equal to 0.1 ppm). - Although the timing of the thermal treatment (second thermal treatment) performed after the oxygen implantation treatment is not limited to that in this embodiment, the thermal treatment needs to be performed at least after the insulating
layer 412 is formed. This is because, since the aluminum oxide film used as the insulatinglayer 412 has a high blocking effect and thus is less likely to transmit both oxygen and impurities such as hydrogen and moisture, release of oxygen from the amorphousoxide semiconductor layer 404 can be prevented by performing the thermal treatment after the insulatinglayer 412 is formed. - By the second thermal treatment, oxygen may be supplied to the amorphous
oxide semiconductor layer 404 from the insulating film (e.g., thegate insulating layer 406 or the base insulating layer 402) which contains oxygen and is in contact with the amorphousoxide semiconductor layer 404. - Through the above steps, the
transistor 510 is formed (seeFIG. 3D ). In the formation of thetransistor 510, by the thermal treatment for dehydration or dehydrogenation, impurities such as hydrogen, water, a hydroxyl group, and a hydride (also referred to as a hydrogen compound) can be intentionally removed from the amorphous oxide semiconductor layer; by the subsequent oxygen implantation treatment, oxygen, which is decreased in concentration through the thermal treatment for dehydration or dehydrogenation, can be supplied to the amorphous oxide semiconductor layer. Thus, the amorphous oxide semiconductor layer can be highly purified and become an electrically i-type (intrinsic) semiconductor. - Further, an oxygen-excess region is formed by the oxygen implantation treatment, whereby formation of an oxygen vacancy in the amorphous oxide semiconductor layer or at the interface thereof can be suppressed and the number of donor levels in the energy gap due to oxygen vacancies can be reduced or the donor levels can be substantially removed. Therefore, variation in the electric characteristics of the
transistor 510 is suppressed, and thetransistor 510 is electrically stable. The amorphous oxide semiconductor layer has an amorphous structure in whole, and thus has uniform film quality as compared with a partly crystallized oxide semiconductor layer. - According to this embodiment, a semiconductor device which includes an amorphous oxide semiconductor and has stable electric characteristics can be provided. Further, a highly reliable semiconductor device can be provided.
- The methods, structures, and the like described in this embodiment can be combined as appropriate with any of the methods, structures, and the like described in the other embodiments.
- In this embodiment, a method of manufacturing the
transistor 510, which is different from that in Embodiment 1, will be described with reference toFIGS. 4A to 4D . Note that the same portions as Embodiment 1 or portions having functions similar to those of Embodiment 1 can be formed as in Embodiment 1, and also the same steps as Embodiment 1 or steps similar to those of Embodiment 1 can be performed as in Embodiment 1; therefore, repetitive description thereof is omitted. In addition, detailed description of the same portions is not repeated. - First, the
base insulating layer 402 is formed over thesubstrate 400 having an insulating surface, and then anoxide semiconductor layer 401 a is formed in contact with the base insulating layer 402 (seeFIG. 4A ). - In this embodiment, the
oxide semiconductor layer 401 a can be formed using a material similar to that described in Embodiment 1. In addition, theoxide semiconductor layer 401 a may have an amorphous structure or include a crystalline region. - In formation of the
oxide semiconductor layer 401 a by a sputtering method, the concentration of hydrogen contained in theoxide semiconductor layer 401 a is preferably reduced as much as possible. In order to reduce the hydrogen concentration, a high-purity rare gas (typically argon), high-purity oxygen, or a high-purity mixed gas of a rare gas and oxygen, from which impurities such as hydrogen, water, a compound having a hydroxyl group, and a hydride are removed, is supplied into a treatment chamber of a sputtering apparatus as an atmosphere gas, as appropriate. - In order to reduce the concentration of impurities contained in the
oxide semiconductor layer 401 a, it is also effective to form theoxide semiconductor layer 401 a while thesubstrate 400 is kept at a high temperature. The temperature at which thesubstrate 400 is heated may be higher than or equal to 150° C. and lower than or equal to 450° C.; the substrate temperature is preferably higher than or equal to 200° C. and lower than or equal to 350° C. Note that when the substrate is heated at a high temperature during the film formation, an oxide semiconductor layer including a crystalline region may be formed. - In this embodiment, the
oxide semiconductor layer 401 a is formed to include a crystalline region at least partly, by heating the substrate during the film formation. - Next, the formed
oxide semiconductor layer 401 a is subjected to thermal treatment (first thermal treatment) for dehydration or dehydrogenation. In this embodiment, the first thermal treatment is performed at a temperature higher than or equal to 250° C. and lower than or equal to 700° C., preferably higher than or equal to 450° C. and lower than or equal to 600° C. or lower than the strain point of the substrate. The first thermal treatment is preferably performed at a high temperature (e.g., a temperature higher than 400° C.) because release of an impurity from theoxide semiconductor layer 401 a is enhanced. Note that, when the first thermal treatment is performed at a high temperature, part of theoxide semiconductor layer 401 a might be crystallized or the crystalline region might be expanded. - Then, the
oxygen 421 is implanted into theoxide semiconductor layer 401 a. Theoxygen 421 can be implanted as in Embodiment 1. By the oxygen implantation treatment, a crystal structure included in theoxide semiconductor layer 401 a is broken to be an amorphous structure, so that the amorphousoxide semiconductor layer 404 a including an oxygen-excess region is formed (seeFIG. 4B ). - By the implantation treatment of the
oxygen 421, oxygen in the amorphousoxide semiconductor layer 404 a, which is decreased in concentration through the above thermal treatment for dehydration or dehydrogenation, can be supplied. Thus, the amorphousoxide semiconductor layer 404 a can be highly purified and become an electrically i-type (intrinsic) semiconductor. Further, formation of the oxygen-excess region in the amorphousoxide semiconductor layer 404 a enables an oxygen vacancy therein to be compensated. Thus, charge trapping centers in the amorphousoxide semiconductor layer 404 a can be reduced. - In this embodiment, an example is shown in which the
oxygen 421 is implanted with a surface of theoxide semiconductor layer 401 a exposed. Note that an embodiment of the present invention is not limited to this manner; it is also possible to implant oxygen into the amorphousoxide semiconductor layer 404 through thegate insulating layer 406 or the insulatinglayer 412. - Next, the amorphous
oxide semiconductor layer 404 a is processed into the island-shaped amorphousoxide semiconductor layer 404 in a photolithography step. A conductive film which is to be a source electrode and a drain electrode (including a wiring formed in the same layer as the source electrode and the drain electrode) is formed over the amorphousoxide semiconductor layer 404 and is processed, so that thesource electrode 405 a and thedrain electrode 405 b are formed. - Next, the
gate insulating layer 406 which covers thesource electrode 405 a and thedrain electrode 405 b and is in contact with part of the amorphousoxide semiconductor layer 404 is formed (seeFIG. 4C ). - Next, a conductive film which is to be a gate electrode (including a wiring formed in the same layer as the gate electrode) is formed over the
gate insulating layer 406 and is processed, so that thegate electrode 410 is formed. After that, the insulatinglayer 412 which covers thegate electrode 410 is formed (seeFIG. 4D ). - After the insulating
layer 412 is formed, thermal treatment (second thermal treatment) is performed. The thermal treatment is performed at a temperature at which the amorphousoxide semiconductor layer 404 is not crystallized, preferably higher than or equal to 250° C. and lower than or equal to 450° C. - Through the above steps, the
transistor 510 is formed (seeFIG. 4D ). Variation in the electric characteristics of thetransistor 510 is suppressed, and thetransistor 510 is electrically stable. - According to this embodiment, a semiconductor device which includes an amorphous oxide semiconductor and has stable electric characteristics can be provided. Further, a highly reliable semiconductor device can be provided.
- The methods, structures, and the like described in this embodiment can be combined as appropriate with any of the methods, structures, and the like described in the other embodiments.
- In this embodiment, another embodiment of a semiconductor device and another embodiment of a method of manufacturing the semiconductor device will be described with reference to
FIGS. 5A to 5C ,FIGS. 6A to 6C , andFIGS. 7A to 7D . Note that the same portions as the above embodiment or portions having functions similar to those of the above embodiment can be formed as in the above embodiment, and also the same steps as the above embodiment or steps similar to those of the above embodiment can be performed as in the above embodiment; therefore, repetitive description thereof is omitted. In addition, detailed description of the same portions is not repeated. -
FIGS. 5A to 5C are a plan view and cross-sectional views which illustrate abottom-gate transistor 530 as an example of a semiconductor device.FIG. 5A is a plan view, andFIGS. 5B and 5C are cross-sectional views along line I-J and line K-L inFIG. 5A , respectively. Note that inFIG. 5A , some components of the transistor 530 (e.g., the insulating layer 412) are omitted for brevity. - The
transistor 530 illustrated inFIGS. 5A to 5C includes, over thesubstrate 400 having an insulating surface, thegate electrode 410, thegate insulating layer 406, the amorphousoxide semiconductor layer 404, thesource electrode 405 a, thedrain electrode 405 b, and the insulatinglayer 412. - In the
transistor 530 illustrated inFIGS. 5A to 5C , the amorphousoxide semiconductor layer 404 has been subjected to oxygen implantation treatment and includes an oxygen-excess region. By performing oxygen implantation treatment, a sufficient amount of oxygen can be contained in the amorphousoxide semiconductor layer 404, so that thetransistor 530 can have higher reliability. - In the
transistor 530 illustrated inFIGS. 5A to 5C , thegate insulating layer 406 which is an insulating layer in contact with the amorphousoxide semiconductor layer 404 preferably includes an oxygen-excess region. When thegate insulating layer 406 includes an oxygen-excess region, oxygen can be prevented from moving from the amorphousoxide semiconductor layer 404 to thegate insulating layer 406, and oxygen can be supplied from thegate insulating layer 406 to the amorphousoxide semiconductor layer 404. - Similarly, it is preferable that the insulating
layer 412 have a stacked structure including an aluminum oxide film and an oxide insulating film (such as a silicon oxide film or a silicon oxynitride film) which is in contact with the amorphousoxide semiconductor layer 404 and includes an oxygen-excess region. When the oxide insulating film includes an oxygen-excess region, an oxygen vacancy in the amorphousoxide semiconductor layer 404 can be compensated by excess oxygen contained in the oxide insulating film. -
FIGS. 6A to 6C illustrate another structure example of a transistor according to this embodiment.FIG. 6A is a plan view of atransistor 540, andFIGS. 6B and 6C are cross-sectional views along line M-N and line O-P inFIG. 6A , respectively. Note that inFIG. 6A , some components of the transistor 540 (e.g., the insulating layer 412) are omitted for brevity. - As in the case of the
transistor 530 illustrated inFIGS. 5A to 5C , thetransistor 540 illustrated inFIGS. 6A to 6C includes, over thesubstrate 400 having an insulating surface, thegate electrode 410, thegate insulating layer 406, the amorphousoxide semiconductor layer 404, thesource electrode 405 a, thedrain electrode 405 b, and the insulatinglayer 412. - A difference between the
transistor 540 illustrated inFIGS. 6A to 6C and thetransistor 530 illustrated inFIGS. 5A to 5C is the stacking order of the source and drainelectrodes oxide semiconductor layer 404. That is, thetransistor 540 includes thesource electrode 405 a and thedrain electrode 405 b which are in contact with thegate insulating layer 406, and the amorphousoxide semiconductor layer 404 which is provided over thesource electrode 405 a and thedrain electrode 405 b and is at least partly in contact with thegate insulating layer 406. The other components are similar to those of thetransistor 530, and thus the description of thetransistor 530 can be referred to for the details. -
FIGS. 7A to 7D illustrate an example of a method of manufacturing thetransistor 530. Note that thetransistor 540 can be manufactured in a process similar to that of thetransistor 530 except for the stacking order of the source and drainelectrodes oxide semiconductor layer 404. - First, a conductive film is formed over the
substrate 400 having an insulating surface, and then thegate electrode 410 is formed in a photolithography step. - Note that an insulating layer serving as a base film may be provided between the
substrate 400 and thegate electrode 410. The base film has a function of preventing diffusion of an impurity element from thesubstrate 400, and can be formed to have a single-layer or stacked structure including one or more films selected from a silicon nitride film, a silicon oxide film, a silicon nitride oxide film, and a silicon oxynitride film. - Next, the
gate insulating layer 406 is formed over thegate electrode 410, and the amorphousoxide semiconductor layer 404 a having a thickness greater than or equal to 2 nm and less than or equal to 200 nm, preferably greater than or equal to 5 nm and less than or equal to 30 nm, is formed over the gate insulating layer 406 (seeFIG. 7A ). The amorphousoxide semiconductor layer 404 a can be formed as in the step inFIG. 3A . - Note that it is preferable that the
gate insulating layer 406 and the amorphousoxide semiconductor layer 404 a be successively formed without exposure to the air. For example, the following steps may be performed: impurities containing hydrogen attached to a surface of thesubstrate 400 and a surface of thegate electrode 410 are removed by thermal treatment or plasma treatment, and then thegate insulating layer 406 and the amorphousoxide semiconductor layer 404 a are successively formed in this order without exposure to the air. In this manner, impurities containing hydrogen attached to a surface of thegate insulating layer 406 can be reduced and an atmospheric component can be prevented from being attached to an interface between thegate insulating layer 406 and thesubstrate 400 or thegate electrode 410 and an interface between thegate insulating layer 406 and the amorphousoxide semiconductor layer 404 a. As a result, it is possible to manufacture thetransistor 530 having favorable electric characteristics and high reliability. Also in the case where the insulating layer serving as a base film is formed, it is preferable that the insulating layer, thegate insulating layer 406, and the amorphousoxide semiconductor layer 404 a be successively formed without exposure to the air. - Next, thermal treatment (first thermal treatment) is performed on the amorphous
oxide semiconductor layer 404 a in order to remove hydrogen (including water and a hydroxyl group) (dehydration or dehydrogenation). The thermal treatment is performed at a temperature at which the amorphousoxide semiconductor layer 404 a is not crystallized, typically, higher than or equal to 250° C. and lower than or equal to 450° C., preferably lower than or equal to 300° C. - Then, the
oxygen 421 is implanted into the amorphousoxide semiconductor layer 404 a (seeFIG. 7B ). Theoxygen 421 can be implanted as in Embodiment 1. In this embodiment, the implantation treatment of theoxygen 421 is performed with a surface of the amorphousoxide semiconductor layer 404 a exposed; therefore, plasma treatment may be carried out so that the amorphousoxide semiconductor layer 404 a is exposed in an atmosphere of theplasmatized oxygen 421, instead of the above implantation method. Alternatively, these methods may be combined. - By the implantation treatment of the
oxygen 421, oxygen in the amorphousoxide semiconductor layer 404 a, which is decreased in concentration through the above thermal treatment for dehydration or dehydrogenation, can be supplied. Thus, the amorphousoxide semiconductor layer 404 a can be highly purified and become an electrically i-type (intrinsic) semiconductor. Further, formation of an oxygen-excess region in the amorphousoxide semiconductor layer 404 a enables an oxygen vacancy to be compensated. Thus, charge trapping centers in the amorphousoxide semiconductor layer 404 a can be reduced. - In this embodiment, an example is shown in which the
oxygen 421 is implanted with the surface of the amorphousoxide semiconductor layer 404 a exposed. Note that an embodiment of the present invention is not limited to this manner; it is also possible to implant oxygen into the amorphousoxide semiconductor layer 404 through the insulatinglayer 412. - Next, the amorphous
oxide semiconductor layer 404 a is processed into the island-shaped amorphousoxide semiconductor layer 404 in a photolithography step. After that, a conductive film which is to be a source electrode and a drain electrode (including a wiring formed in the same layer as the source electrode and the drain electrode) is formed over the amorphousoxide semiconductor layer 404 and is processed, so that thesource electrode 405 a and thedrain electrode 405 b are formed (seeFIG. 7C ). - Next, the insulating
layer 412 which covers thesource electrode 405 a and thedrain electrode 405 b is formed (seeFIG. 7D ). - After the insulating
layer 412 is formed, thermal treatment (second thermal treatment) is performed. The thermal treatment is performed at a temperature at which the amorphousoxide semiconductor layer 404 is not crystallized, preferably higher than or equal to 250° C. and lower than or equal to 450° C. - Through the above steps, the
transistor 530 is formed (seeFIG. 7D ). Variation in the electric characteristics of thetransistor 530 is suppressed, and thetransistor 530 is electrically stable. - According to this embodiment, a semiconductor device which includes an amorphous oxide semiconductor and has stable electric characteristics can be provided. Further, a highly reliable semiconductor device can be provided.
- The methods, structures, and the like described in this embodiment can be combined as appropriate with any of the methods, structures, and the like described in the other embodiments.
- In this embodiment, a method of manufacturing the
transistor 530, which is different from that in Embodiment 3, will be described with reference toFIGS. 8A to 8D . Note that the same portions as the above embodiment or portions having functions similar to those of the above embodiment can be formed as in the above embodiment, and also the same steps as the above embodiment or steps similar to those of the above embodiment can be performed as in the above embodiment; therefore, repetitive description thereof is omitted. In addition, detailed description of the same portions is not repeated. - First, a conductive film is formed over the
substrate 400 having an insulating surface, and then thegate electrode 410 is formed in a photolithography step. Next, thegate insulating layer 406 is formed over thegate electrode 410, and theoxide semiconductor layer 401 a having a thickness greater than or equal to 2 nm and less than or equal to 200 nm, preferably greater than or equal to 5 nm and less than or equal to 30 nm, is formed over the gate insulating layer 406 (seeFIG. 8A ). Theoxide semiconductor layer 401 a can be formed as in the step inFIG. 4A . Theoxide semiconductor layer 401 a may have an amorphous structure or include a crystalline region. - In this embodiment, the
oxide semiconductor layer 401 a is formed to include a crystalline region at least partly, by heating the substrate during the film formation. - Next, the formed
oxide semiconductor layer 401 a is subjected to thermal treatment (first thermal treatment) for dehydration or dehydrogenation. In this embodiment, the first thermal treatment is performed at a temperature higher than or equal to 250° C. and lower than or equal to 700° C., preferably higher than or equal to 450° C. and lower than or equal to 600° C. or lower than the strain point of the substrate. - The first thermal treatment is preferably performed at a high temperature (e.g., a temperature higher than 400° C.) because release of an impurity from the
oxide semiconductor layer 401 a is enhanced. Note that, when the first thermal treatment is performed at a high temperature, part of theoxide semiconductor layer 401 a might be crystallized or the crystalline region might be expanded. - Next, the
oxide semiconductor layer 401 a is processed into an island-shapedoxide semiconductor layer 401 in a photolithography step. After that, a conductive film which is to be a source electrode and a drain electrode (including a wiring formed in the same layer as the source electrode and the drain electrode) is formed over theoxide semiconductor layer 401 and is processed, so that thesource electrode 405 a and thedrain electrode 405 b are formed. - Next, the insulating
layer 412 which covers thesource electrode 405 a and thedrain electrode 405 b and is in contact with part of theoxide semiconductor layer 401 is formed (seeFIG. 8B ). - Then, the
oxygen 421 is implanted into theoxide semiconductor layer 401 through the insulating layer 412 (seeFIG. 8C ). By the oxygen implantation treatment, a crystal structure included in theoxide semiconductor layer 401 is broken to be an amorphous structure, so that the amorphousoxide semiconductor layer 404 including an oxygen-excess region is formed. - By the implantation treatment of the
oxygen 421, oxygen, which is decreased in concentration through the above thermal treatment for dehydration or dehydrogenation, can be supplied. Thus, the amorphousoxide semiconductor layer 404 can be highly purified and become an electrically i-type (intrinsic) semiconductor. Further, formation of the oxygen-excess region in the amorphousoxide semiconductor layer 404 enables an oxygen vacancy therein to be compensated. Thus, charge trapping centers in the amorphousoxide semiconductor layer 404 can be reduced. - After the
oxygen 421 is implanted, thermal treatment (second thermal treatment) is performed. The thermal treatment is performed at a temperature at which the amorphousoxide semiconductor layer 404 is not crystallized, preferably higher than or equal to 250° C. and lower than or equal to 450° C. - Through the above steps, the
transistor 530 is formed (seeFIG. 8D ). Variation in the electric characteristics of thetransistor 530 is suppressed, and thetransistor 530 is electrically stable. - According to this embodiment, a semiconductor device which includes an amorphous oxide semiconductor and has stable electric characteristics can be provided. Further, a highly reliable semiconductor device can be provided.
- The methods, structures, and the like described in this embodiment can be combined as appropriate with any of the methods, structures, and the like described in the other embodiments.
- A semiconductor device having a display function (also referred to as a display device) can be manufactured using any of the transistors described in Embodiments 1 to 4. Moreover, some or all of driver circuits which include transistors can be formed over a substrate where a pixel portion is formed, whereby a system-on-panel can be obtained.
- In
FIG. 9A , asealant 4005 is provided so as to surround apixel portion 4002 provided over afirst substrate 4001, and thepixel portion 4002 is sealed by using asecond substrate 4006. InFIG. 9A , a signalline driver circuit 4003 and a scanline driver circuit 4004 which are each formed using a single crystal semiconductor film or a polycrystalline semiconductor film over a substrate separately prepared are mounted in a region that is different from the region surrounded by thesealant 4005 over thefirst substrate 4001. Various signals and potentials which are provided to thepixel portion 4002 through the signalline driver circuit 4003 and the scanline driver circuit 4004 are supplied from flexible printed circuits (FPCs) 4018 a and 4018 b. - In
FIGS. 9B and 9C , thesealant 4005 is provided so as to surround thepixel portion 4002 and the scanline driver circuit 4004 which are provided over thefirst substrate 4001. Thesecond substrate 4006 is provided over thepixel portion 4002 and the scanline driver circuit 4004. Consequently, thepixel portion 4002 and the scanline driver circuit 4004 are sealed together with a display element, by thefirst substrate 4001, thesealant 4005, and thesecond substrate 4006. InFIGS. 9B and 9C , the signalline driver circuit 4003 which is formed using a single crystal semiconductor film or a polycrystalline semiconductor film over a substrate separately prepared is mounted in a region that is different from the region surrounded by thesealant 4005 over thefirst substrate 4001. InFIGS. 9B and 9C , various signals and potentials which are provided to thepixel portion 4002 through the signalline driver circuit 4003 and the scanline driver circuit 4004 are supplied from anFPC 4018. - Although
FIGS. 9B and 9C each illustrate an example in which the signalline driver circuit 4003 is formed separately and mounted on thefirst substrate 4001, one embodiment of the present invention is not limited to this structure. The scan line driver circuit may be separately formed and then mounted, or only part of the signal line driver circuit or part of the scan line driver circuit may be separately formed and then mounted. - Note that there is no particular limitation on the method of connecting a separately formed driver circuit, and a chip on glass (COG) method, a wire bonding method, a tape automated bonding (TAB) method, or the like can be used.
FIG. 9A illustrates an example in which the signalline driver circuit 4003 and the scanline driver circuit 4004 are mounted by a COG method.FIG. 9B illustrates an example in which the signalline driver circuit 4003 is mounted by a COG method.FIG. 9C illustrates an example in which the signalline driver circuit 4003 is mounted by a TAB method. - Note that the display device includes a panel in which the display element is sealed, and a module in which an IC including a controller or the like is mounted on the panel.
- Specifically, a display device in this specification means an image display device, a display device, or a light source (including a lighting device). Furthermore, the display device also includes not only a panel in which the display element is sealed but also the following modules in its category: a module to which a connector such as an FPC, a TAB tape, or a TCP is attached; a module having a TAB tape or a TCP at the tip of which a printed wiring board is provided; and a module in which an integrated circuit (IC) is directly mounted on a display element by a COG method.
- The pixel portion and the scan line driver circuit which are provided over the first substrate include a plurality of transistors; any of the transistors described in Embodiments 1 to 4 can be applied thereto.
- As the display element provided in the display device, a liquid crystal element (also referred to as a liquid crystal display element) or a light-emitting element (also referred to as a light-emitting display element) can be used. The light-emitting element includes, in its category, an element whose luminance is controlled by current or voltage, and specifically includes an inorganic electroluminescent (EL) element, an organic EL element, and the like. Furthermore, a display medium whose contrast is changed by an electric effect, such as an electronic ink display (electronic paper), can be used.
- Embodiments of the semiconductor device will be described with reference to
FIG. 10 ,FIG. 11 , andFIG. 12 .FIG. 10 ,FIG. 11 , andFIG. 12 correspond to cross-sectional views along line Q-R inFIG. 9B . - As illustrated in
FIG. 10 ,FIG. 11 , andFIG. 12 , the semiconductor device includes aconnection terminal electrode 4015 and aterminal electrode 4016. Theconnection terminal electrode 4015 and theterminal electrode 4016 are electrically connected to a terminal included in theFPC 4018 through an anisotropicconductive film 4019. - The
connection terminal electrode 4015 is formed using the same conductive film as afirst electrode 4030, and theterminal electrode 4016 is formed using the same conductive film as source electrodes and drain electrodes oftransistors - The
pixel portion 4002 and the scanline driver circuit 4004 which are provided over thefirst substrate 4001 include a plurality of transistors.FIG. 10 ,FIG. 11 , andFIG. 12 illustrate thetransistor 4010 included in thepixel portion 4002 and thetransistor 4011 included in the scanline driver circuit 4004 as an example. InFIG. 10 ,FIG. 11 , andFIG. 12 , an insulatinglayer 4020 and an insulatinglayer 4024 are provided over thetransistors FIG. 11 andFIG. 12 , an insulatinglayer 4021 is further provided. Note that an insulatinglayer 4023 inFIGS. 10 to 12 is an insulating layer serving as a base film. - Any of the transistors described in Embodiments 1 to 4 can be applied to the
transistor 4010 and thetransistor 4011. - Each of the
transistor 4010 and thetransistor 4011 includes a highly purified amorphous oxide semiconductor layer including an oxygen-excess region. Therefore, variation in the electric characteristics of thetransistor 4010 and thetransistor 4011 is suppressed, and thetransistor 4010 and thetransistor 4011 are electrically stable. - Thus, as the semiconductor devices of this embodiment illustrated in
FIG. 10 ,FIG. 11 , andFIG. 12 , a highly reliable semiconductor device can be provided. - In this embodiment, a
conductive layer 4037 is provided over the insulating layer so as to overlap with a channel formation region of the amorphous oxide semiconductor layer in thetransistor 4011 for the driver circuit, whereby the amount of change in the threshold voltage of thetransistor 4011 can be further reduced. The potential of theconductive layer 4037 may be the same as or different from that of agate electrode 4039 of thetransistor 4011. Theconductive layer 4037 can also function as a second gate electrode. The potential of theconductive layer 4037 may be GND or 0V, or theconductive layer 4037 may be in a floating state. - The
conductive layer 4037 functions to block an external electric field, that is, to prevent an external electric field (particularly, to prevent static electricity) from affecting the inside (a circuit portion including a thin film transistor). The blocking function of theconductive layer 4037 can prevent variation in the electric characteristics of thetransistor 4011 due to the influence of an external electric field such as static electricity. - The
transistor 4010 provided in thepixel portion 4002 is electrically connected to a display element to form a display panel. A variety of display elements can be used as the display element as long as display can be performed. - An example of a liquid crystal display device using a liquid crystal element as a display element is illustrated in
FIG. 10 . InFIG. 10 , aliquid crystal element 4013 includes thefirst electrode 4030, asecond electrode 4031, and aliquid crystal layer 4008. Note that an insulatinglayer 4032 and an insulatinglayer 4033 which function as alignment films are provided so that theliquid crystal layer 4008 is interposed therebetween. Thesecond electrode 4031 is provided on thesecond substrate 4006 side. Thefirst electrode 4030 and thesecond electrode 4031 are stacked with theliquid crystal layer 4008 interposed therebetween. - A columnar spacer denoted by
reference numeral 4035 is obtained by selective etching of an insulating layer and is provided in order to control the thickness (cell gap) of theliquid crystal layer 4008. Alternatively, a spherical spacer may be used. - In the case where a liquid crystal element is used as the display element, a thermotropic liquid crystal, a ferroelectric liquid crystal, an anti-ferroelectric liquid crystal, or the like can be used. These liquid crystals may be any of a compound with a low molecular weight and a polymer. Such a liquid crystal material exhibits a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, or the like depending on conditions.
- Alternatively, a liquid crystal exhibiting a blue phase for which an alignment film is unnecessary may be used. A blue phase is one of liquid crystal phases, which appears just before a cholesteric phase changes into an isotropic phase while the temperature of a cholesteric liquid crystal is increased. Since the blue phase appears only in a narrow temperature range, a liquid crystal composition in which several weight percent or more of a chiral agent is mixed is used for the liquid crystal layer in order to improve the temperature range. The liquid crystal composition which includes a liquid crystal exhibiting a blue phase and a chiral agent has a short response time, and has optical isotropy, which contributes to the exclusion of the alignment process and reduction of viewing angle dependence. In addition, since an alignment film does not need to be provided and rubbing treatment is unnecessary, electrostatic discharge damage caused by the rubbing treatment can be prevented and defects and damage of the liquid crystal display device in the manufacturing process can be reduced. Thus, productivity of the liquid crystal display device can be improved.
- The specific resistivity of the liquid crystal material is higher than or equal to 1×109 Ω·cm, preferably higher than or equal to 1×1011 Ω·cm, further preferably higher than or equal to 1×1012 Ω·cm. Note that the specific resistivity in this specification is measured at 20° C.
- The size of a storage capacitor formed in the liquid crystal display device is set considering the leakage current of the transistor provided in the
pixel portion 4002 or the like so that charge can be held for a predetermined period. The size of the storage capacitor may be set considering the off-state current of the transistor or the like. By using a transistor which includes a highly purified amorphous oxide semiconductor layer including an oxygen-excess region, it is enough to provide a storage capacitor having a capacitance that is ⅓ or less, preferably ⅕ or less, of liquid crystal capacitance of each pixel. - In the transistor used in this embodiment, which includes a highly purified amorphous oxide semiconductor layer in which formation of an oxygen vacancy is suppressed, the current in an off state (off-state current) can be decreased. Accordingly, an electric signal such as an image signal can be held for a longer time, and a writing interval can be set longer. Accordingly, the frequency of refresh operation can be reduced, which leads to suppression of power consumption.
- The transistor used in this embodiment, which includes a highly purified amorphous oxide semiconductor layer in which formation of an oxygen vacancy is suppressed, can have relatively high field-effect mobility and thus can operate at high speed. For example, when such a transistor is used for a liquid crystal display device, a switching transistor in a pixel portion and a driver transistor in a driver circuit portion can be formed over one substrate. In addition, by using such a transistor in a pixel portion, a high-quality image can be provided.
- For the liquid crystal display device, a twisted nematic (TN) mode, an in-plane-switching (IPS) mode, a fringe field switching (FFS) mode, an axially symmetric aligned micro-cell (ASM) mode, an optical compensated birefringence (OCB) mode, a ferroelectric liquid crystal (FLC) mode, an anti-ferroelectric liquid crystal (AFLC) mode, or the like can be used.
- A normally black liquid crystal display device such as a transmissive liquid crystal display device utilizing a vertical alignment (VA) mode may be used. There are some examples of a vertical alignment mode; for example, a multi-domain vertical alignment (MVA) mode, a patterned vertical alignment (PVA) mode, or an ASV mode can be employed. Furthermore, this embodiment can be applied to a VA liquid crystal display device. The VA liquid crystal display device utilizes one of the alignment modes of liquid crystal molecules of a liquid crystal display panel. In the VA liquid crystal display device, liquid crystal molecules are aligned in a vertical direction with respect to a panel surface when no voltage is applied. Moreover, it is possible to use a method called domain multiplication or multi-domain design, in which a pixel is divided into some regions (subpixels) and molecules are aligned in different directions in their respective regions.
- In the display device, a black matrix (light-blocking layer), an optical member (optical substrate) such as a polarizing member, a retardation member, or an anti-reflection member, and the like are provided as appropriate. For example, circular polarization may be obtained by using a polarizing substrate and a retardation substrate. In addition, a backlight, a side light, or the like may be used as a light source.
- As a display method in the pixel portion, a progressive method, an interlace method, or the like can be employed. Further, color elements controlled in a pixel at the time of color display are not limited to three colors: R, G, and B (R, G, and B correspond to red, green, and blue, respectively). For example, R, G, B, and W (W corresponds to white); or R, G, B, and one or more of yellow, cyan, magenta, and the like can be used. Further, the sizes of display regions may differ between respective dots of color elements. Note that one embodiment of the invention disclosed herein is not limited to the application to a display device for color display; one embodiment of the invention disclosed herein can also be applied to a display device for monochrome display.
- Alternatively, as the display element included in the display device, a light-emitting element utilizing electroluminescence can be used. Light-emitting elements utilizing electroluminescence are classified according to whether a light-emitting material is an organic compound or an inorganic compound. In general, the former is referred to as an organic EL element, and the latter is referred to as an inorganic EL element.
- In an organic EL element, by application of voltage to a light-emitting element, electrons and holes are separately injected from a pair of electrodes into a layer containing a light-emitting organic compound, and current flows. The carriers (electrons and holes) are recombined, and thus the light-emitting organic compound is excited. The light-emitting organic compound returns to a ground state from the excited state, thereby emitting light. Owing to such a mechanism, this light-emitting element is referred to as a current-excitation light-emitting element.
- Inorganic EL elements are classified according to their element structures into a dispersion-type inorganic EL element and a thin-film inorganic EL element. A dispersion-type inorganic EL element has a light-emitting layer in which particles of a light-emitting material are dispersed in a binder, and its light emission mechanism is donor-acceptor recombination type light emission that utilizes a donor level and an acceptor level. A thin-film inorganic EL element has a structure where a light-emitting layer is interposed between dielectric layers, which are further interposed between electrodes, and its light emission mechanism is localized type light emission that utilizes inner-shell electron transition of metal ions. Note that description is made here using an organic EL element as a light-emitting element.
- In order to extract light emitted from the light-emitting element, at least one of the pair of electrodes has a light-transmitting property. A transistor and the light-emitting element are formed over a substrate. The light-emitting element can have a top emission structure in which light emission is extracted through a surface opposite to the substrate; a bottom emission structure in which light emission is extracted through a surface on the substrate side; or a dual emission structure in which light emission is extracted through the surface opposite to the substrate and the surface on the substrate side. A light-emitting element having any of these emission structures can be used.
- An example of a light-emitting device using a light-emitting element as a display element is illustrated in
FIG. 11 . A light-emittingelement 4513 is electrically connected to thetransistor 4010 provided in thepixel portion 4002. The structure of the light-emittingelement 4513 is not limited to that shown inFIG. 11 , which has a stacked structure including thefirst electrode 4030, anelectroluminescent layer 4511, and thesecond electrode 4031. The structure of the light-emittingelement 4513 can be changed as appropriate depending on the direction in which light is extracted from the light-emittingelement 4513, or the like. - A
partition wall 4510 is formed using an organic insulating material or an inorganic insulating material. It is particularly preferable that thepartition wall 4510 be formed using a photosensitive resin material to have an opening over thefirst electrode 4030 so that a sidewall of the opening has a tilted surface with continuous curvature. - The
electroluminescent layer 4511 may be formed using a single layer or a plurality of layers stacked. - A protective film may be formed over the
second electrode 4031 and thepartition wall 4510 in order to prevent entry of oxygen, hydrogen, moisture, carbon dioxide, and the like into the light-emittingelement 4513. As the protective film, a silicon nitride film, a silicon nitride oxide film, a DLC film, or the like can be formed. In a space which is formed with thefirst substrate 4001, thesecond substrate 4006, and thesealant 4005, afiller 4514 is provided for sealing. In this manner, the light-emitting element is packaged (sealed) with the protective film (such as a laminate film or an ultraviolet curable resin film) or a cover material with high air-tightness and little degasification so that the light-emitting element is not exposed to the outside air. - As the
filler 4514, an ultraviolet curable resin or a thermosetting resin can be used as well as an inert gas such as nitrogen or argon. For example, poly(vinyl chloride) (PVC), an acrylic resin, a polyimide, an epoxy resin, a silicone resin, poly(vinyl butyral) (PVB), or a copolymer of ethylene with vinyl acetate (EVA) can be used. - In addition, as needed, an optical film such as a polarizing plate, a circularly polarizing plate (including an elliptically polarizing plate), a retardation plate (quarter-wave plate or half-wave plate), or a color filter may be provided as appropriate on a light-emitting surface of the light-emitting element. Further, the polarizing plate or the circularly polarizing plate may be provided with an anti-reflection film. For example, anti-glare treatment by which reflected light can be diffused by projections and depressions on the surface so as to reduce the glare can be performed.
- Electronic paper in which electronic ink is driven can be provided as the display device. The electronic paper is also referred to as an electrophoretic display device (electrophoretic display) and is advantageous in that it has the same level of readability as plain paper, it has lower power consumption than other display devices, and it can be made thin and lightweight.
- An electrophoretic display device can have various modes. An electrophoretic display device includes a plurality of microcapsules dispersed in a solvent, and each microcapsule contains first particles which are positively charged and second particles which are negatively charged. By applying an electric field to the microcapsules, the particles in the microcapsules move in opposite directions to each other and only the color of the particles gathering on one side is displayed. Note that the first particles and the second particles each contain a pigment and do not move in the absence of an electric field. The first particles and the second particles have different colors (which may be colorless).
- A dispersion of the above microcapsules in a solvent is referred to as electronic ink. The use of a color filter or particles that have a pigment enables color display.
- As the electronic paper, a display device using a twisting ball display system can be used. In the twisting ball display system, spherical particles each colored in black and white are arranged between a first electrode and a second electrode which are electrodes used for a display element, and a potential difference is generated between the first electrode and the second electrode to control the orientation of the spherical particles, so that display is performed.
-
FIG. 12 illustrates active matrix electronic paper as one embodiment of a semiconductor device. The electronic paper inFIG. 12 is an example of a display device using a twisting ball display system. - Between the
first electrode 4030 connected to thetransistor 4010 and thesecond electrode 4031 provided on thesecond substrate 4006 side are providedspherical particles 4613 each including ablack region 4615 a, awhite region 4615 b, and acavity 4612 which is filled with liquid around theblack region 4615 a and thewhite region 4615 b. A space around thespherical particles 4613 is filled with afiller 4614 such as a resin. Thesecond electrode 4031 corresponds to a common electrode (counter electrode). Thesecond electrode 4031 is electrically connected to a common potential line. - Note that in
FIG. 10 ,FIG. 11 , andFIG. 12 , a flexible substrate as well as a glass substrate can be used as thefirst substrate 4001 and thesecond substrate 4006. For example, a plastic substrate having a light-transmitting property can be used. As plastic, a fiberglass-reinforced plastics (FRP) plate, a poly(vinyl fluoride) (PVF) film, a polyester film, or an acrylic resin film can be used. In addition, a sheet with a structure in which an aluminum foil is interposed between PVF films or polyester films can be used. - In this embodiment, a silicon oxide film is used as the insulating
layer 4020, and an aluminum oxide film is used as the insulatinglayer 4024. The insulatinglayer 4020 and the insulatinglayer 4024 can be formed by a sputtering method or a plasma CVD method. The insulatinglayer 4020 in contact with the amorphous oxide semiconductor layer preferably includes an oxygen-excess region. - The aluminum oxide film provided as the insulating
layer 4024 over the amorphous oxide semiconductor layer has a high blocking effect and thus is less likely to transmit both oxygen and impurities such as hydrogen and moisture. - Accordingly, the aluminum oxide film functions as a protective film that prevents entry of impurities such as hydrogen and moisture, which can cause variation, into the amorphous oxide semiconductor layer and release of oxygen from the amorphous oxide semiconductor layer during and after the manufacturing process.
- Each of the
transistor 4010 and thetransistor 4011 includes a highly purified amorphous oxide semiconductor layer in which an oxygen-excess region is provided for suppression of formation of an oxygen vacancy. In addition, thetransistor 4010 and thetransistor 4011 each include a silicon oxide film as a gate insulating layer. The amorphous oxide semiconductor layer included in each of thetransistor 4010 and thetransistor 4011 is obtained in such a manner that a region containing oxygen in a proportion higher than that in the stoichiometric composition is formed by oxygen implantation treatment, and thermal treatment is performed after the implantation in a state where the aluminum oxide film or a film including the aluminum oxide film is provided as the insulatinglayer 4024 over the amorphous oxide semiconductor layer; therefore, oxygen can be prevented from being released from the amorphous oxide semiconductor layer by the thermal treatment. Accordingly, the obtained amorphous oxide semiconductor layer can be a film which includes a region containing oxygen in a proportion higher than that in the stoichiometric composition. - The amorphous oxide semiconductor layer included in each of the
transistor 4010 and thetransistor 4011 is a highly purified film which is dehydrated or dehydrogenated and in which an oxygen vacancy is compensated. Accordingly, by using the amorphous oxide semiconductor layer for each of thetransistor 4010 and thetransistor 4011, it is possible to reduce variation in the threshold voltage Vth of the transistors due to an oxygen vacancy and suppress a shift of the threshold voltage. - The insulating
layer 4021 functioning as a planarizing insulating layer can be formed using an organic material having heat resistance, such as an acrylic resin, a polyimide, a benzocyclobutene-based resin, a polyamide, or an epoxy resin. Other than such organic materials, it is also possible to use a low-dielectric constant material (low-k material) such as a siloxane-based resin, phosphosilicate glass (PSG), or borophosphosilicate glass (BPSG). Note that the insulatinglayer 4021 may be formed by stacking a plurality of insulating layers formed using any of these materials. - There is no particular limitation on the method of forming the insulating
layer 4021, and the following method can be used depending on the material: a sputtering method, an SOG method, spin coating, dipping, spray coating, a droplet discharge method (such as an inkjet method), screen printing, offset printing, or the like. - The
first electrode 4030 and thesecond electrode 4031 can be formed, for example, using a light-transmitting conductive material such as indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, ITO, indium zinc oxide, indium tin oxide to which silicon oxide is added, or graphene. - Alternatively, the
first electrode 4030 and thesecond electrode 4031 can be formed using one or more materials selected from metals such as tungsten (W), molybdenum (Mo), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), cobalt (Co), nickel (Ni), titanium (Ti), platinum (Pt), aluminum (Al), copper (Cu), and silver (Ag); an alloy of any of these metals; and a nitride of any of these metals. - A conductive composition including a conductive polymer can be used for the
first electrode 4030 and thesecond electrode 4031. As the conductive polymer, a so-called π-electron conjugated conductive polymer can be used. For example, polyaniline or a derivative thereof, polypyrrole or a derivative thereof, polythiophene or a derivative thereof, and a copolymer of two or more of aniline, pyrrole, and thiophene or a derivative thereof can be given. - A protective circuit for protecting the driver circuit may be provided. The protective circuit is preferably formed using a nonlinear element.
- As described above, by using any of the transistors described in Embodiments 1 to 4, a semiconductor device having a variety of functions can be provided.
- A semiconductor device having an image sensor function of reading information on an object can be manufactured using any of the transistors described in Embodiments 1 to 4.
-
FIG. 13A illustrates an example of a semiconductor device having an image sensor function.FIG. 13A is an equivalent circuit diagram of a photosensor, andFIG. 13B is a cross-sectional view illustrating part of the photosensor. - One electrode of a
photodiode 602 is electrically connected to a photodiodereset signal line 658, and the other electrode of thephotodiode 602 is electrically connected to a gate of atransistor 640. One of a source and a drain of thetransistor 640 is electrically connected to a photosensorreference signal line 672, and the other of the source and the drain of thetransistor 640 is electrically connected to one of a source and a drain of atransistor 656. A gate of thetransistor 656 is electrically connected to agate signal line 659, and the other of the source and the drain of thetransistor 656 is electrically connected to a photosensoroutput signal line 671. - Note that in the circuit diagram in this specification, a transistor including an amorphous oxide semiconductor layer is denoted by a symbol “OS” so that it can be identified as a transistor formed using an amorphous oxide semiconductor layer. In
FIG. 13A , thetransistor 640 and thetransistor 656 are each a transistor including an amorphous oxide semiconductor layer in which an oxygen-excess region is formed by oxygen implantation treatment, like the transistors described in Embodiments 1 to 4. -
FIG. 13B is a cross-sectional view of thephotodiode 602 and thetransistor 640 in the photosensor. Thephotodiode 602 functioning as a sensor and thetransistor 640 are provided over a substrate 601 (TFT substrate) having an insulating surface. Asubstrate 613 is provided over thephotodiode 602 and thetransistor 640 with the use of anadhesive layer 608. - An insulating
layer 631, an insulatinglayer 632, aninterlayer insulating film 633, and aninterlayer insulating film 634 are provided over thetransistor 640. Thephotodiode 602 is provided over theinterlayer insulating film 633. In thephotodiode 602, afirst semiconductor film 606 a, asecond semiconductor film 606 b, and athird semiconductor film 606 c are sequentially stacked from theinterlayer insulating film 633 side, betweenelectrodes interlayer insulating film 633 and anelectrode 642 formed over theinterlayer insulating film 634. - The
electrode 641 b is electrically connected to aconductive layer 643 formed over theinterlayer insulating film 634, and theelectrode 642 is electrically connected to anelectrode 645 through theelectrode 641 a. Theelectrode 645 is electrically connected to a gate electrode of thetransistor 640, and thus thephotodiode 602 is electrically connected to thetransistor 640. - Here, a pin photodiode in which a semiconductor film having p-type conductivity as the
first semiconductor film 606 a, a high-resistance semiconductor film (i-type semiconductor film) as thesecond semiconductor film 606 b, and a semiconductor film having n-type conductivity as thethird semiconductor film 606 c are stacked is illustrated as an example. - The
first semiconductor film 606 a is a p-type semiconductor film and can be formed using an amorphous silicon film containing an impurity element imparting p-type conductivity. Thefirst semiconductor film 606 a is formed by a plasma CVD method with the use of a semiconductor source gas containing an impurity element belonging to Group 13 (e.g., boron (B)). As the semiconductor source gas, silane (SiH4) may be used. Alternatively, Si2H6, SiH2Cl2, SiHCl3, SiCl4, SiF4, or the like may be used. Further alternatively, an amorphous silicon film which does not contain an impurity element may be formed, and then an impurity element may be introduced into the amorphous silicon film by a diffusion method or an ion implantation method. Heating or the like may be conducted after introducing the impurity element by an ion implantation method or the like in order to diffuse the impurity element. In this case, as a method of forming the amorphous silicon film, an LPCVD method, a vapor deposition method, a sputtering method, or the like may be used. Thefirst semiconductor film 606 a is preferably formed to have a thickness greater than or equal to 10 nm and less than or equal to 50 nm. - The
second semiconductor film 606 b is an i-type semiconductor film (intrinsic semiconductor film) and is formed using an amorphous silicon film. As for formation of thesecond semiconductor film 606 b, an amorphous silicon film is formed by a plasma CVD method with the use of a semiconductor source gas. As the semiconductor source gas, silane (SiH4) may be used. Alternatively, Si2H6, SiH2Cl2, SiHCl3, SiCl4, SiF4, or the like may be used. Thesecond semiconductor film 606 b may be formed by an LPCVD method, a vapor deposition method, a sputtering method, or the like. Thesecond semiconductor film 606 b is preferably formed to have a thickness greater than or equal to 200 nm and less than or equal to 1000 nm. - The
third semiconductor film 606 c is an n-type semiconductor film and is formed using an amorphous silicon film containing an impurity element imparting n-type conductivity. Thethird semiconductor film 606 c is formed by a plasma CVD method with the use of a semiconductor source gas containing an impurity element belonging to Group 15 (e.g., phosphorus (P)). As the semiconductor source gas, silane (SiH4) may be used. Alternatively, Si2H6, SiH2Cl2, SiHCl3, SiCl4, SiF4, or the like may be used. Further alternatively, an amorphous silicon film which does not contain an impurity element may be formed, and then an impurity element may be introduced into the amorphous silicon film by a diffusion method or an ion implantation method. Heating or the like may be conducted after introducing the impurity element by an ion implantation method or the like in order to diffuse the impurity element. In this case, as a method of forming the amorphous silicon film, an LPCVD method, a vapor deposition method, a sputtering method, or the like may be used. Thethird semiconductor film 606 c is preferably formed to have a thickness greater than or equal to 20 nm and less than or equal to 200 nm. - The
first semiconductor film 606 a, thesecond semiconductor film 606 b, and thethird semiconductor film 606 c are not necessarily formed using an amorphous semiconductor, and may be formed using a polycrystalline semiconductor or a microcrystalline semiconductor (semi-amorphous semiconductor: SAS). - The microcrystalline semiconductor belongs to a metastable state of an intermediate between amorphous and single crystalline when Gibbs free energy is considered. That is, the microcrystalline semiconductor is a semiconductor having a third state which is thermodynamically stable and has a short range order and lattice distortion. Columnar-like or needle-like crystals grow in a normal direction with respect to a substrate surface. The Raman spectrum of microcrystalline silicon, which is a typical example of a microcrystalline semiconductor, is located in lower wavenumbers than 520 cm−1, which represents a peak of the Raman spectrum of single crystal silicon. That is, the peak of the Raman spectrum of microcrystalline silicon exists between 520 cm−1 which represents single crystal silicon and 480 cm−1 which represents amorphous silicon. In addition, microcrystalline silicon contains at least 1 at. % or more of hydrogen or halogen in order to terminate a dangling bond. Moreover, microcrystalline silicon contains a rare gas element such as helium, argon, krypton, or neon to further promote lattice distortion, so that stability is increased and a favorable microcrystalline semiconductor film can be obtained.
- This microcrystalline semiconductor film can be formed by a high-frequency plasma CVD method with a frequency of several tens of megahertz to several hundreds of megahertz or using a microwave plasma CVD apparatus with a frequency of 1 GHz or higher. The microcrystalline semiconductor film can be typically formed using a dilution of silicon hydride such as SiH4, Si2H6, SiH2Cl2, or SiHCl3 with hydrogen. With a dilution of a silicon hydride with one or plural kinds of rare gas elements selected from helium, argon, krypton, and neon in addition to hydrogen, the microcrystalline semiconductor film can be formed. In that case, the flow ratio of hydrogen to silicon hydride is greater than or equal to 5:1 and less than or equal to 200:1, preferably greater than or equal to 50:1 and less than or equal to 150:1, further preferably 100:1. Further, a hydrocarbon gas such as CH4 or C2H6, a germanium gas such as GeH4 or GeF4, F2, or the like may be mixed into the gas containing silicon.
- The mobility of holes generated by the photoelectric effect is lower than the mobility of electrons. Therefore, a pin photodiode has better characteristics when a surface on the p-type semiconductor film side is used as a light-receiving plane. Here, an example in which light received by the
photodiode 602 from a surface of thesubstrate 601, over which the pin photodiode is formed, is converted into electric signals is described. Light from the semiconductor film having a conductivity type opposite to that of the semiconductor film on the light-receiving plane is disturbance light; therefore, the electrode is preferably formed using a light-blocking conductive film. Note that the n-type semiconductor film side may alternatively be a light-receiving plane. - With the use of an insulating material, the insulating
layer 632, theinterlayer insulating film 633, and theinterlayer insulating film 634 can be formed, depending on the material, using a method such as a sputtering method, a plasma CVD method, an SOG method, spin coating, dipping, spray coating, a droplet discharge method (such as an inkjet method), screen printing, or offset printing. - In this embodiment, an aluminum oxide film is used as the insulating
layer 631. The insulatinglayer 631 can be formed by a sputtering method or a plasma CVD method. - The aluminum oxide film provided as the insulating
layer 631 over the amorphous oxide semiconductor layer has a high blocking effect and thus is less likely to transmit both oxygen and impurities such as hydrogen and moisture. - Accordingly, the aluminum oxide film functions as a protective film that prevents entry of impurities such as hydrogen and moisture, which can cause variation, into the amorphous oxide semiconductor layer and release of oxygen from the amorphous oxide semiconductor layer during and after the manufacturing process.
- In this embodiment, the
transistor 640 includes a highly purified amorphous oxide semiconductor layer in which an oxygen-excess region is provided for suppression of formation of an oxygen vacancy. In addition, thetransistor 640 includes a silicon oxide film as a gate insulating layer. The amorphous oxide semiconductor layer included in thetransistor 640 is obtained in such a manner that a region containing oxygen in a proportion higher than that in the stoichiometric composition is formed by oxygen implantation treatment, and thermal treatment is performed after the implantation in a state where the aluminum oxide film is provided as the insulatinglayer 631 over the amorphous oxide semiconductor layer; therefore, oxygen can be prevented from being released from the amorphous oxide semiconductor layer by the thermal treatment. Accordingly, the obtained amorphous oxide semiconductor layer can be a film which includes a region containing oxygen in a proportion higher than that in the stoichiometric composition. - The amorphous oxide semiconductor layer included in the
transistor 640 is a highly purified film which is dehydrated or dehydrogenated by thermal treatment performed after formation of the amorphous oxide semiconductor layer. Accordingly, by using the amorphous oxide semiconductor layer for thetransistor 640, it is possible to reduce variation in the threshold voltage Vth of the transistor due to an oxygen vacancy and suppress a shift of the threshold voltage. - The insulating
layer 632 can be formed using an inorganic insulating material and can have a single-layer or stacked structure including any of oxide insulating films such as a silicon oxide layer, a silicon oxynitride layer, an aluminum oxide layer, and an aluminum oxynitride layer; and nitride insulating films such as a silicon nitride layer, a silicon nitride oxide layer, an aluminum nitride layer, and an aluminum nitride oxide layer. - For reduction of surface roughness, an insulating layer functioning as a planarizing insulating layer is preferably used as each of the interlayer insulating
films interlayer insulating films - With detection of light that enters the
photodiode 602, information on an object to be detected can be read. Note that a light source such as a backlight can be used at the time of reading information on an object to be detected. - As described above, a transistor which includes a highly purified amorphous oxide semiconductor layer containing excess oxygen that compensates an oxygen vacancy has less variation in electric characteristics and is electrically stable. Thus, by using the transistor, a highly reliable semiconductor device can be provided.
- This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.
- A semiconductor device disclosed in this specification can be applied to a variety of electronic appliances (including a game machine). Examples of electronic appliances are a television device (also referred to as a television or a television receiver), a monitor of a computer or the like, a camera such as a digital camera or a digital video camera, a digital photo frame, a mobile phone (also referred to as a cellular phone or a mobile phone device), a portable game machine, a personal digital assistant, an audio reproducing device, and a large-sized game machine such as a pachinko machine. Examples of electronic appliances each including the semiconductor device described in any of the above embodiments will be described.
-
FIG. 14A illustrates a laptop personal computer which includes amain body 3001, ahousing 3002, adisplay portion 3003, akeyboard 3004, and the like. The semiconductor device described in any of the above embodiments is applied to thedisplay portion 3003, whereby the laptop personal computer can be highly reliable. -
FIG. 14B illustrates a personal digital assistant (PDA) which includes amain body 3021 provided with adisplay portion 3023, anexternal interface 3025, anoperation button 3024, and the like. Astylus 3022 is provided as an accessory for operation. The semiconductor device described in any of the above embodiments is applied to thedisplay portion 3023, whereby the personal digital assistant (PDA) can be highly reliable. -
FIG. 14C illustrates an example of an e-book reader. For example, the e-book reader includes two housings, ahousing 2701 and ahousing 2703. Thehousing 2701 and thehousing 2703 are combined with ahinge 2711 so that the e-book reader can be opened and closed using thehinge 2711 as an axis. With such a structure, the e-book reader can operate like a paper book. - A
display portion 2705 and adisplay portion 2707 are incorporated in thehousing 2701 and thehousing 2703, respectively. Thedisplay portion 2705 and thedisplay portion 2707 may display one image or different images. In the structure where different images are displayed on different display portions, for example, text can be displayed on the right display portion (thedisplay portion 2705 inFIG. 14C ) and graphics can be displayed on the left display portion (thedisplay portion 2707 inFIG. 14C ). The semiconductor device described in any of the above embodiments is applied to thedisplay portion 2705 and thedisplay portion 2707, whereby the e-book reader can be highly reliable. In the case of using a transflective or reflective liquid crystal display device as thedisplay portion 2705, the e-book reader may be used in a comparatively bright environment; therefore, a solar cell may be provided so that power generation by the solar cell and charge by a battery can be performed. When a lithium ion battery is used as the battery, there are advantages of downsizing and the like. -
FIG. 14C illustrates an example in which thehousing 2701 is provided with an operation portion and the like. For example, thehousing 2701 is provided with apower switch 2721, anoperation key 2723, and aspeaker 2725. With theoperation key 2723, pages can be turned. Note that a keyboard, a pointing device, or the like may also be provided on the surface of the housing, on which the display portion is provided. Further, an external connection terminal (such as an earphone terminal or a USB terminal), a recording medium insertion portion, or the like may be provided on the back surface or the side surface of the housing. Further, the e-book reader may have a function of an electronic dictionary. - The e-book reader may transmit and receive data wirelessly. Through wireless communication, desired book data or the like can be purchased and downloaded from an e-book server.
-
FIG. 14D illustrates a mobile phone which includes two housings, ahousing 2800 and ahousing 2801. Thehousing 2801 includes adisplay panel 2802, aspeaker 2803, amicrophone 2804, apointing device 2806, acamera lens 2807, anexternal connection terminal 2808, and the like. In addition, thehousing 2800 includes asolar cell 2810 having a function of charge of the portable information terminal, anexternal memory slot 2811, and the like. Further, an antenna is incorporated in thehousing 2801. The semiconductor device described in any of the above embodiments is applied to thedisplay panel 2802, whereby the mobile phone can be highly reliable. - Further, the
display panel 2802 is provided with a touch panel. A plurality ofoperation keys 2805 displayed as images is illustrated by dashed lines inFIG. 14D . Note that a boosting circuit by which voltage output from thesolar cell 2810 is increased to be sufficiently high for each circuit is also provided. - In the
display panel 2802, the display direction can be appropriately changed depending on a usage pattern. Further, the mobile phone is provided with thecamera lens 2807 on the same surface as thedisplay panel 2802, and thus it can be used as a video phone. Thespeaker 2803 and themicrophone 2804 can be used for videophone calls, recording and playing sound, and the like as well as voice calls. Moreover, thehousings FIG. 14D can shift by sliding so that one is lapped over the other; therefore, the size of the mobile phone can be reduced, which makes the mobile phone suitable for being carried. - The
external connection terminal 2808 can be connected to an AC adapter and various types of cables such as a USB cable, and charge and data communication with a personal computer or the like are possible. Moreover, a large amount of data can be stored by inserting a storage medium into theexternal memory slot 2811 and can be moved. - Further, in addition to the above functions, an infrared communication function, a television reception function, or the like may be provided.
-
FIG. 14E illustrates a digital video camera which includes amain body 3051, adisplay portion A 3057, aneyepiece portion 3053, anoperation switch 3054, adisplay portion B 3055, abattery 3056, and the like. The semiconductor device described in any of the above embodiments is applied to thedisplay portion A 3057 and thedisplay portion B 3055, whereby the digital video camera can be highly reliable. -
FIG. 14F illustrates an example of a television device. In the television device, adisplay portion 9603 is incorporated in ahousing 9601. Thedisplay portion 9603 can display images. Here, thehousing 9601 is supported by astand 9605. The semiconductor device described in any of the above embodiments is applied to thedisplay portion 9603, whereby the television device can be highly reliable. - The television device can be operated by an operation switch of the
housing 9601 or a separate remote controller. Further, the remote controller may be provided with a display portion for displaying data output from the remote controller. - Note that the television device is provided with a receiver, a modem, and the like. With the use of the receiver, general television broadcasting can be received. Moreover, when the television device is connected to a communication network with or without wires via the modem, one-way (from a sender to a receiver) or two-way (between a sender and a receiver or between receivers) data communication can be performed.
- This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.
- In this example, properties of an aluminum oxide film used as a barrier film in a semiconductor device according to one embodiment of the invention disclosed herein were evaluated. The results are shown in FIGS. 15A1, 15A2, 15B1, and 15B2, FIGS. 16A1, 16A2, 16B1, and 16B2,
FIGS. 17A to 17D , andFIGS. 18A to 18D . As evaluation methods, secondary ion mass spectrometry (SIMS) and thermal desorption spectrometry (TDS) were used. - First, evaluation by SIMS analysis is described. As a comparative example, a comparative sample A was fabricated in such a manner that a silicon oxide film was formed to a thickness of 100 nm over a glass substrate by a sputtering method. An example sample A was fabricated in such a manner that a silicon oxide film was formed to a thickness of 100 nm over a glass substrate by a sputtering method, and an aluminum oxide film was formed to a thickness of 100 nm over the silicon oxide film by a sputtering method.
- For each of the comparative sample A and the example sample A, the silicon oxide film was formed under the following conditions: a silicon oxide (SiO2) target was used as a target, the distance between the glass substrate and the target was 60 mm, the pressure was 0.4 Pa, the power of the power source was 1.5 kW, the atmosphere was an oxygen atmosphere (the oxygen flow rate was 50 sccm), and the substrate temperature was 100° C.
- For the example sample A, the aluminum oxide film was formed under the following conditions: an aluminum oxide (Al2O3) target was used as a target, the distance between the glass substrate and the target was 60 mm, the pressure was 0.4 Pa, the power of the power source was 1.5 kW, the atmosphere was a mixed atmosphere containing argon and oxygen (the argon flow rate was 25 sccm and the oxygen flow rate was 25 sccm), and the substrate temperature was 250° C.
- The comparative sample A and the example sample A were each subjected to a pressure cooker test (PCT). In the PCT in this example, the comparative sample A and the example sample A were held for 100 hours under the following conditions: the temperature was 130° C., the humidity was 85%, the atmosphere was an atmosphere where H2O (water):D2O (heavy water)=3:1, and the atmospheric pressure was 2.3 atm (0.23 MPa).
- As SIMS analysis, substrate side depth profile (SSDP) SIMS was used to measure concentrations of an H atom and a D (deuterium) atom in the comparative sample A and the example sample A before and after the PCT.
- FIG. 15A1 shows H-atom and D-atom concentration profiles of the comparative sample A before the PCT, and FIG. 15A2 shows H-atom and D-atom concentration profiles of the comparative sample A after the PCT, which were obtained using SIMS analysis. In FIGS. 15A1 and 15A2, an expected D-atom concentration (D expected) profile is a calculated concentration profile of the D atom, which was obtained using the H-atom concentration profile on the assumption that the abundance ratio of the D atom thereto is 0.015%. Therefore, the amount of the D atom absorbed in the sample by the PCT equals the difference between the measured D-atom concentration (D profile) and the expected D-atom concentration (D expected). FIG. 15B1 shows a D-atom concentration profile before the PCT, which was obtained by subtracting the expected D-atom concentration from the measured D-atom concentration; FIG. 15B2 shows a D-atom concentration profile after the PCT, which was obtained by subtracting the expected D-atom concentration from the measured D-atom concentration.
- In a similar manner, FIG. 16A1 shows H-atom and D-atom concentration profiles of the example sample A before the PCT, which was obtained by SIMS; FIG. 16A2 shows H-atom and D-atom concentration profiles of the example sample A after the PCT, which was obtained by SIMS. In addition, FIG. 16B1 shows a D-atom concentration profile before the PCT, which was obtained by subtracting the expected D-atom concentration from the measured D-atom concentration; FIG. 16B2 shows a D-atom concentration profile after the PCT, which was obtained by subtracting the expected D-atom concentration from the measured D-atom concentration.
- Note that all the results of SIMS analysis in this example were quantified using a standard sample of a silicon oxide film.
- As shown in FIGS. 15A1, 15A2, 15B1, and 15B2, while the measured D-atom concentration profile overlaps with the expected D-atom concentration profile before the PCT, the measured D-atom concentration greatly increases after the PCT; accordingly, it is found that the D atom was absorbed into the silicon oxide film. Therefore, it is confirmed that the silicon oxide film of the comparative sample has a low bather property with respect to moisture (H2O and D2O) from the outside.
- In contrast, as shown in FIGS. 16A1, 16A2, 16B1, and 16B2, as for the example sample A in which the aluminum oxide film was stacked over the silicon oxide film, it is found that only a slight amount of D atom entered a surface of the aluminum oxide film by the PCT and that the D atom entered neither the aluminum oxide film at a depth around 30 nm or greater nor the silicon oxide film. Therefore, it is confirmed that the aluminum oxide film has a high barrier property with respect to moisture (H2O and D2O) from the outside.
- The following shows evaluation by TDS analysis. As an example sample, an example sample B was fabricated in such a manner that a silicon oxide film was formed to a thickness of 100 nm over a glass substrate by a sputtering method, and an aluminum oxide film was formed to a thickness of 20 nm over the silicon oxide film by a sputtering method. Further, as a comparative example, a comparative sample B was fabricated in such a manner that after the example sample B was measured by TDS analysis, the aluminum oxide film thereof was removed, and only the silicon oxide film was left over the glass substrate.
- For each of the comparative sample B and the example sample B, the silicon oxide film was formed under the following conditions: a silicon oxide (SiO2) target was used as a target, the distance between the glass substrate and the target was 60 mm, the pressure was 0.4 Pa, the power of the power source was 1.5 kW, the atmosphere was an oxygen atmosphere (the oxygen flow rate was 50 sccm), and the substrate temperature was 100° C.
- For the example sample B, the aluminum oxide film was formed under the following conditions: an aluminum oxide (Al2O3) target was used as a target, the distance between the glass substrate and the target was 60 mm, the pressure was 0.4 Pa, the power of the power source was 1.5 kW, the atmosphere was a mixed atmosphere containing argon and oxygen (the argon flow rate was 25 sccm and the oxygen flow rate was 25 sccm), and the substrate temperature was 250° C.
- Other three types of the comparative sample B and the example sample B were fabricated by further performing thermal treatment at the respective temperatures of 300° C., 450° C., and 600° C. The thermal treatment was performed for 1 hour in a nitrogen atmosphere for each sample.
- TDS analysis was performed on the four types of the comparative sample B and the four types of the example sample B fabricated under the respective four conditions (without thermal treatment, with 300° C. thermal treatment, with 450° C. thermal treatment, and with 600° C. thermal treatment).
FIG. 17A shows a result of TDS analysis at M/z=32 (O2) of the comparative sample B subjected to no thermal treatment,FIG. 17B shows that of the comparative sample B subjected to thermal treatment at 300° C.,FIG. 17C shows that of the comparative sample B subjected to thermal treatment at 450° C., andFIG. 17D shows that of the comparative sample B subjected to thermal treatment at 600° C.FIG. 18A shows a result of TDS analysis at M/z=32 (O2) of the example sample B subjected to no thermal treatment,FIG. 18B shows that of the example sample B subjected to thermal treatment at 300° C.,FIG. 18C shows that of the example sample B subjected to thermal treatment at 450° C., andFIG. 18D shows that of the example sample B subjected to thermal treatment at 600° C. - As shown in
FIGS. 17A to 17D , it can be seen inFIG. 17A that oxygen was released from the silicon oxide film of the comparative sample B which was not subjected to thermal treatment. However, the amount of oxygen released was greatly decreased in the comparative sample B subjected to the thermal treatment at 300° C. as shown inFIG. 17B . Furthermore, the amount of the released oxygen was smaller than or equal to a background level of TDS measurement in the case of comparative samples B subjected to the thermal treatment at 450° C. and 600° C. as shown inFIGS. 17C and 17D , respectively. - The results in
FIGS. 17A to 17D indicate that 90% or more of excess oxygen contained in the silicon oxide film was released outside the silicon oxide film by the thermal treatment at 300° C. and that substantially all of the excess oxygen contained in the silicon oxide film was released outside the silicon oxide film by the thermal treatment at 450° C. and 600° C. Therefore, it is confirmed that the silicon oxide film has a low bather property with respect to oxygen. - In contrast, as shown in
FIGS. 18A to 18D , substantially the same amount of oxygen was released from every type of the example sample B, in which the aluminum oxide film was formed over the silicon oxide film, regardless of whether the thermal treatment was not performed or was performed at 300° C., 450° C., and 600° C. - The results in
FIGS. 18A to 18D indicate that when the aluminum oxide film was formed over the silicon oxide film, the excess oxygen contained in the silicon oxide film was not easily released to the outside by thermal treatment and the state where the excess oxygen was contained in the silicon oxide film was held to a considerable extent. Therefore, it is confirmed that the aluminum oxide film has a high barrier property with respect to oxygen. - The above results confirm that the aluminum oxide film has both a high barrier property with respect to hydrogen and moisture and a high barrier property with respect to oxygen, and functions suitably as a barrier film with respect to hydrogen, moisture, and oxygen.
- Accordingly, the aluminum oxide film can function as a protective film that prevents entry of impurities such as hydrogen and moisture, which can cause variation, into an amorphous oxide semiconductor layer and release of oxygen from the amorphous oxide semiconductor layer during and after the manufacturing process of a transistor including the amorphous oxide semiconductor layer.
- Therefore, the amorphous oxide semiconductor layer has high purity because impurities such as hydrogen and moisture do not enter the amorphous oxide semiconductor layer, and includes a region containing oxygen in a proportion higher than that in the stoichiometric composition of the amorphous oxide semiconductor layer in a crystalline state because oxygen is prevented from being released. Accordingly, by using the amorphous oxide semiconductor layer for a transistor, it is possible to reduce variation in the threshold voltage Vth of the transistor due to an oxygen vacancy and suppress a shift of the threshold voltage.
- In this example, the crystalline state of an oxide semiconductor layer was observed.
- An example sample C1 was fabricated as a sample as follows: a 300-nm-thick silicon oxide film was formed over a glass substrate by a sputtering method, a 100-nm-thick In—Ga—Zn—O film was formed over the silicon oxide film by a sputtering method, and a 100-nm-thick aluminum oxide film was formed over the In—Ga—Zn—O film by a sputtering method.
- The silicon oxide film was formed under the following conditions: a silicon oxide (SiO2) target was used as a target, the distance between the glass substrate and the target was 60 mm, the pressure was 0.4 Pa, the power of the RF power source was 1.5 kW, the atmosphere was a mixed atmosphere containing argon and oxygen (the argon flow rate was 25 sccm and the oxygen flow rate was 25 sccm), and the substrate temperature was 100° C.
- The film formation conditions of the In—Ga—Zn—O film were as follows: the target was an oxide target having a composition ratio of In2O3:Ga2O3:ZnO=1:1:2 [molar ratio], the distance between the glass substrate and the target was 60 mm, the pressure was 0.4 Pa, the power of the RF power source was 0.5 kW, the atmosphere was a mixed atmosphere containing argon and oxygen (the argon flow rate was 30 sccm and the oxygen flow rate was 15 sccm), and the substrate temperature was 250° C.
- Note that the silicon oxide film and the In—Ga—Zn—O film were successively formed without exposure to the air, and then thermal treatment (first thermal treatment) was performed thereon at 400° C. for 30 minutes in a reduced pressure atmosphere.
- Then, the aluminum oxide film was formed under the following conditions: an aluminum oxide (Al2O3) target was used as a target, the distance between the glass substrate and the target was 60 mm, the pressure was 0.4 Pa, the power of the RF power source was 2.5 kW, the atmosphere was a mixed atmosphere containing argon and oxygen (the argon flow rate was 25 sccm and the oxygen flow rate was 25 sccm), and the substrate temperature was 250° C.
- Next, an example sample C2 was fabricated by implanting oxygen into the In—Ga—Zn—O film through the aluminum oxide film of the example sample C1. In the example sample C2, an oxygen (18O) ion was implanted into the In—Ga—Zn—O film through the aluminum oxide film by an ion implantation method. The oxygen (18O) ion was implanted under conditions of an acceleration voltage of 80 kV and a dose of 1.0×1016 ions/cm2.
- Further, an example sample C3 was fabricated by performing thermal treatment (second thermal treatment) on the example sample C2 at 450° C. for 1 hour in a nitrogen atmosphere.
- End planes were cut out from the example samples C1 to C3 obtained through the above steps, and cross sections of the In—Ga—Zn—O films thereof were observed with a high resolution transmission electron microscope (TEM) (“H9000-NAR” manufactured by Hitachi High-Technologies Corporation) at an acceleration voltage of 300 kV.
FIGS. 19A to 19C are TEM images of the example samples C1 to C3, respectively. -
FIG. 19A is a TEM image at 8 million-fold magnification of the interface between the In—Ga—Zn—O film and the aluminum oxide film of the example sample C1.FIG. 19B is a TEM image at 8 million-fold magnification of the interface between the In—Ga—Zn—O film and the aluminum oxide film of the example sample C2.FIG. 19C is a TEM image at 8 million-fold magnification of the interface between the In—Ga—Zn—O film and the aluminum oxide film of the example sample C3. - A lattice image can be observed in the In—Ga—Zn—O film in
FIG. 19A , which indicates that the example sample C1 includes a crystalline region. - In contrast, a lattice image, which is seen in
FIG. 19A , is not observed in the In—Ga—Zn—O film inFIG. 19B that was subjected to the oxygen implantation treatment. - As in the case of
FIG. 19B , a lattice image is not observed in the In—Ga—Zn—O film inFIG. 19C that was subjected to the oxygen implantation treatment and the thermal treatment at 450° C. This result indicates that the In—Ga—Zn—O film of the example sample C3 is amorphous. - The following can be confirmed from the above results: oxygen implantation on an oxide semiconductor layer including a crystalline region transforms the crystalline region into an amorphous state, and subsequent thermal treatment at a temperature lower than or equal to 450° C. allows the amorphous state to be maintained.
- This application is based on Japanese Patent Application serial no. 2011-103592 filed with the Japan Patent Office on May 6, 2011, the entire contents of which are hereby incorporated by reference.
Claims (25)
1. (canceled)
2. A method for manufacturing a transistor, the method comprising the steps of:
forming an oxide semiconductor layer over a substrate, the oxide semiconductor layer comprising indium, gallium, and zinc and including a crystalline region; and
increasing the crystalline region.
3. The method according to claim 2 ,
wherein the increase in the crystalline region is performed by heating the oxide semiconductor layer at a temperature equal to or higher than 250° C. and equal to or lower than 700° C.
4. The method according to claim 2 , further comprising:
adding oxygen to the oxide semiconductor layer.
5. The method according to claim 2 ,
wherein the formation of the oxide semiconductor layer is performed while heating the substrate at a temperature equal to or higher than 150° C. and equal to or lower than 450° C.
6. A method for manufacturing a transistor, the method comprising the steps of:
forming an oxide semiconductor layer over a substrate, the oxide semiconductor layer comprising indium, gallium, and zinc; and
crystallizing at least a part of the oxide semiconductor layer by heating.
7. The method according to claim 6 ,
wherein the crystallization is performed by heating the oxide semiconductor layer at a temperature equal to or higher than 250° C. and equal to or lower than 700° C.
8. The method according to claim 6 , further comprising:
adding oxygen to the oxide semiconductor layer.
9. The method according to claim 6 ,
wherein the formation of the oxide semiconductor layer is performed while heating the substrate at a temperature equal to or higher than 150° C. and equal to or lower than 450° C.
10. A method for manufacturing a transistor, the method comprising the steps of:
forming an first insulating layer over a substrate;
forming an oxide semiconductor layer, a source electrode, and a drain electrode over the first insulating layer, the oxide semiconductor layer comprising indium, gallium, and zinc and including a crystalline region;
forming a second insulating layer over the oxide semiconductor layer, the source electrode, and the drain electrode;
forming a gate electrode over the second insulating layer; and
increasing the crystalline region by heating.
11. The method according to claims 10 ,
wherein the increase in the crystalline region is performed by heating the oxide semiconductor layer at a temperature equal to or higher than 250° C. and equal to or lower than 700° C.
12. The method according to claim 10 , further comprising:
adding oxygen to the oxide semiconductor layer.
13. The method according to claim 10 ,
wherein the formation of the oxide semiconductor layer is performed while heating the substrate at a temperature equal to or higher than 150° C. and equal to or lower than 450° C.
14. A method for manufacturing a transistor, the method comprising the steps of:
forming an first insulating layer over a substrate;
forming an oxide semiconductor layer, a source electrode, and a drain electrode over the first insulating layer, the oxide semiconductor layer comprising indium, gallium, and zinc;
forming a second insulating layer over the oxide semiconductor layer, the source electrode, and the drain electrode;
forming a gate electrode over the second insulating layer; and
crystallizing at least a part of the oxide semiconductor layer by heating.
15. The method according to claim 14 ,
wherein the crystallization is performed by heating the oxide semiconductor layer at a temperature equal to or higher than 250° C. and equal to or lower than 700° C.
16. The method according to claim 14 , further comprising:
adding oxygen to the oxide semiconductor layer.
17. The method according to claim 14 ,
wherein the formation of the oxide semiconductor layer is performed while heating the substrate at a temperature equal to or higher than 150° C. and equal to or lower than 450° C.
18. A method for manufacturing a transistor, the method comprising the steps of:
forming a gate electrode over a substrate;
forming a first insulating layer over the gate electrode;
forming an oxide semiconductor layer, a source electrode, and a drain electrode over the first insulating layer, the oxide semiconductor layer comprising indium, gallium, and zinc and including a crystalline region; and
increasing the crystalline region by heating.
19. The method according to claim 18 ,
wherein the increase in the crystalline region is performed by heating the oxide semiconductor layer at a temperature equal to or higher than 250° C. and equal to or lower than 700° C.
20. The method according to claim 18 , further comprising:
adding oxygen to the oxide semiconductor layer.
21. The method according to claim 18 ,
wherein the formation of the oxide semiconductor layer is performed while heating the substrate at a temperature equal to or higher than 150° C. and equal to or lower than 450° C.
22. A method for manufacturing a transistor, the method comprising the steps of:
forming a gate electrode over a substrate;
forming a first insulating layer over the gate electrode;
forming an oxide semiconductor layer, a source electrode, and a drain electrode over the first insulating layer, the oxide semiconductor layer comprising indium, gallium, and zinc; and
crystallizing at least a part of the oxide semiconductor layer by heating.
23. The method according to claim 22 ,
wherein the crystallization is performed by heating the oxide semiconductor layer at a temperature equal to or higher than 250° C. and equal to or lower than 700° C.
24. The method according to claim 22 , further comprising:
adding oxygen to the oxide semiconductor layer.
25. The method according to claim 22 ,
wherein the formation of the oxide semiconductor layer is performed while heating the substrate at a temperature equal to or higher than 150° C. and equal to or lower than 450° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/199,222 US20140186998A1 (en) | 2011-05-06 | 2014-03-06 | Semiconductor device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011103592 | 2011-05-06 | ||
JP2011-103592 | 2011-05-06 | ||
US13/448,611 US8709922B2 (en) | 2011-05-06 | 2012-04-17 | Semiconductor device |
US14/199,222 US20140186998A1 (en) | 2011-05-06 | 2014-03-06 | Semiconductor device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/448,611 Continuation US8709922B2 (en) | 2011-05-06 | 2012-04-17 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140186998A1 true US20140186998A1 (en) | 2014-07-03 |
Family
ID=47089647
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/448,611 Expired - Fee Related US8709922B2 (en) | 2011-05-06 | 2012-04-17 | Semiconductor device |
US14/199,222 Abandoned US20140186998A1 (en) | 2011-05-06 | 2014-03-06 | Semiconductor device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/448,611 Expired - Fee Related US8709922B2 (en) | 2011-05-06 | 2012-04-17 | Semiconductor device |
Country Status (4)
Country | Link |
---|---|
US (2) | US8709922B2 (en) |
JP (2) | JP6042093B2 (en) |
CN (1) | CN102779854B (en) |
TW (1) | TWI575752B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140001463A1 (en) * | 2012-06-28 | 2014-01-02 | Samsung Display Co., Ltd. | Array substrate, display panel having the same and method of manufacturing the array substrate |
US9171943B2 (en) | 2011-11-25 | 2015-10-27 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US9601518B2 (en) | 2015-04-08 | 2017-03-21 | Samsung Display Co., Ltd. | Thin film transistor display panel and method for manufacturing the same |
US9722091B2 (en) | 2014-09-12 | 2017-08-01 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US10158008B2 (en) | 2015-10-12 | 2018-12-18 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US10217870B2 (en) | 2013-02-13 | 2019-02-26 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method of semiconductor device |
US10672913B2 (en) | 2012-12-25 | 2020-06-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105931967B (en) | 2011-04-27 | 2019-05-03 | 株式会社半导体能源研究所 | The manufacturing method of semiconductor device |
KR102100425B1 (en) | 2011-12-27 | 2020-04-13 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device and method for manufacturing the same |
KR102295888B1 (en) | 2012-01-25 | 2021-08-31 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device and method for manufacturing semiconductor device |
US20130221345A1 (en) | 2012-02-28 | 2013-08-29 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
CN102881654B (en) * | 2012-09-29 | 2016-03-23 | 京东方科技集团股份有限公司 | Thin-film transistor array base-plate and preparation method thereof, active matrix display device |
TWI614813B (en) | 2013-01-21 | 2018-02-11 | 半導體能源研究所股份有限公司 | Method for manufacturing semiconductor device |
CN103367165A (en) * | 2013-07-01 | 2013-10-23 | 北京京东方光电科技有限公司 | Thin film transistor, manufacturing method thereof, array substrate and display |
JP6384822B2 (en) * | 2013-11-07 | 2018-09-05 | Tianma Japan株式会社 | Image sensor and manufacturing method thereof |
CN103700707B (en) * | 2013-12-18 | 2018-12-11 | 京东方科技集团股份有限公司 | Thin film transistor (TFT), array substrate and preparation method thereof, display device |
WO2016046685A1 (en) * | 2014-09-26 | 2016-03-31 | Semiconductor Energy Laboratory Co., Ltd. | Imaging device |
KR102582523B1 (en) | 2015-03-19 | 2023-09-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device and electronic device |
KR102523400B1 (en) * | 2018-08-07 | 2023-04-20 | 삼성디스플레이 주식회사 | Display device |
TWI691766B (en) * | 2018-11-16 | 2020-04-21 | 友達光電股份有限公司 | Manufacturing method of display device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4459739A (en) * | 1981-05-26 | 1984-07-17 | Northern Telecom Limited | Thin film transistors |
US20070075274A1 (en) * | 2005-09-21 | 2007-04-05 | Reece Ronald N | Systems and methods that mitigate contamination and modify surface characteristics during ion implantation processes through the introduction of gases |
US20080318368A1 (en) * | 2007-06-20 | 2008-12-25 | Samsung Electronics Co., Ltd. | Method of manufacturing ZnO-based this film transistor |
US20090142887A1 (en) * | 2007-12-03 | 2009-06-04 | Samsung Electronics Co., Ltd. | Methods of manufacturing an oxide semiconductor thin film transistor |
JP2010062229A (en) * | 2008-09-01 | 2010-03-18 | Semiconductor Energy Lab Co Ltd | Thin-film transistor and method of manufacturing the same |
US20100136743A1 (en) * | 2005-09-29 | 2010-06-03 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor Device and Manufacturing Method Thereof |
US20110084267A1 (en) * | 2009-10-09 | 2011-04-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US20110084266A1 (en) * | 2009-10-08 | 2011-04-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, display device, and electronic appliance |
US20110095288A1 (en) * | 2008-07-03 | 2011-04-28 | Sony Corporation | Thin film transistor and display device |
Family Cites Families (137)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997006554A2 (en) | 1995-08-03 | 1997-02-20 | Philips Electronics N.V. | Semiconductor device provided with transparent switching element |
JP3625598B2 (en) | 1995-12-30 | 2005-03-02 | 三星電子株式会社 | Manufacturing method of liquid crystal display device |
JP4170454B2 (en) | 1998-07-24 | 2008-10-22 | Hoya株式会社 | Article having transparent conductive oxide thin film and method for producing the same |
JP2000150861A (en) | 1998-11-16 | 2000-05-30 | Tdk Corp | Oxide thin film |
JP3276930B2 (en) | 1998-11-17 | 2002-04-22 | 科学技術振興事業団 | Transistor and semiconductor device |
JP2004320041A (en) * | 1998-12-09 | 2004-11-11 | Matsushita Electric Ind Co Ltd | Method of manufacturing semiconductor device |
TW460731B (en) | 1999-09-03 | 2001-10-21 | Ind Tech Res Inst | Electrode structure and production method of wide viewing angle LCD |
JP4089858B2 (en) | 2000-09-01 | 2008-05-28 | 国立大学法人東北大学 | Semiconductor device |
KR20020038482A (en) | 2000-11-15 | 2002-05-23 | 모리시타 요이찌 | Thin film transistor array, method for producing the same, and display panel using the same |
JP3997731B2 (en) | 2001-03-19 | 2007-10-24 | 富士ゼロックス株式会社 | Method for forming a crystalline semiconductor thin film on a substrate |
JP2002289859A (en) | 2001-03-23 | 2002-10-04 | Minolta Co Ltd | Thin-film transistor |
JP4090716B2 (en) | 2001-09-10 | 2008-05-28 | 雅司 川崎 | Thin film transistor and matrix display device |
JP3925839B2 (en) | 2001-09-10 | 2007-06-06 | シャープ株式会社 | Semiconductor memory device and test method thereof |
JP4024508B2 (en) * | 2001-10-09 | 2007-12-19 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
JP4164562B2 (en) | 2002-09-11 | 2008-10-15 | 独立行政法人科学技術振興機構 | Transparent thin film field effect transistor using homologous thin film as active layer |
US7061014B2 (en) | 2001-11-05 | 2006-06-13 | Japan Science And Technology Agency | Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film |
JP4083486B2 (en) | 2002-02-21 | 2008-04-30 | 独立行政法人科学技術振興機構 | Method for producing LnCuO (S, Se, Te) single crystal thin film |
CN1445821A (en) | 2002-03-15 | 2003-10-01 | 三洋电机株式会社 | Forming method of ZnO film and ZnO semiconductor layer, semiconductor element and manufacturing method thereof |
JP3933591B2 (en) | 2002-03-26 | 2007-06-20 | 淳二 城戸 | Organic electroluminescent device |
US7339187B2 (en) | 2002-05-21 | 2008-03-04 | State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University | Transistor structures |
JP2004022625A (en) | 2002-06-13 | 2004-01-22 | Murata Mfg Co Ltd | Manufacturing method of semiconductor device and its manufacturing method |
US7105868B2 (en) | 2002-06-24 | 2006-09-12 | Cermet, Inc. | High-electron mobility transistor with zinc oxide |
US7067843B2 (en) | 2002-10-11 | 2006-06-27 | E. I. Du Pont De Nemours And Company | Transparent oxide semiconductor thin film transistors |
JP4166105B2 (en) | 2003-03-06 | 2008-10-15 | シャープ株式会社 | Semiconductor device and manufacturing method thereof |
JP2004273732A (en) | 2003-03-07 | 2004-09-30 | Sharp Corp | Active matrix substrate and its producing process |
JP4108633B2 (en) | 2003-06-20 | 2008-06-25 | シャープ株式会社 | THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE |
US7262463B2 (en) | 2003-07-25 | 2007-08-28 | Hewlett-Packard Development Company, L.P. | Transistor including a deposited channel region having a doped portion |
US7642573B2 (en) | 2004-03-12 | 2010-01-05 | Hewlett-Packard Development Company, L.P. | Semiconductor device |
US7282782B2 (en) | 2004-03-12 | 2007-10-16 | Hewlett-Packard Development Company, L.P. | Combined binary oxide semiconductor device |
US7297977B2 (en) | 2004-03-12 | 2007-11-20 | Hewlett-Packard Development Company, L.P. | Semiconductor device |
JP4620046B2 (en) | 2004-03-12 | 2011-01-26 | 独立行政法人科学技術振興機構 | Thin film transistor and manufacturing method thereof |
US7145174B2 (en) | 2004-03-12 | 2006-12-05 | Hewlett-Packard Development Company, Lp. | Semiconductor device |
US7211825B2 (en) | 2004-06-14 | 2007-05-01 | Yi-Chi Shih | Indium oxide-based thin film transistors and circuits |
JP2006100760A (en) | 2004-09-02 | 2006-04-13 | Casio Comput Co Ltd | Thin-film transistor and its manufacturing method |
US7285501B2 (en) | 2004-09-17 | 2007-10-23 | Hewlett-Packard Development Company, L.P. | Method of forming a solution processed device |
US7298084B2 (en) | 2004-11-02 | 2007-11-20 | 3M Innovative Properties Company | Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes |
JP5126729B2 (en) | 2004-11-10 | 2013-01-23 | キヤノン株式会社 | Image display device |
US7829444B2 (en) | 2004-11-10 | 2010-11-09 | Canon Kabushiki Kaisha | Field effect transistor manufacturing method |
US7453065B2 (en) | 2004-11-10 | 2008-11-18 | Canon Kabushiki Kaisha | Sensor and image pickup device |
CA2708335A1 (en) | 2004-11-10 | 2006-05-18 | Canon Kabushiki Kaisha | Amorphous oxide and field effect transistor |
AU2005302963B2 (en) | 2004-11-10 | 2009-07-02 | Cannon Kabushiki Kaisha | Light-emitting device |
US7863611B2 (en) | 2004-11-10 | 2011-01-04 | Canon Kabushiki Kaisha | Integrated circuits utilizing amorphous oxides |
WO2006051995A1 (en) | 2004-11-10 | 2006-05-18 | Canon Kabushiki Kaisha | Field effect transistor employing an amorphous oxide |
US7791072B2 (en) | 2004-11-10 | 2010-09-07 | Canon Kabushiki Kaisha | Display |
US7579224B2 (en) | 2005-01-21 | 2009-08-25 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a thin film semiconductor device |
US7309895B2 (en) * | 2005-01-25 | 2007-12-18 | Hewlett-Packard Development Company, L.P. | Semiconductor device |
US7608531B2 (en) | 2005-01-28 | 2009-10-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, electronic device, and method of manufacturing semiconductor device |
TWI562380B (en) | 2005-01-28 | 2016-12-11 | Semiconductor Energy Lab Co Ltd | Semiconductor device, electronic device, and method of manufacturing semiconductor device |
US7858451B2 (en) | 2005-02-03 | 2010-12-28 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device, semiconductor device and manufacturing method thereof |
US7948171B2 (en) | 2005-02-18 | 2011-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US20060197092A1 (en) | 2005-03-03 | 2006-09-07 | Randy Hoffman | System and method for forming conductive material on a substrate |
US8681077B2 (en) | 2005-03-18 | 2014-03-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, and display device, driving method and electronic apparatus thereof |
WO2006105077A2 (en) | 2005-03-28 | 2006-10-05 | Massachusetts Institute Of Technology | Low voltage thin film transistor with high-k dielectric material |
US7645478B2 (en) | 2005-03-31 | 2010-01-12 | 3M Innovative Properties Company | Methods of making displays |
US8300031B2 (en) | 2005-04-20 | 2012-10-30 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element |
JP2006344849A (en) | 2005-06-10 | 2006-12-21 | Casio Comput Co Ltd | Thin film transistor |
US7691666B2 (en) | 2005-06-16 | 2010-04-06 | Eastman Kodak Company | Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby |
US7402506B2 (en) | 2005-06-16 | 2008-07-22 | Eastman Kodak Company | Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby |
US7507618B2 (en) | 2005-06-27 | 2009-03-24 | 3M Innovative Properties Company | Method for making electronic devices using metal oxide nanoparticles |
KR100711890B1 (en) | 2005-07-28 | 2007-04-25 | 삼성에스디아이 주식회사 | Organic Light Emitting Display and Fabrication Method for the same |
JP2007059128A (en) | 2005-08-23 | 2007-03-08 | Canon Inc | Organic electroluminescent display device and manufacturing method thereof |
JP5116225B2 (en) | 2005-09-06 | 2013-01-09 | キヤノン株式会社 | Manufacturing method of oxide semiconductor device |
JP2007073705A (en) | 2005-09-06 | 2007-03-22 | Canon Inc | Oxide-semiconductor channel film transistor and its method of manufacturing same |
JP4850457B2 (en) | 2005-09-06 | 2012-01-11 | キヤノン株式会社 | Thin film transistor and thin film diode |
JP2007073698A (en) | 2005-09-06 | 2007-03-22 | Canon Inc | Transistor |
JP4280736B2 (en) | 2005-09-06 | 2009-06-17 | キヤノン株式会社 | Semiconductor element |
JP5064747B2 (en) * | 2005-09-29 | 2012-10-31 | 株式会社半導体エネルギー研究所 | Semiconductor device, electrophoretic display device, display module, electronic device, and method for manufacturing semiconductor device |
JP5037808B2 (en) | 2005-10-20 | 2012-10-03 | キヤノン株式会社 | Field effect transistor using amorphous oxide, and display device using the transistor |
KR101117948B1 (en) | 2005-11-15 | 2012-02-15 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Method of Manufacturing a Liquid Crystal Display Device |
TWI292281B (en) | 2005-12-29 | 2008-01-01 | Ind Tech Res Inst | Pixel structure of active organic light emitting diode and method of fabricating the same |
US7867636B2 (en) | 2006-01-11 | 2011-01-11 | Murata Manufacturing Co., Ltd. | Transparent conductive film and method for manufacturing the same |
JP4977478B2 (en) | 2006-01-21 | 2012-07-18 | 三星電子株式会社 | ZnO film and method of manufacturing TFT using the same |
US7576394B2 (en) | 2006-02-02 | 2009-08-18 | Kochi Industrial Promotion Center | Thin film transistor including low resistance conductive thin films and manufacturing method thereof |
US7977169B2 (en) | 2006-02-15 | 2011-07-12 | Kochi Industrial Promotion Center | Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof |
KR20070101595A (en) | 2006-04-11 | 2007-10-17 | 삼성전자주식회사 | Zno thin film transistor |
US7875931B2 (en) * | 2006-04-28 | 2011-01-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device with isolation using impurity |
US20070252928A1 (en) | 2006-04-28 | 2007-11-01 | Toppan Printing Co., Ltd. | Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof |
JP5028033B2 (en) | 2006-06-13 | 2012-09-19 | キヤノン株式会社 | Oxide semiconductor film dry etching method |
JP4609797B2 (en) | 2006-08-09 | 2011-01-12 | Nec液晶テクノロジー株式会社 | Thin film device and manufacturing method thereof |
JP4999400B2 (en) | 2006-08-09 | 2012-08-15 | キヤノン株式会社 | Oxide semiconductor film dry etching method |
JP5128792B2 (en) * | 2006-08-31 | 2013-01-23 | 財団法人高知県産業振興センター | Thin film transistor manufacturing method |
JP4332545B2 (en) | 2006-09-15 | 2009-09-16 | キヤノン株式会社 | Field effect transistor and manufacturing method thereof |
JP4274219B2 (en) | 2006-09-27 | 2009-06-03 | セイコーエプソン株式会社 | Electronic devices, organic electroluminescence devices, organic thin film semiconductor devices |
JP5164357B2 (en) | 2006-09-27 | 2013-03-21 | キヤノン株式会社 | Semiconductor device and manufacturing method of semiconductor device |
US7622371B2 (en) | 2006-10-10 | 2009-11-24 | Hewlett-Packard Development Company, L.P. | Fused nanocrystal thin film semiconductor and method |
US7772021B2 (en) | 2006-11-29 | 2010-08-10 | Samsung Electronics Co., Ltd. | Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays |
JP2008140684A (en) | 2006-12-04 | 2008-06-19 | Toppan Printing Co Ltd | Color el display, and its manufacturing method |
KR101303578B1 (en) | 2007-01-05 | 2013-09-09 | 삼성전자주식회사 | Etching method of thin film |
US8207063B2 (en) | 2007-01-26 | 2012-06-26 | Eastman Kodak Company | Process for atomic layer deposition |
KR100851215B1 (en) | 2007-03-14 | 2008-08-07 | 삼성에스디아이 주식회사 | Thin film transistor and organic light-emitting dislplay device having the thin film transistor |
US7795613B2 (en) | 2007-04-17 | 2010-09-14 | Toppan Printing Co., Ltd. | Structure with transistor |
KR101325053B1 (en) | 2007-04-18 | 2013-11-05 | 삼성디스플레이 주식회사 | Thin film transistor substrate and manufacturing method thereof |
KR20080094300A (en) | 2007-04-19 | 2008-10-23 | 삼성전자주식회사 | Thin film transistor and method of manufacturing the same and flat panel display comprising the same |
KR101334181B1 (en) | 2007-04-20 | 2013-11-28 | 삼성전자주식회사 | Thin Film Transistor having selectively crystallized channel layer and method of manufacturing the same |
WO2008133345A1 (en) | 2007-04-25 | 2008-11-06 | Canon Kabushiki Kaisha | Oxynitride semiconductor |
KR101345376B1 (en) | 2007-05-29 | 2013-12-24 | 삼성전자주식회사 | Fabrication method of ZnO family Thin film transistor |
JP5215158B2 (en) | 2007-12-17 | 2013-06-19 | 富士フイルム株式会社 | Inorganic crystalline alignment film, method for manufacturing the same, and semiconductor device |
US8093136B2 (en) | 2007-12-28 | 2012-01-10 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing SOI substrate |
JP4555358B2 (en) | 2008-03-24 | 2010-09-29 | 富士フイルム株式会社 | Thin film field effect transistor and display device |
KR100941850B1 (en) | 2008-04-03 | 2010-02-11 | 삼성모바일디스플레이주식회사 | Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor |
KR100963026B1 (en) | 2008-06-30 | 2010-06-10 | 삼성모바일디스플레이주식회사 | Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor |
KR100963027B1 (en) | 2008-06-30 | 2010-06-10 | 삼성모바일디스플레이주식회사 | Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor |
KR100963104B1 (en) * | 2008-07-08 | 2010-06-14 | 삼성모바일디스플레이주식회사 | Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor |
JP5345456B2 (en) | 2008-08-14 | 2013-11-20 | 富士フイルム株式会社 | Thin film field effect transistor |
US8129718B2 (en) * | 2008-08-28 | 2012-03-06 | Canon Kabushiki Kaisha | Amorphous oxide semiconductor and thin film transistor using the same |
JP5627071B2 (en) | 2008-09-01 | 2014-11-19 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
US9082857B2 (en) * | 2008-09-01 | 2015-07-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising an oxide semiconductor layer |
JP4623179B2 (en) | 2008-09-18 | 2011-02-02 | ソニー株式会社 | Thin film transistor and manufacturing method thereof |
JP5451280B2 (en) | 2008-10-09 | 2014-03-26 | キヤノン株式会社 | Wurtzite crystal growth substrate, manufacturing method thereof, and semiconductor device |
JP5484853B2 (en) | 2008-10-10 | 2014-05-07 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
CN103730509B (en) | 2008-11-07 | 2018-03-30 | 株式会社半导体能源研究所 | Semiconductor devices |
JP5606682B2 (en) | 2009-01-29 | 2014-10-15 | 富士フイルム株式会社 | Thin film transistor, method for manufacturing polycrystalline oxide semiconductor thin film, and method for manufacturing thin film transistor |
US8247276B2 (en) * | 2009-02-20 | 2012-08-21 | Semiconductor Energy Laboratory Co., Ltd. | Thin film transistor, method for manufacturing the same, and semiconductor device |
JP2010205987A (en) * | 2009-03-04 | 2010-09-16 | Sony Corp | Thin film transistor, method for manufacturing the same, and display |
JP5564331B2 (en) * | 2009-05-29 | 2014-07-30 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
JP4415062B1 (en) | 2009-06-22 | 2010-02-17 | 富士フイルム株式会社 | THIN FILM TRANSISTOR AND METHOD FOR PRODUCING THIN FILM TRANSISTOR |
JP4571221B1 (en) | 2009-06-22 | 2010-10-27 | 富士フイルム株式会社 | IGZO-based oxide material and method for producing IGZO-based oxide material |
KR101457837B1 (en) * | 2009-06-30 | 2014-11-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Method for manufacturing semiconductor device |
KR101476817B1 (en) * | 2009-07-03 | 2014-12-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Display device including transistor and manufacturing method thereof |
CN102484140B (en) * | 2009-09-04 | 2015-04-22 | 株式会社半导体能源研究所 | Manufacturing method of semiconductor device |
KR102023128B1 (en) * | 2009-10-21 | 2019-09-19 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Analog circuit and semiconductor device |
KR101930682B1 (en) * | 2009-10-29 | 2018-12-18 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device |
JP2011138934A (en) | 2009-12-28 | 2011-07-14 | Sony Corp | Thin film transistor, display device, and electronic equipment |
KR101913657B1 (en) | 2010-02-26 | 2018-11-01 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Method for manufacturing semiconductor device |
JP2011187506A (en) | 2010-03-04 | 2011-09-22 | Sony Corp | Thin-film transistor, method of manufacturing the thin-film transistor, and display device |
KR101636008B1 (en) | 2010-04-23 | 2016-07-06 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device and manufacturing method thereof |
KR101974927B1 (en) | 2010-04-23 | 2019-05-03 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Method for manufacturing semiconductor device |
CN106057907B (en) | 2010-04-23 | 2019-10-22 | 株式会社半导体能源研究所 | The manufacturing method of semiconductor device |
WO2011132591A1 (en) | 2010-04-23 | 2011-10-27 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
KR102344452B1 (en) | 2010-04-23 | 2021-12-29 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Method for manufacturing semiconductor device |
WO2011132625A1 (en) | 2010-04-23 | 2011-10-27 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
WO2011142467A1 (en) | 2010-05-14 | 2011-11-17 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
CN102959713B (en) | 2010-07-02 | 2017-05-10 | 株式会社半导体能源研究所 | Semiconductor device |
JP2012160679A (en) | 2011-02-03 | 2012-08-23 | Sony Corp | Thin-film transistor, display device, and electronic apparatus |
TWI658516B (en) | 2011-03-11 | 2019-05-01 | 日商半導體能源研究所股份有限公司 | Method of manufacturing semiconductor device |
CN105931967B (en) | 2011-04-27 | 2019-05-03 | 株式会社半导体能源研究所 | The manufacturing method of semiconductor device |
US9117920B2 (en) | 2011-05-19 | 2015-08-25 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device using oxide semiconductor |
-
2012
- 2012-04-17 US US13/448,611 patent/US8709922B2/en not_active Expired - Fee Related
- 2012-04-25 TW TW101114708A patent/TWI575752B/en not_active IP Right Cessation
- 2012-05-04 JP JP2012105548A patent/JP6042093B2/en active Active
- 2012-05-04 CN CN201210138067.2A patent/CN102779854B/en active Active
-
2014
- 2014-03-06 US US14/199,222 patent/US20140186998A1/en not_active Abandoned
-
2016
- 2016-11-09 JP JP2016218663A patent/JP2017041649A/en not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4459739A (en) * | 1981-05-26 | 1984-07-17 | Northern Telecom Limited | Thin film transistors |
US20070075274A1 (en) * | 2005-09-21 | 2007-04-05 | Reece Ronald N | Systems and methods that mitigate contamination and modify surface characteristics during ion implantation processes through the introduction of gases |
US20100136743A1 (en) * | 2005-09-29 | 2010-06-03 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor Device and Manufacturing Method Thereof |
US20080318368A1 (en) * | 2007-06-20 | 2008-12-25 | Samsung Electronics Co., Ltd. | Method of manufacturing ZnO-based this film transistor |
US20090142887A1 (en) * | 2007-12-03 | 2009-06-04 | Samsung Electronics Co., Ltd. | Methods of manufacturing an oxide semiconductor thin film transistor |
US20110095288A1 (en) * | 2008-07-03 | 2011-04-28 | Sony Corporation | Thin film transistor and display device |
JP2010062229A (en) * | 2008-09-01 | 2010-03-18 | Semiconductor Energy Lab Co Ltd | Thin-film transistor and method of manufacturing the same |
US20110084266A1 (en) * | 2009-10-08 | 2011-04-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, display device, and electronic appliance |
US20110084267A1 (en) * | 2009-10-09 | 2011-04-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9171943B2 (en) | 2011-11-25 | 2015-10-27 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US20140001463A1 (en) * | 2012-06-28 | 2014-01-02 | Samsung Display Co., Ltd. | Array substrate, display panel having the same and method of manufacturing the array substrate |
US9018623B2 (en) * | 2012-06-28 | 2015-04-28 | Samsung Display Co., Ltd. | Array substrate, display panel having the same and method of manufacturing the array substrate |
US10672913B2 (en) | 2012-12-25 | 2020-06-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US11049974B2 (en) | 2012-12-25 | 2021-06-29 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US11705522B2 (en) | 2012-12-25 | 2023-07-18 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US10217870B2 (en) | 2013-02-13 | 2019-02-26 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method of semiconductor device |
US9722091B2 (en) | 2014-09-12 | 2017-08-01 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US9601518B2 (en) | 2015-04-08 | 2017-03-21 | Samsung Display Co., Ltd. | Thin film transistor display panel and method for manufacturing the same |
US10158008B2 (en) | 2015-10-12 | 2018-12-18 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
CN102779854A (en) | 2012-11-14 |
TW201251030A (en) | 2012-12-16 |
US20120280234A1 (en) | 2012-11-08 |
JP2012253329A (en) | 2012-12-20 |
JP2017041649A (en) | 2017-02-23 |
TWI575752B (en) | 2017-03-21 |
CN102779854B (en) | 2016-12-14 |
JP6042093B2 (en) | 2016-12-14 |
US8709922B2 (en) | 2014-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11387116B2 (en) | Method of manufacturing semiconductor device | |
US12033867B2 (en) | Method for manufacturing semiconductor device | |
US8709922B2 (en) | Semiconductor device | |
US9941414B2 (en) | Metal oxide semiconductor device | |
US8753928B2 (en) | Method of manufacturing semiconductor device | |
US9449991B2 (en) | Semiconductor device having circular light-blocking layer | |
US20180182894A1 (en) | Manufacturing method of semiconductor device | |
US8704219B2 (en) | Method for manufacturing semiconductor device | |
US20220123150A1 (en) | Semiconductor device | |
US9275875B2 (en) | Method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |