US20120234931A1 - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
US20120234931A1
US20120234931A1 US13/411,937 US201213411937A US2012234931A1 US 20120234931 A1 US20120234931 A1 US 20120234931A1 US 201213411937 A US201213411937 A US 201213411937A US 2012234931 A1 US2012234931 A1 US 2012234931A1
Authority
US
United States
Prior art keywords
valve
refrigerant
pressure
shaft
seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/411,937
Other languages
English (en)
Inventor
Hisatoshi Hirota
Shinji Saeki
Takeshi Kaneko
Takanao Kumakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Assigned to TGK CO., LTD. reassignment TGK CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIROTA, HISATOSHI, KANEKO, TAKESHI, KUMAKURA, TAKANAO, SAEKI, SHINJI
Publication of US20120234931A1 publication Critical patent/US20120234931A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/325Expansion valves having two or more valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Definitions

  • a refrigeration cycle is formed by piping between a compressor that compresses refrigerant, a condenser that condenses refrigerant, a receiver that separates gas-liquid mixture refrigerant, an expansion valve that adiabatically expands refrigerant, and an evaporator that evaporates refrigerant, into a loop.
  • the expansion valve that expands refrigerant is generally implemented e.g. by a thermostatic expansion valve configured to control a flow rate of refrigerant to be supplied to the evaporator according to the temperature and pressure of refrigerant at an outlet of the evaporator.
  • the evaporator that performs heat exchange between refrigerant and air in a vehicle compartment is installed in the vehicle compartment, and hence the evaporator is demanded to be compact.
  • an evaporator has been generally used which is formed by disposing two heat exchangers each having a reduced thickness in an air passing direction in a laminated manner and allows refrigerant to serially flow through these heat exchangers.
  • expansion valve used in such an evaporator described above has also been proposed in Japanese Laid-Open Patent Publication No. 2010-38455 and International Publication Pamphlet NO. WO2010/131918.
  • This expansion valve includes two valves each capable of adiabatically expanding refrigerant independently of each other, and is configured to control the two valves in an interlocked manner according to temperature and pressure of refrigerant joined after flowing out of the heat exchangers, which are detected at an outlet of the evaporator.
  • both of the configurations of the disclosed expansion valves are theoretical ones, and are not specifically illustrated. If refrigerant leakage flow through the expansion valve occurs when the automotive air conditioning system is stopped, this generates a considerably large noise of flow of the refrigerant, which is perceived as a untoward noise by the sense of hearing of occupants, and hence it is necessary to close the expansion valve.
  • the expansion valve having two valves also has the same problem, and in this case, it is important to simultaneously close the two valves.
  • an expansion valve including a first valve having a first valve element and a first valve seat, a second valve having a second valve element and a second valve seat, and a power element configured to control lifts of the first valve element and the second valve element in an interlocked manner, wherein the second valve seat of the second valve is a movable valve seat which is adjustable in a direction toward or away from the second valve element.
  • FIG. 1 illustrates a refrigeration cycle to which an expansion valve according to embodiments is applied
  • FIG. 2 is a central vertical cross-sectional view of an expansion valve according to a first embodiment
  • FIG. 3 is a central vertical cross-sectional view of the expansion valve according to the first embodiment, as viewed at right angles to a plane of FIG. 2 ;
  • FIG. 4 is a central vertical cross-sectional view of an expansion valve according to a second embodiment.
  • FIG. 1 illustrates a refrigeration cycle to which an expansion valve according to the present embodiments is applied.
  • a refrigeration cycle of an automotive air conditioning system comprises a compressor 1 , a condenser 2 , an expansion valve 3 , and an evaporator 4 , which are connected by piping between them into a loop.
  • the compressor 1 compresses refrigerant circulating through the refrigeration cycle and delivers the compressed refrigerant to the condenser 2 .
  • the condenser 2 is configured such that a cooling fan 5 causes outside air to pass through the condenser 2 , and condenses high-temperature, high-pressure refrigerant compressed by the compressor 1 by performing heat exchange with outside air.
  • a receiver (not illustrated) that temporarily stores the condensed refrigerant is disposed at an outlet of the condenser 2 , and liquid refrigerant obtained by gas/liquid separation performed in the receiver is supplied to the expansion valve 3 .
  • the expansion valve 3 is a thermostatic expansion valve including a first valve 3 a and a second valve 3 b, which adiabatically expands liquid refrigerant.
  • the evaporator 4 includes a first heat exchanger 4 a and a second heat exchanger 4 b, which are disposed in a laminated manner within an air blowing passage on a downstream side of a fan 6 .
  • Adiabatically expanded vapor refrigerant is supplied from the first valve 3 a of the expansion valve 3 to the first heat exchanger 4 a disposed on a side toward the fan 6
  • adiabatically expanded vapor refrigerant is supplied from the second valve 3 b to the second heat exchanger 4 b disposed on an air outlet port side.
  • the refrigerant is evaporated by heat exchange with air blown by the fan 6 .
  • Refrigerant flowing out of the first heat exchanger 4 a and refrigerant flowing out of the second heat exchanger 4 b are joined and the joined refrigerant is returned to the compressor 1 through the expansion valve 3 .
  • the expansion valve 3 monitors the temperature and pressure of the refrigerant, i.e. a degree of superheat of the refrigerant at the outlet of the evaporator, and controls the flow rate of refrigerant supplied from the first valve 3 a and the second valve 3 b according to the degree of superheat.
  • the first heat exchanger 4 a disposed on the side toward the fan 6 performs heat exchange with higher-temperature air
  • the second heat exchanger 4 b disposed on the air outlet port side performs heat exchange with air cooled by the first heat exchanger 4 a. Therefore, the flow rate of refrigerant supplied from the first valve 3 a to the first heat exchanger 4 a is set to be higher than the flow rate of refrigerant supplied from the second valve 3 b to the second heat exchanger 4 b , and in the present embodiment, the flow rate ratio between the first valve 3 a and the second valve 3 b is set to 2:1.
  • FIG. 2 is a central vertical cross-sectional view of an expansion valve according to a first embodiment
  • FIG. 3 is a central vertical cross-sectional view of the expansion valve according to the first embodiment, as viewed at right angles to a plane of FIG. 2 .
  • the expansion valve according to the first embodiment includes a rectangular parallelepiped body 11 having a high pressure inlet port 12 formed in a lower portion, as viewed in FIG. 3 , of one side surface thereof (right side surface, as viewed in FIG. 3 ). High-pressure liquid refrigerant is supplied to the high pressure inlet port 12 .
  • the body 11 has a first low-pressure outlet port formed in a central portion of a side surface (left side surface, as viewed in FIG. 2 ) adjacent to the one side surface formed with the high pressure inlet port 12 .
  • the first low-pressure outlet port 13 is connected to the first heat exchanger 4 a disposed on the side toward the fan 6 .
  • the body 11 has a second low-pressure outlet port 14 formed in a lower portion than the central portion where the first low-pressure outlet port 13 is formed, as viewed in FIG. 2 .
  • the second low-pressure outlet port 14 is connected to the second heat exchanger 4 b disposed on the air outlet port side.
  • the body 11 has a returning refrigerant inlet port 15 formed in an upper portion than the central portion where the first low-pressure outlet port 13 is formed, as viewed in FIG. 2 .
  • the body 11 has a returning refrigerant outlet port 16 formed in an upper portion of the one side surface formed with the high pressure inlet port 12 as viewed in FIG. 3 .
  • a power element 17 that senses a degree of superheat of refrigerant returning from the evaporator 4 is screwed into an upper end surface of the body 11 .
  • a shaft 18 , the first valve 3 a, the second valve 3 b, a compression coil spring 19 , and an adjustment screw 20 are coaxially arranged within the body 11 exactly below the power element 17 .
  • the shaft 18 , the first valve 3 a, and the second valve 3 b are separately disposed such that they operate independently of each other, and are configured to be capable of smoothly operating in an axial direction even when they are disposed with the center of the axis slightly displaced.
  • the first valve 3 a includes a first valve element 21 and a first valve seat 22 formed in the body 11 , and the first valve seat 22 is formed with a first valve hole 23 communicating with the first low-pressure outlet port 13 .
  • the second valve 3 b includes a second valve element 24 and a second valve seat 25 press-fitted into the body 11 , and the second valve seat 25 is formed with a second valve hole 26 having a smaller port diameter than that of the first valve hole 23 .
  • the first valve element 21 of the first valve 3 a is disposed in a valve chamber 27 communicating with the high pressure inlet port 12 , in a manner movable to and away from the first valve seat 22 .
  • the first valve element 21 is integrally formed with two guides 28 which slide along an inner wall of the valve chamber 27 , on respective sides toward the first valve seat 22 and the second valve 3 b.
  • the guides 28 are each formed with a plurality of communication passages 29 for guiding liquid refrigerant introduced into the valve chamber 27 toward the first valve seat 22 and toward the second valve 3 b .
  • the communication passages 29 may be three arc-shaped openings formed through each guide 28 in a concentric arrangement at equally-spaced intervals.
  • the guides 28 on the respective sides toward the first valve seat 22 and the second valve 3 b have different axial lengths such that when liquid refrigerant flows through the communication passages 29 , respective forces are cancelled out by which the first valve element 21 is pulled toward the first valve seat 22 and the second valve 3 b, due to viscosity of refrigerant.
  • the distribution ratio between the flow rate of refrigerant supplied from the first valve 3 a and the flow rate of refrigerant supplied from the second valve 3 b is set to 2:1, and hence a ratio between the axial length of the guide 28 toward the first valve seat 22 and that of the guide 28 toward the second valve 3 b is set to 1:2.
  • the first valve 3 a has a structure in which the first valve element 21 is disposed on a upstream side of the first valve seat 22 , whereby high-pressure liquid refrigerant acts on the first valve element 21 in a valve-closing direction.
  • the first valve 3 a has high-pressure-dependent characteristics that although there is a proportional relationship between pressure of liquid refrigerant on a primary side and pressure of vapor refrigerant of a secondary side when the first valve 3 a is fully open, when the valve opening becomes smaller than a predetermined opening, as the pressure on primary side increases, the pressure on the secondary side decreases.
  • the second valve 3 b is disposed in a space formed within the body 11 , which communicates between the valve chamber 27 and the second low-pressure outlet port 14 and is formed coaxially with the valve chamber 27 .
  • the second valve seat 25 is fixed to the body 11 by press fitting, and the second valve element 24 is disposed in a manner movable to and away from the second valve seat 25 .
  • the second valve element 24 has an axially extending portion 30 integrally formed thereon such that the axially extending portion 30 extends through the second valve hole 26 of the second valve seat 25 toward the first valve 3 a .
  • An end face of the axially extending portion 30 is constantly brought into contact with the first valve element 21 by an urging force of the compression coil spring 19 .
  • the second valve 3 b has a structure in which the second valve element 24 is disposed on a downstream side of the second valve seat 25 , and high-pressure liquid refrigerant acts on the second valve element 24 in a valve-opening direction. Therefore, the present expansion valve is configured to have high-pressure-dependent characteristics that the expansion valve is operated in the valve-closing direction according to a balance between the port diameter of the first valve hole 23 and the port diameter of the second valve hole 26 .
  • the compression coil spring 19 is received by the adjustment screw 20 screwed into the body 11 .
  • Load of the compression coil spring 19 is adjusted by adjusting a screwing amount of the adjustment screw 20 . This adjustment corresponds to the setting of the superheat degree to be controlled by the expansion valve.
  • a portion where the adjustment screw 20 is screwed into the body 11 is hermetically sealed by an O ring 31 .
  • the power element 17 is screwed into a fitting hole formed in an upper surface of the body 11 , as viewed in FIGS. 2 and 3 .
  • the fitting hole for fitting the power element 17 communicates with a refrigerant returning passage 32 formed between the returning refrigerant inlet port 15 and the returning refrigerant outlet port 16 , and enables refrigerant flowing through the refrigerant returning passage 32 to be introduced into the power element 17 .
  • the power element 17 is formed by sandwiching a diaphragm 33 between an upper housing 34 and a lower housing 35 , and welding together the outer peripheries of these.
  • a hermetically sealed space enclosed by the diaphragm 33 and the upper housing 34 is filled with gas having characteristics similar to refrigerant, and forms a temperature sensing chamber.
  • the lower housing 35 is provided with a disk 36 which transmits the displacement of the diaphragm 33 to the first valve 3 a and the second valve 3 b.
  • the disk 36 is fitted on an upper end of the shaft 18 held by a holder 37 , and has its center positioned by the shaft 18 within the lower housing 35 .
  • the holder 37 has an upper portion disposed in the fitting hole of the power element 17 , and accommodates a compression coil spring 38 in the upper portion thereof so as to apply a lateral load to the shaft 18 , as illustrated in FIG. 3 .
  • the shaft 18 is limited in axial motion by having the lateral load applied thereto, and hence even when liquid refrigerant introduced into the high pressure inlet port 12 fluctuates in pressure, the first valve element 21 is prevented from vibrating in the axial direction to generate untoward noise.
  • the holder 37 hangs down through the refrigerant returning passage 32 , and a lower end of the holder 37 retains an O ring 39 disposed around the shaft 18 between the first low-pressure outlet port 13 and the refrigerant returning passage 32 .
  • the O ring 39 blocks refrigerant from leaking from the first low-pressure outlet port 13 into the refrigerant returning passage 32 without flowing toward the first heat exchanger 4 a of the evaporator 4 .
  • the power element 17 is covered with a cap 40 , and is thereby thermally insulated from the environment so as not to be affected by the temperature of the environment in which the expansion valve is disposed. Further, a throttle passage member 41 having an annular shape is fitted in the first low-pressure outlet port 13 .
  • the throttle passage member 41 has a through hole formed through a central portion thereof, which has a predetermined opening area, and throttles the flow of refrigerant flowing from the first low-pressure outlet port 13 to thereby prevent bubbles from being generated and reduce noise generated when refrigerant passes through the expansion valve.
  • the expansion valve constructed as above, during the stoppage or the minimum capacity operation of the compressor 1 , the pressure in the refrigerant returning passage 32 is high, and in the power element 17 which has sensed the high pressure, the diaphragm 33 is displaced toward the temperature sensing chamber. As a result, since the first valve element 21 and the second valve element 24 are urged by the compression coil spring 19 in the valve-closing direction, the first valve 3 a and the second valve 3 b are in a closed state.
  • the pressure in the refrigerant returning passage 32 decreases, whereby the diaphragm 33 of the power element 17 is displaced toward the first valve 3 a and the second valve 3 b, and high-pressure refrigerant is introduced into the high pressure inlet port 12 .
  • the first valve 3 a and the second valve 3 b are opened by the power element 17 , whereby the liquid refrigerant condensed by the condenser 2 is introduced into the high pressure inlet port 12 .
  • the liquid refrigerant introduced into the valve chamber 27 is adiabatically expanded by the first valve 3 a to form low-temperature, low-pressure vapor refrigerant, and is delivered from the first low-pressure outlet port 13 to the first heat exchanger 4 a of the evaporator 4 . Further, the liquid refrigerant in the valve chamber 27 is adiabatically expanded by the second valve 3 b to form low-temperature, low-pressure vapor refrigerant, and is delivered from the second low-pressure outlet port 14 to the second heat exchanger 4 b of the evaporator 4 .
  • the vapor refrigerant introduced into the first heat exchanger 4 a and the vapor refrigerant introduced into the second heat exchanger 4 b are evaporated by heat exchange with air blown by the fan 6 , and then are joined together to be returned to the returning refrigerant inlet port 15 .
  • the air having passed through the evaporator 4 is dehumidified and cooled, and is then blown out into the vehicle compartment after being adjusted to appropriate temperature.
  • the refrigerant introduced into the returning refrigerant inlet port 15 flows through the refrigerant returning passage 32 , and is then returned from the returning refrigerant outlet port 16 to the compressor 1 .
  • the degree of superheat of the refrigerant is sensed by the power element 17 , and valve lifts of the first valve 3 a and the second valve 3 b are controlled according to the degree of superheat.
  • the first valve 3 a and the second valve 3 b are thus feedback-controlled according to the degree of superheat of the refrigerant detected at the outlet of the evaporator 4 , and hence the present expansion valve controls the flow rate of vapor refrigerant to be delivered to the evaporator 4 such that the refrigerant at the outlet of the evaporator maintains the degree of superheat set by the compression coil spring 19 .
  • FIG. 4 is a central vertical cross-sectional view of an expansion valve according to a second embodiment.
  • Component elements illustrated in FIG. 4 identical or equivalent to those illustrated in FIG. 2 are designated by identical reference numerals, and detailed description thereof is omitted.
  • the expansion valve according to the second embodiment includes the shaft 18 , the first valve 3 a, the compression coil spring 19 , and the adjustment screw 20 , coaxially arranged within the body 11 exactly below the power element 17 .
  • the second valve 3 b is arranged such that the valve is lifted in a direction orthogonal to an axial direction of the shaft 18 , and is screwed into an inner wall of a refrigerant passage 42 formed in a manner extending from the second low-pressure outlet port 14 across the shaft 18 .
  • the shaft 18 has a tapered surface 43 having a frustoconical shape formed on an intermediate portion thereof, and the second valve 3 b is in constant contact with the tapered surface 43 .
  • the O ring 39 fitted around the shaft 18 prevents the high-pressure refrigerant introduced into the high pressure inlet port 12 from leaking into the refrigerant returning passage 32 through a clearance between the shaft 18 and the body 11 .
  • the first valve 3 a includes the first valve element 21 , which is ball-shaped, and the first valve element 21 is urged by the compression coil spring 19 disposed between a valve element-supporting portion 44 which receives the first valve element 21 and the adjustment screw 20 , in the valve-closing direction. With this arrangement, the first valve element 21 is brought into contact with a front end of the shaft 18 extended through the first valve hole 23 of the first valve seat 22 . Since the first valve element 21 is ball-shaped, it is preferable to spot-weld the first valve element 21 to the front end of the shaft 18 , so as to improve the assembly properties.
  • the valve chamber 27 which accommodates the first valve element 21 communicates with the first low-pressure outlet port 13 , and the throttle passage member 41 is fitted in an intermediate portion of the passage communicating between the valve chamber 27 and the first low-pressure outlet port 13 .
  • the first valve 3 a has a structure in which that the first valve element 21 is disposed on the 12 downstream side of the first valve seat 22 and is operated by high-pressure liquid refrigerant in the valve-opening direction, whereas the O ring 39 sealing the shaft 18 receives high pressure refrigerant through the clearance between the shaft 18 and the body 11 to thereby operate the shaft 18 in the valve-closing direction. Therefore, the expansion valve is configured to have high-pressure-dependent characteristics that the expansion valve is operated in the valve-closing direction according to a balance between the port diameter of the first valve hole 23 and the sealing diameter of the O ring 39 .
  • the second valve 3 b includes a screwing portion 25 a by which the second valve seat 25 is screwed into the inner wall of the refrigerant passage 42 , and a valve shaft-supporting portion 25 b which supports a valve shaft 24 a of the second valve element 24 , and the valve shaft-supporting portion 25 b has a groove communicating with the second valve hole 26 , formed in a supporting hole within which the valve shaft 24 a is supported.
  • a spring receiver is fitted on the valve shaft 24 a, and a compression coil spring 45 is disposed between the spring receiver 50 and the screwing portion 25 a of the second valve seat 25 , for urging the second valve element 24 in the valve-closing direction, and constantly bringing the front end of the valve shaft 24 a into contact with the tapered surface 43 of the shaft 18 .
  • the second valve seat 25 forms a movable valve seat adjustable in a direction toward or away from the second valve element 24 having the valve shaft 24 a in contact with the tapered surface 43 . This makes it possible to match timing for closing the first valve 3 a with timing for closing the second valve 3 b by adjusting a screwing amount of the second valve seat 25 .
  • a downstream side of the second valve 3 b communicates with the second low-pressure outlet port 14 , and a throttle passage member 46 is fitted in an intermediate portion of a passage communicating between the second valve 3 b and the second low-pressure outlet port 14 .
  • the throttle passage member 46 throttles the flow of refrigerant flowing from the second low-pressure outlet port 14 to thereby prevent bubbles from being generated, and reduce noise generated when refrigerant passes through the expansion valve.
  • the shaft 18 when the first valve 3 a is in a closed state, the shaft 18 is at rest in a position in which the valve shaft 24 a of the second valve element 24 seated on the second valve seat 25 is just in contact with the tapered surface 43 .
  • the tapered surface 43 of the shaft 18 is moved toward the first valve 3 a.
  • the direction of lifting the first valve element 21 is converted into a direction orthogonal thereto by the tapered surface 43 , which causes the second valve element 24 to be lifted in a manner interlocked with the lift of the first valve element 21 . Therefore, the operation of the present expansion valve is the same as the above-described operation of the expansion valve according to the first embodiment, and hence detailed description of the operation is omitted.
  • the flow rate of vapor refrigerant to be fed to the evaporator 4 is controlled such that the refrigerant at the outlet of the evaporator maintains the degree of superheat set by the compression coil spring 19 .
  • the first valve 3 a and the second valve 3 b operating in an interlocked manner are simultaneously closed, and refrigerant does not leak during valve closing, and hence it is possible to completely prevent flowing noise of refrigerant from being generated by the leakage of refrigerant.
  • the expansion valve configured as above is capable of simultaneously closing the first valve and the second valve operating in an interlocked manner, and hence leakage of refrigerant during valve closing does not occur, which is advantageous in positively preventing noise caused by the leakage of refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Temperature-Responsive Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)
US13/411,937 2011-03-14 2012-03-05 Expansion valve Abandoned US20120234931A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-055616 2011-03-14
JP2011055616A JP5786225B2 (ja) 2011-03-14 2011-03-14 膨張弁

Publications (1)

Publication Number Publication Date
US20120234931A1 true US20120234931A1 (en) 2012-09-20

Family

ID=46811940

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/411,937 Abandoned US20120234931A1 (en) 2011-03-14 2012-03-05 Expansion valve

Country Status (4)

Country Link
US (1) US20120234931A1 (ja)
JP (1) JP5786225B2 (ja)
KR (1) KR101931815B1 (ja)
CN (1) CN102679640B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180135775A1 (en) * 2015-06-09 2018-05-17 Denso Corporation Pressure reduction valve
CN112393454A (zh) * 2020-07-09 2021-02-23 香港城市大学深圳研究院 双温空气源热泵机组
CN113701873A (zh) * 2020-05-19 2021-11-26 广州汽车集团股份有限公司 冷媒流动声检测装置、系统及方法
US11262107B2 (en) * 2017-03-27 2022-03-01 Daikin Industries, Ltd. Heat exchanger having first and second heat exchange units with different refrigerant flow resistances and refrigeration apparatus
US11415371B2 (en) 2017-03-27 2022-08-16 Daikin Industries, Ltd. Heat exchanger and refrigeration apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5991871B2 (ja) * 2012-04-05 2016-09-14 株式会社不二工機 膨張弁
JP6007369B2 (ja) * 2012-12-12 2016-10-12 株式会社テージーケー 制御弁
KR101631187B1 (ko) * 2013-03-29 2016-06-16 한온시스템 주식회사 팽창밸브
JP6418769B2 (ja) * 2014-04-04 2018-11-07 株式会社不二工機 膨張弁
KR102112052B1 (ko) * 2014-12-01 2020-05-19 한온시스템 주식회사 차량용 공조장치의 팽창밸브
CN112665849B (zh) * 2020-12-25 2023-02-10 浙江元成科技有限公司 一种膨胀阀转子生产用成品检测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977177A (ja) * 1982-10-25 1984-05-02 Nissan Motor Co Ltd ク−ラサイクル用の膨張弁
JPH11325308A (ja) * 1998-05-15 1999-11-26 Saginomiya Seisakusho Inc 温度膨張弁
JP2002098444A (ja) * 2000-09-22 2002-04-05 Nippon Soken Inc 冷凍サイクルに使用される膨張弁
US20060228227A1 (en) * 2005-04-12 2006-10-12 Fujikoki Corporation Control valve for variable capacity compressors
US7448226B2 (en) * 2002-03-29 2008-11-11 Kabushiki Kaisha Toshiba Refrigerator
JP2009222144A (ja) * 2008-03-17 2009-10-01 Tgk Co Ltd 膨張弁
JP2009264685A (ja) * 2008-04-25 2009-11-12 Tgk Co Ltd 膨張弁
JP2010038455A (ja) * 2008-08-05 2010-02-18 Denso Corp 膨張弁及びそれを備えた蒸気圧縮式冷凍サイクル

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3569598B2 (ja) * 1996-07-17 2004-09-22 株式会社ケーヒン 空調装置用膨張弁
JPH11108505A (ja) * 1997-10-03 1999-04-23 Tgk Co Ltd 膨張弁
JP2006242413A (ja) * 2005-03-01 2006-09-14 Tgk Co Ltd 定流量膨張弁
JP2007024186A (ja) * 2005-07-15 2007-02-01 Saginomiya Seisakusho Inc 2段式制御弁
KR101198640B1 (ko) * 2006-02-16 2012-11-07 한라공조주식회사 냉매 유량조절이 가능한 가변용량형 팽창밸브
JP5022120B2 (ja) * 2007-07-03 2012-09-12 株式会社不二工機 冷暖房システム用の電動弁

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977177A (ja) * 1982-10-25 1984-05-02 Nissan Motor Co Ltd ク−ラサイクル用の膨張弁
JPH11325308A (ja) * 1998-05-15 1999-11-26 Saginomiya Seisakusho Inc 温度膨張弁
JP2002098444A (ja) * 2000-09-22 2002-04-05 Nippon Soken Inc 冷凍サイクルに使用される膨張弁
US7448226B2 (en) * 2002-03-29 2008-11-11 Kabushiki Kaisha Toshiba Refrigerator
US20060228227A1 (en) * 2005-04-12 2006-10-12 Fujikoki Corporation Control valve for variable capacity compressors
JP2009222144A (ja) * 2008-03-17 2009-10-01 Tgk Co Ltd 膨張弁
JP2009264685A (ja) * 2008-04-25 2009-11-12 Tgk Co Ltd 膨張弁
JP2010038455A (ja) * 2008-08-05 2010-02-18 Denso Corp 膨張弁及びそれを備えた蒸気圧縮式冷凍サイクル

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180135775A1 (en) * 2015-06-09 2018-05-17 Denso Corporation Pressure reduction valve
US10436349B2 (en) * 2015-06-09 2019-10-08 Denso Corporation Pressure reduction valve
US11262107B2 (en) * 2017-03-27 2022-03-01 Daikin Industries, Ltd. Heat exchanger having first and second heat exchange units with different refrigerant flow resistances and refrigeration apparatus
US11415371B2 (en) 2017-03-27 2022-08-16 Daikin Industries, Ltd. Heat exchanger and refrigeration apparatus
CN113701873A (zh) * 2020-05-19 2021-11-26 广州汽车集团股份有限公司 冷媒流动声检测装置、系统及方法
CN112393454A (zh) * 2020-07-09 2021-02-23 香港城市大学深圳研究院 双温空气源热泵机组

Also Published As

Publication number Publication date
JP5786225B2 (ja) 2015-09-30
CN102679640B (zh) 2014-08-27
CN102679640A (zh) 2012-09-19
KR101931815B1 (ko) 2018-12-21
JP2012189193A (ja) 2012-10-04
KR20120104946A (ko) 2012-09-24

Similar Documents

Publication Publication Date Title
US20120234931A1 (en) Expansion valve
US10260786B2 (en) Electromagnetic valve
US6957663B2 (en) Solenoid control valve
KR20070092118A (ko) 팽창 밸브
US7263857B2 (en) Constant flow rate expansion value
JP5544459B2 (ja) パイロット作動式の電磁弁
KR101572574B1 (ko) 팽창밸브 및 이를 구비한 차량용 공조장치
KR20060063730A (ko) 팽창 장치
JP6085763B2 (ja) 電磁弁
US20070266731A1 (en) Mounting structure of expansion valve
US7036744B2 (en) Solenoid valve-equipped expansion valve
US6986498B2 (en) Differential pressure valve
JP6142183B2 (ja) 電磁弁
JP6007369B2 (ja) 制御弁
KR20120116334A (ko) 팽창 밸브
JP2012220140A (ja) 膨張弁
JP6340742B2 (ja) 電磁弁
CN105822770A (zh) 双向热力膨胀阀
JP2009092276A (ja) 冷凍サイクル
JP2017044357A (ja) 膨張弁
CN117321355A (zh) 带有集成旁通止回阀的无温包膨胀阀
CN111854238A (zh) 膨胀阀及冷冻循环系统
JP2003004341A (ja) 膨張弁
JPS6325259B2 (ja)

Legal Events

Date Code Title Description
AS Assignment

Owner name: TGK CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIROTA, HISATOSHI;SAEKI, SHINJI;KANEKO, TAKESHI;AND OTHERS;SIGNING DATES FROM 20120209 TO 20120223;REEL/FRAME:027814/0035

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION