US20100235951A1 - Novel genes encoding insecticidal proteins - Google Patents

Novel genes encoding insecticidal proteins Download PDF

Info

Publication number
US20100235951A1
US20100235951A1 US12/293,772 US29377207A US2010235951A1 US 20100235951 A1 US20100235951 A1 US 20100235951A1 US 29377207 A US29377207 A US 29377207A US 2010235951 A1 US2010235951 A1 US 2010235951A1
Authority
US
United States
Prior art keywords
dna
plant
seq
gene
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/293,772
Other languages
English (en)
Inventor
Jeroen Van Rie
Frank Meulewaeter
Gerben Van Eldik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience NV
Original Assignee
Bayer Bioscience NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Bioscience NV filed Critical Bayer Bioscience NV
Priority to US12/293,772 priority Critical patent/US20100235951A1/en
Assigned to BAYER BIOSCIENCE N.V. reassignment BAYER BIOSCIENCE N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEULEWAETER, FRANK, VAN ELDIK, GERBEN, VAN RIE, JEROEN
Publication of US20100235951A1 publication Critical patent/US20100235951A1/en
Assigned to BAYER CROPSCIENCE N.V. reassignment BAYER CROPSCIENCE N.V. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: BAYER BIOSCIENCE, N.V.
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/18Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • C07K14/325Bacillus thuringiensis crystal peptides, i.e. delta-endotoxins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/0104Malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) (1.1.1.40)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to new gene sequences encoding insecticidal proteins produced by Bacillus thuringiensis strains. Particularly, new chimeric genes encoding a Cry1C protein are provided which are useful to protect plants from insect damage. Also included herein are plant cells or plants comprising such genes and methods of making or using them, as well as plant cells or plants comprising such cry1C chimeric gene and at least one other gene encoding an insecticidal protein, such as new gene sequences encoding a Cry1B or Cry1D protein.
  • Bt Bacillus thuringiensis
  • the current invention provides new genes encoding proteins of the Cry1C type of Bt proteins, which ideally are combined with genes encoding proteins of the Cry1B or Cry1D type Bt proteins.
  • the DNA sequences of the cry1C, cry1B or cry1D genes of the invention and of the modified transit peptide of the invention are artificial genes, not found in nature, and are different from any known DNA sequence. Indeed, any one of the DNA sequences of SEQ ID Nos. 1, 3, 10, 14 or 16 shows at most 76.6% sequence identity with the closest known DNA sequences.
  • genes derived from Bt are provided for use in plants.
  • such genes are useful in vegetables plant crops, particularly Brassicaceae plants such as cauliflower, cabbage, Chinese cabbage, turnip, mustard, oilseed rape, kale, broccoli, Brussels sprouts, mustard spinach, and the like.
  • Brassicaceae plants such as cauliflower, cabbage, Chinese cabbage, turnip, mustard, oilseed rape, kale, broccoli, Brussels sprouts, mustard spinach, and the like.
  • the following Brassica species plants are protected from insects by the new genes of the current invention: B. carinata, B. elongata, B. fruticulosa, B. juncea, B. napus, B. narinosa, B. nigra, B. oleracea, B. perviridis, B. rapa, B. rupestris, B.
  • the plants or seeds comprising at least one of the new genes of the invention can be obtained by transformation of plant cells and production of plants or seed therefrom comprising the genes of the invention. Also included herein are plants or seeds obtained by crossing with a plant transformed to contain at least one of the genes of the invention, and by application of routine breeding steps. Obviously, any plant species to be protected from insect species that are killed or controlled by the Bt proteins encoded by the novel genes of this invention can be transformed with the genes of the invention to obtain transgenic plants and seeds with increased resistance to such insects.
  • the current invention also provides a combination of technologies to allow for the most optimal product from a resistance management point of view.
  • the plants of the invention produce at least 2 different Bt proteins and such proteins are encoded by the highly-expressed cry genes of the invention which have been stably integrated, preferably at a single locus in the plant's genome.
  • such at least 2 Bt genes include a cry1C and a cry1B gene, a cry1C and a cry1D gene, or a combination of a cry1C, a cry1B and a cry1D gene of this invention.
  • a marker gene allowing rapid identification of transgenic plants preferably a herbicide resistance gene, is located in the same plant, particularly at the same locus in the plant's genome as a cry gene of the invention.
  • the marker gene is a gene encoding a phosphinothricin acetyltransferase or a glyphosate-insensitive EPSPS.
  • cry1B and cry1D genes are provided, which can be expressed in plants at high levels, such as the cry1B1 and cry1B2 and the cry1D1 and cry1D2 genes. Also plants cells, plants or seeds comprising any of these genes and methods of producing or using them alone or in combination are provided herein.
  • the current invention provides novel genes encoding an insecticidal protein comprising a functional plant intron in their coding sequence.
  • the presence of the intron also secures that the gene does not express a functional protein when the gene is in an environment where the intron cannot be spliced, such as a bacteria or another prokaryotic microorganism.
  • the presence of this intron in the gene sequence also allows for high expression levels to be obtained in plants.
  • variants of the Cry1C protein of the invention comprising the sequence of SEQ ID No. 2 from amino acid position 29 to amino acid position 627, but wherein one, some or all of the following amino acids at the following positions compared to the positions in SEQ ID No. 2 are changed: the amino acid at position 125 is Alanine, the amino acid at position 184 is Valine, the amino acid at position 295 is Arginine, the amino acid at position 454 is Aspartic acid, or the amino acid at position 593 is Arginine. Also provided herein are variants of the Cry1B protein of the invention comprising the sequence of SEQ ID No.
  • a novel DNA encoding a chloroplast transit peptide particularly a DNA comprising the sequence of SEQ ID No. 16 from nucleotide position 7 to nucleotide position 371, particularly the sequence of SEQ ID No. 16, as well as such DNA encoding a variant of the protein of SEQ ID No.17, such as a chloroplast transit peptide comprising the sequence of SEQ ID No. 17 from amino acid position 3 to amino acid position 124, wherein the Cys amino acid at position 55 is replaced by Tyr and/or wherein a Gly amino acid is added after the Gly amino acid at position 51.
  • the current invention provides a chimeric gene, comprising the following operably-linked sequences: a) a coding region encoding a Cry1C protein, comprising the DNA of any one of SEQ ID Nos. 1, 3, 4 or 6 or a variant thereof, and b) a promoter region capable of directing expression in plant cells.
  • a promoter comprises the sequence of SEQ ID No, 18 or 19.
  • the chimeric gene further comprises a 3′ polyadenylation and transcript termination region, particularly that of the NADP-malic enzyme gene from Flaveria bidentis.
  • the chimeric gene further comprises the leader sequence of the tapetum specific E1 gene of Oryza sativa between the promoter and the coding region.
  • the current invention also provides a DNA comprising any of the above chimeric genes, further comprising a second chimeric gene, said second chimeric gene comprising the following operably-linked sequences: a) a second coding region encoding a Cry1B protein comprising the DNA of SEQ ID No. 8 or 10, and b) a second promoter region capable of directing expression in plant cells; or a DNA comprising any of the above chimeric genes, further comprising a second chimeric gene, said second chimeric gene comprising the following operably-linked sequences: a) a coding region encoding a Cry1D protein comprising the DNA of SEQ ID No. 12 or 14, and b) a promoter region capable of directing expression in plant cells.
  • the above DNAs are provided, wherein said second promoter region comprises the sequence of SEQ ID No. 18 or 19 and is different from said first promoter region; or wherein said second chimeric gene further comprises a 3′ polyadenylation and transcript termination region, particularly of the NADP-malic enzyme gene from Flaverie bidentis.
  • the second chimeric gene in these DNAs further comprises the leader sequence of the tapetum specific E1 gene of Oryza sativa between the promoter and the coding region.
  • transgenic plant cell or plant comprising any of the above genes or DNAs stably incorporated in its genome, preferably when the cell or plant is a Brassica species plant or plant cell, particularly of the species Brassica oleraceae, more particularly cabbage or cauliflower.
  • any of the above chimeric genes or DNAs to control insect pests, to obtain plant cells, plants or seeds with increased resistance to insects; the use of any of the above chimeric genes or DNAs to delay or prevent insect resistance development in transgenic plants expressing an insecticidal protein by insects attempting to feed on such plants; or the use of any of the above chimeric genes or DNAs to obtain cabbage, oilseed rape or cauliflower protected from Plutella xylostella.
  • Also included herein are methods for controlling insects comprising the step of planting or sowing in a field, plants comprising any of the above chimeric genes or DNAs; as well as methods of controlling insects in Brassica species plants, comprising the step of expressing any of the above chimeric genes or DNA in plants; or methods of producing plants or seeds resistant to insects, comprising the steps of: a) obtaining a plant transformed with the gene of any one of claims 1 to 5 or the DNA of any one of claims 6 to 12 , and b) selecting progeny of said plant or seeds thereof, containing said gene or DNA.
  • a chimeric gene comprising the following operably-linked sequences: a) a first fragment of a coding sequence encoding an insecticidal protein, b) a plant intron sequence, c) a second fragment of said coding sequence, d) a promoter region capable of directing expression in plant cells, and wherein no insecticidal protein can be produced from such chimeric gene in a given host cell wherein the intron is not spliced; particularly such chimeric gene wherein such intron is the second intron of the ST-LS1 gene of Solanum tuberosum.
  • microorganism comprising any of the above chimeric genes or DNAs, particularly when such microorganism is of the genus Escherichia, Bacillus or Agrobacterium.
  • nucleic acid sequence refers to a DNA or RNA molecule in single or double stranded form, preferably a DNA molecule.
  • isolated DNA refers to a DNA which is not naturally-occurring or no longer in the natural environment wherein it was originally present, e.g., a DNA coding sequence associated with other regulatory elements in a chimeric gene, a DNA transferred into another host cell, such as a plant cell, or an artificial, synthetically-made DNA sequence having a different nucleotide sequence compared to any naturally-occurring DNA sequence.
  • nucleic acid sequences particularly DNA sequences, encoding Bt Cry toxins or variants thereof have been constructed.
  • the new DNA sequences are designated herein as cry1C1-4, cry1B1, cry1B2, cry1D1, and cry1D2, and their encoded proteins are designated herein as Cry1C (e.g., Cry1C1, Cry1C3, and Cry1C4), Cry1B (e.g., Cry1B1 and Cry1B2) and Cry1D (e.g., Cry1D1 and Cry1D2) proteins.
  • a new DNA sequence encoding a modified chloroplast transit peptide is provided herein, e.g., a DNA comprising the sequence of SEQ ID No. 16 from nucleotide position 7 to nucleotide position 371, particularly the sequence of SEQ ID No. 16, which is designed for optimal expression in plants, particularly vegetables such as Brassicaceae plants, especially cabbage and cauliflower.
  • Cry1C protein refers to any insecticidal protein comprising the smallest fragment of the amino acid sequence of SEQ ID No. 2 which retains insecticidal activity (hereinafter referred to as “smallest toxic fragment”), particularly any protein comprising the amino acid sequence from the amino acid at position 29 to the amino acid at position 627 in SEQ ID No. 2, preferably any insecticidal protein comprising the amino acid sequence of SEQ ID No. 2 from amino acid position 3 to amino acid position 627. Also included herein is an insecticidal protein comprising the amino acid sequence of SEQ ID No. 2 (also named Cry1C1 protein herein), SEQ ID No. 5 (also named Cry1C3 protein herein) or SEQ ID No. 7 (also named Cry1C4 protein herein).
  • a Cry1C protein comprising the amino acid sequence from the amino acid at position 29 to the amino acid at position 627 in SEQ ID No. 2 retains all or most of the insecticidal activity of the entire protein as produced in nature, and addition of protein sequences at the N- or C-terminal part thereof do not disrupt this activity.
  • any protein characterized by an amino acid sequence containing or including this region is useful and forms part of this invention.
  • insecticidal proteins comprising a sequence having a sequence identity of at least 95%, particularly at least 96%, 97%, 98% or 99% at the amino acid sequence level with this region of SEQ ID No.2, as determined using the Needleman-Wunsch global alignment algorithm in EMBOSS (Rice et al., 2000) to find optimum alignment over the entire length of the sequences, using default settings (gap opening penalty 10, gap extension penalty 0.5; for amino acid sequence comparisons, the EBLOSUM62 matrix is used), preferably proteins having some, preferably 5-10, particularly less than 5, amino acids added, replaced or deleted without significantly changing, preferably without changing, the insecticidal activity of the protein.
  • Preferred variants of the Cry1C protein of the invention include a protein comprising the sequence of SEQ ID No. 2 from amino acid position 29 to amino acid position 627, but wherein one, some or all of the following amino acids at the following positions compared to the positions in SEQ ID No. 2 are changed: the amino acid at position 125 is Alanine, the amino acid at position 184 is Valine, the amino acid at position 295 is Arginine, the amino acid at position 454 is Aspartic acid, or the amino acid at position 593 is Arginine. Also included herein are any Cry1C-based protein variants, hybrids or mutants retaining substantially the same insecticidal activity as that of the Cry1C protein of the invention defined above.
  • DNA or protein “comprising” a certain sequence X refers to a DNA or protein including or containing at least the sequence X, so that other nucleotide or amino acid sequences can be included at the 5′ (or N-terminal) and/or 3′ (or C-terminal) end, e.g. (the nucleotide sequence of) a selectable marker protein as disclosed in EP 0 193 259, (the nucleotide sequence of) a transit peptide, and/or a 5′ or 3′ leader sequence.
  • sequence identity of two related nucleotide or amino acid sequences, expressed as a percentage, refers to the number of positions in the two optimally aligned sequences which have identical residues ( ⁇ 100) divided by the number of positions compared.
  • a gap i.e., a position in an alignment where a residue is present in one sequence but not in the other, is regarded as a position with non-identical residues.
  • the alignment of the two sequences is performed by the Needleman and Wunsch algorithm (Needleman and Wunsch 1970) in EMBOSS (Rice et al., 2000) to find optimum alignment over the entire length of the sequences, using default settings (gap opening penalty 10, gap extension penalty 0.5).
  • the “smallest toxic fragment” of a Cry protein of the invention is that smallest fragment or portion of a Cry protein retaining insecticidal activity that can be obtained by enzymatic, such as trypsin or chymotrypsin, digestion of the full length Cry protein, or that smallest fragment or portion of a Cry protein retaining insecticidal activity that can be obtained by making nucleotide deletions in the DNA encoding a Cry protein.
  • Such smallest toxic fragment can also be obtained by treatment of a Cry protein with insect gut juice, preferably midgut juice, from an insect species susceptible to (i.e., killed or otherwise negative affected in its growth or feeding by) such Cry protein.
  • “Cry1D protein” refers to any insecticidal protein comprising the smallest toxic fragment of the amino acid sequence of SEQ ID No. 15, particularly any insecticidal protein comprising the amino acid sequence from the amino acid at position 21 or 29 to the amino acid at position 604 in SEQ ID No. 15, preferably any insecticidal protein comprising the amino acid sequence of SEQ ID No. 15 from amino acid position 3 to amino acid position 604. Also included herein is an insecticidal protein comprising the amino acid sequence of SEQ ID No. 13 (also named Cry1D1 protein herein) or SEQ ID No. 15 (also named Cry1D2 protein herein).
  • a Cry1D protein comprising the amino acid sequence from the amino acid at position 29 to the amino acid at position 604 in SEQ ID No. 15 retains all or most of the insecticidal activity of the entire protein as produced in nature, and addition of protein sequences at the N- or C-terminal part thereof do not disrupt this activity.
  • any protein characterized by an amino acid sequence containing or including this region is useful and forms part of this invention.
  • “Cry1B protein” refers to any insecticidal protein comprising the smallest toxic fragment of the amino acid sequence of SEQ ID No. 11, particularly any insecticidal protein comprising the amino acid sequence from the amino acid at position 31 to the amino acid at position 648, in SEQ ID No. 11, preferably any insecticidal protein comprising the amino acid sequence of SEQ ID No. 11 from amino acid position 3 to amino acid position 648. Also included herein is any insecticidal protein comprising the amino acid sequence of SEQ ID No. 11 or SEQ ID No. 9. A Cry1B protein comprising the amino acid sequence from the amino acid at position 31 to the amino acid at position 648 in SEQ ID No.
  • any protein characterized by an amino acid sequence containing or including this region is useful and forms part of this invention.
  • insecticidal proteins having a sequence identity of at least 80%, particularly at least 85%, 90%, 95%, 96%, 97%, 98%, or at least 99% at the amino acid sequence level in this region of SEQ ID No. 11, as determined using pairwise alignments using the Needleman-Wunsch global alignment algorithm in EMBOSS (Rice et al., 2000) to find optimum alignment over the entire length of the sequences, using default settings (gap opening penalty 10, gap extension penalty 0.5, for amino acid sequence comparisons, the EBLOSUM62 matrix is used), preferably proteins having some, preferably 5-10, particularly less than 5, amino acids added, replaced or deleted in the amino acid sequence from the amino acid at position 31 to the amino acid at position 648 in SEQ ID No.
  • Preferred variants of the Cry1B protein of the invention include an insecticidal protein comprising the sequence of SEQ ID No. 11 from amino acid position 31 to 648, but wherein the amino acid at position 151 in SEQ ID No.11 is Tyrosine or the amino acid at position 353 in SEQ ID No. 11 is Arginine, or a protein wherein the amino acid at position 151 in SEQ ID No.11 is Tyrosine and the amino acid at position 353 in SEQ ID No. 11 is Arginine.
  • DNA or gene refers to any DNA sequence encoding the Cry1C, Cry1B or Cry1D protein, respectively, as defined above.
  • DNA sequences encoding insecticidal proteins which are similar enough to any one of the DNA sequences of SEQ ID No. 1, 3, 4, 6, 8, 10, 12, or 14 so that they can (i.e., have the ability to) hybridize to these DNA sequences under stringent hybridization conditions.
  • Stringent hybridization conditions refers particularly to the following conditions: immobilizing the relevant DNA sequences on a filter, and prehybridizing the filters for either 1 to 2 hours in 50% formamide, 5% SSPE, 2 ⁇ Denhardt's reagent and 0.1% SDS at 42° C., or 1 to 2 hours in 6 ⁇ SSC, 2 ⁇ Denhardt′s reagent and 0.1% SDS at 68 ° C.
  • the denatured dig- or radio-labeled probe is then added directly to the prehybridization fluid and incubation is carried out for 16 to 24 hours at the appropriate temperature mentioned above.
  • cry1C, cry1B or cry1D DNA of this invention are a DNA encoding the insecticidal Cry1C, Cry1B or Cry1D protein variants described above.
  • Cry1C DNA or gene as defined herein are: a) a DNA comprising the nucleotide sequence of SEQ ID No. 1 from nucleotide position 85 to nucleotide position 2073, b) a DNA comprising the nucleotide sequence of SEQ ID No. 3 from nucleotide position 85 to nucleotide position 2073, c) a DNA comprising the nucleotide sequence of SEQ ID No. 1 from nucleotide position 85 to nucleotide position 2073 fused to the DNA sequence of SEQ ID No. 16, d) a DNA comprising the nucleotide sequence of SEQ ID No.
  • nucleotide position 7 from nucleotide position 2439
  • Cry1D DNA or gene as defined herein are: a) a DNA comprising the nucleotide sequence of SEQ ID No. 14 from nucleotide position 85 to nucleotide position 1812, or b) a DNA comprising the nucleotide sequence of SEQ ID No. 12 from nucleotide position 7 to nucleotide position 2178.
  • Cry1B DNA or gene as defined herein are: a) a DNA comprising the nucleotide sequence of SEQ ID No. 8 from nucleotide position 7 to nucleotide position 2310, or b) a DNA comprising the nucleotide sequence of SEQ ID No. 10 from nucleotide position 91 to nucleotide position 1944.
  • the DNA sequences of the cry1C, cry1B or cry1D genes of the invention show at most only 76.6% sequence identity with the closest previously known DNA sequences available in databases.
  • Available sequence databases were checked for the sequences with closest sequence identity using the well-known BLAST algorithm, and then the Needleman-Wunsch global alignment algorithm in EMBOSS (Rice et al., 2000) was used to find the optimum alignment between the closest sequences and the sequences of the invention (considering their entire length, using default settings (gap opening penalty 10, gap extension penalty 0.5).
  • a fragment of the prior art sequence was selected to secure optimal alignment, but even then only 72.5% sequence identity was the closest sequence identity with any known DNA sequence listed in the available databases.
  • cry1C, cry1B or cry1D genes are DNA sequences encoding an insecticidal protein with at least 80%, 90%, preferably at least 93 to 97%, particularly at least 98% or at least 99%, sequence identity to any one of the coding sequences of SEQ ID No. 1, 3, 4, 6, 8, 10, 12, or 14 or DNA sequences encoding an insecticidal protein hybridizing to any one of SEQ ID No. 1, 3, 4, 6, 8, 10, 12, or 14 under stringent hybridization conditions, preferably hybridizing stringently to that part of the DNA sequence of any one of SEQ ID No. 1, 3, 4, 6, 8, 10, 12, or 14 which is required to encode the smallest toxic protein fragment of the proteins of this invention.
  • the DNA sequence identities referred to herein are calculated using the Needleman-Wunsch global alignment algorithm in EMBOSS (Rice et al., 2000) to find optimum alignment over the entire length of the sequences, using default settings (gap opening penalty 10, gap extension penalty 0.5; for DNA sequence comparisons, the EDNAFULL matrix is used), the stringent hybridization conditions are as defined above.
  • “Insecticidal activity” of a protein means the capacity of a protein to kill insects, inhibit their growth or cause a reduction in insect feeding when such protein is ingested by insects, preferably by expression in a recombinant host such as a plant cell. It is understood that activity to insects of one insect species, preferably the larvae thereof, is sufficient for a protein to have insecticidal activity as used herein, although often insects of different insect species are affected by the proteins of the invention.
  • the recombinant hosts expressing at least one of the Cry1C, Cry1B or Cry1D proteins of the invention are typically developed for or targeted to a specific major insect pest species for a certain crop or region where such insect species is a pest, e.g., the diamondback moth for Brassica plant species, but other insects will often also be controlled by the recombinant hosts of the invention, such as by the transgenic plant cells or plants, e.g., the exemplified transgenic Brassica cauliflower or cabbage plant cells or plants of the invention comprising the cry1C and/or cry1B gene in accordance with the invention.
  • (Insect-)controlling amounts” of or “control” by a protein, or a recombinant host expressing a protein of this invention refers to an amount of protein which is sufficient to limit damage to a plant by insects feeding on such plant, e.g. by killing the insects or by inhibiting the insect development, fertility or growth in such a manner that an insect species provides less damage to a plant.
  • insects susceptible to the new Cry proteins of the invention are contacted with these proteins in insect-controlling amounts, preferably insect-killing amounts.
  • recombinant hosts of the invention such as transgenic plant cells or plants of the invention, express a protein or a combination of proteins of the invention at high levels, such that a “high dose” level is obtained.
  • a “high dose level”, “high dose insect resistance” or “high dose” expression refers to a concentration of the insecticidal protein in a plant cell or plant (measured by ELISA as a percentage of the total soluble protein, which total soluble protein is measured after extraction of soluble proteins in an extraction buffer (e.g., the extraction buffer described in Jansens et al., 1997) using Bradford analysis (Bio-Rad, Richmond, Calif.; Bradford, 1976)) which kills a developmental stage of the target insect which is significantly less susceptible, preferably between 25 to 100 times less susceptible to the toxin than the first larval stage of the insect and can thus can be expected to ensure full control of the target insect.
  • an extraction buffer e.g., the extraction buffer described in Jansens et al., 1997) using Bradford analysis (Bio-Rad, Richmond, Calif.; Bradford, 1976)
  • this refers to the obtaining of at least 97 percent, preferably at least 99 percent, most preferably 100 percent, mortality for the fourth larval instar (for insects having 5 larval instars) or the last larval instar (for insects having 4 or less larval instars) of a target insect, as measured 10 to 14 days after insect infestation of such plant cells or plant in routine insect bioassays, preferably whole plant bioassays, using suitable controls.
  • target insect species i.e., an insect species, preferably the larvae thereof, which can cause significant damage to a plant species or variety, and which is typically an insect for which a transgenic Bt plant is designed and developed
  • Preferred target insects for the proteins of this invention are economically damaging insect pests of plants.
  • Cry1protein/DNA or “Cry protein/DNA of this Invention”, as used herein, refer to any one of the Cry1C, Cry1B, or Cry1D proteins or any one of the cry1C, cry1B or cry1D DNA sequences as defined herein.
  • a Cry or Cry1 protein, as used herein, can be a protein in the full length size, also named a protoxin, or can be in a truncated form as long as the insecticidal activity is retained, or can be a combination of different proteins in a hybrid or fusion protein.
  • a “protoxin” refers to the full length insecticidal crystal protein as it is encoded by the naturally-occurring Bt DNA sequence, a “toxin” refers to an insecticidal fragment thereof, particularly the smallest toxic fragment thereof, typically in the molecular weight range of about 50-65 kD, particularly about 60 kD, as determined by SDS-PAGE electrophoresis compared to routinely-used molecular weight standards.
  • a “chimeric gene”, as used herein, is used to refer to a gene or DNA sequence comprising at least two different DNA fragments (such as a promoter, 5′ untranslated leader, coding region, intron, 3′ untranslated trailer, and a 3′ end transcript formation and polyadenylation region) which are not naturally associated with each other or which originate from different sources.
  • a plant-expressible chimeric gene as used herein, is a gene comprising a promoter region operably-linked to a synthetic, man-made coding sequence such as any of the cry1C, cry1B or cry1D genes of the invention.
  • the DNA sequences encoding the Cry1 proteins of the invention can be chemically synthesized using routine techniques, and can be inserted in expression vectors to produce high amounts of Cry1 proteins.
  • the Cry1 proteins can be used to prepare specific monoclonal or polyclonal antibodies in a conventional manner (Höfte et al., 1988) to develop immuno-assays (e.g., ELISA, Western blotting, antibody-coated dip-sticks) to detect the presence of absence of these proteins in any material, such as plant material.
  • the tools developed to identify transgenic plant cells, plants, or plant materials such as leaves or seeds comprising any one of the cry1 genes of the invention integrated in their genome, or DNA-containing products which comprise or are derived from plant material comprising a cry1 gene of the invention are based on the specific sequence characteristics of the novel genes of the invention, such as, a specific restriction map of the genomic region comprising the introduced (foreign) cry1 gene, molecular markers or the sequence of the foreign DNA integrated in the plant's genome.
  • primers and probes can be developed which specifically recognize these sequences in the nucleic acid (DNA or RNA) of a sample by way of a molecular biological technique.
  • a PCR method can be developed to identify the genes of the invention in biological samples (such as samples of plants, plant material or products comprising plant material).
  • Such a PCR is based on at least two specific “primers”, e.g., one recognizing a sequence within the cry1 gene and the other recognizing a sequence within the associated transit peptide sequence or within the regulatory regions such as the promoter or 3′ end of the chimeric gene comprising said cry1 gene of the invention, or both recognizing specifically the cry1 gene of the invention.
  • the primers preferably have a sequence of between 15 and 35 nucleotides which under optimized PCR conditions “specifically recognize” a sequence within the cry1 chimeric gene of the invention, so that a specific fragment (“integration fragment” or discriminating amplicon) is amplified from a nucleic acid sample comprising a cry1 gene of the invention. This means that only the targeted integration fragment, and no other sequence in the plant genome or foreign DNA, is amplified under optimized PCR conditions.
  • PCR primers suitable for the invention are oligonucleotides ranging in length from 17 nucleotides to about 200 nucleotides, comprising a nucleotide sequence of at least 17 consecutive nucleotides, preferably 20 consecutive nucleotides selected from the cry1C, cry1B or cry1D chimeric gene sequence as transferred to plant cells or plants of the invention.
  • the primers may of course be longer than the mentioned 17 consecutive nucleotides, and may, e.g., be 20, 21, 30, 35, 50, 75, 100, 150, 200 nt long or even longer.
  • the primers may entirely consist of nucleotide sequences selected from the cry1 nucleotide sequences. However, the nucleotide sequence of the primers at their 5′ end (i.e. outside of the 3′-located 17 consecutive nucleotides) is less critical. Thus, the 5′ sequence of the primers may consist of a nucleotide sequence selected from the cry1 chimeric gene sequence, as appropriate, but may contain several (e.g. 1, 2, 5, 10) mismatches.
  • the 5′ sequence of the primers may even entirely consist of a nucleotide sequence unrelated to the cry1 genes of the invention, such as a nucleotide sequence representing one or more restriction enzyme recognition sites.
  • a nucleotide sequence representing one or more restriction enzyme recognition sites Such unrelated sequences or flanking DNA sequences with mismatches should preferably be no longer than 100, more preferably no longer than 50 or no longer than 25 nucleotides.
  • suitable primers may comprise or consist of a nucleotide sequence at their 3′ end spanning the joining region between the cry1 gene of the invention and the associated transit peptide sequence or the regulatory elements in the cry1 chimeric gene integrated in the plant DNA, such as a promoter sequence, a leader sequence, a trailer sequence or a 3′ transcript termination and polyadenylation sequence. It will also be immediately clear to the skilled artisan that properly selected PCR primer pairs should also not comprise sequences complementary to each other.
  • primer encompasses any nucleic acid that is capable of priming the synthesis of a nascent nucleic acid in a template-dependent process, such as PCR.
  • primers are oligonucleotides from 10 to 30 nucleotides, but longer sequences can be employed.
  • Primers may be provided in double-stranded form, though the single-stranded form is preferred. Probes can be used as primers, but are designed to bind to the target DNA or RNA and need not be used in an amplification process.
  • recognizing refers to the fact that the specific primers specifically hybridize to a nucleic acid sequence in the cry1 genes of the invention under a standard PCR identification protocol, whereby the specificity is determined by the presence of positive and negative controls as is well known in the art.
  • kits to detect the cry1 genes of the invention in biological material refers to a set of reagents for the purpose of performing the identification of the cry1 genes of the invention in biological samples. More particularly, a preferred embodiment of the kit of the invention comprises at least one or two specific primers, as described above.
  • the kit can further comprise any other reagent described herein in the PCR identification protocol.
  • the kit can comprise a specific probe, as described above, which specifically hybridizes with nucleic acid of biological samples to identify the presence of the cry1 genes therein.
  • the kit can further comprise any other reagent (such as but not limited to hybridizing buffer, label) for identification of the cry1 genes in biological samples, using the specific probe.
  • PCR identification protocol for each cry1 gene-containing plant species. It is however understood that a number of parameters in the PCR identification protocol may need to be adjusted to specific laboratory conditions, and may be modified slightly to obtain similar results. For instance, use of a different method for preparation of DNA may require adjustment of, for instance, the amount of primers, polymerase and annealing conditions used. Similarly, the selection of other primers may dictate other optimal conditions for the PCR identification protocol. These adjustments will however be apparent to a person skilled in the art, and are furthermore detailed in current PCR application manuals such as the one cited above.
  • cry1B gene of the invention P1B227 (TAC TTC GAA CAG AAA GAA CGA GAA CGA G, SEQ ID No. 20) and P1B228 (GTC CAG CGA AAG GAA CTC CAA GAA, SEQ ID No. 21), and for the cry1C gene of the invention: P1C247 (AAC CTT GAG GGA CTT GGA AAC, SEQ ID No. 22) and P1C252 (AAG ATG AGG GTT TCT GAT AGC AG, SEQ ID No. 23).
  • any gene encoding an insecticidal Cry1B or Cry1C protein and specifically recognized by these primers is included herein, as well as any method to detect such genes using such or other specific primers.
  • specific markers or labeled probes can be designed to detect the DNA sequences of this invention, and any use of specific markers or probes directed to any of the cry1C, cry1B or cry1D genes of the invention is included herein.
  • the specific markers, primers or labeled probes do not detect or recognize any plant, preferably any plant of the same species as the test plant, not containing a cry1 DNA sequence of the invention, particularly any such markers, primers or labeled probes do not detect or recognize any plant expressing a Cry1C, Cry1D or Cry1B protein wherein such plant does not contain a DNA sequence of the invention (such as a cry1C, cry1D or cry1B DNA as defined herein, e.g., a DNA comprising the nucleotide sequence of any one of SEQ ID No. 1, 3, 4, 6, 8, 10, 12, or 14).
  • DNA sequences of this invention can be slightly modified to allow for more convenient restriction enzyme sites, or to make small changes without changing the efficacy and without significantly changing, preferably without changing, the protein they encode. Indeed, because of the degeneracy of the genetic code, it is well known that most amino acid codons can be replaced by others without changing the amino acid sequence of the protein. Furthermore, some amino acids can be substituted by other equivalent amino acids without significantly changing, preferably without changing, the insecticidal activity of the protein.
  • DNA sequences of the invention include DNA sequences with less than 20, preferably 5-10, nucleotide differences compared to the cry1 genes of this invention as defined herein, but which encode an insecticidal Cry1 protein of the invention, as defined herein.
  • cry1C1 chimeric gene of the invention encodes the Cry1C1 protein of the invention, even though this gene contains two coding sequences interrupted by a non-coding intron sequence.
  • substantially the same when referring to the amino acid sequence of a Cry1 protein of this invention, is meant to include an amino acid sequence that differs in no more than 5%, preferably no more than 2%, to the amino acid sequence of the protein compared to; and when referring to toxicity of Cry protein, is meant to include a protein whose LC50 value obtained under the same conditions of bio-assay (preferably in the same bio-assay using insects from the same population and suitable controls) differs no more then 2 times, preferably no more than 50%, of the LC50 value obtained for the protein compared to.
  • Microorganism refers to any living organism that can be observed only with the aid of a microscope, such as bacteria, yeast cells, plant cells, viruses, fungi. This includes all generally unicellular organisms with dimensions beneath the limits of vision which can be propagated and manipulated in a laboratory, typically prokaryotic or unicellular eukaryotic life forms, including tissue cultures and plasmids.
  • a database search with the genes of this invention indicates that the DNA sequences of the invention are significantly different from any previously described genes or DNA sequences encoding toxins with activity against Lepidoptera (see, e.g., the Jan. 26, 2006 version of DNA sequences described in patent applications (Geneseq release 200602), Höfte and Whiteley, 1989; Crickmore et al., 1998; and the Aug. 2, 2005 update on the Bt nomenclature website corresponding to the Crickmore et al. (1998) publication, found at:
  • the closest sequence identity at the DNA level (for the entire length of the sequences of the invention) in available DNA sequence databases was 76.60% for the cry1C DNA of SEQ ID No. 1 or 3, 73% for the cry1B DNA of SEQ ID No. 10, and 72.5% for the cry1D DNA of SEQ ID No. 14, using the above defined Needleman-Wunsch default settings in EMBOSS.
  • the available DNA sequence databases are representative of all known DNA sequences
  • the DNA sequences of this invention differ in at least 23% of their nucleotides from any previously known DNA sequence. Assuming the closest sequences are contained in the available databases, this reflects a difference in about 485 nucleotides for the nucleotide sequence of SEQ ID No.
  • an “insecticidally effective part (portion or fragment)” of DNA sequences encoding a Cry1 protein also referred to herein as “truncated gene” or “truncated DNA” is meant a DNA sequence encoding a polypeptide which has fewer amino acids than the Cry1 protein protoxin form but which is still insecticidal.
  • cry1 genes of the invention are artificial genes, wherein the sequence has been adapted for optimal expression by DNA synthesis. In such sequence, replacement of DNA sequences inhibiting optimal expression is achieved by designing DNA sequences comprising codons more preferred by plants, preferably the target plant genus or species.
  • a plant intron is inserted in the chimeric cry1 genes of the invention, preferably in the coding sequence of at least one of the cry1 genes of the invention.
  • Any of the known plant introns e.g., Brown, 1986, Brown and Simpson, 1998, Brown et al., 1996) can be used herein as long as it is operably-linked to the coding sequence fragments so as to assure proper splicing.
  • an intron of a dicot plant gene is used in genes to be expressed in dicot plant cells, and a monocot intron is used in genes to be expressed in monocot plants.
  • the intron of the invention is the second intron of the light-inducible tissue-specific ST-LS1 gene of Solanum tuberosum (potato) as described by Eckes et al. (1986), e.g., the nucleotide sequence of SEQ ID No. 1 between nucleotide position 672 and 862.
  • a plant intron is introduced into any Bt insecticidal protein coding sequence, particularly the intron of SEQ ID No: 1 between nucleotide position 672 and 862, so that it is effectively spliced in plant cells.
  • Effective splicing in plants cells can be measured using routine techniques, such as RT-PCR, Northern blotting, or the detection of a functional protein produced in plant cells.
  • the intron needs to be inserted in the correct position of the coding sequence so that functional 5′ and 3′ splice sites are obtained in the sequence.
  • the two cry genes of the invention, illustrated in SEQ ID Nos. 1 and 3, each containing a plant intron at a different location, were found by RT-PCR analysis to both be effectively spliced in Brassica oleraceae plant cells, and to produce an mRNA encoding the expected Cry protein.
  • the proteins are targeted to intracellular organelles such as plastids, preferably chloroplasts, mitochondria, or are secreted from the cell, potentially optimizing protein stability and/or expression.
  • the chimeric genes of the invention comprise a coding region encoding a signal or target peptide, linked to the Cry protein coding region of the invention.
  • Particularly preferred peptides to be included in the proteins of this invention are the transit peptides for chloroplast or other plastid targeting, especially duplicated transit peptide regions from plant genes whose gene product is targeted to the plastids, the optimized transit peptide described by Lebrun et al. (1996), or Capellades et al. (U.S.
  • the chloroplast transit peptide comprises the sequence of SEQ ID No. 17 from amino acid position 3 to amino acid position 124 or variant thereof, such as a chloroplast transit peptide comprising the sequence of SEQ ID No. 17 from amino acid position 3 to amino acid position 124, wherein the Cys amino acid at position 55 is replaced by Tyr in SEQ ID No.
  • peptides signalling secretion of a protein linked to such peptide outside the cell such as the secretion signal of the potato proteinase inhibitor II (Keil et al., 1986), the secretion signal of the alpha-amylase 3 gene of rice (Sutliff et al., 1991) and the secretion signal of tobacco PR1 protein (Cornelissen et al., 1986).
  • Particularly useful signal peptides in accordance with the invention include the chloroplast transit peptide (e.g., Van Den Broeck et al. (1985), or the optimized chloroplast transit peptide of U.S. Pat. No. 5,510,471 and U.S. Pat. No. 5,635,618 causing transport of the protein to the chloroplasts, a secretory signal peptide or a peptide targeting the protein to other plastids, mitochondria, the ER, or another organelle.
  • Signal sequences for targeting to intracellular organelles or for secretion outside the plant cell or to the cell wall are found in naturally targeted or secreted proteins, preferably those described by Klösgen et al.
  • a preferred DNA sequence encoding a transit peptide of the invention is a DNA comprising the sequence of SEQ ID No. 16 from nucleotide position 7 to nucleotide position 371, particularly the sequence of SEQ ID No. 16.
  • the binding properties of the Cry proteins of the invention can be evaluated, using methods known in the art (e.g., Van Rie et al., 1990), to determine if the Cry1 proteins of the invention bind to sites on a target insect midgut that are not recognized (or competed for) by other Cry or non-Cry proteins.
  • Other Bt toxins binding to different binding sites in relevant susceptible insects, or other toxins derived from Bt strains or other sources (such as VIP toxins or insect (gut) proteinase inhibitors) with a different mode of action are very valuable to also express in a plant in addition to any one of the cry1 genes herein, to prevent or delay the development of insect resistance to a plant expressing insecticidal toxins. Because of the characteristics of the new cry1 genes, they are extremely useful for transforming plants, e.g. monocots such as corn or wheat and dicots such as cotton, soybean and Brassica species plants, to protect these plants from insect damage.
  • cry1C gene of this invention with another gene encoding a different insect control protein, particularly a Bt crystal protein, which does not recognize at least one binding site recognized by such Cry1C protein in a target insect.
  • Preferred insect control proteins to combine with the Cry1C proteins of this invention particularly for simultaneous expression in plants, preferably Brassica species plants, particularly cabbage and cauliflower, include the Cry1B protein of this invention or the Cry1D protein of this invention, the VIP3Aa protein or a toxic fragment thereof as described in Estruch et al., 1996 and U.S. Pat. No.
  • such co-expression is obtained by transforming a plant already expressing an insect control protein with a cry1 gene of this invention, or by crossing plants transformed with the insect control protein and plants transformed with the cry1 gene of this invention.
  • the cry1 gene is used as first gene and as second gene the Cry1B, Cry1D or VIP3Aa protein or variants or derivatives thereof are used.
  • cry1C gene of the invention is located in one and the same locus as a second insect control gene, such as a Cry1B or Cry1D gene, in the transgenic plant cells or plants of the invention, so that these genes do not segregate in the progeny of such plant cells or plants.
  • the transgenic plants of the invention are also transformed with a DNA encoding a protein inactivating a broad-spectrum herbicide or encoding a protein which is a variant of the protein target for the herbicide but which protein variant is insensitive to such herbicide, e.g., herbicides based on glufosinate or glyphosate.
  • the insecticidally effective cry1 gene preferably the cry1 chimeric gene, encoding an insecticidally effective portion of the Cry protoxin, can be stably inserted in a conventional manner into the nuclear genome of a plant cell, and the so-transformed plant cell can be used in a conventional manner to produce a transformed plant that is insect-resistant.
  • a disarmed Ti-plasmid, containing the insecticidally effective cry1 gene part, in Agrobacterium, e.g., Agrobacterium tumefaciens can be used to transform the plant cell, and thereafter, a transformed plant can be regenerated from the transformed plant cell using the procedures described, for example, in EP 0 116 718, EP 0 270 822, PCT publication WO 84/02913 and published European Patent application (“EP”) 0 242 246 and in De Block et al. (1989).
  • Preferred Ti-plasmid vectors each contain the insecticidally effective cry gene part between the border sequences, or at least located to the left of the right border sequence, of the T-DNA of the Ti-plasmid.
  • vectors can be used to transform the plant cell, using procedures such as direct gene transfer (as described, for example in EP 0 233 247), pollen mediated transformation (as described, for example in EP 0 270 356, PCT publication WO 85/01856, and U.S. Pat. No. 4,684,611), plant RNA virus-mediated transformation (as described, for example in EP 0 067 553 and U.S. Pat. No. 4,407,956), liposome-mediated transformation (as described, for example in U.S. Pat. No. 4,536,475), and other methods such as the methods for transforming certain lines of corn (e.g., U.S. Pat. No.
  • transformation of the nuclear genome also transformation of the plastid genome, preferably chloroplast genome, is included in the invention.
  • Kota et al. (1999) have described a method to express a Cry2A protein in tobacco chloroplasts, and Lin et al. (2003) described expression of a cry1C gene in transplastomic tobacco plants.
  • the resulting transformed plant can be used in a conventional plant breeding scheme to produce more transformed plants with the same characteristics or to introduce the insecticidally effective cry gene part in other varieties of the same or related plant species.
  • Seeds, which are obtained from the transformed plants, contain the insecticidally effective cry gene part as a stable genomic insert.
  • the insecticidally effective cry1 gene preferably the sequence of SEQ ID No. 1, 3, 4 or 6, is inserted in a plant cell genome so that the inserted gene is downstream (i.e., 3′) of, and under the control of, a promoter which can direct expression of the gene in a plant cell (herein named a “plant-expressible promoter”).
  • a plant-expressible promoter which can direct expression of the gene in a plant cell
  • This is preferably accomplished by inserting the cry1 chimeric gene comprising a plant-expressible promoter in the plant cell genome, particularly in the nuclear or plastid (e.g., chloroplast) genome.
  • Preferred plant-expressible promoters include: the strong constitutive 35S promoters (the “35S promoters”) of the cauliflower mosaic virus (CaMV) of isolates CM 1841 (Gardner et al., 1981), CabbB-S (Franck et al., 1980) and CabbB-JI (Hull and Howell, 1987); the 35S promoter described by Odell et al.
  • the 35S promoters the strong constitutive 35S promoters of the cauliflower mosaic virus (CaMV) of isolates CM 1841 (Gardner et al., 1981), CabbB-S (Franck et al., 1980) and CabbB-JI (Hull and Howell, 1987); the 35S promoter described by Odell et al.
  • promoters from the ubiquitin family e.g., the maize ubiquitin promoter of Christensen et al., 1992, see also Comejo et al., 1993
  • the gos2 promoter de Pater et al., 1992
  • the emu promoter Last et al., 1990
  • Arabidopsis actin promoters such as the promoter described by An et al. (1996)
  • rice actin promoters such as the promoter described by Zhang et al. (1991); promoters of the Cassava vein mosaic virus (WO 97/48819, Verdaguer et al.
  • an alcohol dehydrogenase promoter e.g., pAdh1S (GenBank accession numbers X04049, X00581)
  • the TR1′ promoter and the TR2′ promoter (the “TR1′ promoter” and “TR2′ promoter”, respectively) which drive the expression of the 1′ and 2′ genes, respectively, of the T-DNA (Velten et al., 1984).
  • a promoter can be utilized which is not constitutive but rather is specific for one or more tissues or organs of the plant (e.g., leaves and/or roots) whereby the inserted cry gene part is expressed only in cells of the specific tissue(s) or organ(s).
  • the insecticidally effective cry gene part could be selectively expressed in the leaves of a plant (e.g., corn, cotton) by placing the insecticidally effective gene part under the control of a light-inducible promoter such as the promoter of the ribulose-1,5-bisphosphate carboxylase small subunit gene of the plant itself or of another plant such as pea as disclosed in U.S. Pat. No. 5,254,799.
  • a light-inducible promoter such as the promoter of the ribulose-1,5-bisphosphate carboxylase small subunit gene of the plant itself or of another plant such as pea as disclosed in U.S. Pat. No. 5,254,799.
  • a promoter whose expression is inducible, preferably by wounding such as insect feeding, e.g., the MPI promoter described by Cordera et al. (1994), or the Agrobacterium TR2′ or mannopine synthase promoter (Velten et al., 1984) or a
  • the insecticidally effective cry gene part is preferably inserted in the plant genome so that the inserted gene part is upstream (i.e., 5′) of suitable 3′ end transcription regulation signals (i.e., transcript formation and polyadenylation signals). This is preferably accomplished by inserting the cry1 chimeric gene in the plant cell genome.
  • Preferred polyadenylation and transcript formation signals include those of the 3′ untranslated region of the NADP-malic enzyme gene from Flaveria bidentis (Marshall et al., 1996), nopaline synthase gene (Depicker et al., 1982), the octopine synthase gene (Gielen et al., 1984) and the T-DNA gene 7 (Velten and Schell, 1985), which act as 3′-untranslated DNA sequences in transformed plant cells.
  • At least one of the genes of the invention are transformed into plants selected from the group consisting of: corn, cotton, watercress, horseradish, wasabi, arugula, cress, radish, canola, soybean, vegetable plants, Cruciferae plant species, Brassicaceae plant species such as cauliflower, cabbage, Chinese cabbage, turnip, mustard, oilseed rape, kale, broccoli, Brussels sprouts, mustard spinach, and the like.
  • the following Brassica species plants are protected from insects by the genes of this invention: B. carinata, B. elongate, B. fruticulosa, B. juncea, B. napus, B.
  • the invention includes the above listed Brassica species plants transformed with at least one or two genes of the invention, such as the cry1B and cry1C genes of the invention, as well as plants obtained after crossing or breeding with related plants (including plants of a related plant species) that contain the genes of the invention.
  • Such crossing or breeding can be done using traditional breeding techniques known in the art, but may also include known in vitro work such as embryo rescue, protoplast fusion, and the like.
  • the invention hence also relates to Brassicaceae plants such as B. napus, B. rapa, B. juncea or B. carinata, that contain the gene or genes of the invention, such as the cry1B and cry1C genes of the invention, from crossings with a transformed B.
  • oleracea plant or the progeny thereof or to B. réellecea plants that contain the gene or genes of the invention, such as the cry1B and cry1C genes of the invention, from crossings with a transformed B. napus plant, and to uses of such plants.
  • Transformation of plant cells can also be used to produce the proteins of the invention in large amounts in plant cell cultures, e.g., to produce a Cry1 protein that can then be applied onto crops after proper formulation.
  • a transgenic plant cell refers to a plant cell (or also a plant protoplast) as such in isolation or in tissue culture, or to a plant cell (or protoplast) contained in a plant or in a differentiated organ or tissue, and both possibilities are specifically included herein.
  • a reference to a plant cell in the description or claims is not meant to refer only to isolated cells in culture, but refers to any plant cell, wherever it may be located or in whatever type of plant tissue or organ it may be present.
  • cry1 genes of the invention encoding an anti-lepidopteran protein
  • bacteria such as a B. thuringiensis which has insecticidal activity against Lepidoptera or Coleoptera.
  • a transformed Bt strain can be produced which is useful for combatting a wide spectrum of lepidopteran and coleopteran insect pests or for combatting additional lepidopteran insect pests.
  • Transformation of bacteria such as bacteria of the genus Pseudomonas, Agrobacterium, Bacillus or Escherichia, with the cry1 genes of this invention, incorporated in a suitable cloning vehicle, can be carried out in a conventional manner, preferably using conventional electroporation techniques as described in Mahillon et al. (1989) and in PCT Patent publication WO 90/06999.
  • Transformed Bacillus species strains containing the cry gene of this invention can be fermented by conventional methods (Dulmage, 1981; Bernhard and Utz, 1993) to provide high yields of cells. Under appropriate conditions which are well understood (Dulmage, 1981), these strains each sporulate to produce crystal proteins containing the Cry protoxin in high yields.
  • An insecticidal, particularly anti-lepidopteran, composition of this invention can be formulated in a conventional manner using the microorganisms transformed with the cry gene, or preferably their respective Cry proteins or the Cry protoxin, toxin or insecticidally effective protoxin portion as an active ingredient, together with suitable carriers, diluents, emulsifiers and/or dispersants (e.g., as described by Bernhard and Utz, 1993).
  • This Insecticide composition can be formulated as a wettable powder, pellets, granules or dust or as a liquid formulation with aqueous or non-aqueous solvents as a foam, gel, suspension, concentrate, etc.
  • a method for controlling insects, particularly Lepidoptera, in accordance with this invention can comprise applying (e.g., spraying), to a locus (area) to be protected, an insecticidal amount of the Cry proteins or host cells transformed with the ay gene of this invention.
  • the locus to be protected can include, for example, the habitat of the insect pests or growing vegetation or an area where vegetation is to be grown.
  • insects against which the cry1 genes or Cry1 proteins of the invention can be used include insects selected from the group consisting of: Plutella xylostella, Spodoptera exigua, Spodoptera littoralis, Spodoptera frugiperda, Trichoplusia ni, Heliothis virescens, Mamestra brassicae, Pieris brassicae, Manduca sexta, Choristoneura fumiferana, Choristoneura occidentalis, Choristoneura rosaceana, Pandemis pyrusana, Platynota stultana, Lymantria dispar, Orgyia leucostigma, Malacosoma disstria, Lambina fiscellaria, Chilo suppressalis, Chilo partellus, Scirpophaga incertulas, Argyrotaenia citrana, Artogeia rape, Chrysomela scripta, Ostrinia nubilalis, Ps
  • Plutella xylostella (diamondback moth) is a preferred target insect pest. This is a cosmopolitan species that causes major losses in several Cruciferous plants, particularly Brassicacaea plants.
  • the Cry1C, Cry1B and Cry1D proteins encoded by the genes of this invention are particularly useful to control this insect, e.g., by expression of the genes of the invention in cells of a plant.
  • Such insects can be controlled by planting or growing plants comprising any one of the cry1C genes of the invention in a field, or by securing the presence of a Cry1C protein as defined herein in or on plants infested by such insects (e.g., by sowing or planting a Brassica species plant such as a cabbage or cauliflower plant transformed with the cry1C1 or cry1C2 gene of this invention, or spraying a composition containing a Cry1C protein of this invention).
  • the invention also relates to the use of the cry1 genes of this invention, at least the cry1C1 or cry1C2 genes, in plants to protect them against Lepidopteran insect pests, preferably in combination with a cry1B or cry1D gene of this invention.
  • the modified transit peptide comprises the nucleotide sequence of SEQ ID No. 16 from nucleotide position 7 to nucleotide position 371, particularly the sequence of SEQ ID No. 16.
  • plant cells, plants or seeds comprising the modified transit peptide coding sequence of the invention, as well as the use of this transit peptide coding sequence for targeting any protein to the chloroplast, particularly to the chloroplast of vegetable plants, particularly Brassica species plants, are included in this invention.
  • SEQ ID No.1 optimized cry1C1 coding sequence comprising an intron at position 672
  • SEQ ID No.2 amino acid sequence of the Cry1C1 protein encoded by SEQ ID No. 1
  • SEQ ID No.3 optimized cry1C2 coding sequence, comprising an intron at position 489
  • SEQ ID No.4 optimized cry1C3 coding sequence, comprising the sequences of SEQ ID No. 1 and SEQ ID No. 16, encoding a fusion protein with a transit peptide
  • SEQ ID No.5 Cry1C3 protein encoded by SEQ ID No. 4
  • SEQ ID No.6 optimized cry1C4 coding sequence, comprising the sequences of SEQ ID No.
  • SEQ ID No.7 Cry1C4 protein encoded by SEQ ID No. 6
  • SEQ ID No.8 optimized cry1B1 coding sequence, including a transit peptide coding sequence
  • SEQ ID No.9 Cry1B1 protein encoded by the sequence of SEQ ID No. 8
  • SEQ ID No.12 optimized cry1D1 coding sequence, including a transit peptide coding sequence
  • SEQ ID No.13 Cry1D1 protein encoded by the sequence of SEQ ID No.12
  • SEQ ID No.15 Cry1D2 protein encoded by the sequence of SEQ ID No. 14
  • SEQ ID No.16 coding sequence encoding an optimized chloroplast transit peptide
  • SEQ ID No.17 chloroplast transit peptide encoded by the sequence of SEQ ID No. 16
  • SEQ ID No.18 duplicated S7 subterranean clover stunt virus promoter sequence (S7S7)
  • SEQ ID No.19 duplicated S4 subterranean clover stunt virus promoter sequence (S4S4)
  • cry1 genes were designed and assembled using a combination of technologies to achieve genes with optimal performance in plant cells.
  • cry1C1 DNA which was designed for optimal expression in plant cells is represented in SEQ ID No. 1.
  • This DNA encodes the insecticidal Cry1C1 protein of the invention (SEQ ID No. 2).
  • a first chimeric gene (the cry1C1 chimeric gene) is constructed comprising the following operably-linked elements (5′ to 3′): a promoter comprising the duplicated promoter region derived from the subterranean clover stunt virus genome segment 7 (S7S7 promoter, Boevink et al., 1995, SEQ ID No.
  • cry1C chimeric gene was made, wherein the ST-LS1 intron 2 is at position 489 of the cry1C DNA (i.e., the cry1C2 DNA), this is the cry1C2 chimeric gene, otherwise constructed exactly like the cry1C1 chimeric gene.
  • cry1C1 and cry1C2 chimeric genes are constructed which comprise a modified sequence encoding an optimized transit peptide (SEQ ID No.16) as described by Lebrun et al. (1996) operably-linked to the cry1C coding region so that a transit peptide fusion protein is expressed in plant cells.
  • SEQ ID No.16 an optimized transit peptide
  • cry1C3 and cry1C4 chimeric genes comprising the cry1C3 and cry1C4 coding sequences, respectively, which each contain the sequence of the modified chloroplast transit peptide of SEQ ID No.16.
  • the cry1C3 DNA sequence is shown in SEQ ID No.
  • cry1C4 DNA sequence is shown in SEQ ID No. 6, it is a fusion of the cry1C2 sequence of SEQ ID No. 3 with the transit peptide coding sequence of SEQ ID No. 16.
  • cry1B1 DNA which was designed for optimal expression in plant cells is represented in SEQ ID No. 8.
  • This DNA encodes the insecticidal Cry1B1 protein of the invention (SEQ ID No. 9).
  • a chimeric gene (the cry1B1 chimeric gene) is constructed comprising the following operably-linked elements (5′ to 3′): a promoter comprising the duplicated promoter region derived from the subterranean clover stunt virus genome segment 4 (S4S4 promoter, Boevink et al., 1995, SEQ ID No.
  • the leader sequence of the E1 gene (GE1) of Oryza sativa (Michiels et al., 1992)
  • the cry1B1 DNA comprising the sequence of the modified chloroplast transit peptide of SEQ ID No.16, and the sequence including the 3′ untranslated region of the NADP-malic enzyme gene from Flaveria bidentis (3′ Me1, Marshall et al., 1996).
  • cry1B chimeric gene A second form of the cry1B chimeric gene was also made, using the cry1B2 DNA (SEQ ID No. 10), wherein no sequence encoding an optimized transit peptide is contained, so that cytoplasmic accumulation of the Cry1B protein occurs in plant cells. This is the Cry1B2 chimeric gene.
  • cry1D1 DNA which was designed for optimal expression in plant cells is represented in SEQ ID No. 12.
  • This DNA encodes the insecticidal Cry1D1 protein of the invention (SEQ ID No. 13).
  • a chimeric gene (the cry1D1 chimeric gene) is constructed comprising the following operably-linked elements (5′ to 3′): an S4S4 promoter (SEQ ID No.
  • the leader sequence of the E1 gene (GE1) of Oryza sativa (Michiels et al., 1992)
  • the cry1D1 DNA comprising the sequence of the modified chloroplast transit peptide of SEQ ID No.16, and the sequence including the 3′ untranslated region of the NADP-malic enzyme gene from Flaveria bidentis (3′ Me1, Marshall et al., 1996).
  • cry1D chimeric gene A second form of the cry1D chimeric gene was also made, using the cry1D2 DNA, wherein no sequence encoding an optimized transit peptide is contained, so that cytoplasmic accumulation of the Cry1D protein occurs in plant cells. This is the Cry1D2 chimeric gene.
  • a DNA transformation vector (pT1C4B1) is made comprising between the T-DNA borders the cry1C4 chimeric gene and the cry1B1 chimeric gene in a head-to-tail orientation (3′Me1-cry1C4-GE1 leader-S7S7-S4S4-GE1 leader-cry1B1-3′Me1), as well as a transfer vector (pT1C2B2) comprising between the T-DNA borders the cry1C2 chimeric gene and the cry1B2 chimeric gene in a head-to-tail orientation (3′Me1-cry1C2-GE1 leader-S7S7-S4S4-GE1 leader-cry1B2-3′Me1).
  • the cry1C and cry1B genes of the invention will be co-transferred to the plant cell and will be located at one locus after successful transformation.
  • Similar T-DNA vectors are constructed which contain the above cry1C chimeric genes but which contain as second chimeric gene the cry1D1 or cry1D2 chimeric genes instead of the above cry1B chimeric genes.
  • a triple cry gene transformation vector is constructed, comprising both the cry1C, cry1D and cry1B genes (all either with or without modified transit peptide).
  • the transformation vectors containing the genes of the invention were derived from pGSC1700 (Cornelissen and Vandewiele, 1989).
  • the vector backbone contains the following genetic elements:
  • the plasmid core comprising the origin of replication from the plasmid pBR322 (Bolivar et al., 1977) for replication in Escherichia coli and a restriction fragment comprising the origin of replication from the Pseudomonas plasmid pVS1 (itoh et al., 1984) for replication in Agrobacterium tumefaciens.
  • a selectable marker gene conferring resistance to streptomycin and spectinomycin (aadA) for propagation and selection of the plasmid in Escherichia coli and Agrobacterium tumefaciens.
  • the T-DNA region of each transformation vector also contains a chimeric bar gene that serves as selectable marker gene. Expression of the bar gene enables the production of an enzyme, phosphinothricin-acetyl transferase, that metabolizes the herbicide glufosinate-ammonium, thus rendering it non-herbicidal in the plant.
  • the chimeric bar gene comprises the 35S3 promoter region from the Cauliflower Mosaic Virus 35S transcript (Odell et al.,1985), the bar coding sequence of the phosphinothricin acetyltransferase gene of Streptomyces hygroscopicus as described by Thompson et al. (1987), and a 3′ transcript termination and polyadenylation sequence from the 3′ untranslated region of the nopaline synthase gene from the T-DNA of pTiT37 (Depicker et al., 1982).
  • cry1C1 or cry1C3 chimeric genes are used (similar as the above cry1C genes but having the ST-LS1 intron at a position 489). Also these vectors contain the cry1B1 or cry1B2 chimeric genes, or the cry1D1 or cry1D2 chimeric genes described above.
  • transformation vectors pT1C4B1 and pT1C2B2 containing the cry1C and cry1B genes of the invention are transferred into Agrobacterium tumefaciens strains for transformation in plants using routine methods.
  • Cauliflower and cabbage plants are transformed using Agrobacterium transformation. Seeds of Brassica oleracea var. capitata (cabbage) or Brassica oleracea var. botrytis (cauliflower) are sterilized by dipping in 70% ethanol followed by submersion in 6% bleach. The seeds are then rinsed with sterile water and transferred to small Petri-plates containing MS based medium. The Petri-plates are placed in glass containers and incubated for 5-8 days at 24° C. Hypocotyl explants of 0.5-0.7 cm are cut and placed in liquid medium with appropriate hormones.
  • Agrobacterium tumefaciens carrying the genes of interest are added to the medium to make a final concentration of 1 ⁇ 10 7 bacteria/ml. After the co-cultivation period, the explants are washed in liquid medium with appropriate antibiotics and hormones and blotted dry on filter paper.
  • the explants are cultured for one week on callus induction medium with 5 mg/l silver nitrate and 250 mg/l of both Triacillin and Carbenicillin and 10 mg/l phosphinothricin for selection of transformation events.
  • Oilseed rape plants are also transformed with the cry1C and cry1B genes using Agrobacterium tumefaciens. Hypocotyl explants of Brassica napus are used in routine transformation and regeneration methods, e.g., the method described by De Block et al. (1989).
  • PCR and Southern analysis are used to confirm integration of the transgenes.
  • Immunological analyses such as Cry1C- and Cry1B-specific ELISA assays or Western blots are used to select those transformed plants showing optimal expression levels of the Cry1C and Cry1B proteins.
  • insect assays using Plutella xylostella larvae under standard insect bio-assay conditions using proper controls with selected transformed cabbage, cauliflower and oilseed rape plants containing the Cry1C and Cry1B genes confirm the high insecticidal activity and the high dose of these protein expressed, in those transformed plants selected for optimal expression.
  • Plutella xylostella insects that have been selected for resistance to the Cry1C or Cry1B protein are still effectively killed by the plants of the invention.
  • Progeny plants and seeds are also obtained from the transformed, selected plants of the invention, and the genes of the invention are shown to segregate in such progeny in the expected Mendelian fashion.
  • Selection of the transgenic plants in the greenhouse and in the field at multiple locations will result in the identification of plant lines which have optimal stability and expression of the cry1 chimeric genes combined with optimal agronomical performance.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insects & Arthropods (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
US12/293,772 2006-03-21 2007-03-16 Novel genes encoding insecticidal proteins Abandoned US20100235951A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/293,772 US20100235951A1 (en) 2006-03-21 2007-03-16 Novel genes encoding insecticidal proteins

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US78431006P 2006-03-21 2006-03-21
EP06075679 2006-03-21
EP06075679.8 2006-03-21
PCT/EP2007/002342 WO2007107302A2 (en) 2006-03-21 2007-03-16 Novel genes encoding insecticidal proteins
US12/293,772 US20100235951A1 (en) 2006-03-21 2007-03-16 Novel genes encoding insecticidal proteins

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/002342 A-371-Of-International WO2007107302A2 (en) 2006-03-21 2007-03-16 Novel genes encoding insecticidal proteins

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/394,485 Continuation US11060103B2 (en) 2006-03-21 2016-12-29 Genes encoding insecticidal proteins

Publications (1)

Publication Number Publication Date
US20100235951A1 true US20100235951A1 (en) 2010-09-16

Family

ID=38222134

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/293,772 Abandoned US20100235951A1 (en) 2006-03-21 2007-03-16 Novel genes encoding insecticidal proteins
US15/394,485 Active 2028-12-15 US11060103B2 (en) 2006-03-21 2016-12-29 Genes encoding insecticidal proteins

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/394,485 Active 2028-12-15 US11060103B2 (en) 2006-03-21 2016-12-29 Genes encoding insecticidal proteins

Country Status (9)

Country Link
US (2) US20100235951A1 (ru)
EP (1) EP1999141B1 (ru)
CN (1) CN101405296B (ru)
AR (1) AR059995A1 (ru)
AU (1) AU2007228981B2 (ru)
CA (1) CA2646471C (ru)
EA (1) EA019029B1 (ru)
PL (1) PL1999141T3 (ru)
WO (1) WO2007107302A2 (ru)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011075588A1 (en) * 2009-12-16 2011-06-23 Dow Agrosciences Llc COMBINED USE OF CRY1Ca AND CRY1Fa PROTEINS FOR INSECT RESISTANCE MANAGEMENT
WO2011075585A1 (en) * 2009-12-16 2011-06-23 Dow Agrosciences Llc Combined use of vip3ab and cry1fa for management of resistant insects
WO2011075587A1 (en) * 2009-12-16 2011-06-23 Dow Agrosciences Llc Combined use of cry1da and cry1fa proteins for insect resistance management
WO2011084622A1 (en) * 2009-12-16 2011-07-14 Dow Agrosciences Llc Combined use of cry1ca and cry1ab proteins for insect resistance management
US20140109263A1 (en) * 2012-10-05 2014-04-17 Dow Agrosciences Llc USE OF Cry1Ea IN COMBINATIONS FOR MANAGEMENT OF RESISTANT FALL ARMYWORM INSECTS
WO2015143311A1 (en) * 2014-03-21 2015-09-24 Agrigenetics, Inc. Cry1d for controlling corn earworm
US9206137B2 (en) 2010-11-15 2015-12-08 Bayer Intellectual Property Gmbh N-Aryl pyrazole(thio)carboxamides
US9265252B2 (en) 2011-08-10 2016-02-23 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
US9351489B2 (en) 2010-11-15 2016-05-31 Bayer Intellectual Property Gmbh Cyanoenamines and their use as fungicides
WO2017180715A3 (en) * 2016-04-14 2017-11-16 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having improved activity spectrum and uses thereof
US9994621B2 (en) 2007-06-01 2018-06-12 Bayer Cropscience N.V. Genes encoding insecticidal proteins
CN110914438A (zh) * 2017-05-26 2020-03-24 先锋国际良种公司 具有改善的活性谱的杀昆虫多肽及其用途
US11649266B2 (en) 2014-10-16 2023-05-16 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having improved activity spectrum and uses thereof

Families Citing this family (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107302A2 (en) 2006-03-21 2007-09-27 Bayer Bioscience N.V. Novel genes encoding insecticidal proteins
EP2204094A1 (en) 2008-12-29 2010-07-07 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants Introduction
EP2039770A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
EP2039772A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants introduction
EP2039771A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
AR075126A1 (es) 2009-01-29 2011-03-09 Bayer Cropscience Ag Metodo para el mejor uso del potencial de produccion de plantas transgenicas
DE102009001469A1 (de) 2009-03-11 2009-09-24 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001681A1 (de) 2009-03-20 2010-09-23 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001732A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001730A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001728A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2232995A1 (de) 2009-03-25 2010-09-29 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2239331A1 (en) 2009-04-07 2010-10-13 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
BR112012014681B1 (pt) 2009-12-16 2024-03-05 Dow Agrosciences Llc Métodos de gerenciamento do desenvolvimento de resistência a plantas transformadas por proteínas cry por uma praga de lepidópteros e de controle de um inseto lagarta-do-cartucho
RS55986B1 (sr) 2010-01-22 2017-09-29 Bayer Ip Gmbh Akaricidne i/ili insekticidne kombinacije aktivnih supstanci
US8999956B2 (en) 2010-06-03 2015-04-07 Bayer Intellectual Property Gmbh N-[(het)arylalkyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues
US8653114B2 (en) 2010-06-03 2014-02-18 Bayer Intellectual Property Gmbh O-cyclopropylcyclohexyl-carboxanilides and their use as fungicides
CA2796191A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues
UA110703C2 (uk) 2010-06-03 2016-02-10 Байєр Кропсайнс Аг Фунгіцидні похідні n-[(тризаміщений силіл)метил]-карбоксаміду
AU2011264074B2 (en) 2010-06-09 2015-01-22 Bayer Cropscience Nv Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering
US9574201B2 (en) 2010-06-09 2017-02-21 Bayer Cropscience Nv Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering
CA2803083A1 (en) 2010-07-20 2012-01-26 Bayer Cropscience Ag Benzocycloalkenes as antifungal agents
WO2012028587A1 (de) 2010-09-03 2012-03-08 Bayer Cropscience Ag Dithiin-tetra (thio) carboximide zur bekämpfung phytopathogener pilze
JP2012062267A (ja) 2010-09-15 2012-03-29 Bayer Cropscience Ag 殺虫性ピロリンn−オキサイド誘導体
JP2012082186A (ja) 2010-09-15 2012-04-26 Bayer Cropscience Ag 殺虫性アリールピロリジン類
EP2460406A1 (en) 2010-12-01 2012-06-06 Bayer CropScience AG Use of fluopyram for controlling nematodes in nematode resistant crops
WO2012038480A2 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of biological or chemical control agents for controlling insects and nematodes in resistant crops
WO2012045798A1 (en) 2010-10-07 2012-04-12 Bayer Cropscience Ag Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative
CA2815114A1 (en) 2010-10-21 2012-04-26 Juergen Benting 1-(heterocyclic carbonyl) piperidines
UA107865C2 (ru) 2010-10-21 2015-02-25 Байєр Інтелекчуал Проперті Гмбх Гетероциклические карбоксамиды
WO2012059497A1 (en) 2010-11-02 2012-05-10 Bayer Cropscience Ag N-hetarylmethyl pyrazolylcarboxamides
WO2012062749A1 (de) 2010-11-12 2012-05-18 Bayer Cropscience Ag Benzimidazolidinone verwendbar als fungizide
WO2012065947A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazolecarboxamides
AR083874A1 (es) 2010-11-15 2013-03-27 Bayer Cropscience Ag 5-halogenopirazol(tio)carboxamidas
ES2643128T3 (es) 2010-11-15 2017-11-21 Bayer Intellectual Property Gmbh Cianoenaminas y su uso como fungicidas
EP2454939A1 (en) 2010-11-18 2012-05-23 Bayer CropScience AG Post-harvest treatment
EA023763B1 (ru) 2010-11-30 2016-07-29 Байер Интеллектчуал Проперти Гмбх Производные пиримидина и их применение в качестве пестицидов
EP2460407A1 (de) 2010-12-01 2012-06-06 Bayer CropScience AG Wirkstoffkombinationen umfassend Pyridylethylbenzamide und weitere Wirkstoffe
EP3372081A3 (en) 2010-12-01 2018-10-24 Bayer CropScience Aktiengesellschaft Use of fluopyram for controlling nematodes in crops
EP2474542A1 (en) 2010-12-29 2012-07-11 Bayer CropScience AG Fungicide hydroximoyl-tetrazole derivatives
US20130289077A1 (en) 2010-12-29 2013-10-31 Juergen Benting Fungicide hydroximoyl-tetrazole derivatives
WO2012088645A1 (en) 2010-12-31 2012-07-05 Bayer Cropscience Ag Method for improving plant quality
KR20140018879A (ko) 2011-02-15 2014-02-13 바이엘 인텔렉쳐 프로퍼티 게엠베하 디티이노 테트라카복사미드 살진균제 및 제초제, 약해완화제 또는 식물 성장 조절제를 함유하는 상승적 배합물
CA2823999C (en) 2011-03-10 2020-03-24 Bayer Intellectual Property Gmbh Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds
EP2502495A1 (en) 2011-03-16 2012-09-26 Bayer CropScience AG Use of a dithiino-tetracarboxamide for the protection of harvested products against phytopathogenic fungi
CA2831704C (en) 2011-03-31 2019-10-01 Bayer Intellectual Property Gmbh Herbicidally and fungicidally active 3-phenylisoxazoline-5-carboxamides and 3-phenylisoxazoline-5-thioamides
DK2997825T3 (en) 2011-04-22 2019-03-11 Bayer Ip Gmbh COMPOSITIONS OF ACTIVE COMPOUNDS CONTAINING A (THIO) CARBOXAMIDE DERIVATIVE AND A FUNGICID COMPOUND
TR201802544T4 (tr) 2011-06-06 2018-03-21 Bayer Cropscience Nv Önceden seçilmiş bir bölgede bir bitki genomunu modifiye için yöntemler ve araçlar.
AU2012288866B2 (en) 2011-07-27 2016-06-16 Bayer Cropscience Aktiengesellschaft Seed dressing for controlling phytopathogenic fungi
BR112014002988A2 (pt) 2011-08-12 2017-03-01 Bayer Cropscience Nv expressão específica de célula de proteção de transgenes em algodão
JP2014524455A (ja) 2011-08-22 2014-09-22 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー 殺真菌性ヒドロキシモイル−テトラゾール誘導体
BR112014003919A2 (pt) 2011-08-22 2017-03-14 Bayer Cropscience Ag métodos e meios para modificar um genoma de planta
EP2561759A1 (en) 2011-08-26 2013-02-27 Bayer Cropscience AG Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth
US10004232B2 (en) 2011-09-15 2018-06-26 Bayer Intellectual Property Gmbh Piperidine pyrazoles as fungicides
AR087874A1 (es) 2011-09-16 2014-04-23 Bayer Ip Gmbh Uso de acilsulfonamidas para mejorar el rendimiento de las plantas
CN103781352A (zh) 2011-09-16 2014-05-07 拜耳知识产权有限责任公司 苯基吡唑啉-3-甲酸酯类用于提高植物产量的用途
US20140378306A1 (en) 2011-09-16 2014-12-25 Bayer Intellectual Property Gmbh Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield
AU2012320554B2 (en) 2011-10-04 2017-11-09 Bayer Intellectual Property Gmbh RNAi for the control of fungi and oomycetes by inhibiting saccharopine dehydrogenase gene
MX2014005976A (es) 2011-11-21 2014-08-27 Bayer Ip Gmbh Derivados de n-[(silil trisustituido)metil]-carboxamida fungicidas.
CA2856711A1 (en) 2011-11-25 2013-05-30 Bayer Intellectual Property Gmbh Novel heterocyclic alkanol-derivatives
EP2782447A1 (de) 2011-11-25 2014-10-01 Bayer Intellectual Property GmbH 2-iod-imidazol-derivate
CN105906567B (zh) 2011-11-30 2019-01-22 拜耳知识产权有限责任公司 杀真菌的n-二环烷基和n-三环烷基(硫代)羧酰胺衍生物
EP2601839A1 (en) 2011-12-08 2013-06-12 Bayer CropScience AG Synergisitic fungicidal combinations containing phosphorous acid derivative and zoxamide
EP2606732A1 (en) 2011-12-19 2013-06-26 Bayer CropScience AG Use of an anthranilic diamide derivatives with heteroaromatic and heterocyclic substituents in combination with a biological control agent
BR112014015002A2 (pt) 2011-12-19 2017-06-13 Bayer Cropscience Ag uso de derivados de diamida de ácido antranílico para o controle de pragas em culturas transgênicas
BR112014015993A8 (pt) 2011-12-29 2017-07-04 Bayer Ip Gmbh composto, composição, método para o controle dos fungos, utilização dos compostos e processo para a produção das composições
KR102028903B1 (ko) 2011-12-29 2019-10-07 바이엘 인텔렉쳐 프로퍼티 게엠베하 살진균 3-[(피리딘-2-일메톡시이미노)(페닐)메틸]-2-치환-1,2,4-옥사디아졸-5(2h)-온 유도체
EP2819518B1 (en) 2012-02-27 2017-09-06 Bayer Intellectual Property GmbH Active compound combinations containing a thiazoylisoxazoline and a fungicide
US11692016B2 (en) 2012-03-09 2023-07-04 Vestaron Corporation High gene expression yeast strain
US9567381B2 (en) 2012-03-09 2017-02-14 Vestaron Corporation Toxic peptide production, peptide expression in plants and combinations of cysteine rich peptides
EP2825532A1 (en) 2012-03-14 2015-01-21 Bayer Intellectual Property GmbH Pesticidal arylpyrrolidines
WO2013139949A1 (en) 2012-03-23 2013-09-26 Bayer Intellectual Property Gmbh Compositions comprising a strigolactame compound for enhanced plant growth and yield
WO2013153143A1 (en) 2012-04-12 2013-10-17 Bayer Cropscience Ag N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides
US20150080337A1 (en) 2012-04-20 2015-03-19 Bayer Cropscience N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives
CN104428294B (zh) 2012-04-20 2017-07-14 拜尔农科股份公司 N‑环烷基‑n‑[(杂环基苯基)亚甲基]‑(硫代)羧酰胺衍生物
EP2841581B2 (en) 2012-04-23 2023-03-08 BASF Agricultural Solutions Seed US LLC Targeted genome engineering in plants
EP2847170B1 (en) 2012-05-09 2017-11-08 Bayer CropScience AG Pyrazole indanyl carboxamides
EP2662363A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole biphenylcarboxamides
EP2662360A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole indanyl carboxamides
EP2662370A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole benzofuranyl carboxamides
EP2662362A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazole indanyl carboxamides
EP2662361A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol indanyl carboxamides
EP2662364A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazole tetrahydronaphthyl carboxamides
WO2013167544A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag 5-halogenopyrazole indanyl carboxamides
AR091104A1 (es) 2012-05-22 2015-01-14 Bayer Cropscience Ag Combinaciones de compuestos activos que comprenden un derivado lipo-quitooligosacarido y un compuesto nematicida, insecticida o fungicida
JP6285937B2 (ja) 2012-09-25 2018-02-28 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 除草性および殺真菌性の5−オキシ置換3−フェニルイソオキサゾリン−5−カルボキサミドおよび5−オキシ置換3−フェニルイソオキサゾリン−5−チオアミド
US9801374B2 (en) 2012-10-19 2017-10-31 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives
US9668480B2 (en) 2012-10-19 2017-06-06 Bayer Cropscience Ag Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives
MX355153B (es) 2012-10-19 2018-04-06 Bayer Cropscience Ag Combinaciones de compuestos activos que comprenden derivados de carboxamida y un agente de control biologico.
CN105357967B (zh) 2012-10-19 2019-02-19 拜尔农科股份公司 使用羧酰胺衍生物促进植物生长的方法
PL2908642T3 (pl) 2012-10-19 2022-06-13 Bayer Cropscience Ag Sposób wzmacniania tolerancji roślin na stres abiotyczny z zastosowaniem pochodnych karboksyamidowych lub tiokarboksyamidowych
EP2735231A1 (en) 2012-11-23 2014-05-28 Bayer CropScience AG Active compound combinations
UA117820C2 (uk) 2012-11-30 2018-10-10 Байєр Кропсайєнс Акцієнгезелльшафт Подвійна фунгіцидна або пестицидна суміш
BR112015012519A2 (pt) 2012-11-30 2017-07-11 Bayer Cropscience Ag misturas ternárias fungicidas e pesticidas
WO2014082950A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal mixtures
BR112015012473A2 (pt) 2012-11-30 2017-07-11 Bayer Cropscience Ag misturas binárias pesticidas e fungicidas
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
WO2014090765A1 (en) 2012-12-12 2014-06-19 Bayer Cropscience Ag Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops
AR093996A1 (es) 2012-12-18 2015-07-01 Bayer Cropscience Ag Combinaciones bactericidas y fungicidas binarias
WO2014095677A1 (en) 2012-12-19 2014-06-26 Bayer Cropscience Ag Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides
CA2908403A1 (en) 2013-04-02 2014-10-09 Bayer Cropscience Nv Targeted genome engineering in eukaryotes
US9550752B2 (en) 2013-04-12 2017-01-24 Bayer Cropscience Aktiengesellschaft Triazolinthione derivatives
MX2015014365A (es) 2013-04-12 2015-12-07 Bayer Cropscience Ag Derivados de triazol novedosos.
US9554573B2 (en) 2013-04-19 2017-01-31 Bayer Cropscience Aktiengesellschaft Binary insecticidal or pesticidal mixture
CA2909725A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Aktiengesellschaft Method for improved utilization of the production potential of transgenic plants
WO2014177514A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
TW201507722A (zh) 2013-04-30 2015-03-01 Bayer Cropscience Ag 做為殺線蟲劑及殺體內寄生蟲劑的n-(2-鹵素-2-苯乙基)-羧醯胺類
CN105636939B (zh) 2013-06-26 2018-08-31 拜耳作物科学股份公司 N-环烷基-n-[(二环基苯基)亚甲基]-(硫代)甲酰胺衍生物
MX2016003405A (es) 2013-09-24 2016-10-28 Bayer Cropscience Nv Hetero-transglicosilasa novedosa y usos de la misma.
CN105873907B (zh) 2013-12-05 2019-03-12 拜耳作物科学股份公司 N-环烷基-n-{[2-(1-取代的环烷基)苯基]亚甲基}-(硫代)甲酰胺衍生物
AU2014359208B2 (en) 2013-12-05 2018-10-04 Bayer Cropscience Aktiengesellschaft N-cycloalkyl-N-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
CN103773775B (zh) * 2014-01-26 2015-11-18 江苏省农业科学院 一种人源抗虫基因及其编码的抗Cry1B毒素独特型单链抗体与应用
WO2016094165A1 (en) * 2014-12-12 2016-06-16 Syngenta Participations Ag Compositions and methods for controlling plant pests
BR112017022000A2 (pt) 2015-04-13 2018-07-03 Bayer Cropscience Ag derivados de n-cicloalquil-n-(biheterocicliletileno)-(tio)carboxamida.
WO2017112538A2 (en) 2015-12-22 2017-06-29 AgBiome, Inc. Pesticidal genes and methods of use
AU2017247937A1 (en) 2016-04-06 2018-10-04 Bayer Cropscience Aktiengesellschaft Combination of nuclear polyhedrosis virus and diamides
CN106086011B (zh) * 2016-06-18 2019-10-18 北京大北农科技集团股份有限公司 用于检测除草剂耐受性大豆植物dbn9004的核酸序列及其检测方法
CA3032030A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Active compound combinations and methods to protect the propagation material of plants
US20190281828A1 (en) 2016-09-22 2019-09-19 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives
BR112019005668A2 (pt) 2016-09-22 2019-06-04 Bayer Ag novos derivados de triazol
US20190225974A1 (en) 2016-09-23 2019-07-25 BASF Agricultural Solutions Seed US LLC Targeted genome optimization in plants
KR20190085514A (ko) 2016-10-21 2019-07-18 베스타론 코포레이션 절단성 펩타이드 및 이를 포함하는 살충 및 살선충 단백질
CN106928329B (zh) * 2017-03-06 2020-09-22 中国农业科学院植物保护研究所 一种新的杀虫蛋白及其核苷酸序列
ES2894278T3 (es) 2017-06-13 2022-02-14 Bayer Ag 3-Fenilisoxazolin-5-carboxamidas de amidas de ácido tetrahidro- y dihidrofuranocarboxílico con efecto herbicida
CN111868042B (zh) 2018-01-25 2023-12-05 拜耳公司 环戊基羧酸衍生物的除草活性的3-苯基异噁唑啉-5-羧酰胺
BR102018009263A8 (pt) * 2018-05-07 2023-01-31 Embrapa Pesquisa Agropecuaria Molécula de ácido nucleico cry1da códon-otimizada, construção de ácido nucleico, vetor, célula hospedeira, célula vegetal, planta transgênica, método para transformar uma célula, método para produzir uma planta transgênica, método de controle de pragas invertebradas de plantas de cultivo e usos da molécula de ácido nucleico
CN108359673A (zh) * 2018-05-08 2018-08-03 江苏省农业科学院 一种高效杀食用菌眼蕈蚊的Bt cry11基因、编码蛋白及其应用
BR112020024615A2 (pt) 2018-06-04 2021-03-02 Bayer Aktiengesellschaft benzoilpirazóis bicíclicos de ação herbicida
AU2020209871A1 (en) 2019-01-14 2021-08-05 Bayer Aktiengesellschaft Herbicidal substituted n-tetrazolyl aryl carboxamides
WO2020169509A1 (de) 2019-02-20 2020-08-27 Bayer Aktiengesellschaft Herbizid wirksame 4-(4-trifluormethyl-6-cycloropylpyrazolyl)pyrimidine
BR112021017924A2 (pt) 2019-03-12 2021-11-16 Bayer Ag 3-fenilisoxazolina-5-carboxamidas herbicidamente ativas de ésteres de ácido ciclopentenil- carboxílico contendo s
BR102019023319A2 (pt) * 2019-11-06 2021-05-18 Embrapa-Empresa Brasileira De Pesquisa Agropecuaria molécula de ácido nucléico do evento transgênico de milho me240913 expressando a proteína cry1da, célula, planta e semente transgênica, usos das mesmas, produto de planta, método, kit e amplicon para detecção do evento, e métodos para produzir uma planta transgênica e de controle de insetos-pragas lepidópteros
BR112022019768A2 (pt) 2020-04-07 2022-12-06 Bayer Ag Diamidas de ácido isoftálico substituídas
BR112022019738A2 (pt) 2020-04-07 2022-11-16 Bayer Ag Isoftalamidas substituídas e seu uso como herbicidas
WO2021204669A1 (de) 2020-04-07 2021-10-14 Bayer Aktiengesellschaft Substituierte isophtalsäurediamide
US20230150953A1 (en) 2020-04-07 2023-05-18 Bayer Aktiengesellschaft Substituted isophthalic acid diamides
CN112011565B (zh) * 2020-05-20 2023-01-24 科稷达隆(北京)生物技术有限公司 一种棉花转化事件kjc003及其应用
WO2022125639A1 (en) * 2020-12-08 2022-06-16 Monsanto Technology Llc Modified plant-associated bacteria and methods of their use
EP4026833A1 (de) 2021-01-12 2022-07-13 Bayer Aktiengesellschaft Herbizid wirksame 2-(het)arylmethylpyrimidine
AR126252A1 (es) 2021-07-08 2023-10-04 Bayer Ag Amidas de ácido benzoico sustituidas
CN116063431B (zh) * 2022-09-19 2023-11-10 隆平生物技术(海南)有限公司 一种植物抗虫蛋白质及其应用

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407956A (en) * 1981-03-13 1983-10-04 The Regents Of The University Of California Cloned cauliflower mosaic virus DNA as a plant vehicle
US4536475A (en) * 1982-10-05 1985-08-20 Phytogen Plant vector
US4684611A (en) * 1982-02-11 1987-08-04 Rijksuniversiteit Leiden Process for the in-vitro transformation of plant protoplasts with plasmid DNA
US5254799A (en) * 1985-01-18 1993-10-19 Plant Genetic Systems N.V. Transformation vectors allowing expression of Bacillus thuringiensis endotoxins in plants
US5273746A (en) * 1992-01-29 1993-12-28 Mycogen Corporation Bacillus thuringiensis isolates active against phthiraptera pests
US5510471A (en) * 1991-03-05 1996-04-23 Rhone-Poulenc Agrochimie Chimeric gene for the transformation of plants
US5635618A (en) * 1993-11-10 1997-06-03 Rhone-Poulenc Agrochimie Promoter elements of chimeric genes of α-tubulin
US6033874A (en) * 1996-11-27 2000-03-07 Ecogen, Inc. CRY1C polypeptides having improved toxicity to lepidopteran insects
US6140553A (en) * 1997-02-20 2000-10-31 Plant Genetic Systems, N.V. Transformation method for plants
US6204246B1 (en) * 1993-09-02 2001-03-20 Novartis Ag Hybrid toxin
US6211431B1 (en) * 1994-08-30 2001-04-03 Commonwealth Scientific And Industrial Research Organization Plant transcription regulators from circovirus
US6291156B1 (en) * 1997-04-03 2001-09-18 Syngenta Participations Ag Plant pest control
US20030167517A1 (en) * 2001-01-09 2003-09-04 Greta Arnaut Novel bacillus thuringiensis insecticidal proteins
US20030226171A1 (en) * 2002-05-03 2003-12-04 Stefan Jansens Insect resistant plants and methods for making same
US6855873B1 (en) * 1989-05-31 2005-02-15 Bayer Bioscience, N.V. Recombinant plant expressing non-competitively binding Bt insecticidal cryatal proteins
US20050097633A1 (en) * 2003-10-09 2005-05-05 Pioneer Hi-Bred International, Inc. Maize promoter named CRWAQ81
US7169971B2 (en) * 1999-12-28 2007-01-30 Bayer Bioscience N.V. DNA encoding insecticidal Cry1Bf Bacillus thuringiensis proteins and recombinant hosts expressing same
US7501559B2 (en) * 1989-05-31 2009-03-10 Bayer Bioscience N.V. Prevention of Bt resistance development
US20100024075A1 (en) * 2005-11-23 2010-01-28 Aroian Raffi V Method for Controlling Plant-Parasitic Nematode Infections in Plants

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1192510A (en) 1981-05-27 1985-08-27 Lawrence E. Pelcher Rna plant virus vector or portion thereof, a method of construction thereof, and a method of producing a gene derived product therefrom
EP0320500B1 (en) 1983-01-13 2004-11-17 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Non-oncogenic ti plasmid vector system and recombinant DNA molecules for the introduction of expressible genes into plant cell genomes
JPH0714349B2 (ja) 1983-01-17 1995-02-22 モンサント カンパニ− 植物細胞での発現に適したキメラ遺伝子
EP0160692A1 (en) 1983-11-03 1985-11-13 DE WET, Johannes Martenis Jacob Method for the transfer of exogenous genes in plants using pollen as a vector
BR8600161A (pt) 1985-01-18 1986-09-23 Plant Genetic Systems Nv Gene quimerico,vetores de plasmidio hibrido,intermediario,processo para controlar insetos em agricultura ou horticultura,composicao inseticida,processo para transformar celulas de plantas para expressar uma toxina de polipeptideo produzida por bacillus thuringiensis,planta,semente de planta,cultura de celulas e plasmidio
US4615807A (en) 1985-07-23 1986-10-07 United States Environmental Resources, Corp. Method for wastewater treatment
GB2191502A (en) 1985-07-26 1987-12-16 Advanced Extraction Technol Processing inert-rich natural gas streams
ES2018274T5 (es) 1986-03-11 1996-12-16 Plant Genetic Systems Nv Celulas vegetales resistentes a los inhibidores de glutamina sintetasa, preparadas por ingenieria genetica.
EP0265556A1 (en) 1986-10-31 1988-05-04 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Stable binary agrobacterium vectors and their use
IL84459A (en) 1986-12-05 1993-07-08 Agracetus Apparatus and method for the injection of carrier particles carrying genetic material into living cells
JP2829128B2 (ja) 1989-01-31 1998-11-25 ストレイジ テクノロジー コーポレイション 読取り書込みヘッドバッファ
EP0558676B1 (en) 1990-11-23 2000-04-19 Plant Genetic Systems, N.V. Process for transforming monocotyledonous plants
EP0964927B1 (en) 1996-06-20 2012-11-07 The Scripps Research Institute Cassava vein mosaic virus promoters and uses thereof
US6110668A (en) 1996-10-07 2000-08-29 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Gene synthesis method
US6489542B1 (en) 1998-11-04 2002-12-03 Monsanto Technology Llc Methods for transforming plants to express Cry2Ab δ-endotoxins targeted to the plastids
EP1141346A2 (en) 1999-01-14 2001-10-10 Monsanto Co. Soybean transformation method
ES2288478T3 (es) 1999-05-19 2008-01-16 Bayer Bioscience N.V. Metodo mejorado para la transformacion de algodon, mediada por agrobacterium.
FR2795739B1 (fr) 1999-07-01 2003-08-15 Agronomique Inst Nat Rech Gene synthetique cryic et plantes transgeniques exprimant ledit gene
EP1099760A1 (en) * 1999-11-09 2001-05-16 Centrum Voor Plantenveredelings- En Reproduktieonderzoek (Cpro) Bacillus thuringiensis Cry1Ia-Cry1Ba hybrid toxins
AU2002252974B2 (en) * 2001-01-09 2006-12-14 BASF Agricultural Solutions Seed US LLC Bacillus thuringiensis insecticidal proteins
CN100582223C (zh) 2005-03-31 2010-01-20 浙江大学 转基因水稻的培育方法
WO2007107302A2 (en) 2006-03-21 2007-09-27 Bayer Bioscience N.V. Novel genes encoding insecticidal proteins

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407956A (en) * 1981-03-13 1983-10-04 The Regents Of The University Of California Cloned cauliflower mosaic virus DNA as a plant vehicle
US4684611A (en) * 1982-02-11 1987-08-04 Rijksuniversiteit Leiden Process for the in-vitro transformation of plant protoplasts with plasmid DNA
US4536475A (en) * 1982-10-05 1985-08-20 Phytogen Plant vector
US5254799A (en) * 1985-01-18 1993-10-19 Plant Genetic Systems N.V. Transformation vectors allowing expression of Bacillus thuringiensis endotoxins in plants
US7501559B2 (en) * 1989-05-31 2009-03-10 Bayer Bioscience N.V. Prevention of Bt resistance development
US6855873B1 (en) * 1989-05-31 2005-02-15 Bayer Bioscience, N.V. Recombinant plant expressing non-competitively binding Bt insecticidal cryatal proteins
US5510471A (en) * 1991-03-05 1996-04-23 Rhone-Poulenc Agrochimie Chimeric gene for the transformation of plants
US5273746A (en) * 1992-01-29 1993-12-28 Mycogen Corporation Bacillus thuringiensis isolates active against phthiraptera pests
US6204246B1 (en) * 1993-09-02 2001-03-20 Novartis Ag Hybrid toxin
US5635618A (en) * 1993-11-10 1997-06-03 Rhone-Poulenc Agrochimie Promoter elements of chimeric genes of α-tubulin
US6211431B1 (en) * 1994-08-30 2001-04-03 Commonwealth Scientific And Industrial Research Organization Plant transcription regulators from circovirus
US6033874A (en) * 1996-11-27 2000-03-07 Ecogen, Inc. CRY1C polypeptides having improved toxicity to lepidopteran insects
US6140553A (en) * 1997-02-20 2000-10-31 Plant Genetic Systems, N.V. Transformation method for plants
US6291156B1 (en) * 1997-04-03 2001-09-18 Syngenta Participations Ag Plant pest control
US7169971B2 (en) * 1999-12-28 2007-01-30 Bayer Bioscience N.V. DNA encoding insecticidal Cry1Bf Bacillus thuringiensis proteins and recombinant hosts expressing same
US20030167517A1 (en) * 2001-01-09 2003-09-04 Greta Arnaut Novel bacillus thuringiensis insecticidal proteins
US20030226171A1 (en) * 2002-05-03 2003-12-04 Stefan Jansens Insect resistant plants and methods for making same
US7049491B2 (en) * 2002-05-03 2006-05-23 Bayer Bioscience N.V. Plants made insect resistant by transformation with a nucleic acid encoding a modified Cry1Ab protein and methods for making same
US20050097633A1 (en) * 2003-10-09 2005-05-05 Pioneer Hi-Bred International, Inc. Maize promoter named CRWAQ81
US20100024075A1 (en) * 2005-11-23 2010-01-28 Aroian Raffi V Method for Controlling Plant-Parasitic Nematode Infections in Plants

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Pang et al, An improved green fluorescent protein gene as a vital marker in plants, Plant Physiol. (1996) 112:893-900. *
Rose AB, Plant J. (2004) 40:744-751. *
Schunmann et al, A Suite of Novel Promoters and Terminators For Plant Biotechnology, Functional Plant Biology (2003) 30:443-452 *
Yu et al, Cloning and sequence analysis of the cry1Ca6 gene from Bacillus thuringiensis, strain A2-F; Direct submission to EMBL/GenBank/DDBJ Databases; Submitted December 1999, EMBL Accession Number AAF37224.1 *
Zhang et al, Direct Sequence Submission to EMBL/GenBank/DDBJ Databases; Submitted April 2001; identified as Bacillus thurigiensis Cry1Ba protein; EMBL Accession Number AAK63251.1 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9994621B2 (en) 2007-06-01 2018-06-12 Bayer Cropscience N.V. Genes encoding insecticidal proteins
US9567602B2 (en) 2009-12-16 2017-02-14 Dow Agrosciences Llc Combined use of CRY1Ca and CRY1Fa proteins for insect resistance management
WO2011075587A1 (en) * 2009-12-16 2011-06-23 Dow Agrosciences Llc Combined use of cry1da and cry1fa proteins for insect resistance management
US9139844B2 (en) 2009-12-16 2015-09-22 Dow Agrosciences Llc Combined use of Cry1Ca and Cry1Ab proteins for insect resistance management
WO2011075585A1 (en) * 2009-12-16 2011-06-23 Dow Agrosciences Llc Combined use of vip3ab and cry1fa for management of resistant insects
WO2011084622A1 (en) * 2009-12-16 2011-07-14 Dow Agrosciences Llc Combined use of cry1ca and cry1ab proteins for insect resistance management
WO2011075588A1 (en) * 2009-12-16 2011-06-23 Dow Agrosciences Llc COMBINED USE OF CRY1Ca AND CRY1Fa PROTEINS FOR INSECT RESISTANCE MANAGEMENT
US9206137B2 (en) 2010-11-15 2015-12-08 Bayer Intellectual Property Gmbh N-Aryl pyrazole(thio)carboxamides
US9351489B2 (en) 2010-11-15 2016-05-31 Bayer Intellectual Property Gmbh Cyanoenamines and their use as fungicides
US9265252B2 (en) 2011-08-10 2016-02-23 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
US20140109263A1 (en) * 2012-10-05 2014-04-17 Dow Agrosciences Llc USE OF Cry1Ea IN COMBINATIONS FOR MANAGEMENT OF RESISTANT FALL ARMYWORM INSECTS
US11485983B2 (en) 2014-03-21 2022-11-01 Agrigenetics, Inc. Cry1D for controlling corn earworm
US9890390B2 (en) 2014-03-21 2018-02-13 Agrigenetics, Inc. CRY1D for controlling corn earworm
EP3119187B1 (en) 2014-03-21 2020-04-15 Agrigenetics, Inc. Cry1d for controlling corn earworm
US10683517B2 (en) 2014-03-21 2020-06-16 Agrigenetics, Inc. Cry1D for controlling corn earworm
WO2015143311A1 (en) * 2014-03-21 2015-09-24 Agrigenetics, Inc. Cry1d for controlling corn earworm
EP3119187B2 (en) 2014-03-21 2023-08-30 Agrigenetics, Inc. Cry1d for controlling corn earworm
US11795471B2 (en) 2014-03-21 2023-10-24 Agrigenetics, Inc. Cry1D for controlling corn earworm
US11649266B2 (en) 2014-10-16 2023-05-16 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having improved activity spectrum and uses thereof
WO2017180715A3 (en) * 2016-04-14 2017-11-16 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having improved activity spectrum and uses thereof
US11781151B2 (en) 2016-04-14 2023-10-10 Pioneer Hi-Bred International, Inc. Insecticidal CRY1B variants having improved activity spectrum and uses thereof
CN110914438A (zh) * 2017-05-26 2020-03-24 先锋国际良种公司 具有改善的活性谱的杀昆虫多肽及其用途

Also Published As

Publication number Publication date
EA019029B1 (ru) 2013-12-30
WO2007107302A2 (en) 2007-09-27
US11060103B2 (en) 2021-07-13
CN101405296A (zh) 2009-04-08
AU2007228981B2 (en) 2012-10-04
AR059995A1 (es) 2008-05-14
US20170107534A1 (en) 2017-04-20
EP1999141A2 (en) 2008-12-10
EP1999141B1 (en) 2011-06-01
AU2007228981A1 (en) 2007-09-27
CA2646471C (en) 2016-05-31
WO2007107302A3 (en) 2007-11-15
CA2646471A1 (en) 2007-09-27
CN101405296B (zh) 2014-04-30
PL1999141T3 (pl) 2011-10-31
EA200802018A1 (ru) 2009-04-28

Similar Documents

Publication Publication Date Title
US11060103B2 (en) Genes encoding insecticidal proteins
US8101826B2 (en) Expression of Cry3B insecticidal protein in plants
US8759620B2 (en) Transgenic plants expressing modified CRY3A
EP1698699B1 (en) Improved expression of CRY3B insecticidal protein in plants
US7745700B2 (en) Insecticidal proteins derived from Bacillus thuringiensis
US9994621B2 (en) Genes encoding insecticidal proteins
EP1490397B2 (en) Novel bacillus thuringiensis insecticidal proteins
AU2012258422B2 (en) Novel genes encoding insecticidal proteins
NZ571952A (en) Novel genes encoding insecticidal proteins

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAYER BIOSCIENCE N.V., BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN RIE, JEROEN;MEULEWAETER, FRANK;VAN ELDIK, GERBEN;REEL/FRAME:021682/0826

Effective date: 20080930

AS Assignment

Owner name: BAYER CROPSCIENCE N.V., BELGIUM

Free format text: MERGER;ASSIGNOR:BAYER BIOSCIENCE, N.V.;REEL/FRAME:027727/0396

Effective date: 20111231

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION