US20120039380A1 - Method and apparatus for iterative timing and carrier recovery - Google Patents
Method and apparatus for iterative timing and carrier recovery Download PDFInfo
- Publication number
- US20120039380A1 US20120039380A1 US13/138,923 US201013138923A US2012039380A1 US 20120039380 A1 US20120039380 A1 US 20120039380A1 US 201013138923 A US201013138923 A US 201013138923A US 2012039380 A1 US2012039380 A1 US 2012039380A1
- Authority
- US
- United States
- Prior art keywords
- timing
- signal
- error
- iterative
- recovery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000011084 recovery Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000011664 signaling Effects 0.000 claims abstract description 20
- 238000007476 Maximum Likelihood Methods 0.000 claims description 13
- 230000003044 adaptive effect Effects 0.000 claims description 12
- 238000001914 filtration Methods 0.000 claims description 7
- 238000012937 correction Methods 0.000 abstract description 2
- 238000004891 communication Methods 0.000 description 13
- 230000004044 response Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 230000008901 benefit Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 238000013459 approach Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/04—Speed or phase control by synchronisation signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0054—Detection of the synchronisation error by features other than the received signal transition
- H04L7/0062—Detection of the synchronisation error by features other than the received signal transition detection of error based on data decision error, e.g. Mueller type detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2656—Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2668—Details of algorithms
- H04L27/2673—Details of algorithms characterised by synchronisation parameters
- H04L27/2676—Blind, i.e. without using known symbols
- H04L27/2678—Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2668—Details of algorithms
- H04L27/2673—Details of algorithms characterised by synchronisation parameters
- H04L27/2676—Blind, i.e. without using known symbols
- H04L27/2679—Decision-aided
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/004—Synchronisation arrangements compensating for timing error of reception due to propagation delay
- H04W56/005—Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04H—BROADCAST COMMUNICATION
- H04H40/00—Arrangements specially adapted for receiving broadcast information
- H04H40/18—Arrangements characterised by circuits or components specially adapted for receiving
- H04H40/27—Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
- H04H40/90—Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for satellite broadcast receiving
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
- H04L2027/0044—Control loops for carrier regulation
- H04L2027/0053—Closed loops
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
- H04L2027/0044—Control loops for carrier regulation
- H04L2027/0063—Elements of loops
- H04L2027/0067—Phase error detectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/04—Speed or phase control by synchronisation signals
- H04L7/041—Speed or phase control by synchronisation signals using special codes as synchronising signal
- H04L7/042—Detectors therefor, e.g. correlators, state machines
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/04—Speed or phase control by synchronisation signals
- H04L7/10—Arrangements for initial synchronisation
Definitions
- the present principles relate to iterative timing recovery in receivers systems.
- Carrier recovery schemes can be classified into two structures: feed-forward structure and feedback structure.
- the feedback carrier recovery uses a digital Phase Locked Loop (PLL) to track out the carrier phase and frequency offset.
- PLL Phase Locked Loop
- it relies on a decision directed or non-data-aided approach to estimate the phase error at each time instant.
- decision-directed approach the decision errors will cause additional self noise while the non-data-aided approach can only apply to a limited number of multiple phase shift keying (MPSK) formats.
- MPSK phase shift keying
- the feedback carrier recovery scheme could be disturbed by cycle slips which may cause a large number of errors due to phase ambiguity. Feed forward carrier recovery is used to reduce the probability of cycle slips.
- the feed forward carrier recovery relies on pre-known data symbols (e.g. pilot or sync symbols) embedded in the data stream. This reduces the bandwidth efficiency since no data is transmitted during a pilot or sync interval.
- the second disadvantage of the feed-forward carrier recovery is the inability to recover large frequency offsets or phase variations due to phase noise between the measurement blocks.
- FTN Faster-than-Nyquist
- an iterative timing recovery is suggested for FTN signaling using a feedback timing error signal from the forward error correction (FEC) block.
- the FEC block could be realized by a so-called soft decoder like Low Density Parity Check (LDPC), a turbo decoder or a soft output Viterbi algorithm (SOVA).
- LDPC Low Density Parity Check
- SOVA soft output Viterbi algorithm
- a MAP decoder is used to match the intersymbol interference (ISI) response of the FTN signal.
- An additional equalizer is utilized in front of the maximum a posteriori (MAP) decoder which matches the equalized FTN signal to the truncated ISI target.
- the timing error is then generated by using a modified Mueller and Muller (M&M) timing error detector (TED).
- M&M Mueller and Muller
- the iterative symbol timing recovery is used when ISI becomes a severe problem for FTN signaling.
- the method comprises performing adaptive equalization and maximum likelihood sequence estimation in order to recover symbol timing.
- an apparatus for iterative timing recovery comprising an comprising adaptive equalizer for performing adaptive equalization and a symbol detector for performing maximum likelihood sequence estimation in order to recover symbol timing.
- a method for iterative timing recovery comprising filtering an interpolated first error signal using a matched filter, equalizing the filtered interpolated first error signal, detecting a timing error with an M&M timing error detector to produce a second error signal, and using said second error signal to recover the timing of a signal that uses faster-than-Nyquist signaling.
- an apparatus for iterative timing recovery comprises a matched filter for filtering an interpolated first error signal using a matched filter, an equalizer for equalizing the filtered interpolated first error signal, a timing error detector for detecting a timing error with an M&M timing error detector to produce a second error signal, and a recovery circuit for using said second error signal to recover the timing of a signal that uses faster-than-Nyquist signaling.
- FIG. 1 shows an apparatus for least-mean-square error (LMSE) estimation with equalization for FTN signaling.
- LMSE least-mean-square error
- FIG. 2 shows an apparatus for iterative timing recovery for FTN signaling.
- FIG. 3 shows a method for iterative timing recovery.
- FIG. 4 shows a method for iterative timing recovery for FTN signaling.
- FTN signaling can be modeled as a channel response with memory.
- AWGN Additive White Gaussian noise
- the optimum symbol detector for FTN signaling relies not only on the current symbol but also the neighbor symbols.
- the interference introduced by the neighbor symbols is called inter-symbol interference (ISI).
- ISI inter-symbol interference
- the ISI distorted signals are modeled with a trellis structure and its memory is often infinite. So infinite states in the trellis have to be considered for symbol detection.
- One way to solve this problem is to reduce the number of states in the decoding process by using sub-optimum decoding structures.
- MLSE Maximum Likelihood Sequence Estimation
- the Maximum Likelihood Sequence Estimation was first mentioned by Forney and Viterbi [Fo73] and an optimum detection was given by Viterbi [Vit67] with the Viterbi decoder, which estimates the maximum likelihood path (maximum likelihood sequence) through the trellis. Bahl, Cocke, Raviv and Jelinek further improve the maximum likelihood sequence estimation by the BCJR algorithm [BCJR74] which generates soft output values for each symbol decision.
- BCJR74 Max-log-MAP decoder
- the Max-log-MAP decoder relies on a backward and forward recursion through the trellis.
- the most important step on the design of a Maximum Likelihood Sequence Estimation (MLSE) decoder is the definition of the state transition probabilities or so-called branch metrics. Therefore the Euclidian distance between the received symbol y and the ISI response targets t(s,s′) is evaluated as it is shown in equation
- s denotes the successor states
- s′ denotes the current state in the trellis.
- the targets t(s,s′) for each state transition are generated by folding the possible candidates in the channel memory with the truncated ISI response waveform hm with the truncated ISI length L.
- Max-log-MAP decoding process is then further divided into the forward, backward recursions and the a posteriori log likelihood ratios LLR computation [WH00].
- An example for BSPK modulation is provided as following:
- the truncated ISI response has to be used to implement a realizable MLSE detector.
- H ISI (j) the true ISI response H post (j). Therefore an adaptive equalizer should be used before the MLSE detector.
- LMSE least-mean-square error
- the LMSE adaptation minimizes the least mean square error between the equalized symbol y′(nT s ) and the desired symbol d(nT s ) given in following equation.
- the filter coefficient vector w(nT s ) can be expressed as following:
- w ( nT s ) w (( n ⁇ 1) T s )+ ⁇ [ e ( nT s ) ⁇ ( nT s )], (7)
- x(nT s ) [y(nT s ), y((n ⁇ 1)T s ), . . . , y((n ⁇ L+1)T s )] T
- L the length of the FIR filter and ( ⁇ ) T represent the transpose operation and ⁇ is the step size.
- ⁇ ′ ⁇ ( ( n + 1 ) ⁇ T ) s ⁇ ′ ⁇ ( nT s ) + ⁇ ⁇ ⁇ ⁇ ⁇ ′ ⁇ L ⁇ ( y ⁇ ( nT s ) ⁇ a , ⁇ ′ ) ( 8 )
- ⁇ ′( nT s ) Re [( a ′′( nT s ))* y ′( nT s ⁇ T s + ⁇ ) ⁇ ( a ′′( nT s ⁇ T s ))* y ′( nT s + ⁇ )], (9)
- Equation (2) y′(nT s ) is the equalizer output
- a′(nT s ) denotes the current decision from the MAX-LOG-MAP decoder
- a′(nT s ) is convolved with truncated impulse response to produce a′′(nT s ) using Equation (2).
- the proposed iterative timing recovery for FTN signaling is shown in FIG. 2 .
- FIG. 1 shows an apparatus for iterative timing recovery.
- An FIR filter is used to filter an input signal.
- the input signal is also in signal communication with a first Max-log-Map and Equalizer block.
- the FIR filter has coefficients under control by a Least Mean Squared (LMS) block.
- LMS Least Mean Squared
- the LMS block takes as input the output of the first Max-log-Map and Equalizer block, and the output of a summing circuit.
- the summing circuit has a non-inverting input that is in signal communication with a second Max-log-Map circuit, and a second inverting input coming from a target pulse shaping circuit.
- the FIR filter output is in signal communication with the second Max-log-Map circuit and a third Max-log-Map circuit.
- the output of the third Max-log-Map circuit is in signal communication with the input of the target pulse shaping block and is used as an output of the apparatus.
- the output of the second Max-log-Map circuit is also an output of
- FIG. 2 shows an apparatus for iterative timing recovery for faster-than-Nyquist (FTN) signaling.
- An interpolator output is in signal communication with the input of a matched filter, whose output is in signal communication with an equalizer.
- the equalizer output is in signal communication with a Max-log-Map block, and in signal communication with a first input of an Mueller & Muller (M&M) timing error detector (TED) block.
- M&M Mueller & Muller
- TED timing error detector
- the Max-log-Map block's output is in signal communication with the input of an inter-symbol interference (ISI) filter, whose output is in signal communication with a second input of the M&M TED.
- ISI inter-symbol interference
- the M&M TED's output is in signal communication with a first input of a multiplier circuit, whose second input is a variable.
- the output of the multiplier circuit is in signal communication with a first non-inverting input of a summing circuit, whose second input is a delayed version of the summing circuit output, which is also in signal communication with the interpolator input.
- FIG. 3 shows a method for interative timing recovery.
- the method is comprised of an adaptive equalization step 310 and a Mean Least Squared estimation step 320 .
- FIG. 4 shows a method for itnerative timing recovery for FTN signaling, comprising the steps of filtering 410 , equalizing 420 , detecting 430 and recovering timing 440 .
- processor or “controller” should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor (“DSP”) hardware, read-only memory (“ROM”) for storing software, random access memory (“RAM”), and non-volatile storage.
- DSP digital signal processor
- ROM read-only memory
- RAM random access memory
- any switches shown in the figures are conceptual only. Their function may be carried out through the operation of program logic, through dedicated logic, through the interaction of program control and dedicated logic, or even manually, the particular technique being selectable by the implementer as more specifically understood from the context.
- one advantage is a method for iterative timing recovery comprising performing adaptive equalization and maximum likelihood sequence estimation in order to recover symbol timing.
- Another advantage is an apparatus for iterative timing recovery comprising an comprising adaptive equalizer for performing adaptive equalization and a symbol detector for performing maximum likelihood sequence estimation in order to recover symbol timing.
- Another advantage is a method for iterative timing recovery comprising filtering an interpolated first error signal using a matched filter, equalizing the filtered interpolated first error signal, detecting a timing error with an M&M timing error detector to produce a second error signal, and using said second error signal to recover the timing of a signal that uses faster-than-Nyquist signaling.
- Yet another advantage is an apparatus for iterative timing recovery comprising a matched filter for filtering an interpolated first error signal using a matched filter, an equalizer for equalizing the filtered interpolated first error signal, a timing error detector for detecting a timing error with an M&M timing error detector to produce a second error signal, and a recovery circuit for using said second error signal to recover the timing of a signal that uses faster-than-Nyquist signaling.
- any element expressed as a means for performing a specified function is intended to encompass any way of performing that function including, for example, a) a combination of circuit elements that performs that function or b) software in any form, including, therefore, firmware, microcode or the like, combined with appropriate circuitry for executing that software to perform the function.
- the present principles as defined by such claims reside in the fact that the functionalities provided by the various recited means are combined and brought together in the manner which the claims call for. It is thus regarded that any means that can provide those functionalities are equivalent to those shown herein.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Circuits Of Receivers In General (AREA)
- Radio Relay Systems (AREA)
- Error Detection And Correction (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/138,923 US20120039380A1 (en) | 2009-05-29 | 2010-05-28 | Method and apparatus for iterative timing and carrier recovery |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US21733309P | 2009-05-29 | 2009-05-29 | |
| US13/138,923 US20120039380A1 (en) | 2009-05-29 | 2010-05-28 | Method and apparatus for iterative timing and carrier recovery |
| PCT/US2010/001576 WO2010138204A1 (en) | 2009-05-29 | 2010-05-28 | Method and apparatus for iterative timing recovery |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120039380A1 true US20120039380A1 (en) | 2012-02-16 |
Family
ID=42562722
Family Applications (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/138,923 Abandoned US20120039380A1 (en) | 2009-05-29 | 2010-05-28 | Method and apparatus for iterative timing and carrier recovery |
| US13/138,953 Expired - Fee Related US8792592B2 (en) | 2009-05-29 | 2010-05-28 | Feed-forward carrier recovery system and method |
| US13/322,167 Expired - Fee Related US8737553B2 (en) | 2009-05-29 | 2010-05-28 | Sync detection and frequency recovery for satellite systems |
| US13/138,942 Abandoned US20120051478A1 (en) | 2009-05-29 | 2010-05-28 | Fast cycle slip detection and correction |
| US13/320,128 Expired - Fee Related US8687747B2 (en) | 2009-05-29 | 2010-05-28 | Method and apparatus for symbol timing recovery |
Family Applications After (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/138,953 Expired - Fee Related US8792592B2 (en) | 2009-05-29 | 2010-05-28 | Feed-forward carrier recovery system and method |
| US13/322,167 Expired - Fee Related US8737553B2 (en) | 2009-05-29 | 2010-05-28 | Sync detection and frequency recovery for satellite systems |
| US13/138,942 Abandoned US20120051478A1 (en) | 2009-05-29 | 2010-05-28 | Fast cycle slip detection and correction |
| US13/320,128 Expired - Fee Related US8687747B2 (en) | 2009-05-29 | 2010-05-28 | Method and apparatus for symbol timing recovery |
Country Status (7)
| Country | Link |
|---|---|
| US (5) | US20120039380A1 (enExample) |
| EP (5) | EP2436158B1 (enExample) |
| JP (5) | JP2012528523A (enExample) |
| KR (2) | KR20120028343A (enExample) |
| CN (5) | CN102439928A (enExample) |
| BR (5) | BRPI1011995A2 (enExample) |
| WO (6) | WO2010138204A1 (enExample) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120230676A1 (en) * | 2011-03-07 | 2012-09-13 | Fan Mo | Turn-up and long term operation of adaptive equalizer in optical transmission systems |
| US20150010118A1 (en) * | 2013-07-08 | 2015-01-08 | Hughes Network Systems, Llc | System and method for iterative compensation for linear and nonlinear interference in system employing ftn symbol transmission rates |
| US9203450B2 (en) | 2013-10-08 | 2015-12-01 | Hughes Network Systems, Llc | System and method for pre distortion and iterative compensation for nonlinear distortion in system employing FTN symbol transmission rates |
| US9246717B2 (en) * | 2014-06-30 | 2016-01-26 | Hughes Network Systems, Llc | Optimized receivers for faster than nyquist (FTN) transmission rates in high spectral efficiency satellite systems |
| US20160308697A1 (en) * | 2013-12-09 | 2016-10-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Pre-Coding in a Faster-Than-Nyquist Transmission System |
| CN106332095A (zh) * | 2016-11-07 | 2017-01-11 | 海南大学 | 基于级联频域均衡的超奈奎斯特传输方法 |
| US10129051B2 (en) * | 2017-01-18 | 2018-11-13 | Electronics And Telecommunications Research Institute | Method and apparatus for iterative interference cancellation and channel estimation of system based on FTN communication including pilot |
Families Citing this family (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010136930A2 (en) | 2009-05-27 | 2010-12-02 | Novelsat Ltd. | Iterative decoding of ldpc codes with iteration scheduling |
| US8315528B2 (en) | 2009-12-22 | 2012-11-20 | Ciena Corporation | Zero mean carrier recovery |
| EP2536040B1 (en) * | 2011-06-16 | 2017-01-18 | Ciena Luxembourg S.a.r.l. | Zero mean carrier recovery |
| JP5983111B2 (ja) * | 2012-07-06 | 2016-08-31 | ソニー株式会社 | 受信装置および方法、並びに、プログラム |
| CN103582107B (zh) * | 2012-07-19 | 2018-06-26 | 中兴通讯股份有限公司 | 一种符号定时环的输出控制方法和装置 |
| US9264182B2 (en) | 2012-09-13 | 2016-02-16 | Novelsat Ltd. | Iterative receiver loop |
| US8903028B2 (en) * | 2012-09-20 | 2014-12-02 | Novelsat Ltd. | Timing recovery for low roll-off factor signals |
| CN105122720B (zh) * | 2013-02-21 | 2018-02-06 | 高通股份有限公司 | 用于在10gbase‑t系统中数据辅助定时恢复的方法和装置 |
| EP3016339B1 (en) | 2013-07-15 | 2017-09-13 | Huawei Technologies Co., Ltd. | Cycle slip detection method and device, and receiver |
| WO2015016831A1 (en) * | 2013-07-30 | 2015-02-05 | Hewlett-Packard Development Company, L.P. | Process partial response channel |
| FR3020686A1 (fr) * | 2014-04-30 | 2015-11-06 | Thales Sa | Estimateur de frequence pour communication aeronautique |
| JP6360354B2 (ja) | 2014-05-23 | 2018-07-18 | 国立研究開発法人海洋研究開発機構 | 受信装置および受信方法 |
| CN104104493B (zh) * | 2014-07-30 | 2017-09-08 | 南京航空航天大学 | 面向深空通信的载波同步方法及装置 |
| CN116388922A (zh) | 2014-08-25 | 2023-07-04 | 第一媒体有限责任公司 | 灵活的正交频分复用phy传输数据帧前导码的动态配置 |
| CN105991488B (zh) * | 2015-02-06 | 2019-04-16 | 上海无线通信研究中心 | 应用于ftn调制中的减小状态数的维特比解调方法 |
| KR102093214B1 (ko) * | 2015-03-09 | 2020-03-25 | 원 미디어, 엘엘씨 | 시스템 발견 및 시그널링 |
| WO2016155838A1 (en) * | 2015-04-02 | 2016-10-06 | Telefonaktiebolaget Lm Ericsson (Publ) | Processing of a faster-than-nyquist signaling reception signal |
| BR102015013039A2 (pt) * | 2015-06-03 | 2016-12-06 | Padtec S A | método de estimação de desvios de frequência e/ou fase em sistemas de comunicação digital coerente |
| CN105024799B (zh) * | 2015-06-19 | 2018-04-27 | 北京遥测技术研究所 | 一种基于p阶矩的带限系统定时恢复方法 |
| US20170054538A1 (en) * | 2015-08-20 | 2017-02-23 | Intel IP Corporation | Mobile terminal devices and methods of detecting reference signals |
| JP6711358B2 (ja) | 2015-08-21 | 2020-06-17 | 日本電気株式会社 | 信号処理装置、通信システム、及び信号処理方法 |
| CN105515639B (zh) * | 2015-12-02 | 2018-09-25 | 中国工程物理研究院电子工程研究所 | 一种通用卫星高速数传信号定时同步方法 |
| CN105717526B (zh) * | 2016-03-10 | 2017-12-19 | 中国人民解放军国防科学技术大学 | 一种基于相位误差限幅处理的载波相位周跳抑制方法 |
| WO2017177327A1 (en) * | 2016-04-13 | 2017-10-19 | Huawei Technologies Canada Co., Ltd. | System and method for faster-than-nyquist (ftn) transmission |
| CN106842243B (zh) * | 2016-12-21 | 2019-09-10 | 湖南北云科技有限公司 | 一种卫星导航半周跳变检测方法及装置 |
| US20190036759A1 (en) * | 2017-07-28 | 2019-01-31 | Roshmere, Inc. | Timing recovery for nyquist shaped pulses |
| CN110915151B (zh) * | 2017-08-08 | 2022-10-04 | 日本电信电话株式会社 | 光发送机、光接收机和通信系统 |
| CN109842770A (zh) * | 2017-11-28 | 2019-06-04 | 晨星半导体股份有限公司 | 信号接收装置及其信号处理方法 |
| CN108777670B (zh) * | 2018-05-31 | 2020-11-10 | 清华大学 | 一种帧同步方法及装置 |
| CN109286589B (zh) * | 2018-10-16 | 2021-07-16 | 安徽传矽微电子有限公司 | 一种用于gfsk解调器中的频率偏移估计器及其方法 |
| CN109617666B (zh) * | 2019-01-31 | 2021-03-23 | 中国电子科技集团公司第五十四研究所 | 一种适用于连续传输的前馈定时方法 |
| CA3139822A1 (en) * | 2019-05-12 | 2020-11-19 | SkySafe, Inc. | System, method and computer-readable storage medium for detecting, monitoring and mitigating the presence of a drone |
| CN110505175B (zh) * | 2019-06-05 | 2022-02-18 | 暨南大学 | 一种快速帧同步方法及帧同步装置 |
| CN110445610B (zh) * | 2019-08-26 | 2021-11-30 | 上海循态量子科技有限公司 | 连续变量量子密钥分发系统的偏振追踪方法、系统及介质 |
| CN110752870B (zh) * | 2019-10-29 | 2021-08-31 | 中国电子科技集团公司第五十四研究所 | 滚降系数可变宽带卫星传输系统的定时恢复方法及装置 |
| US10999048B1 (en) * | 2019-12-31 | 2021-05-04 | Hughes Network Systems, Llc | Superior timing synchronization using high-order tracking loops |
| US12074683B1 (en) | 2020-02-29 | 2024-08-27 | Space Exploration Technologies Corp. | Configurable orthogonal frequency division multiplexing (OFDM) signal and transmitter and receiver for satellite to user terminal downlink communications |
| CN111447003A (zh) * | 2020-03-18 | 2020-07-24 | 重庆邮电大学 | 一种dvb-s2接收机的帧同步方法 |
| CN112583433B (zh) * | 2020-12-15 | 2022-03-25 | 四川灵通电讯有限公司 | 在数字接收机中进行定时恢复误差检测的装置及应用方法 |
| US11930470B2 (en) * | 2021-09-17 | 2024-03-12 | Cypress Semiconductor Corporation | Systems, methods, and devices for timing recovery in wireless communications devices |
| WO2024189712A1 (ja) | 2023-03-13 | 2024-09-19 | 三菱電機株式会社 | 送信デジタル信号生成回路、及び光送信器 |
| CN116436511A (zh) * | 2023-06-13 | 2023-07-14 | 武汉能钠智能装备技术股份有限公司四川省成都市分公司 | 一种卫星信号设备的自干扰对消方法及系统 |
| US20250234309A1 (en) * | 2024-01-15 | 2025-07-17 | Nxp B.V. | Wireless communications synchronization |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060256896A1 (en) * | 2005-05-10 | 2006-11-16 | Seagate Technology Llc | Robust maximum-likelihood based timing recovery |
| US20090147839A1 (en) * | 2007-12-07 | 2009-06-11 | Advantech Advanced Microwave Technologies Inc. | QAM phase error detector |
Family Cites Families (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4649543A (en) * | 1985-08-30 | 1987-03-10 | Motorola, Inc. | Synchronization sequence decoder for a digital radiotelephone system |
| DK163194C (da) * | 1988-12-22 | 1992-06-22 | Radiometer As | Fremgangsmaade ved fotometrisk in vitro bestemmelse af en blodgasparameter i en blodproeve |
| DE69216554T2 (de) * | 1991-11-04 | 1997-07-10 | Motorola Inc | Verfahren und Einrichtung zur automatischen Abstimmkalibrierung von elektronisch abgestimmten Filtern |
| DE69204144T2 (de) * | 1991-11-25 | 1996-03-21 | Philips Electronics Nv | Phasenregelschleife mit Frequenzabweichungsdetektor und Decodierschaltung mit einer solchen Phasenregelschleife. |
| JP3003826B2 (ja) * | 1992-12-11 | 2000-01-31 | 三菱電機株式会社 | クロック再生回路 |
| US5513209A (en) * | 1993-02-26 | 1996-04-30 | Holm; Gunnar | Resampling synchronizer of digitally sampled signals |
| US5533072A (en) * | 1993-11-12 | 1996-07-02 | International Business Machines Corporation | Digital phase alignment and integrated multichannel transceiver employing same |
| ZA955605B (en) * | 1994-07-13 | 1996-04-10 | Qualcomm Inc | System and method for simulating user interference received by subscriber units in a spread spectrum communication network |
| JP3077881B2 (ja) * | 1995-03-07 | 2000-08-21 | 日本電気株式会社 | 復調方法及び復調装置 |
| JP3013763B2 (ja) * | 1995-08-25 | 2000-02-28 | 日本電気株式会社 | キャリア同期ユニット |
| US5999355A (en) * | 1996-04-30 | 1999-12-07 | Cirrus Logic, Inc. | Gain and phase constrained adaptive equalizing filter in a sampled amplitude read channel for magnetic recording |
| US6654432B1 (en) * | 1998-06-08 | 2003-11-25 | Wireless Facilities, Inc. | Joint maximum likelihood frame and timing estimation for a digital receiver |
| JPH11219199A (ja) * | 1998-01-30 | 1999-08-10 | Sony Corp | 位相検出装置及び方法、並びに音声符号化装置及び方法 |
| US6647074B2 (en) * | 1998-08-25 | 2003-11-11 | Zenith Electronics Corporation | Removal of clock related artifacts from an offset QAM generated VSB signal |
| US6650699B1 (en) * | 1999-01-21 | 2003-11-18 | International Business Machines Corporation | Methods and apparatus for timing recovery from a sampled and equalized data signal |
| US6348826B1 (en) * | 2000-06-28 | 2002-02-19 | Intel Corporation | Digital variable-delay circuit having voltage-mixing interpolator and methods of testing input/output buffers using same |
| KR100393559B1 (ko) * | 2000-09-30 | 2003-08-02 | 삼성전기주식회사 | 디지털 동적 컨버젼스 제어 방법 및 그 시스템 |
| US7079574B2 (en) | 2001-01-17 | 2006-07-18 | Radiant Networks Plc | Carrier phase recovery system for adaptive burst modems and link hopping radio networks |
| ATE364271T1 (de) | 2001-02-26 | 2007-06-15 | Juniper Networks Inc | Verfahren und vorrichtung zur effizienten und genauen grobzeitsynchronisierung in pulsdemodulatoren |
| US6441691B1 (en) * | 2001-03-09 | 2002-08-27 | Ericsson Inc. | PLL cycle slip compensation |
| US6973150B1 (en) * | 2001-04-24 | 2005-12-06 | Rockwell Collins | Cycle slip detection using low pass filtering |
| GB2376855A (en) * | 2001-06-20 | 2002-12-24 | Sony Uk Ltd | Determining symbol synchronisation in an OFDM receiver in response to one of two impulse response estimates |
| US6794912B2 (en) * | 2002-02-18 | 2004-09-21 | Matsushita Electric Industrial Co., Ltd. | Multi-phase clock transmission circuit and method |
| US7257102B2 (en) | 2002-04-02 | 2007-08-14 | Broadcom Corporation | Carrier frequency offset estimation from preamble symbols |
| US6922440B2 (en) * | 2002-12-17 | 2005-07-26 | Scintera Networks, Inc. | Adaptive signal latency control for communications systems signals |
| KR100505678B1 (ko) * | 2003-03-17 | 2005-08-03 | 삼성전자주식회사 | 재차 상관과 2차 첨두치 비교로 심볼 시간을 동기화 하는무선 랜 시스템의 직교 주파수 분할 다중화 수신기 및 그심볼 동기화 방법 |
| ATE350846T1 (de) | 2003-09-05 | 2007-01-15 | Europ Agence Spatiale | Verfahren zur pilotgestützen trägerphasensynchronisation |
| KR100518600B1 (ko) * | 2003-11-12 | 2005-10-04 | 삼성전자주식회사 | 가드 인터벌 및 고속 푸리에 변환 모드 검출기를 구비하는디지털 비디오 방송 수신기, 및 그 방법 |
| CN100371731C (zh) * | 2004-06-08 | 2008-02-27 | 河海大学 | Gps和伪卫星组合定位方法 |
| WO2006039550A2 (en) | 2004-09-30 | 2006-04-13 | Efficient Channel Coding, Inc. | Frame-based carrier frequency and phase recovery system and method |
| BRPI0419199B1 (pt) | 2004-11-16 | 2018-06-05 | Thomson Licensing | Método e aparelho para recuperação de portadora utilizando interpolação de fase com assistência |
| WO2006054993A1 (en) | 2004-11-16 | 2006-05-26 | Thomson Licensing | Method and apparatus for carrier recovery using multiple sources |
| KR100585173B1 (ko) * | 2005-01-26 | 2006-06-02 | 삼성전자주식회사 | 반복적 프리앰블 신호를 갖는 ofdm 신호 수신 방법 |
| JP4583196B2 (ja) * | 2005-02-04 | 2010-11-17 | 富士通セミコンダクター株式会社 | 通信装置 |
| JP2006237819A (ja) | 2005-02-23 | 2006-09-07 | Nec Corp | 復調装置及びその位相補償方法 |
| DE602005012939D1 (de) * | 2005-07-01 | 2009-04-09 | Sequans Comm | Verfahren und System zur Synchronisation eines Teilnehmerkommunikationsgeräts mit einer Basisstation eines drahtlosen Kommunikationssystems |
| US7176764B1 (en) * | 2005-07-21 | 2007-02-13 | Mediatek Incorporation | Phase locked loop having cycle slip detector capable of compensating for errors caused by cycle slips |
| WO2007022564A1 (en) * | 2005-08-22 | 2007-03-01 | Cohda Wireless Pty Ltd | Method and system for communication in a wireless network |
| US7522841B2 (en) * | 2005-10-21 | 2009-04-21 | Nortel Networks Limited | Efficient data transmission and training of data processing functions |
| ES2349148T5 (es) * | 2006-01-18 | 2017-12-19 | Huawei Technologies Co., Ltd. | Método para mejorar la sincronización y la transmisión de la información en un sistema de comunicación |
| CN101059560B (zh) * | 2006-04-17 | 2011-04-20 | 中国科学院空间科学与应用研究中心 | 一种检测掩星双频gps接收机观测量测量误差的方法 |
| JP2008048239A (ja) * | 2006-08-18 | 2008-02-28 | Nec Electronics Corp | シンボルタイミング検出方法および装置並びにプリアンブル検出方法および装置 |
| JP4324886B2 (ja) * | 2007-04-27 | 2009-09-02 | ソニー株式会社 | フレーム同期装置および方法、並びに、復調装置 |
| JP4359638B2 (ja) * | 2007-08-24 | 2009-11-04 | Okiセミコンダクタ株式会社 | 相関演算器及び相関演算装置 |
| US7961816B2 (en) * | 2007-11-28 | 2011-06-14 | Industrial Technology Research Institute | Device for and method of signal synchronization in a communication system |
| KR100937430B1 (ko) * | 2008-01-25 | 2010-01-18 | 엘지전자 주식회사 | 신호 송수신 방법 및 신호 송수신 장치 |
| PL3462638T3 (pl) * | 2008-11-18 | 2020-07-27 | Viasat Inc. | Skuteczna sygnalizacja sterowania przez współdzielone kanały komunikacyjne o rozszerzonym zakresie dynamiki |
| KR101038855B1 (ko) * | 2008-12-04 | 2011-06-02 | 성균관대학교산학협력단 | Ofdm 시스템에서의 주파수 동기 장치 및 방법 |
-
2010
- 2010-05-28 US US13/138,923 patent/US20120039380A1/en not_active Abandoned
- 2010-05-28 JP JP2012513059A patent/JP2012528523A/ja active Pending
- 2010-05-28 US US13/138,953 patent/US8792592B2/en not_active Expired - Fee Related
- 2010-05-28 CN CN2010800224799A patent/CN102439928A/zh active Pending
- 2010-05-28 WO PCT/US2010/001576 patent/WO2010138204A1/en not_active Ceased
- 2010-05-28 EP EP10727522.4A patent/EP2436158B1/en not_active Not-in-force
- 2010-05-28 US US13/322,167 patent/US8737553B2/en not_active Expired - Fee Related
- 2010-05-28 US US13/138,942 patent/US20120051478A1/en not_active Abandoned
- 2010-05-28 BR BRPI1011995A patent/BRPI1011995A2/pt not_active IP Right Cessation
- 2010-05-28 CN CN201080023483.7A patent/CN102449968B/zh not_active Expired - Fee Related
- 2010-05-28 JP JP2012513057A patent/JP5646609B2/ja not_active Expired - Fee Related
- 2010-05-28 CN CN2010800237233A patent/CN102484578A/zh active Pending
- 2010-05-28 EP EP10730582A patent/EP2436159A1/en not_active Withdrawn
- 2010-05-28 US US13/320,128 patent/US8687747B2/en not_active Expired - Fee Related
- 2010-05-28 JP JP2012513058A patent/JP5678040B2/ja not_active Expired - Fee Related
- 2010-05-28 KR KR1020117031315A patent/KR20120028343A/ko not_active Withdrawn
- 2010-05-28 EP EP10727519A patent/EP2436140A2/en not_active Withdrawn
- 2010-05-28 WO PCT/US2010/001568 patent/WO2010138198A1/en not_active Ceased
- 2010-05-28 WO PCT/US2010/001572 patent/WO2010138201A2/en not_active Ceased
- 2010-05-28 WO PCT/US2010/001577 patent/WO2010138205A1/en not_active Ceased
- 2010-05-28 CN CN201080023576.XA patent/CN102449950B/zh not_active Expired - Fee Related
- 2010-05-28 WO PCT/US2010/001578 patent/WO2010138206A1/en not_active Ceased
- 2010-05-28 BR BRPI1011199A patent/BRPI1011199A2/pt not_active IP Right Cessation
- 2010-05-28 BR BRPI1011215A patent/BRPI1011215A2/pt not_active Application Discontinuation
- 2010-05-28 EP EP10727520A patent/EP2436141A2/en not_active Withdrawn
- 2010-05-28 JP JP2012513056A patent/JP2012528520A/ja not_active Withdrawn
- 2010-05-28 WO PCT/US2010/001570 patent/WO2010138199A2/en not_active Ceased
- 2010-05-28 CN CN2010800234822A patent/CN102449949A/zh active Pending
- 2010-05-28 KR KR1020117031380A patent/KR20120016294A/ko not_active Withdrawn
- 2010-05-28 BR BRPI1011213A patent/BRPI1011213A2/pt not_active IP Right Cessation
- 2010-05-28 JP JP2012513060A patent/JP5730861B2/ja not_active Expired - Fee Related
- 2010-05-28 EP EP10727521A patent/EP2436138A1/en not_active Withdrawn
- 2010-05-28 BR BRPI1012296A patent/BRPI1012296A2/pt not_active Application Discontinuation
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060256896A1 (en) * | 2005-05-10 | 2006-11-16 | Seagate Technology Llc | Robust maximum-likelihood based timing recovery |
| US20090147839A1 (en) * | 2007-12-07 | 2009-06-11 | Advantech Advanced Microwave Technologies Inc. | QAM phase error detector |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120230676A1 (en) * | 2011-03-07 | 2012-09-13 | Fan Mo | Turn-up and long term operation of adaptive equalizer in optical transmission systems |
| US20150010118A1 (en) * | 2013-07-08 | 2015-01-08 | Hughes Network Systems, Llc | System and method for iterative compensation for linear and nonlinear interference in system employing ftn symbol transmission rates |
| US10020965B2 (en) | 2013-07-08 | 2018-07-10 | Hughes Network Systems, Llc | System and method for iterative compensation for linear and nonlinear interference in system employing FTN symbol transmission rates |
| US9716602B2 (en) * | 2013-07-08 | 2017-07-25 | Hughes Network Systems, Llc | System and method for iterative compensation for linear and nonlinear interference in system employing FTN symbol transmission rates |
| US9515723B2 (en) | 2013-10-08 | 2016-12-06 | Hughes Network Systems, Llc | System and method for pre-distortion and iterative compensation for nonlinear distortion in system employing FTN symbol transmission rates |
| US9203450B2 (en) | 2013-10-08 | 2015-12-01 | Hughes Network Systems, Llc | System and method for pre distortion and iterative compensation for nonlinear distortion in system employing FTN symbol transmission rates |
| US20160308697A1 (en) * | 2013-12-09 | 2016-10-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Pre-Coding in a Faster-Than-Nyquist Transmission System |
| US9838230B2 (en) * | 2013-12-09 | 2017-12-05 | Telefonaktiebolaget Lm Ericsson (Publ) | Pre-coding in a faster-than-Nyquist transmission system |
| US20160164702A1 (en) * | 2014-06-30 | 2016-06-09 | Hughes Network Systems, Llc | Optimized receivers for faster than nyquist (ftn) transmission rates in high spectral efficiency satellite systems |
| US9634870B2 (en) * | 2014-06-30 | 2017-04-25 | Hughes Network Systems, Llc | Optimized receivers for faster than nyquist (FTN) transmission rates in high spectral efficiency satellite systems |
| US9246717B2 (en) * | 2014-06-30 | 2016-01-26 | Hughes Network Systems, Llc | Optimized receivers for faster than nyquist (FTN) transmission rates in high spectral efficiency satellite systems |
| CN106332095A (zh) * | 2016-11-07 | 2017-01-11 | 海南大学 | 基于级联频域均衡的超奈奎斯特传输方法 |
| US10129051B2 (en) * | 2017-01-18 | 2018-11-13 | Electronics And Telecommunications Research Institute | Method and apparatus for iterative interference cancellation and channel estimation of system based on FTN communication including pilot |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20120039380A1 (en) | Method and apparatus for iterative timing and carrier recovery | |
| US9118519B2 (en) | Reception of inter-symbol-correlated signals using symbol-by-symbol soft-output demodulator | |
| US6819630B1 (en) | Iterative decision feedback adaptive equalizer | |
| US8976911B2 (en) | Joint sequence estimation of symbol and phase with high tolerance of nonlinearity | |
| US7042938B2 (en) | Soft bit computation for a reduced state equalizer | |
| US8542724B1 (en) | Iterative joint minimum mean square error decision feedback equalizer and turbo decoder | |
| US7668264B2 (en) | Apparatus and method of decision feedback equalization in terrestrial digital broadcasting receiver | |
| US8811548B2 (en) | Hypotheses generation based on multidimensional slicing | |
| US8804879B1 (en) | Hypotheses generation based on multidimensional slicing | |
| US20050018794A1 (en) | High speed, low-cost process for the demodulation and detection in EDGE wireless cellular systems | |
| Sozer et al. | Iterative equalization and decoding techniques for shallow water acoustic channels | |
| KR20030014726A (ko) | 하이브리드 주파수 시간 영역 등화기 | |
| US11804991B2 (en) | Sequence detection device using path-selective sequence detection and associated sequence detection method | |
| US9088400B2 (en) | Hypotheses generation based on multidimensional slicing | |
| KR20180013411A (ko) | Ftn 기반 신호 수신 장치 및 방법 | |
| CN107113262A (zh) | 用于单载波传输的本地振荡器相位噪声跟踪 | |
| WO2020063637A1 (en) | Efficient implementation of noise whitening post-compensation for narrowband-filtered signals | |
| CN100466644C (zh) | 载波调制数字通信系统的频移估计的方法和系统 | |
| EP4140046B1 (en) | Equalisation method and apparatus | |
| Ozgul et al. | Double turbo equalization of continuous phase modulation with frequency domain processing | |
| JP4443634B2 (ja) | 周波数選択デジタル伝送チャネルの等化及び復号装置 | |
| CN100479515C (zh) | 用于数字电视的判定反馈均衡器及其方法 | |
| Schniter et al. | Equalization of time-varying channels | |
| US7088770B2 (en) | Adaptive turbo decision feedback equalization method and device | |
| Moon et al. | Multiple-access via turbo joint equalization |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: THOMSON LICENSING, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHMITT, DIRK;KNUTSON, PAUL GOTHARD;GAO, WEN;SIGNING DATES FROM 20090713 TO 20100815;REEL/FRAME:027256/0284 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |