US20100184684A1 - Antibacterial and antifungal peptides - Google Patents

Antibacterial and antifungal peptides Download PDF

Info

Publication number
US20100184684A1
US20100184684A1 US12/683,286 US68328610A US2010184684A1 US 20100184684 A1 US20100184684 A1 US 20100184684A1 US 68328610 A US68328610 A US 68328610A US 2010184684 A1 US2010184684 A1 US 2010184684A1
Authority
US
United States
Prior art keywords
seq
peptides
peptide
composition
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/683,286
Other languages
English (en)
Inventor
Randal H. Eckert
Chris Kaplan
Jian He
Daniel K. Yarbrough
Maxwell Anderson
Jee-Hyun Sim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C3J Therapeutics Inc
Original Assignee
C3 Jian Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C3 Jian Inc filed Critical C3 Jian Inc
Priority to US12/683,286 priority Critical patent/US20100184684A1/en
Assigned to US ARMY, SECRETARY OF THE ARMY reassignment US ARMY, SECRETARY OF THE ARMY CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: UNIVERSITY OF MISSOURI ROLLA
Assigned to C3 JIAN, INC. reassignment C3 JIAN, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ECKERT, RANDAL H., HE, JIAN, KAPLAN, CHRIS, SIM, JEE-HYUN, YARBROUGH, DANIEL K., ANDERSON, MAXWELL
Publication of US20100184684A1 publication Critical patent/US20100184684A1/en
Assigned to C3 JIAN, LLC reassignment C3 JIAN, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: C3 JIAN, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • A01N37/46N-acyl derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/0071PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/10Inactivation or decontamination of a medicinal preparation prior to administration to an animal or a person
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0063Periodont
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to the fields of antibiotics and pharmacology. More particularly this invention pertains to the identification of novel antimicrobial peptides (AMPs) that have activity against a number of bacteria and/or fungi.
  • AMPs novel antimicrobial peptides
  • MRSA Mol. Gen. Genet. 183:181-186; Sista et al. (2004) Anesthesiol. Clin. N. Am. 22: 405-435.
  • Vancomycin remains the mainstay of therapy against several resistant gram-positive pathogens.
  • vancomycin is slowly bactericidal, and with the recent increase in nosocomial infections caused by vancomycin-resistant enterococci and S. aureus (Centers for Disease Control and Prevention (2002) Morbid. Mortal. Wkly. Rep. 51: 565-567; Diekema et al. (2004) Clin. Infect. Dis. 38: 78-85; Fujimura et al. (2004) J. Infect. Chemother., 10: 131-132), there is a growing need for antimicrobial agents with novel mechanisms of action to attack these resistant pathogens.
  • Biologically active peptides such as antimicrobial peptides (hereinafter “AMPs”), are believed to be less likely to develop resistance because the antimicrobial peptides show activity by mechanisms that are totally different from that of conventional antibiotics.
  • AMPs antimicrobial peptides
  • AMPs are low molecular weight peptides that exhibit antimicrobial activity.
  • Naturally-occurring AMPs are part of the innate immune response of plants, invertebrates and vertebrates.
  • AMPs include, among others, cecropins (see, e.g., Hultmark et al. (1980) Eur. J. Biochem., 106: 7-16; Hultmark et al. (1982) Eur. J. Biochem., 127: 207-217), apidaecins (see, e.g., Casteels et al. (1989) EMBO J. 8: 2387-2391), magainins (see, e.g., Zasloff (1987) Proc.
  • At least one antimicrobial peptide has been approved for the treatment of complicated skin and skin structure infections caused by several gram-positive bacteria. Its mode of action appears to be related to the disruption of the membrane potential of the bacterium, which is caused by the favored oligomerization of daptomycin upon extracellular calcium binding (Jeu and Fung (2004) Clin. Ther. 26: 1728-1757).
  • novel antimicrobial peptides are provided.
  • the peptides are useful in a variety of contexts including, but not limited to pharmaceuticals, and topical disinfectants.
  • an isolated antimicrobial peptide having antimicrobial activity against at least one kind of bacteria, fungus, or yeast the antimicrobial peptide ranging in length up to about 80, about 70, or about 60 amino acids and comprising an amino acid sequence selected from group consisting of GSVIKKRRKRMSKKKHRKMLRRTRVQRRKLGK (PF-S028, SEQ ID NO:1), NYRLVNAIFSKIFKKKFIKF (PF-C252, SEQ ID NO:2), YIQFHLNQQPRPKVKKIKIFL (PF-531, SEQ ID NO:3), GSVIKKRRKRMAKKKHRKLLKKTRIQRRRAGK (PF-527, SEQ ID NO:4), MRFGSLALVAYDSAIKHSWPRPSSVRRLRM (PF-672, SEQ ID NO:5), FESKILNASKELDKEKKVNTALSFNSHQDFAKAYQNGKI (PF-606, SEQ ID NO:6), KGKSLMPLLK
  • the amino acid sequence of the peptide consists of a sequence selected from group consisting of GSVIKKRRKRMSKKKHRKMLRRTRVQRRKLGK (PF-S028, SEQ ID NO:1), NYRLVNAIFSKIFKKKFIKF (PF-C252, SEQ ID NO:2), YIQFHLNQQPRPKVKKIKIFL (PF-531, SEQ ID NO:3), GSVIKKRRKRMAKKKHRKLLKKTRIQRRRAGK (PF-527, SEQ ID NO:4), MRFGSLALVAYDSAIKHSWPRPSSVRRLRM (PF-672, SEQ ID NO:5), FESKILNASKELDKEKKVNTALSFNSHQDFAKAYQNGKI (PF-606, SEQ ID NO:6), KGKSLMPLLKQINQWGKLYL (PF-C239, SEQ ID NO:7), WSRVPGHSDTGWKVWHRW (PF-547, SEQ ID NO:8), MGI
  • the peptide is effective to kill or inhibit the growth or proliferation of a yeast and/or fungus (e.g., A. niger, C. albicans, T. rubrum, M. furfur , etc.) where the amino acid sequence of the peptide comprises one or more sequences selected from the group consisting of PF-148, PF-168, PF-448, PF-525, PF-527, PF-529, PF-531, PF-545, PF-672, PF-C019, PF-278, PF-307, PF-672, PF-C021, PF-C157, PF-C220, PF-C252, PF-C287, PF-S028, PF-168, PF-278, PF-283, PF-307, PF-527, PF-531, PF-547, PF-672, PF-C019, PF-C021, PF-C252, and PF-S028
  • the peptide is effective to kill or inhibit the growth and/or proliferation of a bacterium, where the amino acid sequence of the peptide comprises one or more sequences selected from the group consisting of PF-006, PF-530, PF-531, PF-538, PF-C163, PF-C239, PF-C252, PF-C287, PF-006, PF-148, PF-283, PF-307, PF-322, PF-497, PF-499, PF-527, PF-531, PF-545, PF-547, PF-672, PF-S028, PF-522, PF-531, PF-538, PF-600, PF-606, PF-672, PF-C239, PF-C252, PF-006, PF-168, PF-209, PF-527, PF-545, PF-583, PF-606, PF-672, PF-C252, PF-S02
  • the bacterium is selected from the group consisting of A. naeslundii, S. mutans, B. subtilis , MRSA, C. difficile, S. epidermidis, S. pneumoniae, E. faecalis, P. gingivalis, E. coli, P. aeruginosa, A. baumannii , and F. nucleatum.
  • the peptide is effective to kill or inhibit the growth and/or proliferation of a gram positive bacterium, where the amino acid sequence of the peptide comprises one or more sequences selected from the group consisting of PF-006, PF-148, PF-168, PF-209, PF-278, PF-283, PF-307, PF-322, PF-437, PF-448, PF-497, PF-499, PF-511, PF-512, PF-520, PF-521, PF-522, PF-523, PF-524, PF-525, PF-527, PF-529, PF-531, PF-538, PF-545, PF-547, PF-583, PF-600, PF-601, PF-606, PF-672, PF-C019, PF-C163, PF-C239, PF-C252, PF-C287, PF-S028.
  • the amino acid sequence of the peptide comprises
  • the gram positive bacterium is selected from the group consisting of A. naeslundii, S. mutans, B. subtilis , MRSA, C. difficile, S. epidermidis, S. pneumoniae , and E. faecalis.
  • the peptide is effective to kill or inhibit the growth and/or proliferation of gram negative bacterium
  • the amino acid sequence of the peptide comprises one or more sequences selected from the group consisting of PF-006, PF-527, PF-530, PF-531, PF-538, PF-600, PF-606, PF-C163, PF-C239, PF-C252, PF-C287, and PF-S028.
  • the of gram negative bacterium is selected from the group consisting of P. gingivalis, E. coli, P. aeruginosa, A. baumannii , and F. nucleatum.
  • peptide(s) comprise all “L” amino acids, all “D” amino acids, or a mixture of “L” and “D” amino acids.
  • the peptide(s) are ⁇ peptides.
  • the peptide(s) can optionally comprise one or more protecting groups (e.g., an amide on the carboxyl terminus and/or an acetyl on the amino terminus).
  • the peptide(s) are in a pharmaceutically acceptable carrier (e.g., a carrier suitable for administration via a route selected from the group consisting of topical administration, aerosol administration, administration via inhalation, oral administration, systemic IV application, ocular administration, rectal administration, etc.).
  • compositions are provided that are effective to kill and/or to inhibit the growth and/or proliferation of a microorganism and/or to inhibit the formation and/or growth and/or maintenance of a biofilm comprising said microorganism.
  • the compositions typically comprise one or more peptides, the amino acid sequences of the peptides comprising or consisting of one or more sequences selected from the group consisting of GSVIKKRRKRMSKKKHRKMLRRTRVQRRKLGK (PF-S028, SEQ ID NO:1), NYRLVNAIFSKIFKKKFIKF (PF-C252, SEQ ID NO:2), YIQFHLNQQPRPKVKKIKIFL (PF-531, SEQ ID NO:3), GSVIKKRRKRMAKKKHRKLLKKTRIQRRRAGK (PF-527, SEQ ID NO:4), MRFGSLALVAYDSAIKHSWPRPSSVRRLRM (PF-672, SEQ ID NO:5), FESKILNASKE
  • the composition is effective to kill or inhibit the growth and/or proliferation of a yeast or fungus
  • the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-148, PF-168, PF-448, PF-525, PF-527, PF-529, PF-531, PF-545, PF-672, PF-C019, PF-278, PF-307, PF-672, PF-C021, PF-C157, PF-C220, PF-C252, PF-C287, PF-S028, PF-168, PF-278, PF-283, PF-307, PF-527, PF-531, PF-547, PF-672, PF-C019, PF-C021, PF-C252, and PF-S028.
  • the composition is effective to kill or inhibit the growth and/or proliferation of Aspergillus niger and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-148, PF-168, PF-448, PF-525, PF-527, PF-529, PF-531, PF-545, PF-672, and PF-C019.
  • the composition is effective to kill or inhibit the growth and/or proliferation of Candida albicans and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-278, PF-307, PF-672, PF-C021, PF-C157, PF-C220, PF-C252, and PF-C287.
  • the composition is effective to kill or inhibit the growth and/or proliferation of Malassezia furfur and the composition comprises a peptide comprising the amino acid sequence of PF-S028.
  • the composition is effective to kill or inhibit the growth and/or proliferation of Trichophyton rubrum and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-168, PF-278, PF-283, PF-307, PF-527, PF-531, PF-547, PF-672, PF-C019, PF-C021, PF-C252, PF-S028.
  • the composition is effective to kill or inhibit the growth and/or proliferation of a bacterium and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-006, PF-530, PF-531, PF-538, PF-C163, PF-C239, PF-C252, PF-C287, PF-006, PF-148, PF-283, PF-307, PF-322, PF-497, PF-499, PF-527, PF-531, PF-545, PF-547, PF-672, PF-S028, PF-522, PF-531, PF-538, PF-600, PF-606, PF-672, PF-C239, PF-C252, PF-006, PF-168, PF-209, PF-527, PF-545, PF-583, PF
  • the composition is effective to kill or inhibit the growth and/or proliferation of a gram positive bacterium and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-006, PF-148, PF-168, PF-209, PF-278, PF-283, PF-307, PF-322, PF-437, PF-448, PF-497, PF-499, PF-511, PF-512, PF-520, PF-521, PF-522, PF-523, PF-524, PF-525, PF-527, PF-529, PF-531, PF-538, PF-545, PF-547, PF-583, PF-600, PF-601, PF-606, PF-672, PF-C019, PF-C163, PF-C239, PF-C252, PF-C
  • the composition is effective to kill or inhibit the growth and/or proliferation of Actinomyces naeslundii and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-C163, PF-C239, PF-C252, and PF-C287.
  • the composition is effective to kill or inhibit the growth and/or proliferation of Bacillus subtilis and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-006, PF-148, PF-283, PF-307, PF-322, PF-497, PF-499, PF-527, PF-531, PF-545, PF-547, PF-672, and PF-S028.
  • the composition is effective to kill or inhibit the growth and/or proliferation of Clostridium difficile and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-522, PF-531, and PF-538.
  • the composition is effective to kill or inhibit the growth and/or proliferation of Enterococcus faecalis and the composition comprises one or more peptides comprising the amino acid sequence of PF-672.
  • the composition is effective to kill or inhibit the growth and/or proliferation of Methicillin-resistant Staphylococcus aureus (MRSA) and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-006, PF-168, PF-209, PF-527, PF-545, PF-583, PF-606, PF-672, PF-C252, and PF-S028.
  • MRSA Methicillin-resistant Staphylococcus aureus
  • the composition is effective to kill or inhibit the growth and/or proliferation of S. epidermidis and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-278, PF-283, PF-527, PF-531, PF-583, PF-606, PF-672, PF-C163, PF-C252, and PF-S028.
  • the composition is effective to kill or inhibit the growth and/or proliferation of Streptococcus mutans and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-531, PF-547, PF-601, PF-C019, PF-C239, PF-C252, and PF-S028.
  • the peptide composition is effective to kill or inhibit the growth and/or proliferation of Streptococcus pneumoniae and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-437, PF-448, PF-511, PF-512, PF-520, PF-521, PF-523, PF-524, PF-525, PF-529, PF-600, and PF-606.
  • the composition is effective to kill or inhibit the growth and/or proliferation of a gram negative bacterium and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-006, PF-527, PF-530, PF-531, PF-538, PF-600, PF-606, PF-C163, PF-C239, PF-C252, PF-C287, and PF-S028.
  • the composition is effective to kill or inhibit the growth and/or proliferation of Acinetobacter baumannii and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-006, PF-530, PF-531, and PF-538.
  • the composition is effective to kill or inhibit the growth and/or proliferation of Escherichia coli and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-600, and PF-606.
  • the composition is effective to kill or inhibit the growth and/or proliferation of Fusobacterium nucleatum and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences s or inverse of the sequences elected from the group consisting of PF-C239, and PF-C252.
  • the composition is effective to kill or inhibit the growth and/or proliferation of Pseudomonas aeruginosa and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-S028, PF-C252, PF-531, and PF-527.
  • the composition is effective to kill or inhibit the growth and/or proliferation of Porphyromonas gingivalis and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-S028, PF-C163, PF-C239, PF-C252, and PF-C287.
  • the one or more peptides comprising the composition comprises all “D” amino acids”, all “L” amino acids, or a combination of “D” and “L” amino acids.
  • the one or more peptides comprising the composition is a ⁇ peptide.
  • the one or more peptides comprising the composition comprise one or more protecting groups (e.g., an amide on the carboxyl terminus and/or an acetyl on the amino terminus).
  • the composition comprises a pharmaceutically acceptable carrier (e.g. a carrier suitable for administration via a route selected from the group consisting of topical administration, aerosol administration, administration via inhalation, oral administration, rectal administration, etc.).
  • Methods are also provided for killing and/or inhibiting the growth and/or proliferation of a microorganism and/or inhibiting the formation, growth or maintenance of a biofilm comprising the microorganism.
  • the methods typically involve contacting the microorganism with one or more antimicrobial peptides as described herein and/or a composition comprising one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-006, PF-530, PF-531, PF-538, PF-C163, PF-C239, PF-C252, PF-C287, PF-006, PF-148, PF-283, PF-307, PF-322, PF-497, PF-499, PF-527, PF-531, PF-545, PF-547, PF-672, PF-S028, PF-522, PF-531, PF-538,
  • methods of disinfecting a surface typically involve contacting the surface with one or more antimicrobial peptides as described herein and/or a composition comprising one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-006, PF-530, PF-531, PF-538, PF-C163, PF-C239, PF-C252, PF-C287, PF-006, PF-148, PF-283, PF-307, PF-322, PF-497, PF-499, PF-527, PF-531, PF-545, PF-547, PF-672, PF-S028, PF-522, PF-531, PF-538, PF-600, PF-606, PF-672, PF-C239, PF-C252, PF-006, PF-168, PF-209
  • the surface comprises a surface of a prosthesis and/or medical implant, and/or the surface comprises a surface of a medical device, or a surface of a plant or foodstuff.
  • a second disinfectant selected from the group consisting of other antimicrobial agent is a disinfectant selected from the group consisting of acetic acid, phosphoric acid, citric acid, lactic, formic, propionic acid, hydrochloric acid, sulfuric acid, nitric acid, sodium hydroxide, potassium hydroxide, sodium carbonate, ammonium hydroxide, ethyl alcohol, isopropyl alcohol, phenol, formaldehyde, glutaraldehyde, hypochlorites, chlorine dioxide, sodium dichloroisocyanurate, chloramine-T, iodine, povidone-iodine, chlorhexidine, hydrogen peroxide, peracetic acid, and benzalkonium chloride.
  • one or more antimicrobial peptides as described herein and/or a composition comprising one or more peptides, the amino acid sequences of the peptides comprising one or more sequences or inverse of the sequences independently selected from the group consisting of PF-006, PF-530, PF-531, PF-538, PF-C163, PF-C239, PF-C252, PF-C287, PF-006, PF-148, PF-283, PF-307, PF-322, PF-497, PF-499, PF-527, PF-531, PF-545, PF-547, PF-672, PF-S028, PF-522, PF-531, PF-538, PF-600, PF-606, PF-672, PF-C239, PF-C252, PF-006, PF-168, PF-209, PF-527, PF-545, PF-583, PF-60
  • the microorganism is a yeast or fungus and the peptide or composition is a peptide or composition comprising one or more AMPs identified herein as killing a yeast or fungus.
  • the microorganism is a bacterium and the peptide or composition is a peptide or composition comprising one or more AMPs identified herein as killing a bacterium.
  • the microorganism is a gram positive bacterium and the peptide or composition is a peptide or composition comprising one or more AMPs identified herein as killing a gram positive bacterium.
  • the microorganism is a gram negative bacterium and the peptide or composition is a peptide or composition comprising one or more AMPs identified herein as killing a gram negative bacterium.
  • peptide refers to a polymer of amino acid residues typically ranging in length from 2 to about 50 or about 60 residues (in certain instances up to about 100 residues). In certain embodiments the peptide ranges in length from about 2, 3, 4, 5, 7, 9, 10, or 11 residues to about 51, 50, 45, 40, 45, 30, 25, 20, or 15 residues. In certain embodiments the peptide ranges in length from about 8, 9, 10, 11, or 12 residues to about 15, 20, 25, 35, 50, or 51 residues. In certain embodiments the amino acid residues comprising the peptide are “L-form” amino acid residues, however, it is recognized that in various embodiments, “D” amino acids can be incorporated into the peptide.
  • Peptides also include amino acid polymers in which one or more amino acid residues is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers.
  • the term applies to amino acids joined by a peptide linkage or by other, “modified linkages” (e.g., where the peptide bond is replaced by an ⁇ -ester, a ⁇ -ester, a thioamide, phosphonamide, carbomate, hydroxylate, and the like (see, e.g., Spatola (1983) Chem. Biochem.
  • amino acid analogues include, but are not limited to 2-aminoadipic acid, 3-aminoadipic acid, beta-alanine (beta-aminopropionic acid), 2-aminobutyric acid, 4-aminobutyric acid, piperidinic acid, 6-aminocaproic acid, 2-aminoheptanoic acid, 2-aminoisobutyric acid, 3-aminoisobutyric acid, 2-aminopimelic acid, 2,4 diaminobutyric acid, desmosine, 2,2′-diaminopimelic acid, 2,3-diaminopropionic acid, n-ethylglycine, n-ethylasparagine, hydroxylysine, allo-hydroxylysine, 3-hydroxyproline, 4-hydroxyproline, isodesmosine, allo-isoleucine, n-methylgly
  • ⁇ -peptides comprise of “ ⁇ amino acids”, which have their amino group bonded to the ⁇ carbon rather than the ⁇ -carbon as in the 20 standard biological amino acids.
  • the only commonly naturally occurring ⁇ amino acid is ⁇ -alanine.
  • Peptoids or N-substituted glycines, are a specific subclass of peptidomimetics. They are closely related to their natural peptide counterparts, but differ chemically in that their side chains are appended to nitrogen atoms along the molecule's backbone, rather than to the ⁇ -carbons (as they are in natural amino acids).
  • inventions refer to peptides, constructed only from the naturally-occurring amino acids: Ala, Cys, Asp, Glu, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp, and Tyr.
  • a compound of the invention “corresponds” to a natural peptide if it elicits a biological activity (e.g., antimicrobial activity) related to the biological activity and/or specificity of the naturally occurring peptide. The elicited activity may be the same as, greater than or less than that of the natural peptide.
  • such a peptoid will have an essentially corresponding monomer sequence, where a natural amino acid is replaced by an N-substituted glycine derivative, if the N-substituted glycine derivative resembles the original amino acid in hydrophilicity, hydrophobicity, polarity, etc.
  • N-substituted glycine replacements N-(1-methylprop-1-yl)glycine substituted for isoleucine (Ile), N-(prop-2-yl)glycine for valine (Val), N-benzylglycine for phenylanlaine (Phe), N-(2-hydroxyethyl)glycine for serine (Ser), and the like. In certain embodiments substitutions need not be “exact”.
  • N-(2-hydroxyethyl)glycine may substitute for Ser, Thr, Cys, and/or Met; N-(2-methylprop-1-yl)glycine may substitute for Val, Leu, and/or Ile.
  • N-(2-hydroxyethyl)glycine can be used to substitute for Thr and Ser, despite the structural differences: the side chain in N-(2-hydroxyethyl)glycine is one methylene group longer than that of Ser, and differs from Thr in the site of hydroxy-substitution.
  • N-hydroxyalkyl-substituted glycine to substitute for any polar amino acid
  • an N-benzyl- or N-aralkyl-substituted glycine to replace any aromatic amino acid (e.g., Phe, Trp, etc.)
  • an N-alkyl-substituted glycine such as N-butylglycine to replace any nonpolar amino acid (e.g., Leu, Val, Ile, etc.)
  • an N-(aminoalkyl)glycine derivative to replace any basic polar amino acid (e.g., Lys and Arg).
  • L-, D-, or beta amino acid versions of the sequence are also contemplated as well as retro, inversion, and retro-inversion isoforms.
  • conservative substitutions e.g., in the binding peptide, and/or antimicrobial peptide, and/or linker peptide
  • Non-protein backbones such as PEG, alkane, ethylene bridged, ester backbones, and other backbones are also contemplated.
  • fragments ranging in length from about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 amino acids up to the full length minus one amino acid of the peptide are contemplated where the fragment retains at least 50%, preferably at least 60% 70% or 80%, more preferably at least 90%, 95%, 98%, 99%, or at least 100% of the activity (e.g., binding specificity and/or avidity, antimicrobial activity, etc.) of the full length peptide are contemplated.
  • activity e.g., binding specificity and/or avidity, antimicrobial activity, etc.
  • conservative substitutions of the amino acids comprising any of the sequences described herein are contemplated.
  • one, two, three, four, or five different residues are substituted.
  • the term “conservative substitution” is used to reflect amino acid substitutions that do not substantially alter the activity (e.g., antimicrobial activity and/or specificity) of the molecule.
  • conservative amino acid substitutions involve substitution one amino acid for another amino acid with similar chemical properties (e.g. charge or hydrophobicity).
  • Certain conservative substitutions include “analog substitutions” where a standard amino acid is replaced by a non-standard (e.g., rare, synthetic, etc) amino acid differing minimally from the parental residue.
  • Amino acid analogs are considered to be derived synthetically from the standard amino acids without sufficient change to the structure of the parent, are isomers, or are metabolite precursors.
  • Examples of such “analog substitutions include but are not limited to 1) Lys-Orn, 2) Leu-Norleucine, 3) Lys-Lys[TFA], 4) Phe-Phe[Gly], and 5) ⁇ -amino butylglycine- ⁇ -amino hexylglycine, where Phe[gly] refers to phenylglycine (a Phe derivative with a H rather than CH 3 component in the R group), and Lys[TFA] refers to a Lys where a negatively charged ion (e.g., TFA) is attached to the amine R group.
  • a negatively charged ion e.g., TFA
  • substitutions where the general chemistries of the two residues are similar, and can be sufficient to mimic or partially recover the function of the native peptide.
  • Strong functional substitutions include, but are not limited to 1) Gly/Ala, 2) Arg/Lys, 3) Ser/Tyr/Thr, 4) Leu/Ile/Val, 5) Asp/Glu, 6) Gln/Asn, and 7) Phe/Trp/Tyr, while other functional substitutions include, but are not limited to 8) Gly/Ala/Pro, 9) Tyr/His, 10) Arg/Lys/His, 11) Ser/Thr/Cys, 12) Leu/Ile/Val/Met, and 13) Met/Lys (special case under hydrophobic conditions).
  • substitutions where amino acids replace other amino acids from the same biochemical or biophysical grouping. This is similarity at a basic level and stems from efforts to classify the original 20 natural amino acids.
  • substitutions include 1) nonpolar side chains: Gly/Ala/Val/Leu/Ile/Met/Pro/Phe/Trp, and/or 2) uncharged polar side chains Ser/Thr/Asn/Gln/Tyr/Cys.
  • broad-level substitutions can also occur as paired substitutions.
  • Any hydrophilic neutral pair [Ser, Thr, Gln, Asn, Tyr, Cys]+[Ser, Thr, Gln, Asn, Tyr, Cys] can may be replaced by a charge-neutral charged pair [Arg, Lys, His]+[Asp, Glu].
  • amino acids that, in certain embodiments, are typical conservative substitutions for one another: 1) Alanine (A), Serine (S), Threonine (T); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K), Histidine (H); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).
  • amino acid sequences comprising, one or more of the above-identified conservative substitutions are also contemplated.
  • Antimicrobial peptides described herein also include “compound antimicrobial peptides” or “compound AMP(s)” that are constructs comprising two or more AMPs joined together thus forming a molecule with multiple AMP domains (that are the same or different).
  • the AMPs can be joined directly or through a linker. They can be chemically conjugated or, where joined directly together or through a peptide linker can comprise a fusion protein.
  • antimicrobial peptides compromising at least 80%, preferably at least 85% or 90%, and more preferably at least 95% or 98% or 99% sequence identity with any of the sequences described herein are also contemplated.
  • sequence identity refers to two or more sequences that are the same or have a specified percentage of amino acid residues that are the same, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection.
  • sequence identity is determined over the full length of the peptide. For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared.
  • test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated.
  • sequence comparison algorithm calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.
  • Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2: 482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48: 443, by the search for similarity method of Pearson and Lipman (1988) Proc. Natl. Acad.
  • the term “specificity” when used with respect to the antimicrobial activity of a peptide indicates that the peptide preferentially inhibits growth and/or proliferation and/or kills a particular microbial species as compared to other related and/or unrelated microbes.
  • the preferential inhibition or killing is at least 10% greater (e.g., LD 50 is 10% lower), preferably at least 20%, 30%, 40%, or 50%, more preferably at least 2-fold, at least 5-fold, or at least 10-fold greater for the target species.
  • Treating” or “treatment” of a condition as used herein may refer to preventing the condition, slowing the onset or rate of development of the condition, reducing the risk of developing the condition, preventing or delaying the development of symptoms associated with the condition, reducing or ending symptoms associated with the condition, generating a complete or partial regression of the condition, or some combination thereof.
  • substantially the same or greater antimicrobial activity indicates at least 80%, preferably at least 90%, and more preferably at least 95% of the anti microbial activity of the referenced peptide(s) against a particular bacterial species (e.g., S. mutans ).
  • an “antibody” refers to a protein consisting of one or more polypeptides substantially encoded by immunoglobulin genes or fragments of immunoglobulin genes.
  • the recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon and mu constant region genes, as well as myriad immunoglobulin variable region genes.
  • Light chains are classified as either kappa or lambda.
  • Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively.
  • a typical immunoglobulin (antibody) structural unit is known to comprise a tetramer.
  • Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kD) and one “heavy” chain (about 50-70 kD).
  • the N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition.
  • the terms variable light chain (V L ) and variable heavy chain (V H ) refer to these light and heavy chains respectively.
  • Antibodies exist as intact immunoglobulins or as a number of well characterized fragments produced by digestion with various peptidases.
  • pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)′ 2 , a dimer of Fab which itself is a light chain joined to V H -C H 1 by a disulfide bond.
  • the F(ab)′ 2 may be reduced under mild conditions to break the disulfide linkage in the hinge region thereby converting the (Fab′) 2 dimer into an Fab′ monomer.
  • the Fab′ monomer is essentially an Fab with part of the hinge region (see, Fundamental Immunology , W. E. Paul, ed., Raven Press, N.Y.
  • antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such Fab′ fragments may be synthesized de novo either chemically or by utilizing recombinant DNA methodology.
  • the term antibody as used herein also includes antibody fragments either produced by the modification of whole antibodies or synthesized de novo using recombinant DNA methodologies, including, but are not limited to, Fab′ 2 , IgG, IgM, IgA, scFv, dAb, nanobodies, unibodies, and diabodies.
  • antibodies and fragments of the present invention can be bispecific.
  • Bispecific antibodies or fragments can be of several configurations.
  • bispecific antibodies may resemble single antibodies (or antibody fragments) but have two different antigen binding sites (variable regions).
  • bispecific antibodies can be produced by chemical techniques (Kranz et al. (1981) Proc. Natl. Acad. Sci., USA, 78: 5807), by “polydoma” techniques (see, e.g., U.S. Pat. No. 4,474,893), or by recombinant DNA techniques.
  • bispecific antibodies of the present invention can have binding specificities for at least two different epitopes, at least one of which is an epitope of a microbial organism.
  • the microbial binding antibodies and fragments can also be heteroantibodies. Heteroantibodies are two or more antibodies, or antibody binding fragments (e.g., Fab) linked together, each antibody or fragment having a different specificity.
  • STAMP refers to Specifically Targeted Anti-Microbial Peptides.
  • a STAMP comprises one or more peptide targeting moieties attached to one or more antimicrobial moieties (e.g., antimicrobial peptides (AMPs)).
  • An MH-STAMP is a STAMP bearing two or more targeting domains (i.e., a multi-headed STAMP).
  • isolated refers to material which is substantially or essentially free from components that normally accompany it as found in its native state.
  • an isolated (naturally occurring) peptide is typically substantially free of components with which it is associated in the cell, tissue, or organism.
  • isolated also indicates that the peptide is not present in a phage display, yeast display, or other peptide library.
  • amino acid abbreviations shown in Table 1 are used herein.
  • FIG. 1 Killing kinetics of PF-S028 L and D versions against M. furfur were determined using standard time-kill methods previously detailed (Eckert et al. (2006) Antimicrob Agents Chemother., 50: 1480-1488). Briefly, a log phase culture of M. furfur ATCC 14521 was diluted to 10 6 cells/ml in ATCC medium 1072. To the reaction tubes 5 ⁇ M of either PF-S028 L or PF-S028 D were added. A reaction tube to which 4 ⁇ l of 50% methanol served as the negative control. Reaction tubes were stored at 30° C. and at indicated intervals an aliquot was removed from the reaction tube and placed in a recovery tube where peptide was removed by dilution.
  • novel peptides having antimicrobial activity against certain bacteria, fungi, and/or yeasts are provided.
  • the novel antimicrobial peptides described herein can be used to inhibit the growth and/or proliferation of a microbial species and/or the growth and/formation and/or maintenance of a biofilm comprising the microbial species.
  • the peptides can be formulated individually, in combination with each other, in combination with other antimicrobial peptides, and/or in combination with various antibacterial agents to provide antimicrobial reagents and/or pharmaceuticals.
  • this invention provides peptides having antimicrobial activity, compositions comprising the peptides, methods of using the peptides (or compositions thereof) to inhibit the growth of or kill a wide variety of microbial targets and methods of using the peptides (or compositions thereof) to treat or prevent microbial infections and diseases related thereto in both plants and animals.
  • the various peptides described herein exhibit antimicrobial activity, being biostatic or biocidal against a certain microbial targets, including but not limited to, Gram-negative bacteria such as Acinetobacter baumannii, Escherichia coli, Fusobacterium nucleatum, Pseudomonas aeruginosa, Porphyromonas gingivalis ; Gram-positive bacteria such as Actinomyces naeslundii, Bacillus subtilis, Clostridium difficile, Enterococcus faecalis, Staphylococcus aureus (and MRSA), S.
  • Gram-negative bacteria such as Acinetobacter baumannii, Escherichia coli, Fusobacterium nucleatum, Pseudomonas aeruginosa, Porphyromonas gingivalis
  • Gram-positive bacteria such as Actinomyces naeslundii, Bacillus subtilis, Clostridium difficile, Enter
  • various peptides described herein are biostatic or biocidal against clinically relevant pathogens exhibiting multi-drug resistance such as, for example, methicillin-resistant Staphylococcus aureus (“MRSA”).
  • MRSA methicillin-resistant Staphylococcus aureus
  • Acinetobacter baumannii Pathogenic gram-negative bacillus that is ( A. baumannii ) naturally sensitive to relatively few antibiotics.
  • Actinomyces naeslundii Gram positive rod shaped bacteria that ( A. naeslundii ) occupy the oral cavity and are implicated in periodontal disease and root caries.
  • Aspergillus niger A fungal infection that often causes a ( A. niger ) black mould to appear on some fruit and vegetables but may also infect humans through inhalation of fungal spores.
  • Bacillus subtilis Gram-positive, catalase-positive ( B. subtilis ) bacterium Bacillus subtilis Gram-positive, catalase-positive ( B. subtilis ) bacterium.
  • Candida albicans Causal agent of opportunistic oral and ( C. albicans ) genital fungal infections in humans.
  • Clostridium difficile A gram-positive, anaerobic, spore-forming ( C. difficile ) bacillus that is responsible for the development of antibiotic-associated diarrhea and colitis.
  • Opportunistic pathogen Escherichia coli Gram negative rod-shaped bacterium ( E. coli ) commonly found in the lower intestine of warm-blooded organisms. Certain strains cause serious food poisoning in humans.
  • Fusobacterium nucleatum Gram negative schizomycetes bacterium ( F. nucleatum ) often seen in necrotic tissue and implicated, but not conclusively, with other organisms in the causation and perpetuation of periodontal disease.
  • Malassezia furfur yeast - cutaneous pathogen ( M. furfur ) Methicillin-resistant Any strain of Staphylococcus aureus Staphylococcus aureus bacteria (gram positive) that is (MRSA) resistant to a one or more members of a large group of antibiotics called the beta-lactams.
  • Pseudomonas aeruginosa Gram-negative rod responsible for lung, ear, and skin infections. Second most prevalent source of burn wound infections.
  • Porphyromonas gingivalis Belongs to the genus Bacteroides and is a ( P. gingivalis ) non-motile, gram-negative, rod-shaped, anaerobic pathogenic bacterium (periodontal disease)
  • S. epidermidis Nosocomial pathogen associated with infection (biofilm) of implanted medical devices.
  • Trichophyton rubrum Most common cause of athlete's foot, jock ( T. rubrum ) itch and ringworm.
  • the antimicrobial peptide is attached to an opsinon or lysosome uptake or internalization signal to facilitate cellular uptake and killing of intracellular microorganisms.
  • the antimicrobial peptides include peptides comprising or consisting of one or more of the amino acid sequences shown in Table 3 (SEQ ID NOs:1-40).
  • the peptides include peptides comprising or consisting of the retro, inverso, retro-inverso, and/or beta form of one or more of the amino acid sequences shown in Table 3 (SEQ ID NOs:1-40).
  • Also contemplated are circular permutations of these sequences as well as peptides comprising or consisting of the retro, inverso, retro-inverso, and/or beta form of such circular permutations.
  • any peptide or compound AMP described herein can be circularized.
  • the peptides can optionally bear one or more protecting groups, e.g., and the amino and/or carboxyl termini, and/or on side chains.
  • peptides comprising one, two, three four, or five conservative substitutions of these amino acid sequences.
  • MIC Lowest concentration of an antibiotic which will inhibit the ( in vitro ) growth of the listed target organism(s).
  • MIC SEQ Name Amino Acid Sequence Organisms ( ⁇ M) ID No. PF-S028 GSVIKKRRKRMSKKKHRKMLRRTR P. aeruginosa 50 1 VQRRKLGK P. gingivalis 25 T. rubrum 50 M. furfur 2.5 B. subtilis 12.5 C. jeikeium 6.25 MRSA 50 S. epidermidis 25 S. mutans 50 PF-C252 NYRLVNAIFSKIFKKKFIKF P. aeruginosa 50 2 P. gingivalis 25 C.
  • epidermidis 25 PF-672 MRFGSLALVAYDSAIKHSWPRPSSV C. albicans 1.56 5 RRLRM T. rubrum 0.78 A. niger 3 B. subtilis 0.78 F. faecalis 3.13 MRSA 1.56 S. epidermidis 0.39 PF-606 FESKILNASKELDKEKKVNTALSFNS E. coli 50 6 HQDFAKAYQNGKI MRSA 50 S. epidermidis 50 S. mutans 50 S. pneumoniae 50 PF-C239 KGKSLMPLLKQINQWGKLYL P. gingivalis 50 7 A. naeslundii 25 F. nucleatum 50 S.
  • mutans 50 PF-547 WSRVPGHSDTGWKVWHRW T. rubrum 25 8 B. subtilis 25 S. mutans 12.5 PF-006 MGIIAGIIKFIKGLIEKFTGK A. baumannii 50 9 B. subtilis 25 MRSA 50 PF-C287 ILNKKPKLPLWKLGKNYFRRFYVLP P. gingivalis 50 10 TFLA C. albicans 50 A. naeslundii 25 PF-545 RESKLIAMADMIRRRI A. niger 50 11 B. subtilis 25 MRSA 50 PF-C019 LDPLEPRIAPPGDRSHQGAPACHRDP T. rubrum 50 12 LRGRSARDAER A. niger 50 S.
  • subtilis 50 PF-168 VLPFPAIPLSRRRACVAAPRPRSRQR T. rubrum 50 17 AS A. niger 50 MRSA 50 PF-538 KNKKQTDILEKVKEILDKKKKTKSV A. baumannii 25 18 GQKLY C. difficile 25 PF-448 SLQSQLGPCLHDQRH A. niger 25 19 S. pneumoniae 50 PF-C021 WKRLWPARILAGHSRRRMRWMVV C. albi cans 50 20 WRYFAAT T. rubrum 50 PF-583 KFQGEFTNIGQSYIVSASHMSTSLNT MRSA 50 21 GK S.
  • pneumoniae 50 34 PF-523 ASKQASKQASKQASKQASRS S. pneumoniae 50 35 LKNHLL PF-524 PDAPRTCYHKPILAALSR1VVTDR S. pneumoniae 50 36 PF-209 NYAVVSHT MRSA 50 37 PF-C157 ILVLLALQVELDSKFQY C. albicans 50 38 PF-C220 YVNYNQSFNSGW C. albicans 50 39 PF-437 FQKPFTGEEVEDFQDDDEIPTII S. pneumoniae 50 40
  • the amino acid sequence of the antimicrobial peptides comprises or consists of a single amino acid sequence, e.g., as listed above. In certain embodiments the amino acid sequence of the antimicrobial peptides comprises two copies, three copies, four copies, five copies six copies or more of one or more of the amino acid sequences listed above.
  • compound antimicrobial constructs are contemplated where the construct comprises multiple domains each having antimicrobial activity.
  • the AMP domains comprising such a construct can be the same or different. In certain embodiments the construct comprises at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 different AMP domains each domain comprising a different AMP sequence.
  • AMP domains comprising such a construct can be joined directly to each other or two or more of such domains can be attached to each other via a linker.
  • An illustrative, but non-limiting, list of suitable linkers is provided in Table 4.
  • Disulfide linkages Poly(amidoamine) or like dendrimers linking multiple target and killing peptides in one molecule
  • Carbon nanotubes Hydrazone and hydrazone variant linkers PEG of any chain length Succinate, formate, acetate butyrate, other like organic acids Aldols, alcohols, or enols Peroxides Alkane or alkene groups of any chain length
  • One or more porphyrin or dye molecules containing free amide and carboxylic acid groups One or more DNA or RNA nucleotides, including polyamine and polycarboxyl-containing variants Inulin, sucrose, glucose, or other single, di or polysaccharides Linoleic acid or other polyunsaturated fatty acids
  • Variants of any of the above linkers containing halogen or thiol groups (all amino-acid-based linkers could be L, D, ⁇ , or other forms)
  • two or more AMP domains comprising a compound AMP construct are chemically conjug
  • the two or more AMP domains comprising the AMP construct are joined by a peptide linker. Where all the AMP domains are attached directly to each other or are joined by peptide linkers, the entire construct can be provided as a single-chain peptide (fusion protein).
  • the antimicrobial peptides described herein comprise one or more of the amino acid sequences shown in Table 3 (and/or the retro, inverso, retroinverso, etc. forms of such sequences).
  • the peptides range in length up to about 100 amino acids in length, preferably up to about 80, about 70, about 60, or about 51 amino acids in length.
  • the peptides range in length from about 8 amino acids up to about 100 amino acids 80 amino acids, 60 amino acids or about 51 amino acids in length.
  • the peptides range in length from about 8 up to about 50, 40, 30, 20, 15, 15, 13, or 12 amino acids in length.
  • the various amino acid sequences described herein are effective against particular microorganisms.
  • the range of activity of the peptides or compositions comprising such peptides can be increased by including amino acid sequences effective against different microorganisms either as separate components and/or as multiple domains within a single construct.
  • Organism Peptide Gram Positive Bacteria A. naeslundii PF-C163 PF-C239 PF-C252 PF-C287 S. mutans PF-531 PF-547 PF-601 PF-C019 PF-C239 PF-C252 PF-S028 B.
  • nucleatum PF-C239 PF-C252 Yeast/Fungi A. niger PF-148 PF-168 PF-448 PF-525 PF-527 PF-529 PF-531 PF-545 PF-672 PF-C019 C. albicans PF-278 PF-307 PF-672 PF-C021 PF-C157 PF-C220 PF-C252 PF-C287 T. rubrum PF-168 PF-278 PF-283 PF-307 PF-527 PF-531 PF-547 PF-672 PF-C019 PF-C021 PF-C252 PF-S028 M. furfur PF-S028
  • the activity against a particular microorganism or group of microorganisms can be increased by increasing the number of peptides or peptide domains with activity against that microorganism or group of microorganisms.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of a yeast or fungus can comprise or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-148, PF-168, PF-448, PF-525, PF-527, PF-529, PF-531, PF-545, PF-672, PF-C019, PF-278, PF-307, PF-672, PF-C021, PF-C157, PF-C220, PF-C252, PF-C287, PF-S028, PF-168, PF-278, PF-283, PF-307, PF-527, PF-531, PF-547, PF-672, PF-C019, PF-C021, PF-C252, and PF-S028.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of Aspergillus niger can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-148, PF-168, PF-448, PF-525, PF-527, PF-529, PF-531, PF-545, PF-672, and PF-C019.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of Candida albicans can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-278, PF-307, PF-672, PF-C021, PF-C157, PF-C220, PF-C252, and PF-C287.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of Malassezia furfur can comprise a peptides and/or a peptide domains having sequence of PF-S028.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of Trichophyton rubrum can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-168, PF-278, PF-283, PF-307, PF-527, PF-531, PF-547, PF-672, PF-C019, PF-C021, PF-C252, PF-S028.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of a bacterium can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-006, PF-530, PF-531, PF-538, PF-C163, PF-C239, PF-C252, PF-C287, PF-006, PF-148, PF-283, PF-307, PF-322, PF-497, PF-499, PF-527, PF-531, PF-545, PF-547, PF-672, PF-S028, PF-522, PF-531, PF-538, PF-600, PF-606, PF-672, PF-C239, PF-C252, PF-006, PF-168, PF-209, PF-527, PF-545, PF-583, PF-606, PF-672, PF-C252,
  • a peptide or composition effective to kill or inhibit the growth or proliferation of a gram positive bacterium can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-006, PF-148, PF-168, PF-209, PF-278, PF-283, PF-307, PF-322, PF-437, PF-448, PF-497, PF-499, PF-511, PF-512, PF-520, PF-521, PF-522, PF-523, PF-524, PF-525, PF-527, PF-529, PF-531, PF-538, PF-545, PF-547, PF-583, PF-600, PF-601, PF-606, PF-672, PF-C019, PF-C163, PF-C239, PF-C252, PF-C287, PF-S028.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of Actinomyces naeslundii can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-C163, PF-C239, PF-C252, and PF-C287.
  • a peptide or composition effective to kill or inhibit the growth or proliferation Bacillus subtilis can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-006, PF-148, PF-283, PF-307, PF-322, PF-497, PF-499, PF-527, PF-531, PF-545, PF-547, PF-672, and PF-S028.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of Clostridium difficile can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-522, PF-531, and PF-538.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of Enterococcus faecalis can comprise a peptide and/or one or more peptide domain having the amino acid sequence of PF-672.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of Methicillin-resistant Staphylococcus aureus (MRSA) can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-006, PF-168, PF-209, PF-527, PF-545, PF-583, PF-606, PF-672, PF-C252, and PF-S028.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of S can comprise a peptide and/or one or more peptide domain having the amino acid sequence of PF-672.
  • MRSA Methicillin-resistant Staphylococcus aureus
  • epidermidis can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-278, PF-283, PF-527, PF-531, PF-583, PF-606, PF-672, PF-C163, PF-C252, and PF-S028.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of Streptococcus can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-531, PF-547, PF-601, PF-C019, PF-C239, PF-C252, and PF-S028.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of Streptococcus pneumoniae can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-437, PF-448, PF-511, PF-512, PF-520, PF-521, PF-523, PF-524, PF-525, PF-529, PF-600, and PF-606.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of effective to kill or inhibit the growth or proliferation of a gram negative bacterium can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-006, PF-527, PF-530, PF-531, PF-538, PF-600, PF-606, PF-C163, PF-C239, PF-C252, PF-C287, and PF-S028.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of Acinetobacter baumannii can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-006, PF-530, PF-531, and PF-538.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of Escherichia coli can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-600, and PF-606.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of Fusobacterium nucleatum can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-C239, and PF-C252.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of Pseudomonas aeruginosa can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-S028, PF-C252, PF-531, and PF-527.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of Porphyromonas gingivalis can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-S028, PF-C163, PF-C239, PF-C252, and PF-C287.
  • a peptide or composition effective to kill or inhibit the growth or proliferation of Corynebacterium jeikium can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-531, PF-S028, PF-527.
  • this invention provides chimeric moieties comprising antimicrobial peptides attached to targeting moieties, to detectable labels, and/or to opsonins, lysosomes, or other internalization signals.
  • the antimicrobial peptides can be attached (directly or through a linker) to one or more targeting moieties to specifically or preferentially deliver the AMP construct to a target microorganism, to a particular cell or tissue, and the like.
  • the targeting moieties preferentially and/or specifically bind to a microorganism (e.g., a bacterium, a fungus, a yeast, etc.).
  • the targeting moieties include, but are not limited to peptides that preferentially bind particular microorganisms (e.g., bacteria, fungi, yeasts, protozoa, algae, viruses, etc.) or groups of such microorganisms, antibodies that bind particular microorganisms or groups of microorganisms, receptor ligands that bind particular microorganisms or groups of microorganisms, porphyrins (e.g., metalloporphyrins), lectins that bind particular microorganisms or groups of microorganisms, and the like.
  • microorganisms e.g., bacteria, fungi, yeasts, protozoa, algae, viruses, etc.
  • antibodies that bind particular microorganisms or groups of microorganisms
  • receptor ligands that bind particular microorganisms or groups of microorganisms
  • porphyrins e.g., metalloporphyrins
  • references to microorganisms or groups of microorganism can include bacteria or groups of bacteria, viruses or groups of viruses, yeasts or groups of yeasts, protozoa or groups of protozoa, viruses or groups of viruses, and the like.
  • Suitable targeting peptides are disclosed, for example in US Patent Publication No: 2008-0170991 (WO/2008/030988) and include for example, C16 (TFFRLFNRSFTQALGK, SEQ ID NO:61), M8 (TFFRLFNR, SEQ ID NO:62), 1903 (NIFEYFLE, SEQ ID NO:63) as well as SEQ ID NOs:34-35 and 54-97 in that publication.
  • 1T-6 KFINGVLSQFVLERK, SEQ ID NO:64
  • 1T-18 YSKTLHFAD, SEQ ID NO:65
  • 1T-30 GKAKPYQVRQVLRAVDKLETRRKKGGR, SEQ ID NO:66
  • PF-S024 SKRGRKRKDRRKKKANHGKRPNS, SEQ ID NO:67
  • Other suitable targeting peptides are disclosed, for example, in priority documents U.S. Ser. No. 61/142,830, filed Jan. 6, 2009, U.S. Ser. No. 61/151,445, filed Feb. 10, 2009, U.S. Ser. No. 61/243,905, filed Sep. 18, 2009, and U.S. Ser. No. 61/243,930, filed Sep. 18, 2009.
  • targeting peptides consist of or comprise one or more of the C. albicans binding sequences shown in Table 6, or retro, inverse, retroinverso, or ⁇ forms thereof.
  • ID Target(s) Targeting Peptide Sequence SEQ ID No. PF-060 hyphae HSSHL 68 PF-024 hyphae DLRKAK 69 PF-636 hyphae LVRLA 70 PF-178 hyphae EVYSSPTNNVAITVQNN 71 PF-761 hyphae SKFELVNYASGCSCGADCKCASETECKCAS 72 KK PF-770 hyphae GVGIGFIMMGVVGYAVKLVHIPIRYLIV 73 1T-65 hyphae HARAAVGVAELPRGAAVEVELIAAVRP 74 PF-141 hyphae VVRRFQGM 75 PF-543 hyphae NILFGIIGFVVAMTAAVIVTAISIAK 76 PF-634 hyphae MPKARPVNHNKKKSKITIKSNFTLFYMFNP 77 PF-040 hyphae MIHLTK
  • the peptides in Table 6 were tested for binding efficiency at 3.13, 6.25, 12.5 and 25.0 ⁇ M concentrations in 1 ⁇ phosphate-buffered saline or 20 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 150 mM sodium chloride, 1 mM magnesium chloride and 0.1% CTAB.
  • the targeting moieties can comprise one or more antibodies that bind specifically or preferentially a microorganism or group of microorganisms (e.g., bacteria, fungi, yeasts, protozoa, viruses, algae, etc.).
  • the antibodies are selected to bind an epitope characteristic or the particular target microorganism(s).
  • such epitopes or antigens are typically is gram-positive or gram-negative specific, or genus-specific, or species-specific, or strain specific and located on the surface of a target microbial organism.
  • the antibody that binds the epitope or antigen can direct an anti-microbial peptide moiety to the site.
  • the antibody itself can provide anti-microbial activity in addition to the activity provided by the AMP since the antibody may engage an immune system effector (e.g., a T-cell) and thereby elicit an antibody-associated immune response, e.g., a humoral immune response.
  • an immune system effector e.g., a T-cell
  • Antibodies that bind particular target microorganisms can be made using any methods readily available to one skilled in the art. For example, as described in U.S. Pat. No. 6,231,857 (incorporated herein by reference) three monoclonal antibodies, i.e., SWLA1, SWLA2, and SWLA3 have been made against S. mutans . Monoclonal antibodies obtained from non-human animals to be used in a targeting moiety can also be humanized by any means available in the art to decrease their immunogenicity and increase their ability to elicit anti-microbial immune response of a human
  • Source Antibody U.S. Pat. No. 7,195,763 Polyclonal/monoclonal binds specific Gram(+) cell wall repeats U.S. Pat. No. 6,939,543 Antibodies against G(+) LTA U.S. Pat. No. 7,169,903 Antibodies against G(+) peptidoglycan U.S. Pat. No. 6,231,857 Antibody against S. mutans (Shi) U.S. Pat. No. 5,484,591 Gram( ⁇ ) binding antibodies US 2007/0231321 Diabody binding to Streptococcus surface antigen I/II US 2003/0124635 Antibody against S.
  • the targeting moiety can be attached directly to the AMP or compound AMP construct or it can be attached via a linker (e.g., as shown in Table 4).
  • chimeric moieties comprising the antimicrobial peptides (e.g., peptides comprising one or more amino acid sequences found in Table 3) attached directly or through a linker to a detectable label.
  • antimicrobial peptides e.g., peptides comprising one or more amino acid sequences found in Table 3
  • linker to a detectable label.
  • Such chimeric moieties are effective for detecting the presence and/or quantity, and/or location of the microorganism(s) that may be bound by the AMP(s).
  • these chimeric moieties are useful to identify cells and/or tissues and/or food stuffs and/or other compositions that are infected with the targeted microorganism(s).
  • Detectable labels suitable for use in such chimeric moieties include any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical, or chemical means.
  • Illustrative useful labels include, but are not limited to, biotin for staining with labeled streptavidin conjugates, avidin or streptavidin for labeling with biotin conjugates fluorescent dyes (e.g., fluorescein, texas red, rhodamine, green fluorescent protein, and the like, see, e.g., Molecular Probes, Eugene, Oreg., USA), radiolabels (e.g., 3 H, 125 I, 35 S, 14 C, 32 P, 99 Tc, 203 Pb, 67 Ga, 68 Ga, 72 As, 111 In, 113m In, 97 Ru, 62 Cu, 64lCu, 52 Fe, 52m Mn, 51 Cr, 186 Re, 188 Re, 77 As, 90 Y, 67 Cu, 169 Er,
  • Patents teaching the use of such labels include, for example, U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241.
  • fluorescent labels are not to be limited to single species organic molecules, but include inorganic molecules, multi-molecular mixtures of organic and/or inorganic molecules, crystals, heteropolymers, and the like.
  • CdSe—CdS core-shell nanocrystals enclosed in a silica shell can be easily derivatized for coupling to a biological molecule (Bruchez et al. (1998) Science, 281: 2013-2016).
  • highly fluorescent quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection (Warren and Nie (1998) Science, 281: 2016-2018).
  • spin labels are provided by reporter molecules with an unpaired electron spin which can be detected by electron spin resonance (ESR) spectroscopy.
  • ESR electron spin resonance
  • Illustrative spin labels include organic free radicals, transitional metal complexes, particularly vanadium, copper, iron, and manganese, and the like.
  • Exemplary spin labels include, for example, nitroxide free radicals.
  • means for detection include a scintillation counter or photographic film as in autoradiography.
  • the label is a fluorescent label, it may be detected by exciting the fluorochrome with the appropriate wavelength of light and detecting the resulting fluorescence, e.g., by microscopy, visual inspection, via photographic film, by the use of electronic detectors such as charge coupled devices (CCDs) or photomultipliers and the like.
  • enzymatic labels may be detected by providing appropriate substrates for the enzyme and detecting the resulting reaction product.
  • simple colorimetric labels may be detected simply by observing the color associated with the label.
  • compositions are contemplated that incorporate a targeting enhancer (e.g., an opsonin) attached to the AMP and/or to a targeted AMP.
  • a targeting enhancer e.g., an opsonin
  • Targeting enhancers include moieties that increase binding affinity, and/or binding specificity, and/or internalization of a moiety by the target cell/microorganism.
  • an AMP and/or a targeted antimicrobial molecule is attached (e.g., conjugated) to an opsonin.
  • the opsonin component When bound to a target cell through the targeting peptide, the opsonin component encourages phagocytosis and destruction by resident macrophages, dendritic cells, monocytes, or PMNs.
  • Opsonins contemplated for conjugation can be of a direct or indirect type.
  • Direct opsonins include, fore example, any bacterial surface antigen, PAMP (pathogen-associated molecular pattern), or other molecule recognized by host PRRs (pathogen recognizing receptors).
  • Opsonins can include, but are not limited to, bacterial protein, lipid, nucleic acid, carbohydrate and/or oligosaccharide moieties.
  • opsonins include, but are not limited to, N-acetyl-D-glucosamine (GlcNAc), N-acetyl-D-galactosamine (GlaNAc), N-acetylglucosamine-containing muramyl peptides, NAG-muramyl peptides, NAG-NAM, peptidoglycan, teichoic acid, lipoteichoic acid, LPS, o-antigen, mannose, fucose, ManNAc, galactose, maltose, glucose, glucosamine, sucrose, mannosamine, galactose-alpha-1,3-galactosyl-beta-1,4-N-acetyl glucosamine, or alpha-1,3-gal-gal, or other sugars.
  • GlcNAc N-acetyl-D-glucosamine
  • GaNAc N-acetyl-D-galacto
  • opsonins include indirect opsonins. Indirect opsonins function through binding to a direct opsonin already present. For example an Fc portion of an antibody, a sugar-binding lectin protein (example MBL), or host complement factors (example C3b, C4b, iC3b).
  • the opsonin is to galactose-alpha-1,3-galactosyl-beta-1,4-N-acetyl glucosamine, or alpha-1,3-gal-gal.
  • opsonin molecules include, but are not limited to antibodies (e.g., IgG and IgA), components of the complement system (e.g., C3b, C4b, and iC3b), mannose-binding lectin (MBL) (initiates the formation of C3b), and the like.
  • antibodies e.g., IgG and IgA
  • components of the complement system e.g., C3b, C4b, and iC3b
  • MBL mannose-binding lectin
  • the various peptides e.g., targeted peptides, antimicrobial peptides, compound AMPs, etc.
  • the protecting groups can be coupled to the C- and/or N-terminus of the peptide(s) and/or to one or more internal residues comprising the peptide(s) (e.g., one or more R-groups on the constituent amino acids can be blocked).
  • any of the peptides described herein can bear, e.g., an acetyl group protecting the amino terminus and/or an amide group protecting the carboxyl terminus.
  • Illustrative examples of such a protected peptides include, but are not limited to: YIQFHLNQQPRPKVKKIKIFL-NH 2 (SEQ ID NO:3), WSRVPGHSDTGWKVWHRW-NH 2 (SEQ ID NO:8), RESKLIAMADMIRRRI-NH 2 (SEQ ID NO:11), LSEMERRRLRKRA-NH 2 (SEQ ID NO:4), FELVDWLETNLGKILKSKSA-NH 2 (SEQ ID NO : 27 ), and LGLTAGVAYAAQPTNQPTNQPTNQPTNQPTNQPTNQPTNQPRW-NH 2 (SEQ ID NO:33).
  • the —NH2 protecting group can be can be eliminated and/or substituted with another protecting group as described herein.
  • protecting groups are suitable for this purpose.
  • Such groups include, but are not limited to acetyl, amide, and alkyl groups with acetyl and alkyl groups being particularly preferred for N-terminal protection and amide groups being preferred for carboxyl terminal protection.
  • the protecting groups include, but are not limited to alkyl chains as in fatty acids, propionyl, formyl, and others.
  • Particularly preferred carboxyl protecting groups include amides, esters, and ether-forming protecting groups.
  • an acetyl group is used to protect the amino terminus and an amide group is used to protect the carboxyl terminus.
  • Certain particularly preferred blocking groups include alkyl groups of various lengths, e.g., groups having the formula: CH 3 —(CH 2 ) n —CO— where n ranges from about 1 to about 20, preferably from about 1 to about 16 or 18, more preferably from about 3 to about 13, and most preferably from about 3 to about 10.
  • the acid group on the C-terminal can be blocked with an alcohol, aldehyde or ketone group and/or the N-terminal residue can have the natural amide group, or be blocked with an acyl, carboxylic acid, alcohol, aldehyde, or ketone group.
  • the protecting groups include, but are not limited to alkyl chains as in fatty acids, propionyl, formyl, and others.
  • Particularly preferred carboxyl protecting groups include amides, esters, and ether-forming protecting groups.
  • an acetyl group is used to protect the amino terminus and/or an amino group is used to protect the carboxyl terminus (i.e., amidated carboxyl terminus).
  • blocking groups include alkyl groups of various lengths, e.g., groups having the formula: CH 3 —(CH 2 ) n —CO— where n ranges from about 3 to about 20, preferably from about 3 to about 16, more preferably from about 3 to about 13, and most preferably from about 3 to about 10.
  • protecting groups include, but are not limited to Fmoc, t-butoxycarbonyl (t-BOC), 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-fluorenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl, xanthyl (Xan), trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), benzyloxy (B
  • Protecting/blocking groups are well known to those of skill as are methods of coupling such groups to the appropriate residue(s) comprising the peptides of this invention (see, e.g., Greene et al., (1991) Protective Groups in Organic Synthesis, 2 nd ed ., John Wiley & Sons, Inc. Somerset, N.J.).
  • acetylation is accomplished during the synthesis when the peptide is on the resin using acetic anhydride.
  • Amide protection can be achieved by the selection of a proper resin for the synthesis. For example, a rink amide resin can be used.
  • the semipermanent protecting groups on acidic bifunctional amino acids such as Asp and Glu and basic amino acid Lys, hydroxyl of Tyr are all simultaneously removed.
  • the peptides released from such a resin using acidic treatment comes out with the n-terminal protected as acetyl and the carboxyl protected as NH 2 and with the simultaneous removal of all of the other protecting groups.
  • amino acid sequences comprising, one or more protecting groups, e.g., as described above (or any other commercially available protecting groups for amino acids used, e.g., in boc or fmoc peptide synthesis) are also contemplated.
  • the peptides described herein can be chemically synthesized using standard chemical peptide synthesis techniques or, particularly where the peptide does not comprise “D” amino acid residues, the peptide can be recombinantly expressed.
  • a host organism e.g. bacteria, plant, fungal cells, etc.
  • a host organism can be cultured in an environment where one or more of the amino acids is provided to the organism exclusively in a D form. Recombinantly expressed peptides in such a system then incorporate those D amino acids.
  • D amino acids can be incorporated in recombinantly expressed peptides using modified amino acyl-tRNA synthetases that recognize D-amino acids.
  • the peptides are chemically synthesized by any of a number of fluid or solid phase peptide synthesis techniques known to those of skill in the art.
  • Solid phase synthesis in which the C-terminal amino acid of the sequence is attached to an insoluble support followed by sequential addition of the remaining amino acids in the sequence is a preferred method for the chemical synthesis of the polypeptides of this invention.
  • Techniques for solid phase synthesis are well known to those of skill in the art and are described, for example, by Barany and Merrifield (1963) Solid - Phase Peptide Synthesis ; pp. 3-284 in The Peptides: Analysis, Synthesis, Biology. Vol. 2 : Special Methods in Peptide Synthesis, Part A .; Merrifield et al. (1963) J. Am. Chem. Soc., 85: 2149-2156, and Stewart et al. (1984) Solid Phase Peptide Synthesis, 2nd ed. Pierce Chem. Co., Rockford, Ill.
  • the peptides can be synthesized by the solid phase peptide synthesis procedure using a benzhyderylamine resin (Beckman Bioproducts, 0.59 mmol of NH 2 /g of resin) as the solid support.
  • the COOH terminal amino acid e.g., t-butylcarbonyl-Phe
  • the synthesis usually produces a number of truncated peptides in addition to the desired full-length product.
  • the peptides are typically purified using, e.g., HPLC.
  • D-amino acids, beta amino acids, non-natural amino acids, and the like can be incorporated at one or more positions in the peptide simply by using the appropriately derivatized amino acid residue in the chemical synthesis.
  • Modified residues for solid phase peptide synthesis are commercially available from a number of suppliers (see, e.g., Advanced Chem Tech, Louisville; Nova Biochem, San Diego; Sigma, St Louis; Bachem California Inc., Torrance, etc.).
  • the D-form and/or otherwise modified amino acids can be completely omitted or incorporated at any position in the peptide as desired.
  • the peptide can comprise a single modified acid, while in other embodiments, the peptide comprises at least two, generally at least three, more generally at least four, most generally at least five, preferably at least six, more preferably at least seven or even all modified amino acids. In certain embodiments, essentially every amino acid is a D-form amino acid.
  • the antimicrobial peptides can also be recombinantly expressed.
  • the antimicrobial peptides and/or targeting moieties, and/or fusion proteins of this invention are synthesized using recombinant expression systems. Generally this involves creating a DNA sequence that encodes the desired peptide or fusion protein, placing the DNA in an expression cassette under the control of a particular promoter, expressing the peptide or fusion protein in a host, isolating the expressed peptide or fusion protein and, if required, renaturing the peptide or fusion protein.
  • DNA encoding the peptide(s) or fusion protein(s) described herein can be prepared by any suitable method as described above, including, for example, cloning and restriction of appropriate sequences or direct chemical synthesis.
  • This nucleic acid can be easily ligated into an appropriate vector containing appropriate expression control sequences (e.g. promoter, enhancer, etc.), and, optionally, containing one or more selectable markers (e.g. antibiotic resistance genes).
  • appropriate expression control sequences e.g. promoter, enhancer, etc.
  • selectable markers e.g. antibiotic resistance genes
  • the nucleic acid sequences encoding the peptides or fusion proteins described herein can be expressed in a variety of host cells, including, but not limited to, E. coli , other bacterial hosts, yeast, fungus, and various higher eukaryotic cells such as insect cells (e.g. SF3), the COS, CHO and HeLa cells lines and myeloma cell lines.
  • the recombinant protein gene will typically be operably linked to appropriate expression control sequences for each host.
  • this can include a promoter such as the T7, trp, or lambda promoters, a ribosome binding site and preferably a transcription termination signal.
  • control sequences can include a promoter and often an enhancer (e.g., an enhancer derived from immunoglobulin genes, SV40, cytomegalovirus, etc.), and a polyadenylation sequence, and may include splice donor and acceptor sequences.
  • an enhancer e.g., an enhancer derived from immunoglobulin genes, SV40, cytomegalovirus, etc.
  • a polyadenylation sequence and may include splice donor and acceptor sequences.
  • the plasmids can be transferred into the chosen host cell by well-known methods such as calcium chloride transformation for E. coli and calcium phosphate treatment or electroporation for mammalian cells.
  • Cells transformed by the plasmids can be selected by resistance to antibiotics conferred by genes contained on the plasmids, such as amp, gpt, neo, hyg, and the like.
  • the recombinant peptide(s) or fusion protein(s) can be purified according to standard procedures of the art, including ammonium sulfate precipitation, affinity columns, column chromatography, gel electrophoresis and the like (see, generally, R. Scopes, (1982) Protein Purification , Springer-Verlag, N.Y.; Deutscher (1990) Methods in Enzymology Vol. 182 : Guide to Protein Purification ., Academic Press, Inc. N.Y.). Substantially pure compositions of at least about 90 to 95% homogeneity are preferred, and 98 to 99% or more homogeneity are most preferred.
  • the peptide(s) or fusion protein(s) may possess a conformation substantially different than desired native conformation. In this case, it may be necessary to denature and reduce the peptide or fusion protein and then to cause the molecule to re-fold into the preferred conformation. Methods of reducing and denaturing proteins and inducing re-folding are well known to those of skill in the art (see, e.g., Debinski et al. (1993) J. Biol. Chem., 268: 14065-14070; Kreitman and Pastan (1993) Bioconjug.
  • Debinski et al. describes the denaturation and reduction of inclusion body proteins in guanidine-DTE. The protein is then refolded in a redox buffer containing oxidized glutathione and L-arginine.
  • modifications can be made to the peptide(s) and/or fusion protein(s) proteins without diminishing their biological activity. Some modifications may be made to facilitate the cloning, expression, or incorporation of the targeting molecule into a fusion protein. Such modifications are well known to those of skill in the art and include, for example, a methionine added at the amino terminus to provide an initiation site, or additional amino acids (e.g., poly His) placed on either terminus to create conveniently located restriction sites or termination codons or purification sequences.
  • Chimeric moieties are formed by joining one or more of the AMPs moieties described herein to each other and/or to one or more targeting moieties and/or to detectable labels and/or to opsonins.
  • the components are attached directly to each other via naturally occurring reactive groups or the AMPs and/or targeting moieties can be functionalized to provide such reactive groups.
  • the AMPs are attached to each other and/or to targeting moieties via one or more linking agents.
  • the AMPs and/or targeting moieties can be conjugated via a single linking agent or multiple linking agents.
  • they can be conjugated via a single multifunctional (e.g., bi-, tri-, or tetra-) linking agent or a pair of complementary linking agents.
  • the AMPs and/or targeting moieties are conjugated via two, three, or more linking agents.
  • Suitable linking agents include, but are not limited to, e.g., functional groups, affinity agents, stabilizing groups, and combinations thereof.
  • the linking agent is or comprises a functional group.
  • Functional groups include monofunctional linkers comprising a reactive group as well as multifunctional crosslinkers comprising two or more reactive groups capable of forming a bond with two or more different functional targets (e.g., labels, proteins, macromolecules, semiconductor nanocrystals, or substrate).
  • the multifunctional crosslinkers are heterobifunctional crosslinkers comprising two or more different reactive groups.
  • Suitable reactive groups include, but are not limited to thiol (—SH), carboxylate (COOH), carboxyl (—COOH), carbonyl, amine (NH 2 ), hydroxyl (—OH), aldehyde (—CHO), alcohol (ROH), ketone (R 2 CO), active hydrogen, ester, sulfhydryl (SH), phosphate (—PO 3 ), or photoreactive moieties.
  • Amine reactive groups include, but are not limited to e.g., isothiocyanates, isocyanates, acyl azides, NHS esters, sulfonyl chlorides, aldehydes and glyoxals, epoxides and oxiranes, carbonates, arylating agents, imidoesters, carbodiimides, and anhydrides.
  • Thiol-reactive groups include, but are not limited to e.g., haloacetyl and alkyl halide derivates, maleimides, aziridines, acryloyl derivatives, arylating agents, and thiol-disulfides exchange reagents.
  • Carboxylate reactive groups include, but are not limited to e.g., diazoalkanes and diazoacetyl compounds, such as carbonyldiimidazoles and carbodiimides.
  • Hydroxyl reactive groups include, but are not limited to e.g., epoxides and oxiranes, carbonyldiimidazole, oxidation with periodate, N,N′-disuccinimidyl carbonate or N-hydroxylsuccimidyl chloroformate, enzymatic oxidation, alkyl halogens, and isocyanates.
  • Aldehyde and ketone reactive groups include, but are not limited to e.g., hydrazine derivatives for schiff base formation or reduction amination.
  • Active hydrogen reactive groups include, but are not limited to e.g., diazonium derivatives for mannich condensation and iodination reactions.
  • Photoreactive groups include, but are not limited to e.g., aryl azides and halogenated aryl azides, benzophenones, diazo compounds, and diazirine derivatives.
  • Suitable reactive groups and classes of reactions useful in forming chimeric moieties include those that are well known in the art of bioconjugate chemistry.
  • Currently favored classes of reactions available with reactive chelates are those which proceed under relatively mild conditions. These include, but are not limited to, nucleophilic substitutions (e.g., reactions of amines and alcohols with acyl halides, active esters), electrophilic substitutions (e.g., enamine reactions), and additions to carbon-carbon and carbon-heteroatom multiple bonds (e.g., Michael reaction, Diels-Alder addition).
  • linker or “linking agent” as used herein, is a molecule that is used to join two or more molecules.
  • the linker is typically capable of forming covalent bonds to both molecule(s) (e.g., the targeting moiety and the effector).
  • Suitable linkers are well known to those of skill in the art and include, but are not limited to, straight or branched-chain carbon linkers, heterocyclic carbon linkers, or peptide linkers.
  • the linkers can be joined to the constituent amino acids through their side groups (e.g., through a disulfide linkage to cysteine). However, in certain embodiments, the linkers will be joined to the alpha carbon amino and carboxyl groups of the terminal amino acids.
  • An list of suitable linkers is shown in Table 4.
  • a bifunctional linker having one functional group reactive with a group on one molecule e.g., a targeting peptide
  • another group reactive on the other molecule e.g., an antimicrobial peptide
  • derivatization can be performed to provide functional groups.
  • procedures for the generation of free sulfhydryl groups on peptides are also known (See U.S. Pat. No. 4,659,839).
  • the linking agent is a heterobifunctional crosslinker comprising two or more different reactive groups that form a heterocyclic ring that can interact with a peptide.
  • a heterobifunctional crosslinker such as cysteine may comprise an amine reactive group and a thiol-reactive group can interact with an aldehyde on a derivatized peptide.
  • heterobifunctional crosslinkers include, for example, amine- and sulfhydryl reactive groups; carbonyl and sulfhydryl reactive groups; amine and photoreactive groups; sulfhydryl and photoreactive groups; carbonyl and photoreactive groups; carboxylate and photoreactive groups; and arginine and photoreactive groups.
  • the heterobifunctional crosslinker is SMCC.
  • the chimeric moiety can be chemically synthesized or recombinantly expressed as a fusion protein (i.e., a chimeric fusion protein).
  • the chimeric fusion proteins are synthesized using recombinant DNA methodology. Generally this involves creating a DNA sequence that encodes the fusion protein, placing the DNA in an expression cassette under the control of a particular promoter, expressing the protein in a host, isolating the expressed protein and, if required, renaturing the protein e.g., as described above.
  • the peptides described herein are circularized to produce cyclic peptides.
  • Cyclic peptides include head/tail, head/side chain, tail/side chain, and side chain/side chain cyclized peptides.
  • peptides contemplated herein include homodet, containing only peptide bonds, and heterodet containing in addition disulfide, ester, thioester-bonds, or other bonds.
  • the cyclic peptides can be prepared using virtually any art-known technique for the preparation of cyclic peptides.
  • the peptides can be prepared in linear or non-cyclized form using conventional solution or solid phase peptide syntheses and cyclized using standard chemistries.
  • the chemistry used to cyclize the peptide will be sufficiently mild so as to avoid substantially degrading the peptide. Suitable procedures for synthesizing the peptides described herein as well as suitable chemistries for cyclizing the peptides are well known in the art.
  • cyclization can be achieved via direct coupling of the N- and C-terminus to form a peptide (or other) bond, but can also occur via the amino acid side chains.
  • other functional groups including but not limited to amino, hydroxy, sulfhydryl, halogen, sulfonyl, carboxy, and thiocarboxy. These groups can be located at the amino acid side chains or be attached to their N- or C-terminus.
  • the chemical linkage used to covalently cyclize the peptides of the invention need not be an amide linkage.
  • Such linkages include, by way of example and not limitation amide, ester, thioester, CH 2 —NH, etc.
  • Techniques and reagents for synthesizing peptides having modified termini and chemistries suitable for cyclizing such modified peptides are well-known in the art.
  • linkers may be desirable to attach linkers to the N- and/or C-termini to facilitate peptide cyclization.
  • linkers will bear reactive groups capable of forming covalent bonds with the termini of the peptide. Suitable linkers and chemistries are well-known in the art and include those previously described.
  • Cyclic peptides and depsipeptides have been well characterized and show a wide spectrum of biological activity.
  • the reduction in conformational freedom brought about by cyclization often results in higher receptor-binding affinities.
  • extra conformational restrictions are also built in, such as the use of D- and N-alkylated-amino acids, ⁇ , ⁇ -dehydro amino acids or ⁇ , ⁇ -disubstituted amino acid residues.
  • the active AMPs and AMP constructs can be identified and/or validated using an in vitro screening assay. Indeed, in many instances the AMPs described herein will be used in vitro as preservatives, topical antimicrobial treatments, and the like. Additionally, despite certain apparent limitations of in vitro susceptibility tests, clinical data indicate that a good correlation exists between minimal inhibitory concentration (MIC) test results and in vivo efficacy of antibiotic compounds (see, e.g., Murray et al. (1994) Antimicrobial Susceptibility Testing, Poupard et al., eds., Plenum Press, New York; Knudsen et al. (1995) Antimicrob. Agents Chemother. 39(6): 1253-1258; and the like). Thus, AMPs useful for treating infections and diseases related thereto are also conveniently identified by demonstrated in vitro antimicrobial activity against specified microbial targets, e.g., as illustrated in Table 3).
  • the in vitro antimicrobial activity of antimicrobial agents is tested using standard NCCLS bacterial inhibition assays, or MIC tests (see, National Committee on Clinical Laboratory Standards “Performance Standards for Antimicrobial Susceptibility Testing,” NCCLS Document M100-S5 Vol. 14, No. 16, December 1994; “Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically-Third Edition,” Approved Standard M7-A3, National Committee for Clinical Standards, Villanova, Pa.).
  • the MIC assays are performed as described herein in the Examples.
  • the media and growth conditions utilized is detailed in Table 8.
  • MIC tests were conducted in 96-well plates with 100 ⁇ L of bacterial or yeast suspension added in each well and challenged with twofold serial dilutions of peptide starting at 50 ⁇ M. After incubation 18-24 h, or in some cases 48 h, the lowest concentration at which the peptide inhibited bacterial and/or fungal growth was noted as the MIC (observation of a clear well by visual inspection).
  • active peptides of the invention will exhibit MICs (as measured using the assays described in the examples) of less than about 100 ⁇ M, preferably less than about 80 or 60 ⁇ M, more preferably about 50 ⁇ M or less, about 25 ⁇ M or less, or about 15 ⁇ M or less, or about 10 ⁇ M or less.
  • one or more active agents are administered to a mammal in need thereof, e.g., to a mammal suffering from a microbial infection (e.g., bacterial or fungal infection) or prophylactically to prevent a microbial infection and/or to prevent or reduce the incidence or severity of dental caries.
  • a mammal infection e.g., bacterial or fungal infection
  • prophylactically to prevent a microbial infection and/or to prevent or reduce the incidence or severity of dental caries.
  • the active agent(s) can be administered in the “native” form or, if desired, in the form of salts, esters, amides, prodrugs, derivatives, and the like, provided the salt, ester, amide, prodrug or derivative is suitable pharmacologically, i.e., effective in the present method(s).
  • Salts, esters, amides, prodrugs and other derivatives of the active agents can be prepared using standard procedures known to those skilled in the art of synthetic organic chemistry and described, for example, by March (1992) Advanced Organic Chemistry; Reactions, Mechanisms and Structure, 4th Ed. N.Y. Wiley-Interscience.
  • disulfide salts of a number of delivery agents are described in PCT Publication WO 2000/059863.
  • acid salts of therapeutic peptides, peptoids, or other mimetics can be prepared from the free base using conventional methodology that typically involves reaction with a suitable acid.
  • the base form of the drug is dissolved in a polar organic solvent such as methanol or ethanol and the acid is added thereto.
  • the resulting salt either precipitates or can be brought out of solution by addition of a less polar solvent.
  • Suitable acids for preparing acid addition salts include, but are not limited to both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
  • organic acids e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, cit
  • An acid addition salt can be reconverted to the free base by treatment with a suitable base.
  • Certain particularly preferred acid addition salts of the active agents herein include halide salts, such as may be prepared using hydrochloric or hydrobromic acids.
  • preparation of basic salts of the active agents of this invention are prepared in a similar manner using a pharmaceutically acceptable base such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, trimethylamine, or the like.
  • Particularly preferred basic salts include alkali metal salts, e.g., the sodium salt, and copper salts.
  • the pKa of the counterion is preferably at least about 2 pH lower than the pKa of the drug.
  • the pKa of the counterion is preferably at least about 2 pH higher than the pKa of the drug. This permits the counterion to bring the solution's pH to a level lower than the pHmax to reach the salt plateau, at which the solubility of salt prevails over the solubility of free acid or base.
  • the generalized rule of difference in pKa units of the ionizable group in the active pharmaceutical ingredient (API) and in the acid or base is meant to make the proton transfer energetically favorable.
  • the counterion is a pharmaceutically acceptable counterion.
  • Suitable anionic salt forms include, but are not limited to acetate, benzoate, benzylate, bitartrate, bromide, carbonate, chloride, citrate, edetate, edisylate, estolate, fumarate, gluceptate, gluconate, hydrobromide, hydrochloride, iodide, lactate, lactobionate, malate, maleate, mandelate, mesylate, methyl bromide, methyl sulfate, mucate, napsylate, nitrate, pamoate (embonate), phosphate and diphosphate, salicylate and disalicylate, stearate, succinate, sulfate, tartrate, tosylate, triethiodide, valerate, and the like, while suitable cationic salt forms include, but are not limited to aluminum, benzathine, calcium, ethylene diamine, lysine
  • esters typically Involves Functionalization of Hydroxyl and/or carboxyl groups that are present within the molecular structure of the active agent.
  • the esters are typically acyl-substituted derivatives of free alcohol groups, i.e., moieties that are derived from carboxylic acids of the formula RCOOH where R is alky, and preferably is lower alkyl.
  • Esters can be reconverted to the free acids, if desired, by using conventional hydrogenolysis or hydrolysis procedures.
  • amides can also be prepared using techniques known to those skilled in the art or described in the pertinent literature.
  • amides may be prepared from esters, using suitable amine reactants, or they may be prepared from an anhydride or an acid chloride by reaction with ammonia or a lower alkyl amine.
  • the active agents identified herein are useful for parenteral, topical, oral, nasal (or otherwise inhaled), rectal, or local administration, such as by aerosol or transdermally, for prophylactic and/or therapeutic treatment of infection (e.g., microbial infection) one or more of the pathologies/indications described herein (e.g., atherosclerosis and/or symptoms thereof).
  • infection e.g., microbial infection
  • pathologies/indications described herein e.g., atherosclerosis and/or symptoms thereof.
  • the active agents of this invention can also be combined with a pharmaceutically acceptable carrier (excipient) to form a pharmacological composition.
  • Pharmaceutically acceptable carriers can contain one or more physiologically acceptable compound(s) that act, for example, to stabilize the composition or to increase or decrease the absorption of the active agent(s).
  • Physiologically acceptable compounds can include, for example, carbohydrates, such as glucose, sucrose, or dextrans, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins, protection and uptake enhancers such as lipids, compositions that reduce the clearance or hydrolysis of the active agents, or excipients or other stabilizers and/or buffers.
  • physiologically acceptable compounds particularly of use in the preparation of tablets, capsules, gel caps, and the like include, but are not limited to binders, diluent/fillers, disentegrants, lubricants, suspending agents, and the like.
  • an oral dosage form e.g., a tablet
  • an excipient e.g., lactose, sucrose, starch, mannitol, etc.
  • an optional disintegrator e.g. calcium carbonate, carboxymethylcellulose calcium, sodium starch glycollate, crospovidone etc.
  • a binder e.g.
  • alpha-starch gum arabic, microcrystalline cellulose, carboxymethylcellulose, polyvinylpyrrolidone, hydroxypropylcellulose, cyclodextrin, etc.), and an optional lubricant (e.g., talc, magnesium stearate, polyethylene glycol 6000, etc.), for instance, are added to the active component or components (e.g., active peptide and salicylanilide) and the resulting composition is compressed. Where necessary the compressed product is coated, e.g., known methods for masking the taste or for enteric dissolution or sustained release.
  • active component or components e.g., active peptide and salicylanilide
  • Suitable coating materials include, but are not limited to ethyl-cellulose, hydroxymethylcellulose, polyoxyethylene glycol, cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, and Eudragit (Rohm & Haas, Germany; methacrylic-acrylic copolymer).
  • physiologically acceptable compounds include wetting agents, emulsifying agents, dispersing agents or preservatives that are particularly useful for preventing the growth or action of microorganisms.
  • Various preservatives are well known and include, for example, phenol and ascorbic acid.
  • pharmaceutically acceptable carrier(s) including a physiologically acceptable compound depends, for example, on the route of administration of the active agent(s) and on the particular physio-chemical characteristics of the active agent(s).
  • the excipients are sterile and generally free of undesirable matter. These compositions can be sterilized by conventional, well-known sterilization techniques. For various oral dosage form excipients such as tablets and capsules sterility is not required. The USP/NF standard is usually sufficient.
  • compositions can be administered in a variety of unit dosage forms depending upon the method of administration.
  • suitable unit dosage forms include, but are not limited to powders, tablets, pills, capsules, lozenges, suppositories, patches, nasal sprays, injectables, implantable sustained-release formulations, mucoadherent films, topical varnishes, lipid complexes, etc.
  • compositions comprising the peptides described herein can be manufactured by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.
  • Pharmaceutical compositions can be formulated in a conventional manner using one or more physiologically acceptable carriers, diluents, excipients or auxiliaries that facilitate processing of the active peptides into preparations which can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen.
  • the peptides of the invention may be formulated as solutions, gels, ointments, creams, suspensions, and the like as are well-known in the art.
  • Systemic formulations include, but are not limited to, those designed for administration by injection, e.g. subcutaneous, intravenous, intramuscular, intrathecal or intraperitoneal injection, as well as those designed for transdermal, transmucosal oral or pulmonary administration.
  • the active agents described herein can be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks solution, Ringer's solution, or physiological saline buffer and/or in certain emulsion formulations.
  • the solution can contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
  • the active agent(s) can be provided in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
  • a suitable vehicle e.g., sterile pyrogen-free water
  • penetrants appropriate to the barrier to be permeated can be used in the formulation. Such penetrants are generally known in the art.
  • the compounds can be readily formulated by combining the active agent(s) with pharmaceutically acceptable carriers well known in the art.
  • Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated.
  • suitable excipients include fillers such as sugars, such as lactose, sucrose, mannitol and sorbitol; cellulose preparations such as maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP); granulating agents; and binding agents.
  • disintegrating agents may be added, such as the cross-linked polyvinylpyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.
  • solid dosage forms may be sugar-coated or enteric-coated using standard techniques.
  • suitable carriers, excipients or diluents include water, glycols, oils, alcohols, etc. Additionally, flavoring agents, preservatives, coloring agents and the like can be added.
  • the compositions may take the form of tablets, lozenges, etc. formulated in conventional manner.
  • the active agent(s) are conveniently delivered in the form of an aerosol spray from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • the active agent(s) can be formulated in rectal or vaginal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
  • the compounds may also be formulated as a depot preparation. Such long acting formulations can be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.
  • the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
  • Liposomes and emulsions are well known examples of delivery vehicles that may be used to deliver peptides of the invention.
  • Certain organic solvents such as dimethylsulfoxide also can be employed, although usually at the cost of greater toxicity.
  • the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid polymers containing the therapeutic agent.
  • sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein stabilization may be employed.
  • the active agents of this invention are administered to the oral cavity. This is readily accomplished by the use of lozenges, aerosol sprays, mouthwash, coated swabs, and the like.
  • the active agent(s) of this invention are administered topically, e.g., to the skin surface, to a topical lesion or wound, to a surgical site, and the like.
  • the active agents of this invention are administered systemically (e.g., orally, or as an injectable) in accordance with standard methods well known to those of skill in the art.
  • the agents can also be delivered through the skin using conventional transdermal drug delivery systems, i.e., transdermal “patches” wherein the active agent(s) are typically contained within a laminated structure that serves as a drug delivery device to be affixed to the skin.
  • the drug composition is typically contained in a layer, or “reservoir,” underlying an upper backing layer. It will be appreciated that the term “reservoir” in this context refers to a quantity of “active ingredient(s)” that is ultimately available for delivery to the surface of the skin.
  • the “reservoir” may include the active ingredient(s) in an adhesive on a backing layer of the patch, or in any of a variety of different matrix formulations known to those of skill in the art.
  • the patch may contain a single reservoir, or it may contain multiple reservoirs.
  • the reservoir comprises a polymeric matrix of a pharmaceutically acceptable contact adhesive material that serves to affix the system to the skin during drug delivery.
  • suitable skin contact adhesive materials include, but are not limited to, polyethylenes, polysiloxanes, polyisobutylenes, polyacrylates, polyurethanes, and the like.
  • the drug-containing reservoir and skin contact adhesive are present as separate and distinct layers, with the adhesive underlying the reservoir which, in this case, may be either a polymeric matrix as described above, or it may be a liquid or hydrogel reservoir, or may take some other form.
  • the backing layer in these laminates, which serves as the upper surface of the device, preferably functions as a primary structural element of the “patch” and provides the device with much of its flexibility.
  • the material selected for the backing layer is preferably substantially impermeable to the active agent(s) and any other materials that are present.
  • Ointments are semisolid preparations that are typically based on petrolatum or other petroleum derivatives.
  • Creams containing the selected active agent are typically viscous liquid or semisolid emulsions, often either oil-in-water or water-in-oil.
  • Cream bases are typically water-washable, and contain an oil phase, an emulsifier and an aqueous phase.
  • the oil phase also sometimes called the “internal” phase, is generally comprised of petrolatum and a fatty alcohol such as cetyl or stearyl alcohol; the aqueous phase usually, although not necessarily, exceeds the oil phase in volume, and generally contains a humectant.
  • the emulsifier in a cream formulation is generally a nonionic, anionic, cationic or amphoteric surfactant.
  • the specific ointment or cream base to be used is one that will provide for optimum drug delivery. As with other carriers or vehicles, an ointment base should be inert, stable, nonirritating and nonsensitizing.
  • one or more active agents of the present invention can be provided as a “concentrate”, e.g., in a storage container (e.g., in a premeasured volume) ready for dilution, or in a soluble capsule ready for addition to a volume of water, alcohol, hydrogen peroxide, or other diluent.
  • While the invention is described with respect to use in humans, it is also suitable for animal, e.g., veterinary use.
  • certain preferred organisms include, but are not limited to humans, non-human primates, canines, equines, felines, porcines, ungulates, largomorphs, and the like.
  • one or more of the antimicrobial peptides (AMPs) and/or compound AMPs of the present invention are incorporated into healthcare formulations, e.g., for home use.
  • Such formulations include, but are not limited to toothpaste, mouthwash, tooth whitening strips or solutions, contact lens storage, wetting, or cleaning solutions, dental floss, toothpicks, toothbrush bristles, oral sprays, oral lozenges, nasal sprays, aerosolizers for oral and/or nasal application, wound dressings (e.g., bandages), and the like.
  • toothpaste formulations are well known to those of skill in the art.
  • such formulations are mixtures of abrasives and surfactants; anticaries agents, such as fluoride; tartar control ingredients, such as tetrasodium pyrophosphate and methyl vinyl ether/maleic anhydride copolymer; pH buffers; humectants, to prevent dry-out and increase the pleasant mouth feel; and binders, to provide consistency and shape (see, e.g., Table 9). Binders keep the solid phase properly suspended in the liquid phase to prevent separation of the liquid phase out of the toothpaste. They also provide body to the dentifrice, especially after extrusion from the tube onto the toothbrush.
  • Table 10 lists typical ingredients used in formulations; the final combination will depend on factors such as ingredient compatibility and cost, local customs, and desired benefits and quality to be delivered in the product. It will be recognized that one or more AMPs and/or compound AMPs of the present invention can simply be added to such formulations or used in place of one or more of the other ingredients.
  • One illustrative formulation described in U.S. Pat. No. 6,113,887 comprises (1) a water-soluble bactericide selected from the group consisting of pyridinium compounds, quaternary ammonium compounds and biguanide compounds in an amount of 0.001% to 5.0% by weight, based on the total weight of the composition; (2) a cationically-modified hydroxyethylcellulose having an average molecular weight of 1,000,000 or higher in the hydroxyethylcellulose portion thereof and having a cationization degree of 0.05 to 0.5 mol/glucose in an amount of 0.5% to 5.0% by weight, based on the total weight of the composition; (3) a surfactant selected from the group consisting of polyoxyethylene polyoxypropylene block copolymers and alkylolamide compounds in an amount of 0.5% to 13% by weight, based on the total weight of the composition; and (4) a polishing agent of the non-silica type in an amount of 5% to 50% by weight, based on the total
  • mouthwash formulations are also well known to those of skill in the art.
  • mouthwashes containing sodium fluoride are disclosed in U.S. Pat. Nos. 2,913,373, 3,975,514, and 4,548,809, and in US Patent Publications US 2003/0124068 A1, US 2007/0154410 A1, and the like.
  • Mouthwashes containing various alkali metal compounds are also known: sodium benzoate (WO 9409752); alkali metal hypohalite (US 20020114851A1); chlorine dioxide (CN 1222345); alkali metal phosphate (US 2001/0002252 A1, US 2003/0007937 A1); hydrogen sulfate/carbonate (JP 8113519); cetylpyridium chloride (CPC) (see, e.g., U.S. Pat. No. 6,117,417, U.S. Pat. No. 5,948,390, and JP 2004051511).
  • sodium benzoate WO 9409752
  • alkali metal hypohalite US 20020114851A1
  • chlorine dioxide CN 1222345
  • alkali metal phosphate US 2001/0002252 A1, US 2003/0007937 A1
  • JP 8113519 hydrogen sulfate/carbonate
  • CPC cetylpyridium chloride
  • Mouthwashes containing higher alcohol see, e.g., US 2002/0064505 A1, US 2003/0175216 A1; hydrogen peroxide (see, e.g., CN 1385145); CO 2 gas bubbles (see, e.g., JP 1275521 and JP 2157215) are also known.
  • these and other mouthwash formulations can further comprise one or more of the AMPs or compound AMPs of this invention.
  • Contact lens storage, wetting, or cleaning solutions, deodorants, dental floss, toothpicks, toothbrush bristles, oral sprays, oral lozenges, nasal sprays, and aerosolizers for oral and/or nasal application, and the like are also well known to those of skill in the art and can readily be adapted to incorporate one or more AMPs and/or compound AMPs of the present invention.
  • an antimicrobially effective amount of an antimicrobial peptide, or composition thereof is applied or added to the material to be disinfected or preserved.
  • antimicrobially effective amount is meant an amount of peptide or composition that inhibits the growth and/or proliferation of, or is lethal to, a target microbe population.
  • the peptides, or compositions thereof are usually added or applied to the material to be disinfected or preserved in relatively low amounts.
  • the peptide comprises less than about 20%, 15%, 10%, or 5% by weight of the disinfectant solution or material to be preserved, preferably less than about 1% by weight and more preferably less than about 0.1% by weight.
  • An ordinarily skilled artisan will be able to determine antimicrobially effective amounts of particular peptides for particular applications without undue experimentation using, for example, the in vitro assays provided in the examples.
  • compositions of this invention are administered, e.g., topically administered or administered to the oral or nasal cavity, to a patient suffering from infection or at risk for infection or prophylactically to prevent infection.
  • administration is to prevent dental caries and/or periodontal disease, and/or other pathologies of the teeth or oral mucosa characterized by microbial infection.
  • the composition e.g., AMP, compound AMP, etc.
  • the composition is administered therapeutically to kill and/or to inhibit the growth and/or proliferation of a microorganism and/or a biofilm comprising one or more microorganisms.
  • the composition can be administered prophylactically to reduce the infectivity of a microorganism and/or to prevent/inhibit the growth and/or proliferation of a microorganism and/or a biofilm comprising the microorganism.
  • an amount adequate to kill and/or inhibit the growth and/or proliferation of a microorganism or sufficient to prevent and/or cure and/or at least partially prevent or arrest a disease and/or its complications is defined as a “therapeutically effective dose.” Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the active agents of the formulations of this invention to effectively treat (ameliorate one or more symptoms in) the patient.
  • the concentration of active agent(s) can vary widely, and will be selected primarily based on activity of the active ingredient(s), body weight and the like in accordance with the particular mode of administration selected and the patient's needs. Concentrations, however, will typically be selected to provide dosages ranging from about 0.1 or 1 mg/kg/day to about 50 mg/kg/day and sometimes higher. Typical dosages range from about 3 mg/kg/day to about 3.5 mg/kg/day, preferably from about 3.5 mg/kg/day to about 7.2 mg/kg/day, more preferably from about 7.2 mg/kg/day to about 11.0 mg/kg/day, and most preferably from about 11.0 mg/kg/day to about 15.0 mg/kg/day.
  • dosages range from about 10 mg/kg/day to about 50 mg/kg/day. In certain embodiments, dosages range from about 20 mg to about 50 mg given orally twice daily. It will be appreciated that such dosages may be varied to optimize a therapeutic and/or phophylactic regimen in a particular subject or group of subjects. Determination of a therapeutically effective amount is well within the capabilities of those skilled in the art, especially in light of the detailed disclosure provided herein.
  • a therapeutically effective dose can be determined using, for example, the in vitro assays provided in the examples.
  • the treatment may be applied while the infection is visible, or even when it is not visible.
  • An ordinarily skilled artisan will be able to determine therapeutically effective amounts to treat topical infections without undue experimentation.
  • a therapeutically effective dose can be estimated initially from in vitro assays.
  • a dose can be formulated in animal models to achieve a circulating cyclic peptide concentration range that includes the I 50 as determined in cell culture (i.e., the concentration of test compound that is lethal to 50% of a cell culture), the MIC, as determined in cell culture (i.e., the minimal inhibitory concentration for growth) or the I 100 as determined in cell culture (i.e., the concentration of peptide that is lethal to 100% of a cell culture).
  • the I 50 as determined in cell culture
  • the MIC the concentration of test compound that is lethal to 50% of a cell culture
  • the I 100 as determined in cell culture
  • Initial dosages can also be estimated from in vivo data, e.g., animal models, using techniques that are well known in the art. One having ordinary skill in the art could readily optimize administration to humans based on animal data. In certain embodiments dosage amount and interval can be adjusted individually to provide plasma levels of the active peptide which are sufficient to maintain therapeutic effect.
  • the effective local concentration of peptide may not be related to plasma concentration.
  • One having skill in the art will be able to optimize therapeutically effective local dosages without undue experimentation.
  • the antimicrobial therapy may be repeated intermittently while infections are detectable or even when they are not detectable.
  • the therapy may be provided alone or in combination with other drugs, such as for example antibiotics or other antimicrobial peptides.
  • a therapeutically effective dose of the AMPs and other constructs described herein will provide therapeutic benefit without causing substantial toxicity.
  • Toxicity can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., by determining the LD 50 (the dose lethal to 50% of the population) or the LD 100 (the dose lethal to 100% of the population).
  • the dose ratio between toxic and therapeutic effect is the therapeutic index.
  • Compounds that exhibit high therapeutic indices are preferred, particularly for in vivo applications.
  • the data obtained from cell culture assays and animal studies can be used in formulating a dosage range that is not toxic for use in human.
  • the dosage of the peptides described herein lies preferably within a range of circulating concentrations that include the effective dose with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition (see, e.g., Fingl et al. (1975) In: The Pharmacological Basis of Therapeutics, Ch. 1, p. 1).
  • the kits typically comprise a container containing one or more of the active agents (i.e., antimicrobial peptides or compound antimicrobial peptides) described herein.
  • the active agent(s) can be provided in a unit dosage formulation (e.g., suppository, tablet, caplet, patch, etc.) and/or may be optionally combined with one or more pharmaceutically acceptable excipients.
  • kits comprise one or more of the home healthcare product formulations described herein (e.g., toothpaste, mouthwash, tooth whitening strips or solutions, contact lens storage, wetting, or cleaning solutions, dental floss, toothpicks, toothbrush bristles, oral sprays, oral lozenges, nasal sprays, aerosolizers for oral and/or nasal application, and the like).
  • the home healthcare product formulations described herein e.g., toothpaste, mouthwash, tooth whitening strips or solutions, contact lens storage, wetting, or cleaning solutions, dental floss, toothpicks, toothbrush bristles, oral sprays, oral lozenges, nasal sprays, aerosolizers for oral and/or nasal application, and the like.
  • kits comprise one or more of the disinfectant formulations described herein.
  • kits optionally include labeling and/or instructional materials providing directions (i.e., protocols) for the practice of the methods or use of the “therapeutics” or “prophylactics” of this invention.
  • Preferred instructional materials describe the use of one or more active agent(s) of this invention to therapeutically or prophylactically to inhibit or prevent infection and/or to inhibit the formation of dental caries.
  • the instructional materials may also, optionally, teach preferred dosages/therapeutic regiment, counter indications and the like.
  • instructional materials typically comprise written or printed materials they are not limited to such. Any medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.
  • electronic storage media e.g., magnetic discs, tapes, cartridges, chips
  • optical media e.g., CD ROM
  • Such media may include addresses to internet sites that provide such instructional materials.
  • Peptides were synthesized utilizing standard solid-phase synthesis methods (Fmoc or Boc chemistries).
  • Fmoc 9-fluorenylmethoxy carbonyl
  • peptides were synthesized using Fmoc (9-fluorenylmethoxy carbonyl) solid-phase synthesis utilizing single or double coupling cycles at 0.01 to 0.25 mmol scales. Briefly, N-terminal deprotection was conducted in 20% (v/v) piperidine/N-methylpyrrolidone (NMP) for 3 min followed by eight washes with NMP.
  • NMP N-terminal deprotection was conducted in 20% (v/v) piperidine/N-methylpyrrolidone
  • amino acids were solubilized in 0.45 M N-hydroxybenzotrazole (HOBt)/HBTU (O-benzotriazole-N,N,N,N-tetramethyl-uronium hexafluoro-phosphate) in dimethylformamide (DMF) with 0.9 M diisopropyl ethylamine (DIEA) (1:1:1:2 ratio Fmoc amino acid:HOB:HBTU:DIEA) before being added to the resin for 30 min, followed by 10 NMP rinses.
  • HOBt N-hydroxybenzotrazole
  • HBTU O-benzotriazole-N,N,N,N-tetramethyl-uronium hexafluoro-phosphate
  • DMF dimethylformamide
  • DIEA diisopropyl ethylamine
  • peptides were then labeled N-terminally with 4-molar excess fluorescent dyes or blocking groups in HOBt/HBTU/DIEA coupling solution with shaking at ambient temperature for 24 h followed by 10 rinses in dichloromethane (DCM).
  • DCM dichloromethane
  • the MIC assays are performed as follows: For each organism, the media and growth conditions utilized is detailed in Table 8. MIC tests were conducted in 96-well plates with 100 ⁇ L of bacterial or yeast suspension added in each well and challenged with twofold serial dilutions of peptide starting at 50 ⁇ M. After incubation 18-24 h, or in some cases 48 h, the lowest concentration at which the peptide inhibited bacterial and/or fungal growth was noted as the MIC (observation of a clear well by visual inspection).
  • Killing kinetics of PF-S028 L and D versions against M. furfur were determined as described in Eckert et al. (2006) Antimicrob Agents Chemother., 50: 1480-1488. Briefly, a log phase culture of M. furfur ATCC 14521 was diluted to 10 6 cells/ml in ATCC medium 1072. To the reaction tubes 5 ⁇ M of either PF-S028 L or PF-S028 D were added. A reaction tube to which 4 ⁇ l of 50% methanol was added served as the negative control. Reaction tubes were stored at 30° C. and at indicated intervals a sample was removed from the reaction tube and placed in a recovery tube where peptide was removed by dilution.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Physiology (AREA)
  • Birds (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Nutrition Science (AREA)
  • Dermatology (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
US12/683,286 2009-01-06 2010-01-06 Antibacterial and antifungal peptides Abandoned US20100184684A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/683,286 US20100184684A1 (en) 2009-01-06 2010-01-06 Antibacterial and antifungal peptides

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US14283009P 2009-01-06 2009-01-06
US15144509P 2009-02-10 2009-02-10
US24393009P 2009-09-18 2009-09-18
US24390509P 2009-09-18 2009-09-18
US12/683,286 US20100184684A1 (en) 2009-01-06 2010-01-06 Antibacterial and antifungal peptides

Publications (1)

Publication Number Publication Date
US20100184684A1 true US20100184684A1 (en) 2010-07-22

Family

ID=42316784

Family Applications (9)

Application Number Title Priority Date Filing Date
US12/683,352 Abandoned US20110039763A1 (en) 2009-01-06 2010-01-06 Targeted antimicrobial moieties
US12/683,286 Abandoned US20100184684A1 (en) 2009-01-06 2010-01-06 Antibacterial and antifungal peptides
US12/683,188 Active US8303962B2 (en) 2009-01-06 2010-01-06 Antibacterial and antifungal peptides
US12/683,160 Active 2031-09-14 US8754039B2 (en) 2009-01-06 2010-01-06 Targeted antimicrobial moieties
US12/683,258 Abandoned US20100184683A1 (en) 2009-01-06 2010-01-06 Antibacterial and antifungal peptides
US12/683,327 Abandoned US20110039762A1 (en) 2009-01-06 2010-01-06 Targeted antimicrobial moieties
US13/653,246 Expired - Fee Related US9072793B2 (en) 2009-01-06 2012-10-16 Antibacterial and antifungal peptides
US14/255,858 Active US9597407B2 (en) 2009-01-06 2014-04-17 Targeted antimicrobial moieties
US15/433,926 Abandoned US20170266306A1 (en) 2009-01-06 2017-02-15 Targeted antimicrobial moieties

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/683,352 Abandoned US20110039763A1 (en) 2009-01-06 2010-01-06 Targeted antimicrobial moieties

Family Applications After (7)

Application Number Title Priority Date Filing Date
US12/683,188 Active US8303962B2 (en) 2009-01-06 2010-01-06 Antibacterial and antifungal peptides
US12/683,160 Active 2031-09-14 US8754039B2 (en) 2009-01-06 2010-01-06 Targeted antimicrobial moieties
US12/683,258 Abandoned US20100184683A1 (en) 2009-01-06 2010-01-06 Antibacterial and antifungal peptides
US12/683,327 Abandoned US20110039762A1 (en) 2009-01-06 2010-01-06 Targeted antimicrobial moieties
US13/653,246 Expired - Fee Related US9072793B2 (en) 2009-01-06 2012-10-16 Antibacterial and antifungal peptides
US14/255,858 Active US9597407B2 (en) 2009-01-06 2014-04-17 Targeted antimicrobial moieties
US15/433,926 Abandoned US20170266306A1 (en) 2009-01-06 2017-02-15 Targeted antimicrobial moieties

Country Status (6)

Country Link
US (9) US20110039763A1 (zh)
EP (1) EP2381953A4 (zh)
CN (1) CN102405053B (zh)
AU (2) AU2010203698B2 (zh)
CA (1) CA2749082A1 (zh)
WO (2) WO2010080836A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100184681A1 (en) * 2009-01-06 2010-07-22 C3 Jian, Inc. Antibacterial and antifungal peptides
US9393250B2 (en) 2012-04-12 2016-07-19 University Of Saskatchewan Phthalocyanine compounds useful as RecA inhibitors and methods of using same
CN113980112A (zh) * 2021-11-25 2022-01-28 中国科学院昆明动物研究所 一种眼镜王蛇抗菌肽oh-cath30的表达载体和表达产物及其构建制备方法
CN115443286A (zh) * 2020-04-22 2022-12-06 尹特荣生物科技株式会社 对艰难梭菌具有溶菌活性的抗菌蛋白cdl200

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2610791C (en) * 2005-06-08 2015-12-01 Cangene Corporation Hyaluronic acid binding peptides enhance host defense against pathogenic bacteria
US8669418B2 (en) 2005-12-22 2014-03-11 Vib Vzw Means and methods for mediating protein interference
EP2010561A4 (en) * 2006-04-27 2010-03-24 Singapore Health Services Pte ANTIMICROBIAL PEPTIDES
CA2684150C (en) 2007-05-14 2016-10-04 Research Foundation Of State University Of New York Decenoic acid dispersion inducers in the treatment of biofilms
WO2010091294A2 (en) * 2009-02-05 2010-08-12 The Regents Of The University Of California New targeted antimicrobial moieties
FR2955772B1 (fr) * 2010-02-03 2015-01-02 Inst Rech R Pour Le Dev Ird Peptides antimicrobiens et leurs utilisations en therapeutique
GB201010500D0 (en) * 2010-06-23 2010-08-04 Univ Cardiff Therapeutic conjugates
FR2968999B1 (fr) * 2010-12-20 2013-01-04 Guerbet Sa Nanoemulsion de chelate pour irm
WO2012123419A1 (en) * 2011-03-11 2012-09-20 Vib Vzw Molecules and methods for inhibition and detection of proteins
WO2012139137A2 (en) 2011-04-08 2012-10-11 Tufts Medical Center, Inc. Pepducin design and use
EP2699595B1 (en) * 2011-04-22 2016-06-22 Rutgers, the State University of New Jersey Fusion peptide designed to reduce plaque bacteria and yeast in the oral cavity
CU24076B1 (es) * 2011-09-30 2015-01-29 Ct De Ingeniería Genética Y Biotecnología Composición para el control de patógenos
WO2013055609A1 (en) * 2011-10-12 2013-04-18 Merck Sharp & Dohme Corp. Pharmaceutical compositions that inhibit disproportionation
EP3663314A1 (en) 2012-01-09 2020-06-10 The Scripps Research Institute Humanized antibodies with ultralong cdr3s
CN104520321A (zh) 2012-01-09 2015-04-15 斯克利普斯研究所 超长互补决定区及其用途
CN102827288B (zh) * 2012-08-30 2015-07-29 兰州大学 一种酸激活csp靶向抗菌肽及其制备和应用
US9644021B2 (en) 2013-01-11 2017-05-09 The California Institute For Biomedical Research Bovine fusion antibodies
WO2014152322A1 (en) * 2013-03-15 2014-09-25 Siemens Healthcare Diagnostics Inc. Heterogeneous luminescent oxygen channeling immunoassays
CN103172701B (zh) * 2013-03-18 2015-09-30 中国科学院过程工程研究所 一种新型穿膜肽及其应用
US9387189B2 (en) 2013-05-22 2016-07-12 Professional Compounding Centers Of America (Pcca) Antibiotic composition comprising a chemotactic agent and a nutrient dispersion
JP6687520B2 (ja) 2013-07-18 2020-04-22 トーラス バイオサイエンシズ リミテッド ライアビリティ カンパニー 極めて長い相補性決定領域を有するヒト化抗体
US20150099010A1 (en) 2013-10-07 2015-04-09 Reoxcyn Discoveries Group, Inc Redox signaling gel formulation
CN103698515B (zh) * 2013-12-24 2015-09-16 广西医科大学 一种破坏烟曲霉生物膜的方法
CN104761621B (zh) * 2014-01-06 2016-04-13 长春新悦然科技有限公司 一种抗菌蛋白
KR101445243B1 (ko) 2014-03-28 2014-09-29 서울대학교산학협력단 장내 세균의 군집과 기능의 변화를 이용한 대사성 및 염증성 질환의 조기진단
US20160207969A1 (en) * 2014-12-29 2016-07-21 C3 Jian, Inc. Clostridium difficile targeting moieties and constructs comprising said moieties
CN105982825B (zh) * 2015-02-13 2018-12-14 沛进生命科学公司 一种组合物在制备具有保湿功能的化妆品中的用途
WO2016132359A2 (en) * 2015-02-22 2016-08-25 Omnix Medical Ltd. Antimicrobial peptides
CA2980937A1 (en) * 2015-05-20 2016-11-24 Agrivida, Inc. Processes for increasing extraction of enzymes from animal feed and measuring activity of the same
CN106279361A (zh) 2015-06-26 2017-01-04 韩震 一种多肽化合物及其制备方法与应用
US10183059B2 (en) * 2015-07-23 2019-01-22 General Biologicals Corporation Method for treating microbial infection
WO2017031171A1 (en) * 2015-08-17 2017-02-23 The Johns Hopkins University In situ forming composite material for tissue restoration
US20180312542A1 (en) * 2015-10-20 2018-11-01 President And Fellows Of Harvard College Endosomal escape peptides
CA3005029A1 (en) 2015-11-13 2017-05-18 Oasis Pharmaceuticals, LLC Protease-activated receptor-2 modulators
US10485827B2 (en) 2016-01-19 2019-11-26 Rdg Holdings, Inc. Topical eye serum compositions, methods or preparing, and methods of use
US10736928B2 (en) * 2016-01-20 2020-08-11 Richard Brian Murphy, JR. Pegylated recombinant bacteriophage
CN105837674A (zh) * 2016-03-08 2016-08-10 无限极(中国)有限公司 一种东方铃蟾多肽及其制备方法与应用
CN106008718A (zh) * 2016-03-31 2016-10-12 西北民族大学 重组人源性抗菌肽c16ll-37及其对变异链球菌生物活性作用的应用方法
US9474768B1 (en) 2016-05-18 2016-10-25 Reoxcyn Discoveries Group, Inc. Lubricant formulations
US11857674B2 (en) 2016-05-18 2024-01-02 Reoxcyn, Llc Lubricant formulations
CN106117232B (zh) * 2016-06-21 2018-10-23 中国石油大学(华东) 一种细菌群体感应抑制剂及其应用
WO2018022936A1 (en) * 2016-07-29 2018-02-01 C3 Jian, Llc Clostridium difficile targeting moieties and constructs comprising said moieties
EP3496740B1 (en) 2016-08-09 2022-05-04 Omnix Medical Ltd. A combination of antimicrobial peptides and antibiotic drugs for treating diseases
US9833471B1 (en) 2016-09-15 2017-12-05 Reoxcyn Discoveries Group, Inc. Hypochlorous acid-based hand sanitizer
US11174288B2 (en) * 2016-12-06 2021-11-16 Northeastern University Heparin-binding cationic peptide self-assembling peptide amphiphiles useful against drug-resistant bacteria
US11180535B1 (en) 2016-12-07 2021-11-23 David Gordon Bermudes Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria
TW201827415A (zh) * 2016-12-13 2018-08-01 荷蘭商菲林公司 抗微生物胜肽
CN106632264B (zh) * 2016-12-19 2019-03-08 山东大学 一种能够用两种荧光颜色清楚区分和同时成像细胞膜脂筏与非脂筏微区的探针及其应用
US20180200165A1 (en) 2017-01-16 2018-07-19 Reoxcyn Innovation Group, Llc Dentifrice formulations and methods of oral care
BR112019014929B1 (pt) 2017-01-24 2023-03-07 Flagship Pioneering Innovations V, Inc Método para aumentar o perfil nutricional de um inseto e usos de bactérias
BR112019013559A2 (pt) * 2017-01-24 2020-02-04 Flagship Pioneering Innovations V Inc composições e métodos relacionados para contro-lar doenças transmitidas por vetores
EP3573447A4 (en) 2017-01-24 2020-07-08 Flagship Pioneering Innovations V, Inc. COMPOSITIONS FOR AGRICULTURE AND RELATED METHODS
JP2020506961A (ja) * 2017-01-24 2020-03-05 フラグシップ パイオニアリング イノベーションズ ブイ,インコーポレーテッド 農業のための組成物及び関連する方法
EP3573638A4 (en) * 2017-01-24 2020-12-23 Flagship Pioneering Innovations V, Inc. COMPOSITIONS AND RELATED PROCEDURES FOR CONTROLLING VECTOR-INDUCED DISORDERS
RU2019126303A (ru) 2017-02-24 2021-03-24 Флэгшип Пайониринг Инновейшнз V, Инк. Композиции и соответствующие способы модулирования эндосимбионтов
WO2018191529A1 (en) * 2017-04-14 2018-10-18 C3 Jian, Llc Dental varnishes that release specifically targeted antimicrobial peptides and/or fluoride
US11707431B2 (en) 2017-04-14 2023-07-25 C3 Jian, Llc Dental strips for the delivery of specifically targeted antimicrobial peptides
EP3621979A1 (en) 2017-05-09 2020-03-18 VIB vzw Means and methods for treating bacterial infections
US11124547B2 (en) 2017-05-11 2021-09-21 The Lundquist Institute For Biomedical Innovation Antimicrobial type-II bacteriocins
CN108976288B (zh) 2017-06-05 2021-09-21 复旦大学 基于野生型穿膜肽penetratin的亲脂性衍生物
GB201710097D0 (en) * 2017-06-23 2017-08-09 Univ Ulster A sensitizer - peptide conjugate
JP2020529472A (ja) 2017-07-28 2020-10-08 サークル ファーマ,インコーポレイティド ペプチド化合物の環化放出関連する出願の相互参照
CN107459568B (zh) * 2017-08-22 2020-12-25 广东药科大学 一种Musca domestica cecropin 衍生肽M27-39及其应用
SE541313C2 (en) * 2017-10-13 2019-06-25 Amferia Ab Amphiphilic antimicrobial hydrogel
WO2019094962A2 (en) * 2017-11-13 2019-05-16 The Regents Of The University Of California Antimicrobial particles and sanitization methods
WO2019099678A1 (en) 2017-11-16 2019-05-23 Synthex, Inc. Selective modulation of protein-protein interactions
WO2019209982A1 (en) 2018-04-24 2019-10-31 Laboratory Corporation Of America Holdings Indicator bacteriophage for selecting and monitoring for efficacy of therapeutics and methods for using same
WO2019217765A1 (en) 2018-05-09 2019-11-14 The Johns Hopkins University Nanofiber-hydrogel composites for cell and tissue delivery
US11541105B2 (en) 2018-06-01 2023-01-03 The Research Foundation For The State University Of New York Compositions and methods for disrupting biofilm formation and maintenance
CN108828106A (zh) * 2018-08-30 2018-11-16 上海市农业科学院 一种检测草菇中氨基酸含量的方法
US11457625B1 (en) * 2018-11-13 2022-10-04 U.S. Government As Represented By The Secretary Of The Army Tuning a broad acting antimicrobial textile to act as a narrow spectrum antimicrobial textile
US20220096411A1 (en) * 2019-01-24 2022-03-31 The Broad Institute, Inc. Combining metabolic stimulation and amino acids to sensitize tolerant bacteria to antibiotics
US20220132855A1 (en) * 2019-02-15 2022-05-05 Suncor Energy Inc. Protoporphyrin ix derivatives and use thereof to improve the health of plants
CN111693691B (zh) * 2019-03-14 2023-09-05 天津华科泰生物技术有限公司 一种基于卟啉结构的聚合物标签
US20220175827A1 (en) * 2019-04-05 2022-06-09 Northeastern University Biosynthesis of Selenium Nanoparticles Having Antimicrobial Activity
CN110066317B (zh) * 2019-04-19 2020-08-07 武汉大学 一种具有抗菌及免疫调节双功能的二聚体多肽及其应用
CN110028557B (zh) * 2019-04-26 2022-07-05 常州大学 一种Ce6标记的双链抗菌肽及其合成方法和应用
CN110204597B (zh) * 2019-05-29 2021-06-11 遵义医科大学珠海校区 一种抗菌肽及其应用
US11471433B1 (en) 2019-08-01 2022-10-18 Flagship Pioneering Innovations V, Inc. Postbiotic compositions and related methods for agriculture
WO2021034879A1 (en) 2019-08-19 2021-02-25 Baylor University Probiotic delivery of guided antimicrobial peptides
MX2022005454A (es) * 2019-11-08 2022-08-10 Geaenzymes Co Composición antifúngica de proteínas.
JP2021075483A (ja) * 2019-11-08 2021-05-20 静岡県公立大学法人 化合物又はその塩
CN111349177B (zh) * 2020-03-13 2022-04-22 西北农林科技大学 一种融合抗菌肽cat的制备方法和应用
US11638722B2 (en) * 2020-03-25 2023-05-02 Therapeutica Borealis Oy C/O Avance Attorneys Ltd. Medicine for Covid-19 and treatment
US20220064219A1 (en) * 2020-08-26 2022-03-03 The Trustee Of The University Of Pennsylvania Antimicrobial And Antibiofilm Peptides Sequences With Metal-Binding Motifs
CN114014923B (zh) * 2020-10-27 2022-11-01 厦门大学 拟穴青蟹抗菌多肽Sp-LECin及其应用
WO2022115510A1 (en) * 2020-11-24 2022-06-02 Academia Sinica Antimicrobial peptides and method of preventing or treating infection by using the same
MA61736A1 (fr) * 2021-01-29 2023-09-27 Bombi Biomics Bv Nouveaux peptides de fusion antimicrobiens sélectifs
CN113185614A (zh) * 2021-04-22 2021-07-30 江南大学 一种抗蛋白酶降解的猪源抗菌肽突变体及其制备方法与应用
KR102302983B1 (ko) * 2021-06-16 2021-09-17 주식회사 쓰리빅스 신규한 항균 펩타이드 및 이의 용도
CN113698285B (zh) * 2021-07-28 2023-02-10 浙江海洋大学 一种卤代姜黄素衍生物、其制备方法及其在水产品保鲜上的应用
CN113845460B (zh) * 2021-07-29 2023-02-14 浙江海洋大学 一种具有光敏杀菌活性的姜黄素衍生物、制备方法、鲜虾光动力杀菌保鲜方法
US20230074829A1 (en) * 2021-08-25 2023-03-09 George Mason University Antimicrobial peptides and related methods
CN113912690B (zh) * 2021-10-29 2023-06-23 中国科学院昆明动物研究所 一种蜱虫防御素optx-1及其应用
US20230233299A1 (en) * 2022-01-27 2023-07-27 EdgeEndo, LLC Dental, endodontic, and periodontic treatment methods and systems
WO2023163891A1 (en) * 2022-02-23 2023-08-31 University Of Rochester Compositions for use in treating biofilm-related diseases
CN114702598B (zh) * 2022-04-02 2023-09-08 中国海洋大学 一种重组抗菌肽及其应用
WO2023212558A1 (en) * 2022-04-25 2023-11-02 The Regents Of The University Of California Electro magnetic transducer network in the enhancement of anti-infective strategies
WO2024086510A1 (en) * 2022-10-17 2024-04-25 Ecole Polytechnique Federale De Lausanne (Epfl) Virucidal compounds and use thereof

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP051497A0 (en) 1997-11-24 1997-12-18 University Of Melbourne, The Antimicrobial peptides
US7018637B2 (en) * 1998-02-23 2006-03-28 Aventis Pasteur, Inc Multi-oligosaccharide glycoconjugate bacterial meningitis vaccines
US20040052814A1 (en) 1998-09-28 2004-03-18 Wenyuan Shi Fusion proteins for targeted delivery of antimicrobial peptides
US6107460A (en) 1999-03-01 2000-08-22 The Board Of Regents Of The University Of Oklahoma Antimicrobial peptides and methods of use thereof
US7244710B2 (en) 2002-05-21 2007-07-17 Zengen, Inc. Treatment of ophthalmic infections using antimicrobial peptides
US20030143234A1 (en) * 1999-08-20 2003-07-31 Wenyuan Shi Anti-microbial targeting chimeric pharmaceutical
WO2001049702A1 (en) 2000-01-05 2001-07-12 Emory University Epididymal antimicrobial peptides
US6337317B1 (en) 2000-06-27 2002-01-08 The University Of British Columbia Antimicrobial peptides and methods of use thereof
US6492328B2 (en) 2000-06-28 2002-12-10 The University Of Iowa Research Foundation Novispirins: antimicrobial peptides
FR2810993B1 (fr) 2000-06-29 2002-08-23 Rhobio Peptides antimicrobiens de la famille des defensines, polynucleotides codant ces peptides, vecteurs et organismes transformes les contenant
AU2001281168A1 (en) 2000-08-08 2002-02-18 St. Jude Children's Research Hospital Group b streptococcus polypeptides nucleic acids and therapeutic compositions and vaccines thereof
AU2001287179A1 (en) 2000-08-15 2002-02-25 North Carolina State University Antimicrobial peptides isolated from fish
US6875907B2 (en) 2000-09-13 2005-04-05 Pioneer Hi-Bred International, Inc. Antimicrobial peptides and methods of use
GB0107658D0 (en) * 2001-03-27 2001-05-16 Chiron Spa Streptococcus pneumoniae
US6713078B2 (en) 2001-04-18 2004-03-30 The Regents Of The University Of California Retrocyclins: antiviral and antimicrobial peptides
US7314858B2 (en) 2001-04-18 2008-01-01 The Regents Of The University Of California Retrocyclins: antiviral and antimicrobial peptides
US7550558B2 (en) 2001-06-01 2009-06-23 Fundacao De Ampara A Pesquiso Do Estado De Sao Paolo (Fapesp) Antimicrobial peptides and methods for identifying and using such peptides
CA2451310C (en) 2001-06-22 2014-02-25 The Hospital For Sick Children Antimicrobial peptides
US20060128614A1 (en) 2002-09-20 2006-06-15 Jya-Wei Cheng Antimicrobial peptides with reduced hemolysis and methods of their use
US20040072990A1 (en) 2002-09-20 2004-04-15 Shiou-Ru Tzeng Antimicrobial peptides with reduced hemolysis and methods of their use
US7091185B2 (en) 2003-02-24 2006-08-15 Dow Global Technologies Inc. Periodic antimicrobial peptides
SE0301431D0 (sv) 2003-05-19 2003-05-19 Dermagen Novel antimicrobial peptides
SI1664096T1 (sl) 2003-06-11 2010-02-26 Novozymes Adennium Biotech As Antimikrobni polipeptidi
ATE419271T1 (de) 2003-06-11 2009-01-15 Novozymes As Antimikrobielle peptide
WO2005019241A2 (en) 2003-08-18 2005-03-03 E.I. Dupont De Nemours And Company Cationic antimicrobial peptides and compositions thereof
US7674771B2 (en) 2003-10-29 2010-03-09 Toagosei Co., Ltd Antimicrobial peptides and utilization of the same
EP1621205A1 (en) 2004-07-28 2006-02-01 OctoPlus Technologies B.V. Antimicrobial peptides derived from CAP18
JP4507080B2 (ja) 2004-07-30 2010-07-21 東亞合成株式会社 抗菌ペプチド及びその利用
JP5020078B2 (ja) 2004-08-18 2012-09-05 ノバビオティクス・リミテッド ペプチド
EP1824976A4 (en) 2004-11-12 2008-07-09 Univ British Columbia ANTIMICROBIAL PEPTIDES
SE0402807D0 (sv) 2004-11-17 2004-11-17 Dermagen Ab Novel antimicrobial peptides
JP4730584B2 (ja) 2004-12-06 2011-07-20 東亞合成株式会社 抗菌ペプチド及びその利用
EP1838331A4 (en) 2004-12-15 2012-12-26 Univ Colorado ANTIMICROBIAL PEPTIDES AND METHODS OF USE THEREOF
US7563764B2 (en) 2004-12-30 2009-07-21 E. I. Du Pont De Nemours And Company Antimicrobial peptides based on tripeptide repeats
US7745390B2 (en) 2005-05-23 2010-06-29 The Board Of Trustees Of The Leland Stanford Junior University Antimicrobial peptides
US20070231833A1 (en) 2005-05-23 2007-10-04 Arcidiacono Steven M Labeled antimicrobial peptides and method of using the same to detect microorganisms of interest
US8202835B2 (en) 2005-06-17 2012-06-19 Yitzchak Hillman Disease treatment via antimicrobial peptides or their inhibitors
WO2007057872A2 (en) 2005-11-21 2007-05-24 Teagasc-National Diary Products Research Centre Casein-derived antimicrobial peptides and lactobacillus strains that produce them
NO346186B1 (no) 2005-12-22 2022-04-11 Novabiotics Ltd Anvendelse av et syklisk peptid for fremstilling av et medikament for behandling eller forebyggelse av en soppinfeksjon.
EP1987055A1 (en) 2006-02-10 2008-11-05 Dermagen AB Novel antimicrobial peptides and use thereof
JP2009526046A (ja) 2006-02-10 2009-07-16 デルマゲン アクティエボラーグ 新規分子
WO2008006125A1 (en) 2006-07-10 2008-01-17 Österreichische Akademie der Wissenschaften Antimicrobial peptides
AU2007292221B2 (en) 2006-09-06 2013-08-29 The Regents Of The University Of California Selectively targeted antimicrobial peptides and the use thereof
US7465784B2 (en) 2006-10-26 2008-12-16 Board Of Regents Of The University Of Nebraska Antimicrobial peptides and methods of identifying the same
CN101622271B (zh) 2007-01-16 2014-08-27 加利福尼亚大学董事会 抗微生物肽
EP1955712A1 (en) * 2007-02-09 2008-08-13 Scil proteins GmbH Multimeric conjugate
WO2009012143A2 (en) 2007-07-13 2009-01-22 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Virus derived antimicrobial peptides
US20090258045A1 (en) 2008-03-18 2009-10-15 Massachusetts Institute Of Technology Structures including antimicrobial peptides
US20110039763A1 (en) * 2009-01-06 2011-02-17 C3 Jian, Inc. Targeted antimicrobial moieties

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100184681A1 (en) * 2009-01-06 2010-07-22 C3 Jian, Inc. Antibacterial and antifungal peptides
US8303962B2 (en) 2009-01-06 2012-11-06 C3 Jian, Inc. Antibacterial and antifungal peptides
US8754039B2 (en) 2009-01-06 2014-06-17 C3 Jian, Inc. Targeted antimicrobial moieties
US9072793B2 (en) 2009-01-06 2015-07-07 C3 Jian, Inc. Antibacterial and antifungal peptides
US9597407B2 (en) 2009-01-06 2017-03-21 C3 Jian, Llc Targeted antimicrobial moieties
US9393250B2 (en) 2012-04-12 2016-07-19 University Of Saskatchewan Phthalocyanine compounds useful as RecA inhibitors and methods of using same
CN115443286A (zh) * 2020-04-22 2022-12-06 尹特荣生物科技株式会社 对艰难梭菌具有溶菌活性的抗菌蛋白cdl200
CN113980112A (zh) * 2021-11-25 2022-01-28 中国科学院昆明动物研究所 一种眼镜王蛇抗菌肽oh-cath30的表达载体和表达产物及其构建制备方法

Also Published As

Publication number Publication date
CN102405053A (zh) 2012-04-04
US20110039762A1 (en) 2011-02-17
US20100184683A1 (en) 2010-07-22
CN102405053B (zh) 2015-07-29
AU2016204543B2 (en) 2018-01-18
US20130108575A1 (en) 2013-05-02
US9072793B2 (en) 2015-07-07
WO2010080819A1 (en) 2010-07-15
US8303962B2 (en) 2012-11-06
US8754039B2 (en) 2014-06-17
WO2010080836A9 (en) 2014-07-17
US9597407B2 (en) 2017-03-21
EP2381953A4 (en) 2016-06-29
US20110039761A1 (en) 2011-02-17
AU2010203698A1 (en) 2011-07-21
US20170266306A1 (en) 2017-09-21
US20140349917A1 (en) 2014-11-27
WO2010080836A2 (en) 2010-07-15
US20100184681A1 (en) 2010-07-22
AU2010203698B2 (en) 2016-07-21
CA2749082A1 (en) 2010-07-15
AU2016204543A1 (en) 2016-07-14
EP2381953A1 (en) 2011-11-02
AU2010203698A2 (en) 2011-09-22
US20110039763A1 (en) 2011-02-17

Similar Documents

Publication Publication Date Title
US9072793B2 (en) Antibacterial and antifungal peptides
US10111926B2 (en) Selectively targeted antimicrobial peptides and the use thereof
EP2118122B1 (en) Novel antimicrobial peptides
WO2010091294A2 (en) New targeted antimicrobial moieties
CA2955057A1 (en) Targeting peptides that bind s. mutans, constructs comprising such peptides and uses thereof
AU2016228293B2 (en) Selectively targeted antimicrobial peptides and the use thereof
AU2013204065B2 (en) Selectively targeted antimicrobial peptides and the use thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: US ARMY, SECRETARY OF THE ARMY, MARYLAND

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF MISSOURI ROLLA;REEL/FRAME:023974/0615

Effective date: 20100211

AS Assignment

Owner name: C3 JIAN, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ECKERT, RANDAL H.;KAPLAN, CHRIS;HE, JIAN;AND OTHERS;SIGNING DATES FROM 20100211 TO 20100212;REEL/FRAME:024452/0932

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: C3 JIAN, LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:C3 JIAN, INC.;REEL/FRAME:043302/0385

Effective date: 20160427