US20130105377A1 - Water with Switchable Ionic Strength - Google Patents

Water with Switchable Ionic Strength Download PDF

Info

Publication number
US20130105377A1
US20130105377A1 US13/578,290 US201113578290A US2013105377A1 US 20130105377 A1 US20130105377 A1 US 20130105377A1 US 201113578290 A US201113578290 A US 201113578290A US 2013105377 A1 US2013105377 A1 US 2013105377A1
Authority
US
United States
Prior art keywords
water
switchable
additive
ionic strength
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/578,290
Other languages
English (en)
Inventor
Philip G. Jessop
Sean M. Mercer
R. Stephen Brown
Tobias Robert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Queens University at Kingston
Original Assignee
Queens University at Kingston
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Queens University at Kingston filed Critical Queens University at Kingston
Priority to US13/578,290 priority Critical patent/US20130105377A1/en
Publication of US20130105377A1 publication Critical patent/US20130105377A1/en
Assigned to QUEEN'S UNIVERSITY AT KINGSTON reassignment QUEEN'S UNIVERSITY AT KINGSTON ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROWN, R. STEPHEN, JESSOP, PHILIP G., MERCER, SEAN M.
Assigned to QUEEN'S UNIVERSITY AT KINGSTON reassignment QUEEN'S UNIVERSITY AT KINGSTON ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROBERT, TOBIAS
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/005Osmotic agents; Draw solutions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5281Installations for water purification using chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the field of the invention is solvents, and specifically an aqueous solvent composition that can be reversibly converted between low ionic strength and higher ionic strength.
  • a common method for separating water from moderately hydrophobic yet water-soluble materials is “salting out”, a method in which a salt is added to an aqueous solution that includes a dissolved moderately hydrophobic compound, in sufficient amounts to greatly increase the ionic strength of the aqueous portion.
  • High ionic strength greatly decreases the solubility of some compounds in water; thus most of the selected compound or material is forced out of the aqueous phase.
  • the compound or material either precipitates (forms a new solid phase), creams out (forms a new liquid phase) or partitions into a pre-existing hydrophobic liquid phase if there is one.
  • This “salting out” method requires no distillation but is not preferred because of the expense of using very large amounts of salts and, more importantly, because of the expense of removing the salt from the water afterwards.
  • An object of the present invention is to provide water with a switchable ionic strength.
  • a system for switching the ionic strength of water or an aqueous solution comprising: means for providing an additive comprising at least one nitrogen that is sufficiently basic to be protonated by carbonic acid; means for adding the additive to water or to an aqueous solution to form an aqueous mixture with switchable ionic strength; means for exposing the mixture with switchable ionic strength to an ionizing trigger, such as CO 2 , COS, CS 2 or a combination thereof, to raise the ionic strength of the mixture; and means for exposing the mixture with raised ionic strength to i) heat, (ii) a flushing gas, (iii) a vacuum or partial vacuum, (iv) agitation, or (v) any combination thereof, to reform the aqueous mixture with switchable ionic strength.
  • this system is used to remove water from a hydrophobic liquid or a solvent or in a
  • n Si m group where n and m are independently a number from 0 to 8 and n+m is a number from 1 to 8;
  • aryl is optionally heteroaryl, optionally wherein one or more C is replaced by ⁇ —Si(R 10 ) 2 —O— ⁇ ;
  • aryl group having 4 to 8 ring atoms, optionally including one or more ⁇ —Si(R 10 ) 2 —O— ⁇ , wherein aryl is optionally heteroaryl;
  • p is from 1 to 8 which is terminated by H, or is terminated by a substituted or unsubstituted C 1 to C 8 aliphatic and/or aryl group;
  • a substituent is independently: alkyl; alkenyl; alkynyl; aryl; aryl-halide; heteroaryl; cycloalkyl; Si(alkyl) 3 ; Si(alkoxy) 3 ; halo; alkoxyl; amino; alkylamino; alkenylamino; amide; amidine; hydroxyl; thioether; alkylcarbonyl; alkylcarbonyloxy; arylcarbonyloxy; alkoxycarbonyloxy; aryloxycarbonyloxy; carbonate; alkoxycarbonyl; aminocarbonyl; alkylthiocarbonyl; amidine, phosphate; phosphate ester; phosphonato; phosphinato; cyano; acylamino; imino; sulfhydryl; alkylthio; arylthio; thiocarboxylate; dithiocarboxylate; sulfate; sulfato;
  • means for separating a selected compound from the ionic aqueous liquid prior to formation of the non-ionic aqueous liquid optionally, means for separating a selected compound from the ionic aqueous liquid prior to formation of the non-ionic aqueous liquid.
  • switchable water which comprises a mixture of water and a switchable additive in its non-protonated, non-ionic form, so that at least a portion of the selected compound becomes associated with the switchable water to form an aqueous non-ionic solution
  • Yet another aspect provides a system for modulating an osmotic gradient across a membrane, comprising:
  • a switchable water comprising an additive having a switchable ionic strength on one side of said semi-permeable membrane
  • An aspect provides a desalination system comprising:
  • a draw solution comprising an additive having switchable ionic strength and water
  • a draw solution comprising an additive having switchable ionic strength
  • Another aspect provides a method of separating a solute from an aqueous solution, comprising combining in any order: water; a solute; CO 2 , COS, CS 2 or a combination thereof; and an additive that comprises at least one nitrogen atom that is sufficiently basic to be protonated by carbonic acid; and allowing separation of two components: a first component that comprises an ionic form of the additive wherein the nitrogen atom is protonated and optionally, water; and a second component that comprises the solute; wherein the solute is not reactive with the additive, CO 2 , COS, CS 2 or a combination thereof.
  • a method for destabilizing or preventing formation of a dispersion comprising combining in any order to form a mixture: water; a water-immiscible or water-insoluble ingredient; an additive that comprises at least one nitrogen that is sufficiently basic to be protonated by carbonic acid; and CO 2 , COS, CS 2 or a combination thereof; and allowing the mixture to separate into two components, a first component comprising the water-immiscible ingredient and a second component comprising water and an ionic form of the additive.
  • the additive is a compound of formula (1),
  • R 1 , R 2 , and R 3 are each independently: H; a substituted or unsubstituted C 1 to C 8 aliphatic group that is linear, branched, or cyclic, optionally wherein one or more C of the alkyl group is replaced by ⁇ —Si(R 10 ) 2 —O— ⁇ up to and including 8 C being replaced by 8 ⁇ —Si(R 10 ) 2 —O— ⁇ ; a substituted or unsubstituted C n Si m —, group where n and m are independently a number from 0 to 8 and n+m is a number from 1 to 8; a substituted or unsubstituted C 4 to C 8 aryl group wherein aryl is optionally heteroaryl, optionally wherein one or more C is replaced by a ⁇ —Si(R 10 ) 2 —O— ⁇ ; a substituted or unsubstituted aryl group having 4 to 8 ring atoms, optionally including one or
  • the ionic form of the additive is a compound of formula (2)
  • R 1 , R 2 , and R 3 are as defined for the compound of formula (1) above, and E is O, S or a mixture of O and S.
  • one or more of R 1 , R 2 , and R 3 comprise one or more nitrogen that is sufficiently basic to be protonated by carbonic acid.
  • each of the one or more nitrogen that is sufficiently basic to be protonated by carbonic acid is associated with a corresponding counter ion E 3 CH ⁇ in the compound of formula (2).
  • R 1 , R 2 , and R 3 are joined to form a heterocyclic ring.
  • the heterocyclic ring has 4 to 8 atoms in the ring.
  • R 1 , R 2 , and R 3 may be H.
  • R 1 , R 2 , and R 3 may be a substituted or unsubstituted C 1 to C 8 alkyl group that is linear, branched, or cyclic, optionally containing 1 to 8 ⁇ —Si(R 10 ) 2 —O— ⁇ .
  • R 1 , R 2 , and R 3 may be a substituted or unsubstituted C 1 to C 8 alkylene-C 5 to C 8 aryl group optionally containing 1 to 8 ⁇ —Si(R 10 ) 2 —O— ⁇ .
  • R 1 , R 2 , and R 3 may be a substituted or unsubstituted C 2 to C 8 alkenylene-C 5 to C 8 aryl group optionally containing 1 to 8 ⁇ —Si(R 10 ) 2 —O— ⁇ .
  • R 10 may be a substituted or unsubstituted: C 1 to C 8 alkyl, C 5 to C 8 aryl, heteroaryl having from 4 to 8 carbon atoms in the aromatic ring, or C 1 to C 8 alkoxy moiety.
  • the additive is a compound of formula (6),
  • n Si m group where n and m are independently a number from 0 to 8 and n+m is a number from 1 to 8;
  • aryl is optionally heteroaryl, optionally wherein one or more C is replaced by ⁇ —Si(R 10 ) 2 —O— ⁇ ;
  • a substituent is independently: alkyl; alkenyl; alkynyl; aryl; aryl-halide; heteroaryl; cycloalkyl; Si(alkyl) 3 ; Si(alkoxy) 3 ; halo; alkoxyl; amino; alkylamino; alkenylamino; amide; amidine; hydroxyl; thioether; alkylcarbonyl; alkylcarbonyloxy; arylcarbonyloxy; alkoxycarbonyloxy; aryloxycarbonyloxy; carbonate; alkoxycarbonyl; aminocarbonyl; alkylthiocarbonyl; amidine, phosphate; phosphate ester; phosphonato; phosphinato; cyano; acylamino; imino; sulfhydryl; alkylthio; arylthio; thiocarboxylate; dithiocarboxylate; sulfate; sulfato;
  • the ionic form of the additive is a compound of formula (6′):
  • R 1 , R 2 , R 3 and R 4 are as defined for the compound of formula (6) above, and E is O, S or a mixture of O and S.
  • the at least one nitrogen being sufficiently basic to be protonated by carbonic acid is the at least one nitrogen having a conjugate acid with a pK a range from about 6 to about 14, or about 8 to about 10.
  • the additive is MDEA (N-methyl diethanol-amine); TMDAB (N,N,N′,N′-tetramethyl-1,4-diaminobutane); THEED (N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine); DMAPAP (1-[bis[3-(dimethylamino)]propyl]amino]-2-propanol); HMTETA (1,1,4,7,10,10-hexamethyl triethylenetetramine) or DIAC(N′,N′′-(butane-1,4-diyl)bis(N,N-dimethylacetimidamide.
  • MDEA N-methyl diethanol-amine
  • TMDAB N,N,N′,N′-tetramethyl-1,4-diaminobutane
  • THEED N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine
  • DMAPAP 1-[bis[
  • the dilute aqueous solution is wastewater.
  • the combining in any order comprises adding a mixture comprising the solute and the additive to an aqueous solution that comprises CO 2 , COS, CS 2 or a combination thereof. In another embodiment, the combining in any order comprises forming a mixture by adding the solute to an aqueous solution that comprises CO 2 , COS, CS 2 or a combination thereof, and adding the additive.
  • number of moles of water in the aqueous solution and number of moles of basic nitrogen in the additive in the aqueous solution is approximately equivalent. In other embodiments of the above aspects, number of moles of water in the aqueous solution is in excess over number of moles of basic nitrogen in the additive in the aqueous solution.
  • the dispersion is an emulsion and the water-immiscible ingredient is a liquid or a supercritical fluid.
  • the dispersion is a reverse emulsion and the water-immiscible ingredient is a liquid or a supercritical fluid.
  • the dispersion is a foam and the water-immiscible ingredient is a gas.
  • the dispersion is a suspension and the water-immiscible ingredient is a solid.
  • a mixture may further comprise a surfactant.
  • the method is used as a sensor of CO 2 , COS or CS 2 ; a detector of CO 2 , COS or CS 2 ; a chemical switch; a surfactant deactivator; or to conduct electricity.
  • the aspect regarding modulating ionic strength, and the aspect regarding a method for destabilizing or preventing formation of a dispersion are used to remove water from a hydrophobic liquid or a solvent.
  • methods of these aspects are used in a desalination process or a wastewater treatment process.
  • FIG. 1 shows a chemical reaction equation and a schematic of the switching reaction between differing ionic strength forms of an aqueous solution of an amine.
  • FIG. 2 presents the chemical structures of various tertiary amines useful as additives in the present invention.
  • FIG. 5 shows multiple 1 H NMR spectra from a switchability study of HMTETA carried out in D 2 O at 400 MHz. Spectrum A was captured with no CO 2 treatment, spectrum B was captured after 20 minutes of CO 2 bubbling, and spectrum C was captured after 240 minutes of N 2 bubbling. This is discussed in Example 4 below.
  • FIG. 7 shows conductivity spectra for the responses of water and 1:1 v/v H 2 O: DMAE; 1:1 v/v H 2 O: MDEA; and 1:1 w/w H 2 O: THEED solutions to a CO 2 trigger over time. This is discussed in Example 5 below.
  • FIG. 10 shows a plot of the degree of deprotonation of 0.5 M solutions of DMAE and MDEA in D 2 O and a 0.1 M solution of THEED in D 2 O which have been switched with a CO 2 trigger to the removal of the trigger by nitrogen bubbling over time. This is discussed in Example 6 below.
  • FIG. 11 shows conductivity spectra for the responses of 1:1 v/v H 2 O: amine solutions to a CO 2 trigger over time, in which the amine is TMDAB ( ⁇ ), HMTETA ( ⁇ ), and DMAPAP ( ⁇ ). This is discussed in Example 7 below.
  • FIG. 14A-C schematically depict studies performed to monitor clay settling in switchable water according to various embodiments ( FIG. 14A ; Study 1 of Example 12; FIG. 14B Study 2 of Example 12; and FIG. 14C Study 3 of Example 12).
  • FIG. 16A-B shows the results of mixing a switchable water with kaolinite clay fines and treatment with CO 2 in the presence of clay ( FIG. 16A clay+1 mM TMDAB after 1 h CO 2 ; and FIG. 16D photographs of mixtures+TMDAB after CO 2 , and after N 2 ).
  • FIG. 17A-C shows the results of mixing a CO 2 treated filtrate (obtained from a mixture of switchable water with kaolinite clay fines) with clay ( FIG. 17A 1 h CO 2 filtrate+clay; FIG. 17B CO 2 blank+clay (control); FIG. 17C photographs of mixtures CO 2 filtrate+clay and CO 2 blank+clay (control)).
  • FIG. 20 depicts an alternative system and process for desalination by forward osmosis followed by removal of CO 2 (by heat or bubbling of a non-acidic gas) causing separation of much or all of the additive from the water, using a switchable water (“SW on” refers to the bicarbonate form of the switchable water and “SW off” refers to the non-ionized form of the switchable water).
  • SW on refers to the bicarbonate form of the switchable water
  • SW off refers to the non-ionized form of the switchable water
  • FIG. 21 depicts a system that includes means for reversibly converting a non-ionized form of switchable water to an ionized form of the switchable water.
  • FIG. 22 depicts a system for obtaining at least one compound from a mixture of compounds using switchable water that is reversibly switched from its non-ionic form to an ionized form.
  • aliphatic refers to hydrocarbon moieties that are linear, branched or cyclic, may be alkyl, alkenyl or alkynyl, and may be substituted or unsubstituted.
  • Alkenyl means a hydrocarbon moiety that is linear, branched or cyclic and contains at least one carbon to carbon double bond.
  • Aryl means a moiety including a substituted or unsubstituted aromatic ring, including heteroaryl moieties and moieties with more than one conjugated aromatic ring; optionally it may also include one or more non-aromatic ring.
  • C 5 to C 8 Aryl means a moiety including a substituted or unsubstituted aromatic ring having from 5 to 8 carbon atoms in one or more conjugated aromatic rings. Examples of aryl moieties include phenyl.
  • Heteroaryl means a moiety including a substituted or unsubstituted aromatic ring having from 4 to 8 carbon atoms and at least one heteroatom in one or more conjugated aromatic rings.
  • heteroatom refers to non-carbon and non-hydrogen atoms, such as, for example, O, S, and N. Examples of heteroaryl moieties include pyridyl tetrahydrofuranyl and thienyl.
  • Alkylene means a divalent alkyl radical, e.g., —C f H 2f — wherein f is an integer.
  • Alkenylene means a divalent alkenyl radical, e.g., —CHCH—.
  • Alkylene means a divalent aryl radical, e.g., —C 6 H 4 —.
  • Heteroarylene means a divalent heteroaryl radical, e.g., —C 5 H 3 N—.
  • Alkylene-aryl means a divalent alkylene radical attached at one of its two free valencies to an aryl radical, e.g., —CH 2 —C 6 H 5 .
  • Alkylene-arylene means a divalent alkylene radical attached at one of its two free valencies to one of the two free valencies of a divalent arylene radical, e.g., —CH 2 —C 6 H 4 —.
  • Alkenylene-arylene means a divalent alkenylene radical attached at one of its two free valencies to one of the two free valencies of a divalent arylene radical, e.g.,
  • substituents are alkyl, aryl, heteroaryl, and ether. It is noted that aryl halides are acceptable substituents. Alkyl halides are known to be quite reactive, and are acceptable so long as they do not interfere with the desired reaction. The substituents may themselves be substituted. For instance, an amino substituent may itself be mono or independently disubstituted by further substituents defined above, such as alkyl, alkenyl, alkynyl, aryl, aryl-halide and heteroaryl cycloalkyl (non-aromatic ring).
  • a gas that has substantially no carbon dioxide means that the gas has insufficient CO 2 content to interfere with the removal of CO 2 from the solution.
  • air may be a gas that has substantially no CO 2 .
  • Untreated air may be successfully employed, i.e., air in which the CO 2 content is unaltered; this would provide a cost saving.
  • air may be a gas that has substantially no CO 2 because in some circumstances, the approximately 0.04% by volume of CO 2 present in air is insufficient to maintain a compound in a switched form, such that air can be a trigger used to remove CO 2 from a solution and cause switching.
  • a gas that has substantially no CO 2 , CS 2 or COS has insufficient CO 2 , CS 2 or COS content to interfere with the removal of CO 2 , CS 2 or COS from the solution.
  • additive refers to a compound comprising at least one amine or amidine nitrogen that is sufficiently basic that when it is in the presence of water and CO 2 (which form carbonic acid), for example, the compound becomes protonated.
  • aqueous solution that includes such a switchable additive is subjected to a trigger, the additive reversibly switches between two states, a non-ionized state where the nitrogen is trivalent and is uncharged, and an ionized state where the nitrogen is protonated making it a 4-coordinate positively charged nitrogen atom.
  • the uncharged or non-ionic form of the additive is generally not specified, whereas the ionic form is generally specified.
  • the terms “ionized” or “ionic” as used herein in identifying a form the additive merely refer to the protonated or charged state of the amine or amidine nitrogen.
  • amidine additive refers to a molecule with a structure R 1 N ⁇ C(R 2 )—NR 3 R 4 , where R 1 through R 4 are independently hydrogen or aliphatic or aryl, which includes heteroaryl, or siloxyl, as discussed below.
  • R 1 through R 4 are independently hydrogen or aliphatic or aryl, which includes heteroaryl, or siloxyl, as discussed below.
  • the ionic form of an amidine is termed an “amidinium salt”.
  • a basic nitrogen or “a nitrogen that is sufficiently basic to be protonated by carbonic acid” is used to denote a nitrogen atom that has a lone pair of electrons available and susceptible to protonation.
  • carbonic acid CO 2 in water
  • CS 2 in water
  • COS in water
  • This term is intended to denote the nitrogen's basicity and it is not meant to imply which of the three trigger gases (CO 2 , CS 2 or COS) is used.
  • “Ionic” means containing or involving or occurring in the form of positively or negatively charged ions, i.e., charged moieties. “Nonionic” means comprising substantially of molecules with no formal charges. Nonionic does not imply that there are no ions of any kind, but rather that a substantial amount of basic nitrogens are in an unprotonated state. “Salts” as used herein are compounds with no net charge formed from positively and negatively charged ions.
  • “ionic liquids” are salts that are liquid below 100° C.; such liquids are typically nonvolatile, polar and viscous. “Nonionic liquids” means liquids that do not consist primarily of molecules with formal charges such as ions. Nonionic liquids are available in a wide range of polarities and may be polar or nonpolar; they are typically more volatile and less viscous than ionic liquids.
  • Ionic strength of a solution is a measure of the concentration of ions in the solution. Ionic compounds (i.e., salts), which dissolve in water will dissociate into ions, increasing the ionic strength of a solution. The total concentration of dissolved ions in a solution will affect important properties of the solution such as the dissociation or solubility of different compounds.
  • the ionic strength, I, of a solution is a function of the concentration of all ions present in the solution and is typically given by the equation (A),
  • c i is the molar concentration of ion i in mol/dm 3
  • z i is the charge number of that ion and the sum is taken over all ions dissolved in the solution.
  • volumes are not additive such that it is preferable to calculate the ionic strength in terms of molality (mol/kg H 2 O), such that ionic strength can be given by equation (B),
  • a “polar” molecule is a molecule in which some separation occurs of the centres of positive and negative charge (or of partial positive and partial negative charge) within the molecule.
  • Polar solvents are typically characterized by a dipole moment. Ionic liquids are considered to be polar solvents, even though a dipole may not be present, because they behave in the same manner as polar liquids in terms of their ability to solubilize polar solutes, their miscibility with other polar liquids, and their effect on solvatochromic dyes.
  • a polar solvent is generally better than a nonpolar (or less polar) solvent at dissolving polar or charged molecules.
  • Nonpolar means having weak solvating power of polar or charged molecules. Nonpolar solvents are associated with either having little or no separation of charge, so that no positive or negative poles are formed, or having a small dipole moment. A nonpolar solvent is generally better than a polar solvent at dissolving nonpolar, waxy, or oily molecules.
  • Hydrophobic molecules are usually nonpolar and non-hydrogen bonding. Such molecules tend to associate with other neutral and nonpolar molecules.
  • the degree of hydrophobic character of a molecule, or hydrophobicity can be quantified by a log P value.
  • the log P is the logarithm of the lipid-water partition coefficient, P, of a molecule.
  • the lipid-water partition coefficient seeks to determine the ratio of solubilities of a molecule in a lipid environment and a hydrophilic aqueous environment.
  • the lipid-water partition coefficient is the equilibrium constant calculated as the ratio of the concentration of the molecule in the lipid phase divided by the concentration of the molecule in the aqueous phase.
  • Partition coefficients can be determined using n-octanol as a model of the lipid phase and an aqueous phosphate buffer at pH 7.4 as a model of the water phase. Because the partition coefficient is a ratio, it is dimensionless. The partition coefficient is an additive property of a molecule, because each functional group helps determine the hydrophobic or hydrophilic character of the molecule. If the log P value is small, the molecule will be miscible with (or soluble in) water such that the water and molecule will form a single phase in most proportions. If the log P value is large, the compound will be immiscible with (or insoluble in) water such that a two-phase mixture will be formed with the water and molecule present as separate layers in most proportions.
  • hydrophilicity is a property of a molecule allowing it to be dissolved in or miscible with a mass of water, typically because the molecule is capable of transiently bonding with water through hydrogen bonding.
  • Hydrophilic molecules are usually polar. Such molecules may thus be compatible with other polar molecules.
  • Hydrophilic molecules may comprise at least one hydrophilic substituent which can transiently bond with water through hydrogen bonding. Hydrophilic substituents include amino, hydroxyl, carbonyl, carboxyl, ester, ether and phosphate moieties.
  • “Insoluble” refers to a poorly solubilized solid in a specified liquid such that when the solid and liquid are combined a heterogeneous mixture results. It is recognized that the solubility of an “insoluble” solid in a specified liquid might not be zero but rather it would be smaller than that which is useful in practice.
  • the use of the terms “soluble”, “insoluble”, “solubility” and the like are not intended to imply that only a solid/liquid mixture is intended. For example, a statement that the additive is soluble in water is not meant to imply that the additive must be a solid; the possibility that the additive may be a liquid is not excluded.
  • miscibility is a property of two liquids that when mixed provide a homogeneous solution.
  • miscibility is a property of two liquids that when mixed provide a heterogeneous mixture, for instance having two distinct phases (i.e., layers).
  • contaminant refers to one or more compounds that is intended to be removed from a mixture and is not intended to imply that the contaminant has no value.
  • emulsion means a colloidal suspension of a liquid in another liquid.
  • an emulsion refers a suspension of hydrophobic liquid (e.g., oil) in water whereas the term “reverse emulsion” refers to a suspension of water in a hydrophobic liquid.
  • suspension means a heterogeneous mixture of fine solid particles suspended in liquid.
  • foam means a colloidal suspension of a gas in a liquid.
  • the term “dispersion” means a mixture of two components, wherein one component is distributed as particles, droplets or bubbles in the other component, and is intended to include emulsion (i.e., liquid in liquid, liquid in supercritical fluid, or supercritical fluid in liquid), suspension (i.e., solid in liquid) and foam (i.e., gas in liquid).
  • emulsion i.e., liquid in liquid, liquid in supercritical fluid, or supercritical fluid in liquid
  • suspension i.e., solid in liquid
  • foam i.e., gas in liquid
  • NMR Nuclear Magnetic Resonance
  • IR spectroscopy means infrared spectroscopy.
  • UV spectroscopy means ultraviolet spectroscopy.
  • DBU means 1,8-diazabicyclo-[5.4.0]-undec-7-ene.
  • DMAE means N,N-(dimethylamino)ethanol.
  • MDEA means N-methyl diethanol-amine.
  • TDAB means N,N,N′,N′-tetramethyl-1,4-diaminobutane.
  • TEDAB means N,N,N′,N′-tetraethyl-1,4-diaminobutane.
  • TEEED means N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine.
  • DMAPAP means 1-[bis[3-(dimethylamino)]propyl]amino]-2-propanol.
  • HMTETA means 1,1,4,7,10,10-hexamethyl triethylenetetramine. Structural formulae for these compounds are shown in FIG. 2 .
  • US Patent Application Publication No. 2008/0058549 discloses a solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, such as CO 2 .
  • the nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol or a combination thereof.
  • Aqueous mixtures including switchable water as described herein are useful for extraction of a solute from a mixture, a solution, or a matrix. After use in its lower ionic strength form for example, for extraction of a water soluble solute, the switchable water is triggered to switch to its higher ionic strength form, to cause the precipitation or separation of the solute. The switchable water can then be re-used by switching it back to the lower ionic strength form.
  • Solutes for extraction are either pure compounds or mixtures of compounds. They include both contaminants and desired materials.
  • Desired solutes to be extracted include, without limitation, medicinal compounds, organic compounds, intermediate compounds, minerals, synthetic reagents, oils, sugars, foods, flavorants, fragrances, dyes, pesticides, fungicides, fuels, spices, and like materials.
  • selected solutes include the following: plant extracts (e.g., lignin, cellulose, hemicellulose, pyrolysis products, leaf extracts, tea extracts, petal extracts, rose hip extracts, nicotine, tobacco extracts, root extracts, ginger extracts, sassafras extracts, bean extracts, caffeine, gums, tannins, carbohydrates, sugars, sucrose, glucose, dextrose, maltose, dextrin); other bio-derived materials (e.g., proteins, creatines, amino acids, metabolites, DNA, RNA, enzymes); alcohols, methanol, ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol, 2-butanol, t-butanol, 1,2-propanediol, glycerol, and the like; products of organic synthesis (e.g., ethylene glycol, 1,3-propanediol, polymers, poly(ethylene glycol, 1,
  • Selected compounds that may be suited to extraction methods described herein include compounds that are soluble to different degrees in water of lower ionic strength and water of higher ionic strength. Certain selected solutes are more soluble in aqueous solutions as described herein that have lower ionic strength and include an amine additive than they are in neat water. Because the following description is about a reversible reaction that proceeds from low ionic strength to high ionic strength and back again, over and over, one must choose one of these two states to begin the process. However, this choice is arbitrary, and as described below, one could start with either state depending on the specific application.
  • only ionic form of the switchable additive is soluble in water, such that when the additive is converted to its non-ionic form, two phases are formed, with the non-ionic form of the additive in the non-aqueous phase.
  • the non-aqueous phase can include only the non-ionic form of the switchable additive, or it can include a solvent that is not soluble or miscible with water, such as a pre-existing hydrophobic liquid phase (non-aqueous solvent).
  • the switchable additive (also referred to herein as an “additive”) is a compound comprising an amine nitrogen that is sufficiently basic that when it is in the presence of water and CO 2 (which form carbonic acid), for example, it becomes protonated.
  • an aqueous solution that includes such a switchable additive is subjected to a trigger, the additive reversibly switches between two states, a non-ionic state where the amine nitrogen is trivalent and is uncharged, and an ionic state where the amine nitrogen is protonated making it a 4-coordinate positively charged nitrogen atom. Accordingly, the charged amine moiety has a negatively charged counterion that is associated with it in solution. The nature of the counterion depends on the trigger used and will be described below.
  • An aqueous solution comprising the additive in its ionic state is distinguishable from an aqueous solution comprising the compound in its non-ionic state by comparing the ionic strengths.
  • the switchable water comprises water and an amine additive that is peralkylated.
  • peralkylated means that the amine has alkyl or other groups connected to nitrogen atoms that are sufficiently basic that they are protonated by carbonic acid, so that the molecule contains no N—H bonds.
  • Amine compounds of formulae (1) and (4) which do not have any N—H bonds are preferred because most primary and secondary amines are capable of carbamate formation during switching with CO 2 . Removal of carbamate ions in water by heating and bubbling with a flushing gas to switch the salt back to the amine form can be difficult.
  • Stable carbamate formation can be greatly reduced by using bulky substituents on primary and secondary amines to provide steric hindrance (Bougie F. and Illiuta M. C., Chem Eng Sci, 2009, 64, 153-162 and references cited therein). Steric hindrance allows for easier CO 2 desorption.
  • Tertiary amines are preferred since their ionic forms do not include carbamates but rather are bicarbonates anions.
  • primary and secondary amines that have bulky substituents are preferred because the switching process may be faster than that observed with tertiary amines.
  • the inventors reasonably expect that efficient reversible switching is possible between non-ionic and ionic forms with primary and secondary amines that have bulky substituents.
  • the inventors also reasonably expect that the presence of a small amount of a secondary or primary amine that is capable of carbamate formation, in addition to a switchable additive compound of formula (1), would not inhibit switching of the additive.
  • the presence of a small amount of secondary or primary amine may increase the rate of switching of the additive between its ionic and non-ionic forms.
  • a primary amine additive can be used.
  • the reversion of the ionic form of the primary amine additive to the non-ionic form is too difficult to be of practical use in application where reversion is required. Rather, a primary amine additive can be valuable in situations in which reversal of the additive ionization is unnecessary.
  • a secondary amine additive can be used. As demonstrated in Example 22, certain secondary amine additives are reversibly switchable between an ionized and a non-ionized form.
  • Useful additives can comprise more than one nitrogen centre. Such compounds are called, for example, diamines, triamines or polyamines.
  • Polyamines include polymers with nitrogens in the polymer backbone. Polyamines also include polymers with nitrogens in pendant groups. Polyamines also include polymers with nitrogens in the polymer backbone and with nitrogens in pendant groups. Polyamines also include small molecules (i.e., not polymers) that have more than one nitrogen atom.
  • polyamines examples include poly(vinylamine), poly(N-vinyl-N,N-dimethylamine), poly(allylamine)poly(N-allyl-N,N-dimethylamine), 1,2,3,4,5,6-hexakis(N,N-dimethylaminomethyl)benzene (e.g., C 6 (CH 2 NMe 2 ) 6 ) and 1,2,3,4,5,6-hexakis(N,N-dimethylaminomethyl)cyclohexane (e.g., C 6 H 6 (CH 2 NMe 2 ) 6 ).
  • An example of a method to prepare polyamine additive includes reacting homopolymers of propylene oxide or ethylene oxide with maleic anhydride under free radical conditions either in solution or in solid state to yield grafted material.
  • homopolymers random or block copolymers of propylene oxide and ethylene oxide can be used.
  • the grafted material is reacted with a diamine (e.g., N1,N1-dimethylpropane-1,3-diamine) to form a polyamine additive that is useful as an additive in embodiments of the invention described herein.
  • a diamine e.g., N1,N1-dimethylpropane-1,3-diamine
  • Another example of a method to prepare polyamine additive includes reacting a polymer of acrylic acid (or a corresponding ester) with a diamine (e.g., N1,N1-dimethylpropane-1,3-diamine) to form the additive via amide bond formation.
  • a polymer of acrylic acid or a corresponding ester
  • a diamine e.g., N1,N1-dimethylpropane-1,3-diamine
  • carboxylic acid or a corresponding ester thereof
  • An example of such a polymer includes a random or block co-polymer of polystyrene and a polymer comprising carboxylic acid.
  • the amide bond is formed, for example, via dehydration, acid chloride reaction, catalytically, or the like.
  • any secondary or primary amide nitrogen atom can be alkylated to further tune solubility properties of the additive.
  • ratios of the components of the polyamine are controlled such that, at a given temperature and pressure, the additive in its “off” state is substantially insoluble in water and in its “on” state, after exposure to CO 2 and H 2 O, is soluble in water.
  • the additive is immiscible or insoluble, or poorly miscible or poorly soluble, in water but is converted by a trigger to a form that is ionic and is soluble or miscible with water.
  • the immiscibility or insolubility of the additive in its non-ionized form is advantageous in some applications because the additive can be readily removed from the water, when such removal is desired, by the removal of the trigger.
  • TEDAB is an example of an additive that functions according to this embodiment.
  • the additive is a compound of formula (1),
  • R 1 , R 2 , and R 3 are independently:
  • aryl is optionally heteroaryl, optionally wherein one or more C is replaced by a ⁇ —Si(R 10 ) 2 —O— ⁇ unit;
  • a substituent may be independently: alkyl; alkenyl; alkynyl; aryl; aryl-halide; heteroaryl; cycloalkyl (non-aromatic ring); Si(alkyl) 3 ; Si(alkoxy) 3 ; halo; alkoxyl; amino, which includes diamino; alkylamino; alkenylamino; amide; amidine; hydroxyl; thioether; alkylcarbonyl; alkylcarbonyloxy; arylcarbonyloxy; alkoxycarbonyloxy; aryloxycarbonyloxy; carbonate; alkoxycarbonyl; aminocarbonyl; alkylthiocarbonyl; phosphate; phosphate ester; phosphonato; phosphinato; cyano; acylamino; imino; sulfhydryl; alkylthio; arylthio; thiocarboxylate; dithiocarboxylate;
  • the present application further provides a switchable water comprising water and a salt of formula (3).
  • a switchable water comprising water and a salt of formula (3).
  • an amine compound of formula (1) in the presence of water and CO 2 , converts to an ammonium bicarbonate, depicted as a salt of formula (3) as shown below
  • a water-soluble additive of formula (1) can provide a switchable water that is a single-phase mixture and can function as a solvent for water-soluble substances.
  • an aqueous solution of the water-soluble compound of formula (1) in the absence of other components, will have an ionic strength of zero since no charged species are present; in practice, the ionic strength might be small but higher than zero due to some impurities such as dissolved air or small amounts of salts. Because of the zero or small ionic strength, a switchable water comprising a water-miscible compound of formula (1) is particularly useful as a solvent for substances which are miscible or soluble in low ionic strength aqueous solutions.
  • water-insoluble, or poorly soluble, additive of formula (1) can provide a switchable water that is a two-phase mixture.
  • the water in the two-phase mixture in the absence of other components, will have an ionic strength of zero since no charged species are present; in practice, the ionic strength might be small but higher than zero due to some impurities such as dissolved air or small amounts of salts.
  • a switchable water mixture comprising a water-immiscible, or poorly miscible additive of formula (1) is particularly useful as a solvent for substances which are miscible or soluble in low ionic strength aqueous solutions.
  • the salt of formula (2) can be switched back into a non-ionic additive of formula (1) by removal of the ionizing trigger, such as CO 2 , or by addition of a non-ionizing trigger. This is advantageous because it allows the re-use of the switchable water.
  • R 5 and R 6 are independently selected from the definitions of R 1 , R 2 and R 3 of formula (1);
  • R 4 is a divalent bridging group selected from a substituted or unsubstituted to C 8 alkylene group that is linear, branched or cyclic; a substituted or unsubstituted C 2 to C 8 alkenylene group that is linear, branched or cyclic; a substituted or unsubstituted —C n Si m — group where n and m are independently a number from 0 to 8 and n+m is a number from 1 to 8; a substituted or unsubstituted C 5 to C 8 arylene group optionally containing 1 to 8 ⁇ —Si(R 10 ) 2 —O— ⁇ units; a substituted or unsubstituted heteroarylene group having 4 to 8 atoms in the aromatic ring optionally containing 1 to 8 ⁇ —Si(R 10 ) 2 —O— ⁇ units; a —(Si(R 10 ) 2 —O) p — chain in which “p” is from
  • compounds of formula (4) are water-soluble. Additives with large values of “a” are likely to be more effective in increasing the ionic strength when they are in their ionic forms but may suffer from poor solubility in water when they are in their non-ionic forms. For the avoidance of doubt, it is pointed out that when “a”>0, in a repeat unit —N(R 5 )—R 4 —, R 4 and R 5 may have a different definition from another such repeat unit.
  • the additive is an oligomer or a polymer that contains one or more than one nitrogen atom(s) that is sufficiently basic to be protonated by carbonic acid in the repeating unit of the oligomer or polymer.
  • the nitrogen atoms are within the backbone of the polymer.
  • the additive of formula (4) is a specific example of such a polymer in which the nitrogen atom(s) are within the backbone of the polymer.
  • the additive is an oligomer or polymer that contains one or more than one nitrogen atom(s) that is sufficiently basic to be protonated by carbonic acid in a pendant group that is part of the repeating unit, but that is not situated along the backbone of the oligomer or polymer.
  • amidine groups may be part of the backbone of the oligomer or polymer or may be in pendant group s that are part of the repeating unit.
  • Example polymer additives having formulae (5a-f) are shown below.
  • “n” refers to the number of repeat units containing at least one basic group and “m” refers to the number of repeat units containing no basic group.
  • Additives with large values of “n” are likely to be more effective in increasing the ionic strength when they are in their ionic forms but may have poor solubility in water when they are in their non-ionic forms.
  • the backbone of the polymer be entirely made of carbon and hydrogen atoms; in some embodiments, the backbone may comprise other elements.
  • the polymer may have a polysiloxane backbone with amine-containing side groups, a polyether backbone with amine-containing side groups, or the backbone can itself comprise amine groups.
  • it is preferably to have a backbone or side groups that is reasonably hydrophilic or polar.
  • a hydrophilic or polar backbone or side groups can help the charged form of the additive from precipitating.
  • R 1 can be substituted with a tertiary amine, which may itself be further substituted with a tertiary amine, as shown in the compound of formula (4).
  • tertiary amine sites may be protonated when contacted with CO 2 , CS 2 or COS in the presence of water.
  • the present invention provides an ionic solution comprising water and a salt of formula (4).
  • Each of R 1 , R 2 , and R 3 in the compound of formula (1) can be substituted with a tertiary amine which may itself be further substituted with a tertiary amine.
  • tertiary amine sites may be protonated when contacted with CO 2 , CS 2 or COS in the presence of water.
  • amine compounds having more than one amine site i.e. polyamines
  • amine compounds of formula (4) may not be protonated at every tertiary amine site when contacted with CO 2 , COS or CS 2 . Consequently, it should not be assumed that all basic sites must be protonated in order to effectively raise the ionic strength of the switchable water.
  • the pK aH i.e. the pK a of the conjugate acid (i.e., ionic form) of the amine compound of formula (1) should not be so high as to render the protonation irreversible.
  • the ionic form of the additive should be capable of deprotonation through the action of the non-ionizing trigger (which is described below to be, for example, heating, bubbling with a flushing gas, or heating and bubbling with a flushing gas).
  • the pK aH is in a range of about 6 to about 14.
  • the pK aH is in a range of about 7 to about 13.
  • the pK aH is in a range of about 7.8 to about 10.5.
  • the pK aH is in a range of about 8 to about 10.
  • Additives useful in a switchable water can have higher aliphatic (C 5 -C 8 ) and/or siloxyl groups. Monocyclic, or bicyclic ring structures, can also be used. A higher number of aliphatic groups can cause a compound to be waxy and water-immiscible at room temperature. As described above, this may be advantageous if it means that the non-ionic form of the additive is water-immiscible, but the ionic form is water miscible.
  • the additive is liquid at room temperature.
  • the aliphatic and/or siloxyl chain length is 1 to 6, more preferably 1 to 4.
  • a siloxyl group contains ⁇ —Si(R 10 ) 2 —O— ⁇ units; where R 10 is a substituted or unsubstituted C 1 to C 8 alkyl, C 5 to C 8 aryl, heteroaryl having from 4 to 8 carbon atoms in the aromatic ring or C 1 to C 8 alkoxy moiety.
  • R 10 is a substituted or unsubstituted C 1 to C 8 alkyl, C 5 to C 8 aryl, heteroaryl having from 4 to 8 carbon atoms in the aromatic ring or C 1 to C 8 alkoxy moiety.
  • the term “aliphatic/siloxyl” is used as shorthand to encompass aliphatic, siloxyl, and a chain which is a combination of aliphatic and siloxyl units.
  • the additive comprises a group that includes an ether or ester moiety.
  • an aliphatic group is alkyl.
  • Aliphatic groups may be substituted with one or more moieties such as, for example, alkyl, alkenyl, alkynyl, aryl, aryl halide, hydroxyl, heteroaryl, non-aromatic rings, Si(alkyl) 3 , Si(alkoxy) 3 , halo, alkoxy, amino, ester, amide, amidine, guanidine, thioether, alkylcarbonate, phosphine, thioester, or a combination thereof.
  • Reactive substituents such as alkyl halide, carboxylic acid, anhydride and acyl chloride are not preferred.
  • FIG. 1 a chemical scheme and schematic drawing are shown for a switchable ionic strength solvent system of a water-miscible amine additive of formula (1) and water.
  • the chemical reaction equation shows an additive (non-ionic form) which is an amine compound of formula (1) and water on the left hand side and an ionic form of the additive as an ammonium bicarbonate salt of formula (3) on the right hand side. This reaction can be reversed, as indicated.
  • the schematic shows the same reaction occurring in the presence of tetrahydrofuran (THF) wherein a single-phase aqueous solution of an amine additive (e.g., a compound of formula (1)) that is water-miscible, water and THF is shown on the left side under a blanket of N 2 . A two phase (layered) mixture is shown on the right side under a blanket of CO 2 . The two phases being an aqueous solution of the salt of formula (3) comprising ammonium bicarbonate and water, and THF.
  • THF tetrahydrofuran
  • DMEA is N,N-(dimethylamino)ethanol, which in formula (1) has R 1 is methyl; R 2 is methyl; and R 3 is C 2 H 4 OH).
  • MDEA is N-methyl diethanolamine, which in formula (1) has R 1 is methyl; R 2 is C 2 H 4 OH; and R 3 is C 2 H 4 OH). Both compounds, DMEA and MDEA, are monoamines having a single tertiary amine group.
  • TMDAB is N,N,N′,N′-tetramethyl-1,4-diaminobutane, which in formula (1) has R 1 is methyl; R 2 is methyl; R 3 is C 4 H 8 N(CH 3 ) 2 ).
  • THEED is N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine, which in formula (1) has R 1 is C 2 H 4 OH; R 2 is C 2 H 4 OH; and R 3 is C 2 H 4 N(C 2 H 4 OH) 2 ).
  • Compounds TMDAB and THEED are diamines having two tertiary amine groups.
  • Compound DMAPAP is a triamine, having three tertiary amine groups, 1-[bis[3-(dimethylamino)]propyl]amino]-2-propanol, which in formula (1) has R 1 is methyl; R 2 is methyl; and R 3 is C 3 H 6 N(CH 2 CH(OH)CH 3 )C 3 H 6 N(CH 3 ) 2 ).
  • Compound HMTETA is a tetramine, having four tertiary amine groups, 1,1,4,7,10,10-hexamethyl triethylenetetramine, which in formula (1) has R 1 is methyl; R 2 is methyl; and R 3 is C 2 H 4 N(CH 3 )C 2 H 4 N(CH 3 )C 2 H 4 N(CH 3 ) 2 ). These compounds are discussed further in the working examples.
  • conductivity spectra are shown for the responses to a CO 2 trigger over time the following solutions: 1:1 v/v H 2 O:DMAE; 1:1 v/v H 2 O:MDEA; and 1:1 w/w H 2 O:THEED. Experimental details are discussed in Example 5 below.
  • conductivity spectra are shown for the responses of 1:1 v/v H 2 O:DMAE; 1:1 v/v H 2 O:MDEA; and 1:1 w/w H 2 O:THEED solutions, which had been switched with a CO 2 trigger, to the removal of CO 2 by nitrogen bubbling over time. Experimental details are discussed in Example 5 below.
  • FIG. 9 a plot of the degree of protonation of 0.5 M solutions of DMAE and MDEA in D 2 O and a 0.1 M aqueous solution of THEED in D 2 O resulting from exposure to a CO 2 trigger over time is shown. This is discussed in Example 6 below.
  • FIG. 10 a plot of the degree of deprotonation of 0.5 M solutions of DMAE and MDEA in D 2 O and a 0.1 M solution of THEED in D 2 O, which have been switched with a CO 2 trigger, to the removal of the trigger by nitrogen bubbling over time is shown. This is discussed in Example 6 below.
  • FIG. 13 five photographs A-E representing different stages of an experiment exhibiting how the switchable ionic strength character of amine additive TMDAB can be used to disrupt an emulsion of water and n-decanol are shown. This is discussed in Example 8 below.
  • the switchable additive is an amidine having formula (6):
  • n is a number from 1 to 6 sufficient to balance the overall charge of the amidinium cation
  • E is O, S or a mixture of O and S.
  • a non-reversible switch between a non-ionic (e.g., deprotonated amine) state and an ionic (protonated) state is sufficient.
  • a non-reversible switch between an ionic (e.g., protonated amine) state and a non-ionic (deprotonated) state is sufficient.
  • the switching between ionic and non-ionic states is reversible. Accordingly the following discussion will describe several triggers.
  • An example of a non-ionizing trigger for converting the ionic state (e.g., protonated amine) to the non-ionic state (e.g., deprotonated amine) in an aqueous solution that has little or no dissolved CO 2 is addition of a base to the aqueous solution.
  • An example of an ionizing trigger for converting the non-ionic state (e.g., deprotonated amine) to the ionic state (e.g., protonated amine) in an aqueous solution is addition of an acid to the aqueous solution.
  • the compound of formula (1) can advantageously be converted, in the presence of water, from a water-soluble non-ionic amine form to an ionic form that is also water-soluble.
  • the conversion occurs when the aqueous non-ionic solution is contacted with an ionizing trigger that is a gas that liberates hydrogen ions in the presence of water.
  • Hydrogen ions protonate the amine nitrogen of the non-ionic compound to form a cation and, in the case of a CO 2 trigger, bicarbonate anion acts as a counterion and a salt form is formed.
  • This aqueous salt solution is a single-phase ionic aqueous solution. More particularly, the ionic form is an ammonium salt.
  • the ionic form is an ammonium salt.
  • One skilled in the art will recognize that a small amount of carbonate anions will also form and may act as counterions to the protonated ammonium cations.
  • the additive in the example in which the additive is immiscible or insoluble, or poorly miscible or poorly soluble, in water, it can be converted, in the presence of water, to an ionic form that is also water-soluble.
  • the conversion can occurs when the mixture of non-ionic additive and water is contacted with a trigger gas that liberates hydrogen ions in the presence of water.
  • Hydrogen ions protonate the amine nitrogen of the non-ionic compound to form a cation and, in the case of a CO 2 trigger, bicarbonate anion acts as a counterion and a salt form is formed.
  • This aqueous salt solution is a single-phase ionic aqueous solution. More particularly, the ionic form is an ammonium salt.
  • the ionic form is an ammonium salt.
  • One skilled in the art will recognize that a small amount of carbonate anions will also form and may act as counterions to the protonated ammonium cations.
  • Group (i) includes gases that liberate hydrogen ions in the presence of a base, for example, HCN and HCl (water may be present, but is not required).
  • Group (ii) includes gases that when dissolved in water react with water to liberate hydrogen ions, for example, CO 2 , NO 2 , SO 2 , SO 3 , CS 2 and COS.
  • CO 2 in water will produce HCO 3 ⁇ (bicarbonate ion) and CO 3 2 ⁇ (carbonate ion) and hydrogen counterions, with bicarbonate being the predominant species at pH 7.
  • the gases of group (ii) will liberate a smaller amount of hydrogen ions in water in the absence of a base, and will liberate a larger amount of hydrogen ions in water in the presence of a base.
  • Preferred gases that liberate hydrogen ions are those wherein the salt form switches to its non-ionic (amine) form when the same gas is expelled from the environment.
  • CO 2 is particularly preferred.
  • Hydrogen ions produced from dissolving CO 2 in water protonate the amine.
  • the counterion for the ammonium ion is predominantly bicarbonate.
  • some carbonate ions may also be present in solution and the possibility that, for example, two ammonium molecules, each with a single positive charge, associate with a carbonate counterion is not excluded.
  • the ammonium cation is deprotonated and thus is converted to its non-ionic (amine) form.
  • gases that liberate hydrogen ions behave similarly to CO 2 such that their reaction with amine and water is fairly easily reversed. However, they are not typically preferred because their use in conjunction with water and an amine could cause the formation of highly toxic H 2 S.
  • alternative gases that liberate hydrogen ions are used instead of CO 2 , or in combination with CO 2 , or in combination with each other.
  • Alternative gases that liberate hydrogen ions e.g., HCl, SO 2 , HCN
  • one or more such alternative gases may be readily available and therefore add little to no extra cost.
  • gases or the acids generated from their interaction with water, are likely to be so acidic that the reverse reaction, i.e., converting the ammonium salt to the amine form, may not proceed to completion as easily as the corresponding reaction with CO 2 .
  • Group (i) gases HCN and HCl are less preferred triggers because of their toxicity and because reversibility would likely require a strong base.
  • Contacting a water-soluble compound of formula (1) with a CO 2 , CS 2 or COS trigger in the presence of water may preferably comprise: preparing a switchable water comprising water and a water-soluble additive of formula (1); and contacting the switchable water with a CO 2 , CS 2 or COS trigger.
  • the contacting a water-soluble compound of formula (1) with CO 2 , CS 2 or COS in the presence of water may comprise: first preparing an aqueous solution of CO 2 , CS 2 or COS in water; and subsequently mixing the aqueous solution with a water-soluble additive of formula (1) to form a switchable water.
  • the contacting a water-soluble additive of formula (1) with CO 2 , CS 2 or COS in the presence of water may comprise: dissolving CO 2 , CS 2 or COS in a water-soluble additive of formula (1) that is in a liquid state to provide a liquid; and mixing the non-aqueous liquid with water to form a switchable water.
  • Contacting a water-insoluble compound of formula (1) with a CO 2 , CS 2 or COS trigger in the presence of water may preferably comprise: preparing a switchable water comprising water and a water-insoluble additive of formula (1); and contacting the switchable water with a CO 2 , CS 2 or COS trigger.
  • the contacting a water-insoluble compound of formula (1) with CO 2 , CS 2 or COS in the presence of water may comprise: first preparing an aqueous solution of CO 2 , CS 2 or COS in water; and subsequently mixing the aqueous solution with a water-insoluble additive of formula (1) to form a switchable water.
  • the contacting a water-insoluble additive of formula (1) with CO 2 , CS 2 or COS in the presence of water may comprise: dissolving CO 2 , CS 2 or COS in a water-insoluble additive of formula (1) that is in a liquid state to provide a liquid; and mixing the non-aqueous liquid with water to form a switchable water.
  • Depletion of CO 2 , CS 2 or COS from a switchable water is obtained by using of non-ionizing trigger such as: heating the switchable water; exposing the switchable water to air; exposing the switchable water to vacuum or partial vacuum; agitating the switchable water; exposing the switchable water to a gas or gases that has insufficient CO 2 , CS 2 or COS content to convert the non-ionic state to the ionic state; flushing the switchable water with a gas or gases that has insufficient CO 2 , CS 2 or COS content to convert the non-ionic state to the ionic state; or any combination thereof.
  • non-ionizing trigger such as: heating the switchable water; exposing the switchable water to air; exposing the switchable water to vacuum or partial vacuum; agitating the switchable water; exposing the switchable water to a gas or gases that has insufficient CO 2 , CS 2 or COS content to convert the non-ionic state to the ionic state; flushing the switchable water with
  • Preferred flushing gases are N 2 , air, air that has had its CO 2 component substantially removed, and argon.
  • Less preferred flushing gases are those gases that are costly to supply and/or to recapture, where appropriate. However, in some applications one or more flushing gases may be readily available and therefore add little to no extra cost. In certain cases, flushing gases are less preferred because of their toxicity, e.g., carbon monoxide.
  • Air is a particularly preferred choice as a flushing gas, where the CO 2 level of the air (today commonly 380 ppm) is sufficiently low that an ionic form (ammonium salt) is not maintained in its salt form. Untreated air is preferred because it is both inexpensive and environmentally sound.
  • CO 2 may be provided from any convenient source, for example, a vessel of compressed CO 2 (g) or as a product of a non-interfering chemical reaction.
  • the amines of the invention are able to react with CO 2 at 1 bar or less to trigger the switch to their ionic form.
  • regeneration of a water-miscible compound of formula (1) from an ionic aqueous solution of a salt of formula (2) can be achieved by either active or passive means.
  • the regeneration may be achieved passively if an insufficient concentration of an ionizing trigger, such as CO 2 , is present in the surrounding environment to keep the additive switched to the ionic form.
  • an ionizing trigger such as CO 2 could be gradually lost from the aqueous solution by natural release.
  • No non-ionizing trigger, such as heating or active contacting with flushing gases would be required. Heating or contacting with flushing gases would be quicker but may be more expensive.
  • the amine additive in its non-ionic state is a liquid, in other embodiments the amine additive in its non-ionic state is a solid. Whether liquid or solid, they may be miscible or immiscible with water.
  • the ionic form of the additive e.g., ammonium bicarbonate
  • the ionic form of the additive is a liquid
  • the ionic form of the additive is a solid. Whether liquid or solid, they may be miscible or immiscible with water.
  • the mole ratio of water and basic nitrogen sites in the amine capable of protonation is at least about equimolar. It will be apparent to one skilled in the art that when the ionic form is prepared from this mixture, there will remain little or no unreacted reactant(s), and thus little or no water after conversion to the salt form.
  • the ratio of non-gaseous reactants is greater than equimolar, i.e., the number of moles of water is greater than the number of moles of basic nitrogen sites in the amine capable of protonation. This provides additional, unreacted water which is not consumed in the switching reaction. This may be necessary to ensure a single phase liquid mixture should the neat resulting salt be a solid, thereby providing a single phase aqueous solution.
  • a very high ratio of moles of water to moles of non-ionic additive (amine) is preferred so that the cost of the aqueous solvent can be decreased; it is assumed that the amine additive is more expensive than the water. It is preferred that sufficient water is present to dissolve the salt formed after switching so that an ionic aqueous solution is obtained.
  • unsolubilized salt will be present as a precipitate.
  • the ratio of ⁇ moles of water ⁇ to ⁇ moles of basic nitrogen sites in the amine capable of protonation ⁇ be equimolar, substantially all the water would be consumed in a complete switching reaction.
  • the salt was a solid rather than an ionic liquid, this solid would form as a precipitate.
  • the formation of the salt as a precipitate may be advantageous in some circumstances because it is easily recoverable, for instance by filtration.
  • an aspect provided herein is a method and system for switching the ionic strength of water or an aqueous solution.
  • the method comprises the step of mixing water or an aqueous solution with a switchable additive, before, after or simultaneously with the introduction of an ionizing trigger to ionize the switchable additive and consequently raise the ionic strength of the mixture of the water or the aqueous solution and the switchable additive.
  • the method additionally comprises the step of introducing a non-ionizing trigger to reverse the ionization of the switchable additive.
  • a switchable water system that comprises: means for providing a switchable additive comprising at least one nitrogen that is sufficiently basic to be protonated by carbonic acid; means for adding the additive to water or to an aqueous solution to form an aqueous mixture with switchable ionic strength; means for exposing the water or aqueous solution to an ionizing trigger, such as CO 2 , COS, CS 2 or a combination thereof, to raise the ionic strength of the aqueous mixture with switchable ionic strength; and, optionally, means for exposing the mixture with raised ionic strength to a non-ionizing trigger, such as (i) heat, (ii) a flushing gas, (iii) a vacuum or partial vacuum, (iv) agitation, (v) or any combination thereof, to reform the aqueous mixture with switchable ionic strength.
  • the means for exposing the water or aqueous solution to the ionizing trigger can be employed before, after or together with the
  • FIG. 21 provides an example of a switchable water system as described above.
  • the system includes means for contacting the non-ionized form of a switchable water with the ionizing trigger, which, in this example is CO 2 . Following contact with the ionizing trigger, the switchable water is reversibly converted to its ionic form.
  • the system in this example further comprises a means for introducing a non-ionizing trigger to the ionized form of the switchable water.
  • the non-ionizing trigger is air.
  • this system and method are used, for example:
  • a method of extracting a selected substance from a starting material(s) that comprises the selected substance comprising the selected substance.
  • the selected substance is soluble in an aqueous solution comprising the non-ionic form of a swichable water (comprising the a non-ionic form of the switchable additive) with zero or low ionic strength, and the selected substance is insoluble in an aqueous solution comprising the ionic form of a switchable water (comprising the ionized form of the additive), which has a higher ionic strength.
  • the starting material may be a solid impregnated with the selected substance.
  • the starting material may be a liquid mixture of the selected substance and a hydrophobic liquid.
  • This method of extracting a selected substance is particularly effective if the selected substance is soluble in the non-ionic aqueous solution.
  • the selected substance which may be a liquid or a solid, dissolves in the non-ionic aqueous solution comprising an additive of formula (1) and can thereby be readily separable from any water-insoluble remaining starting material (e.g., by filtration) and can be separated from the hydrophobic liquid (e.g., by decantation).
  • the selected substance can be separated from the aqueous phase (i.e., “salted out”) by converting the non-ionic aqueous solution to an ionic aqueous solution. The selected substance will then separate out and can be isolated.
  • the selected compounds can be isolated from the aqueous solution without having to input a large amount of energy to boil off the water. Conveniently, this separation is done by increasing the ionic strength (amount of charged species) in the aqueous solution (more commonly referred to as “salting out”) resulting in a separation of the selected compound from the distinct aqueous phase.
  • the selected compound can then be isolated from the aqueous solution be decanting it or filtering it, as appropriate.
  • an aqueous solution whose ionic strength is altered upon contact with a suitable trigger can dissolve or separate from a selected compound in a controlled manner.
  • this method of salting out is readily reversible, unlike the conventional method of salting out (e.g., adding NaCl to water).
  • a system for employing such a method includes, in addition to the components set out above, means for mechanical separation of solids from a liquid mixture.
  • the invention provides a method of removing water (i.e., drying) from hydrophobic liquids such as solvents.
  • water i.e., drying
  • additives form a salt in the presence of water and CO 2 , COS or CS 2 .
  • additives added to wet solvent and an ionizing trigger gas cause any water that was in the wet solvent to separate out as a distinct ionic component in an aqueous phase.
  • a system for employing such a method includes, in addition to the components set out above, means for extracting a water immiscible liquid phase from an aqueous solution.
  • FIG. 1 shows the reversible separation of tetrahydrofuran (THF) from an aqueous solution of a compound of formula (1).
  • THF tetrahydrofuran
  • FIG. 1 shows that when THF is mixed with a non-ionic aqueous solution, THF is miscible with the non-ionic aqueous solution, providing a single phase.
  • THF was experimentally shown to be miscible with the non-ionic aqueous solution.
  • THF was isolated from the mixture by switching the additive in the solvent from its non-ionic form to its ionic form (ammonium bicarbonate) in order to increase the ionic strength and force THF from the aqueous solution.
  • the aqueous solution was contacted with CO 2 to switch the amine to its ammonium bicarbonate form (ionic form) as shown by formula (3).
  • the contacting was carried out by treating a miscible mixture of THF, water and water-soluble amine compound of formula (1) with carbonated water or actively exposing the mixture to CO 2 .
  • the THF then formed a non-aqueous layer and the ammonium bicarbonate remained in an increased ionic strength aqueous layer (“water+salt (3)”).
  • the non-aqueous and aqueous layers are immiscible and formed two distinct phases, which can then be separated by decantation, for example.
  • the non-aqueous and aqueous layers provide an isolated non-aqueous phase comprising THF and an isolated aqueous phase comprising the ammonium bicarbonate form of additive in the switchable solvent.
  • the solvent is separated from the THF without distillation. While it is unlikely that every single molecule of THF will be forced out of the aqueous phase, a majority of the THF can be forced out by this method.
  • the amount of THF that remains in the aqueous phase will depend on several factors, including nature and concentration of additive, temperature, effect of other species in solution, mount of CO 2 (or other gas(ses) that releases protons in water) in the water, and the number of basic sites on the additive that are protonable by carbonic acid.
  • ammonium bicarbonate salt of formula (3) in the aqueous phase was switched back to its non-ionic form.
  • the aqueous solution of salt (3) which has been switched back to a non-ionic aqueous solution can then be used to dissolve or extract further THF.
  • the ability of the liquid mixture of water and amine additive (e.g., compound of formula (1)) to dissolve a selected compound may be greater than the ability of pure water to dissolve the same selected compound because the additive may help the desired compound to dissolve in the aqueous solution. This may be because of a polarity-lowering effect of the amine, because of preferential solvation of the molecules of the desired compound by the molecules of the amine additive, and/or because of a miscibility-bridging effect in which the addition of a compound of intermediate polarity increases the mutual miscibility between a low-polarity liquid and a high-polarity liquid.
  • amine additive e.g., compound of formula (1)
  • aqueous solutions with switchable ionic strength When the aqueous solutions with switchable ionic strength are switched between their lower ionic strength state and their higher ionic strength state, characteristic of the solution are changed. Such characteristics include: conductivity, melting point, boiling point, ability to solubilise certain solutes, ability to solubilise gases, osmotic pressure, and there may also be a change in vapour pressure.
  • the switchable ionic strength also affects surfactants by changing their critical micelle concentration and by affecting their ability to stabilize dispersions.
  • the reversibly switchable ionic strength solution can be a reversibly switchable antifreeze, a reversibly switchable electrolyte solution, or a reversibly switchable conducting solution.
  • a further aspect provides a non-ionic switchable water mixture that is largely nonconductive (or only weakly conductive) of electricity, that becomes more conductive when it is converted to its ionic form, and that this change is reversible.
  • Such a conductivity difference would enable the mixture to serve as an electrical switch, as a switchable medium, as a detector of CO 2 , COS or CS 2 , or as a sensor of the presence of CO 2 , COS or CS 2 .
  • This ability of the ionic liquid to conduct electricity can have applications in electrochemistry, in liquid switches and in sensors and/or detectors.
  • Common, affordable CO 2 sensors are typically effective at 2-5% CO 2 . CO 2 sensors that work between 2-100% are usually large and prohibitively expensive.
  • a chemical approach based on switchable ionic strength solutions can cost much less.
  • the first liquid is miscible with low ionic strength water but is immiscible with higher ionic strength water and the second liquid is the reversible switchable ionic strength aqueous solvent described herein.
  • the first and second liquids they are miscible when the switchable solvent is in its non-ionic form.
  • a trigger is applied, causing the ionic strength of the switchable solvent to increase and the newly-immiscible liquids to separate.
  • the first liquid may be a liquid that is miscible with aqueous solutions of high ionic strength and immiscible with aqueous solutions of low ionic strength. In such a case the ionic and non-ionic forms of the switchable solvent should be used to maintain and disrupt the miscibility, respectively.
  • surfactants also known as detergents and soap
  • surfactants stabilize the interface between hydrophobic and hydrophilic components.
  • detergents act to clean oily surfaces and clothing by making the (hydrophobic) oil more soluble in water (hydrophilic) by its action at the oil-water interface.
  • soapy water with hydrophobic contaminants remains.
  • salt can be added to the water and most of the oil will separate from the salt water.
  • the trigger causes the ionic strength to increase, thereby deactivating the surfactant. Many surfactants are unable to function properly (effectively stabilize dispersions) at conditions of high ionic strength.
  • the oil then separates from the aqueous phase, and can be decanted off. Then the aqueous solution can be triggered to decrease the ionic strength. Regenerated soapy water can then be reused, over and over.
  • Another aspect provides switchable water of switchable ionic strengths that are used to stabilize and destabilize emulsions, which may include surfactant-stabilized emulsions.
  • Emulsions of oil and water that include surfactants are used in oil industries to control viscosity and enable transport of oil (as an emulsion) by pipeline. Once the emulsion has been transported, however, it is desirable to separate the surfactant-supported emulsion and recover oil that is substantially water-free.
  • amine additive does not significantly interfere in the stability of an emulsion of water and a water-immiscible liquid (e.g., hexane, crude oil).
  • the increased ionic strength of the solution interferes with the stability of the emulsion, resulting in a breaking of the emulsion.
  • the higher ionic strength solution may interfere with the surfactant's ability to stabilize the emulsion.
  • This reversible switch from lower to higher ionic strength is preferable over destabilizing emulsions by traditional means (i.e., increasing the ionic strength by adding of a traditional salt such as NaCl). This preference is because the increase in ionic strength caused by the addition of a traditional salt is difficult to reverse without a large input of energy.
  • Creating an emulsion is possible, for example by adding a water-immiscible liquid to the lower ionic strength switchable aqueous solution as described previously, to form two phases. Then, a surfactant that is soluble in the aqueous phase should be added to a concentration above the critical micelle concentration of the surfactant. Shear or mixing of the mixture then creates an emulsion. As discussed above, the resultant emulsion can be destabilized by treatment with an ionizing trigger, such as by bubbling it with CO 2 , COS or CS 2 to raise the ionic strength of the aqueous phase.
  • an ionizing trigger such as by bubbling it with CO 2 , COS or CS 2 to raise the ionic strength of the aqueous phase.
  • a non-ionizing trigger such as by bubbling the mixture with a flushing gas and/or by heating it lowers the ionic strength allowing the system to return to the initial conditions.
  • Non-limiting examples of emulsions include mixtures of water with: crude oil; crude oil components (e.g., gasoline, kerosene, bitumen, tar, asphalt, coal-derived liquids); oil (including oil derived from pyrolysis of coal, bitumen, lignin, cellulose, plastic, rubber, tires, or garbage); vegetable oils; seed oils; nut oils; linseed oil; tung oil; castor oil; canola oil; sunflower oil; safflower oil; peanut oil; palm oil; coconut oil; rice bran oil; fish oils; animal oils; tallow; or suet.
  • crude oil components e.g., gasoline, kerosene, bitumen, tar, asphalt, coal-derived liquids
  • oil including oil derived from pyrolysis of coal, bitumen, lignin, cellulose, plastic, rubber, tires, or garbage
  • vegetable oils including oil derived from pyrolysis of coal, bitumen, lignin, cellulose, plastic,
  • emulsions include water with colloidal particles, colloidal catalysts, colloidal pigments, clay, sand, minerals, soil, coal fines, ash, mica, latexes, paints, nanoparticles including metallic nanoparticles, nanotubes.
  • Another aspect provides aqueous solutions of switchable ionic strength, or switchable water, which are used to stabilize and destabilize reverse emulsions.
  • This reversible switch from lower to higher ionic strength is preferable to destabilizing a suspension by adding traditional salts (e.g., NaCl) because the increase in ionic strength caused by the addition of a traditional salt is difficult to reverse without a large input of energy.
  • Typical examples of such suspensions may include polymers (e.g., polystyrene), colloidal dyes, and nanoparticles including metallic nanoparticles.
  • Increasing the ionic strength of the solution by applying a trigger causes small solid particles to aggregate or coagulate to form larger particles that settle to the bottom of the solution.
  • Application of a trigger to convert from higher ionic strength to lower ionic strength e.g., removal of CO 2 ) allows for redispersion of the particles, regenerating the suspension.
  • aqueous solutions of switchable ionic strength that are used to create aqueous/aqueous biphasic systems.
  • a lower ionic strength aqueous solution with amine additive and a water-soluble polymer e.g., poly(ethylene glycol) exists as a single phase.
  • the aqueous phase converts to a higher ionic strength solution, which causes the mixture to form two separate phases.
  • the phases are the polymer and water that it carries with it since is quite water soluble and the aqueous solution of higher ionic strength.
  • another trigger e.g., removal of CO 2 ) lowers the ionic strength causing the system to recombine into a single aqueous phase.
  • the aqueous solution of switchable ionic strength that comprises a water-soluble polymer (e.g., poly(ethylene glycol).
  • the two solutes may be, for example, two different proteins. Each protein will separate from higher ionic strength aqueous solution (i.e., “salt out”) at a distinct and specific ionic strength. If a trigger increases the ionic strength of the switchable solution such that only one of the two proteins separates from the higher ionic strength aqueous phase, the one protein will partition into the water and water-soluble-polymer layer so that it is separated from the other protein.
  • aqueous solution can be used over and over again.
  • a solute may partition from the higher ionic strength aqueous solution into the water with water-soluble-polymer layer in the form of a solid.
  • Another aspect of the invention is a method of drying hydrophobic liquids by separating the hydrophobic liquid from its water contaminant. As described herein, this separation is effected by adding an additive that forms a salt in the presence of water and CO 2 , COS or CS 2 . The salt can then be isolated from the hydrophobic liquid thereby removing its water contaminant.
  • hydrophobic liquids include solvents, alcohols, mineral oils, vegetable oils, fish oils, seed oils.
  • Yet another aspect of the invention provides a method of reversibly lowering an aqueous solution's boiling point.
  • Another aspect of the invention provides a method of reversibly increasing an aqueous solution's boiling point.
  • Another aspect of the invention provides a method of reversibly lowering an aqueous solution's boiling point.
  • Another aspect of the invention provides a method of reversibly increasing an aqueous solution's boiling point.
  • An aspect of the invention provides a reversibly switchable electrolyte.
  • conversion of the compound of formula (1) to the salt is complete.
  • the conversion to salt is not complete; however, a sufficient amount of the amine is converted to the salt form to change the ionic strength of the liquid.
  • the conversion of ionic form back to the amine compound of formula (1) that is water-miscible may not be complete; however a sufficient amount of the salt is converted to the amine compound of formula (1) that is water-miscible to lower the ionic strength of the solution.
  • the solvent could be switched to its higher ionic strength form which is substantially incapable of dissolving a product and/or side-product of the reaction. This would force the product to precipitate, if solid, or become immiscible, if liquid.
  • the solvent could then be separated from the product by physical means such as, for example, filtration or decantation.
  • the solvent could then be switched back to its lower ionic strength form by switching the ionic form to the water-miscible amine and reused.
  • This method allows the use of an aqueous solvent without the requirement for an energy-intensive distillation step to remove the solvent. Such distillation steps may be complex because both the solvent and the product may have similar boiling points.
  • Example 6 Reuse and recycling of solvents of the invention provide economic benefits.
  • the time required to switch between the higher and lower ionic strength solvents is short as demonstrated by studies described in Examples 6 and 7.
  • Example 6 an incomplete switch between an additive in ionic form and nonionic form can occur in 300 minutes with heating.
  • Example 6 also shows that in excess of about 90% of the ionic forms of MDEA and THEED were converted back to their non-ionic forms.
  • THEED was 98% deprotonated after 120 minutes of heating (75° C.) and bubbling with N 2 using a single needle.
  • conductivity of TMDAB was reduced approximately 95% in 90 minutes when heated at 80° C. and N 2 was bubbled through a glass frit. This result demonstrated a dramatic ionic strength reduction.
  • a system for isolating or purifying one or more compounds from a mixture.
  • the system includes a means 10 for introducing a non-ionic switchable water to a mixture of compounds.
  • the first compound is miscible in the non-ionic form of switchable water and the second compound is insoluble.
  • the system additionally comprises means 20 for mechanically collecting the second compound that is insoluble in the non-ionic switchable water.
  • the system can include means for collecting or removing the second compound by filtration thereby leaving a mixture 30 that includes the non-ionic switchable water and the first compound.
  • the system shown in FIG. 22 additionally comprises means 50 for collecting the immiscible first compound.
  • the system can include means for decanting or otherwise collecting the top layer of mixture 40, which top layer includes the first compound.
  • this system further includes means for reversing the ionic strength increase of the switchable water by introducing a non-ionizing trigger, such as air, to reform the non-ionic form of the switchable water 60.
  • Diethyl ether was purified using a double-column solvent purification system (Innovative Technologies Incorporated, Newbury Port, USA). Compressed gasses were from Praxair (Mississauga, Ontario, Canada): 4.0 grade CO 2 (99.99%), 5.0 grade Ar (99.999%), supercritical grade CO 2 (99.999%, H 2 O ⁇ 0.5 ppm), nitrogen (99.998%, H 2 O ⁇ 3 ppm) and argon (99.998%, H 2 O ⁇ 5 ppm).
  • water used in studies described herein was municipal tap water from Springfield, Ontario, Canada that was deionized by reverse osmosis and then piped through a MilliQ Synthesis A10 apparatus (Millipore SAS, Molsheim, France) for further purification.
  • a 1:1:1 (v/v/v) mixture of DBU, water and 1,4-dioxane was observed to be a single phase miscible liquid mixture.
  • CO 2 was bubbled through the solution for 60 min, the mixture separated into two phases, an aqueous phase comprising a solution of the amidinium bicarbonate salt of DBU and a non-aqueous phase comprising 1,4-dioxane. Bubbling N 2 through the mixture for several hours at 50° C. failed to cause the phases to recombine.
  • an aqueous solution of the amidine DBU can be switched from a lower ionic strength form to a higher ionic strength form in order to force out THF or 1,4-dioxane from the solution, the switching was not found to be reversible at the given experimental conditions. It is likely that with high energy input such as high temperatures, reversible switching would be possible.
  • a primary amine, ethanolamine, and a secondary amine, 2-(methylamino) ethanol were investigated as additives to provide switchable ionic strength aqueous solutions.
  • Six dram vials comprising 3:3:1 (v/v/v) mixtures of H 2 O, amine, and compound were prepared as described for comparative example 1.
  • a 3:3:1 (v/v/v) mixture of H 2 O, ethanolamine, and THF was observed to be a single phase solution.
  • This solution separated into two phases after CO 2 was bubbled through the liquid mixture for 30 minutes, with an aqueous phase and a non-aqueous phase comprising THF.
  • the two separate phases did not recombine into one miscible layer even after N 2 was bubbled through the liquid mixture for 90 minutes at 50° C.
  • a 3:3:1 (v/v/v) mixture of H 2 O, 2-(methylamino)ethanol, and THF was observed to be a single phase solution.
  • This solution separated into two phases after CO 2 was bubbled through the liquid mixture for 10 minutes, with an aqueous phase and a non-aqueous phase comprising THF.
  • the two separate phases did not recombine into one miscible layer even N 2 was bubbled through the liquid mixture for 90 minutes at 50° C.
  • DMAE Three tertiary amines, DMAE, MDEA and THEED were investigated as additives for switchable ionic strength solutions.
  • DMAE and MDEA are monoamines, and THEED is a diamine.
  • Example 1 The three switchable aqueous solution systems of Example 1 were further investigated by 1 H NMR spectroscopy to quantify the amount of THF separated from the aqueous phase upon switching of the additive to its higher ionic strength ammonium bicarbonate form, and to quantify the amount of additive retained in the aqueous solution after switching.
  • the additive it is preferred that substantially all of the additive remains in the aqueous phase, rather than going into the non-aqueous phase. This is because the utility of such solutions as reusable solvent systems would be increased if losses of the additive from the aqueous phase could be minimised.
  • MDEA 90.7 mol % of the MDEA remained in the aqueous phase.
  • 9.3 mol % of the MDEA was transferred into the non-aqueous phase comprising THF.
  • THEED had the best retention in the aqueous phase at approximately 98.6 mol %, even though it was least successful in forcing about 67.7 mol % of the THF out of solution.
  • the additives were all tertiary amines selected from monoamines DMAE and MDEA, diamine TMDAB, triamine DMAPAP and tetramine HMTETA.
  • a qualitative comparison of reversible solvent switching in the five amine/water systems of Example 3 was undertaken at equivalent additive loadings to determine by 1 H NMR spectroscopy the relative effectiveness of switching each additive from non-ionic amine to ionic ammonium bicarbonate and back to non-ionic amine forms.
  • Aqueous solutions (0.80 molal) of DMAE, MDEA, TMDAB, THEED, DMAPAP, HMTETA additives were added to 1:1 w/w solutions of THF:D 2 O in NMR tubes, which were sealed with rubber septa.
  • 1 H NMR spectra were acquired for each sample prior to any gas treatment, and are shown as the A spectra in FIGS.
  • CO 2 was used as the trigger to switch the amine from its non-ionic to ionic form.
  • 1 H NMR spectra were acquired for each sample after switching with CO 2 .
  • Diamine TMDAB, triamine DMAPAP and tetramine HMTETA additives exhibited superior THF separation compared to monoamine additives DMAE and MDEA. This observation can be explained due to the increase in ionic strength as a result of the increased charge on the quaternary ammonium cations resulting from the protonation of multiple basic nitrogen centres in the diamine, triamine and tetramine. It is apparent from equation (C) that for an equimolal concentration of additive, an increase in the charge on the cation of the salt from +1 to +2 should give rise to a tripling in ionic strength.
  • TMDAB and DMPAP contain more than two tertiary amine centres, only two of the basic sites in each molecule are capable of protonation as a result of switching with CO 2 .
  • Aqueous solutions of an additive with distilled, deionised H 2 O were prepared (1:1 v/v H 2 O and DMAE, 1:1 v/v H 2 O and MDEA and 1:1 w/w H 2 O and THEED) in sample beakers. 1:1 w/w H 2 O and THEED was used because a 1:1 v/v solution was too viscous to pour accurately.
  • a trigger gas chosen from CO 2 , air or nitrogen was bubbled at identical flow rates through the solution via a narrow gauge steel tube and the conductivity of the solution was measured periodically using a Jenway 470 Conductivity Meter (Bibby Scientific, NJ, US) having a cell constant of 1.02 cm ⁇ 1 .
  • Results of bubbling a CO 2 gas trigger through the solutions of additives in water at room temperature are depicted in FIG. 7 .
  • the conductivity of each of the additive solutions rose as the amine was converted to its ionic form as it was contacted with the CO 2 trigger.
  • the aqueous solution of DMAE showed the largest rise in conductivity.
  • conductivity is not simply a function of salt concentration; conductivity is also strongly affected by a solution's viscosity. Thus, even if two separate additive solutions have identical numbers of basic sites which can be fully protonated and have identical concentrations in water, they may have different conductivity levels.
  • the degree of protonation of tertiary amine additives upon contact with a CO 2 trigger was investigated by 1 H NMR spectroscopy. Two monoamines, DMAE and MDEA, and the diamine THEED were chosen for study.
  • the observed rates of switching are affected by the manner in which the CO 2 or sparging gas was introduced (e.g., its rate of introduction and the shape of the vessel containing the solution).
  • a comparison of FIG. 7 with FIG. 9 shows that the rate of the reaction in the 1 H NMR experiment was faster than that in the conductivity experiment. This rate difference is due to the difference in equipment.
  • the 1 H NMR experiment was performed in a tall and narrow NMR tube, which is more efficiently flushed with CO 2 than the beaker used in the conductivity tests.
  • the rate of deprotonation and thus reduction in the ionic strength of the solution could be increased if the N 2 sparging were done in a more efficient manner than simple bubbling through a narrow gauge tube.
  • a 1:1 v/v mixture of MDEA and water can be taken to 100% protonated and returned back to about 4.5% protonation by bubbling/sparging with N 2 . It is possible to calculate an approximate ionic strength of the 100% and 4.5% degrees of protonation of the amine additive.
  • the density of MDEA is 1.038 g/ml, so a 1 L sample of this mixture would contain 500 g of water and 519 g (4.4 mol) MDEA. Therefore the concentration of MDEA is 4.4 M.
  • the ionic strength assuming an ideal solution and assuming that the volume does not change when CO 2 is bubbled through the solution, is 4.4 M at 100% protonation and 0.198 M at 4.5% protonation (using equation (A) above).
  • TMDAB is a diamine
  • DMAPAP is a triamine
  • HMTETA is a tetramine
  • FIG. 13 photograph “A” shows the three vials at this stage in the experiment.
  • the lower liquid aqueous phase has a larger volume and is transparent and colourless.
  • the upper liquid n-decanol phase has a smaller volume and is also colourless though is not as transparent.
  • n-Decanol is not miscible with neat water.
  • FIG. 13 photograph “B” shows the appearance after the shaking. All three vials show an opaque liquid mixture with cloudiness and foaming typical of an emulsion, which is as expected because of the presence of the known surfactant SDS.
  • FIG. 13 shows the appearance of the three vials after this time.
  • the liquids in the left and centre vials are now largely clear and free of foam, showing that the conversion of the aqueous solution to its high-ionic strength form has greatly weakened the ability of the SDS to stabilize emulsions and foams. The emulsion and foam still persist in the right vial.
  • N 2 gas was bubbled through the liquid phases of the left and centre vials for 90 min in order to remove CO 2 from the system and thereby lower the ionic strength of the aqueous solution.
  • the two vials were then shaken for 30 min. During this gas treatment and shaking, the right vial was left untouched.
  • FIG. 13 photograph “E” shows the appearance of the three vials after this time. All three exhibit the cloudiness typical of an emulsion, although foaminess in the left two vials is not evident, presumably because the conversion of the aqueous solution back to a low ionic strength is not complete. In practice, substantial conversion to low ionic strength is not difficult. However, it can be more difficult to achieve complete conversion.
  • reaction (1) The ionic strength of an aqueous solution of the salt will vary depending upon the concentration of the salt and the charge on the ammonium ion.
  • an amine B having n sites which can be protonated by carbonic acid to provide a quaternary ammonium cation of formula [BH n n+ ] may have a switching reaction shown in reaction (1):
  • the ionic strength of a solution comprising the corresponding salt of formula (2) can be increased, for a given concentration.
  • reaction (2) the equilibrium between CO 2 and water and the dissociated carbonic acid, H 2 CO 3 is shown in reaction (2):
  • reaction (3) The pK a for reaction (2) is 6.36.
  • the corresponding equilibrium for the dissociation of a protonated amine base BH + (i.e. the conjugate acid) is provided by reaction (3),
  • a salt as used herein comprises at least one quaternary ammonium site having a pK aH greater than 6 and less than 14. Some embodiments have at least one quaternary ammonium site having a pK aH in a range of about 7 to about 13. In some embodiments the salt comprises at least one quaternary ammonium site having a pK aH in a range of about 7 to about 11. In other embodiments, the salt comprises at least one quaternary ammonium site having a pK aH in a range of about 7.8 to about 10.5.
  • cyclic triamines N,N,N′,N′,N′′,N′′-1,3,5-benzenetrimethanamine, were synthesized in a similar fashion utilizing the appropriate starting materials.
  • 1,3,5-benzenetricarbonyl trichloride was purchased from Sigma Aldrich and used as received.
  • 1,3,5-cyclohexanetricarboxylic acid was purchased from TCI and used as received.
  • a zeta potential near to zero indicates that the particles have little effective surface charge and therefore the particles will not be repelled by each other. The particles will then naturally stick to each other, causing coagulation, increase in particle size, and either settling to the bottom of the container or floating to the top of the liquid. Thus the suspension will not normally be stable if the zeta potential is near zero. Therefore having the ability to bring a zeta potential close to zero is useful for destabilizing suspensions such as clay-in-water suspensions.
  • Clay fines were weighed and placed into individual vials (0.025 g, Ward's Natural Science Establishment). Kaolinite and montmorillonite were used as received, but as illite clay was ground into a powder using a mortar and pestle. Solutions containing additives were made with deionized water (18.2 M ⁇ /cm, Millipore) and 10 ml was added to the clay fines. A suspension was created using a vortex mixer and subsequently dispensed into a folded capillary cell. The zeta potential was measured using a Malvern Zetasizer instrument. The errors reported on the zeta potential values were the standard deviations of the zeta potential peaks measured.
  • switchable water additives TMDAB and BDMAPAP were effective additives were changing clay zeta potentials.
  • the absolute values of the clay zeta potentials were reduced. This effect was observed even at low concentrations of the switchable water additive (1 mM).
  • Kaolinite clay Zeta Potential (mV) Switching externally Switching in situ 1 mM TMDAB ⁇ 39.6 ⁇ 6.68 ⁇ 38.9 ⁇ 8.69 1 mM TMDAB + 1 h CO 2 ⁇ 5.03 ⁇ 4.46 ⁇ 0.31 ⁇ 4.15 1 mM TMDAB + 1 h CO 2 + ⁇ 25.0 ⁇ 5.84 ⁇ 32.5 ⁇ 6.38 1.5 h N 2 at 70° C.
  • Kaolinite clay fines (5 g) were added to 100 ml of 1 mM TMDAB in deionized water. The mixture was stirred for 15 minutes at 900 rpm prior to transferring into a 100 ml graduated cylinder, which was subsequently sealed with a rubber septum. Settling of the clay fines was monitored as a function of time using a cathetometer.
  • CO 2 was bubbled through 100 ml of 1 mM TMDAB using a dispersion tube for 1 hour.
  • Kaolinite fines (5 g) were added to the aqueous solution and the mixture was stirred for 15 minutes at 900 rpm prior to transferring into a 100 ml graduated cylinder and sealing with a rubber septum. Settling of clay fines was monitored.
  • CO 2 was bubbled through 100 ml of 1 mM TMDAB using a dispersion tube for 1 hour. The solution was heated to 70° C. and N 2 was bubbled through for 1 hour.
  • kaolinite fines (5 g) were added and the mixture was stirred 900 rpm for 15 minutes prior to transferring into a 100 ml graduated cylinder and sealing with a rubber septum. Settling of clay fines was monitored.
  • Kaolinite clay fines (5 g, Ward's Natural Science Establishment) were added to 100 ml of 1 mM TMDAB in deionized water. The mixture was stirred for 15 minutes at 900 rpm prior to transferring into a 100 ml graduated cylinder, which was subsequently sealed with a rubber septum. Settling of the clay fines was monitored as a function of time.
  • Experiment 1 was conducted to examine the effect of the switchable water additive on the settling behavior of clay. The switching was conducted in the absence of clay to ensure that the switching occurred fully without any impedance from the clay. The results are plotted in FIGS. 15A-C .
  • Kaolinite clay and 1 mM TMDAB were initially mixed to give a stable suspension.
  • This suspension was treated with CO 2 , which resulted in the settling of the clay fines with a clean supernatant and a clear sediment line.
  • the behavior observed was exactly as that observed for Experiment 1.
  • the settled clay was stirred to reform a suspension, which was treated with N 2 , after which the suspension was stable.
  • Experiment 3 was conducted to determine if the switchable ionic strength additive adheres to the clay surface and would therefore be lost upon removal of the clay.
  • the suspension created with the CO 2 treated filtrate settled much like the previous two experiments.
  • a stir bar was added to the solution in the graduated cylinder and the cylinder was capped with a rubber septa.
  • a long narrow gauge steel needle was inserted through the septa and into the solution.
  • a second needle was pushed through the septa but not into the solution.
  • CO 2 was bubbled into the solution through the first steel needle at a flow rate of about 5 ml min ⁇ 1 with stirring of ⁇ 300 RPM for 30 minutes.
  • a clear, colourless aqueous phase at the bottom of the cylinder had creamed out of the original organic phase.
  • the organic phase was separated from the aqueous phase by decantation.
  • the “dried” organic THF phase had a mol % composition as follows: 79.3 mol % THF, 20.5 mol % H 2 O and 0.3 mol % TMDAB.
  • the non-ionized form of the additive is water-immiscible. This makes it possible to create high ionic strength in the water, while CO 2 is present, in order to achieve some purpose such as the expulsion of an organic compound from the aqueous phase and then, by removing the CO 2 , to recover the majority of the additive from the water.
  • CO 2 is present, in order to achieve some purpose such as the expulsion of an organic compound from the aqueous phase and then, by removing the CO 2 , to recover the majority of the additive from the water.
  • THF water/THF mixture
  • subsequent recovery of much of the additive from the water we describe the expulsion of THF from a water/THF mixture and subsequent recovery of much of the additive from the water.
  • a long, narrow gauge needle was inserted through the septa into the solution.
  • a second small needle was inserted into the septa but not into the solution itself.
  • CO 2 was bubbled through the solution a flow rate of about 5 ml/min for 45 minutes with stirring until a 2 nd phase creams out on top of the aqueous phase. The CO 2 bubbling was stopped and the needles withdrawn.
  • the cylinder was immersed in a hot water bath for several seconds to facilitate the separation of the liquid phases. Both phases were clear and yellow in colour.
  • the top organic layer had a volume of 1.50 ml and the remaining aqueous layer had a volume of 2.04 ml.
  • a 39.1 mg sample of the organic phase was placed in an NMR tube with deuterated acetonitrile and 50.2 mg ethyl acetate to act as an internal standard.
  • a 66.2 mg sample of the aqueous phase was placed in a 2 nd NMR tube with deuterated acetonitrile with 22.3 mg ethyl acetate to act as an internal standard.
  • a 1 H NMR spectra was acquired and knowing the corresponding amount of ethyl acetate in each sample the resulting amounts of THF in the aqueous sample and additive in the organic sample can be calculated. Knowing the mass, volume, and density of each layer, the total amount of THF or additive in a respective layer can be calculated.
  • the new organic phase had a volume of 0.17 ml leaving an aqueous phase of 1.57 ml.
  • a 37.9 mg sample of the aqueous phase was taken up in an NMR tube with deuterated acetonitrile and 41.5 mg ethyl acetate to act as an internal standard.
  • a 1 H NMR spectra was acquired and using the same procedure of comparing integrations as performed above, it was found that 49.3 ⁇ 6.3% of the TEDAB was removed from the aqueous phase. It was also found that the overall 90.0 ⁇ 2.1% of the total THF had been removed from the aqueous phase at the end of the procedure.
  • N,N′-diethyl-N,N′-dipropyl-1,4-diaminobutane instead of N,N,N′N′-tetraethyl-1,4-diaminobutane (TEDAB) in the above procedure caused the expulsion of 68% of the THF from the aqueous phase after CO 2 treatment.
  • N 2 treatment of the separated aqueous phase 81% of the N,N′-diethyl-N,N′-dipropyl-1,4-diaminobutane was removed from the aqueous phase.
  • the non-ionized form of the additive is water-immiscible while the charged form is water-miscible or water-soluble.
  • Polyethyleneimine samples of three different molecular weights (M.W. 600, 99%; M.W. 1800, 99%; and M.W. 10,000, 99%) were purchased from Alfa Aesar.
  • Formaldehyde (37% in H 2 O) and formic acid were purchased from Sigma-Aldrich. All reagents were used without further purification.
  • AmberliteTM IRA-400 (OH) ion exchange resin was purchased from Supelco.
  • the flask was equipped with a condenser and the reaction mixture was heated to 60° C. for 16 h with an oil bath. After 16 h the mixture was allowed to cool to room temperature and the solvents were removed under reduced pressure. Then, the crude product was dissolved in 20 ml EtOH anhydrous and 4 g of Amberlite resin was added to the solution. The resulting mixture was stirred for 4 h or for 16 h at room temperature before the resin was filtered of and the EtOH was removed under reduced pressure. The methylated polymer was obtained as a dark yellow oil (1.8 g from the M.W. 600 sample and 1.7 g from the M.W. 1800 sample).
  • Methylated polyethyleneimine (M.W. 600 before methylation):
  • Methylated polyethyleneimine (M.W. 1800 before methylation)
  • Methylated polyethyleneimine (M.W. 1800 before methylation)
  • the methylated polyamines were investigated as additives for switchable ionic strength solutions.
  • the methylated spermine was investigated as additive for switchable ionic strength solutions.
  • Methylated Spermine Methylated Spermine
  • the degree of protonation of the tetraamine (methylated spermine) upon contact with a carbon dioxide trigger was investigated by 1 H NMR.
  • Described in this example is a new easily separable draw solution, which takes advantage of the present method of reversibly converting a switchable water from low to high ionic strength.
  • the osmotic pressure of a switchable water should dramatically rise as the conversion from low ionic strength to high ionic strength takes place.
  • literature data Cath, T. Y.; Childress, A. E.; Elimelech, M. J. Membrane Sci.
  • a modification of this process, shown in FIG. 20 differs only in the last step, where the switchable water additive in the solution is switched “off”, or back to its nonionic form, and then removed by a method other than reverse osmosis.
  • the non-ionic form of the additive is insoluble or immiscible with water, then it can be removed by filtration or decantation, with any small amounts of remaining additive in the water being removed by passing the water through silica. Results have shown successful use of such a separation process.
  • the diamidine was investigated as additive for switchable ionic strength solutions.
  • the solution was centrifuged for 5 minutes, using a Fisher Scientific Centrific 228 centrifuge at a speed of 3300 RPM, such that all the white solids collected at the top of the aqueous solution.
  • the white solids were collected by vacuum filtration and weighed on a Mettler-Toledo AG245 analytical balance. A mass of 24.0 mg was obtained, resulting in a 35.2% recovery of the original dissolved solid.
  • the two phase mixture was then placed in a 60° C. water bath while N 2 was bubbled through the mixture in a fashion similar to the previous bubbling of CO 2 . This was performed for 60 minutes. Although some THF boiled off, the two phases did not recombine. The temperature was increased to 75° C. for 30 minutes which appeared to boil off the remainder of the THF as the volume returned to that of the water and amine mixture. Some ethanolamine may have boiled off as well. At this point, a single liquid phase was observed, as the THF was boiled off, however, the phase was cloudy and it appeared to have a white precipitate (likely carbamate salts).
  • the temperature of the water bath was then increased to 85° C. and N 2 bubbling was continued for 90 minutes, giving a total N 2 treatment of 3 hours. No additional physical changes were observed.
  • the solution remained cloudy white in colour and some of the white precipitate had collected on the sides of the vial.
  • the two phase mixture was then placed in a 60° C. water bath while N 2 was bubbled through the mixture in a fashion similar to the previous bubbling of CO 2 . This was performed for 60 minutes where some THF boiled off, but the two phases did not recombine. The temperature of the water bath was then increased to 85° C. and N 2 bubbling was continued for 120 minutes, giving a total N 2 treatment of 3 hours. It appeared that all of the THF had boiled off as the volume had returned to that of the water and amine mixture. The solution was a single yellow liquid phase at this point, however a white precipitate (likely carbamate salts) caused the solution to appear cloudy.
  • N-tert-butylethanolamine was purchased from TCI AMERICA and N-tert-butymethylamine was purchased from Sigma-Aldrich. Both compounds were used without further purification.
  • N-tert-Butylethanolamine and N-tert-butymethylamine were investigated as additives for switchable ionic strength solutions.
  • To measure the extent of THF being forced out of an aqueous phase by an increase in ionic strength, and to measure the amount of amine remaining in the aqueous phase 1:1 w/w solutions of THF and water (1.5 g each) were prepared in graduated cylinders. The appropriate mass of amine additive to result in a 1.60 molal solution was added and the cylinders were capped with rubber septa. After 30 minutes of bubbling carbon dioxide through the liquid phase from a single narrow gauge steel needle, a visible phase separation was observed. The volumes of each phase were recorded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)
US13/578,290 2010-02-10 2011-02-10 Water with Switchable Ionic Strength Abandoned US20130105377A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/578,290 US20130105377A1 (en) 2010-02-10 2011-02-10 Water with Switchable Ionic Strength

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US30317010P 2010-02-10 2010-02-10
US42345810P 2010-12-15 2010-12-15
US13/578,290 US20130105377A1 (en) 2010-02-10 2011-02-10 Water with Switchable Ionic Strength
PCT/CA2011/050075 WO2011097727A1 (en) 2010-02-10 2011-02-10 Water with switchable ionic strength

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2011/050075 A-371-Of-International WO2011097727A1 (en) 2010-02-10 2011-02-10 Water with switchable ionic strength

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/279,221 Continuation US11498853B2 (en) 2010-02-10 2019-02-19 Water with switchable ionic strength

Publications (1)

Publication Number Publication Date
US20130105377A1 true US20130105377A1 (en) 2013-05-02

Family

ID=44367096

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/578,290 Abandoned US20130105377A1 (en) 2010-02-10 2011-02-10 Water with Switchable Ionic Strength
US16/279,221 Active 2031-12-21 US11498853B2 (en) 2010-02-10 2019-02-19 Water with switchable ionic strength

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/279,221 Active 2031-12-21 US11498853B2 (en) 2010-02-10 2019-02-19 Water with switchable ionic strength

Country Status (12)

Country Link
US (2) US20130105377A1 (zh)
EP (2) EP3653584A1 (zh)
JP (3) JP6431658B2 (zh)
CN (1) CN102892713B (zh)
AU (1) AU2011214865B2 (zh)
BR (1) BR112012020112B1 (zh)
CA (1) CA2789498C (zh)
HK (1) HK1177927A1 (zh)
IL (1) IL221391B (zh)
MX (1) MX364273B (zh)
SG (2) SG10201501027XA (zh)
WO (1) WO2011097727A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105481744A (zh) * 2015-11-25 2016-04-13 江南大学 Co2/n2-h2o2双重刺激响应型表面活性剂及其制备方法
US9399194B2 (en) 2014-07-16 2016-07-26 Battelle Energy Alliance, Llc Methods for treating a liquid using draw solutions
WO2017024376A1 (en) * 2015-08-11 2017-02-16 Forward Water Technologies A switchable forward osmosis system, and processes thereof
US10377647B2 (en) 2010-12-15 2019-08-13 Queen's University at Kingson Systems and methods for use of water with switchable ionic strength
US10532319B2 (en) 2013-04-26 2020-01-14 Nanyang Technological University Draw solute for forward osmosis
US20210323844A1 (en) * 2018-08-24 2021-10-21 Queen's University At Kingston Forming a treated switchable polymer and use thereof in a forward osmosis system
US11235283B2 (en) * 2019-12-30 2022-02-01 Industrial Technology Research Institute Ionic liquid and forward osmosis process employing the same
US11236250B2 (en) * 2015-06-04 2022-02-01 Queen's University At Kingston Switchable water-based paint or coating compositions
US11498853B2 (en) 2010-02-10 2022-11-15 Queen's University At Kingston Water with switchable ionic strength

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2592689T3 (es) 2010-09-29 2016-12-01 Fujifilm Corporation Aparato de ósmosis directa y proceso de ósmosis directa
US10363336B2 (en) 2011-08-26 2019-07-30 Battelle Energy Alliance, Llc Methods and systems for treating liquids using switchable solvents
NL2007353C2 (en) * 2011-09-05 2013-03-07 Kwr Water B V Solution comprising an osmotic agent and method of extracting water using said solution.
WO2014019094A1 (en) * 2012-08-02 2014-02-06 Queen's University At Kingston Micellar composition having switchable viscosity
JP6512900B2 (ja) * 2015-03-31 2019-05-15 大阪瓦斯株式会社 発電設備
CN107774136B (zh) 2016-08-30 2020-10-27 财团法人工业技术研究院 用于正渗透程序的离子液体与正渗透程序
JP6649310B2 (ja) 2017-03-23 2020-02-19 株式会社東芝 水処理システム及び作業媒体
JP6854196B2 (ja) * 2017-06-09 2021-04-07 株式会社Kri 水吸収液、ドロー溶液及び正浸透水処理方法
CN107376421A (zh) * 2017-09-11 2017-11-24 扬州大学 一种利用n‑甲基二乙醇胺对有机物和水的共混物进行萃取分离的方法
CN107596733A (zh) * 2017-09-11 2018-01-19 扬州大学 一种利用三乙胺对有机物和水的共混物进行萃取分离的方法
CN108031144A (zh) * 2017-12-25 2018-05-15 扬州大学 利用n-甲基环己胺对有机物和水的共混物进行萃取分离的方法
JP7186579B2 (ja) * 2018-03-22 2022-12-09 株式会社東芝 水処理に用いるための作業媒体及び水処理システム
TW202104480A (zh) * 2019-04-03 2021-02-01 紐西蘭商艾克福特士技術有限公司 溶劑乾燥組成物及其製法
US11273410B2 (en) 2019-12-31 2022-03-15 Industrial Technology Research Institute Extracted material for forward osmosis, preparation method thereof, and forward-osmosis water desalination system using the same
CN114082218B (zh) * 2021-12-03 2022-12-27 齐鲁工业大学 一种可调控且选择性提取木质素的开关型低共熔溶剂的制备与应用
CN114539081B (zh) * 2022-03-07 2024-04-02 扬州大学 一种利用n,n-二丁基乙醇胺分离提纯甘氨酸的方法
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
CN116621263B (zh) * 2022-08-19 2024-01-05 广东浪淘砂新型材料有限公司 一种搅拌站洗车废水用的消泡剂及其制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472638A (en) * 1992-04-27 1995-12-05 Mobil Oil Corp. Corrosion inhibitor
US20050103684A1 (en) * 2003-11-19 2005-05-19 Martin Evans Mobile fluid catalytic cracking injection system
US20080023401A1 (en) * 2004-11-05 2008-01-31 Hitachi, Ltd. Method for Removing Organic Material in Oilfield Produced Water and a Removal Device Therefor
US20080197084A1 (en) * 2005-11-15 2008-08-21 Jessop Philip G Reversibly switchable surfactants and methods of use thereof

Family Cites Families (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE277691C (zh)
US2630386A (en) 1951-11-03 1953-03-03 Du Pont Ruminant feed composition containing an amidine
US2801217A (en) 1953-11-04 1957-07-30 Phillips Petroleum Co Dialkylammonium dialkylcarbamates as selective solvents for unsaturated hydrocarbons
US2812333A (en) * 1954-09-27 1957-11-05 Union Carbide Corp Process for the preparation of 1-(2-hydroxyethyl) imidazolidine-2
US2712531A (en) 1954-09-28 1955-07-05 W H & L D Betz Octadecylamine materials and process
US2949427A (en) 1957-10-17 1960-08-16 Monsanto Chemicals Breaking of oxo alcohol emulsions
US3143461A (en) 1958-12-15 1964-08-04 May & Baker Ltd Methods for treating babesiasis
US3060007A (en) 1959-07-07 1962-10-23 Standard Oil Co Hydrocarbon oils containing reaction products of imidazolines and alkylene iminodiacetic acids
US3130156A (en) 1960-12-13 1964-04-21 Ray A Neff Solvent extractor
US3088909A (en) * 1961-02-09 1963-05-07 Richard R Davison Mixed solvents for saline water extraction
US3171799A (en) 1962-08-28 1965-03-02 George W Batchelder Process for the demineralization of water
US3228956A (en) 1962-11-14 1966-01-11 Dow Chemical Co Imidazoline derivatives of 2-propanols
US3231487A (en) 1963-12-23 1966-01-25 Pan American Petroleum Corp Demulsification
US3385891A (en) 1965-05-13 1968-05-28 Union Oil Co Method for the production of amides and amidines
CH485406A (de) 1967-05-30 1970-02-15 Agripat Sa Fungizides und insektizides Mittel
JPS4820768Y1 (zh) 1967-11-04 1973-06-15
US3444931A (en) 1967-11-24 1969-05-20 Texaco Inc Method of treating clay-containing formations with guanidine salt solution
FR2168138A1 (en) 1972-01-17 1973-08-31 Dynachim Sarl Pesticidal compsns - contg organophosphorus cpd and silica thickener
US3884974A (en) 1972-06-07 1975-05-20 Sandoz Ltd 2-Ketoamidines
US3796266A (en) 1972-12-13 1974-03-12 Texaco Inc Surfactant oil recovery process
US3925201A (en) * 1973-08-03 1975-12-09 Resources Conservation Co Method of dewatering material containing solid matter and bound and unbound water
US3882940A (en) 1973-12-17 1975-05-13 Texaco Inc Tertiary oil recovery process involving multiple cycles of gas-water injection after surfactant flood
JPS50122057A (zh) 1974-03-13 1975-09-25
US3923668A (en) 1974-06-24 1975-12-02 Du Pont Guanidine carbonate dispersion composition
US4079166A (en) 1974-08-26 1978-03-14 Xerox Corporation Aminolyzed carrier coatings
JPS583754A (ja) 1981-06-30 1983-01-10 Mishima Kosan Co Ltd 連続鋳造用鋳型メニスカス部熱疲労防止方法
US4434850A (en) 1981-12-02 1984-03-06 Texaco Inc. Method for demulsification of bitumen emulsions using polyalkylene polyamine salts
US4467089A (en) 1982-03-04 1984-08-21 Air Products And Chemicals, Inc. Carbamate and carbonate salts of tertiary amines
JPS5920253A (ja) * 1982-07-28 1984-02-01 Toyo Soda Mfg Co Ltd 有機相からエチレンアミン類を回収する方法
US4434249A (en) 1982-06-28 1984-02-28 Electrochemical Technology Corp. Method of preparing acrylic ion-transfer membranes
US4605773A (en) 1982-08-10 1986-08-12 Diamond Shamrock Chemicals Company Low-foaming, pH sensitive, alkylamine polyether surface active agents and methods for using
US4499274A (en) 1983-03-17 1985-02-12 Mcneilab, Inc. Process for preparation of substituted formamidine and substituted N-iminomethyl piperidine
JPS59191743A (ja) 1983-04-14 1984-10-30 Sanabotsuto Kk ウレタン発泡体の製造法
GB8329628D0 (en) 1983-11-05 1983-12-07 Rubber & Plastic Res Ass Polyurethanes
US4591447A (en) 1984-03-16 1986-05-27 Dowell Schlumberger Incorporated Aqueous gelling and/or foaming agents for aqueous acids and methods of using the same
JPS6150967A (ja) 1984-08-21 1986-03-13 Nippon Steel Chem Co Ltd インド−ル類の抽出方法
JPS61227821A (ja) * 1985-04-01 1986-10-09 Kawasaki Heavy Ind Ltd 炭酸ガスの除去方法
US4623678A (en) 1985-04-26 1986-11-18 The Dow Chemical Company Method for shear coagulation of latex resins
JPS6257617A (ja) * 1985-05-07 1987-03-13 Kurita Water Ind Ltd 高分子凝集剤組成物
DE3624813A1 (de) 1986-07-23 1988-03-10 Stockhausen Chem Fab Gmbh Amphotere wasserloesliche polymere, verfahren zu ihrer herstellung und ihre verwendung als dispergierhilfsmittel
US4770670A (en) 1986-12-22 1988-09-13 Arco Chemical Company Fire resistant microemulsions containing phenyl alcohols as cosurfactants
EP0322924A1 (en) * 1987-12-31 1989-07-05 Union Carbide Corporation Selective H2S removal from fluid mixtures using high purity triethanolamine
JPH0644972B2 (ja) * 1988-03-11 1994-06-15 ユニオン・カーバイド・コーポレーション エチレンアミン促進剤を含有する第三級アルカノールアミン吸収剤及びその使用法
US5252318A (en) 1990-06-15 1993-10-12 Allergan, Inc. Reversible gelation compositions and methods of use
JPH0482068A (ja) 1990-07-24 1992-03-16 Nec Corp ディスク媒体クリーナ
CA2089261A1 (en) 1990-08-30 1992-03-01 John F.W. Keana Substituted amidines having high binding to the sigma receptor and the use thereof
DE4028904C1 (en) 1990-09-12 1992-07-16 Synthesechemie Dr. Penth Gmbh, 6600 Saarbruecken, De Dissociating used coolant or lubricant - comprises saturating with carbon di:oxide under pressure to separate organic and aq. phase
AU1160692A (en) 1991-01-15 1992-08-27 Koch, Berthold Process for cleaving emulsions or the like
JPH062615A (ja) * 1992-06-19 1994-01-11 Aqueous Res:Kk 二酸化炭素を利用したエンジン燃焼システム
US5457083A (en) 1992-10-15 1995-10-10 Calgon Corporation Synergistic antimicrobial combination of polyether phosphonates and non-oxidizing biocides
US5358502A (en) 1993-02-25 1994-10-25 Pfizer Inc PH-triggered osmotic bursting delivery devices
CA2155910C (en) 1995-08-11 1999-12-14 George Wu Biocompatible aqueous solution for use in continuous ambulatory peritoneal dialysis
JPH09208657A (ja) 1996-02-06 1997-08-12 Nisshinbo Ind Inc ポリウレタン発泡体の製造方法
US6026968A (en) 1996-05-13 2000-02-22 Nitto Denko Corporation Reverse osmosis composite membrane
JP3600873B2 (ja) 1996-07-08 2004-12-15 独立行政法人理化学研究所 基板温度測定ユニット
JP3392646B2 (ja) * 1996-07-26 2003-03-31 三菱重工業株式会社 脱炭酸塔排出ガス中の塩基性アミン化合物の回収方法
US5905061A (en) 1996-08-02 1999-05-18 Patel; Avind D. Invert emulsion fluids suitable for drilling
US6218342B1 (en) 1996-08-02 2001-04-17 M-I Llc Oil-based drilling fluid
US6589917B2 (en) 1996-08-02 2003-07-08 M-I Llc Invert emulsion drilling fluids and muds having negative alkalinity and elastomer compatibility
JP3802177B2 (ja) 1997-01-16 2006-07-26 三洋化成工業株式会社 熱可逆性増粘剤
JP3852173B2 (ja) 1997-08-05 2006-11-29 日本精工株式会社 トロイダル型無段変速機
US6022727A (en) 1998-01-12 2000-02-08 Board Of Trustees Operating Michigan State University Method for forming reversible colloidal gas or liquid aphrons and compositions produced
WO1999039799A1 (en) 1998-02-09 1999-08-12 Mcginnis Robert L Osmotic desalinization process
US6331618B1 (en) 1999-05-13 2001-12-18 Pe Corporation (Ny) Compositions of solvents and high concentrations of nucleic acid analogs
JP3770804B2 (ja) 2000-02-29 2006-04-26 三洋化成工業株式会社 原油増産用添加剤または高分子凝集剤
JP2002039339A (ja) 2000-07-21 2002-02-06 Toyota Motor Corp 変速機用流体の温度調整手段
DE10036173A1 (de) 2000-07-25 2002-02-07 Basf Ag Verfahren zum Entsäuern eines Fluidstroms und Waschflüssigkeit zur Verwendung in einem derartigen Verfahren
MXPA01008719A (es) 2000-09-06 2002-04-10 Air Products Polymers Lp Conservacion de emulsiones polimericas usando compuestos cationicos.
US9352281B2 (en) 2001-02-01 2016-05-31 Yale University Forward osmosis separation processes
EP1355859A2 (en) 2001-02-01 2003-10-29 Yale University Osmotic desalination process
US6499546B1 (en) 2001-07-20 2002-12-31 M-I, L.L.C. Buffered well fluids
US6823692B1 (en) 2002-02-11 2004-11-30 Abb Lummus Global Inc. Carbon dioxide reduction scheme for NGL processes
JP4042434B2 (ja) 2002-03-06 2008-02-06 Jsr株式会社 二酸化炭素の回収方法
JP4359025B2 (ja) 2002-06-25 2009-11-04 ダイセン・メンブレン・システムズ株式会社 濁水の処理方法
JP3750082B2 (ja) 2002-07-30 2006-03-01 ハイモ株式会社 アミジン系水溶性高分子エマルジョン及びその使用方法
DE60315241T2 (de) 2002-12-09 2008-04-17 Rohm And Haas Co. Zusammensetzungen mehrstufiger Polymere mit ausgelöster Freisetzung
DE10325051A1 (de) 2003-06-02 2004-12-23 Merck Patent Gmbh Ionische Flüssigkeiten mit Guanidinium-Kationen
FR2873704B1 (fr) 2004-07-30 2006-12-08 Flamel Technologies Sa Polyaminoacides fonctionnalises par des greffons hydrophobes portant une charge anionique et leurs applications notamment therapeutiques
US8083942B2 (en) 2004-12-06 2011-12-27 Board of Regents of the Nevada System of Higher Education, on Behalf of the Universary of Nevada, Reno Systems and methods for purification of liquids
US7700533B2 (en) 2005-06-23 2010-04-20 Air Products And Chemicals, Inc. Composition for removal of residue comprising cationic salts and methods using same
US7299877B2 (en) 2005-08-09 2007-11-27 Halliburton Energy Services, Inc. Methods for effecting controlled break in pH dependent foamed fracturing fluid
US20070092801A1 (en) 2005-10-25 2007-04-26 Andrew Tipton Molten Salt Electrolyte for a Battery and Electrochemical Capacitor
CN101326144A (zh) * 2005-11-15 2008-12-17 金斯顿女王大学 可逆可转换的表面活性剂及其使用方法
JP5023512B2 (ja) * 2006-02-27 2012-09-12 三菱マテリアル株式会社 ガスの分離回収方法及びその装置
CA2539418C (en) 2006-03-13 2013-10-29 Queen's University At Kingston Switchable solvents and methods of use thereof
CA2654508C (en) 2006-06-08 2014-07-29 Yale University Multi stage column distillation (mscd) method for osmotic solute recovery
US7795175B2 (en) 2006-08-10 2010-09-14 University Of Southern California Nano-structure supported solid regenerative polyamine and polyamine polyol absorbents for the separation of carbon dioxide from gas mixtures including the air
JP2008056642A (ja) * 2006-09-04 2008-03-13 Research Institute Of Innovative Technology For The Earth 高濃度ピペラジン含有水溶液の製造方法及び二酸化炭素の回収方法
CN101573173B (zh) 2006-11-09 2012-12-12 耶鲁大学 渗透式热机
FR2909010B1 (fr) 2006-11-27 2009-02-20 Inst Francais Du Petrole Milieu d'extraction utilise dans un procede de capture de dioxyde de carbone contenu dans un effluent gazeux.
JP2008168227A (ja) 2007-01-12 2008-07-24 Research Institute Of Innovative Technology For The Earth 排ガス中の二酸化炭素の吸収液
WO2008094846A1 (en) 2007-01-29 2008-08-07 Georgetown University Reversible room-temperature ionic liquids
US7741402B2 (en) 2007-03-21 2010-06-22 Rohm And Haas Company Thickener composition and method for thickening aqueous systems
JP2008238073A (ja) * 2007-03-28 2008-10-09 Nippon Steel Chem Co Ltd 二酸化炭素吸収剤および二酸化炭素吸収方法
JP2009006275A (ja) 2007-06-28 2009-01-15 Research Institute Of Innovative Technology For The Earth 排ガス中の二酸化炭素を効率的に回収する方法
US8021549B2 (en) 2007-10-02 2011-09-20 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for producing potable water from seawater using forward osmosis
DE102007058846A1 (de) 2007-12-05 2009-06-10 Henkel Ag & Co. Kgaa Wasch- oder Reinigungsmittel mit Amidinverbindungen und/oder Amidiniumbicarbonaten
US7799299B2 (en) 2008-01-28 2010-09-21 Batelle Memorial Institute Capture and release of mixed acid gasses with binding organic liquids
JP5557426B2 (ja) 2008-03-07 2014-07-23 公益財団法人地球環境産業技術研究機構 ガス中の二酸化炭素を効率的に吸収及び回収する水溶液及び方法
KR20110002036A (ko) 2008-03-20 2011-01-06 예일 유니버시티 정삼투용 나선형 권취 막 모듈
US7816305B2 (en) 2008-05-15 2010-10-19 Halliburton Energy Services, Inc. Reversible surfactants and methods of use in subterranean formations
KR101577769B1 (ko) 2008-06-20 2015-12-15 예일 유니버시티 정삼투 분리 방법
US20100028202A1 (en) 2008-07-30 2010-02-04 Zhaoyang Wan Proactive control system for an industrial water system
EP2334405A2 (en) * 2008-07-31 2011-06-22 Novozymes A/S Modular membrane reactor and process for carbon dioxide extraction
JP2012504047A (ja) 2008-09-29 2012-02-16 アケルミン・インコーポレイテッド 二酸化炭素の捕捉を加速するためのプロセス
CN101381327B (zh) 2008-10-27 2010-12-22 湖北志诚化工科技有限公司 氨基胍碳酸氢盐的制备方法
SG171463A1 (en) 2008-12-03 2011-07-28 Oasys Water Inc Utility scale osmotic grid storage
GB0822362D0 (en) 2008-12-08 2009-01-14 Surrey Aquatechnology Ltd Improved solvent removal
WO2010077548A1 (en) * 2008-12-08 2010-07-08 Huntsman Petrochemical Llc Decreased presence of amine-derived contaminants in- and/or degradation of amine solvent solutions
US8021553B2 (en) 2008-12-18 2011-09-20 Nrgtek, Inc. Systems and methods for forward osmosis fluid purification using cloud point extraction
US20100212319A1 (en) 2009-02-24 2010-08-26 Mark Donovan Method and apparatus for generating power utilizing forward osmosis
BRPI1010003A2 (pt) 2009-03-09 2018-06-12 Basf Se uso de uma mistura, e, composição
JP2011037951A (ja) 2009-08-07 2011-02-24 Tosoh Corp ポリウレタンフォーム製造用の発泡性添加剤、及びそれを用いた硬質ポリウレタンフォームの製造方法
CA2771902C (en) 2009-08-24 2020-02-25 Oasys Water, Inc. Forward osmosis membranes with removable backing layer
DE102009029651A1 (de) 2009-09-22 2011-03-24 Evonik Röhm Gmbh Verfahren zur Herstellung freier Carbonsäuren
US20110124745A1 (en) 2009-10-09 2011-05-26 Jessop Philip G Switchable Anionic Surfactants and Methods of Making and Using Same
CA2683660C (en) 2009-10-28 2017-07-04 Queen's University At Kingston Switchable hydrophilicity solvents and methods of use thereof
US9044711B2 (en) 2009-10-28 2015-06-02 Oasys Water, Inc. Osmotically driven membrane processes and systems and methods for draw solute recovery
AU2010319846B2 (en) 2009-10-28 2015-05-28 Oasys Water LLC Forward osmosis separation processes
JP5887273B2 (ja) 2009-10-30 2016-03-16 オアシス ウォーター,インコーポレーテッド 浸透分離システム及び方法
JP2011115783A (ja) 2009-10-30 2011-06-16 Fujifilm Corp 水浄化装置及び水浄化方法
US8551221B2 (en) 2009-11-02 2013-10-08 Thomas D. Wolfe Method for combining desalination and osmotic power with carbon dioxide capture
CN102892713B (zh) 2010-02-10 2016-05-04 金斯顿女王大学 具有可转换的离子强度的水
JP5506486B2 (ja) 2010-03-24 2014-05-28 公益財団法人地球環境産業技術研究機構 ガス中に含まれる二酸化炭素を効果的に吸収及び回収する水溶液
CN103221118A (zh) 2010-09-22 2013-07-24 Oasys水有限公司 渗透驱动膜工艺和系统以及用于驱动溶质回收的方法
ES2592689T3 (es) 2010-09-29 2016-12-01 Fujifilm Corporation Aparato de ósmosis directa y proceso de ósmosis directa
SG189224A1 (en) 2010-10-04 2013-05-31 Oasys Water Inc Thin film composite heat exchangers
CN103459439B (zh) 2010-12-15 2017-09-12 金斯顿女王大学 使用具有可转换的离子强度的水的系统和方法
SG194156A1 (en) 2011-04-25 2013-11-29 Trevi Systems Inc Recovery of retrograde soluble solute for forward osmosis water treatment
MX353901B (es) 2011-04-25 2018-02-02 Oasys Water Inc Sistemas y metodos de separacion osmotica.
WO2013019812A1 (en) 2011-08-03 2013-02-07 Oasys Water, Inc. Systems and methods for improving flux in osmotically driven membrane systems
CA2844658A1 (en) 2011-08-10 2013-02-14 Oasys Water, Inc. Membrane modules
US10363336B2 (en) 2011-08-26 2019-07-30 Battelle Energy Alliance, Llc Methods and systems for treating liquids using switchable solvents
WO2013033082A1 (en) 2011-08-31 2013-03-07 Oasys Water, Inc. Osmotic heat engine
NL2007353C2 (en) 2011-09-05 2013-03-07 Kwr Water B V Solution comprising an osmotic agent and method of extracting water using said solution.
WO2013070921A2 (en) 2011-11-10 2013-05-16 Oasys Water, Inc. Osmotic systems for heating, cooling and refrigeration
US20130200291A1 (en) 2012-01-27 2013-08-08 Queen's University At Kingston Tertiary Amine-Based Switchable Cationic Surfactants and Methods and Systems of Use Thereof
WO2014019094A1 (en) 2012-08-02 2014-02-06 Queen's University At Kingston Micellar composition having switchable viscosity
CN105026019A (zh) 2012-11-16 2015-11-04 Oasys水有限公司 用于渗透驱动膜工艺的驱动溶液和驱动溶质回收
WO2014097309A1 (en) 2012-12-17 2014-06-26 Asian Paints Ltd. Stimuli responsive self cleaning coating
CN104327663A (zh) 2014-11-24 2015-02-04 山东交通学院 一种防污抗菌涂层涂料及其应用
EP3303479A4 (en) 2015-06-04 2018-12-19 Greencentre Canada Switchable water-based paint or coating compositions
EP4071117A1 (en) 2015-08-11 2022-10-12 Forward Water Technologies A switchable forward osmosis system, and processes thereof
CN109305894B (zh) 2017-07-26 2022-07-19 郑州大学 一种低极性树脂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472638A (en) * 1992-04-27 1995-12-05 Mobil Oil Corp. Corrosion inhibitor
US20050103684A1 (en) * 2003-11-19 2005-05-19 Martin Evans Mobile fluid catalytic cracking injection system
US20080023401A1 (en) * 2004-11-05 2008-01-31 Hitachi, Ltd. Method for Removing Organic Material in Oilfield Produced Water and a Removal Device Therefor
US20080197084A1 (en) * 2005-11-15 2008-08-21 Jessop Philip G Reversibly switchable surfactants and methods of use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Phan et al. ("Soybean oil extraction and separation using switchable or expanded solvents", Green Chemistry, published online 28 October 2008, Pages 53-59). *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11498853B2 (en) 2010-02-10 2022-11-15 Queen's University At Kingston Water with switchable ionic strength
US10377647B2 (en) 2010-12-15 2019-08-13 Queen's University at Kingson Systems and methods for use of water with switchable ionic strength
US10532319B2 (en) 2013-04-26 2020-01-14 Nanyang Technological University Draw solute for forward osmosis
US9399194B2 (en) 2014-07-16 2016-07-26 Battelle Energy Alliance, Llc Methods for treating a liquid using draw solutions
US11236250B2 (en) * 2015-06-04 2022-02-01 Queen's University At Kingston Switchable water-based paint or coating compositions
WO2017024376A1 (en) * 2015-08-11 2017-02-16 Forward Water Technologies A switchable forward osmosis system, and processes thereof
EP4071117A1 (en) * 2015-08-11 2022-10-12 Forward Water Technologies A switchable forward osmosis system, and processes thereof
IL257423B1 (en) * 2015-08-11 2024-06-01 Forward Water Tech Replaceable forward osmosis system and processes therefor
IL257423B2 (en) * 2015-08-11 2024-10-01 Forward Water Tech Replaceable forward osmosis system and processes therefor
CN105481744A (zh) * 2015-11-25 2016-04-13 江南大学 Co2/n2-h2o2双重刺激响应型表面活性剂及其制备方法
US20210323844A1 (en) * 2018-08-24 2021-10-21 Queen's University At Kingston Forming a treated switchable polymer and use thereof in a forward osmosis system
US11235283B2 (en) * 2019-12-30 2022-02-01 Industrial Technology Research Institute Ionic liquid and forward osmosis process employing the same

Also Published As

Publication number Publication date
SG10201501027XA (en) 2015-04-29
US20190315637A1 (en) 2019-10-17
US11498853B2 (en) 2022-11-15
IL221391A0 (en) 2012-10-31
JP2013518718A (ja) 2013-05-23
JP2018103180A (ja) 2018-07-05
BR112012020112B1 (pt) 2021-08-24
CN102892713A (zh) 2013-01-23
JP2016128164A (ja) 2016-07-14
WO2011097727A1 (en) 2011-08-18
MX2012009296A (es) 2012-11-06
SG183909A1 (en) 2012-10-30
MX364273B (es) 2019-04-22
EP2534106A1 (en) 2012-12-19
JP6431658B2 (ja) 2018-11-28
EP2534106A4 (en) 2016-01-06
CA2789498C (en) 2019-04-02
CN102892713B (zh) 2016-05-04
EP2534106B1 (en) 2019-10-16
HK1177927A1 (zh) 2013-08-30
CA2789498A1 (en) 2011-08-18
EP3653584A1 (en) 2020-05-20
IL221391B (en) 2019-09-26
BR112012020112A2 (pt) 2020-08-11
AU2011214865A1 (en) 2012-09-06
AU2011214865B2 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
US11498853B2 (en) Water with switchable ionic strength
US10377647B2 (en) Systems and methods for use of water with switchable ionic strength
US8900444B2 (en) Switchable hydrophilicity solvents and methods of use thereof
US8710265B2 (en) Switchable solvents and methods of use thereof
US20110124745A1 (en) Switchable Anionic Surfactants and Methods of Making and Using Same
CA2821789C (en) Systems and methods for use of water with switchable ionic strength

Legal Events

Date Code Title Description
AS Assignment

Owner name: QUEEN'S UNIVERSITY AT KINGSTON, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROBERT, TOBIAS;REEL/FRAME:033941/0424

Effective date: 20120918

Owner name: QUEEN'S UNIVERSITY AT KINGSTON, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JESSOP, PHILIP G.;MERCER, SEAN M.;BROWN, R. STEPHEN;SIGNING DATES FROM 20110706 TO 20110708;REEL/FRAME:033941/0411

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION