WO2010138204A1 - Method and apparatus for iterative timing recovery - Google Patents

Method and apparatus for iterative timing recovery Download PDF

Info

Publication number
WO2010138204A1
WO2010138204A1 PCT/US2010/001576 US2010001576W WO2010138204A1 WO 2010138204 A1 WO2010138204 A1 WO 2010138204A1 US 2010001576 W US2010001576 W US 2010001576W WO 2010138204 A1 WO2010138204 A1 WO 2010138204A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
signal
error
iterative
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2010/001576
Other languages
English (en)
French (fr)
Inventor
Dirk Schmitt
Paul Gothard Knutson
Wen Gao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Licensing SAS
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Priority to US13/138,923 priority Critical patent/US20120039380A1/en
Priority to BRPI1011199A priority patent/BRPI1011199A2/pt
Priority to JP2012513059A priority patent/JP2012528523A/ja
Priority to CN2010800234822A priority patent/CN102449949A/zh
Priority to EP10727521A priority patent/EP2436138A1/en
Publication of WO2010138204A1 publication Critical patent/WO2010138204A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0054Detection of the synchronisation error by features other than the received signal transition
    • H04L7/0062Detection of the synchronisation error by features other than the received signal transition detection of error based on data decision error, e.g. Mueller type detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2679Decision-aided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/90Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for satellite broadcast receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0053Closed loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0063Elements of loops
    • H04L2027/0067Phase error detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/041Speed or phase control by synchronisation signals using special codes as synchronising signal
    • H04L7/042Detectors therefor, e.g. correlators, state machines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/10Arrangements for initial synchronisation

Definitions

  • the present principles relate to iterative timing recovery in receivers systems.
  • Carrier recovery schemes can be classified into two structures: feed-forward structure and feedback structure.
  • the feedback carrier recovery uses a digital Phase Locked Loop (PLL) to track out the carrier phase and frequency offset.
  • PLL Phase Locked Loop
  • it relies on a decision directed or non-data-aided approach to estimate the phase error at each time instant.
  • decision-directed approach the decision errors will cause additional self noise while the non-data-aided approach can only apply to a limited number of multiple phase shift keying (MPSK) formats.
  • MPSK phase shift keying
  • the feedback carrier recovery scheme could be disturbed by cycle slips which may cause a large number of errors due to phase ambiguity.
  • Feed forward carrier recovery is used to reduce the probability of cycle slips.
  • the feed forward carrier recovery relies on pre-known data symbols (e.g. pilot or sync symbols) embedded in the data stream. This reduces the bandwidth efficiency since no data is transmitted during a pilot or sync interval.
  • the second disadvantage of the feed-forward carrier recovery is the inability to recover large frequency offsets or phase variations due to phase noise between the measurement blocks.
  • FTN Faster-than-Nyquist
  • an iterative timing recovery is suggested for FTN signaling using a feedback timing error signal from the forward error correction (FEC) block.
  • the FEC block could be realized by a so-called soft decoder like Low Density Parity Check (LDPC), a turbo decoder or a soft output Viterbi algorithm (SOVA).
  • LDPC Low Density Parity Check
  • SOVA soft output Viterbi algorithm
  • a MAP decoder is used to match the intersymbol interference (ISI) response of the FTN signal.
  • An additional equalizer is utilized in front of the maximum a posteriori (MAP) decoder which matches the equalized FTN signal to the truncated ISI target.
  • the timing error is then generated by using a modified Mueller and Muller (M&M) timing error detector (TED).
  • M&M Mueller and Muller
  • the iterative symbol timing recovery is used when ISI becomes a severe problem for FTN signaling.
  • the method comprises performing adaptive equalization and maximum likelihood sequence estimation in order to recover symbol timing.
  • an apparatus for iterative timing recovery comprising an comprising adaptive equalizer for performing adaptive equalization and a symbol detector for performing maximum likelihood sequence estimation in order to recover symbol timing.
  • a method for iterative timing recovery comprising filtering an interpolated first error signal using a matched filter, equalizing the filtered interpolated first error signal, detecting a timing error with an M&M timing error detector to produce a second error signal, and using said second error signal to recover the timing of a signal that uses faster-than-Nyquist signaling.
  • an apparatus for iterative timing recovery comprises a matched filter for filtering an interpolated first error signal using a matched filter, an equalizer for equalizing the filtered interpolated first error signal, a timing error detector for detecting a timing error with an M&M timing error detector to produce a second error signal, and a recovery circuit for using said second error signal to recover the timing of a signal that uses faster-than-Nyquist signaling.
  • Figure 1 shows an apparatus for least-mean-square error (LMSE) estimation with equalization for FTN signaling.
  • Figure 2 shows an apparatus for iterative timing recovery for FTN signaling.
  • LMSE least-mean-square error
  • Figure 3 shows a method for iterative timing recovery.
  • Figure 4 shows a method for iterative timing recovery for FTN signaling.
  • FTN signaling can be modeled as a channel response with memory.
  • AWGN Additive White Gaussian noise
  • the optimum symbol detector for FTN signaling relies not only on the current symbol but also the neighbor symbols.
  • the interference introduced by the neighbor symbols is called inter-symbol interference (ISI).
  • ISI inter-symbol interference
  • the ISI distorted signals are modeled with a trellis structure and its memory is often infinite. So infinite states in the trellis have to be considered for symbol detection.
  • One way to solve this problem is to reduce the number of states in the decoding process by using sub-optimum decoding structures.
  • the PU100126 is the maximum likelihood detector or maximum a posteriori detector if a priori information is available.
  • MLSE Maximum Likelihood Sequence Estimation
  • the Maximum Likelihood Sequence Estimation was first mentioned by Forney and Viterbi [Fo73] and an optimum detection was given by Viterbi [Vit67] with the Viterbi decoder, which estimates the maximum likelihood path (maximum likelihood sequence) through the trellis. Bahl, Cocke, Raviv and Jelinek further improve the maximum likelihood sequence estimation by the BCJR algorithm [BCJR74] which generates soft output values for each symbol decision.
  • BCJR74 Max-log-MAP decoder
  • the Max-log-MAP decoder relies on a backward and forward recursion through the trellis.
  • the most important step on the design of a Maximum Likelihood Sequence Estimation (MLSE) decoder is the definition of the state transition probabilities or so-called branch metrics. Therefore the Euclidian distance between the received symbol y and the ISI response targets t(s,s') is evaluated as it is shown in equation
  • s denotes the successor states and s' denotes the current state in the trellis.
  • the targets t(s,s') for each state transition are generated by folding the possible candidates in the channel memory with the truncated ISI response waveform hm with the trunctated ISI length L.
  • Max-log-MAP decoding process is then further divided into the forward, backward recursions and the a posteriori log likelihood ratios LLR computation [WHOO].
  • An example for BSPK modulation is provided as following: (1) Forward recursion
  • a k (s) msoL(A k _ ⁇ (s') + x k (s',s)) (3) s
  • k denotes the time index of the trellis.
  • the truncated ISI response has to be used to implement a realizable MLSE detector.
  • H ⁇ s ⁇ (j) the true ISI response H pos tG
  • an adaptive equalizer should be used before the MLSE detector.
  • the LMSE adaptation minimizes the least mean square error between the equalized symbol y ⁇ nT s ) and the desired symbol d ⁇ nT s ) given in following equation.
  • e(nT s ) y'(nT s ) -d(nT s ) (6)
  • the LMSE with equalization is shown in Figure 1.
  • the filter coefficient vector w(nT s ) can be expressed as following: PU100126
  • ⁇ (n + l)T s ) ⁇ nT s ) + a ⁇ L(y(nT s ) ⁇ a, ⁇ r ) (8) ⁇
  • ⁇ XnT s Re[(a ⁇ nT s ))* y'(nT s -T s + ⁇ )-(a"(nT s -T s )) * yXnT s + ⁇ )] , (9)
  • FIG. 1 shows an apparatus for iterative timing recovery.
  • An FIR filter is used to filter an input signal.
  • the input signal is also in signal communication with a first Max-log-Map and Equalizer block.
  • the FIR filter has coefficients under control by a Least Mean Squared (LMS) block.
  • LMS Least Mean Squared
  • the LMS block takes as input the output of the first Max-log-Map and Equalizer block, and the output of a summing circuit.
  • the summing circuit has a non-inverting input that is in signal communication with a second Max-log-Map circuit, and a second PU100126
  • the FIR filter output is in signal communication with the second Max-log-Map circuit and a third Max-log-Map circuit.
  • the output of the third Max-log-Map circuit is in signal communication with the input of the target pulse shaping block and is used as an output of the apparatus.
  • the output of the second Max-log-Map circuit is also an output of the apparatus that is representative of the equalized symbol.
  • FIG. 2 shows an apparatus for iterative timinig recovery for faster-than-Nyquist (FTN) signaling.
  • An interpolator output is in signal communication with the input of a matched filter, whose output is in signal communication with an equalizer.
  • the equalizer output is in signal communication with a Max-log-Map block, and in signal communication with a first input of an Mueller & Muller (M&M) timing error detector (TED) block.
  • M&M Mueller & Muller
  • TED timing error detector
  • the Max-log-Map block's output is in signal communication with the input of an inter-symbol interference (ISI) filter, whose output is in signal communication with a second input of the M&M TED.
  • ISI inter-symbol interference
  • the M&M TED's output is in signal communication with a first input of a multiplier circuit, whose second input is a variable.
  • the output of the multiplier circuit is in signal communication with a first non-inverting input of a summing circuit, whose second input is a delayed version of the summing circuit output, which is also in signal communication with the interpolator input.
  • Figure 3 shows a method for interative timing recovery. The method is comprised of an adaptive equalization step 310 and a Mean Least Squared estimation step 320.
  • Figure 4 shows a method for itnerative timing recovery for FTN signaling, comprising the steps of filtering 410, equalizing 420, detecting 430 and recovering timing 440.
  • processor or “controller” should not be construed to refer PU100126
  • DSP digital signal processor
  • ROM read-only memory
  • RAM random access memory
  • non-volatile storage non-volatile storage
  • any switches shown in the figures are conceptual only. Their function may be carried out through the operation of program logic, through dedicated logic, through the interaction of program control and dedicated logic, or even manually, the particular technique being selectable by the implementer as more specifically understood from the context.
  • a description will now be given of the many attendant advantages and features of the present principles, some of which have been mentioned above.
  • one advantage is a method for iterative timing recovery comprising performing adaptive equalization and maximum likelihood sequence estimation in order to recover symbol timing.
  • Another advantage is an apparatus for iterative timing recovery comprising an comprising adaptive equalizer for performing adaptive equalization and a symbol detector for performing maximum likelihood sequence estimation in order to recover symbol timing.
  • Another advantage is a method for iterative timing recovery comprising filtering an interpolated first error signal using a matched filter, equalizing the filtered interpolated first error signal, detecting a timing error with an M&M timing error detector to produce a second error signal, and using said second error signal to recover the timing of a signal that uses faster-than-Nyquist signaling.
  • Yet another advantage is an apparatus for iterative timing recovery comprising a matched filter for filtering an interpolated first error signal using a matched filter, an equalizer for equalizing the filtered interpolated first error signal, a timing error detector for detecting a timing error with an M&M timing error detector to produce a second error signal, and a recovery circuit for using said second error signal to recover the timing of a signal that uses faster-than-Nyquist signaling.
  • any element expressed as a means for performing a specified function is intended to encompass any way of performing that function including, for example, a) a combination of circuit elements that performs that function or b) software in any form, including, therefore, firmware, microcode or the like, combined with appropriate circuitry for executing that software to perform the function.
  • the present principles as defined by such claims reside in the fact that the functionalities provided by the various recited means are combined and brought together in the manner which the claims call for. It is thus regarded that any means that can provide those functionalities are equivalent to those shown herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Circuits Of Receivers In General (AREA)
  • Radio Relay Systems (AREA)
  • Error Detection And Correction (AREA)
PCT/US2010/001576 2009-05-29 2010-05-28 Method and apparatus for iterative timing recovery Ceased WO2010138204A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/138,923 US20120039380A1 (en) 2009-05-29 2010-05-28 Method and apparatus for iterative timing and carrier recovery
BRPI1011199A BRPI1011199A2 (pt) 2009-05-29 2010-05-28 método e equipamento para recuperação de sincronização iterativa
JP2012513059A JP2012528523A (ja) 2009-05-29 2010-05-28 反復タイミング再生に関する方法及び装置
CN2010800234822A CN102449949A (zh) 2009-05-29 2010-05-28 迭代定时恢复的方法和装置
EP10727521A EP2436138A1 (en) 2009-05-29 2010-05-28 Method and apparatus for iterative timing recovery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21733309P 2009-05-29 2009-05-29
US61/217,333 2009-05-29

Publications (1)

Publication Number Publication Date
WO2010138204A1 true WO2010138204A1 (en) 2010-12-02

Family

ID=42562722

Family Applications (6)

Application Number Title Priority Date Filing Date
PCT/US2010/001576 Ceased WO2010138204A1 (en) 2009-05-29 2010-05-28 Method and apparatus for iterative timing recovery
PCT/US2010/001568 Ceased WO2010138198A1 (en) 2009-05-29 2010-05-28 Fast cycle slip detection and correction
PCT/US2010/001572 Ceased WO2010138201A2 (en) 2009-05-29 2010-05-28 Improved sync detection and frequency recovery for satellite systems
PCT/US2010/001577 Ceased WO2010138205A1 (en) 2009-05-29 2010-05-28 Improved feed-forward carrier recovery system and method
PCT/US2010/001578 Ceased WO2010138206A1 (en) 2009-05-29 2010-05-28 Method and apparatus for iterative timing and carrier phase recovery
PCT/US2010/001570 Ceased WO2010138199A2 (en) 2009-05-29 2010-05-28 Method and apparatus for symbol timing recovery

Family Applications After (5)

Application Number Title Priority Date Filing Date
PCT/US2010/001568 Ceased WO2010138198A1 (en) 2009-05-29 2010-05-28 Fast cycle slip detection and correction
PCT/US2010/001572 Ceased WO2010138201A2 (en) 2009-05-29 2010-05-28 Improved sync detection and frequency recovery for satellite systems
PCT/US2010/001577 Ceased WO2010138205A1 (en) 2009-05-29 2010-05-28 Improved feed-forward carrier recovery system and method
PCT/US2010/001578 Ceased WO2010138206A1 (en) 2009-05-29 2010-05-28 Method and apparatus for iterative timing and carrier phase recovery
PCT/US2010/001570 Ceased WO2010138199A2 (en) 2009-05-29 2010-05-28 Method and apparatus for symbol timing recovery

Country Status (7)

Country Link
US (5) US20120039380A1 (enExample)
EP (5) EP2436158B1 (enExample)
JP (5) JP2012528523A (enExample)
KR (2) KR20120028343A (enExample)
CN (5) CN102439928A (enExample)
BR (5) BRPI1011995A2 (enExample)
WO (6) WO2010138204A1 (enExample)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010136930A2 (en) 2009-05-27 2010-12-02 Novelsat Ltd. Iterative decoding of ldpc codes with iteration scheduling
US8315528B2 (en) 2009-12-22 2012-11-20 Ciena Corporation Zero mean carrier recovery
US20120230676A1 (en) * 2011-03-07 2012-09-13 Fan Mo Turn-up and long term operation of adaptive equalizer in optical transmission systems
EP2536040B1 (en) * 2011-06-16 2017-01-18 Ciena Luxembourg S.a.r.l. Zero mean carrier recovery
JP5983111B2 (ja) * 2012-07-06 2016-08-31 ソニー株式会社 受信装置および方法、並びに、プログラム
CN103582107B (zh) * 2012-07-19 2018-06-26 中兴通讯股份有限公司 一种符号定时环的输出控制方法和装置
US9264182B2 (en) 2012-09-13 2016-02-16 Novelsat Ltd. Iterative receiver loop
US8903028B2 (en) * 2012-09-20 2014-12-02 Novelsat Ltd. Timing recovery for low roll-off factor signals
CN105122720B (zh) * 2013-02-21 2018-02-06 高通股份有限公司 用于在10gbase‑t系统中数据辅助定时恢复的方法和装置
US9716602B2 (en) * 2013-07-08 2017-07-25 Hughes Network Systems, Llc System and method for iterative compensation for linear and nonlinear interference in system employing FTN symbol transmission rates
EP3016339B1 (en) 2013-07-15 2017-09-13 Huawei Technologies Co., Ltd. Cycle slip detection method and device, and receiver
WO2015016831A1 (en) * 2013-07-30 2015-02-05 Hewlett-Packard Development Company, L.P. Process partial response channel
WO2015054437A1 (en) 2013-10-08 2015-04-16 Hughes Network Systems System and method for pre-distortion and iterative compensation for nonlinear distortion in system employing ftn symbol transmission rates
CN105814855B (zh) * 2013-12-09 2020-04-21 瑞典爱立信有限公司 超Nyquist发送系统中的预编码
FR3020686A1 (fr) * 2014-04-30 2015-11-06 Thales Sa Estimateur de frequence pour communication aeronautique
JP6360354B2 (ja) 2014-05-23 2018-07-18 国立研究開発法人海洋研究開発機構 受信装置および受信方法
US9246717B2 (en) * 2014-06-30 2016-01-26 Hughes Network Systems, Llc Optimized receivers for faster than nyquist (FTN) transmission rates in high spectral efficiency satellite systems
CN104104493B (zh) * 2014-07-30 2017-09-08 南京航空航天大学 面向深空通信的载波同步方法及装置
CN116388922A (zh) 2014-08-25 2023-07-04 第一媒体有限责任公司 灵活的正交频分复用phy传输数据帧前导码的动态配置
CN105991488B (zh) * 2015-02-06 2019-04-16 上海无线通信研究中心 应用于ftn调制中的减小状态数的维特比解调方法
KR102093214B1 (ko) * 2015-03-09 2020-03-25 원 미디어, 엘엘씨 시스템 발견 및 시그널링
WO2016155838A1 (en) * 2015-04-02 2016-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Processing of a faster-than-nyquist signaling reception signal
BR102015013039A2 (pt) * 2015-06-03 2016-12-06 Padtec S A método de estimação de desvios de frequência e/ou fase em sistemas de comunicação digital coerente
CN105024799B (zh) * 2015-06-19 2018-04-27 北京遥测技术研究所 一种基于p阶矩的带限系统定时恢复方法
US20170054538A1 (en) * 2015-08-20 2017-02-23 Intel IP Corporation Mobile terminal devices and methods of detecting reference signals
JP6711358B2 (ja) 2015-08-21 2020-06-17 日本電気株式会社 信号処理装置、通信システム、及び信号処理方法
CN105515639B (zh) * 2015-12-02 2018-09-25 中国工程物理研究院电子工程研究所 一种通用卫星高速数传信号定时同步方法
CN105717526B (zh) * 2016-03-10 2017-12-19 中国人民解放军国防科学技术大学 一种基于相位误差限幅处理的载波相位周跳抑制方法
WO2017177327A1 (en) * 2016-04-13 2017-10-19 Huawei Technologies Canada Co., Ltd. System and method for faster-than-nyquist (ftn) transmission
CN106332095A (zh) * 2016-11-07 2017-01-11 海南大学 基于级联频域均衡的超奈奎斯特传输方法
CN106842243B (zh) * 2016-12-21 2019-09-10 湖南北云科技有限公司 一种卫星导航半周跳变检测方法及装置
KR102519836B1 (ko) * 2017-01-18 2023-04-11 한국전자통신연구원 파일럿을 포함하는 ftn 통신 시스템의 반복 간섭 제거 및 채널 추정을 위한 방법 및 장치
US20190036759A1 (en) * 2017-07-28 2019-01-31 Roshmere, Inc. Timing recovery for nyquist shaped pulses
CN110915151B (zh) * 2017-08-08 2022-10-04 日本电信电话株式会社 光发送机、光接收机和通信系统
CN109842770A (zh) * 2017-11-28 2019-06-04 晨星半导体股份有限公司 信号接收装置及其信号处理方法
CN108777670B (zh) * 2018-05-31 2020-11-10 清华大学 一种帧同步方法及装置
CN109286589B (zh) * 2018-10-16 2021-07-16 安徽传矽微电子有限公司 一种用于gfsk解调器中的频率偏移估计器及其方法
CN109617666B (zh) * 2019-01-31 2021-03-23 中国电子科技集团公司第五十四研究所 一种适用于连续传输的前馈定时方法
CA3139822A1 (en) * 2019-05-12 2020-11-19 SkySafe, Inc. System, method and computer-readable storage medium for detecting, monitoring and mitigating the presence of a drone
CN110505175B (zh) * 2019-06-05 2022-02-18 暨南大学 一种快速帧同步方法及帧同步装置
CN110445610B (zh) * 2019-08-26 2021-11-30 上海循态量子科技有限公司 连续变量量子密钥分发系统的偏振追踪方法、系统及介质
CN110752870B (zh) * 2019-10-29 2021-08-31 中国电子科技集团公司第五十四研究所 滚降系数可变宽带卫星传输系统的定时恢复方法及装置
US10999048B1 (en) * 2019-12-31 2021-05-04 Hughes Network Systems, Llc Superior timing synchronization using high-order tracking loops
US12074683B1 (en) 2020-02-29 2024-08-27 Space Exploration Technologies Corp. Configurable orthogonal frequency division multiplexing (OFDM) signal and transmitter and receiver for satellite to user terminal downlink communications
CN111447003A (zh) * 2020-03-18 2020-07-24 重庆邮电大学 一种dvb-s2接收机的帧同步方法
CN112583433B (zh) * 2020-12-15 2022-03-25 四川灵通电讯有限公司 在数字接收机中进行定时恢复误差检测的装置及应用方法
US11930470B2 (en) * 2021-09-17 2024-03-12 Cypress Semiconductor Corporation Systems, methods, and devices for timing recovery in wireless communications devices
WO2024189712A1 (ja) 2023-03-13 2024-09-19 三菱電機株式会社 送信デジタル信号生成回路、及び光送信器
CN116436511A (zh) * 2023-06-13 2023-07-14 武汉能钠智能装备技术股份有限公司四川省成都市分公司 一种卫星信号设备的自干扰对消方法及系统
US20250234309A1 (en) * 2024-01-15 2025-07-17 Nxp B.V. Wireless communications synchronization

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208481B1 (en) * 1996-04-30 2001-03-27 Cirrus Logic, Inc. Gain and phase constrained adaptive equalizing filter in a sampled amplitude read channel for magnetic recording
US6650699B1 (en) * 1999-01-21 2003-11-18 International Business Machines Corporation Methods and apparatus for timing recovery from a sampled and equalized data signal

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649543A (en) * 1985-08-30 1987-03-10 Motorola, Inc. Synchronization sequence decoder for a digital radiotelephone system
DK163194C (da) * 1988-12-22 1992-06-22 Radiometer As Fremgangsmaade ved fotometrisk in vitro bestemmelse af en blodgasparameter i en blodproeve
DE69216554T2 (de) * 1991-11-04 1997-07-10 Motorola Inc Verfahren und Einrichtung zur automatischen Abstimmkalibrierung von elektronisch abgestimmten Filtern
DE69204144T2 (de) * 1991-11-25 1996-03-21 Philips Electronics Nv Phasenregelschleife mit Frequenzabweichungsdetektor und Decodierschaltung mit einer solchen Phasenregelschleife.
JP3003826B2 (ja) * 1992-12-11 2000-01-31 三菱電機株式会社 クロック再生回路
US5513209A (en) * 1993-02-26 1996-04-30 Holm; Gunnar Resampling synchronizer of digitally sampled signals
US5533072A (en) * 1993-11-12 1996-07-02 International Business Machines Corporation Digital phase alignment and integrated multichannel transceiver employing same
ZA955605B (en) * 1994-07-13 1996-04-10 Qualcomm Inc System and method for simulating user interference received by subscriber units in a spread spectrum communication network
JP3077881B2 (ja) * 1995-03-07 2000-08-21 日本電気株式会社 復調方法及び復調装置
JP3013763B2 (ja) * 1995-08-25 2000-02-28 日本電気株式会社 キャリア同期ユニット
US6654432B1 (en) * 1998-06-08 2003-11-25 Wireless Facilities, Inc. Joint maximum likelihood frame and timing estimation for a digital receiver
JPH11219199A (ja) * 1998-01-30 1999-08-10 Sony Corp 位相検出装置及び方法、並びに音声符号化装置及び方法
US6647074B2 (en) * 1998-08-25 2003-11-11 Zenith Electronics Corporation Removal of clock related artifacts from an offset QAM generated VSB signal
US6348826B1 (en) * 2000-06-28 2002-02-19 Intel Corporation Digital variable-delay circuit having voltage-mixing interpolator and methods of testing input/output buffers using same
KR100393559B1 (ko) * 2000-09-30 2003-08-02 삼성전기주식회사 디지털 동적 컨버젼스 제어 방법 및 그 시스템
US7079574B2 (en) 2001-01-17 2006-07-18 Radiant Networks Plc Carrier phase recovery system for adaptive burst modems and link hopping radio networks
ATE364271T1 (de) 2001-02-26 2007-06-15 Juniper Networks Inc Verfahren und vorrichtung zur effizienten und genauen grobzeitsynchronisierung in pulsdemodulatoren
US6441691B1 (en) * 2001-03-09 2002-08-27 Ericsson Inc. PLL cycle slip compensation
US6973150B1 (en) * 2001-04-24 2005-12-06 Rockwell Collins Cycle slip detection using low pass filtering
GB2376855A (en) * 2001-06-20 2002-12-24 Sony Uk Ltd Determining symbol synchronisation in an OFDM receiver in response to one of two impulse response estimates
US6794912B2 (en) * 2002-02-18 2004-09-21 Matsushita Electric Industrial Co., Ltd. Multi-phase clock transmission circuit and method
US7257102B2 (en) 2002-04-02 2007-08-14 Broadcom Corporation Carrier frequency offset estimation from preamble symbols
US6922440B2 (en) * 2002-12-17 2005-07-26 Scintera Networks, Inc. Adaptive signal latency control for communications systems signals
KR100505678B1 (ko) * 2003-03-17 2005-08-03 삼성전자주식회사 재차 상관과 2차 첨두치 비교로 심볼 시간을 동기화 하는무선 랜 시스템의 직교 주파수 분할 다중화 수신기 및 그심볼 동기화 방법
ATE350846T1 (de) 2003-09-05 2007-01-15 Europ Agence Spatiale Verfahren zur pilotgestützen trägerphasensynchronisation
KR100518600B1 (ko) * 2003-11-12 2005-10-04 삼성전자주식회사 가드 인터벌 및 고속 푸리에 변환 모드 검출기를 구비하는디지털 비디오 방송 수신기, 및 그 방법
CN100371731C (zh) * 2004-06-08 2008-02-27 河海大学 Gps和伪卫星组合定位方法
WO2006039550A2 (en) 2004-09-30 2006-04-13 Efficient Channel Coding, Inc. Frame-based carrier frequency and phase recovery system and method
BRPI0419199B1 (pt) 2004-11-16 2018-06-05 Thomson Licensing Método e aparelho para recuperação de portadora utilizando interpolação de fase com assistência
WO2006054993A1 (en) 2004-11-16 2006-05-26 Thomson Licensing Method and apparatus for carrier recovery using multiple sources
KR100585173B1 (ko) * 2005-01-26 2006-06-02 삼성전자주식회사 반복적 프리앰블 신호를 갖는 ofdm 신호 수신 방법
JP4583196B2 (ja) * 2005-02-04 2010-11-17 富士通セミコンダクター株式会社 通信装置
JP2006237819A (ja) 2005-02-23 2006-09-07 Nec Corp 復調装置及びその位相補償方法
US7564931B2 (en) * 2005-05-10 2009-07-21 Seagate Technology Llc Robust maximum-likelihood based timing recovery
DE602005012939D1 (de) * 2005-07-01 2009-04-09 Sequans Comm Verfahren und System zur Synchronisation eines Teilnehmerkommunikationsgeräts mit einer Basisstation eines drahtlosen Kommunikationssystems
US7176764B1 (en) * 2005-07-21 2007-02-13 Mediatek Incorporation Phase locked loop having cycle slip detector capable of compensating for errors caused by cycle slips
WO2007022564A1 (en) * 2005-08-22 2007-03-01 Cohda Wireless Pty Ltd Method and system for communication in a wireless network
US7522841B2 (en) * 2005-10-21 2009-04-21 Nortel Networks Limited Efficient data transmission and training of data processing functions
ES2349148T5 (es) * 2006-01-18 2017-12-19 Huawei Technologies Co., Ltd. Método para mejorar la sincronización y la transmisión de la información en un sistema de comunicación
CN101059560B (zh) * 2006-04-17 2011-04-20 中国科学院空间科学与应用研究中心 一种检测掩星双频gps接收机观测量测量误差的方法
JP2008048239A (ja) * 2006-08-18 2008-02-28 Nec Electronics Corp シンボルタイミング検出方法および装置並びにプリアンブル検出方法および装置
JP4324886B2 (ja) * 2007-04-27 2009-09-02 ソニー株式会社 フレーム同期装置および方法、並びに、復調装置
JP4359638B2 (ja) * 2007-08-24 2009-11-04 Okiセミコンダクタ株式会社 相関演算器及び相関演算装置
US7961816B2 (en) * 2007-11-28 2011-06-14 Industrial Technology Research Institute Device for and method of signal synchronization in a communication system
US7940861B2 (en) * 2007-12-07 2011-05-10 Advantech Advanced Microwave Technologies, Inc. QAM phase error detector
KR100937430B1 (ko) * 2008-01-25 2010-01-18 엘지전자 주식회사 신호 송수신 방법 및 신호 송수신 장치
PL3462638T3 (pl) * 2008-11-18 2020-07-27 Viasat Inc. Skuteczna sygnalizacja sterowania przez współdzielone kanały komunikacyjne o rozszerzonym zakresie dynamiki
KR101038855B1 (ko) * 2008-12-04 2011-06-02 성균관대학교산학협력단 Ofdm 시스템에서의 주파수 동기 장치 및 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208481B1 (en) * 1996-04-30 2001-03-27 Cirrus Logic, Inc. Gain and phase constrained adaptive equalizing filter in a sampled amplitude read channel for magnetic recording
US6650699B1 (en) * 1999-01-21 2003-11-18 International Business Machines Corporation Methods and apparatus for timing recovery from a sampled and equalized data signal

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FORNEY G D: "MAXIMUM-LIKELIHOOD SEQUENCE ESTIMATION OF DIGITAL SEQUENCES IN THE PRESENCE OF INTERSYMBOL INTERFERENCE", IEEE TRANSACTIONS ON INFORMATION THEORY, IEEE, US LNKD- DOI:10.1109/TIT.1972.1054829, vol. IT-18, no. 3, 1 May 1972 (1972-05-01), pages 363 - 378, XP000676128, ISSN: 0018-9448 *
GEORGHIADES C N ET AL: "Exploiting faster-than-nyquist signaling", IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US LNKD- DOI:10.1109/TCOMM.2003.816943, vol. 51, no. 9, 1 September 2003 (2003-09-01), pages 1502 - 1511, XP011100813, ISSN: 0090-6778 *
MUELLER K H ET AL: "TIMING RECOVERY IN DIGITAL SYNCHRONOUS DATA RECEIVERS", IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US LNKD- DOI:10.1109/TCOM.1976.1093326, vol. 24, no. 5, 1 May 1976 (1976-05-01), pages 516 - 531, XP000573328, ISSN: 0090-6778 *
RUSEK F ET AL: "Non Binary and Precoded Faster Than Nyquist Signaling", IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US LNKD- DOI:10.1109/TCOMM.2008.060075, vol. 56, no. 5, 1 May 2008 (2008-05-01), pages 808 - 817, XP011227217, ISSN: 0090-6778 *

Also Published As

Publication number Publication date
EP2436138A1 (en) 2012-04-04
CN102449968B (zh) 2015-03-25
EP2436158A1 (en) 2012-04-04
CN102449950B (zh) 2014-11-05
JP5730861B2 (ja) 2015-06-10
WO2010138206A1 (en) 2010-12-02
BRPI1011215A2 (pt) 2016-03-15
WO2010138199A2 (en) 2010-12-02
EP2436140A2 (en) 2012-04-04
JP5678040B2 (ja) 2015-02-25
EP2436141A2 (en) 2012-04-04
US8792592B2 (en) 2014-07-29
KR20120028343A (ko) 2012-03-22
JP5646609B2 (ja) 2014-12-24
WO2010138198A1 (en) 2010-12-02
BRPI1011199A2 (pt) 2016-03-15
JP2012528520A (ja) 2012-11-12
CN102449968A (zh) 2012-05-09
US8737553B2 (en) 2014-05-27
US20120039380A1 (en) 2012-02-16
US20120045028A1 (en) 2012-02-23
CN102484578A (zh) 2012-05-30
US20120069942A1 (en) 2012-03-22
US8687747B2 (en) 2014-04-01
WO2010138205A1 (en) 2010-12-02
JP2012528523A (ja) 2012-11-12
CN102449950A (zh) 2012-05-09
CN102449949A (zh) 2012-05-09
WO2010138201A2 (en) 2010-12-02
BRPI1011213A2 (pt) 2016-03-15
BRPI1012296A2 (pt) 2016-03-15
CN102439928A (zh) 2012-05-02
US20120057664A1 (en) 2012-03-08
JP2012528522A (ja) 2012-11-12
BRPI1011995A2 (pt) 2016-05-10
EP2436158B1 (en) 2018-08-15
JP2012528521A (ja) 2012-11-12
JP2012528524A (ja) 2012-11-12
KR20120016294A (ko) 2012-02-23
WO2010138201A3 (en) 2011-03-24
US20120051478A1 (en) 2012-03-01
EP2436159A1 (en) 2012-04-04
WO2010138199A3 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
US20120039380A1 (en) Method and apparatus for iterative timing and carrier recovery
US9231628B2 (en) Low-complexity, highly-spectrally-efficient communications
US9118519B2 (en) Reception of inter-symbol-correlated signals using symbol-by-symbol soft-output demodulator
US6819630B1 (en) Iterative decision feedback adaptive equalizer
KR100876068B1 (ko) 하이브리드 주파수-시간 영역 등화기
US8811548B2 (en) Hypotheses generation based on multidimensional slicing
US8804879B1 (en) Hypotheses generation based on multidimensional slicing
US8542724B1 (en) Iterative joint minimum mean square error decision feedback equalizer and turbo decoder
US20050018794A1 (en) High speed, low-cost process for the demodulation and detection in EDGE wireless cellular systems
CN115996161B (zh) 序列检测装置以及序列检测方法
Sozer et al. Iterative equalization and decoding techniques for shallow water acoustic channels
WO2005050987A1 (en) Apparatus and method of decision feedback equalization in terrestrial digital broadcasting receiver
CA2065167C (en) Method and apparatus for equalization in fast varying mobile radio channels
US9088400B2 (en) Hypotheses generation based on multidimensional slicing
WO2000044108A1 (fr) Egalisateur adaptatif et procede d'egalisation adaptative
CN107113262A (zh) 用于单载波传输的本地振荡器相位噪声跟踪
CN100466644C (zh) 载波调制数字通信系统的频移估计的方法和系统
Laot et al. Adaptive MMSE turbo equalization with high-order modulations and spatial diversity applied to underwater acoustic communications
CN100479515C (zh) 用于数字电视的判定反馈均衡器及其方法
Schniter et al. Equalization of time-varying channels
Zhang et al. Comparison of low complexity receiver techniques for faster-than-nyquist signaling
Abdullah Improved data detection processes using retraining over telephone lines
CN116827729A (zh) 一种gmsk水声通信的时频联合均衡方法及均衡系统
Dong Turbo equalization with channel prediction and iterative channel estimation
Yuxin et al. The combined prior information in MMSE turbo equalization with preprocessor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080023482.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10727521

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13138923

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012513059

Country of ref document: JP

Ref document number: 2010727521

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1011199

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1011199

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111121