US20120134905A1 - Method of use of an ionic liquid and device for sorption of a gas - Google Patents

Method of use of an ionic liquid and device for sorption of a gas Download PDF

Info

Publication number
US20120134905A1
US20120134905A1 US13/380,008 US201013380008A US2012134905A1 US 20120134905 A1 US20120134905 A1 US 20120134905A1 US 201013380008 A US201013380008 A US 201013380008A US 2012134905 A1 US2012134905 A1 US 2012134905A1
Authority
US
United States
Prior art keywords
ionic liquid
group
cation
gas
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/380,008
Other languages
English (en)
Inventor
Roland Kalb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proionic GmbH
Original Assignee
VTU Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VTU Holding GmbH filed Critical VTU Holding GmbH
Assigned to VTU HOLDING GMBH reassignment VTU HOLDING GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KALB, ROLAND
Publication of US20120134905A1 publication Critical patent/US20120134905A1/en
Assigned to PROIONIC GMBH reassignment PROIONIC GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VTU HOLDING GMBH
Assigned to PROIONIC GMBH reassignment PROIONIC GMBH CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE'S CITY PREVIOUSLY RECORDED AT REEL: 039055 FRAME: 0263. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: VTU HOLDING GMBH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • C07C381/12Sulfonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/30Ionic liquids and zwitter-ions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to a method of use of an ionic liquid, in particular for sorption of a gas or vapor having an electric multipole moment.
  • the invention relates to a device for sorption of a gas or vapor.
  • Carbon dioxide (CO 2 ) is an undesired diluent that is present in many gas sources. In order to improve the quality of the gases the CO 2 should be removed to acceptable specifications. In gas processing industry, various technologies have been employed for CO 2 removal including chemical solvents, physical solvents, and membranes. By far, chemical solvents that reversibly react with CO 2 are most commonly used for CO 2 removal.
  • processes for removal of CO 2 from gaseous streams comprise the contacting a CO 2 containing gaseous stream with an absorbent comprising from 1 to 20 wt % water and an ionic liquid comprising pyridines or imidazole cations and an anion, wherein said contacting occurs at absorption conditions, to absorb at least a portion of the CO 2 from the CO 2 containing gaseous stream and forming a CO 2 -absorbent complex. Afterwards the gaseous product having a reduced CO 2 content is recovered.
  • This object may be solved by a method of use of an ionic liquid, in particular for sorption of a gas or vapor having an electric multipole moment and a device for sorption of a gas or vapor according to the independent claims. Further exemplary embodiments are described in the dependent claims.
  • a method of use of an ionic liquid for sorption of a gas having an electric multipole moment wherein the ionic liquid comprises an anion and a non-aromatic cation.
  • the terms “gas” and “gaseous” and “vapor” and “vaporous”, respectively may be interchangeably used, i.e. no distinction is made between these two terms.
  • the electric multipole moment may be an electric dipole moment and/or an electric quadrupole moment.
  • the sorption may be an adsorption or an absorption.
  • the ionic liquid may be a pure ionic liquid, i.e. a liquid substantially only containing anions and cations, while not containing other components, e.g. water.
  • a solution containing the ionic liquid and a solvent or further compound, e.g. water may be used.
  • the content of other components than the ionic liquid may be 35% or less by mass, in particular less than 30% by mass, less than 20% by mass, less than 10% by mass, or even less than 5% by mass, wherein for all the above ranges the lower limit may be about 10 ppm.
  • the ranges may be between about 10 ppm and 50% by mass, in particular between about 10 ppm and 35% by mass, between about 10 ppm and 20% by mass, between about 10 ppm and 10% by mass, or even between about 10 ppm and 5% by mass.
  • the sorption may be performed by the ionic liquid itself, e.g. may particularly be a physical sorption.
  • the ionic liquid may also perform a chemical sorption, a physical sorption or a combined chemical-physical sorption. This process has to be distinguished from a process in which the ionic liquid only forms a solvent for a compound or component, e.g.
  • a polymer which then acts as the sorbent for the gas having an electric multipole moment. That is, according to specific embodiments of the invention the ionic liquid may form the sorbent which sorbs the gas having an electric multipole moment. Consequently a method according to an exemplary embodiment may comprise the step of sorbing a gas having an electric multipole moment by an ionic liquid, wherein the ionic liquid may be a pure or substantially pure ionic liquid or may include some additives having only few, e.g. less than 35% by mass, further components.
  • the ionic liquids may be represented by [Q + ] n [Z n- ], wherein Q represents a non-aromatic cation and which may be produced by a process as described for example in WO 2005/021484 which is hereby herein incorporated by reference.
  • a device for sorption of a gas having an electric multipole moment comprising a reservoir of an ionic liquid comprising an anion and a non-aromatic cation.
  • the device may comprise an inlet, a container including the ionic liquid, and optionally an outlet.
  • the device may be used to sorb gas having an electric multipole moment, e.g. CO 2 , from a medium which is selected out of the group consisting of recovery gas, synthesis gas, water gas, natural gas, inhaled air, and exhaled air.
  • the device may be a heat pump.
  • the heat pump may comprise a circuit including CO 2 and the ionic liquid which comprises an anion and a non-aromatic cation as working media.
  • the usage of a pair of working media containing CO 2 and an ionic liquid in a heat pump may be advantageous since CO 2 is not toxic is of less concern with respect to environmental effect compared to other vaporizable working substances.
  • a method of use of an ionic liquid for sorption of a gas having an electric multipole moment is provided, wherein the ionic liquid comprises a carbanion and a cation.
  • non-aromatic cations of the ionic liquid may provide for an ionic liquid which may be cheaper and more secure than the use of aromatic cations.
  • Such ionic liquids may be a suitable medium to sorb specific gases, e.g. CO 2 , or vapor out of a mixture of gases and may also be suitable to release these specific gases or vapor again.
  • the specific gases and the ionic liquid may form a complex, i.e. the specific gases may be complex bound. According to some exemplary embodiments it may even be possible to remove the complex bound in the form of a solid compound.
  • the uses of such ionic liquids for sorption of gases may be advantageous since ionic liquids may be used showing no or at least substantially no vapor pressure, e.g.
  • non-aromatic ionic liquids may increase the performance of the sorption process compared to the case in which aromatic ionic liquids are used.
  • the removal of CO 2 by using non-aromatic ionic liquids may exhibit an improved performance even in cases where the vapor pressure of CO 2 is low.
  • an ionic liquid having aromatic cation in case the ionic liquid comprises a carbanion. That is, when using an ionic liquid comprising a carbanion the cation may be an aromatic or a non-aromatic anion.
  • the non-aromatic cation is an aliphatic cation.
  • the term “aliphatic cation” may also include cations having aliphatic side chains.
  • Aliphatic cations may be suitable non-aromatic cations for an ionic liquid which are less expensive and/or less toxic than typical aromatic cations.
  • the ionic liquid satisfy the generic formula [Q + ][A ⁇ ],
  • the anion may be describable by the resonant or mesomeric states:
  • X and Y may indicate, independently from each other, groups which may attract electrons due to the inductive effect or the mesomeric effect and/or which may delocalize and/or stabilize (localize) electrons. Examples for such groups may be:
  • aryl or heteroaryl having 2 to 30 carbon atoms and their alkyl-, aryl-, heteroaryl-, cycloalkyl-, halogen-, hydroxy-, amino-, carboxy-, formyl-, —O—, —CO— or —CO—O-substituted components, e.g.
  • phenyl 2-methyl-phenyl (2-tolyl), 3-methyl-phenyl (3-tolyl), 4-methyl-phenyl, 2-ethyl-phenyl, 3-ethyl-phenyl, 4-ethyl-phenyl, 2,3-dimethyl-phenyl, 2,4-dimethyl-phenyl, 2,5-dimethyl-phenyl, 2,6-dimethyl-phenyl, 3,4-dimethyl-phenyl, 3,5-dimethyl-phenyl, 4-phenyl-phenyl, 1-naphthyl, 2-naphthyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 2-pyridinyl, 3-pyridinyl, 4-Pyridinyl or C 6 F (5 ⁇ a) H a wherein 0 ⁇ a ⁇ 5,
  • pairs of the R k , R m , R n , R o may be bonded directly to each other or via C 1 -C 4 , which may be substituted if necessary, so that a saturated, unsaturated, or conjugated unsaturated ring may be formed.
  • the ionic liquid satisfy the generic formula [Q + ] a [A a- ], wherein [A a- ] with the charge a- is selected out of the group consisting of:
  • the ionic liquid satisfy the generic formula [Q + ] a [A a-],wherein [A a- ] is a carbanion formed by deprotonating a chemical compound out of the group consisting of:
  • acetoacetic ester malonic mononitrile, malonic acid dimethylester, malonic acid diethylester, acetylacetone, malonic acid dinitrile, acetone, diethylketone, methlethylketone, dibutylketone, 1,3-dithian, acetaldehyde, benzaldehyde, crotonaldehyde and butyraldehyde.
  • the ionic liquid satisfy the generic formula [Q + ] a [A a- ], wherein [A a- ] is a carbanion and wherein [C] + is one out of the group consisting of quaternary ammonium cation [R 1′ R 1 R 2 R 3 N] + , phosphonium [R 1′ R 1 R 2 R 3 P] + , sulfonium [R 1′ R 1 R 2 S] + and a hetero aromatic cation.
  • the carbanion may be formed by deprotonating a chemical compound out of the group consisting of: acetoacetic ester, malonic mononitrile, malonic acid dimethylester, malonic acid diethylester, acetylacetone, malonic acid dinitrile, acetone, diethylketone, methlethylketone, dibutylketone, 1,3-dithian, acetaldehyde, benzaldehyde, crotonaldehyde and butyraldehyde.
  • a chemical compound out of the group consisting of: acetoacetic ester, malonic mononitrile, malonic acid dimethylester, malonic acid diethylester, acetylacetone, malonic acid dinitrile, acetone, diethylketone, methlethylketone, dibutylketone, 1,3-dithian, acetaldehyde, benzaldehyde, crotonaldeh
  • R 1 , R 1′ , R 2 , R 3 may be alkyl, alkenyl, alkinyl, cycloalkyl, cycloalkenyl, aryl or heteroaryl which may be independently substituted, or
  • R 1 , R 1′ , R 2 , R 3 may form a ring together with a hetero-atom to which they are bound.
  • the ring may be saturated, unsaturated, substituted or unsubstitued.
  • the chain may be interrupted by one or more hetero-atoms out of the group consisting of O, S, NH or N—C 1 -C 4 -alkyl.
  • the hetero aromatic cation may be a 5 or 6 membered ring comprising at least one N and if necessary one 0 and/or one S.
  • the hetero aromatic cation may be substituted or unsubstituted and/or annelated.
  • the hetero aromatic cation is selected from the group consisting of:
  • moieties R may be one of the following:
  • R hydrogen, C 1 -C 30 -alkyl, C 3 -C 12 -cycloalkyl, C 2 -C 30 -alkenyl, C 3 -C 12 -cycloalkenyl, C 2 -C 30 -alkinyl, aryl or heteroaryl, wherein the latter 7 moieties may have one or more halogenic moiety and/or 1 to 3 moieties selected from the group consisting of C 1 -C 6 -alkyl, aryl, heteroaryl, C 3 -C 7 -cycloalkyl, halogen, OR c , SR c , NR c R d , COR c , COOR c , CO—NR c R d , wherein R c and R d may be hydrogen, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, cyclopentyl, cyclohexyl, phenyl, tolyl
  • R 1 , R 1′ , R 2 , R 3 may be hydrogen, alkyl, alkenyl, alkinyl, cycloalkyl, cycloalkenyl, aryl or heteroaryl which may be independently substituted; or
  • R1, R1′, R2, R3 may form a ring together with a hetero-atom to which they are bound.
  • the ring may be saturated, unsaturated, substituted or unsubstitued.
  • the chain may be interrupted by one or more hetero-atoms out of the group consisting of O, S, NH or N—C 1 -C 4 -alkyl;
  • R 4 , R 5 , R 6 , R 7 , R 8 may be, independently of each other, hydrogen, halogen, nitro, cyano, OR c , SR c , NR c R d , COR c , COOR c , CO—NR c R d , C 1 -C 30 -alkyl, C 3 -C 12 -cycloalkyl, C 2 -C 30 -alkenyl, C 3 -C 12 -cycloalkenyl, aryl or heteroaryl, wherein the latter 6 moieties may comprise one or more halogenic moiety and/or 1 to 3 moieties selected out of the group consisting of C 1 -C 6 -alkyl, aryl, heteroaryl, C 3 -C 7 -cycloalkyl, halogen, OR c , SR c , NR c R d , COR c , COOR c , CO—NR c R
  • two neighboring moieties of the moieties R, R 4 , R 5 , R 6 , R 7 , R 8 may form, together with an atom they are bound, a ring which may be unsaturated or aromatic, unsaturated or saturated, wherein the chain formed by the respective moieties may be interrupted by one or more hetero-atoms out of the group consisting of O, S, NH or N—C 1 -C 4 -alkyl;
  • R e , R f , R g , R h may be, independently of each other, hydrogen, C 1 -C 6 -alkyl, aryl-, heteroaryl-, C 3 -C 7 -cycloalkyl, halogen, OR c , SR c , NR c R d , COOR c , CO—NR c R d or COR c , wherein R c , R d , may be, independently of each other, hydrogen, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, cyclopentyl, cyclohexyl, phenyl, tolyl or benzyl; preferably for hydrogen, halogen, C 1 -C 6 -alkyl, in particular, hydrogen or C 1 -C 6 -alkyl.
  • the non-aromatic cation is a quaternary material.
  • the quaternary material may be a quaternary salt.
  • the non aromatic cation may comprise or may consist of protonated bases.
  • the gas is one out of the group consisting of: H 2 O, HCN, H 2 S, H 2 Se, H 2 Te, CO 2 , CO, CS 2 , COS, CF 2 O, CF 2 S, O 3 , NO, NO 2 , N 2 O, N 2 O 3 , NOCl, NF 3 , HNO 2 , HNO 3 , RCOR′, RCOH, RCOOH, CF 3 SO 3 H, CF 3 COOH, RCOOR′, ROH, ROR (including cyclic ethers like tetrahydrofuran), RSH, RSR (including cyclic thioethers like tetrahydrothiophen), ROCl, ROBr, RONH 2 , RONHR', RONR′R′′, RSO 2 Cl, RSO 2 Br, ROCN, RCON, RCN, HF, HCl, HBr, HI, SO 2 , SO
  • every gas or vapor having a multipole moment and which may be classified as an harmful substance, irritant, or toxic substance, e.g. (strong) acids, (strong) bases, may be sorbed by using a method according to an exemplary embodiment of the invention.
  • the sorption process may be used to remove these gases or vapors from air which is inhaled or exhaled.
  • R, R′, R′′ and/or R′′′ is a moiety out of the group consisting of: C 1 -C 8 -alkyl, alkenyl, alkinyl, cycloalkyl, cycloalkenyl, aryl and heteroaryl.
  • R, R′, R′′ and/or R′′′ may denote a moiety or radical which may be partially and/or independently substituted.
  • C 1 -C 8 -alkyl or similar terms is an abbreviatory notation for C1-alkyl, C2-alkyl, . . . , up to C8-alkyl or similar terms.
  • the anion comprises a carbonate, an alkylcarbonate, an arylcarbonate, alkylcarbonate, carboxylate, a carbanion, and/or an aromatic compound.
  • the carbonates may be alkaline metal carbonates, alkaline earth metal carbonates, quaternary tetraalkylammonium carbonates, quaternary tetraalkylphosphonium carbonates, hydrogencarbonate, and/or arylcarbonate, for example.
  • the arylcarbonate may be phenylcarbonate or benzylcarbonate, for example.
  • the anion comprises at least one polar group.
  • the polar group may be formed by an acetate, a sulfonate, a sulfate, a carbonate, and/or a malonate compound.
  • the anion may be polar.
  • the anion may be formed by a small ion having a high charge density or by an ion, carrying a functional group with a heteroatom with a high charge density e.g. O, N, F.
  • the cation is a quaternary or protonated cation out of the group consisting of ammonium, phosphonium, sulfonium, piperidinium, pyrrolidinium and morpholinium.
  • the cation is one out of the group consisting of trialkylmethylammonium, tetramethylammonium, triethylmethylammonium, tributylmethylammonium, and trioctylmethylammonium, trialkylammonium, trimethylammonium, triethylammonium, tributylammonium, and trioctylammonium.
  • the trialkylmethylammonium may be a C 1 -C 10 -trialkylmethylammonium.
  • the cation is one out of the group consisting of tetramethylammonium, triethylmethylammonium, tributylmethylammonium, and trioctylmethylammonium.
  • the anion can be written in the form [RCO 2 ⁇ ], wherein [RCO 2 ⁇ ] is one out of the group consisting of carboxylate, formiate, acetate, propionate, butyrate, benzoate, and salicylate.
  • the anion can be written in the form [RCO 2 ⁇ ], wherein [RCO 2 ⁇ ] is a carboxylate and wherein R is a radical out of the group consisting of C 1 -C 30 -alkyl, C 3 -C 12 -cycloalkyl, C 2 -C 30 -alkenyl, C 3 -C 12 -cycloalkenyl, C 2 -C 30 -alkinyl, aryl and heteroaryl.
  • R may comprise or include one or more halogen radicals.
  • the anion can be written in the form [RCO 2 ⁇ ], wherein [RCO 2 ] is a carboxylate wherein R represents one to three radicals out of the group consisting of, C 1 -C 6 -alkyl, aryl, heteroaryl, C 3 -C 7 -cycloalkyl, halogen, cyanide, ORc, SRc, NRcRd, CORc, COORc, CO—NRcRd, wherein Rc and/or Rd, is one of the group consisting of hydrogen, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, cyclopentyl, cyclohexyl, phenyl, tolyl, and benzyl.
  • the gas is CO 2 .
  • a method of use which uses an ionic liquid having a non-aromatic cation to sorb gases having an electric multipole moment.
  • the gas may in particular be CO 2 while the ionic liquid may be an organic salt having a melting temperature of below 200° C., preferably below 100° C.
  • the organic salts may be quaternary salts having a generic formula of: [K + ][RCO 2 ].
  • the described method of use may be in particular useful for all processes in which CO 2 shall be removed as pure substance or from a gas or vapor mixture independent of whether CO 2 is a main or secondary component, a process gas, or a working medium.
  • Some exemplary applications may be the use in a heat pump or refrigerator based on ionic liquid/CO 2 as working media, or removing of CO 2 out of recovery gas, synthesis gas, water gas, inhaled air, and exhaled air.
  • the removing out of inhaled/exhaled air may be in particular useful in the field of aerospace, submarines, or building services engineering wherein the very low vapor pressure if the ionic liquid may be advantageous since the ionic liquid may not evaporate into the air.
  • it may be possible to use ionic liquids which selectively remove CO 2 while do not remove water or water vapor, i.e. hydrophobic ionic liquids may be used.
  • Another possible application may be the purification of CO 2 and/or non-pressurized storing of CO 2 , since the ionic liquid forms a complex bound with the quadrupolaric CO 2 which complex bound may be broken by heating, microwave, ultrasonic wave, or by adding bipolar solvents, e.g. water, alcohol, etc.
  • bipolar solvents e.g. water, alcohol, etc.
  • every gas or vapor having a multipole moment and which may be classified as an harmful substance, irritant, or toxic substance, e.g. (strong) acids, (strong) bases may be sorbed by using a method according to an exemplary embodiment of the invention.
  • the sorption process may be used to remove these gases or vapor from air which is inhaled or exhaled, e.g. for purifying breathable air.
  • FIG. 1 schematically illustrates a heat pump.
  • FIG. 2 schematically illustrates a test arrangement for measuring a gas sorption.
  • FIG. 3 schematically illustrates a test arrangement for measuring equilibrium curves.
  • FIG. 4 illustrates equilibrium curves for monoethanolamine.
  • FIG. 5 illustrates equilibrium curves for choline carbonate.
  • FIG. 1 schematically shows a heat pump which may use a process according to an exemplary embodiment, i.e. a process which may be based on pair of working media comprising CO 2 and an ionic liquid comprising a non-aromatic ionic liquid.
  • FIG. 1 shows a heat pump 100 having an absorber 101 , including the pair of working media, e.g. CO 2 and the ionic liquid, wherein the ionic liquid acts as a sorbent and CO 2 is the sorbat.
  • the mixture is transmitted via a pump 102 to a heat exchanger 103 a in which the mixture absorbs heat or releases heat.
  • the mixture is transmitted to a settler 104 in which at least a partially seperation of the mixture into a sorbent rich phase and a sorbat rich phase is performed.
  • the sorbant rich phase is transferred to transferred trough a second heat exchanger 103 b and a restrictor 105 a into a evaporizer 106 .
  • the sorbat at least partially evaporates out of the sorbat rich phase which is then introduced back into the absorber 101 .
  • the sorbat rich phase may be passed through another heat exchanger, e.g. heat exchanger 103 b , before it is introduced into the absorber.
  • the sorbent richt phase is transferred from the settler 104 to the absorber 101 via a second restrictor 105 b in which it is brought back to the pressure level of the absorber 100 .
  • the sorbent rich phase may be passed through another heat exchanger, e.g. heat exchanger 103 a , before it is introduced into the second restrictor 105 b.
  • the described heat exchanger is only an example for a device using a method of use according to an exemplary embodiment of the invention.
  • a plurality of embodiments may become apparent for a person skilled in the art.
  • a ionic liquid having a non-aromatic cation may be used in a open device, i.e. a device which does not include the ionic liquid in a closed loop, in order to enable the sorption of a gas having an electric multipole moment.
  • FIG. 2 schematically shows a fluid tank 200 used as a heat reservoir in order to provide a constant temperature selectable in the range between 25° C. and 80° C.
  • a vessel or vial 201 having a volume of about 20 ml is placed in the tank, wherein the vial is filled with CO 2 at a partial pressure of the enviromental pressure, e.g. atmospheric pressure of about 1000 hPa.
  • a CO 2 sorbing fluid is injected 202 into the vial.
  • the sorption of the CO 2 is determined by measuring the decrease of the pressure in the vial by a digital manometer 203 which is connected to a computer.
  • the speed of the pressure decrease is an indicator of the reaction kenetics and the total decrease of the pressure is an indicator for the total CO 2 sorption.
  • the tests were performed at two temperatures 25° C. and 80° C., wherein at the higher temperature a smaller amount of CO 2 may be desirable since this may be an indicator for an estimation of the ability of the fluid to release the CO 2 .
  • aqueous solution (30%) of monoethanolamine is used.
  • the resulting parameter was the equilibrium concentration at constant reduced pressure, i.e. the pressure reached in the vial, and at the set temperature, wherein the result was calculated in mol gas per mol IL , wherein the index gas denotes CO 2 and the index IL denotes ionic liquid.
  • the equilibrium concentration were calculated by the following formular:
  • 0.02145 is the volume of the vial and 83.145 is the gas constant in the used units.
  • T decrease time charging name solvent [%] [° C.] [hPa] [min] [mol CO2 /mol IL ] TBMP- 100 25 332 4000 0.08 acetate TBMP- 100 80 342 3160 0.08 acetate TEMA- H 2 O 70 25 495 2400-5000 0.1 acetate TEMA- H 2 O 70 80 130 2400 0.03 acetate TOMA- 100 25 448 2500 0.19 acetate TOMA- 100 80 122 1000 0.05 acetate MEA H 2 O 30 25 679 250 0.12 MEA H 2 O 30 80 440 130 0.08 wherein: TBMP denotes tributyl methyl phosphonium, TEMA denotes triethyl methyl ammonium, TOMA denotes trioctyl methyl ammonium, and MEA denotes monoethanolamine.
  • the acetate anion may be responsible for a high CO 2 sorption, while similar sorption amounts may be achievable by cations having different structures.
  • FIG. 3 schematically illustrates a test arrangement 300 for measuring equilibrium curves.
  • FIG. 3 shows an equilibrium cell comprising three vessels 301 , 302 and 303 each closed by a respective frit in order to ensure a good mass transfer between the gas, e.g. CO 2 and the sorbing fluid.
  • the vessels are interconnected by flexible plastic tubes 304 and 305 having non-return valves.
  • the vessels are placed in a heat reservoir 306 to ensure a constant temperature which can be controlled by using an electric heating 307 .
  • the heat reservoir is covered by a cover or lid 308 in order to ease the temperature control.
  • a container or condenser 309 including silica gel is implemented downstream of the equilibrium cell wherein the silica gel is used to dry the generated gas which is then analyzed. Additionally, an input amount or volume to the equilibrium cell is controlled or regulated by using a rotameter 310 .
  • FIG. 4 illustrates equilibrium curves for monoethanolamine.
  • FIG. 4 shows the partial pressure p CO2 versus the CO 2 loading for 60° C. and 80° C. for an aqueous solution (30%) of monoethanolamine.
  • a respective curve is approximated based on measurements, wherein a first curve 401 approximates the equilibrium curve for 80° C. while a second curve 402 approximates the equilibrium curve for 60° C.
  • the values generated for MEA are comparable with the data published in literature, known to the expert.
  • FIG. 5 illustrates equilibrium curves for choline carbonate.
  • FIG. 5 shows values for the partial pressure p CO2 versus the CO 2 loading for six different temperatures 40° C., 60° C., 80° C., 90° C., 100° C., and 110° C. for an aqueous solution (60%) of choline carbonate.
  • graph 501 shows the fit for 40° C.
  • graph 502 shows the fit for 60° C.
  • graph 503 shows the fit for 80° C.
  • graph 504 shows the fit for 90° C.
  • graph 505 shows the fit for 100° C.
  • graph 506 shows the fit for 110° C.
  • TEMA acetate having a water amount of 10% was used as an ionic liquid.
  • TEMA acetate was introduced for four days into a CO 2 atmosphere having a pressure of 600 hPa at a temperature of 80° C.
  • the TEMA acetate comprised included a surplus of water while in the other case no water was added.
  • the water content of the sample including water increased from 10% to 35% while the sample without water increased only from 10% to 15%.
  • acid was added to the two samples which lead to a clear generation of foam or gas in the sample without water, while the reaction of the probe with water was less intense. Thus, the water may lead to a reduced CO 2 sorption of the ionic liquid.
  • trioctylmethylammonium (TOMA)-acetylacetonate or -acetate is used to sorp a gas having an electric multipole moment.
  • the experiment was performed at room temperature and a vapor pressure equilibrium of 338 hPa.
  • a beaded bottle is flushed with 120 ml of hydrogen sulphide by using two needles.
  • One of the needles is connected to a manometer having a resolution of 1 hPa.
  • 1 ml of TOMA-acetate is injected into the bottle by using one of the needles, wherein the TOMA-acetate was preheated by a hairdryer in order to reduce the viscosity.
  • After 30 minutes of stirring by using a magnetic stir bar a constant reduction of the pressure of 622 hPa was observed.
  • This pressure reduction corresponds to a molar ratio of 0.26 moI H2S /mol IL at an equilibrium pressure of 338 hPa.
  • a 30% aqueous solution of monoethanolamine provides, under the same conditions, a pressure reduction of 651 hPa which corresponds to a molare ratio of 0.11 mol H2S /mol L at an equilibrium pressure of 309 hPa.
  • the experiment was performed at room temperature and a vapor pressure equilibrium of 523 hPa.
  • a beaded bottle is flushed with 120 ml of carbon dioxide by using two needles.
  • One of the needles is connected to a manometer having a resolution of 1 hPa.
  • 1 ml of TOMA-acetylacetonate is injected into the bottle by using one of the needles, wherein the TOMA-acetylacetonate was preheated by a hairdryer in order to reduce the viscosity.
  • After 30 minutes of stirring by using a magnetic stir bar a constant reduction of the pressure of 437 hPa was observed.
  • This pressure reduction corresponds to a molar ratio of 0.18 mol CO2 /mol IL at an equilibrium pressure of 523 hPa.
  • a 30% aqueous solution of monoethanolamine provides, under the same conditions, a pressure reduction of 670 hPa which corresponds to a molare ratio of 0.12 mol CO2 /mol L at an equilibrium pressure of 290 hPa.
US13/380,008 2009-06-25 2010-06-22 Method of use of an ionic liquid and device for sorption of a gas Abandoned US20120134905A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09163831.2 2009-06-25
EP09163831 2009-06-25
PCT/EP2010/058856 WO2010149674A1 (en) 2009-06-25 2010-06-22 Method of use of an ionic liquid and device for sorption of a gas

Publications (1)

Publication Number Publication Date
US20120134905A1 true US20120134905A1 (en) 2012-05-31

Family

ID=42470690

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/380,008 Abandoned US20120134905A1 (en) 2009-06-25 2010-06-22 Method of use of an ionic liquid and device for sorption of a gas
US13/166,235 Active US9011576B2 (en) 2009-06-25 2011-06-22 Liquid sorbant, method of using a liquid sorbant, and device for sorbing a gas

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/166,235 Active US9011576B2 (en) 2009-06-25 2011-06-22 Liquid sorbant, method of using a liquid sorbant, and device for sorbing a gas

Country Status (7)

Country Link
US (2) US20120134905A1 (de)
EP (1) EP2445613A1 (de)
JP (2) JP2012530598A (de)
KR (1) KR20120047232A (de)
CN (2) CN102481513B (de)
BR (1) BRPI1014757A2 (de)
WO (1) WO2010149674A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120121490A1 (en) * 2009-06-25 2012-05-17 Ae&E Austria Gmbh & Co Kg Method For Sorption of Carbon Dioxide Out Of Flue Gas
US8696804B2 (en) * 2010-12-29 2014-04-15 Delphi Technologies, Inc. Carbon dioxide absorbent fluid for a carbon dioxide sequestering system on a vehicle
US8734744B2 (en) * 2011-09-16 2014-05-27 Petroliam Nasional Berhad Separation of gases
WO2015047712A1 (en) * 2013-09-30 2015-04-02 Uop Llc Ionic liquid and solvent mixtures for hydrogen sulfide removal
WO2015069799A1 (en) * 2013-11-05 2015-05-14 University Of Notre Dame Du Lac Carbon dioxide capture using phase change ionic liquids
JP2016055217A (ja) * 2014-09-05 2016-04-21 富士フイルムファインケミカルズ株式会社 ジボランの除去方法およびジボラン除去剤
US9951008B2 (en) 2009-11-03 2018-04-24 University Of Notre Dame Du Lac Ionic liquids comprising heteraromatic anions
US10385251B2 (en) 2013-09-30 2019-08-20 University Of Notre Dame Du Lac Compounds, complexes, compositions, methods and systems for heating and cooling

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102481513B (zh) * 2009-06-25 2015-11-25 Vtu控股有限责任公司 用于气体吸着的离子液体和装置的使用方法
JP5585873B2 (ja) * 2010-09-03 2014-09-10 独立行政法人産業技術総合研究所 イオン液体を用いた環境浄化方法およびその装置
EP2673067A1 (de) 2011-02-11 2013-12-18 Munters Corporation Vorrichtung und verfahren zur entfernung von wasserdampf aus der ableitung einer produktionsanlage
AU2012343846B2 (en) 2011-11-29 2016-10-13 Danmarks Tekniske Universitet Absorption and oxidation of NO in ionic liquids
DE102012200907A1 (de) 2012-01-23 2013-07-25 Evonik Industries Ag Verfahren und Absorptionsmedium zur Absorption von CO2 aus einer Gasmischung
US8696802B2 (en) * 2012-03-02 2014-04-15 Hamilton Sunstrand Space Systems International, Inc. Heat exchanger
US8702851B2 (en) * 2012-03-02 2014-04-22 Hamilton Sundstrand Space Systems International, Inc. Heat exchanger
DE102012207509A1 (de) 2012-05-07 2013-11-07 Evonik Degussa Gmbh Verfahren zur Absorption von CO2 aus einer Gasmischung
WO2013171571A1 (en) * 2012-05-18 2013-11-21 Dh Technologies Development Pte. Ltd. Methods for selective detection of biologically relevant acids
EP2735820A1 (de) * 2012-11-21 2014-05-28 Evonik Industries AG Absorptionswärmepumpe und Sorptionsmittel für eine Absorptionswärmepumpe umfassend Methansulfonsäure
CN103143234A (zh) * 2013-02-19 2013-06-12 浙江大学 一种含腈基的阴离子功能化离子液体捕集二氧化硫的方法
DE102013010035A1 (de) * 2013-06-17 2014-12-18 Evonik Degussa Gmbh Absorptionsmedium und Verfahren zur Absorption von CO2 aus einer Gasmischung
CN103755639B (zh) * 2014-01-02 2015-09-30 浙江大学 一种氨基乙酸功能性离子液体及其制备方法和应用
JP2016083623A (ja) * 2014-10-27 2016-05-19 国立研究開発法人産業技術総合研究所 酸性ガス吸収液及び酸性ガス分離回収方法
US9766218B2 (en) * 2014-10-31 2017-09-19 Morpho Detection, Llc Gas curtain at inlet for trace detectors
US10386100B2 (en) 2014-11-12 2019-08-20 Carrier Corporation Adsorption system heat exchanger
DE102014226441A1 (de) 2014-12-18 2016-06-23 Evonik Degussa Gmbh Verfahren zum Reinigen einer ionischen Flüssigkeit und Verfahren zum Entfeuchten von Luft
WO2016205083A1 (en) 2015-06-19 2016-12-22 3M Innovative Properties Company Hydrolyzed divinylbenzene/maleic anhydride polymeric sorbents for carbon dioxide
DE102015212749A1 (de) * 2015-07-08 2017-01-12 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
AT518190B1 (de) * 2016-01-26 2018-05-15 Ait Austrian Inst Tech Gmbh Wärmerückgewinnungsvorrichtung
US10168080B2 (en) * 2016-05-26 2019-01-01 Yazaki Corporation Eutectic mixtures of ionic liquids in absorption chillers
US10465950B2 (en) * 2016-05-26 2019-11-05 Yazaki Corporation Guanidinium-based ionic liquids in absorption chillers
US10934568B2 (en) 2016-06-07 2021-03-02 National Technology & Engineering Solutions Of Sandia, Llc Conversion of sugars to ionic liquids
DE102016210478A1 (de) * 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
EP3257568B1 (de) 2016-06-14 2019-09-18 Evonik Degussa GmbH Verfahren zur entfeuchtung von feuchten gasgemischen mit ionischen flüssigkeiten
EP3257843A1 (de) 2016-06-14 2017-12-20 Evonik Degussa GmbH Verfahren zur herstellung von hochreinem imidazoliumsalz
DE102016210484A1 (de) * 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
EP3257844A1 (de) 2016-06-14 2017-12-20 Evonik Degussa GmbH Verfahren zur herstellung von hochreinem imidazoliumsalz
DE102016210481B3 (de) 2016-06-14 2017-06-08 Evonik Degussa Gmbh Verfahren zum Reinigen einer ionischen Flüssigkeit
DE102016210483A1 (de) * 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren und Absorptionsmittel zur Entfeuchtung von feuchten Gasgemischen
EP3257569A1 (de) 2016-06-14 2017-12-20 Evonik Degussa GmbH Verfahren zur entfeuchtung von feuchten gasgemischen
CN105944509A (zh) * 2016-06-27 2016-09-21 河南师范大学 一种含醛基的阴离子功能化离子液体捕集二氧化硫的方法
EP3744716A1 (de) 2016-09-21 2020-12-02 Celanese International Corporation Acesulfam-kalium-zusammensetzungen und verfahren zur herstellung davon
PL3317260T3 (pl) 2016-09-21 2020-05-18 Celanese International Corporation Kompozycje acesulfamu potasu oraz sposoby jego wytwarzania
JP7169977B2 (ja) 2016-09-21 2022-11-11 セラニーズ・インターナショナル・コーポレーション アセスルファムカリウム組成物及びその製造方法
US10029999B2 (en) 2016-09-21 2018-07-24 Celanese International Corporation Acesulfame potassium compositions and processes for producing same
TWI647001B (zh) * 2016-12-02 2019-01-11 國立成功大學 二氧化碳回收方法
JP7012212B2 (ja) * 2017-01-30 2022-02-14 パナソニックIpマネジメント株式会社 イオン液体組成物およびそれを用いてセルロースを溶解する方法
JP7002047B2 (ja) * 2017-03-01 2022-01-20 パナソニックIpマネジメント株式会社 液体吸湿材料を用いた調湿システムおよびこれを備える空気調和装置
JP7002048B2 (ja) * 2017-03-01 2022-01-20 パナソニックIpマネジメント株式会社 調湿システム用液体吸湿材料
JP2018144027A (ja) * 2017-03-01 2018-09-20 パナソニックIpマネジメント株式会社 調湿システム用液体吸湿材料
WO2018186859A1 (en) * 2017-04-05 2018-10-11 General Electric Company Absorption cycle apparatus and related method
CN107433102B (zh) * 2017-09-04 2020-10-09 西南林业大学 一种用微波加热净化黄磷尾气的方法和装置
JP2019063761A (ja) * 2017-10-04 2019-04-25 中部電力株式会社 気体湿度の調整方法及び調整機器
SG11201810142UA (en) * 2017-10-04 2019-05-30 Evonik Degussa Gmbh Gas humidity regulating method and regulator
US11123682B2 (en) * 2017-12-14 2021-09-21 University Of Florida Research Foundation, Incorporated Liquid desiccant based dehumidification and cooling system
EP3588634B1 (de) 2018-06-27 2023-11-22 InnovationLab GmbH Verbessertes organisches elektrodenmaterial
JP7054875B2 (ja) * 2018-08-23 2022-04-15 パナソニックIpマネジメント株式会社 液体吸湿材料を用いた調湿システムおよびこれを備える空気調和装置
JP7266201B2 (ja) * 2018-08-23 2023-04-28 パナソニックIpマネジメント株式会社 調湿システム用液体吸湿材料
JP7054876B2 (ja) * 2018-08-23 2022-04-15 パナソニックIpマネジメント株式会社 液体吸湿材料を用いた調湿システムおよびこれを備える空気調和装置
JP7054874B2 (ja) * 2018-08-23 2022-04-15 パナソニックIpマネジメント株式会社 液体吸湿材料を用いた調湿システムおよびこれを備える空気調和装置
JP7054873B2 (ja) * 2018-08-23 2022-04-15 パナソニックIpマネジメント株式会社 液体吸湿材料を用いた調湿システムおよびこれを備える空気調和装置、並びに、調湿システム用液体吸湿材料
CN109289813A (zh) * 2018-09-20 2019-02-01 长安大学 一种麦田土壤中氧化亚氮的吸附材料、制备方法及其应用
WO2020114576A1 (en) 2018-12-04 2020-06-11 Evonik Operations Gmbh Process for dehumidifying moist gas mixtures
TWI740221B (zh) 2018-12-17 2021-09-21 德商贏創運營有限公司 用於有機電池之改良固體電解質
JP2022525751A (ja) 2019-03-14 2022-05-19 エボニック オペレーションズ ゲーエムベーハー 成形された有機電荷蓄積装置の製造方法
CN110479037B (zh) * 2019-08-23 2021-04-27 中国科学院过程工程研究所 一种复合吸收剂及其用于环氧乙烷分离纯化的方法
CN110715379A (zh) * 2019-11-01 2020-01-21 南京航空航天大学 内加热式多丝加湿器及其工作方法
CN110935286B (zh) * 2020-01-16 2022-03-01 浙江工业大学 一种利用离子液体复合生物基溶剂吸收残留熏蒸剂硫酰氟的方法
CN113491934A (zh) * 2020-04-08 2021-10-12 中石化南京化工研究院有限公司 一种离子液体二氧化碳吸收剂
CN114570337B (zh) * 2020-12-02 2022-12-13 中国科学院大连化学物理研究所 一种高水蒸气吸附聚离子液体吸附剂及合成方法和应用
EP4016663B1 (de) 2020-12-17 2023-10-11 InnovationLab GmbH Elektrodenmaterial für den druck von polymerbatterien
JP2022143123A (ja) * 2021-03-17 2022-10-03 国立大学法人鳥取大学 吸湿材および装置
CN113117455B (zh) * 2021-04-12 2022-11-22 江西师范大学 氯化胆碱-甘油低共熔溶剂在吸收HCl气体中的应用
WO2023279279A1 (zh) * 2021-07-07 2023-01-12 安徽金禾实业股份有限公司 尾气处理方法
CN113813747B (zh) * 2021-08-20 2023-01-24 华中科技大学 一种二氧化碳的无水悬浊吸收剂及其吸收方法
CN113636535A (zh) * 2021-09-05 2021-11-12 会昌宏氟高新材料有限责任公司 一种二氟磷酸锂合成尾气回收利用的方法
CN113842751A (zh) * 2021-09-30 2021-12-28 山西鑫途化工有限公司 一种含二硫化碳废气的处理装置及方法
CN113786703B (zh) * 2021-10-14 2022-11-11 辽宁科技大学 一种利用微波外场及工业废渣进行高效烟气吸附与净化的方法
WO2023098996A1 (de) 2021-12-02 2023-06-08 Evonik Operations Gmbh Verbessertes elektrodenmaterial für den druck organischer polymerbatterien
CN114950548B (zh) * 2022-07-22 2023-09-22 宁夏中星显示材料有限公司 一种低共熔离子液体在苯酚烷基醚类化合物脱烷基制备苯酚或其衍生物中的应用
CN115350690B (zh) * 2022-09-23 2023-03-31 大连科利德光电子材料有限公司 电子级三氯化硼的提纯方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080112866A1 (en) * 2002-04-05 2008-05-15 University Of South Alabama Functionalized ionic liquids, and methods of use thereof
US20110247494A1 (en) * 2009-06-25 2011-10-13 VTU Holding GmbH. Liquid sorbant, method of using a liquid sorbant, and device for sorbing a gas
US20120121490A1 (en) * 2009-06-25 2012-05-17 Ae&E Austria Gmbh & Co Kg Method For Sorption of Carbon Dioxide Out Of Flue Gas

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB268429A (en) 1928-10-15 1927-03-31 Holmes W C & Co Ltd Improvements in and relating to the drying of fuel gases
GB724413A (en) 1952-02-12 1955-02-23 Gottfried Bischoff G M B H Improvements in or relating to the drying of gases
DE1099501B (de) 1958-04-25 1961-02-16 Hoechst Ag Verfahren und Vorrichtung zur Desorption beladener Absorptionsmittel
US4134743A (en) 1970-03-31 1979-01-16 Gas Developments Corporation Desiccant apparatus and method
US4045538A (en) 1975-11-28 1977-08-30 Ppg Industries, Inc. Catalytic oxidation of vinyl chloride
US4065543A (en) 1976-01-09 1977-12-27 Ppg Industries, Inc. Catalytic oxidation of C2 -C4 halogenated hydrocarbons
US4059677A (en) 1976-12-23 1977-11-22 Ppg Industries, Inc. Catalytic oxidation of C2 -C4 halogenated hydrocarbons
US4121433A (en) 1977-01-26 1978-10-24 P.R. Mallory & Co. Inc. Means for sensing frost accumulation in a refrigeration mechanism
US4189848A (en) 1977-08-04 1980-02-26 The United States Of America As Represented By The Department Of Energy Energy-efficient regenerative liquid desiccant drying process
US4164125A (en) 1977-10-17 1979-08-14 Midland-Ross Corporation Solar energy assisted air-conditioning apparatus and method
US4295816A (en) 1977-12-20 1981-10-20 Robinson B Joel Catalyst delivery system
US4433553A (en) 1981-02-09 1984-02-28 Louisiana State University Board Of Supervisors Process for the refrigeration of an enclosure
US4419236A (en) 1982-03-11 1983-12-06 Hsu Charles J Water detecting or absorbing device for use in and removal from a tank with a limited opening
US4475483A (en) 1983-04-15 1984-10-09 Robinson Barnett J Catalyst delivery system
US4793143A (en) 1986-03-10 1988-12-27 Rhodes Barry V Enthalpic heat pump desiccant air conditioning system
US5123481A (en) 1986-07-09 1992-06-23 Walter F. Albers Method and apparatus for simultaneous heat and mass transfer
JPS6422324A (en) 1987-07-20 1989-01-25 Komatsu Mfg Co Ltd Absorption dehumidifying device
US4805317A (en) 1987-11-13 1989-02-21 Airflow Company Microwave regeneration of adsorbent materials for reuse as drying agents
CA2026326A1 (en) 1989-10-04 1991-04-05 James Arthur Davis Disposable diaper having a humidity transfer region, breathable zone panel and separation layer
JPH0461909A (ja) 1990-06-26 1992-02-27 Nippondenso Co Ltd 除湿装置
US5146978A (en) 1990-10-30 1992-09-15 Walter F. Albers Method and apparatus for monochannel simultaneous heat and mass transfer
US5189581A (en) 1991-03-22 1993-02-23 Schroder Robert L Drying mechanisms and methods for removing excess moisture from electronic equipment
US5182921A (en) 1992-04-10 1993-02-02 Industrial Technology Research Institute Solar dehumidifier
US5351497A (en) 1992-12-17 1994-10-04 Gas Research Institute Low-flow internally-cooled liquid-desiccant absorber
SE510990C2 (sv) 1994-06-22 1999-07-19 Martin Bursell Absorptionstork
EP0718211A1 (de) 1994-12-20 1996-06-26 Pont Saint-Germain SA Trockenmittelzelle und damit ausgerüsteter Artikel
WO1997017585A1 (en) 1995-11-10 1997-05-15 The University Of Nottingham Rotatable heat transfer apparatus
NL1010959C1 (nl) 1998-04-21 1999-10-22 Gastec Nv Werkwijze voor het behandelen van een vochtige gasstroom.
EP1048540A1 (de) 1999-04-28 2000-11-02 Baldwin Filters, Inc. Lufttrocknungskanister
AR025300A1 (es) 1999-08-23 2002-11-20 Kimberly Clark Co Un articulo absorbente descartable con capacidad para respirar en humedo incrementada.
SE9903604D0 (sv) 1999-10-07 1999-10-07 Auxilium Jersby Ab Anordning för absorption av luftfuktighet
US6289924B1 (en) 2000-02-24 2001-09-18 Richard C. Kozinski Variable flow area refrigerant expansion device
US6358300B1 (en) 2000-03-28 2002-03-19 Honeywell Commercial Vehicle Systems Co. Lithium chloride desiccant for trailer air dryer and pressure swing dehydration
US20040031282A1 (en) 2000-04-14 2004-02-19 Kopko William Leslie Desiccant air conditioner
US6305414B1 (en) 2000-05-10 2001-10-23 Richard C. Kozinski Variable flow area refrigerant expansion device
US6568466B2 (en) 2000-06-23 2003-05-27 Andrew Lowenstein Heat exchange assembly
US20020046475A1 (en) 2000-08-23 2002-04-25 Vortex Aircon Drying process with vortex tube
SE0003599D0 (sv) 2000-10-05 2000-10-05 Thomas Johansson Anordning för fuktabsorption
US6514321B1 (en) 2000-10-18 2003-02-04 Powermax, Inc. Dehumidification using desiccants and multiple effect evaporators
US6383727B1 (en) 2000-11-03 2002-05-07 Eastman Kodak Company Method and system for processing photographic material which includes water recovery from humid air for re-use in the processing
US6579343B2 (en) * 2001-03-30 2003-06-17 University Of Notre Dame Du Lac Purification of gas with liquid ionic compounds
WO2003016808A2 (en) 2001-08-20 2003-02-27 Idalex Technologies, Inc. Method of evaporative cooling of a fluid and apparatus therefor
EP1310543A1 (de) 2001-11-07 2003-05-14 Haldor Topsoe A/S Verfahren zur Trocknung von Kohlenwasserstoffströmen
WO2003056249A1 (en) 2001-12-27 2003-07-10 Drykor Ltd. High efficiency dehumidifiers and combined dehumidifying/air-conditioning systems
JP3905887B2 (ja) 2002-02-28 2007-04-18 ステリス インコーポレイテッド 交換可能な乾燥剤カートリッジを有する、過酸化水素蒸気システム
EP1346768B1 (de) 2002-03-22 2005-08-17 Haldor Topsoe A/S Verfahren zur Paraffinisomerisierung und dafür geeignete katalytische Zusammensetzung, enthaltend eine ionische Flüssigkeit und ein Metallsalz-Additiv
ATE297368T1 (de) * 2002-04-18 2005-06-15 Haldor Topsoe As Kontinuierliches verfahren zur trennung von wasser von einer kohlenwasserstoffbeschickung
NO20023398D0 (no) 2002-07-15 2002-07-15 Osmotex As Anordning og fremgangsmåte for transport av v¶ske gjennom materialer
US6852229B2 (en) 2002-10-22 2005-02-08 Exxonmobil Research And Engineering Company Method for preparing high-purity ionic liquids
GB0310957D0 (en) 2003-05-13 2003-06-18 Spinox Ltd Apparatus and method of water extraction
US6854279B1 (en) 2003-06-09 2005-02-15 The United States Of America As Represented By The Secretary Of The Navy Dynamic desiccation cooling system for ships
US7037554B2 (en) 2003-06-30 2006-05-02 Mississippi State University Moisture sensor based on evanescent wave light scattering by porous sol-gel silica coating
DE10336555A1 (de) * 2003-08-05 2005-02-24 Basf Ag Recycling von lonischen Flüssigkeiten bei der Extraktiv-Destillation
US8075803B2 (en) * 2003-08-27 2011-12-13 Roland Kalb Method for producing ionic liquids, ionic solids or mixtures thereof
US7527775B2 (en) * 2003-12-16 2009-05-05 Chevron U.S.A. Inc. CO2 removal from gas using ionic liquid absorbents
US20050129598A1 (en) * 2003-12-16 2005-06-16 Chevron U.S.A. Inc. CO2 removal from gas using ionic liquid absorbents
FR2866344B1 (fr) * 2004-02-13 2006-04-14 Inst Francais Du Petrole Procede de traitement d'un gaz naturel avec extraction du solvant contenu dans les gaz acides
FR2866345B1 (fr) 2004-02-13 2006-04-14 Inst Francais Du Petrole Procede de traitement d'un gaz naturel avec extraction du solvant contenu dans le gaz naturel purifie
US7338548B2 (en) 2004-03-04 2008-03-04 Boutall Charles A Dessicant dehumidifer for drying moist environments
WO2005096786A2 (en) 2004-04-09 2005-10-20 Ail Research, Inc. Heat and mass exchanger
WO2005105756A1 (ja) * 2004-04-28 2005-11-10 Kaneka Corporation イオン性液体およびその製造方法
US20060008633A1 (en) 2004-07-06 2006-01-12 Foamex L.P. Flame laminable hydrophilic ester polyurethane foams
US6935131B1 (en) 2004-09-09 2005-08-30 Tom Backman Desiccant assisted dehumidification system for aqueous based liquid refrigerant facilities
DE102004044592A1 (de) * 2004-09-13 2006-03-30 Basf Ag Verfahren zur Trennung von Chlorwasserstoff und Phosgen
FR2881361B1 (fr) * 2005-01-28 2007-05-11 Inst Francais Du Petrole Procede de decarbonisation d'une fumee de combustion avec extraction du solvant contenu dans la fume purifiee
US8715521B2 (en) 2005-02-04 2014-05-06 E I Du Pont De Nemours And Company Absorption cycle utilizing ionic liquid as working fluid
JP5599565B2 (ja) 2005-03-25 2014-10-01 ディーユークール リミテッド 流体の含水量を管理するシステムおよび方法
WO2006104446A1 (en) 2005-03-30 2006-10-05 Absortech International Ab Drying apparatus for a freight container
US7638058B2 (en) * 2005-04-07 2009-12-29 Matheson Tri-Gas Fluid storage and purification method and system
AT501793A1 (de) * 2005-05-06 2006-11-15 Linde Ag Flüssigkeit zur verdichtung eines gasförmigen mediums und verwendung derselben
US7709635B2 (en) 2005-05-19 2010-05-04 University Of South Alabama Boronium-ion-based ionic liquids and methods of use thereof
CN1709553A (zh) * 2005-06-02 2005-12-21 中国科学院过程工程研究所 氨基酸类离子液体用于酸性气体吸收
WO2006136771A1 (en) 2005-06-21 2006-12-28 Reckitt Benckiser Inc Powdered acidic hard surface cleaning compositions
US7563306B2 (en) 2005-08-05 2009-07-21 Technologies Holdings Corporation High efficiency heating and drying using shielded radiant heater
US20090053133A1 (en) 2005-08-17 2009-02-26 Her, Hydrogen Storage Systems Inc. Hydrogen generation through reactions involving sorption mechanisms
US7544813B2 (en) 2005-09-22 2009-06-09 E.I. Du Pont De Nemours And Company Ionic liquids
US7528287B2 (en) 2005-09-22 2009-05-05 E.I. Du Pont De Nemours And Company Preparation of poly(tetramethylene) glycol
US20070100184A1 (en) 2005-10-27 2007-05-03 Harmer Mark A Alkylation of aromatic compounds
US20070100181A1 (en) 2005-10-27 2007-05-03 Harmer Mark A Olefin isomerization
CN101365846B (zh) 2005-12-07 2010-09-29 阿迪尔西格尔有限公司 用于管理流体中水含量的系统和方法
US8506839B2 (en) 2005-12-14 2013-08-13 E I Du Pont De Nemours And Company Absorption cycle utilizing ionic liquids and water as working fluids
KR100652903B1 (ko) 2005-12-21 2006-12-04 한국과학기술연구원 초흡수성 고분자를 함유한 제습제의 제조 방법 및 그 제조장치
JP5023512B2 (ja) * 2006-02-27 2012-09-12 三菱マテリアル株式会社 ガスの分離回収方法及びその装置
TW200808656A (en) 2006-04-27 2008-02-16 Solvay Fluor Gmbh Reversible water-free process for the separation of acid-containing gas mixtures
US7736420B2 (en) * 2006-05-19 2010-06-15 Air Products And Chemicals, Inc. Contact methods for formation of Lewis gas/liquid systems and recovery of Lewis gas therefrom
KR100795101B1 (ko) 2006-10-09 2008-01-17 한국과학기술연구원 제습 장치와 그를 구비하는 공기 조화 장치 및 시스템
US8043418B2 (en) * 2006-12-08 2011-10-25 General Electric Company Gas separator apparatus
DE102007004079A1 (de) 2007-01-26 2008-07-31 Linde Ag Verfahren zur Trennung der gasförmigen Reaktionsprodukte der Dampf-Dealkylierung
CN101715535B (zh) 2007-04-30 2012-01-11 奥西库尔有限公司 摩托车空气调节系统
JP5311543B2 (ja) * 2007-05-02 2013-10-09 独立行政法人産業技術総合研究所 ガス分離精製ならびに回収方法及びその装置
EP2185494A2 (de) 2007-09-05 2010-05-19 E. I. du Pont de Nemours and Company Verfahren zur herstellung von dibutylethern aus isobutanol
EP2205545A2 (de) 2007-09-05 2010-07-14 E. I. du Pont de Nemours and Company Verfahren zur herstellung von dibutylethern aus 2-butanol
CN101932542A (zh) 2007-09-28 2010-12-29 西格纳化学有限责任公司 碱金属-硅胶(m-sg)材料在其用于阴离子聚合的溶剂和单体干燥与纯化中的用途
EP2055803A1 (de) 2007-10-29 2009-05-06 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Verfahren zur Herstellung einer Abscheidung aus einer Dampfphase
JP5136979B2 (ja) * 2007-10-31 2013-02-06 独立行政法人産業技術総合研究所 二酸化炭素を選択的に分離・精製するための吸着剤
CN102149980B (zh) 2008-08-08 2015-08-19 技术研究及发展基金有限公司 液体干燥剂除湿系统及用于其的热/质量的交换器
US20100090356A1 (en) 2008-10-10 2010-04-15 Ldworks, Llc Liquid desiccant dehumidifier
WO2010122150A1 (en) 2009-04-23 2010-10-28 Vtu Holding Gmbh Method of dehydrating an ionic liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080112866A1 (en) * 2002-04-05 2008-05-15 University Of South Alabama Functionalized ionic liquids, and methods of use thereof
US20110247494A1 (en) * 2009-06-25 2011-10-13 VTU Holding GmbH. Liquid sorbant, method of using a liquid sorbant, and device for sorbing a gas
US20120121490A1 (en) * 2009-06-25 2012-05-17 Ae&E Austria Gmbh & Co Kg Method For Sorption of Carbon Dioxide Out Of Flue Gas

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IUPAC Compendium of Chemical Terminology, "aliphatic compounds." doi:10.1351/goldbook.A00217. (c)2014 IUPAC. *
Li et al., "Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters." Green Chem., 2008, 10, 879-884 (published online on 7/10/2008). *
O'Leary, D., "Alcohols." (c) 2000. Viewed 7-28-15 at http://www.ucc.ie/academic/chem/dolchem/html/dict/alcohols.html . *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120121490A1 (en) * 2009-06-25 2012-05-17 Ae&E Austria Gmbh & Co Kg Method For Sorption of Carbon Dioxide Out Of Flue Gas
US9951008B2 (en) 2009-11-03 2018-04-24 University Of Notre Dame Du Lac Ionic liquids comprising heteraromatic anions
US10259788B2 (en) 2009-11-03 2019-04-16 University Of Notre Dame Du Lac Ionic liquids comprising heteraromatic anions
US10889544B2 (en) 2009-11-03 2021-01-12 University Of Notre Dame Du Lac Ionic liquids comprising heteraromatic anions
US8696804B2 (en) * 2010-12-29 2014-04-15 Delphi Technologies, Inc. Carbon dioxide absorbent fluid for a carbon dioxide sequestering system on a vehicle
US8734744B2 (en) * 2011-09-16 2014-05-27 Petroliam Nasional Berhad Separation of gases
WO2015047712A1 (en) * 2013-09-30 2015-04-02 Uop Llc Ionic liquid and solvent mixtures for hydrogen sulfide removal
US10385251B2 (en) 2013-09-30 2019-08-20 University Of Notre Dame Du Lac Compounds, complexes, compositions, methods and systems for heating and cooling
EA034098B1 (ru) * 2013-09-30 2019-12-26 Юоп Ллк Смеси из ионной жидкости и растворителя для удаления сероводорода
WO2015069799A1 (en) * 2013-11-05 2015-05-14 University Of Notre Dame Du Lac Carbon dioxide capture using phase change ionic liquids
US10086331B2 (en) 2013-11-05 2018-10-02 University Of Notre Dame Du Lac Carbon dioxide capture using phase change ionic liquids
JP2016055217A (ja) * 2014-09-05 2016-04-21 富士フイルムファインケミカルズ株式会社 ジボランの除去方法およびジボラン除去剤

Also Published As

Publication number Publication date
JP2012530598A (ja) 2012-12-06
KR20120047232A (ko) 2012-05-11
EP2445613A1 (de) 2012-05-02
CN102481513A (zh) 2012-05-30
CN102481513B (zh) 2015-11-25
CN105289208A (zh) 2016-02-03
JP2016013551A (ja) 2016-01-28
BRPI1014757A2 (pt) 2016-04-19
WO2010149674A1 (en) 2010-12-29
US9011576B2 (en) 2015-04-21
US20110247494A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
US20120134905A1 (en) Method of use of an ionic liquid and device for sorption of a gas
CN108816196B (zh) 高选择性的复配型脱硫剂及其制备方法
US20120121490A1 (en) Method For Sorption of Carbon Dioxide Out Of Flue Gas
WO2011114168A1 (en) Removal of carbon dioxide from a gas stream by using aqueous ionic liquid
Zhao et al. SO2 absorption by carboxylate anion-based task-specific ionic liquids: effect of solvents and mechanism
US20140166282A1 (en) Functionalized hydrogen sulfide scavengers
KR101741899B1 (ko) 이산화탄소 흡수용 공융용제, 그 제조방법 및 이를 포함하는 이산화탄소 흡수제
Teng et al. Solubility of H2S, CO2 and their mixtures in an AMP solution
CN104277003B (zh) 用于吸收so2气体的peg基功能化咪唑类离子液体及其制备方法和应用
Liu et al. Rich ether-based protic ionic liquids with low viscosity for selective absorption of SO2 through multisite interaction
KR20100100391A (ko) 아마이드로부터 유도된 이온성 액체계 이산화탄소 흡수제
CN102671628B (zh) 一种微孔分子筛-功能化离子液体复合材料及其制备方法
US20110220506A1 (en) Recovery of materials from mixtures with ionic liquids
CN103613555B (zh) 多孔铟-有机框架吸附分离材料及其制备和应用
KR101122714B1 (ko) 함불소올레핀을 포함한 이미다졸륨계 이온성액체 화합물을 이용한 이산화탄소 흡수제
CN102000526B (zh) 一种聚醚表面活性剂的制备方法
KR100993011B1 (ko) 불소 함유 이온성 액체를 이용한 기체 흡수제
EP4268935A1 (de) Kohlendioxidabsorptionsmittel mit ionischer flüssigkeit und alkohollösungsmittel sowie verfahren zur trennung von kohlendioxid damit
CN110734404B (zh) 一种聚乙二醇链连接的双阳离子离子液体、制备方法及so2气体的捕集方法
KR20100081028A (ko) 트리알콕시히드록시포스포늄 카복실레이트계 이온성 액체를포함하는 이산화탄소 흡수제
KR20100042110A (ko) 인 함유 이온성 액체를 이용한 기체 흡수제
WO1981001802A1 (en) Process for separating carbon isotopes by chemical exchange
Teng et al. Solubility of acid gases in chemical and mixed solvents
US20230202875A1 (en) Silicon compositions and methods of preparing the same
KR100992911B1 (ko) 이온성 액체를 사용하는 탄화수소 가스의 저장방법

Legal Events

Date Code Title Description
AS Assignment

Owner name: VTU HOLDING GMBH, AUSTRIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KALB, ROLAND;REEL/FRAME:027556/0042

Effective date: 20120109

AS Assignment

Owner name: PROIONIC GMBH, AUSTRIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VTU HOLDING GMBH;REEL/FRAME:039055/0263

Effective date: 20160607

AS Assignment

Owner name: PROIONIC GMBH, AUSTRIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE'S CITY PREVIOUSLY RECORDED AT REEL: 039055 FRAME: 0263. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:VTU HOLDING GMBH;REEL/FRAME:039466/0407

Effective date: 20160607

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION