US20120115799A1 - Pharmaceutical formulations - Google Patents

Pharmaceutical formulations Download PDF

Info

Publication number
US20120115799A1
US20120115799A1 US13/105,008 US201113105008A US2012115799A1 US 20120115799 A1 US20120115799 A1 US 20120115799A1 US 201113105008 A US201113105008 A US 201113105008A US 2012115799 A1 US2012115799 A1 US 2012115799A1
Authority
US
United States
Prior art keywords
group
compound
present
weight
formulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/105,008
Other languages
English (en)
Inventor
Wenhua Wang
Todd Outwin
Thomas C. Joseph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janssen Pharmaceutica NV
Original Assignee
Janssen Pharmaceutica NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44260412&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20120115799(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Janssen Pharmaceutica NV filed Critical Janssen Pharmaceutica NV
Priority to US13/105,008 priority Critical patent/US20120115799A1/en
Assigned to JANSSEN PHARMACEUTICA NV reassignment JANSSEN PHARMACEUTICA NV ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OUTWIN, TODD, JOSEPH, THOMAS C., WANG, WENHUA
Publication of US20120115799A1 publication Critical patent/US20120115799A1/en
Priority to US13/968,496 priority patent/US20130338087A1/en
Priority to US14/486,014 priority patent/US20150005244A1/en
Priority to US15/400,005 priority patent/US10617668B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7004Monosaccharides having only carbon, hydrogen and oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/2833Organic macromolecular compounds
    • A61K9/286Polysaccharides, e.g. gums; Cyclodextrin
    • A61K9/2866Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • A61P5/50Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • This invention relates to novel pharmaceutical compositions comprising a compound of Formula (I), a prodrug thereof, or a pharmaceutically acceptable salt thereof, disclosed herein, that can be used in the treatment of diabetes mellitus, obesity, diabetic complications, and related diseases.
  • WO 2005/012326 discloses a class of compounds that are inhibitors of sodium-dependent glucose transporter (SGLT) and therapeutic uses for such compounds such as the treatment of diabetes, obesity, diabetic complications, and the like.
  • SGLT sodium-dependent glucose transporter
  • WO 2005/012326 discloses the compound 1-( ⁇ -D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene).
  • the present invention provides a novel pharmaceutical composition of compounds of Formula (I), a prodrug thereof, or a pharmaceutically acceptable salt thereof, and methods of treatment, prevention, inhibition or amelioration of one or more diseases associated with sodium-dependent glucose transporter using such pharmaceutical compositions.
  • One aspect of the present invention features an orally administrable pharmaceutical formulation comprising
  • R 1 is halo, cyano, optionally substituted lower alkyl, or optionally substituted lower alkoxyl
  • R 2 is optionally substituted aryl, or optionally substituted heterocyclyl
  • the compound of formula (I) is present in an amount within the range of from about 1% to about 80% by weight; the diluent or filler is present in an amount within the range of from about 10% to about 95% by weight; the disintegrant, if present, is present in an amount within the range of from about 0.1% to about 20% by weight; the binder, if present, is present in an amount within the range of from about 0.1% to about 20% by weight; and the lubricant, if present, is present in an amount within the range of from about 0.1% to about 5% by weight, all of the above % by weight being based on the weight of the formulation.
  • the compound of Formula (I) is a compound of Formula (I-S) as described herein.
  • the present invention is directed to an orally administrable pharmaceutical formulation comprising a compound of Formula (I) as described herein in combination with a bioavailability-promoting agent.
  • the bioavailability-promoting agent increases the bioavailability of the compound and includes excipients known in the formulation of pharmaceuticals.
  • formulating a compound of Formula (I) with the bioavailability-promoting agent results in improved measurable bioavailability of the compound upon administration of the formulation.
  • the present invention is further directed to a bioavailability-promoting agent that includes a composition of excipients, such as binders, fillers, disintegrants, lubricants or combinations thereof.
  • a bioavailability-promoting agent that includes a composition of excipients, such as binders, fillers, disintegrants, lubricants or combinations thereof.
  • the formulation of the present invention is a solid oral dosage form that provides for an increased bioavailability of the compound included therein as compared to an oral suspension including the compound in the same amount as the solid oral dosage form.
  • FIGS. 1A and B provides linear and logarithmic plasma concentration profiles of compound of Formula (I-S) following oral administration of various formulations of compound of Formula (I-S) in dogs.
  • FIG. 2 provides plasma concentration profiles of compound (I-S) following oral administration of various formulations of compound of Formula (I-S) in human subjects.
  • the present invention is directed in part to an orally administrable pharmaceutical formulation comprising
  • the present invention is directed to an orally administrable pharmaceutical formulation comprising
  • the compound of Formula (I-S) may also be referred to as 1-( ⁇ -D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene).
  • the compound of formula (I-S) is the hemihydrate of the compound of Formula (I-S), also referred to as 1-( ⁇ -D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene)hemihydrate.
  • the invention is directed to a pharmaceutical composition as described herein for use in the manufacture of a pharmaceutical dosage form for oral administration to a mammal in need of treatment, characterized in that said dosage form can be administered at any time of the day independently of the food taken in by said mammal.
  • the invention is directed to a method of therapy of the human or non-human animal body that comprises administering to said body a therapeutically effective dose of a pharmaceutical composition described herein.
  • the invention is directed to a pharmaceutical package suitable for commercial sale comprising a container, an oral dosage form as described herein, and associated with said package written matter non-limited as to whether the dosage form can be administered with or without food.
  • administering means providing a drug to a patient in a manner that is pharmacologically useful.
  • “Patient” or “subject” means an animal, preferably a mammal, more preferably a human, in need of therapeutic intervention.
  • Dosage form means one or more compounds in a medium, carrier, vehicle, or device suitable for administration to a patient.
  • Oral dosage form means a dosage form suitable for oral administration.
  • Dose means a unit of drug. Conventionally, a dose is provided as a dosage form. Doses may be administered to patients according to a variety of dosing regimens. Common dosing regimens include once daily orally (qd), twice daily orally (bid), and thrice daily orally (tid).
  • “Terminal half-life” (t 1/2 ) is calculated as 0.693/k, wherein “k” means the apparent elimination rate constant, estimated by linear regression of the log-transformed plasma concentration during the terminal log-linear elimination phase.
  • the plasma half-life of a drug (t 1/2 ) is the time necessary to halve the plasma concentration, for example to decrease from 100 to 50 mg/L.
  • the knowledge of the half-life is useful for the determination of the frequency of administration of a drug (the number of intakes per day) for obtaining the desired plasma concentration.
  • the half-life of a particular drug is independent of the dose administered. In certain exceptional cases, it varies with the dose: it can increase or decrease according to, for example, the saturation of a mechanism (elimination, catabolism, binding to plasma proteins etc).
  • AUC Absolute under the curve
  • AUC is the area as measured under a plasma drug concentration curve, also termed plasma concentration profile. Often, the AUC is specified in terms of the time interval across which the plasma drug concentration curve is being integrated, for instance AUC start-finish .
  • AUC 0-48h refers to the AUC obtained from integrating the plasma concentration curve over a period of zero to 48 hours, where zero is conventionally the time of administration of the drug or dosage form comprising the drug to a patient.
  • AUC t refers to area under the plasma concentration curve from hour 0 to the last detectable concentration at time t, calculated by the trapezoidal rule.
  • AUC inf refers to the AUC value extrapolated to infinity, calculated as the sum of AUC t and the area extrapolated to infinity, calculated by the concentration at time t (C t ) divided by k. (If the t 1/2 value was not estimable for a subject, the mean t 1/2 value of that treatment was used to calculate AUC inf ).
  • Mean area under a plasma concentration profile means the mean AUC inf obtained over several patients or multiple administrations to the same patient on different occasions with sufficient washout in between dosings to allow drug levels to subside to pre-dose levels, etc., following a single administration of a dosage form to each patient.
  • C means the concentration of drug in blood plasma, or serum, of a subject, generally expressed as mass per unit volume, typically nanograms per milliliter. For convenience, this concentration may be referred to herein as “drug plasma concentration”, “plasma drug concentration” or “plasma concentration”.
  • the plasma drug concentration at any time following drug administration is referenced as C time , as in C 9h or C 24h , etc.
  • a maximum plasma concentration obtained following administration of a dosage form obtained directly from the experimental data without interpolation is referred to as C max .
  • the average or mean plasma concentration obtained during a period of interest is referred to as C avg or C mean .
  • Mean, single dose, maximum plasma concentration C max means the mean C max obtained over several patients or multiple administrations to the same patient with sufficient washout in between dosing to allow drug levels to subside to pre-dose levels, etc., etc., following a single administration of a dosage form to each patient.
  • “Plasma concentration profile” refers to the curve obtained by plotting plasma concentration of the drug compound versus time. Usually, the convention is that the zero point on the time scale (conventionally on the x axis) is the time of administration of the drug compound or dosage form comprising the drug compound to a patient.
  • “Mean time to maximum plasma concentration” is the mean time elapsed from administration to a patient of a dosage form comprising a drug to the time at which the C max for that drug is obtained over several patients or multiple administrations to the same patient with sufficient washout in between dosing to allow drug levels to subside to pre-dose levels, etc., following a single administration of the dosage form to each patient, and obtained directly from the experimental data without interpolation.
  • the bioavailability indicates the percentage of the administered drug, which arrives in the central compartment. It is generally measured by comparing the AUC obtained after intravenous administration and after oral administration, for example. After intravenous administration, the AUC obtained corresponds to a bioavailability, which, by definition, is 100%; after oral administration, the AUC corresponds at best to an identical bioavailability. It is generally lower, sometimes null. In contrast, in this application bioavailability is indicated by the maximum plasma concentration C max reached after administration of the drug. A higher C max of a drug dosage form is indicative of better drug bioavailability via administrating this dosage form.
  • the compartment indicates the fictitious volume in which a drug would be distributed. It can correspond or not to a real volume, for example the volume of blood called first or central compartment, or the whole body except blood, called second compartment.
  • the central compartment typically includes the plasma and in addition those tissues or parts in tissues in which drug concentrations rapidly come to equilibrium with the plasma.
  • the real anatomical sectors in which the drug is distributed at different concentrations are represented by one, two, rarely three virtual compartments where the concentration of the drug is regarded as homogeneous. The concept of compartment thus makes it possible to model the fate of a drug.
  • halo means chlorine, bromine, iodine, and fluorine, and chlorine and fluorine are preferable.
  • alkyl or “alkyl group” means a straight or branched saturated monovalent hydrocarbon chain having 1 to 12 carbon atoms.
  • the straight chain or branched chain alkyl group having 1 to 6 carbon atoms is preferable, and the straight chain or branched chain alkyl group having 1 to 4 carbon atoms is more preferable.
  • alkyl group examples thereof are methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, isobutyl group, pentyl group, hexyl group, isohexyl group, heptyl group, 4,4-dimethylpentyl group, octyl group, 2,2,4-trimethylpentyl group, nonyl group, decyl group, and various branched chain isomers thereof.
  • the alkyl group may optionally and independently be substituted by one to five substituents as listed below, if necessary.
  • Alkoxy radicals are oxygen ethers formed from the previously described straight or branched chain alkyl groups.
  • the alkoxy may be optionally and independently be substituted with one to five, preferably one to three substituents defined below.
  • alkylene group or “alkylene group” means a straight or branched divalent saturated hydrocarbon chain having 1 to 12 carbon atoms.
  • the straight chain or branched chain alkylene group having 1 to 6 carbon atoms is preferable, and the straight chain or branched chain alkylene group having 1 to 4 carbon atoms is more preferable. Examples thereof are methylene group, ethylene group, propylene group, trimethylene group, etc. If necessary, the alkylene group may optionally be substituted in the same manner as the above-mentioned “alkyl group”.
  • alkylene groups as defined above attach at two different carbon atoms of the benzene ring, they form an annelated five, six or seven membered carbocycle together with the carbon atoms to which they are attached, and may optionally be substituted by one or more substituents defined below.
  • alkenyl group means a straight or branched monovalent hydrocarbon chain having 2 to 12 carbon atoms and having at least one double bond.
  • Preferable alkenyl group is a straight chain or branched chain alkenyl group having 2 to 6 carbon atoms, and the straight chain or branched chain alkenyl group having 2 to 4 carbon atoms is more preferable.
  • Examples thereof are vinyl group, 2-propenyl group, 3-butenyl group, 2-butenyl group, 4-pentenyl group, 3-pentenyl group, 2-hexenyl group, 3-hexenyl group, 2-heptenyl group, 3-heptenyl group, 4-heptenyl group, 3-octenyl group, 3-nonenyl group, 4-decenyl group, 3-undecenyl group, 4-dodecenyl group, 4,8,12-tetradecatrienyl group, etc.
  • the alkenyl group may optionally and independently be substituted by 1 to 4 substituents as mentioned below, if necessary.
  • alkenylene group means a straight or branched divalent hydrocarbon chain having 2 to 12 carbon atoms and having at least one double bond.
  • the straight chain or branched chain alkenylene group having 2 to 6 carbon atoms is preferable, and the straight chain or branched chain alkenylene group having 2 to 4 carbon atoms is more preferable. Examples thereof are vinylene group, propenylene group, butadienylene group, etc.
  • the alkylene group may optionally be substituted by 1 to 4 substituents as mentioned below, if necessary.
  • alkenylene groups as defined above attach at two different carbon atoms of the benzene ring, they form an annelated five, six or seven membered carbocycle (e.g., a fused benzene ring) together with the carbon atoms to which they are attached, and may optionally be substituted by one or more substituents defined below.
  • alkynyl group means a straight or branched monovalent hydrocarbon chain having at least one triple bond.
  • the preferable alkynyl group is a straight chain or branched chain alkynyl group having 2 to 6 carbon atoms, and the straight chain or branched chain alkynyl group having 2 to 4 carbon atoms is more preferable.
  • Examples thereof are 2-propynyl group, 3-butynyl group, 2-butynyl group, 4-pentynyl group, 3-pentynyl group, 2-hexynyl group, 3-hexynyl group, 2-heptynyl group, 3-heptynyl group, 4-heptynyl group, 3-octynyl group, 3-nonynyl group, 4-decynyl group, 3-undecynyl group, 4-dodecynyl group, etc.
  • the alkynyl group may optionally and independently be substituted by 1 to 4 substituents as mentioned below, if necessary.
  • cycloalkyl group means a monocyclic or bicyclic monovalent saturated hydrocarbon ring having 3 to 12 carbon atoms, and the monocyclic saturated hydrocarbon group having 3 to 7 carbon atoms is more preferable.
  • examples thereof are a monocyclic alkyl group and a bicyclic alkyl group such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclodecyl group, etc.
  • These groups may optionally and independently be substituted by 1 to 4 substituents as mentioned below, if necessary.
  • the cycloalkyl group may optionally be condensed with a saturated hydrocarbon ring or an unsaturated hydrocarbon ring (said saturated hydrocarbon ring and unsaturated hydrocarbon ring may optionally contain an oxygen atom, a nitrogen atom, a sulfur atom, SO or SO 2 within the ring, if necessary), and the condensed saturated hydrocarbon ring and the condensed unsaturated hydrocarbon ring may be optionally and independently be substituted by 1 to 4 substituents as mentioned below.
  • cycloalkylidene group means a monocyclic or bicyclic divalent saturated hydrocarbon ring having 3 to 12 carbon atoms, and the monocyclic saturated hydrocarbon group having 3 to 6 carbon atoms is preferable.
  • examples thereof are a monocyclic alkylidene group and a bicyclic alkylidene group such as cyclopropylidene group, cyclobutylidene group, cyclopentylidine group, cyclohexylidene group, etc.
  • These groups may optionally and independently be substituted by 1 to 4 substituents as mentioned below, if necessary.
  • the cycloalkylidene group may optionally be condensed with a saturated hydrocarbon ring or an unsaturated hydrocarbon ring (said saturated hydrocarbon ring and unsaturated hydrocarbon ring may optionally contain an oxygen atom, a nitrogen atom, a sulfur atom, SO or SO 2 within the ring, if necessary), and the condensed saturated hydrocarbon ring and the unsaturated hydrocarbon ring may be optionally and independently be substituted by 1 to 4 substituents as mentioned below.
  • cycloalkenyl group means a monocyclic or bicyclic monovalent unsaturated hydrocarbon ring having 4 to 12 carbon atoms and having at least one double bond.
  • the preferable cycloalkenyl group is a monocyclic unsaturated hydrocarbon group having 4 to 7 carbon atoms. Examples thereof are monocyclic alkenyl groups such as cyclopentenyl group, cyclopentadienyl group, cyclohexenyl group, etc. These groups may optionally and independently be substituted by 1 to 4 substituents as mentioned below, if necessary.
  • the cycloalkenyl group may optionally be condensed with a saturated hydrocarbon ring or an unsaturated hydrocarbon ring (said saturated hydrocarbon ring and unsaturated hydrocarbon ring may optionally contain an oxygen atom, a nitrogen atom, a sulfur atom, SO or SO 2 within the ring, if necessary), and the condensed saturated hydrocarbon ring and the unsaturated hydrocarbon ring may be optionally and independently be substituted by 1 to 4 substituents as mentioned below.
  • cycloalkynyl group means a monocyclic or bicyclic unsaturated hydrocarbon ring having 6 to 12 carbon atoms, and having at least one triple bond.
  • the preferable cycloalkynyl group is a monocyclic unsaturated hydrocarbon group having 6 to 8 carbon atoms. Examples thereof are monocyclic alkynyl groups such as cyclooctynyl group, cyclodecynyl group. These groups may optionally be substituted by 1 to 4 substituents as mentioned below, if necessary.
  • the cycloalkynyl group may optionally and independently be condensed with a saturated hydrocarbon ring or an unsaturated hydrocarbon ring (said saturated hydrocarbon ring and unsaturated hydrocarbon ring may optionally contain an oxygen atom, a nitrogen atom, a sulfur atom, SO or SO 2 within the ring, if necessary), and the condensed saturated hydrocarbon ring or the unsaturated hydrocarbon ring may be optionally and independently be substituted by 1 to 4 substituents as mentioned below.
  • aryl group means a monocyclic or bicyclic monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms. Examples thereof are phenyl group, naphthyl group (including 1-naphthyl group and 2-naphthyl group). These groups may optionally and independently be substituted by 1 to 4 substituents as mentioned below, if necessary.
  • the aryl group may optionally be condensed with a saturated hydrocarbon ring or an unsaturated hydrocarbon ring (said saturated hydrocarbon ring and unsaturated hydrocarbon ring may optionally contain an oxygen atom, a nitrogen atom, a sulfur atom, SO or SO 2 within the ring, if necessary), and the condensed saturated hydrocarbon ring or the unsaturated hydrocarbon ring may be optionally and independently be substituted by 1 to 4 substituents as mentioned below.
  • saturated monocyclic heterocyclic ring means an unsaturated hydrocarbon ring containing 1-4 heteroatoms independently selected from a nitrogen atom, an oxygen atom and a sulfur atom, and the preferable one is a 4- to 7-membered saturated or unsaturated hydrocarbon ring containing 1-4 heteroatoms independently selected from a nitrogen atom, an oxygen atom and a sulfur atom.
  • pyridine, pyrimidine, pyrazine, furan, thiophene, pyrrole, imidazole, oxazole, and thiazole can be preferably used.
  • the “unsaturated monocyclic heterocyclic ring” may optionally and independently be substituted by 1-4 substituents as mentioned below, if necessary.
  • saturated fused heterobicyclic ring means hydrocarbon ring comprised of a saturated or a unsaturated hydrocarbon ring condensed with the above mentioned unsaturated monocyclic heterocyclic ring where said saturated hydrocarbon ring and said unsaturated hydrocarbon ring may optionally contain an oxygen atom, a nitrogen atom, a sulfur atom, SO, or SO 2 within the ring, if necessary.
  • the “unsaturated fused heterobicyclic ring” includes, for example, benzothiophene, indole, tetrahydrobenzothiophene, benzofuran, isoquinoline, thienothiophene, thienopyridine, quinoline, indoline, isoindoline, benzothiazole, benzoxazole, indazole, dihydroisoquinoline, etc. Further, the “heterocyclic ring” also includes possible N- or S-oxides thereof.
  • heterocyclyl means a monovalent group of the above-mentioned unsaturated monocyclic heterocyclic ring or unsaturated fused heterobicyclic ring and a monovalent group of the saturated version of the above-mentioned unsaturated monocyclic heterocyclic or unsaturated fused heterobicyclic ring. If necessary, the heterocyclyl may optionally and independently be substituted by 1 to 4 substituents as mentioned below.
  • alkanoyl group means a formyl group and ones formed by binding an “alkyl group” to a carbonyl group.
  • substituted refers to a radical in which one or more hydrogen atoms are each independently replaced with the same or different substituent(s).
  • each group includes, for example, a halogen atom (fluorine, chlorine, bromine), a nitro group, a cyano group, an oxo group, a hydroxy group, a mercapto group, a carboxyl group, a sulfo group, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkylidenemethyl group, a cycloalkenyl group, a cycloalkynyl group, an aryl group, a heterocyclyl group, an alkoxy group, an alkenyloxy group, an alkynyloxy group, a cycloalkyloxy group, a cycloalkenyloxy group, a cycloalkynyloxy group, an aryloxy group, a heterocyclyloxy group, an alkanoyl group, an alkenylcarbonyl group, an aryloxy group
  • haloalkyl group a halo-lower alkyl group, a haloalkoxy group, a halo-lower alkoxy group, a halophenyl group, or a haloheterocyclyl group
  • a haloalkyl group a halo-lower alkyl group, a haloalkoxy group, a halo-lower alkoxy group, a halophenyl group, or a haloheterocyclyl group
  • an alkyl group an alkoxy group, a lower alkoxy group, a phenyl group or a heterocyclyl group (hereinafter, referred to as an alkyl group, etc.) being substituted by one or more halogen atoms, respectively.
  • Preferable ones are an alkyl group, etc.
  • hydroxyalkyl group, a hydroxy-lower alkyl group, a hydroxyalkoxy group, a hydroxy-lower alkoxy group and a hydroxyphenyl group mean an alkyl group, etc., being substituted by one or more hydroxy groups.
  • Preferable ones are an alkyl group, etc., being substituted by 1 to 4 hydroxy groups, and more preferable ones are an alkyl group, etc., being substituted by 1 to 2 hydroxy groups.
  • an alkoxyalkyl group a lower alkoxyalkyl group, an alkoxy-lower alkyl group, a lower alkoxy-lower alkyl group, an alkoxyalkoxy group, a lower alkoxyalkoxy group, an alkoxy-lower alkoxy group, a lower alkoxy-lower alkoxy group, an alkoxyphenyl group, and a lower alkoxyphenyl group means an alkyl group, etc., being substituted by one or more alkoxy groups.
  • Preferable ones are an alkyl group, etc., being substituted by 1 to 4 alkoxy groups, and more preferable ones are an alkyl group, etc., being substituted by 1 to 2 alkoxy groups.
  • arylalkyl and arylalkoxy as used alone or as part of another group refer to alkyl and alkoxy groups as described above having an aryl substituent.
  • lower used in the definitions for the formulae in the present specification means a straight or branched carbon chain having 1 to 6 carbon atoms, unless defined otherwise. More preferably, it means a straight or branched carbon chain having 1 to 4 carbon atoms.
  • composition is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combinations of the specified ingredients in the specified amounts.
  • prodrug means an ester or carbonate, which is formed by reacting one or more hydroxy groups of the compound of the Formula (I) with an acylating agent substituted by an alkyl, an alkoxy or an aryl by a conventional method to produce acetate, pivalate, methylcarbonate, benzoate, etc.
  • the prodrug includes also an ester or amide, which is similarly formed by reacting one or more hydroxy groups of the compound of the Formula (I) with an ⁇ -amino acid or a ⁇ -amino acid, etc. using a condensing agent by a conventional method.
  • the prodrug includes also ether, which is similarly formed by reacting one or more hydroxy groups of the compound of the Formula (I) with a condensing agent via a conventional method.
  • “Pharmaceutically acceptable” means molecular entities and compositions that are of sufficient purity and quality for use in the formulation of a composition or medicament of the present invention. Since both human use (clinical and over-the-counter) and veterinary use are equally included within the scope of the present invention, a formulation would include a composition or medicament for either human or veterinary use.
  • salts includes, for example, a salt with an alkali metal such as lithium, sodium, potassium, etc.; a salt with an alkaline earth metal such as calcium, magnesium, etc.; a salt with zinc or aluminum; a salt with an organic base such as ammonium, choline, diethanolamine, lysine, ethylenediamine, t-butylamine, t-octylamine, tris(hydroxymethyl)aminomethane, N-methyl glucosamine, triethanolamine and dehydroabietylamine; a salt with an inorganic acid such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, etc.; or a salt with an organic acid such as formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, tartaric acid
  • the compound of Formula (I) of the present invention also includes a mixture of stereoisomers, or each pure or substantially pure isomer.
  • the present compound may optionally have one or more asymmetric centers at a carbon atom containing any one of substituents. Therefore, the compound of the Formula (I) may exist in the form of enantiomer or diastereomer, or a mixture thereof.
  • the present compound of Formula (I) may exist in the form of geometric isomerism (cis-compound, trans-compound), and when the present compound of Formula (I) contains an unsaturated bond such as carbonyl, then the present compound may exist in the form of a tautomer, and the present compound also includes these isomers or a mixture thereof.
  • the starting compound in the form of a racemic mixture, enantiomer or diastereomer may be used in the processes for preparing the present compound.
  • the present compound is obtained in the form of a diastereomer or enantiomer, they can be separated by a conventional method such as chromatography or fractional crystallization.
  • the present compound of Formula (I) includes an intramolecular salt, hydrate, solvate or polymorphism thereof.
  • the formulation of the present invention is useful for treating or delaying the progression or onset of a sodium-dependent glucose transporter mediated disorder.
  • the formulation of the present invention is useful for treating or delaying the progression or onset of diabetes mellitus, diabetic retinopathy, diabetic neuropathy, diabetic nephropathy, delayed wound healing, insulin resistance, hyperglycemia, hyperinsulinemia, elevated blood levels of fatty acids, elevated blood levels of glycerol, hyperlipidemia, obesity, hypertriglyceridemia, Syndrome X, diabetic complications, atherosclerosis, or hypertension.
  • the formulation of the present invention is useful in the treatment or the prophylaxis of diabetes mellitus (type 1 and type 2 diabetes mellitus, etc.), diabetic complications (such as diabetic retinopathy, diabetic neuropathy, diabetic nephropathy) or obesity, or is useful in the treatment of postprandial hyperglycemia.
  • diabetes mellitus type 1 and type 2 diabetes mellitus, etc.
  • diabetic complications such as diabetic retinopathy, diabetic neuropathy, diabetic nephropathy
  • obesity or is useful in the treatment of postprandial hyperglycemia.
  • R 1 as shown in Formula (I) is a halogen atom, or a lower alkyl group
  • R 2 as shown in Formula (I) phenyl is optionally substituted by 1 to 3 substituents selected from the group consisting of a halogen atom, a cyano group, a lower alkyl group, a halo-lower alkyl group, a lower alkoxy group, a halo-lower alkoxy group, a methylenedioxy group, an ethyleneoxy group, a mono- or di-lower alkylamino group, a carbamoyl group, and a mono- or di-lower alkylcarbamoyl group.
  • Preferably drug compounds of Formula (I) used in the disclosed formulation typically possess slight to poor water solubility in their crystalline or amorphous form and hence poor bioavailability, but the present invention is not necessarily limited to compounds with little to no water solubility.
  • Preferred representative compounds for use in the formulations of the present invention include 1-( ⁇ -D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene), or a prodrug or a pharmaceutically acceptable salt thereof.
  • the compound for use in the formulations of the present invention is 1-( ⁇ -D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene)hemihydrate.
  • the 1-( ⁇ -D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene), or a prodrug or a pharmaceutically acceptable salt thereof is included in the formulation of the present invention in an amount of from about 25 mg to about 600 mg, preferably from about 50 mg to about 400 mg.
  • the 1-( ⁇ -D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene), or a prodrug or a pharmaceutically acceptable salt thereof is included in the formulation of the present invention in an amount of about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 150 mg, about 200 mg, about 250 mg, about 300 mg, about 350 mg, or about 400 mg.
  • the 1-( ⁇ -D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene), or a prodrug or a pharmaceutically acceptable salt thereof is included in the formulation of the present invention in an amount of about 100 mg or about 300 mg.
  • the 1-( ⁇ -D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene) is in the hemihydrate
  • the 1-( ⁇ -D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene)hemihydrate is preferably included in the formulation in an amount of about 25.5 mg, about 51 mg, about 102 mg, about 204 mg, or about 306 mg, preferably in an amount of about 102 mg or about 306 mg.
  • the compound is formulated into oral dosage forms suitable for administration to patients in need thereof.
  • the oral dosage form may be provided in any pharmaceutically acceptable solid dosage form.
  • the solid dosage form includes, for example, solid preparation such as tablets, pills, granules, capsules, powders and others. More preferably, the solid dosage form is an oral tablet or capsule formulation. Most preferably the solid dosage form is an oral tablet.
  • the formulation includes a filler or diluent in the amount of about 10% to about 95% by weight of the formulation, preferably from about 25% to about 90% by weight of the formulation, more preferably from about 30% to about 50% by weight of the formulation or from about 35% to about 45% by weight of the formulation.
  • the formulation includes a disintegrant in the amount of about 0.1% to about 20% by weight of the formulation, preferably from about 0.25% to about 10% by weight of the formulation, more preferably from about 3% to about 10% by weight of the formulation or from about 5% to about 7% by weight of the formulation.
  • the formulation includes a binder in the amount of about 0.1% to about 20% by weight of the formulation, preferably from about 0.1% to about 10% by weight of the formulation, more preferably from about 0.5% to about 5% by weight of the formulation or from about 1% to about 4% by weight of the formulation.
  • the formulation includes a lubricant in the amount of about 0.1% to about 5% by weight of the formulation, preferably from about 0.1% to about 2% by weight of the formulation, more preferably from about 0.5% to 2% by weight of the formulation or 0.5% to 1.5% by weight of the formulation.
  • the formulation optionally includes a surfactant in the amount of about 0% to about 10% by weight of the formulation, preferably from about 0% to about 5% by weight of the formulation.
  • the solid dosage forms may comprise the compound in combination with various pharmaceutically acceptable excipients, and preferably the dosage form is adapted to provide increased bioavailability of the compound in a manner to obtain the desired clinical effect through oral administration to the patient.
  • the bioavailability promoting agent of the present invention includes any combination of the excipients described herein such that the formulation provides for the increase bioavailability of the compound included the formulation.
  • the bioavailability promoting agent includes two or more excipients described herein.
  • compositions are known in the art and can be provided according to considerations of desired functionality and process ability.
  • Roles for the excipients in the oral dosage form include but are not limited to fillers, binders, disintegrants, release controlling agents, glidants, lubricants, coatings and the like.
  • the dosage form preferably comprises a disintegrant in an amount as noted herein.
  • a controlled or sustained release formulation of the compound is desired. Such a formulation can be achieved by varying the amounts, concentrations and ratios of certain release controlling polymers.
  • the formulation of the present invention includes the compound in an amount of about 1% to about 80%, preferably from about 5% to about 60% by weight of the formulation, more preferably from about 40% to about 60% by weight of the formulation or about 45% to about 55% by weight of the formulation.
  • one or more of the dosage forms can be administered.
  • an oral release formulation is provided in tablet form comprising about 100 mg of 1-( ⁇ -D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene), microcrystalline cellulose, hydroxypropyl cellulose, croscarmellose sodium, lactose anhydrous, and magnesium stearate.
  • an oral release formulation is provided in tablet form comprising about 300 mg of 1-( ⁇ -D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene), microcrystalline cellulose, hydroxypropyl cellulose, croscarmellose sodium, lactose anhydrous, and magnesium stearate.
  • an oral release formulation in tablet form comprising about 102 mg of 1-( ⁇ -D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene)hemihydrate, microcrystalline cellulose, hydroxypropyl cellulose, croscarmellose sodium, lactose anhydrous, and magnesium stearate.
  • an oral release formulation is provided in tablet form comprising about 306 mg of 1-( ⁇ -D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene)hemihydrate, microcrystalline cellulose, hydroxypropyl cellulose, croscarmellose sodium, lactose anhydrous, and magnesium stearate.
  • Fillers or diluents for use in the formulations of the present invention include fillers or diluents typically used in the formulation of pharmaceuticals.
  • fillers or diluents for use in accordance with the present invention include but are not limited to sugars such as lactose, dextrose, glucose, sucrose, cellulose, starches and carbohydrate derivatives, polysaccharides (including dextrates and maltodextrin), polyols (including mannitol, xylitol, and sorbitol), cycludextrins, calcium carbonates, magnesium carbonates, microcrystalline cellulose, combinations thereof, and the like.
  • the filler or diluent is lactose, microcrystalline cellulose, or combination thereof.
  • microcrystalline cellulose selected from the group consisting of Avicel® types: PH101, PH102, PH103, PH105, PH 112, PH113, PH200, PH301, and other types of microcrystalline cellulose, such as silicified microcrystalline cellulose.
  • lactose selected from the group consisting of anhydrous lactose, lactose monohydrate, lactose fast flo, directly compressible anhydrous lactose, and modified lactose monohydrate.
  • the filler or diluent is a combination of microcrystalline cellulose and lactose.
  • Binders for use in the formulations of the present invention include binders commonly used in the formulation of pharmaceuticals.
  • binders for use in accordance with the present invention include but are not limited to cellulose derivatives (including hydroxypropyl cellulose, hydroxypropyl methylcellulose, methylcellulose, and sodium carboxymethyl cellulose), glycol, sucrose, dextrose, corn syrup, polysaccharides (including acacia, targacanth, guar, alginates and starch), corn starch, pregelatinized starch, modified corn starch, gelatin, polyvinylpyrrolidone, polyethylene, polyethylene glycol, combinations thereof and the like.
  • the binding agent if present, is hydroxypropyl cellulose.
  • Disintegrants for use in the formulations of the present invention include disintegrants commonly used in the formulation of pharmaceuticals.
  • examples of disintegrants for use in accordance with the present invention include but are not limited to starches, clays, celluloses, alginates and gums and crosslinked starches, celluloses and polymers, combinations thereof and the like.
  • Representative disintegrants include microcrystalline cellulose, croscarmellose sodium, alginic acid, sodium alginate, crosprovidone, cellulose, agar and related gums, sodium starch glycolate, corn starch, potato starch, sodiumstarch glycolate, Veegum HV, methylcellulose, agar, bentonite, carboxymethylcellulose, alginic acid, guar gum combinations thereof, and the like.
  • the disintegrant if present, is a cross-linked cellulose, more preferably cross-linked sodium carboxymethylcellulose or croscarmellose sodium.
  • Lubricants for use in the formulations of the present invention include lubricants commonly used in the formulation of pharmaceuticals.
  • examples of lubricants for use in accordance with the present invention include but are not limited to magnesium carbonate, magnesium laurylsulphate, calcium silicate, talc, fumed silicon dioxide, combinations thereof, and the like.
  • lubricants include but are not limited to magnesium stearate, calcium stearate, stearic acid, sodium stearyl fumarate, polyethylene glycol, sodium lauryl sulphate, magnesium lauryl sulphate, sodium benzoate, colloidal silicon dioxide, magnesium oxide, microcrystalline cellulose, starches, mineral oil, waxes, glyceryl behenate, polyethylene glycol, sodium acetate, sodium chloride, combinations thereof, and the like.
  • the lubricant if present, is magnesium stearate or stearic acid, more preferably magnesium stearate.
  • Surfactants for use in the formulations of the present invention include surfactants commonly used in the formulation of pharmaceuticals.
  • surfactants for use in accordance with the present invention include but are not limited to ionic- and nonionic surfactants or wetting agents commonly used in the formulation of pharmaceuticals, such as ethoxylated castor oil, polyglycolyzed glycerides, acetylated monoglycerides, sorbitan fatty acid esters, poloxamers, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene derivatives, monoglycerides or ethoxylated derivatives thereof, diglycerides or polyoxyethylene derivatives thereof, sodium docusate, sodium laurylsulfate, cholic acid or derivatives thereof, lecithins, phospholipids, combinations thereof, and the like.
  • MC methylcellulose
  • EC ethylcellulose
  • HEC hydroxyethylcellulose
  • MHEC methyl hydroxyethylcellulose
  • HPMC hydroxypropyl methylcellulose
  • NaCMC sodium carboxymethylcellulose
  • the appropriate excipients should be selected such that they are compatible with other excipients and do not bind with the drug compound or cause drug degradation.
  • the pharmaceutical formulations disclosed herein can further comprise antioxidants and chelating agents.
  • the pharmaceutical formulations can comprise butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), propyl gallate (PG), sodium metabisulfite, ascorbyl palmitate, potassium metabisulfite, disodium EDTA (ethylenediamine tetraacetic acid; also known as disodium edentate), EDTA, tartaric acid, citric acid, citric acid monohydrate, and sodium sulfite.
  • BHA butylated hydroxyanisole
  • BHT butylated hydroxytoluene
  • PG propyl gallate
  • sodium metabisulfite sodium metabisulfite
  • ascorbyl palmitate sodium metabisulfite
  • potassium metabisulfite sodium metabisulfite
  • disodium EDTA ethylenediamine tetraacetic acid; also known as disodium edentate
  • EDTA tart
  • the tablet or capsule of the invention has a protective outer layer.
  • the protective outer layer of the tablet or capsule can include from about 10% to about 95% of polymer based on the weight of the coating layer, and can be prepared employing conventional procedures.
  • the outer layer of the tablet or capsule includes from about 20% to about 90% of polymer based on the weight of the coating layer.
  • the formulation can contain at least one coating layer polymer and a coating solvent, for example, water, which is used for processing and removed by drying. Suitable examples of polymer for the coating layer include, but are not limited to, hydroxypropyl methylcellulose, polyvinyl alcohol (PVA), ethyl cellulose, methacrylic polymers, hydroxypropyl cellulose, and starch.
  • the coating layer polymer is PVA.
  • the coating layer polymer is hydroxypropyl cellulose.
  • the coating can also optionally include a plasticizer of from about 0% to about 30% by weight, based on the weight of the coating layer. In one embodiment, the plasticizer is from about 15% to about 25% by weight of the coating layer.
  • Suitable plasticizers include, but are not limited to, triacetin, diethyl phthalate, tributyl sebacate, polyethylene glycol (PEG), glycerin, triacetin, and triaethyl citrate, for example.
  • the coating can also optionally include an anti-adherent or glidant such as talc, fumed silica, or magnesium stearate, for example.
  • an anti-adherent or glidant such as talc, fumed silica, or magnesium stearate, for example.
  • the coating can also optionally include an opacifying agent, such as titanium dioxide, for example.
  • an opacifying agent such as titanium dioxide
  • the tablet may be further coated with a coating layer that provides cosmetic benefits to the dosage form.
  • a coating layer that provides cosmetic benefits to the dosage form.
  • such a coating helps to protect the tablets.
  • such coating comprises hydroxypropyl methylcellulose, polyethylene glycol, polydextrose, titanium dioxide, and triacetin.
  • such coating comprises hydroxypropyl methylcellulose 2910, polyethylene glycol 400, polydextrose, titanium dioxide, carnuba wax, and iron oxide yellow.
  • such a coating layer comprises Opadry® II (white) in an amount of from about 0% to about 10% by weight of the tablet; in certain other embodiments in an amount of from about 0% to about 6% by weight of the tablet; and in still other embodiments in an amount of from about, 0% to about 3% by weight of the tablet; and in other embodiments from about 2 to about 4% by weight of the tablet.
  • formulations of the present invention further include one or more additional therapeutic agents to provide the desired therapeutic effect.
  • therapeutic agent(s) suitable for combination with the formulations of the present invention include, but are not limited to, known therapeutic agents useful in the treatment of the aforementioned disorders associated with SGLT2 activity including: anti-diabetic agents; anti-hyperglycemic agents; hypolipidemic or lipid lowering agents; anti-obesity agents; anti-hypertensive agents and appetite suppressants.
  • the invention further provides a method for treating or delaying the progression or onset of diseases or disorders associated with SGLT2 activity comprising administering to a mammalian species in need of such treatment a therapeutically effective amount of the pharmaceutical formulation of the invention and one or more of the following: anti-diabetic agent(s), anti-hyperglycemic agent(s); hypolipidemic or lipid lowering agent(s); anti-obesity agent(s); anti-hypertensive agent(s) and appetite suppressant(s).
  • anti-diabetic agent(s) anti-hyperglycemic agent(s); hypolipidemic or lipid lowering agent(s); anti-obesity agent(s); anti-hypertensive agent(s) and appetite suppressant(s).
  • the invention provides a method for treating type II diabetes comprising administering to a mammalian species in need of such treatment a therapeutically effective amount of the pharmaceutical formulation of the invention and one or more anti-diabetic agent(s).
  • the invention provides a method for delaying the progression or onset of type II diabetes comprising administering to a mammalian species in need of such treatment a therapeutically effective amount of the pharmaceutical formulation of the invention and one or more anti-diabetic agent(s).
  • the invention provides a method for treating or delaying the progression or onset of type II diabetes comprising administering to a mammalian species in need of such treatment a therapeutically effective amount of the pharmaceutical formulation of the invention and one or more of the following: anti-hyperglycemic agent(s); hypolipidemic or lipid lowering agent(s); anti-obesity agent(s); anti-hypertensive agent(s) and appetite suppressant(s).
  • the invention provides a method for treating or delaying the progression or onset of type II diabetes comprising administering to a mammalian species in need of such treatment a therapeutically effective amount of a pharmaceutical formulation of the invention and an anti-hyperglycemic agent(s).
  • the invention provides a method for treating or delaying the progression or onset of type II diabetes comprising administering to a mammalian species in need of such treatment a therapeutically effective amount of a pharmaceutical formulation of the invention and a hypolipidemic agent(s).
  • the invention provides a method for treating or delaying the progression or onset of type II diabetes comprising administering to a mammalian species in need of such treatment a therapeutically effective amount of a pharmaceutical formulation of the invention and an anti-obesity agent(s).
  • the invention provides a method for treating or delaying the progression or onset of type II diabetes comprising administering to a mammalian species in need of such treatment a therapeutically effective amount of a pharmaceutical formulation of the invention and an anti-hypertensive agent(s).
  • the invention provides a method for treating or delaying the progression or onset of type II diabetes comprising administering to a mammalian species in need of such treatment a therapeutically effective amount of a pharmaceutical formulation of the invention and an appetite suppressant(s).
  • Suitable anti-diabetic agents for use in combination with the formulations of the present invention include, but are not limited to, biguanides (e.g., metformin or phenformin), glucosidase inhibitors (e.g., acarbose or miglitol), insulins (including insulin secretagogues or insulin sensitizers), meglitinides (e.g., repaglinide), sulfonylureas (e.g., glimepiride, glyburide, gliclazide, chlorpropamide and glipizide), biguanide/glyburide combinations (e.g., Glucovance®), thiazolidinediones (e.g., troglitazone, rosiglitazone and pioglitazone), PPAR-alpha agonists, PPAR-gamma agonists, PPAR alpha/gamma dual agonists, glycogen phosphorylase inhibitor
  • thiazolidinediones include, but are not limited to, MCC-555, faraglitazar, englitazone or darglitazone; isaglitazone, reglitazar, rivoglitazone, liraglutide, and (Z)-1,4-bis-4-[(3,5-dioxo-1,2,4-oxadiazolidin-2-yl-methyl)]phenoxybut-2-ene.
  • Examples of PPAR-alpha agonists, PPAR-gamma agonists and PPAR alpha/gamma dual agonists include, but are not limited to, muraglitazar, peliglitazar, tesaglitazar AR-HO39242, GW-501516, and IRP297.
  • Suitable DPP4 inhibitors include, but are not limited to, sitigliptin and saxagliptin.
  • glucagon-like peptide-1 such as GLP-1 (1-36) amide, GLP-1 (7-36) amide, GLP-1 (7-37), exenatide, LY-315902, MK-0431, liraglutide, ZP-10, and CJC-1131.
  • hypolipidemic/lipid lowering agents for use in combination with the formulations of the present invention include one or more MTP inhibitors, HMG CoA reductase inhibitors (such as e.g., mevastatin, lovastatin, pravastatin, simvastatin, fluvastatin, cerivastatin, atorvastatin, atavastatin, rosuvastatin), squalene synthetase inhibitors, fibric acid derivatives (such as e.g., fenofibrate, gemfibrozil, clofibrate, bezafibrate, ciprofibrate, clinofibrate and the like, probucol, bile acid sequestrants, such as cholestyramine, colestipol and DEAE-Sephadex, as well as lipostabil), ACAT inhibitors, lipoxygenase inhibitors, cholesterol absorption inhibitors, ileal Na + /bile acid co-transporter inhibitor
  • Preferred hypolipidemic agents include pravastatin, lovastatin, simvastatin, atorvastatin, fluvastatin, cerivastatin, atavastatin and rosuvastatin, for example.
  • suitable anti-hypertensive agents for use in combination with the formulations of the present invention include, but are not limited to, beta adrenergic blockers, calcium channel blockers (L-type and T-type; e.g.
  • diltiazem verapamil, nifedipine, amlodipine and mybefradil
  • diuretics e.g., chlorothiazide, hydrochlorothiazide, flumethiazide, hydroflumethiazide, bendroflumethiazide, methylchlorothiazide, trichloromethiazide, polythiazide, benzthiazide, ethacrynic acid tricrynafen, chlorthalidone, furosemide, musolimine, bumetanide, triamtrenene, amiloride, spironolactone), renin inhibitors, ACE inhibitors (e.g., captopril, zofenopril, fosinopril, enalapril, ceranopril, cilazopril, delapril, pentopril, quinapril, ramipril, lisino
  • Suitable anti-obesity agents include, but are not limited to, beta 3 adrenergic agonists, lipase inhibitors, serotonin (and dopamine) reuptake inhibitors, thyroid receptor beta drugs, 5HT2C agonists; MCHR1 antagonists, such as Synaptic SNAP-7941 and Takeda T-226926, melanocortin receptor (MC4R) agonists, melanin-concentrating hormone receptor (MCHR) antagonists, galanin receptor modulators, orexin antagonists, CCK agonists, NPY1 or NPY5 antagonist, NPY2 and NPY4 modulators, corticotropin releasing factor agonists, histamine receptor-3 (H3) modulators, 11-beta-HSD-1 inhibitors, adinopectin receptor modulators, monoamine reuptake inhibitors or releasing agents, ciliary neurotrophic factors, BDNF (brain-derived neurotrophic factor), BDNF (brain-derived neuro
  • lipase inhibitors examples include, but are not limited to, orlistat and ATL-962 (Alizyme).
  • Serotonin (and dopamine) reuptake inhibitors or serotonin receptor agonists
  • BVT-933 sibutramine
  • topiramate examples include, but are not limited to, orlistat and ATL-962 (Alizyme).
  • Examples of monoamine reuptake inhibitors that can be employed in combination with the formulations of the present invention include, but are not limited to, fenfluramine, dexfenfluramine, fluvoxamine, fluoxetine, paroxetine, sertraline, chlorphentermine, cloforex, clortermine, picilorex, sibutramine, dexamphetamine, phentermine, phenylpropanolamine and mazindol.
  • Anorectic agents that can be employed in combination with the formulations of the present invention include, but are not limited to, topiramate, dexamphetamine, phentermine, phenylpropanolamine and mazindol.
  • the other therapeutic agent(s) can be used, for example, in the amounts indicated in the Physician's Desk Reference, or as otherwise known and used by one of ordinary skill in the art.
  • each of the compounds of the combination can be administered simultaneously or sequentially and in any order, and the components can be administered separately or as a fixed combination, in jointly therapeutically effective amounts, for example, in daily dosages as described herein.
  • a fixed combination of the invention can be prepared by mixing a dry granulation of the compound of Formula (I) or (I-S) or formulation of the invention and a dry granulation of the other therapeutic agent(s) and filling the mixture into capsules of desired size, shape, color, or other characteristics, or compressing to form tablets.
  • the formulations of the invention are prepared by making an admixture of the drug compound, and a bioavailability-promoting agent. Dissolving these components in a liquid solvent therefore and subsequently removing the solvent may affect this most straightforwardly.
  • the invention provides a process for the preparation of a pharmaceutical composition, said process comprising: dissolving a drug compound, and the pharmaceutically acceptable excipients in a solvent; removing solvent from the resultant solution; optionally forming the resultant product into desired shapes; and optionally coating the resulting product with a physiologically tolerable coating material.
  • dosage forms in accordance with the embodiments depicted herein are manufactured by standard techniques.
  • the dosage form may be manufactured by the wet granulation technique.
  • the drug and carrier are blended using an aqueous or organic solvent, such as denatured anhydrous ethanol, as the granulation fluid.
  • the remaining ingredients can be dissolved in a portion of the granulation fluid, such as the solvent described above, and this latter prepared wet blend is slowly added to the drug blend with continual mixing in the blender.
  • the granulating fluid is added until a wet blend is produced, which wet mass blend is then forced through a predetermined screen and dried in a fluid bed dryer. The dried granules are then sized.
  • magnesium stearate, or another suitable lubricant and other excipient materials are added to the drug granulation, and the granulation is put into milling jar sand mixed on a jar mill for 10 minutes.
  • the composition is pressed into a layer, for example, in a Manesty® press or a Korsch LCT press.
  • granules or powders of the drug layer compositions and push layer composition are sequentially placed in an appropriately-sized die with intermediate compression steps being applied to each of the first two layers, followed by a final compression step after the last layer is added to the die to form the trilayered core.
  • the intermediate compression typically takes place under a force of about 50-100 Newtons.
  • Final stage compression typically takes place at a force of 3500 Newtons or greater, often 3500-5000 Newtons.
  • the compressed cores are fed to a dry coater press, e.g., Kilian® Dry Coaterpress, and subsequently coated with the wall materials as described herein.
  • Pan coating may be conveniently used to provide the completed dosage form.
  • the wall-forming composition for the inner wall or the outer wall is deposited by successive spraying of the appropriate wall composition onto the compressed core accompanied by tumbling in a rotating pan.
  • a pan coater is used because of its availability at commercial scale.
  • Other techniques can be used for coating the compressed core.
  • the wall is dried in a forced-air oven or in a temperature and humidity controlled oven to free the dosage form of solvent(s) used in the manufacturing. Drying conditions will be conventionally chosen on the basis of available equipment, ambient conditions, solvents, coatings, coating thickness, and the like.
  • one alternative technique uses an air-suspension procedure. This procedure consists of suspending and tumbling the compressed core in a current of air, until a coating is applied to the core.
  • the air-suspension procedure is described in U.S. Pat. No. 2,799,241; in J. Am. Pharm. Assoc., Vol. 48, pp. 451-459 (1959); and, ibid., Vol. 49, pp. 82-84 (1960).
  • the dosage form also can be coated with a Wurster® air-suspension coater using, for example, methylene dichloride methanol as a cosolvent for the wall forming material.
  • An Aeromatic® air-suspension coater can be used employing a cosolvent.
  • the drug and other ingredients comprising the drug layer are blended and pressed into a solid layer.
  • the layer possesses dimensions that correspond to the internal dimensions of the area the layer is to occupy in the dosage form, and it also possesses dimensions corresponding to the push layer, if included, for forming a contacting arrangement therewith.
  • the drug and other ingredients can also be blended with a solvent and mixed into a solid or semisolid form by conventional methods, such as ballmilling, calendering, stirring or rollmilling, and then pressed into a preselected shape.
  • the compressed cores then may be coated with the inner wall material and the semipermeable wall material as described herein.
  • Another manufacturing process that can be used comprises blending the powdered ingredients in a fluid bed granulator. After the powdered ingredients are dry blended in the granulator, a granulating fluid, for example, polyvinylpyrrolidone in water, is sprayed onto the powders. The coated powders are then dried in the granulator. This process granulates all the ingredients present therein while adding the granulating fluid. After the granules are dried, a lubricant, such as stearic acid or magnesium stearate, is mixed into the granulation using a blender e.g., V-blender or tote blender. The granules are then pressed and coated in the manner described above.
  • a granulating fluid for example, polyvinylpyrrolidone in water
  • Exemplary solvents suitable for manufacturing the dosage form components comprise aqueous or inert organic solvents that do not adversely harm the materials used in the system.
  • the solvents broadly include members selected from the group consisting of aqueous solvents, alcohols, ketones, esters, ethers, aliphatic hydrocarbons, halogenated solvents, cycloaliphatics, aromatics, heterocyclic solvents and mixtures thereof.
  • Typical solvents include acetone, diacetone alcohol, methanol, ethanol, isopropyl alcohol, butyl alcohol, methyl acetate, ethylacetate, isopropyl acetate, n-butyl acetate, methyl isobutyl ketone, methyl propyl ketone, nhexane, n-heptane, ethylene glycol monoethyl ether, ethylene glycol monoethyl acetate, methylene dichloride, ethylene dichloride, propylene dichloride, carbon tetrachloridenitroethane, nitropropane tetrachloroethane, ethyl ether, isopropyl ether, cyclohexane, cyclooctane, benzene, toluene, naphtha, 1,4-dioxane, tetrahydrofuran, diglyme, water, aqueous solvents
  • Exemplary liquid carriers for the present invention include lipophilic solvents (e.g., oils and lipids), surfactants, and hydrophilic solvents.
  • Exemplary lipophilic solvents include, but are not limited to, Capmul PG-8, Caprol MPGO, Capryol 90, Plurol Oleique CC497, Capmul MOM, Labrafac PG, N-Decyl Alcohol, Caprol 10G10O, Oleic Acid, Vitamin E, Maisine 35-1, Gelucire 33/01, Gelucire 44/14, Lauryl Alcohol, Captex 355EP, Captex 500, Capylic/Caplic Triglyceride, Peceol, Caprol ET, Labrafil M2125 CS, Labrafac CC, Labrafil M20 1944 CS, Captex 8277, Myvacet 9-45, Isopropyl Nyristate, Caprol PGE 860, Olive Oil, Plurol Oleique, Peanut Oil, Captex 300 Low C6, and Capric Acid.
  • Exemplary surfactants include, but are not limited to, Vitamin E TPGS, Cremophor (grades EL, EL-P, and RH40), Labrasol, Tween (grades 20, 60, 80), Pluronic (gradesL-31, L-35, L-42, L-64, and L-121), Acconon S-35, Solutol HS-15, and Span (grades 20, and 80).
  • hydrophilic solvents for example, include, but are not limited to, Isosorbide Dimethyl Ether, Polyethylene Glycol (PEG grades 300, 400, 600, 3000, 4000, 6000, and 8000) and Propylene Glycol (PG).
  • Shaping may be effected by spray-drying the solution (to provide the product in particulate form), by evaporation of solvent from solution disposed in molds, by molding (e.g. injection molding), by extrusion and the like.
  • the product can be formed when hot and allowed to solidify on cooling.
  • the shaped product may likewise be produced in film or sheet form by evaporation or by pouring a heated mass onto a plate and evaporating off the solvent.
  • Hydroxypropyl cellulose and purified water were mixed to prepare the granulating solution.
  • the granulating solution was sprayed into the fluid bed to granulate the dry ingredients.
  • the dried granules were passed through a suitable mill fitted with an appropriate screen.
  • the milled granulation was placed in an appropriate blender and combined with screened magnesium stearate.
  • the mixture was blended for an appropriate period of time.
  • a suitable rotary tablet press was employed to compress the final blend into tablets.
  • the filmcoating powder was mixed with purified water to obtain the film-coating suspension.
  • the tablets were filmcoated in a suitable coating pan and dried.
  • the dogs received 10 mL of tap water to ensure delivery of the entire dose.
  • Blood samples of about 3 mL were collected via jugular venipuncture, or other suitable site, into K 2 EDTA tubes and placed on wet ice, at times of 0, 0.5, 1, 2, 4, 8, 24, and 48 hours post initial dosing. Plasma was harvested by centrifugation, and frozen at ⁇ 20° C. All samples were placed in amber vials for protection from white light and were processed within two hours of collection.
  • Plasma samples were analyzed for plasma concentrations of drug compound 1-( ⁇ -D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene) by using a liquid chromatographic-triple quadruple mass spectrometric (LC-MS/MS) assay procedure with a lower limit of quantification of 50 ng/mL.
  • Plasma concentration data were electronically transferred to a WatsonTM LIMS computer system. The WatsonTM system assigns a value of 0.00 to those concentrations below the lower limit of quantification.
  • the nanosuspension used as a control in the study included a 0.5% Methocel® suspension measured in weight percentage.
  • Methocel® is a hydroxypropyl methylcellulose (HPMC) polymer exhibiting high viscosity and used as a thickener of the suspension.
  • HPMC hydroxypropyl methylcellulose
  • the drug concentration was 5 mg of drug per 1 mL of suspension volume. A total of 20 mL suspension was administered to each dog in the nanosuspension group.
  • bioavailability as indicated by AUC inf , following administration of the compound of the 100 mg Tablet Formulation or the 25 mg Tablet Formulation was higher than after the administration of the 5 mg/mL nanosuspension.
  • the 400 mg tablet dose was achieved by administering two doses of the 200 mg Tablet Formulation.
  • the median time to maximum plasma concentration (t max ) of the compound was approximately 1 to 1.5 hours for Tablet Formulations versus 4 hours in case of the nanosuspension.
  • median t max was approximately 1.75 hours for 2 doses of the 200 mg Tablet Formulation versus 2.25 hours in case of the nanosuspension.
  • the mean t 1/2 of the drug compound ranged from about 8 to about 12 h.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Psychology (AREA)
  • Emergency Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Child & Adolescent Psychology (AREA)
  • Vascular Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
US13/105,008 2010-05-11 2011-05-11 Pharmaceutical formulations Abandoned US20120115799A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/105,008 US20120115799A1 (en) 2010-05-11 2011-05-11 Pharmaceutical formulations
US13/968,496 US20130338087A1 (en) 2010-05-11 2013-08-16 Pharmaceutical formulations
US14/486,014 US20150005244A1 (en) 2010-05-11 2014-09-15 Pharmaceutical formulations
US15/400,005 US10617668B2 (en) 2010-05-11 2017-01-06 Pharmaceutical formulations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33349510P 2010-05-11 2010-05-11
US13/105,008 US20120115799A1 (en) 2010-05-11 2011-05-11 Pharmaceutical formulations

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/968,496 Continuation US20130338087A1 (en) 2010-05-11 2013-08-16 Pharmaceutical formulations

Publications (1)

Publication Number Publication Date
US20120115799A1 true US20120115799A1 (en) 2012-05-10

Family

ID=44260412

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/105,008 Abandoned US20120115799A1 (en) 2010-05-11 2011-05-11 Pharmaceutical formulations
US13/968,496 Abandoned US20130338087A1 (en) 2010-05-11 2013-08-16 Pharmaceutical formulations
US14/486,014 Abandoned US20150005244A1 (en) 2010-05-11 2014-09-15 Pharmaceutical formulations
US15/400,005 Expired - Fee Related US10617668B2 (en) 2010-05-11 2017-01-06 Pharmaceutical formulations

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/968,496 Abandoned US20130338087A1 (en) 2010-05-11 2013-08-16 Pharmaceutical formulations
US14/486,014 Abandoned US20150005244A1 (en) 2010-05-11 2014-09-15 Pharmaceutical formulations
US15/400,005 Expired - Fee Related US10617668B2 (en) 2010-05-11 2017-01-06 Pharmaceutical formulations

Country Status (40)

Country Link
US (4) US20120115799A1 (de)
EP (1) EP2568988B1 (de)
JP (2) JP6227406B2 (de)
KR (1) KR101931209B1 (de)
CN (2) CN102883726A (de)
AR (1) AR081036A1 (de)
AU (3) AU2011250909A1 (de)
BR (1) BR112012028857B1 (de)
CA (1) CA2799204C (de)
CL (1) CL2012003162A1 (de)
CO (1) CO6630184A2 (de)
CR (1) CR20120626A (de)
CY (1) CY1118093T1 (de)
DK (1) DK2568988T3 (de)
EA (1) EA022365B1 (de)
EC (1) ECSP12012290A (de)
ES (1) ES2596291T3 (de)
GT (1) GT201200303A (de)
HK (1) HK1259250A1 (de)
HR (1) HRP20161231T1 (de)
HU (1) HUE029853T2 (de)
IL (1) IL222858B (de)
JO (1) JO3577B1 (de)
LT (1) LT2568988T (de)
ME (1) ME02531B (de)
MX (1) MX339570B (de)
MY (1) MY187718A (de)
NI (1) NI201200168A (de)
NZ (1) NZ703128A (de)
PE (1) PE20130227A1 (de)
PL (1) PL2568988T3 (de)
PT (1) PT2568988T (de)
RS (1) RS55202B1 (de)
SG (2) SG185525A1 (de)
SI (1) SI2568988T1 (de)
SM (1) SMT201600338B (de)
TW (1) TWI599360B (de)
UA (1) UA110207C2 (de)
UY (1) UY33380A (de)
WO (1) WO2011143296A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090233874A1 (en) * 2007-09-10 2009-09-17 Abdel-Magid Ahmed F Process for the preparation of compounds useful as inhibitors of sglt
US20100099883A1 (en) * 2008-10-17 2010-04-22 Walter Ferdinand Maria Fillers Process for the preparation of compounds useful as inhibitors of sglt
US20110009347A1 (en) * 2009-07-08 2011-01-13 Yin Liang Combination therapy for the treatment of diabetes
US20110087017A1 (en) * 2009-10-14 2011-04-14 Vittorio Farina Process for the preparation of compounds useful as inhibitors of sglt2
US8772512B2 (en) 2009-07-10 2014-07-08 Janssen Pharmaceutica Nv Crystallisation process for 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl] benzene
US9035044B2 (en) 2011-05-09 2015-05-19 Janssen Pharmaceutica Nv L-proline and citric acid co-crystals of (2S, 3R, 4R, 5S,6R)-2-(3-((5-(4-fluorophenyl)thiopen-2-yl)methyl)4-methylphenyl)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol
WO2019046659A1 (en) * 2017-08-30 2019-03-07 First Fruits Business Ministry, Llc COMPOSITION AND METHOD FOR INCREASING SERIAL ADIPONECTIN AND REDUCING THE LIPID RESERVES OF THE ORGANISM
US10544135B2 (en) 2011-04-13 2020-01-28 Janssen Pharmaceutica Nv Process for the preparation of compounds useful as inhibitors of SGLT2
US10617668B2 (en) 2010-05-11 2020-04-14 Janssen Pharmaceutica Nv Pharmaceutical formulations
CN111773194A (zh) * 2019-04-04 2020-10-16 常州恒邦药业有限公司 一种卡格列净片剂及其制备方法
US11207337B2 (en) 2015-09-15 2021-12-28 Janssen Pharmaceutica Nv Co-therapy comprising canagliflozin and phentermine for the treatment of obesity and obesity related disorders

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103641822B (zh) * 2013-10-21 2016-06-08 江苏奥赛康药业股份有限公司 一种卡格列净化合物及其药物组合物
EP2990029A1 (de) 2014-08-29 2016-03-02 Sandoz Ag Pharmazeutische Zusammensetzungen mit Canagliflozin
CN108078945B (zh) * 2018-01-12 2020-09-11 杭州中美华东制药有限公司 卡格列净药物组合物
US11857559B2 (en) 2018-09-10 2024-01-02 Aurobindo Pharma Ltd. Pharmaceutical composition comprising Canagliflozin, process of preparation and use thereof
CN116785268A (zh) * 2022-03-14 2023-09-22 江苏万邦生化医药集团有限责任公司 一种sglt-2抑制剂的药物组合物

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292461A (en) * 1990-08-24 1994-03-08 Juch Rolf Dieter Process for the production of pellets

Family Cites Families (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2799241A (en) 1949-01-21 1957-07-16 Wisconsin Alumni Res Found Means for applying coatings to tablets or the like
US4160861A (en) 1977-10-03 1979-07-10 Merck & Co., Inc. Method for the separation of antibiotic macrolides
US4584369A (en) 1981-07-31 1986-04-22 Sloan-Kettering Institute For Cancer Research Anti-leukemic beta-glycosyl C-nucleosides
JPS5939889A (ja) 1982-08-30 1984-03-05 Noguchi Kenkyusho 2,4,6↓−トリ↓−0↓−アセチル↓−3↓−デオキシ↓−ヘキソノ↓−1,5↓−ラクトンの製造方法
JP2544609B2 (ja) 1986-10-07 1996-10-16 和光純薬工業株式会社 Tcnq錯体
US4863957A (en) 1987-12-21 1989-09-05 Rorer Pharmaceutical Corporation Novel HMG-CoA reductase inhibitors
CA1327013C (en) 1988-06-23 1994-02-15 Peter Rex Brawn Cosmetic composition
ATE117553T1 (de) 1988-08-19 1995-02-15 Warner Lambert Co Substituierte dihydroisochinolinone und verwandte verbindungen als verstärker der letalen effekte von bestrahlung und bestimmten chemotherapeutika; ausgewählte verbindungen, analoga und verfahren.
JPH04253974A (ja) 1991-02-05 1992-09-09 Ishihara Sangyo Kaisha Ltd スルホニル尿素系化合物、それらの製造方法及びそれらを含有する除草剤
EP0517969A1 (de) 1991-06-10 1992-12-16 AUSIMONT S.p.A. Verfahren zur Verbesserung der Bleich-Wirksamkeit eines anorganischen Persalzes oder von Wasserstoffperoxid
US5149838A (en) 1991-09-20 1992-09-22 Merck & Co., Inc. Intermediates for substituted azetidinones useful as anti-inflammatory and antidegenerative agents
US5610294A (en) 1991-10-11 1997-03-11 The Du Pont Merck Pharmaceutical Company Substituted cyclic carbonyls and derivatives thereof useful as retroviral protease inhibitors
ZA927272B (en) 1991-10-29 1994-03-23 Du Pont Herbicidal triazolecarboxamides
GB9208161D0 (en) 1992-04-14 1992-05-27 Pfizer Ltd Indoles
US5334225A (en) 1992-07-15 1994-08-02 Kao Corporation Keratinous fiber dye composition containing a 2-substituted amino-5-alkylphenol derivative coupler
US5731292A (en) 1992-11-12 1998-03-24 Tanabe Seiyaku Co., Ltd. Dihydrochalcone derivatives which are hypoglycemic agents
CA2102591C (en) 1992-11-12 2000-12-26 Kenji Tsujihara Hypoglycemic agent
DE4243279A1 (de) 1992-12-21 1994-06-23 Bayer Ag Substituierte Triole
US6297363B1 (en) 1993-02-12 2001-10-02 Nomura Co., Ltd. Glycoside indoles
JP3342727B2 (ja) 1993-03-01 2002-11-11 株式会社小松製作所 制振鋼板の曲げ加工方法および曲げ加工装置
JP3187611B2 (ja) 1993-05-17 2001-07-11 キヤノン株式会社 液晶性化合物、これを含む液晶組成物、それを有する液晶素子、それらを用いた表示方法および表示装置
JPH07242526A (ja) 1994-03-03 1995-09-19 Sogo Yatsukou Kk 化粧料
US5830873A (en) 1994-05-11 1998-11-03 Tanabe Seiyaku Co., Ltd. Propiophenone derivative and a process for preparing the same
EP0732921A4 (de) 1994-09-30 1998-09-02 Ohio State Res Found C-glykosidanologe von n-(4-hydroxyphenyl)retinamid-o-glukuronid
US5780483A (en) 1995-02-17 1998-07-14 Smithkline Beecham Corporation IL-8 receptor antagonists
EP0863755B1 (de) 1995-10-31 2004-12-15 Eli Lilly And Company Antithrombotische diamine
JP3059088B2 (ja) 1995-11-07 2000-07-04 田辺製薬株式会社 プロピオフェノン誘導体およびその製法
US5723495A (en) 1995-11-16 1998-03-03 The University Of North Carolina At Chapel Hill Benzamidoxime prodrugs as antipneumocystic agents
JPH09263549A (ja) 1996-01-25 1997-10-07 Fujisawa Pharmaceut Co Ltd ベンゼン誘導体の製造法
IL121525A0 (en) 1996-08-26 1998-02-08 Tanabe Seiyaku Co Process for preparing optically active benzothiazepine compound and intermediate therefor
DK0850948T3 (da) 1996-12-26 2002-07-29 Tanabe Seiyaku Co Propiophenonderivater og fremgangsmåde til fremstilling deraf
US6153632A (en) 1997-02-24 2000-11-28 Rieveley; Robert B. Method and composition for the treatment of diabetes
AU6422298A (en) 1997-03-25 1998-10-20 Takeda Chemical Industries Ltd. Pharmaceutical composition containing a phosphorylamide and an ayntibiotic
JP4523153B2 (ja) 1998-03-19 2010-08-11 ブリストル−マイヤーズ スクイブ カンパニー 易溶性薬物の二層性放出制御送達システムおよび方法
PE20000559A1 (es) 1998-05-27 2000-07-05 Merck & Co Inc Formulacion de tabletas comprimidas de efavirenz
US6479661B1 (en) 1998-06-18 2002-11-12 Merck Patent Gesellschaft Method for symmetrically and asymmetrically disubstituting carboxylic acid amides with organotitanates and grignard reagents
FR2780403B3 (fr) 1998-06-24 2000-07-21 Sanofi Sa Nouvelle forme de l'irbesartan, procedes pour obtenir ladite forme et compositions pharmaceutiques en contenant
JP2000034239A (ja) 1998-07-16 2000-02-02 Asahi Glass Co Ltd トリフルオロメチル化芳香族化合物の製造方法
JP3857429B2 (ja) 1998-07-17 2006-12-13 ポーラ化成工業株式会社 含硫黄抗真菌剤
US6069238A (en) 1998-09-30 2000-05-30 Eli Lilly And Company Spirocyclic C-glycosides
BR9915194A (pt) 1998-11-09 2001-08-07 Black James Foundation Composto, método para fabricar o mesmo, composição farmacêutica, e, método para fabricar a mesma
JP2002529504A (ja) 1998-11-12 2002-09-10 スミスクライン・ビーチャム・パブリック・リミテッド・カンパニー インスリン感作物質および他の抗糖尿病薬の放出修飾のための医薬組成物
US20020032164A1 (en) 1998-12-30 2002-03-14 Dale Roderic M. K. Antimicrobial compounds and methods for their use
GB9912961D0 (en) 1999-06-03 1999-08-04 Pfizer Ltd Metalloprotease inhibitors
US6515117B2 (en) 1999-10-12 2003-02-04 Bristol-Myers Squibb Company C-aryl glucoside SGLT2 inhibitors and method
PH12000002657B1 (en) 1999-10-12 2006-02-21 Bristol Myers Squibb Co C-aryl glucoside SGLT2 inhibitors
US6586438B2 (en) 1999-11-03 2003-07-01 Bristol-Myers Squibb Co. Antidiabetic formulation and method
ATE390140T1 (de) 1999-11-03 2008-04-15 Bristol Myers Squibb Co Arzneimittel, umfassend eine kombination aus metformin und glibenclamide
JP3450810B2 (ja) 2000-01-31 2003-09-29 キヤノン株式会社 脂肪族ポリエステル、脂肪族ポリエステルの製造方法およびセルロースの再資源化方法
JP4456768B2 (ja) 2000-02-02 2010-04-28 壽製薬株式会社 C−配糖体を含有する薬剤
US6627611B2 (en) 2000-02-02 2003-09-30 Kotobuki Pharmaceutical Co Ltd C-glycosides and preparation of thereof as antidiabetic agents
EP1259504A1 (de) 2000-03-03 2002-11-27 Pfizer Products Inc. Pyrazole ether derivate gegen entzündung und als analgetika
SK287183B6 (sk) 2000-03-17 2010-02-08 Kissei Pharmaceutical Co., Ltd. Glukopyranozyloxybenzylbenzenový derivát, farmaceutická kompozícia s jeho obsahom, ich použitie a medziprodukt
US6555519B2 (en) 2000-03-30 2003-04-29 Bristol-Myers Squibb Company O-glucosylated benzamide SGLT2 inhibitors and method
US6683056B2 (en) 2000-03-30 2004-01-27 Bristol-Myers Squibb Company O-aryl glucoside SGLT2 inhibitors and method
GB0011098D0 (en) 2000-05-08 2000-06-28 Black James Foundation Pharmaceutical compositions comprising protpn pump inhibitors and gastrin/cholecystokinin receptor ligands
EP1172362A1 (de) 2000-07-11 2002-01-16 Basf Aktiengesellschaft Azadioxacycloalkene und ihre Verwendung zur Bekämpfung von Schadpilzen und tierischen Schädlingen
KR100426030B1 (ko) 2000-07-22 2004-04-03 (주) 한켐 락톤계 당화합물에서의 키랄성 전환방법
AU2001296961A1 (en) 2000-09-29 2002-04-08 Bayer Pharmaceuticals Corporation 17-beta-hydroxysteroid dehydrogenase-ii inhibitors
WO2002036602A1 (fr) 2000-11-02 2002-05-10 Ajinomoto Co., Inc. Nouveaux derives du pyrazole et remedes au diabete contenant ces derniers
JP2002167430A (ja) 2000-12-01 2002-06-11 Canon Inc 脂肪族ポリエステル、脂肪族ポリエステルの製造方法およびデンプンの資源化方法
US6476352B2 (en) 2000-12-18 2002-11-05 General Electric Company Laser beam stop sensor and method for automatically detecting the presence of laser beam stop material using a laser beam stop sensor
RU2317302C2 (ru) 2000-12-28 2008-02-20 Киссеи Фармасьютикал Ко., Лтд. Производные глюкопиранозилоксипиразола и их применение в лекарственных средствах
TW593329B (en) 2001-02-26 2004-06-21 Kissei Pharmaceutical Glucopyranosyloxypyrazole derivatives and pharmaceutical uses thereof
ES2350084T3 (es) 2001-02-27 2011-01-18 Kissei Pharmaceutical Co., Ltd. Derivados de glucopiranosiloxipirazol y uso médico de los mismos.
CA2439448C (en) 2001-03-02 2012-05-22 University Of Western Ontario Polymer precursors of radiolabeled compounds, and methods of making and using the same
US6936590B2 (en) 2001-03-13 2005-08-30 Bristol Myers Squibb Company C-aryl glucoside SGLT2 inhibitors and method
JP2004536047A (ja) 2001-04-11 2004-12-02 ブリストル−マイヤーズ スクイブ カンパニー 糖尿病処置用c−アリールグルコシドのアミノ酸複合体および方法
EP1389621A4 (de) 2001-04-27 2005-05-11 Ajinomoto Kk N-substituierte pyrazolyl-o-glykosidderivate und diese enthaltendes diabetesmittel
GB0112122D0 (en) 2001-05-18 2001-07-11 Lilly Co Eli Heteroaryloxy 3-substituted propanamines
US7105556B2 (en) 2001-05-30 2006-09-12 Bristol-Myers Squibb Company Conformationally constrained analogs useful as antidiabetic and antiobesity agents and method
CA2455300A1 (en) 2001-06-20 2003-01-03 Kissei Pharmaceutical Co., Ltd. Nitrogen-containing heterocyclic derivative, medicinal composition containing the same, medicinal use thereof, and intermediate therefor
JP4115105B2 (ja) 2001-07-02 2008-07-09 協和醗酵工業株式会社 ピラゾール誘導体
WO2003011880A1 (fr) 2001-07-31 2003-02-13 Kissei Pharmaceutical Co., Ltd. Derive de glucopyranosyloxybenzylbenzene, composition medicinale contenant ce derive, usage medicinal de cette composition et produit intermediaire pour produire cette composition
US20030191121A1 (en) 2001-08-09 2003-10-09 Miller Ross A. Piperazine carboxamide intermediates of HIV protease inhibitors and processes for their preparation
US20030087843A1 (en) 2001-09-05 2003-05-08 Washburn William N. O-pyrazole glucoside SGLT2 inhibitors and method of use
WO2003035896A2 (en) 2001-10-24 2003-05-01 Michael Burton Chromogenic enzyme substrates and method for detecting beta-d-ribofuranosidase activity
RU2004117211A (ru) 2001-11-08 2005-03-27 Сепракор, Инк. (Us) Способы лечения депресии и других рассстройств цнс с использованием энантиомерно обогащшенных десметил-и дидесметилметаболитов циталопрама
EP1443915B1 (de) 2001-11-16 2006-06-21 Cutanix Corporation Pharmazeutische und kosmetische zusammensetzungen mit oxy-gruppen-tragenden aromatischen aldehyden
JP2003238417A (ja) 2002-02-18 2003-08-27 Nippon Shoyaku Kenkyusho:Kk フロレチン配糖体の安定化組成物、該安定化組成物を含有する糖尿病予防・治療剤、および保健食品
US6617313B1 (en) 2002-03-13 2003-09-09 Council Of Scientific And Industrial Research Glucopyranoside and process of isolation thereof from pterocarpus marsupium pharmaceutical composition containing the same and use thereof
US6562791B1 (en) 2002-03-29 2003-05-13 Council Of Scientific And Industrial Research Glucopyranoside, process for isolation thereof, pharmaceutical composition containing same and use thereof
ATE433981T1 (de) 2002-04-18 2009-07-15 Astrazeneca Ab Heterocyclische verbindungen
JP2003313168A (ja) 2002-04-18 2003-11-06 Kirin Brewery Co Ltd Bcl−2阻害活性を有する化合物およびその化合物のスクリーニング方法
DE10231370B4 (de) 2002-07-11 2006-04-06 Sanofi-Aventis Deutschland Gmbh Thiophenglycosidderivate, diese Verbindungen enthaltende Arzneimittel und Verfahren zur Herstellung dieser Arzneimittel
TWI254635B (en) 2002-08-05 2006-05-11 Yamanouchi Pharma Co Ltd Azulene derivative and salt thereof
MXPA05000725A (es) 2002-08-09 2005-04-08 Taisho Pharma Co Ltd Procedimiento para la produccion selectiva de aril-5-tio-??-d-aldohexopiranosidos.
JP4606876B2 (ja) 2002-08-27 2011-01-05 キッセイ薬品工業株式会社 ピラゾール誘導体、それを含有する医薬組成物及びその医薬用途
US7074826B2 (en) 2002-10-07 2006-07-11 Encore Pharmaceuticals, Inc. R-NSAID esters and their use
IN192749B (de) 2002-11-15 2004-05-15 Ranbaxy Lab Ltd
DE10258007B4 (de) 2002-12-12 2006-02-09 Sanofi-Aventis Deutschland Gmbh Aromatische Fluorglycosidderivate, diese Verbindungen enthaltende Arzneimittel und Verfahren zur Herstellung dieser Arzneimittel
DE10258008B4 (de) 2002-12-12 2006-02-02 Sanofi-Aventis Deutschland Gmbh Heterocyclische Fluorglycosidderivate, diese Verbindungen enthaltende Arzneimittel und Verfahren zur Herstellung dieser Arzneimittel
BR0317929A (pt) 2003-01-03 2006-04-11 Bristol Myers Squibb Co métodos de produzir inibidores de sglt2 de glicosìdeo de c-arila
GB0301259D0 (en) 2003-01-20 2003-02-19 Novartis Ag Organic compounds
WO2004076470A2 (en) 2003-02-27 2004-09-10 Bristol-Myers Squibb Company A non-cryogenic process for forming glycosides
ES2363941T3 (es) 2003-03-14 2011-08-19 Astellas Pharma Inc. Derivados de c-glucósido para el tratamiento de diabetes.
JP2004300102A (ja) 2003-03-31 2004-10-28 Kissei Pharmaceut Co Ltd 縮合複素環誘導体、それを含有する医薬組成物およびその医薬用途
AU2003902263A0 (en) 2003-05-12 2003-05-29 Fujisawa Pharmaceutical Co., Ltd. Monosaccharide compounds
WO2004113359A1 (ja) 2003-06-20 2004-12-29 Kissei Pharmaceutical Co., Ltd. ピラゾール誘導体、それを含有する医薬組成物及びその製造中間体
WO2005009954A2 (en) 2003-07-23 2005-02-03 Synta Pharmaceuticals, Corp. Method for modulating calcium ion-release-activated calcium ion channels
CA2549022A1 (en) 2003-08-01 2005-02-10 Janssen Pharmaceutica N.V. Substituted benzimidazole-, benztriazole-, and benzimidazolone-o-glucosides
US8785403B2 (en) 2003-08-01 2014-07-22 Mitsubishi Tanabe Pharma Corporation Glucopyranoside compound
NZ545304A (en) 2003-08-01 2009-04-30 Mitsubishi Tanabe Pharma Corp Novel compounds having inhibitory activity against sodium-dependant transporter
UA86042C2 (en) 2003-08-01 2009-03-25 Янссен Фармацевтика Н.В. Substituted indazole-o-glucosides
WO2005011592A2 (en) 2003-08-01 2005-02-10 Janssen Pharmaceutica N.V. Substituted indazole-o-glucosides
TW200521131A (en) 2003-08-01 2005-07-01 Janssen Pharmaceutica Nv Substituted fused heterocyclic c-glycosides
EA010422B1 (ru) 2003-08-01 2008-08-29 Янссен Фармацевтика Н.В. Замещённые индол-о-глюкозиды
WO2005058845A2 (en) 2003-12-19 2005-06-30 Novo Nordisk A/S Novel glucagon antagonists/inverse agonists
US7157584B2 (en) 2004-02-25 2007-01-02 Takeda Pharmaceutical Company Limited Benzimidazole derivative and use thereof
EP2360164A3 (de) 2004-03-16 2012-01-04 Boehringer Ingelheim International GmbH Glucopyranosyl-substituierte Benzol-Derivate, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
US7803786B2 (en) 2004-06-17 2010-09-28 Transform Pharmaceuticals, Inc. Pharmaceutical co-crystal compositions and related methods of use
US7393836B2 (en) 2004-07-06 2008-07-01 Boehringer Ingelheim International Gmbh D-xylopyranosyl-substituted phenyl derivatives, medicaments containing such compounds, their use and process for their manufacture
EP1773800A1 (de) 2004-07-27 2007-04-18 Boehringer Ingelheim International GmbH D-glucopyranosyl-phenyl-substituierte cyclen, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
WO2006018150A1 (de) 2004-08-11 2006-02-23 Boehringer Ingelheim International Gmbh D-xylopyranosyl-phenyl-substituierte cyclen, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
TW200637839A (en) 2005-01-07 2006-11-01 Taisho Pharmaceutical Co Ltd 1-thio-d-glucitol derivatives
WO2006082523A2 (en) 2005-01-25 2006-08-10 Aurobindo Pharma Limited Pharmaceutical sustained release composition of metformin
AR053329A1 (es) 2005-01-31 2007-05-02 Tanabe Seiyaku Co Derivados de indol utiles como inhibidores de los transportadores de glucosa dependientes del sodio (sglt)
JP5264183B2 (ja) 2005-02-23 2013-08-14 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング グルコピラノシル置換((ヘテロ)アリールエチニル−ベンジル)−ベンゼン誘導体及びナトリウム依存性グルコース共輸送体2(sglt2)インヒビターとしてのそれらの使用
JP5238492B2 (ja) 2005-04-15 2013-07-17 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Sgltインヒビターとしてのグルコピラノシル置換(ヘテロアリールオキシ−ベンジル)−ベンゼン誘導体
US7772191B2 (en) 2005-05-10 2010-08-10 Boehringer Ingelheim International Gmbh Processes for preparing of glucopyranosyl-substituted benzyl-benzene derivatives and intermediates therein
JP2007023099A (ja) 2005-07-13 2007-02-01 Yokohama Rubber Co Ltd:The ノルボルネン系樹脂用1液型ウレタン接着剤組成物ならびにノルボルネン系樹脂用弾性接着剤およびその使用方法
WO2007014894A2 (en) 2005-07-27 2007-02-08 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted ( (hetero) cycloalyklethynyl-benzyl) -benzene derivatives and use thereof as sodium-dependent glucose cotransporter (sglt) inhibitors
CA2620566A1 (en) 2005-08-30 2007-03-08 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted benzyl-benzene derivatives, medicaments containing such compounds, their use and process for their manufacture
AR056195A1 (es) 2005-09-15 2007-09-26 Boehringer Ingelheim Int Procedimientos para preparar derivados de (etinil-bencil)-benceno sustituidos de glucopiranosilo y compuestos intermedios de los mismos
CN101057835A (zh) 2005-09-26 2007-10-24 刘凤鸣 二甲双胍格列本脲的缓释制剂
EP1983971A4 (de) 2006-01-25 2010-11-24 Synta Pharmaceuticals Corp Substituierte aromatische verbindungen für entzündungs- und immunbedingte verwendung
TWI370818B (en) 2006-04-05 2012-08-21 Astellas Pharma Inc Cocrystal of c-glycoside derivative and l-proline
US7919598B2 (en) 2006-06-28 2011-04-05 Bristol-Myers Squibb Company Crystal structures of SGLT2 inhibitors and processes for preparing same
TWI418556B (zh) 2006-07-27 2013-12-11 Mitsubishi Tanabe Pharma Corp 吲哚衍生物
EP2054426A1 (de) 2006-08-15 2009-05-06 Boehringer Ingelheim International GmbH Glucopyranosylsubstituierte cyclopropylbenzolderivate, pharmazeutische zusammensetzungen, die solche verbindungen enthalten, ihre verwendung als sglt-inhibitoren und verfahren zu ihrer herstellung
CA2664095A1 (en) 2006-09-21 2008-03-27 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted difluorobenzyl-benzene derivatives, medicaments containing such compounds, their use and process for their manufacture
KR100812538B1 (ko) 2006-10-23 2008-03-11 한올제약주식회사 약물 제어방출형 메트포르민-글리메피리드 복합제제
US7879806B2 (en) 2006-11-06 2011-02-01 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted benzyl-benzonitrile derivates, medicaments containing such compounds, their use and process for their manufacture
MY157828A (en) 2006-11-09 2016-07-29 Boehringer Ingelheim Int Combination therapy with sglt-2 inhibitors and their pharmaceutical compositions
ES2397664T3 (es) 2006-12-04 2013-03-08 Janssen Pharmaceutica, N.V. Derivados de glucopiranósilo que contienen tienilo como antidiabéticos
UY30730A1 (es) * 2006-12-04 2008-07-03 Mitsubishi Tanabe Pharma Corp Forma cristalina del hemihidrato de 1-(b (beta)-d-glucopiranosil) -4-metil-3-[5-(4-fluorofenil) -2-tienilmetil]benceno
EP1956023A1 (de) 2007-02-06 2008-08-13 Lonza Ag Methode für Lithiumaustausch-Reaktionen
WO2008113000A1 (en) 2007-03-15 2008-09-18 Nectid, Inc. Anti-diabetic combinations comprising a slow release biguanide composition and an immediate release dipeptidyl peptidase iv inhibitor composition
TW200904405A (en) 2007-03-22 2009-02-01 Bristol Myers Squibb Co Pharmaceutical formulations containing an SGLT2 inhibitor
JP5424571B2 (ja) * 2007-04-12 2014-02-26 協和発酵キリン株式会社 トピラマート含有固形製剤
WO2008136394A1 (ja) * 2007-04-27 2008-11-13 Ajinomoto Co., Inc. ラクタム化合物の製造方法及びその製造中間体
US20090047514A1 (en) 2007-08-15 2009-02-19 Allen David P Thermal Activated Pressure Sensitive Adhesive and Method for Producing the Same and Product therewith
PE20090603A1 (es) * 2007-08-16 2009-06-11 Boehringer Ingelheim Int Composicion farmaceutica que comprende un inhibidor de sglt2 y un inhibidor de dpp iv
RS56990B1 (sr) * 2007-09-10 2018-05-31 Janssen Pharmaceutica Nv Postupak za dobijanje jedinjenja koja su korisna kao inhibitori sglt
CL2008003653A1 (es) * 2008-01-17 2010-03-05 Mitsubishi Tanabe Pharma Corp Uso de un inhibidor de sglt derivado de glucopiranosilo y un inhibidor de dppiv seleccionado para tratar la diabetes; y composicion farmaceutica.
AR071175A1 (es) 2008-04-03 2010-06-02 Boehringer Ingelheim Int Composicion farmaceutica que comprende un inhibidor de la dipeptidil-peptidasa-4 (dpp4) y un farmaco acompanante
KR101512386B1 (ko) 2008-04-08 2015-04-17 제이더블유중외제약 주식회사 미티글리나이드 및 메트포르민 복합제제 및 그의 제조방법
US9061060B2 (en) 2008-07-15 2015-06-23 Theracos Inc. Deuterated benzylbenzene derivatives and methods of use
WO2010022313A2 (en) 2008-08-22 2010-02-25 Theracos, Inc. Processes for the preparation of sglt2 inhibitors
WO2010045656A2 (en) 2008-10-17 2010-04-22 Nectid, Inc. Novel sglt2 inhibitor dosage forms
US9056850B2 (en) 2008-10-17 2015-06-16 Janssen Pharmaceutica N.V. Process for the preparation of compounds useful as inhibitors of SGLT
PT2395983T (pt) 2009-02-13 2020-07-03 Boehringer Ingelheim Int Composição farmacêutica compreendendo um inibidor de sglt2, um inibidor de dp-iv e opcionalmente um agente antidiabético adicional e suas utilizações
CN102438593A (zh) * 2009-04-24 2012-05-02 伊休蒂卡有限公司 高体积分数的包封纳米颗粒的制备
US20110009347A1 (en) 2009-07-08 2011-01-13 Yin Liang Combination therapy for the treatment of diabetes
CA2777528C (en) 2009-10-14 2018-09-18 Janssen Pharmaceutica Nv Process for the preparation of compounds useful as inhibitors of sglt2
US8163704B2 (en) 2009-10-20 2012-04-24 Novartis Ag Glycoside derivatives and uses thereof
WO2011120923A1 (en) 2010-03-30 2011-10-06 Boehringer Ingelheim International Gmbh Pharmaceutical composition comprising an sglt2 inhibitor and a ppar- gamma agonist and uses thereof
MX339570B (es) 2010-05-11 2016-05-31 Janssen Pharmaceutica Nv Formulaciones farmaceuticas que comprenden derivados de 1-(beta-d-glucopiranosil)-2-tienil-metilbenceno como inhibidores de transportadores de glucosa dependientes de sodio.
CN102970981A (zh) * 2010-07-06 2013-03-13 詹森药业有限公司 糖尿病协同治疗制剂

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292461A (en) * 1990-08-24 1994-03-08 Juch Rolf Dieter Process for the production of pellets

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024009B2 (en) 2007-09-10 2015-05-05 Janssen Pharmaceutica N.V. Process for the preparation of compounds useful as inhibitors of SGLT
US20090233874A1 (en) * 2007-09-10 2009-09-17 Abdel-Magid Ahmed F Process for the preparation of compounds useful as inhibitors of sglt
US9056850B2 (en) 2008-10-17 2015-06-16 Janssen Pharmaceutica N.V. Process for the preparation of compounds useful as inhibitors of SGLT
US20100099883A1 (en) * 2008-10-17 2010-04-22 Walter Ferdinand Maria Fillers Process for the preparation of compounds useful as inhibitors of sglt
US20110009347A1 (en) * 2009-07-08 2011-01-13 Yin Liang Combination therapy for the treatment of diabetes
US11576894B2 (en) 2009-07-08 2023-02-14 Janssen Pharmaceutica Nv Combination therapy for the treatment of diabetes
US8772512B2 (en) 2009-07-10 2014-07-08 Janssen Pharmaceutica Nv Crystallisation process for 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl] benzene
US9174971B2 (en) 2009-10-14 2015-11-03 Janssen Pharmaceutica Nv Process for the preparation of compounds useful as inhibitors of SGLT2
US20110087017A1 (en) * 2009-10-14 2011-04-14 Vittorio Farina Process for the preparation of compounds useful as inhibitors of sglt2
US10617668B2 (en) 2010-05-11 2020-04-14 Janssen Pharmaceutica Nv Pharmaceutical formulations
US10544135B2 (en) 2011-04-13 2020-01-28 Janssen Pharmaceutica Nv Process for the preparation of compounds useful as inhibitors of SGLT2
US9035044B2 (en) 2011-05-09 2015-05-19 Janssen Pharmaceutica Nv L-proline and citric acid co-crystals of (2S, 3R, 4R, 5S,6R)-2-(3-((5-(4-fluorophenyl)thiopen-2-yl)methyl)4-methylphenyl)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol
US11207337B2 (en) 2015-09-15 2021-12-28 Janssen Pharmaceutica Nv Co-therapy comprising canagliflozin and phentermine for the treatment of obesity and obesity related disorders
WO2019046659A1 (en) * 2017-08-30 2019-03-07 First Fruits Business Ministry, Llc COMPOSITION AND METHOD FOR INCREASING SERIAL ADIPONECTIN AND REDUCING THE LIPID RESERVES OF THE ORGANISM
US10632092B2 (en) 2017-08-30 2020-04-28 First Fruits Business Ministry, Llc Composition for and method to increase serum adiponectin and reduce body fat
CN111773194A (zh) * 2019-04-04 2020-10-16 常州恒邦药业有限公司 一种卡格列净片剂及其制备方法
CN111773194B (zh) * 2019-04-04 2023-06-30 常州恒邦药业有限公司 一种卡格列净片剂及其制备方法

Also Published As

Publication number Publication date
CN108354930A (zh) 2018-08-03
PL2568988T3 (pl) 2017-02-28
MY187718A (en) 2021-10-14
SG10201506114UA (en) 2015-09-29
UA110207C2 (en) 2015-12-10
KR20130062947A (ko) 2013-06-13
EP2568988A1 (de) 2013-03-20
NI201200168A (es) 2013-01-29
MX339570B (es) 2016-05-31
EA201291217A1 (ru) 2013-09-30
BR112012028857B1 (pt) 2021-02-09
HUE029853T2 (en) 2017-04-28
UY33380A (es) 2011-12-01
AU2015207823A1 (en) 2015-08-20
US20130338087A1 (en) 2013-12-19
MX2012013090A (es) 2013-01-18
CN102883726A (zh) 2013-01-16
HK1259250A1 (zh) 2019-11-29
AR081036A1 (es) 2012-05-30
RS55202B1 (sr) 2017-01-31
GT201200303A (es) 2014-04-29
CR20120626A (es) 2013-07-03
US10617668B2 (en) 2020-04-14
PT2568988T (pt) 2016-09-22
TW201206447A (en) 2012-02-16
NZ703128A (en) 2016-04-29
US20170112806A1 (en) 2017-04-27
IL222858A0 (en) 2012-12-31
TWI599360B (zh) 2017-09-21
HRP20161231T1 (hr) 2016-11-04
LT2568988T (lt) 2016-09-12
JP2016147866A (ja) 2016-08-18
JP6227406B2 (ja) 2017-11-08
WO2011143296A1 (en) 2011-11-17
AU2017210661B2 (en) 2019-07-18
AU2011250909A1 (en) 2012-11-29
AU2017210661A1 (en) 2017-08-24
DK2568988T3 (en) 2016-08-22
EP2568988B1 (de) 2016-07-13
US20150005244A1 (en) 2015-01-01
IL222858B (en) 2018-03-29
CY1118093T1 (el) 2017-06-28
BR112012028857A2 (pt) 2016-07-26
CL2012003162A1 (es) 2013-06-07
SMT201600338B (it) 2016-11-10
JP2013526534A (ja) 2013-06-24
JO3577B1 (ar) 2020-07-05
SI2568988T1 (sl) 2016-10-28
EA022365B1 (ru) 2015-12-30
ES2596291T3 (es) 2017-01-05
CA2799204A1 (en) 2011-11-17
CO6630184A2 (es) 2013-03-01
SG185525A1 (en) 2012-12-28
PE20130227A1 (es) 2013-02-27
CA2799204C (en) 2018-11-06
KR101931209B1 (ko) 2018-12-20
ECSP12012290A (es) 2012-12-28
ME02531B (de) 2017-02-20

Similar Documents

Publication Publication Date Title
US10617668B2 (en) Pharmaceutical formulations
US9655852B2 (en) Tablets containing a 1-(β-D-glucopyranosyl)-3-(phenylthienylmethyl)benzene compound
US20140212487A1 (en) Solid dispersion formulation of an antiviral compound
JP2021525722A (ja) グルコキナーゼ活性化剤およびα−グルコシダーゼ阻害剤を含む医薬品の組合せ、組成物、製剤、ならびにその調製方法および使用
US20080008752A1 (en) Pharmaceutical compositions of memantine
EA020288B1 (ru) Фармацевтические составы, содержащие пропиленгликоль-гидрат дапаглифлозина
JP2019512537A (ja) ダパグリフロジンの医薬組成物
CN114096530A (zh) 一种复合物的药物组合物及其制备方法
KR20140030505A (ko) 이베살탄 및 HMG-CoA 환원효소 억제제를 포함하는 약제학적 캡슐 복합제제
CN116490178A (zh) Sglt-2抑制剂与血管紧张素受体阻滞剂的组合物及用途

Legal Events

Date Code Title Description
AS Assignment

Owner name: JANSSEN PHARMACEUTICA NV, BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, WENHUA;OUTWIN, TODD;JOSEPH, THOMAS C.;SIGNING DATES FROM 20110611 TO 20110709;REEL/FRAME:026591/0476

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION