US20170266306A1 - Targeted antimicrobial moieties - Google Patents

Targeted antimicrobial moieties Download PDF

Info

Publication number
US20170266306A1
US20170266306A1 US15/433,926 US201715433926A US2017266306A1 US 20170266306 A1 US20170266306 A1 US 20170266306A1 US 201715433926 A US201715433926 A US 201715433926A US 2017266306 A1 US2017266306 A1 US 2017266306A1
Authority
US
United States
Prior art keywords
peptides
peptide
amino acid
mutans
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/433,926
Inventor
Randal H. Eckert
Chris Kaplan
Jian He
Daniel K. Yarbrough
Maxwell Anderson
Jee-Hyun Sim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C3J Therapeutics Inc
Original Assignee
C3 Jian Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C3 Jian Inc filed Critical C3 Jian Inc
Priority to US15/433,926 priority Critical patent/US20170266306A1/en
Assigned to C3 JIAN, LLC reassignment C3 JIAN, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: C3 JIAN, INC.
Publication of US20170266306A1 publication Critical patent/US20170266306A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • A61K47/48246
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • A01N37/46N-acyl derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K41/0009
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/0071PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/10Inactivation or decontamination of a medicinal preparation prior to administration to an animal or a person
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0063Periodont
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

This invention provides novel targeted antimicrobial compositions. In various embodiments chimeric moieties are provided comprising an antimicrobial peptide attached to a peptide targeting moiety that binds a bacterial strain or species.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Divisional of U.S. Ser. No. 14/255,858, filed Apr. 17, 2014, which is a Divisional of U.S. Ser. No. 12/683,160, filed Jan. 6, 2010 issued as U.S. Pat. No. 8,754,039 on Jun. 17, 2014, which claims benefit of and priority to U.S. Ser. No. 61/142,830, filed Jan. 6, 2009, U.S. Ser. No. 61/151,445, filed Feb. 10, 2009, U.S. Ser. No. 61/243,905, filed Sep. 18, 2009, and U.S. Ser. No. 61/243,930, filed Sep. 18, 2009, all of which are incorporated herein by reference in their entirety for all purposes.
  • STATEMENT OF GOVERNMENTAL SUPPORT
  • [Not Applicable]
  • FIELD OF THE INVENTION
  • The present invention relates to novel targeting peptides, novel antimicrobial peptides, chimeric moieties comprising novel targeting and/or novel antimicrobial peptides and uses thereof.
  • BACKGROUND OF THE INVENTION
  • Antibiotic research at the industrial level was originally focused on the identification of refined variants of already existing drugs. This resulted example, in the development of antibiotics such as newer penicillins, cephalosporins, macrolides, and fluoroquinolones.
  • However, resistance to old and newer antibiotics among bacterial pathogens is evolving rapidly, as exemplified by extended beta-lactamase (ESBL) and quinolone resistant gram-negatives, multi-resistant gonococci, methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant enterococci (VRE), penicillin non-susceptible pneumococci (PNSP) and macrolide resistant pneumococci and streptococci (see, e.g., Panlilo et al. (1992) Infect Control Hosp Epidemio., 13: 582-586; Morris et al. (1995) Ann Intern Me., d 123: 250-259, and the like). An overuse, or improper use, of antibiotics is believed to be of great importance for triggering and spread of drug resistant bacteria. Microbes have, in many cases, adapted and are resistant to antibiotics due to constant exposure and improper use of the drugs.
  • Drug resistant pathogens represent a major economic burden for health-care systems. For example, postoperative and other nosocomial infections will prolong the need for hospital care and increase antibiotic drug expenses. It is estimated that the annual cost of treating drug resistant infections in the United States is approximately $5 billion.
  • SUMMARY OF THE INVENTION
  • In certain embodiments, novel targeting moieties (e.g., peptides) that specifically/preferentially bind to microorganisms (e.g., certain bacteria, yeasts, fungi, molds, viruses, algae, protozoa, and the like) are provided. The targeting moieties can be attached to effectors (e.g., detectable labels, drugs, antimicrobial peptides, etc.) to form chimeric constructs for specifically/preferentially delivering the effector to and/or into the target organism. In certain embodiments novel antimicrobial peptides that can be used to inhibit (e.g., kill and/or inhibit growth and/or proliferation) of certain microorganisms (e.g., certain bacteria, yeasts, fungi, molds, viruses, algae, protozoa, and the like) are provided.
  • Accordingly, in certain embodiments, a chimeric construct (chimeric moiety) is provided comprising: an effector attached to a peptide targeting moiety comprising an amino acid sequence found in Table 3 and/or Table 12; and/or an antimicrobial peptide comprising an amino acid sequence found in Table 4 and/or Table 5 attached to a targeting moiety. In certain embodiments the targeting moiety is a peptide comprising an amino acid sequence of a peptide found one or more of Table 3 and Table 12. In certain embodiments the targeting moiety is a peptide comprising two or more amino acid sequences of a peptide found one or more of Table 3 and Table 12. In certain embodiments the targeting moiety is a peptide whose amino acid sequence consists of the amino acid sequence of a peptide found in Table 3.
  • In various embodiments the effector comprises a moiety selected from the group consisting of an antimicrobial peptide, an antibiotic, a ligand, a lipid or liposome, a agent that physically disrupts the extracellular matrix within a community of microorganisms, and a polymeric particle. In certain embodiments the effector comprises an antimicrobial peptide comprising an amino acid sequence found in one or more of Tables 4, 5, 14, and Table 15. In certain embodiments the effector comprises an antimicrobial peptide comprising an amino acid sequence found in one or more of Tables 4, and 5. In certain embodiments the effector comprises an antimicrobial peptide comprising an amino acid sequence characterized by a motif selected from the group consisting of KIF, FIK, KIH, HIK, and KIV (e.g., as identified in Table 7). In certain embodiments the construct comprises a targeting peptide comprising an amino acid sequence found in Table 3 attached to an antimicrobial peptide comprising an amino acid sequence found in Table 4 and/or Table 5. In certain embodiments the construct comprises an antimicrobial peptide comprising an amino acid sequence found in Table 4 attached to a targeting moiety comprising an amino acid sequence found in Table 3 and/or Table 10, and/or Table 12. In certain embodiments the construct comprises a targeting peptide comprising an amino acid sequence found in Table 3 attached to an antimicrobial peptide comprising an amino acid sequence found in Table 4.
  • In various embodiments the targeting moiety is chemically conjugated to the effector (directly or via a linker). In certain embodiments the liker comprises a polyethylene glycol (PEG). In certain embodiments the targeting moiety is chemically conjugated to the effector via a non-peptide linker found in Table 16. In certain embodiments the targeting moiety is linked to the effector via a peptide linkage. In certain embodiments the effector comprises an antimicrobial peptide and the construct is a fusion protein. In certain embodiments the targeting moiety is attached to the effector by a peptide linker comprising or consisting of an amino acid sequence found in Table 16. In certain embodiments any of the constructs and/or peptides described herein bears one or more protecting groups. In certain embodiments the one or more protecting groups are independently selected from the group consisting of acetyl, amide, 3 to 20 carbon alkyl groups, fmoc, tboc, 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-florenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl, xanthyl (Xan), trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), benzyloxy (BzlO), benzyl (Bzl), benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimentyl-2,6-diaxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl—Z), 2-bromobenzyloxycarbonyl (2-Br—Z), benzyloxymethyl (Bom), t-butoxycarbonyl (Boc), cyclohexyloxy (cHxO), t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), and trifluoroacetyl (TFA). In certain embodiments the peptide and/or construct comprises a protecting group at a carboxyl and/or amino terminus. In certain embodiments the carboxyl terminus is amidated and/or the amino terminus is acetylated. In various embodiments the chimeric construct and/or peptide is functionalized with a polymer (e.g., comprises polyethylene glycol, cellulose, modified cellulose, dextrin, etc.) to increase serum halflife.
  • In certain embodiments pharmaceutical compositions are provided. In various embodiments the pharmaceutical compositions comprise a chimeric construct as described herein (e.g., a chimeric construct according to any of claims 1-26) and/or an antimicrobial peptide as described herein, in a pharmaceutically acceptable carrier. In certain embodiments the composition is formulated as a unit dosage formulation. In certain embodiments the composition is formulated for administration by a modality selected from the group consisting of intraperitoneal administration, topical administration, oral administration, inhalation administration, transdermal administration, subdermal depot administration, systemic IV application, ocular administration, and rectal administration.
  • In certain embodiments isolated antimicrobial peptides are provided. In various embodiments the peptides comprise one or more sequences selected from the amino acid sequences listed in Table 4 and/or Table 5 (and/or the retro, inverso, retroinverso, or beta forms). In various embodiments the antimicrobial peptide bears one or more protecting groups e.g., as described herein.
  • In certain embodiments a composition effective to kill or to inhibit the growth and/or of a microorganism and/or the formation and/or maintenance of a biofilm is provided. The composition typically comprises one or more isolated antimicrobial peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the amino acid sequences listed in Table 4 and/or Table 5 (and/or their retro, inverso, or retroinverso forms). In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of a yeast or fungus, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified (e.g., in those tables) as effective to effective to kill or inhibit the growth and/or proliferation of a yeast or fungus. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of Aspergillus niger and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of Aspergillus niger. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of C. albicans and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of C. albicans. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of T. rubrum and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of T. rubrum. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of a bacterium, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of a bacterium. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of a gram positive bacterium, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of a gram positive bacterium. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of A. naeslundii, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of A. naeslundii. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of B. subtilis, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of B. subtilis. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of C. difficile, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of C. difficile. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of C. jeikeium, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of C. jeikeium. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of E. faecalis, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of E. faecalis. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of M. luteus, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of M. luteus. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of MRSA, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of MRSA. In certain embodiments composition is effective to kill or inhibit the growth and/or proliferation of S. epidermidis, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of S. epidermidis. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of S. mutans, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of S. mutans. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of S. pneumoniae, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of S. pneumoniae. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of a gram negative bacterium, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of a gram negative bacterium. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of A. baumannii, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of A. baumannii. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of C. jejuni, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of C. jejuni. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of E. coli, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of E. coli. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of F. nucleatum, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of F. nucleatum. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of E. coli, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of M. xanthus. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of P. aeruginosa, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of P. aeruginosa. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of P. gingivalis, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of P. gingivalis. In certain embodiments the composition is effective to kill or inhibit the growth and/or proliferation of P. mirabilis, and the composition comprises one or more peptides, the amino acid sequences of the peptides comprising one or more sequences selected from the group of amino acid sequences listed in Table 4 and/or Table 5 identified as effective to effective to kill or inhibit the growth and/or proliferation of P. mirabilis.
  • In various embodiments one or more of the peptides comprising the composition comprise all “L” amino acids or all “D” amino acids, or a mixture of “L” and “D” amino acids. In various embodiments one or more of the peptides comprising the composition are β peptides. In various embodiments one or more of the peptides comprising the composition comprise one or more protecting groups (e.g. protected carboxyl and/or amino termini). In various embodiments one or more of the peptides comprising the composition comprise an amide on the carboxyl terminus and/or an acetyl on the amino terminus. In various embodiments the peptides comprising the composition are in a pharmaceutically acceptable carrier. In certain embodiments the carrier is suitable for administration via a route selected from the group consisting of topical administration, aerosol administration, administration via inhalation, oral administration, and/or rectal administration.
  • In various embodiments methods are provided for killing and/or inhibiting the growth and/or proliferation of a microorganism and or for disrupting and/or inhibiting the growth and/or maintenance of a biofilm, the method comprising contacting the microorganism (or a biofilm comprising the microorganism) with a chimeric construct as described herein (e.g., see description above, and/or a chimeric construct according to any one of claims 1-29), or with an antimicrobial peptide as described herein, and/or with a composition as described herein (e.g., a composition according to any one of claims 30-65). In certain embodiments the microorganism is a yeast or fungus and the chimeric construct or composition is a chimeric construct comprising an effector identified as killing a yeast or fungus, or a composition comprising an antimicrobial peptide described herein as killing a yeast or fungus. In certain embodiments the microorganism is a bacterium (e.g., gram negative and/or gram positive bacterium) and the chimeric construct or composition is a chimeric construct comprising an effector identified as killing a bacterium (e.g., gram negative and/or gram positive bacterium), or a composition comprising an antimicrobial peptide described herein as killing a gram negative and/or gram positive bacterium. In certain embodiments the effector is an antimicrobial peptide. In certain embodiments he microorganism is S. mutans, and the chimeric construct or composition is applied to the oral cavity of an animal or human, e.g., to reduces the incidence or severity of dental caries and/or periodontal disease). In certain embodiments the chimeric construct or composition preferentially targets Corynebacterium spp. and the chimeric construct or composition is applied to the skin surface of an animal or human (e.g., to reduce body odor).
  • Methods are also provided for disinfecting a surface. The methods typically involve contacting the surface with one or more chimeric constructs described herein (e.g. a construct according to any one of claims 1-29), or a composition as described herein (e.g., a composition according to any one of claims 30-65). In certain embodiments, the surface comprises a surface of a prosthesis or medical implant. In certain embodiments the surface comprises a surface of a medical device. In certain embodiments the surface comprises a surface of a plant or foodstuff. In certain embodiments the chimeric construct and/or the antimicrobial peptide(s) are combined with a second disinfectant selected from the group consisting of other antimicrobial agent is a disinfectant selected from the group consisting of acetic acid, phosphoric acid, citric acid, lactic, formic, propionic acid, hydrochloric acid, sulfuric acid, nitric acid, sodium hydroxide, potassium hydroxide, sodium carbonate, ammonium hydroxide, ethyl alcohol, isopropyl alcohol, phenol, formaldehyde, glutaraldehyde, hypochlorites, chlorine dioxide, sodium dichloroisocyanurate, chloramine-T, iodine, povidone-iodine, chlorhexidine, hydrogen peroxide, peracetic acid, and benzalkonium chloride.
  • In various embodiments the use of a chimeric construct described herein and/or an antimicrobial composition as described herein (e.g., a chimeric construct according to any one of claims 1-29, or a composition according to any one of claims 30-65) in the manufacture of a medicament for killing and/or inhibiting the growth and/or proliferation of a microorganism and/or inhibiting the growth and/or maintenance of a biofilm comprising the microorganism is provided. In certain embodiments the microorganism is a yeast or fungus and the chimeric construct or composition is a chimeric construct comprising an effector identified as killing a yeast or fungus, or a composition comprising an antimicrobial peptide described herein as killing a yeast or fungus. In certain embodiments the microorganism is a bacterium (e.g., gram negative and/or gram positive bacterium) and the chimeric construct or composition is a chimeric construct comprising an effector identified as killing a bacterium (e.g., gram negative and/or gram positive bacterium), or a composition comprising an antimicrobial peptide described herein as killing a gram negative and/or gram positive bacterium. In certain embodiments the effector is an antimicrobial peptide.
  • In various embodiments methods are also provided for of detecting a bacterium and/or a bacterial film (e.g., a biofilm comprising the bacteria). The methods typically involve contacting the bacterium or bacterial film with a composition comprising a detectable label attached to a targeting peptide comprising one or more amino acid sequences found Table 3 and/or Table 12; and detecting the detectable label where the quantity and/or location of the detectable label is an indicator of the presence of the bacterium and/or bacterial film. In certain embodiments the targeting peptide comprises or consists of an amino acid sequence of a peptide found in Table 3 (and/or the retro, inverso, retroinverso form of the sequence). In certain embodiments the detectable label is a label selected from the group consisting of a radioactive label, a radio-opaque label, a fluorescent dye, a fluorescent protein, an enzymatic label, a colorimetric label, and a quantum dot.
  • Certain compositions are also provided comprising a photosensitizing or photoactivatable agent attached to a targeting peptide (e.g., a peptide comprising an amino acid sequence of a peptide found in Table 3 and/or Table 12). In certain embodiments the targeting peptide comprises or consists of an amino acid sequence of a peptide found in Table 3. In certain embodiments the photosensitizing agent is an agent selected from the group consisting of a porphyrinic macrocycle, a porphyrin, a chlorine, a crown ether, an acridine, an azine, a phthalocyanine, a cyanine, a psoralen, a cucumin, and a perylenequinonoid. In certain embodiments the photosensitizing agent comprises one or more agents agent shown in any of FIGS. 1-12. In certain embodiments the photosensitizing agent is attached to the targeting peptide by a non-peptide linker (e.g., a polyethylene glycol (PEG)). In certain embodiments the photosensitizing agent is attached to the targeting peptide by a non-peptide linker found in Table 16.
  • In various embodiments methods are provided for killing and/or for inhibiting the growth and/or proliferation of a microorganism or a biofilm comprising a microorganism, where the methods involve contacting the microorganism or biofilm with a composition comprising a photosensitizing or photoactivatable agent attached to a targeting peptide (e.g., a peptide comprising an amino acid sequence of a peptide found in Table 3 and/or Table 12). In certain embodiments the targeting peptide comprises or consists of an amino acid sequence of a peptide found in Table 3. In certain embodiments the photosensitizing agent is an agent selected from the group consisting of a porphyrinic macrocycle, a porphyrin, a chlorine, a crown ether, an acridine, an azine, a phthalocyanine, a cyanine, a psoralen, a cucumin, and a perylenequinonoid. In certain embodiments the photosensitizing agent comprises one or more agents agent shown in any of FIGS. 1-12. In certain embodiments the photosensitizing agent is attached to the targeting peptide by a non-peptide linker (e.g., a polyethylene glycol (PEG)). In certain embodiments the photosensitizing agent is attached to the targeting peptide by a non-peptide linker found in Table 16. In certain embodiments the method further comprises exposing the microorganism or biofilm to a light source. In certain embodiments the microorganism is a microorganism selected from the group consisting of a bacterium (e.g., a gram positive and/or a gram negative bacterium), a yeast, a fungus, a protozoan, and a virus. In certain embodiments the biofilm comprises a bacterial film. In certain embodiments the biofilm is a biofilm on an implanted or implantable medical device. In certain embodiments the microorganism or biofilm is an organism or biofilm in an oral cavity.
  • In various embodiments certain formulations are provided. Typical formulations include, but are not limited to a targeting peptide, an antimicrobial peptide, and/or a STAMP; and a salt at a concentration comparable to that found in phosphate buffered saline (PBS) ranging from about 0.5×PBS to about 2.5×PBS. In certain embodiments the formulation comprises a targeting peptide found in Tables 3 or 10. In certain embodiments the formulation comprises an anti-S. mutans peptide targeting peptide (e.g., as identified in Tables 3 or 12). In certain embodiments the anti-S. mutans targeting peptide has the amino acid sequence TFFRLFNRSFTQALGK (SEQ ID NO:1). In certain embodiments the anti-S. mutans targeting peptide is attached to an antimicrobial peptide. In certain embodiments the antimicrobial peptide is a peptide found in Tables 4, 5, or 14. In certain embodiments the antimicrobial peptide has the amino acid sequence KNLRIIRKGIHIIKKY (SEQ ID NO:3080). In certain embodiments the formulation comprises the amino acid sequence of the C16G2 STAMP (TFFRLFNRSFTQALGKGGGKNLRIIRKGIHIIKKY, (SEQ ID NO:2). In various embodiments the targeting peptide, antimicrobial peptide, and/or a STAMP bears one or more protecting groups. In certain embodiments the protecting group(s) are independently selected from the group consisting of acetyl, amide, 3 to 20 carbon alkyl groups, Fmoc, Tboc, 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-florenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl, Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimentyl-2,6-diaxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl—Z), 2-bromobenzyloxycarbonyl (2-Br—Z), Benzyloxymethyl (Born), t-butoxycarbonyl (Boc), cyclohexyloxy (cHxO), t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), and Trifluoroacetyl (TFA). In certain embodiments the targeting peptide, antimicrobial peptide, and/or a STAMP is amidated at the carboxyl terminus and/or bears an acetyl group at the amino terminus. In certain embodiments the pH of the formulation ranges from about pH 5.0 to about pH 8.5. In certain embodiments the pH is about pH 7.4. In various embodiments the salt is at a concentration comparable to that found in 1×PBS. In certain embodiments the formulation comprises PBS. In certain embodiments the formulation of further comprising ethanol, and/or glycerin, and/or polyethylene glycol, and/or fluoride.
  • Definitions
  • The term “peptide” as used herein refers to a polymer of amino acid residues typically ranging in length from 2 to about 50 or about 60 residues. In certain embodiments the peptide ranges in length from about 2, 3, 4, 5, 7, 9, 10, or 11 residues to about 60, 50, 45, 40, 45, 30, 25, 20, or 15 residues. In certain embodiments the peptide ranges in length from about 8, 9, 10, 11, or 12 residues to about 15, 20 or 25 residues. In certain embodiments the amino acid residues comprising the peptide are “L-form” amino acid residues, however, it is recognized that in various embodiments, “D” amino acids can be incorporated into the peptide. Peptides also include amino acid polymers in which one or more amino acid residues is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. In addition, the term applies to amino acids joined by a peptide linkage or by other, “modified linkages” (e.g., where the peptide bond is replaced by an α-ester, a β-ester, a thioamide, phosphonamide, carbonate, hydroxylate, and the like (see, e.g., Spatola, (1983) Chem. Biochem. Amino Acids and Proteins 7: 267-357), where the amide is replaced with a saturated amine (see, e.g., Skiles et al., U.S. Pat. No. 4,496,542, which is incorporated herein by reference, and Kaltenbronn et al., (1990) Pp. 969-970 in Proc. 11th American Peptide Symposium, ESCOM Science Publishers, The Netherlands, and the like)).
  • The term “residue″” as used herein refers to natural, synthetic, or modified amino acids. Various amino acid analogues include, but are not limited to 2-aminoadipic acid, 3-aminoadipic acid, beta-alanine (beta-aminopropionic acid), 2-aminobutyric acid, 4-aminobutyric acid, piperidinic acid, 6-aminocaproic acid, 2-aminoheptanoic acid, 2-aminoisobutyric acid, 3-aminoisobutyric acid, 2-aminopimelic acid, 2,4 diaminobutyric acid, desmosine, 2,2′-diaminopimelic acid, 2,3-diaminopropionic acid, n-ethylglycine, n-ethylasparagine, hydroxylysine, allo-hydroxylysine, 3-hydroxyproline, 4-hydroxyproline, isodesmosine, allo-isoleucine, n-methylglycine, sarcosine, n-methylisoleucine, 6-n-methyllysine, n-methylvaline, norvaline, norleucine, ornithine, and the like. These modified amino acids are illustrative and not intended to be limiting.
  • “β-peptides” comprise of “β amino acids”, which have their amino group bonded to the β carbon rather than the α-carbon as in the 20 standard biological amino acids. The only commonly naturally occurring β amino acid is β-alanine.
  • Peptoids, or N-substituted glycines, are a specific subclass of peptidomimetics. They are closely related to their natural peptide counterparts, but differ chemically in that their side chains are appended to nitrogen atoms along the molecule's backbone, rather than to the α-carbons (as they are in natural amino acids).
  • The terms “conventional” and “natural” as applied to peptides herein refer to peptides, constructed only from the naturally-occurring amino acids: Ala, Cys, Asp, Glu, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp, and Tyr. A compound of the invention “corresponds” to a natural peptide if it elicits a biological activity (e.g., antimicrobial activity) related to the biological activity and/or specificity of the naturally occurring peptide. The elicited activity may be the same as, greater than or less than that of the natural peptide. In general, such a peptoid will have an essentially corresponding monomer sequence, where a natural amino acid is replaced by an N-substituted glycine derivative, if the N-substituted glycine derivative resembles the original amino acid in hydrophilicity, hydrophobicity, polarity, etc. The following are illustrative, but non-limiting N-substituted glycine replacements: N-(1-methylprop-1-yl)glycine substituted for isoleucine (Ile), N-(prop-2-yl)glycine for valine (Val), N-benzylglycine for phenylanlaine (Phe), N-(2-hydroxyethyl)glycine for serine (Ser), and the like. In certain embodiments substitutions need not be “exact”. Thus for example, in certain embodiments N-(2-hydroxyethyl)glycine may substitute for Ser, Thr, Cys, and/or Met; N-(2-methylprop-1-yl)glycine may substitute for Val, Leu, and/or Ile. In certain embodiments N-(2-hydroxyethyl)glycine can be used to substitute for Thr and Ser, despite the structural differences: the side chain in N-(2-hydroxyethyl)glycine is one methylene group longer than that of Ser, and differs from Thr in the site of hydroxy-substitution. In general, one may use an N-hydroxyalkyl-substituted glycine to substitute for any polar amino acid, an N-benzyl- or N-aralkyl-substituted glycine to replace any aromatic amino acid (e.g., Phe, Trp, etc.), an N-alkyl-substituted glycine such as N-butylglycine to replace any nonpolar amino acid (e.g., Leu, Val, Ile, etc.), and an N-(aminoalkyl)glycine derivative to replace any basic polar amino acid (e.g., Lys and Arg).
  • Where an amino acid sequence is provided herein, L-, D-, or beta amino acid versions of the sequence are also contemplated as well as retro, inversion, and retro-inversion isoforms. In addition, conservative substitutions (e.g., in the binding peptide, and/or antimicrobial peptide, and/or linker peptide) are contemplated. Non-protein backbones, such as PEG, alkane, ethylene bridged, ester backbones, and other backbones are also contemplated. Also fragments ranging in length from about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 amino acids up to the full length minus one amino acid of the peptide are contemplated where the fragment retains at least 50%, preferably at least 60% 70% or 80%, more preferably at least 90%, 95%, 98%, 99%, or at least 100% of the activity (e.g., binding specificity and/or avidity, antimicrobial activity, etc.) of the full length peptide are contemplated.
  • A “compound antimicrobial peptide” or “compound AMP” refers to a construct comprising two or more AMPs joined together. The AMPs can be joined directly or through a linker. They can be chemically conjugated or, where joined directly together or through a peptide linker can comprise a fusion protein.
  • In certain embodiments, conservative substitutions of the amino acids comprising any of the sequences described herein are contemplated. In various embodiments one, two, three, four, or five different residues are substituted. The term “conservative substitution” is used to reflect amino acid substitutions that do not substantially alter the activity (e.g., antimicrobial activity and/or specificity) of the molecule. Typically conservative amino acid substitutions involve substitution one amino acid for another amino acid with similar chemical properties (e.g. charge or hydrophobicity). Certain conservative substitutions include “analog substitutions” where a standard amino acid is replaced by a non-standard (e.g., rare, synthetic, etc) amino acid differing minimally from the parental residue. Amino acid analogs are considered to be derived synthetically from the standard amino acids without sufficient change to the structure of the parent, are isomers, or are metabolite precursors. Examples of such “analog substitutions” include, but are not limited to, 1) Lys-Orn, 2) Leu-Norleucine, 3) Lys-Lys[TFA], 4) Phe-Phe[Gly], and 5) δ-amino butylglycine-ξ-amino hexylglycine, where Phe[gly] refers to phenylglycine (a Phe derivative with a H rather than CH3 component in the R group), and Lys[TFA] refers to a Lys where a negatively charged ion (e.g., TFA) is attached to the amine R group. Other conservative substitutions include “functional substitutions” where the general chemistries of the two residues are similar, and can be sufficient to mimic or partially recover the function of the native peptide. Strong functional substitutions include, but are not limited to 1) Gly/Ala, 2) Arg/Lys, 3) Ser/Tyr/Thr, 4) Leu/Ile/Val, 5) Asp/Glu, 6) Gln/Asn, and 7) Phe/Trp/Tyr, while other functional substitutions include, but are not limited to 8) Gly/Ala/Pro, 9) Tyr/His, 10) Arg/Lys/His, 11) Ser/Thr/Cys, 12) Leu/Ile/Val/Met, and 13) Met/Lys (special case under hydrophobic conditions). Various “broad conservative substations” include substitutions where amino acids replace other amino acids from the same biochemical or biophysical grouping. This is similarity at a basic level and stems from efforts to classify the original 20 natural amino acids. Such substitutions include 1) nonpolar side chains: Gly/Ala/Val/Leu/Ile/Met/Pro/Phe/Trp, and/or 2) uncharged polar side chains Ser/Thr/Asn/Gln/Tyr/Cys. In certain embodiments broad-level substitutions can also occur as paired substitutions. For example, Any hydrophilic neutral pair [Ser, Thr, Gln, Asn, Tyr, Cys]+[Ser, Thr, Gln, Asn, Tyr, Cys] can may be replaced by a charge-neutral charged pair [Arg, Lys, His]+[Asp, Glu]. The following six groups each contain amino acids that, in certain embodiments, are typical conservative substitutions for one another: 1) Alanine (A), Serine (S), Threonine (T); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K), Histidine (H); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W). Where amino acid sequences are disclosed herein, amino acid sequences comprising, one or more of the above-identified conservative substitutions are also contemplated.
  • In certain embodiments, targeting peptides, antimicrobial peptides, and/or STAMPs compromising at least 80%, preferably at least 85% or 90%, and more preferably at least 95% or 98% sequence identity with any of the sequences described herein are also contemplated. The terms “identical” or percent “identity,” refer to two or more sequences that are the same or have a specified percentage of amino acid residues that are the same, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection. With respect to the peptides of this invention sequence identity is determined over the full length of the peptide. For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman (1981) Adv. Appl. Math. 2: 482, by the homology alignment algorithm of Needleman & Wunsch (1970) J Mol. Biol. 48: 443, by the search for similarity method of Pearson & Lipman (1988) Proc. Natl. Acad. Sci., USA, 85: 2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection.
  • The term “specificity” when used with respect to the antimicrobial activity of a peptide indicates that the peptide preferentially inhibits growth and/or proliferation and/or kills a particular microbial species as compared to other related and/or unrelated microbes. In certain embodiments the preferential inhibition or killing is at least 10% greater (e.g., LD50 is 10% lower), preferably at least 20%, 30%, 40%, or 50%, more preferably at least 2-fold, at least 5-fold, or at least 10-fold greater for the target species.
  • “Treating” or “treatment” of a condition as used herein may refer to preventing the condition, slowing the onset or rate of development of the condition, reducing the risk of developing the condition, preventing or delaying the development of symptoms associated with the condition, reducing or ending symptoms associated with the condition, generating a complete or partial regression of the condition, or some combination thereof.
  • The term “consisting essentially of” when used with respect to an antimicrobial peptide (AMP) or AMP motif as described herein, indicates that the peptide or peptides encompassed by the library or variants, analogues, or derivatives thereof possess substantially the same or greater antimicrobial activity and/or specificity as the referenced peptide. In certain embodiments substantially the same or greater antimicrobial activity indicates at least 80%, preferably at least 90%, and more preferably at least 95% of the anti microbial activity of the referenced peptide(s) against a particular bacterial species (e.g., S. mutans).
  • The term “porphyrinic macrocycle” refers to a porphyrin or porphyrin derivative. Such derivatives include porphyrins with extra rings ortho-fused, or orthoperifused, to the porphyrin nucleus, porphyrins having a replacement of one or more carbon atoms of the porphyrin ring by an atom of another element (skeletal replacement), derivatives having a replacement of a nitrogen atom of the porphyrin ring by an atom of another element (skeletal replacement of nitrogen), derivatives having substituents other than hydrogen located at the peripheral (meso-, .beta.-) or core atoms of the porphyrin, derivatives with saturation of one or more bonds of the porphyrin (hydroporphyrins, e.g., chlorins, bacteriochlorins, isobacteriochlorins, decahydroporphyrins, corphins, pyrrocorphins, etc.), derivatives obtained by coordination of one or more metals to one or more porphyrin atoms (metalloporphyrins), derivatives having one or more atoms, including pyrrolic and pyrromethenyl units, inserted in the porphyrin ring (expanded porphyrins), derivatives having one or more groups removed from the porphyrin ring (contracted porphyrins, e.g., corrin, corrole) and combinations of the foregoing derivatives (e.g. phthalocyanines, porphyrazines, naphthalocyanines, subphthalocyanines, and porphyrin isomers). Certain porphyrinic macrocycles comprise at least one 5-membered ring.
  • As used herein, an “antibody” refers to a protein consisting of one or more polypeptides substantially encoded by immunoglobulin genes or fragments of immunoglobulin genes. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon and mu constant region genes, as well as myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively.
  • A typical immunoglobulin (antibody) structural unit is known to comprise a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kD) and one “heavy” chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (VL) and variable heavy chain (VH) refer to these light and heavy chains respectively.
  • Antibodies exist as intact immunoglobulins or as a number of well characterized fragments produced by digestion with various peptidases. Thus, for example, pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)′2, a dimer of Fab which itself is a light chain joined to VH-C H1 by a disulfide bond. The F(ab)′2 may be reduced under mild conditions to break the disulfide linkage in the hinge region thereby converting the (Fab′)2 dimer into an Fab′ monomer. The Fab′ monomer is essentially an Fab with part of the hinge region (see, Fundamental Immunology, W.E. Paul, ed., Raven Press, N.Y. (1993), for a more detailed description of other antibody fragments). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such Fab′ fragments may be synthesized de novo either chemically or by utilizing recombinant DNA methodology. Thus, the term antibody, as used herein also includes antibody fragments either produced by the modification of whole antibodies or synthesized de novo using recombinant DNA methodologies, including, but are not limited to, Fab′2, IgG, IgM, IgA, scFv, dAb, nanobodies, unibodies, and diabodies.
  • In certain embodiments antibodies and fragments of the present invention can be bispecific. Bispecific antibodies or fragments can be of several configurations. For example, bispecific antibodies may resemble single antibodies (or antibody fragments) but have two different antigen binding sites (variable regions). In various embodiments bispecific antibodies can be produced by chemical techniques (Kranz et al. (1981) Proc. Natl. Acad. Sci., USA, 78: 5807), by “polydoma” techniques (see, e.g., U.S. Pat. No. 4,474,893), or by recombinant DNA techniques. In certain embodiments bispecific antibodies of the present invention can have binding specificities for at least two different epitopes, at least one of which is an epitope of a microbial organism. The microbial binding antibodies and fragments can also be heteroantibodies. Heteroantibodies are two or more antibodies, or antibody binding fragments (e.g., Fab) linked together, each antibody or fragment having a different specificity.
  • The term “STAMP” refers to Specifically Targeted Anti-Microbial Peptides. In various embodiments, a STAMP comprises one or more peptide targeting moieties attached to one or more antimicrobial moieties (e.g.., antimicrobial peptides (AMPs)). An MH-STAMP is a STAMP bearing two or more targeting domains (i.e., a multi-headed STAMP).
  • The terms “isolated” “purified” or “biologically pure” refer to material which is substantially or essentially free from components that normally accompany it as found in its native state. In the case of a peptide, an isolated (naturally occurring) peptide is typically substantially free of components with which it is associated in the cell, tissue, or organism. The term isolated also indicates that the peptide is not present in a phage display, yeast display, or other peptide library.
  • In various embodiments the amino acid abbreviations shown in Table 1 are used herein.
  • TABLE 1
    Amino acid abbreviations.
    Abbreviation
    Name
    3 Letter 1 Letter
    Alanine Ala A
    βAlanine βAla
    (NH2—CH2—CH2—COOH)
    Arginine Arg R
    Asparagine Asn N
    Aspartic Acid Asp D
    Cysteine Cys C
    Glutamic Acid Glu E
    Glutamine Gln Q
    Glycine Gly G
    Histidine His H
    Homoserine Hse
    Isoleucine Ile I
    Leucine Leu L
    Lysine Lys K
    Methionine Met M
    Methionine sulfoxide Met (O)
    Methionine methylsulfonium Met (S-Me)
    Norleucine Nle
    Phenylalanine Phe F
    Proline Pro P
    Serine Ser S
    Threonine Thr T
    Tryptophan Trp W
    Tyrosine Tyr Y
    Valine Val V
    episilon-aminocaproic acid Ahx J
    (NH2—(CH2)5—COOH)
    4-aminobutanoic acid gAbu
    (NH2—(CH2)3—COOH)
    tetrahydroisoquinoline-3- O
    carboxylic acid
    Lys(N(epsilon)-trifluoroacetyl) K[TFA]
    α-aminoisobutyric acid Aib B
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows some illustrative porphyrins (compounds 92-99) suitable for use as targeting moieties and/or antimicrobial effectors.
  • FIG. 2 shows some illustrative porphyrins (compounds 100-118) suitable for use as targeting moieties and/or antimicrobial effectors.
  • FIG. 3 shows some illustrative porphyrins (in particular phthalocyanines) (compounds 119-128) suitable for use as targeting moieties and/or antimicrobial effectors.
  • FIG. 4 illustrates the structures of two phthalocyanines, Monoastral Fast Blue B and Monoastral Fast Blue G suitable for use as targeting moieties and/or antimicrobial effectors.
  • FIG. 5 illustrates certain azine photosensitizers suitable for use as targeting moieties and/or antimicrobial effectors in the compositions and methods described herein.
  • FIG. 6 shows illustrative cyanine suitable for use as targeting moieties and/or antimicrobial effectors in the compositions and methods described herein.
  • FIG. 7 shows illustrative psoralen (angelicin) photosensitizers suitable for use as targeting moieties and/or antimicrobial effectors in the compositions and methods described herein.
  • FIG. 8 shows illustrative hypericin and the perylenequinonoid pigments suitable for use as targeting moieties and/or antimicrobial effectors in the compositions and methods described herein.
  • FIG. 9 shows illustrative acridines suitable for use as targeting moieties and/or antimicrobial effectors in the compositions and methods described herein.
  • FIG. 10 illustrates the structure of the acridine Rose Bengal.
  • FIG. 11 illustrates various crown ethers suitable for use as targeting moieties and/or antimicrobial effectors in the compositions and methods described herein.
  • FIG. 12 illustrates the structure of cumin.
  • FIG. 13 illustrates an example of a targeted light-activated porphyrin we have constructed: C16-P18 comprising a porphyrin coupled to a C16 (SEQ ID NO:3) targeting sequence.
  • FIG. 14 schematically shows some illustrative configurations for chimeric constructs described herein. A: Shows a single targeting moiety T1 attached to a single effector E1 by a linker/spacer L. B: Shows multiple targeting moieties T1, T2, T3 attached directly to each other and attached by a linker L to a single effector E1. In various embodiments T1, T2, and T3, can be domains in a fusion protein. C: Shows multiple targeting moieties T1, T2, T3 attached to each other by linkers L and attached by a linker L to a single effector E1. In various embodiments T1, T2, and T3, can be domains in a fusion protein. D: Shows a single targeting moiety T1 attached by a linker L to multiple effectors E1, E2, and E3 joined directly to each other. E: Shows a single targeting moiety T1 attached by a linker L to multiple effectors E1, E2, and E3 joined to each other by linkers L. F: Shows multiple targeting moieties joined directly to each other and by a linker L to multiple effectors joined to each other by linkers L. G: Shows multiple targeting moieties joined to each other by linkers L and by a linker L to multiple effectors joined to each other by linkers L. In various embodiments T1, T2, and T3, and/or E1, E2, and E3 can be domains in a fusion protein. H: Illustrates a branched configuration where multiple targeting moieties are linked to a single effector. I: Illustrates a dual branched configuration where multiple targeting moieties are linked to multiple effectors. J: Illustrates a branched configuration where multiple targeting moieties are linked to multiple effectors where the effectors are joined to each other in a linear configuration.
  • FIG. 15 illustrates various MH-STAMPs used in Example 1. The design, sequence, and observed mass (m/z) for M8(KH)-20 (SEQ ID NOs:4, 5, and 6), BL(KH)-20 ( SEQ ID 7, 8, and 9), and M8(BL)-20 ( SEQ ID 10, 11, and 12).
  • FIGS. 16A and 16B show HPLC and MS spectra of M8(KH)-20. The quality of the completed MH-STAMP was analyzed by HPLC (FIG. 16A) and MALDI mass spectroscopy (FIG. 16B). At UV absorbance 215 nm (260 and 280 nm are also plotted), a single major product was detected by HPLC (* retention volume 11.04 mL). After fraction collection, the correct mass (m/z) for single-charged M8(KH)-20, 4884.91 (marked by *), was observed for this peak. Y-axis: 16A, mAU miliabsorbance units; 16B, percent intensity.
  • FIG. 17A-17E show growth inhibitory activity of MH-STAMPs. Monocultures of S. mutans (FIG. 17A); P. aeruginosa (FIG. 17B); S. epidermidis (FIG. 17C); S. aureus (FIG. 17D); or E. coli (FIG. 17E); were treated with peptides (as indicated in the figure) for 10 min. Agent was then removed and fresh media returned. Culture recovery was measured over time (OD600). Plots represent the average of at least 3 independent experiments with standard deviations.
  • FIG. 18 illustrates the selective activity of dual-targeted and single-targeted MH-STAMPs in mixed culture. A mixture of P. aeruginosa (Pa), S. mutans (Sm), E. coli (Ec), and S. epidermidis (Se) planktonic cells were mixed with MH-STAMPs (as indicated in the figure) and treated 24 h. After incubation, cfu/mL of remaining constituent species were quantitated after plating to selective media. * indicates under 200 surviving cfu/mL recovered.
  • FIGS. 19A and 19B illustrate Rose Bengal (FIG. 19A) and synthesis scheme for C16-RB, halides and side-chains omitted for clarity (FIG. 19B).
  • FIG. 20 shows LC/MS profile C16-RB. Purity and molecular mass of C16-RB was confirmed by LC/MS. A single product was observed at 11.92 min with mass species at 1040.8 and 1560.25 daltons. Expected C16-RB mas: m/z=3118, m2+/z=1559, m3+/z=1039.
  • FIG. 21 illustrates activity of RB and C16-RB against single-species S. mutans biofilms. * indicates fewer than 100 cfu/mL recovered
  • FIG. 22 shows S. mutans-specific C16-RB activity. C16-RB, and not RB alone, preferentially eliminated S. mutans, and not other oral streptococci, after blue light illumination.
  • DETAILED DESCRIPTION
  • In various embodiments, novel “targeting” peptides are identified that specifically or preferentially bind particular microorganisms (e.g., bacteria, yeasts, fungi, etc.). These peptides can be used alone to bind/capture and thereby identify and/or isolate particular target microorganisms, or they can be attached to one or more effectors (e.g., drugs, labels, etc.) and used as targeting moieties thereby providing a chimeric moiety that preferentially or specifically delivers the effector to a target microorganism, a population of target microorganisms, a microbial film, a biofilm, and the like.
  • In various embodiments novel peptides having antimicrobial activity against certain bacteria, fungi, yeasts, and/or viruses and/or having activity that inhibits the growth or maintenance of biofilms comprising such microorganisms are provided. The AMPs can be used to inhibit the growth and/or proliferation of a microbial species and/or the growth and/formation and/or maintenance of a biofilm comprising the microbial species.
  • In certain embodiments, the targeting moieties can be attached to antimicrobial peptides to form Specifically Targeted Anti-Microbial Peptides (STAMPs). In certain embodiments attachment of one or more targeting moieties/peptides to one or more antimicrobial peptides can narrow the spectrum of activity of the AMP(s) to provide efficacy against one or a few target microorganisms without substantially disrupting the remaining microbial ecology and thereby provide increased efficacy with fewer side effects.
  • In certain embodiments STAMPs or effector peptides can be delivered against pathogenic bacteria by being cloned and expressed in probiotic organisms for therapeutic delivery in vivo. Recombinant expression (and overexpression) and export of antimicrobial peptides and other peptides are well documented in bacteria, including species that are also utilized as probiotics.
  • In various embodiments the targeting peptides, antimicrobial peptides, and/or STAMPs can be formulated individually, in combination with each other, in combination with other antimicrobial peptides, and/or in combination with various antibacterial agents to provide antimicrobial reagents and/or pharmaceuticals.
  • Accordingly, in certain embodiments this invention provides peptides having antimicrobial activity, compositions comprising the peptides, methods of using the peptides (or compositions thereof) to inhibit the growth of or kill a wide variety of microbial targets and methods of using the peptides (or compositions thereof) to treat or prevent microbial infections and diseases related thereto in both plants and animals.
  • The various peptides (targeting peptides, AMPs, STAMPs, etc.) described herein exhibit antimicrobial activity, being biostatic or biocidal against a certain microbial targets, including but not limited to, Gram-negative bacteria such as Acinetobacter baumannii, Escherichia coli, Fusobacterium nucleatum, Pseudomonas aeruginosa, Porphyromonas gingivalis; Gram-positive bacteria such as Actinomyces naeslundii, Bacillus subtilis, Clostridium difficile, Enterococcus faecalis, Staphylococcus aureus (and MRSA), S. epidermidis, Streptococcus mutans, Streptococcus pneumoniae; and yeast or fungi such as Aspergillus niger, Candida albicans, Malassezia furfur, and Trichophyton rubrum (see, e.g., Table 2). Significantly, various peptides described herein are biostatic or biocidal against clinically relevant pathogens exhibiting multi-drug resistance such as, for example, methicillin-resistant Staphylococcus aureus (“MRSA”).
  • TABLE 2
    Illustrative target microorganisms and associated pathology.
    Acinetobacter baumannii Pathogenic gram-negative bacillus that is naturally sensitive
    (A. baumannii) to relatively few antibiotics.
    Actinomyces naeslundii Gram positive rod shaped bacteria that occupy the oral
    (A. naeslundii) cavity and are implicated in periodontal disease and root
    caries.
    Aspergillus niger A fungal infection that often causes a black mould to appear
    (A. niger) on some fruit and vegetables but may also infect humans
    through inhalation of fungal spores.
    Bacteroides fragilis Gram positive bacilli that are opportunistic human
    (B. fragilis) pathogens, causing infections of the peritoneal cavity,
    gastrointestinal surgery, and appendicitis via abscess
    formation, inhibiting phagocytosis. Resistant to a wide
    variety of antibiotics -- β-lactams, aminoglycosides, and
    recently many species have acquired resistance to
    erythromycin and tetracycline.
    Bacillus subtilis Gram-positive, catalase-positive bacterium.
    (B. subtilis)
    Candida albicans Causal agent of opportunistic oral and genital fungal
    (C. albicans) infections in humans.
    Clostridium difficile A gram-positive, anaerobic, spore-forming bacillus that is
    (C. difficile) responsible for the development of antibiotic-associated
    diarrhea and colitis.
    Corynebacterium jeikeium Gram positive, opportunistic pathogen primarily of
    (C. jeikeium) immunocompromised (neutropenic) patients. Highly
    resistant to antibiotics
    Campylobacter jejuni Gram negative cause of human gastroenteritis/food
    (C. jejuni) poisoning.
    Escherichia coli Gram negative rod-shaped bacterium commonly found in the
    (E. coli) lower intestine of warm-blooded organisms. Certain strains
    cause serious food poisoning in humans.
    Enterococcus faecalis Gram-positive commensal bacterium
    (E. faecalis)
    Fusobacterium nucleatum Gram negative schizomycetes bacterium often seen in
    (F. nucleatum) necrotic tissue and implicated, but not conclusively, with
    other organisms in the causation and perpetuation of
    periodontal disease.
    Lactobacillus acidophilus Gram-positive commensal bacterium.
    (L. acidophilus)
    Legionella pneumophila Gram negative bacterium that is the causative agent of
    (L. pneumophila) legionellosis or Legionnaires' disease.
    (Micrococcus luteus) Gram positive, spherical, saprotrophic bacterium found in
    M. luteus soil, dust, water and air, and as part of the normal flora of the
    mammalian skin. The bacterium also colonizes the human
    mouth, mucosae, oropharynx and upper respiratory tract.
    Considered an emerging nosocomial pathogen in
    immunocompromised patients.
    Mycobacterium smegmatis Gram-variable (acid-fast) soil-dwelling organism utilized as
    (M. smegmatis) a proxy for Mycobacterium tuberculosis during research and
    development.
    Malassezia furfur Yeast - cutaneous pathogen.
    (M. furfur)
    Methicillin-resistant Any strain of Staphylococcus aureus bacteria (gram positive)
    Staphylococcus aureus that is resistant to a one or more members of a large group of
    (MRSA) antibiotics called the beta-lactams. Responsible for skin and
    systemic infections.
    Myxococcus xanthus Gram negative cells that form biofilms and display primitive
    (M. xanthus) social motility and fruiting body organization.
    Pseudomonas aeruginosa Gram-negative rod. Frequent opportunistic pathogen and
    P. aeruginosa infects burn wounds. Causes ear infections in children.
    Infects the lungs of cystic fibrosis patients.
    Porphyromonas gingivalis Non-motile, gram-negative, rod-shaped, anaerobic
    (P. gingivalis) pathogenic bacterium (periodontal disease)
    Progeussmirabilis Gram-negative, facultatively anaerobic bacterium. Causes
    (P. mirabilis) 90% of all ‘Proteus’ infections in humans.
    S. epidermidis Gram-positive, coagulase-negative cocci. Nosocomial
    (S. epidermidis) pathogen associated with infection (biofilm) of implanted
    medical device.
    Streptococcus mutans Gram-positive, facultatively anaerobic bacterium commonly
    (S. mutans) found in the human oral cavity and is a significant
    contributor to tooth decay
    Streptococcus pneumoniae Gram-positive, alpha-hemolytic, bile soluble aerotolerant
    (S. pneumoniae) anaerobe. Causal agent for streptococcal pneumonia.
    Treponema denticola Gram-negative oral spirochete associated with the incidence
    (T. denticola) and severity of human periodontal disease.
    Trichophyton rubrum Most common cause of athlete's foot, jock itch and
    (T. rubrum) ringworm.
  • The various agents described herein (targeting peptides, compound targeting peptides, antimicrobial peptides (AMPs) and/or compound AMPs, STAMPs and/or other chimeric moieties). or compositions thereof, are useful as biocidal or biostatic or fungicidal or fungistatic agents and/or virucidal agents in a wide variety of applications. For example, the agents can be used to disinfect or preserve a variety of materials including medical instruments, foodstuffs, medicaments, cosmetics and other nutrient-containing materials. Various peptides described herein are particularly useful as bacteriostatic or bactericidal agents against multi-drug-resistant pathogens such as MRSA in a variety of clinical settings.
  • The agents described herein, or compositions thereof, are also useful for the prophylaxis or treatment of microbial infections and diseases related thereto in both plants and animals. Such diseases include, but are not limited to, Gram-negative and Gram-positive bacterial infections, endocarditis, pneumonia and other respiratory infections, urinary tract infections, systemic candidiasis, oral mucositis, fungal infections, biofilm formation or maintenance (e.g., on medical implants), and the like.
  • In various embodiments, the agents described herein can be formulated individually, in combination with each other, in combination with other antimicrobial peptides, and/or in combination with various antibiotic (e.g., antibacterial) agents in “home healthcare” formulations. Such formulations include, but are not limited to toothpaste, mouthwash, tooth whitening strips or solutions, contact lens storage, wetting, or cleaning solutions, dental floss, toothpicks, toothbrush bristles, oral sprays, oral lozenges, nasal sprays, aerosolizers for oral and/or nasal application, wound dressings (e.g., bandages), and the like.
  • Such applications are illustrative and not limiting. Using the teachings provided herein other uses of the AMPs and compositions described herein will be recognized by one of
  • I. Targeting Peptides.
  • A) Uses of Targeting Peptides.
  • The novel microorganism-binding peptides (targeting peptides) described herein can be used to preferentially or specifically deliver an effector to a microorganism (e.g., a bacterium, a fungus, a protozoan, an algae, etc.), to a bacterial film, to a biofilm, and the like. The targeting peptides described herein can be used to bind to and thereby label particular targets, and/or as capture reagents to bind target microorganisms and thereby provide an indicator of the presence and/or quantity of the target microorganism(s). In certain embodiments the targeting peptide can be attached to an effector such as an epitope tag and/or a detectable label and thereby facilitate the identification of the presence and/or location, and/or quantity of the target (e.g., target organism). Thus targeting moieties are thus readily adapted for use in in vivo diagnostics, and/or ex vivo assays. Moreover, because of small size and good stability, microorganism binding peptides are well suited for microassay systems (e.g., microfluidic assays (Lab on a Chip), microarray assays, and the like).
  • In certain embodiments the microorganism binding peptides (targeting peptides) can be attached to an effector that has antimicrobial activity (e.g., an antimicrobial peptide, an antibacterial and/or antifungal, a vehicle that contains an antibacterial or antifungal, etc. In various embodiments these chimeric moieties can be used in vivo, or ex vivo to preferentially inhibit or kill the target organism(s).
  • In certain embodiments the targeting peptides can be recombinantly expressed as part of a yeast or phage tail fiber or coat protein to enhance binding of the yeast or phage to a specific bacterial Gram-designation, genus, species, or strain. Phage with expressed peptides will then display altered infection selectivity towards a designed target bacteria for use in phage therapy. Cloning the DNA encoding a peptide of interest into the major or minor coat proteins of a bacteriophage, for example in Proteins I through VIII of phages SAP-2, M13, or T7, will result in a targeted phage expressing 1-200 copies of the targeting peptide on the phage surface.
  • In certain embodiments the targeting peptides can be used in various pre-targeting protocols. In pre-targeting protocols, a chimeric molecule is utilized comprising a primary targeting species (e.g. a microorganism-binding peptide) that specifically binds the desired target (e.g. a bacterium) and an effector that provides a binding site that is available for binding by a subsequently administered second targeting species. Once sufficient accretion of the primary targeting species (the chimeric molecule) is achieved, a second targeting species comprising (i) a diagnostic or therapeutic agent and (ii) a second targeting moiety, that recognizes the available binding site of the primary targeting species, is administered.
  • An illustrative example of a pre-targeting protocol is the biotin-avidin system for administering a cytotoxic radionuclide to a tumor. In a typical procedure, a monoclonal antibody targeted against a tumor-associated antigen is conjugated to avidin and administered to a patient who has a tumor recognized by the antibody. Then the therapeutic agent, e.g., a chelated radionuclide covalently bound to biotin, is administered. The radionuclide, via its attached biotin is taken up by the antibody-avidin conjugate pretargeted at the tumor. Examples of pre-targeting biotin/avidin protocols are described, for example, in Goodwin et al., U.S. Pat. No. 4,863,713; Goodwin et al. (1988) J. Nucl. Med. 29: 226; Hnatowich et al. (1987) J. Nucl. Med. 28: 1294; Oehr et al. (1988) J. Nucl. Med. 29: 728; Klibanov et al. (1988) J. Nucl. Med. 29: 1951; Sinitsyn et al. (1989) J. Nucl. Med. 30: 66; Kalofonos et al. (1990) J. Nucl. Med. 31: 1791; Schechter et al. (1991) Int. J. Cancer 48:167; Paganelli et al. (1991) Cancer Res. 51: 5960; Paganelli et al. (1991) Nucl. Med. Commun. 12: 211; Stickney et al. (1991) Cancer Res. 51: 6650; and Yuan et al. (1991) Cancer Res. 51:3119.
  • It will be recognized that the tumor-specific antibody used for cancer treatments can be replaced with a microorganism binding peptide of the present invention and similar pre-targeting strategies can be used to direct labels, antibiotics, and the like to the target organism(s).
  • Three-step pre-targeting protocols in which a clearing agent is administered after the first targeting composition has localized at the target site also have been described. The clearing agent binds and removes circulating primary conjugate which is not bound at the target site, and prevents circulating primary targeting species (antibody-avidin or conjugate, for example) from interfering with the targeting of active agent species (biotin-active agent conjugate) at the target site by competing for the binding sites on the active agent-conjugate. When antibody-avidin is used as the primary targeting moiety, excess circulating conjugate can be cleared by injecting a biotinylated polymer such as biotinylated human serum albumin. This type of agent forms a high molecular weight species with the circulating avidin-antibody conjugate which is quickly recognized by the hepatobiliary system and deposited primarily in the liver.
  • Examples of these protocols are disclosed, e.g., in PCT Application No. WO 93/25240; Paganelli et al. (1991) Nucl. Med. Comm., 12: 211-234; Oehr et al. (1988) J. Nucl. Med., 29: 728-729; Kalofonos et al. (1990) J. Nucl. Med., 31: 1791-1796; Goodwin et al. (1988) J. Nucl. Med., 29: 226-234; and the like).
  • These applications of microorganism binding peptides of this invention are intended to be illustrative and not limiting. Using the teaching provided herein, other uses will be recognized by one of skill in the art.
  • B) Illustrative Novel Targeting Peptides.
  • In certain embodiments, the targeting moiety comprises one or more targeting peptides that bind particular bacteria, fungi, and/or yeasts, and/or algae, and/or viruses and/or that bind particular groups of bacteria, and/or groups of fungi, and/or groups of yeasts, and/or groups of algae.
  • In certain embodiments the targeting peptides include peptides comprising or consisting of one or more of the amino acid sequences shown in Table 3 (SEQ ID NOs:13-1566). In various embodiments the peptides include peptides comprising or consisting of the retro, inverso, retro-inverso, and/or beta form of one or more of the amino acid sequences shown in Table 3. Also contemplated are circular permutations of these sequences as well as peptides comprising or consisting of the retro, inverso, retro-inverso, and/or beta form of such circular permutations.
  • It will also be recognized, that in certain embodiments, any peptide or compound AMP described herein can be circularized.
  • In various embodiments the peptides can optionally bear one or more protecting groups, e.g., and the amino and/or carboxyl termini, and/or on side chains.
  • Also contemplated are peptides comprising one, two, three four, or five conservative substitutions of these amino acid sequences.
  • TABLE 3
    Illustrative list of novel targeting peptides.
    SEQ ID
    ID Target(s) Targeting Peptide Sequence NO
    1T-3 S. mutans VLGIAGGLDAYGELVGGN 13
    S. gordonii
    1T-4 S. mutans LDAYGELVGGN 14
    S. gordonii
    S. sanguinis
    S. oralis
    V. atypica
    L. casei
    1T-6 S. mutans KFINGVLSQFVLERK 15
    1T-7 M. xanthus SQRIIEPVKSPQPYPGFSVS 16
    1T-8 M. xanthus FSVAACGEQRAVTFVLLIEDLI 17
    1T-9 M. xanthus WAWAESPRCVSTRSNIHALAFRVEVAA 18
    LT
    1T-10 M. xanthus SPAGLPGDGDEA 19
    1T-11 S. mutans RISE 20
    S. epidermidis
    P. aeruginosa
    1T-12 C. xerosis FGNIFKGLKDVIETIVKWTAAK 21
    C. striatum
    S. epidermidis
    S. mutans
    1T-13 S. aureus FRSPCINNNSLQPPGVYPAR 22
    S. epidermidis
    P. aeruginosa
    1T-14 S. mutans ALAGLAGLISGK 23
    S. aureus
    S. epidermidis
    C. xerosis
    1T-15 S. mutans DVILRVEAQ 24
    1T-16 P. aeruginosa IDMR 25
    1T-17 S. mutans NNAIVYIS 26
    1T-18 S. aureus YSKTLHFAD 27
    S. epidermidis
    C. striatum
    P. aeruginosa
    1T-19 S. aureus PGAFRNPQMPRG 28
    S. epidermidis
    P. aeruginosa
    1T-20 S. mutans PALVDLSNKEAVWAVLDDHS 29
    P. aeruginosa
    1T-21 S. mutans YVEEAVRAALKKEARISTEDTPVNLPSF 30
    P. aeruginosa DC
    1T-22 S. epidermidis VPLDDGTRRPEVARNRDKDRED 31
    P. aeruginosa
    1T-23 S. mutans PALVDLSNKEAVWAVLDDHS 32
    P. aeruginosa
    1T-24 P. aeruginosa EEAEEKLAEVSQAVKRLVR 33
    1T-25 S. aureus VGLDVSVLVLFFGLQLLSVLLGAMIR 34
    S. epidermidis
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-26 S. mutans LTILPTTFFAIIVPILAVAFIAYSGFKIKGI 35
    S. aureus VEHKDQW
    S. epidermidis
    C. jeikeium
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-27 S. mutans ALFVSLEQFLVVVAKSVFALCHSGTLS 36
    S. aureus
    S. epidermidis
    C. jeikeium
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-28 P. aeruginosa VSRDEAMEFIDREWTTLQPAGKSHA 37
    1T-29 S. mutans GSVIKKRRKRMSKKKHRKMLRRTRVQ 38
    S. aureus RRKLGK
    S. epidermidis
    C. jeikeium
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-30 S. aureus GKAKPYQVRQVLRAVDKLETRRKKGG 39
    S. epidermidis R
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-31 S. mutans NATGTDIGEVTLTLGRFS 40
    P. aeruginosa
    1T-32 S. mutans VSFLAGWLCLGLAAWRLGNA 41
    1T-33 S. aureus VRTLTILVIFIFNYLKSISYKLKQPFENNL 42
    S. epidermidis AQSMISI
    C. jeikeium
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-34 S. aureus AFWLNILLTLLGYIPGIVHAVYIIAKR 43
    S. epidermidis
    C. jeikeium
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-35 P. aeruginosa EICLTLVFPIRGSYSEAAKFPVPIHIVEDG 44
    TVELPK
    1T-36 S. aureus VYRHLRFIDGKLVEIRLERK 45
    S. epidermidis
    C. jeikeium
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-37 S. mutans YIVGALVILAVAGLIYSMLRKA 46
    S. aereus
    S. epidermidis
    C. jeikeium
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-38 S. mutans VMFVLTRGRSPRPMIPAY 47
    S. aereus
    S. epidermidis
    C. jeikeium
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-39 S. mutans FGFCVWMYQLLAGPPGPPA 48
    P. aeruginosa
    1T-40 S. mutans QRVSLWSEVEHEFR 49
    P. aeruginosa
    1T-41 S. mutans KRGSKIVIAIAVVLIVLAGVWVW 50
    S. aureus
    S. epidermidis
    C. jeikeium
    C. striatum
    P. aeruginosa
    1T-42 S. aureus TVLDWLSLALATGLFVYLLVALLRADR 51
    S. epidermidis A
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-43 C. jeikium DRCLSVLSWSPPKVSPLI 52
    P. aeruginosa
    1T-44 S. mutans DPALADFAAGMRAQVRT 53
    S. aureus
    S. epidermidis
    C. jeikeium
    C. striatum
    P. aeruginosa
    1T-45 S. aureus WTKPSFTDLRLGFEVTLYFANR 54
    S. epidermidis
    C. striatum
    P. aeruginosa
    1T-46 S. aureus FSFKQRVMFRKEVERLR 55
    S. epidermidis
    C. jeikeium
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-47 S. mutans VIKISVPGQVQMLIP 56
    S. epidermidis
    P. aeruginosa
    1T-48 S. aureus KLQVHHGRATHTLLLQPPLCAPGTIR 57
    S. epidermidis
    C. jeikeium
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-49 S. aureus SLVRIHDQQPWVTRGAFIDAARTCS 58
    S. epidermidis
    C. jeikeium
    P. aeruginosa
    1T-50 P. aeruginosa HSDEPIPNILFKSDSVH 59
    1T-51 S. aureus GKPKRMPAEFIDGYGQALLAGA 60
    P. aeruginosa
    1T-52 S. aureus DEYPAKLPLSDKGATEPRRH 61
    C. xerosis
    P. aeruginosa
    1T-53 P. aeruginosa SDILAEMFEKGELQTLVKDAAAKANA 62
    1T-54 S. epidermidis RWVSCNPSWRIQ 63
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-55 C. xerosis NHKTLKEWKAKWGPEAVESWATLLG 64
    P. aeruginosa
    1T-56 C. xerosis LALIGAGIWMIRKG 65
    P. aeruginosa
    1T-57 P. aeruginosa RLEYRRLETQVEENPESGRRPMRG 66
    1T-58 P. aeruginosa CDDLHALERAGKLDALLSA 67
    1T-59 S. aureus AVGNNLGKDNDSGHRGKKHRKHKHR 68
    S. epidermidis
    P. aeruginosa
    1T-60 S. aureus YLTSLGLDAAEQAQGLLTILKG 69
    S. epidermidis
    C. jeikeium
    C. striatum
    P. aeruginosa
    1T-61 P. aeruginosa HATLLPAVREAISRQLLPALVPRG 70
    1T-62 S. epidermidis GCKGCAQRDPCAEPEPYFRLR 71
    P. aeruginosa
    1T-63 S. aureus EPLILKELVRNLFLFCYARALR 72
    S. epidermidis
    C. jeikeium
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-64 S. aureus QTVHHIHMHVLGQRQMHWPPG 73
    S. epidermidis
    C. jeikeium
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-65 S. mutans HARAAVGVAELPRGAAVEVELIAAVRP 74
    S. aureus
    S. epidermidis
    C. jeikeium
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-66 S. mutans DTDCLSRAYAQRIDELDKQYAGIDKPL 75
    S. aureus
    S. epidermidis
    C. jeikeium
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-67 S. aureus GQRQRLTCGRVSGCSEGPSREAAR 76
    S. epidermidis
    C. jeikeium
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-68 S. mutans GGTKEIVYQRG 77
    S. aureus
    C. jeikeium
    C. xerosis
    C. striatum
    P. aeruginosa
    1T-69 S. mutans ILSQEADRKKLF 78
    P. aeruginosa
    1T-70 S. aureus NRQAQGERAHGEQQG 79
    C. jeikeium
    P. aeruginosa
    1T-71 P. aeruginosa KIDTNQWPPNKEG 80
    1T-72 P. aeruginosa EPTDGVACKER 81
    1T-73 S. pneumoniae GWWEELLHETILSKFKITKALELPIQL 82
    1T-74 S. pneumoniae DIDWGRKISCAAGVAYGAIDGCATTV 83
    1T-75 S. pneumoniae GVARGLQLGIKTRTQWGAATGAA 84
    1T-76 S. pneumoniae EMRLSKFFRDFILWRKK 85
    1T-77 S. pneumoniae EMRISRIILDFLFLRKK 86
    1T-78 S. pneumoniae FFKTIFVLILGALGVAAGLYIEKNYIDK 87
    1T-79 S. pneumoniae FGTPWSITNFWKKNFNDRPDFDSDRRR 88
    Y
    1T-80 S. pneumoniae GGNLGPGFGVIIP 89
    1T-81 S. pneumoniae AIATGLDIVDGKFDGYLWA 90
    1T-82 S. pneumoniae FGVGVGIALFMAGYAIGKDLRKKFGKS 91
    C
    1T-83 S. pneumoniae QKPRKNETFIGYIQRYDIDGNGYQSLPC 92
    PQN
    1T-84 S. pneumoniae FRKKRYGLSILLWLNAFTNLVNSIHAFY 93
    MTLF
    1T-85 A. naeslundii VMASLTWRMRAASASLPTHSRTDA 94
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-86 S. mitis HRKNPVLGVGRRHRAHNVA 95
    S. oralis
    S. salivarious
    1T-87 S. mitis EAVGQDLVDAHHP 96
    S. mutans
    S. oralis
    1T-89 S. mitis HEDDKRRGMSVEVLGFEVVQHEE 97
    S. mutans
    1T-90 S. gordonii RNVIGQVL 98
    S. mitis
    S. mutans
    S. oralis
    S. sanguinis
    1T-91 S. mitis TSVRPGAAGAAVPAGAAGAAGAGWR 99
    S. mutans WP
    S. oralis
    S. sanguinis
    1T-92 S. mitis GQDEGQRRAGVGEGQGVDG 100
    S. mutans
    1T-93 S. epidermidis AMRSVNQA 101
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. sanguinis
    1T-94 S. mitis DQVAHSGDMLVQARRRDS 102
    S. mutans
    S. oralis
    1T-95 S. gordonii GHLLRVGGRVGGVGGVAGACAQPFGG 103
    S. mitis Q
    S. mutans
    S. oralis
    S. sanguinis
    1T-96 S. gordonii VAGACAQPFGGQ 104
    S. mitis
    S. mutans
    S. oralis
    S. sanguinis
    1T-97 A. naeslundii GVAERNLDRITVAVAIIWTITIVGLGLV 105
    F. nucleatum AKLG
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-98 A. naeslundii VRSAKAVKALTAAGYTGELVNVSGGM 106
    F. nucleatum KAWLGQ
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-99 S. gordonii MKAWLGQ 107
    S. mitis
    S. mutans
    S. oralis
    S. sanguinis
    1T-100 S. gordonii LDPLEPRIAPPGDRSHQGAPACHRDPLR 108
    S. mitis GRSARDAER
    S. mutans
    1T-101 A. naeslundii RLRVGRATDLPLTSFAVGVVRNLPDAP 109
    P. gingivalis AH
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. sanguinis
    1T-102 A. naeslundii WKRLWPARILAGHSRRRMRWMVVWR 110
    F. nucleatum YFAAT
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-103 A. naeslundii AQFYEAIITGYALGAGQRIGQL 111
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. sanguinis
    1T-104 S. mitts RAVAAHLQGRHEIGHQVRRQRHGQR 112
    1T-105 S. epidermidis GEGLPPPVLHLPPPRMSGR 113
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    1T-106 S. gordonii DALRRSRSQGRRHR 114
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    1T-107 A. naeslundii SPVPRFTAVGGVSRGSP 115
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-108 S. gordonii WGPLGPERPLW 116
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-109 A. naeslundii VTTNVRQGAGS 117
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-110 A. naeslundii LAAKTAVCVGRAFM 118
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. sanguinis
    1T-111 A. naeslundii GRLSRREEDPATSIILLRGAYRMAVF 119
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-112 S. gordonii SDNDGKLILGTSQ 120
    1T-113 S. mitis HGAHQRTGQRLHEIHRGRTVSGCRQNP 121
    VAGVDPDEHR
    1T-114 A. naeslundii RQAPGPGLVTITAACSAPGSRSR 122
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. sanguinis
    1T-115 A. naeslundii LLIERFSNHH 123
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-116 A. naeslundii MILHRRRDR 124
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-117 S. mutans GPGVVGPAPFSRLPAHALNL 125
    1T-118 A. naeslundii TASPPAPSDQGLRTAFPATLLIALAALA 126
    F. nucleatum RISR
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-119 S. gordonii SPATQKAPTRAQPSRAPVQDCGDGRPT 127
    S. mitis AAPDDVERLSPR
    S. mutans
    S. oralis
    1T-120 A. naeslundii DVRDRVDLAGADLCAAHATR 128
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-121 S. gordonii FAKETGFGIGGAQEGWWIIADIYGPNPF 129
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-122 S. mitts GAIPDPVTHRVDWEEDHQTRPSR 130
    1T-123 S. gordonii LVRRNAVAGRSDGLAGAEQLDLVRLQ 131
    GVL
    1T-124 S. mitts LFDERNKIA 132
    S. mutans
    S. oralis
    1T-125 S. epidermidis DAITGGNPPLSDTDGLRP 133
    S. gordonii
    S. mutans
    S. oralis
    1T-126 S. gordonii QGLARPVLRRIPL 134
    S. mitis
    S. mutans
    1T-127 A. naeslundii YDPVPKRKNKNSEGKREE 135
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-128 A. naeslundii SGSAIRMLEIATKMLKR 136
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-129 A. naeslundii YDKYIKYLSIQPPFIVYFI 137
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-130 A. naeslundii QKIIDMSKFLFSLILFIMIVVIYIGKSIGG 138
    F. nucleatum YSAIVSSIMLELDTVLYNKKIFFIYK
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-131 A. naeslundii DEVWKMLGI 139
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-132 A. naeslundii YSKKLFEYFYFIIFILIRYLIFYKIIQNKNY 140
    F. nucleatum YINNIAYN
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-133 A. naeslundii YFIKDDNEALSKDWEVIGNDLKGTIDK 141
    P. gingivalis YGKEFKVR
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-134 A. naeslundii SRLVREIKKKCRKS 142
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-135 A. naeslundii FESLLPQATKKIVNNKGSKINKIF 143
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-136 A. naeslundii ELLTQIRLALLYSVNEW 144
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-137 A. naeslundii PLNFYRAVKENRLPLSEKNINDFTNIKL 145
    F. nucleatum KVSPKLINLLQESSIFYNFSPKKRNTN
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-138 A. naeslundii YPNEYCIFLENLSLEELKEIKAINGETLN 146
    F. nucleatum LEEIINERKNLKD
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-139 A. naeslundii AVAGAAVGALLGNDARSTAVGAAIGG 147
    S. gordonii ALGAGAGELTKNK
    S. mitis
    S. mutans
    S. oralis
    1T-140 A. naeslundii IKGTIAFVGEDYVEIRVDKGVKLTFRKS 148
    F. nucleatum AIANVINNNQQ
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-141 F. nucleatum KKFIILLFILVQGLIFSATKTLSDIIAL 149
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. sanguinis
    1T-142 A. naeslundii FTQGIKRIVLKRLKED 150
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-143 A. naeslundii MPKRHYYKLEAKALQFGLPFAYSPIQL 151
    F. nucleatum LK
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-144 A. naeslundii IIELHPKSWTQDWRCSFL 152
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-145 S. mitts VEAGKRNISLENIEKISKGLGISISELFKY 153
    S. mutans IEEGEDKIG
    S. oralis
    1T-146 A. naeslundii RNSADNQTKIDKIRIDISLWDEHLNIVK 154
    F. nucleatum QGK
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-147 A. naeslundii GVENRRFYERDVSKVSMNITSEAVAPR 155
    F. nucleatum GGSK
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-148 A. naeslundii IVELDDTTILERALSMLGEANA 156
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-149 A. naeslundii SVRAVKPIDETVARHFPGDFIVN 157
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-150 A. naeslundii YINRRLKKAFSDADIKEAPAEFYEELRR 158
    F. nucleatum VQYV
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-151 A. naeslundii SVRAVKPIDEIVAWHFPGDFIVN 159
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-152 A. naeslundii YVSADESAYNHIVTDDIPLADRRIEAVQ 160
    F. nucleatum Q
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-153 A. naeslundii YIACPGYFY 161
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-154 P. gingivalis YFSFLEIVGMARR 162
    1T-155 A. naeslundii LKLAFGVYPFQANISQSDTAVSERNVL 163
    F. nucleatum WR
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-156 A. naeslundii GRFQISIRGEEKSKVKVQGKGTFTDRNT 164
    F. nucleatum T
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-157 A. naeslundii RRFRKTTENREKSKNKKAVLGLSTTST 165
    F. nucleatum ASY
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-158 A. naeslundii WENKPSPLGSIKKLQGLVYRLIGYRHF 166
    F. nucleatum WV
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-159 P. gingivalis IFSLHHFALICSEMGTFAVSKRAKYKWE 167
    VL
    1T-160 A. naeslundii AQYKYINKLLN 168
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-161 A. naeslundii NKVLQVEVMWDGSVVGRPAGVISIKSS 169
    F. nucleatum KKG
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-162 A. naeslundii QKAKEESDRKAAVSYNGFHRVNVVSIP 170
    F. nucleatum K
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-163 A. naeslundii MENILIYIPMVLSPFGSGILLFLGKDRRY 171
    F. nucleatum ML
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-164 A. naeslundii KKSHSQGKRKLKDLNSAYKIDNQLHYA 172
    F. nucleatum LR
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-165 A. naeslundii CYDSFDFSIFVTFANRMKLSVGS 173
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. Mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-166 A. naeslundii AQSAGQIKRKSKVRIHV 174
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-167 A. naeslundii SRMSEHSPAGLVFEVGPMDKGSFIILDS 175
    F. nucleatum YHPTVKK
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-168 A. naeslundii ELHRIMSTEKIGAVTKMNFDTAPIMSILP 176
    F. nucleatum IDIYPKEVGIGS
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-169 A. naeslundii FARVRRLHQNRILTQPLTNLKYCLRQPI 177
    F. nucleatum YSD
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-170 P. gingivalis AYGKVFSMDIMLSENDKLIVLRISHESA 178
    WH
    1T-171 A. naeslundii SVRAVKPIDKTVARHFPGDFIVN 179
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-172 A. naeslundii FEGLKNLLGDDII 180
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-173 A. naeslundii LFRKEDQEHVLL 181
    F. nucleatum
    P. gingivalis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-174 A. naeslundii SGGSDTDGSSSGEPGSHSGDL 182
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-175 A. naeslundii GEPGSHSGDL 183
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-176 A. naeslundii PVGDIMSGFLRGANQPRFLLDHISFGS 184
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-177 P. gingivalis GTNVPTQILGYSREERFDYEPAPEQR 185
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-178 A. naeslundii LLASHPERLSLGVFFVYRVLHLLLENT 186
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-179 A. naeslundii TCYPLIQRKTDRAYEA 187
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-180 A. naeslundii VVFGGGDRLV 188
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-181 A. naeslundii YGKESDP 189
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-182 A. naeslundii LTASICRQWNDNSTPYQR 190
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-183 A. naeslundii PLRSFVAEKAEHAFRVVRIADFDFGHS 191
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-184 A. naeslundii ALLVLNLLLMQFFFGKNIVI 192
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-185 A. naeslundii HYHFLLEFGFHKGDYLE 193
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-188 S. sanguinis HRKDVYKK 194
    1T-190 A. naeslundii IQIIVNAFVEKDKTGAVIEVLYASNNHE 195
    F. nucleatum KVKAKYEELVAIS
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-192 S. sanguinis ILVLLALQVELDSKFQY 196
    1T-193 S. sanguinis LMIFDKHANLKYKYGNRSFGVEAIM 197
    1T-195 S. mutans AASGFTYCASNGVWHPY 198
    1T-196 F. nucleatum KPEKEKLDTNTLMKVVNKALSLFDRLL 199
    S. sanguinis IKFGA
    1T-197 A. naeslundii TEILNFLITVCADRENWKIKHGLSDSVL 200
    F. nucleatum LIFFARFTGAEYW
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-198 P. gingivalis MPVSKKRYMLSSAYATALGICYGQVAT 201
    S. epidermidis DEKESEITAIPDLLDYLSVEEYLL
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. sanguinis
    1T-199 S. sanguinis RAGRIKKLSQKEAEPFEN 202
    1T-200 A. naeslundii MRFKRFDRDYALSGDNVFEVLTASCDV 203
    F. nucleatum IERNLSYREMCGLMQ
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-201 S. sanguinis KRKHENVIVAEEMRVIKN 204
    1T-202 A. naeslundii LCRLEKLCKQFLRQDKVVTYYLMLPYK 205
    F. nucleatum RAIEAFYQELKERS
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-203 A. naeslundii YPFCLATVDHLPEGLSVTDYERVQRLV 206
    F. nucleatum SQFLLNKEER
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. Mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-207 F. nucleatum SPLEKYGTGSMTALTFLLGCCLLVLSKK 207
    S. sanguinis SR
    1T-208 Unanalyzed KRKRWAILTLFLAGLGAVGIVLATF 208
    1T-215 S. sanguinis VCFKDISVFLSPFRGQEVLFCGKAKHSL 209
    IYVIGT
    1T-216 S. sanguinis FFLNVIAIRIPHF 210
    1T-217 F. nucleatum MLSNVLSRSVVSPNVDIPNSMVILSPLLI 211
    S. sanguinis SISNYH
    1T-218 F. nucleatum KLIFAALGLVFLLIGLRDSRSK 212
    S. sanguinis
    1T-219 S. sanguinis RNINVSATFITEKSLV 213
    1T-221 A. naeslundii DIGRIIGKKGRTITAIRSIVYSVPTQGKK 214
    F. nucleatum VRLVIDEK
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-222 F. nucleatum RIEASLISAIMFSMFNAIVKFLQK 215
    S. sanguinis
    1T-223 A. naeslundii NQKMEINSMTSEKEKMLAGHFHNEAN 216
    F. nucleatum FAVIFKYSLFYNFF
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-225 A. naeslundii RRSLGNSASFAEWIEYIRYLHYIIRVQFI 217
    F. nucleatum HFFSKNKKI
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. Mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-226 A. naeslundii KLQEKQIDRNFERVSGYSTYRAVQAAK 218
    F. nucleatum AKEKGFISLEN
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-228 A. naeslundii IFKLFEEHLLYLLDAFYYSKIFRRLKQGL 219
    F. nucleatum YRRKEQPYTQDLFRIVI
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-230 A. naeslundii EFLEKFKVLKQPRKANNISKNRVAMIFL 220
    F. nucleatum TIHKSRGFLSSPY
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-233 A. naeslundii TDQELEHLIVTELESKRLDFTYSKDITEF 221
    P. gingivalis FDEAFPEYDQNY
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-234 A. naeslundii DNFYLILKMEERGKSKKTSQTRGFRAFF 222
    F. nucleatum DIIRKKIKKEDGK
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-237 S. sanguinis EDPVPNHFTLRRNKKEKPSKS 223
    1T-238 A. naeslundii IFNRRKFFQYFGLSKEAMVEHIQPFILDI 224
    F. nucleatum WQIHLF
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-239 A. naeslundii ADDLLNKRLTDLIMENAETVKTIDLDN 225
    S. gordonii SD
    S. mitis
    S. mutans
    S. oralis
    S. sanguinis
    1T-240 A. naeslundii VILGNGISNIAQTLGQLPNIAWVWIYMV 226
    F. nucleatum LIAALLEESNVC
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-242 F. nucleatum KQVQNTTLIICGTVLLGILFKSYLKSQKS 227
    S. sanguinis V
    1T-243 A. naeslundii SENIARFAAAFENEQVVSYARWFRRSW 228
    P. gingivalis RGSGSSSRF
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-248 S. sanguinis IGGALNSCG 229
    1T-249 F. nucleatum VFSVLKHTTWPTRKQSWHDFISILEYSA 230
    S. sanguinis FFALVIFIFDKLLTLGLAELLKRF
    1T-250 S. mitis LVQGDTILIENHVGTPVKDDGKDCLIIR 231
    S. mutans EADVLAVVND
    S. oralis
    1T-252 F. nucleatum MKKNLKRFYALVLGFIIGCLFVSILIFIG 232
    S. sanguinis Y
    1T-253 A. naeslundii KTKESLTQQEKKFLKDYDRKSLHHFRD 233
    F. nucleatum ILTYCFILDKLTNK
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-256 S. sanguinis KGKSLMPLLKQINQWGKLYL 234
    1T-257 A. naeslundii IILAKAADLAEIERIISEDPFKINEIANYDI 235
    F. nucleatum IEFCPTKSSKAFEKVLK
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-258 A. naeslundii TINIDDKVLDYLKKINSKAITIDLIGCAS 236
    F. nucleatum
    P. gingivalis
    T. denticola
    S. mitis
    S. mutans
    S. oralis
    1T-259 F. nucleatum EKLKKILLKLAVCGKAWYTL 237
    P. gingivalis
    T. denticola
    S. mitis
    S. mutans
    S. oralis
    S. sanguinis
    1T-260 A. naeslundii NILYFIHDENQWEPQKAEIFRGSIKHCA 238
    P. gingivalis WLSS
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. sanguinis
    1T-261 F. nucleatum SFEKNKIENNLKIAQAYIYIKPKPRICQA 239
    S. mutans
    S. oralis
    S. sanguinis
    1T-262 A. naeslundii LSLPLIVLTKSI 240
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-263 A. naeslundii FIAVSFTGNPATFKLVIGCKADN 241
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. oralis
    S. salivarius
    S. sanguinis
    1T-264 S. sanguinis LEGKFYMAEDFDKTPECFKDYV 242
    1T-265 A. naeslundii GMFENLLMINFQIMNDLKIEIVVKDRIC 243
    F. nucleatum AV
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-266 S. sanguinis RAGTWLVVDEIR 244
    1T-267 A. naeslundii RIKEERKNRSYKFFIWRLFDEKTGFI 245
    F. nucleatum
    P. gingivalis
    T. denticola
    S. mitis
    S. mutans
    S. oralis
    S. sanguinis
    1T-268 F. nucleatum PITPKKEKCGLGTYAPKNPVFSKSRV 246
    S. mutans
    S. oralis
    S. sanguinis
    1T-269 F. nucleatum PLYVAAVEKINTAKKH 247
    S. mutans
    S. oralis
    S. sanguinis
    1T-270 F. nucleatum VHEFDIQKILQNR 248
    S. mutans
    S. oralis
    S. sanguinis
    1T-271 A. naeslundii FLIQKFLLIKTFPPYRKKYVVIVSQTGTA 249
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-272 F. nucleatum QLAPIDKQLKAVKKIAFYESESTAAKAV 250
    S. mutans TVA
    S. oralis
    S. sanguinis
    1T-273 F. nucleatum YNEPNYKWLESYKIYKQRCEDRTGMY 251
    P. gingivalis YTEET
    T. denticola
    S. mitis
    S. mutans
    S. oralis
    1T-274 F. nucleatum ETTTEINAIKLHRIKQRSPQGTRRVN 252
    S. mutans
    S. oralis
    S. sanguinis
    1T-275 A. naeslundii QVLKNFSISRRYKINNPFFKILLFIQLRTL 253
    F. nucleatum
    P. gingivalis
    T. denticola
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-276 A. naeslundii ILTLLILGSIGFFILKIKLKLGRF 254
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. sanguinis
    1T-277 A. naeslundii IYYMRFVNKPLEKTFFKI 255
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-278 A. naeslundii SINSSAGIQPHCLSSSFVLRTKHCFY 256
    F. nucleatum
    P. gingivalis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-279 A. naeslundii FVLRTKHCFY 257
    F. nucleatum
    P. gingivalis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-280 A. naeslundii TNNKNKVIIKAIKFKNKDFINLDLFIYRR 258
    F. nucleatum
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-281 A. naeslundii KYEKLTKENLFIRNSGNMCVFIYFLFFG 259
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-282 F. nucleatum ISLVFPAYT 260
    P. gingivalis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-283 A. naeslundii LCTKLEDKQRGRIPAELFIISPIKILERND 261
    F. nucleatum AL
    P. gingivalis
    T. denticola
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-284 A. naeslundii FQYYFSLKRV 262
    F. nucleatum
    P. gingivalis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-285 A. naeslundii FFPYYLADFYKQLKFLNEYQTKNKDKV 263
    F. nucleatum VEFK
    P. gingivalis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-286 S. sanguinis LGFFNNKADLVKADTERDNRIVISSLKIK 264
    DL
    1T-287 P. gingivalis KGYPLPFQYRLNNH 265
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-288 F. nucleatum RWVGGEPSADIYLSAKDTKT 266
    S. gordonii
    S. salivarius
    S. sanguinis
    1T-289 F. nucleatum EPSADIYLSAKDTKT 267
    P. gingivalis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. sanguinis
    1T-290 A. naeslundii IINQLNLILLRLMEILIL 268
    F. nucleatum
    P. gingivalis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-291 A. naeslundii DMKIIKLYIKILSFLFIKYCNKKLNSVKL 269
    F. nucleatum KA
    P. gingivalis
    T. denticola
    S. mitis
    S. mutans
    S. oralis
    1T-292 A. naeslundii IINQLNLILLRLMEILIL 270
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-293 A. naeslundii HVEDCFLLSNARTTAIHGRANPARGEPR 271
    F. nucleatum TRSE
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarious
    S. sanguinis
    1T-294 T. denticola YDKIADGVFKIGKRGVL 272
    1T-295 S. mitis KYKLKKIIL 273
    S. salivarious
    S. sanguinis
    1T-296 A. naeslundii EYSQQSFKAKPCSERGVLSP 274
    F. nucleatum
    P. gingivalis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-297 A. naeslundii RSLRLNNALTKLPKLWYNRIKEAFYAY 275
    F. nucleatum NDYDK
    T. denticola
    S. mitis
    S. mutans
    S. oralis
    1T-298 A. naeslundii ILNKKPKLPLWKLGKNYFRRFYVLPTFL 276
    F. nucleatum A
    P. gingivalis
    T. denticola
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-299 A. naeslundii SMLTSFLRSKNTRSLKMYKDVHF 277
    F. nucleatum
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-300 A. naeslundii PLIISKAQIKMSGDILGSCFKLFYLRPFF 278
    F. nucleatum
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-301 F. nucleatum SKLPRVLDASLKL 279
    S. gordonii
    S. sanguinis
    1T-302 A. naeslundii IIIILPKIYLVCKTV 280
    P. gingivalis
    S. epidermidis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-303 A. naeslundii LDYENMDCKKRIRI 281
    F. nucleatum
    P. gingivalis
    S. gordonii
    S. mitis
    S. mutans
    S. oralis
    S. salivarius
    S. sanguinis
    1T-304 P. gingivalis STAGEASRRTASEASRRTAAKLRG 282
    TT-305 F. nucleatum ARNALNMRDVPVDAAIIGIIDGMDEE 283
    TT-306 F. nucleatum KILNEAEGKLLKVIEKNGEIDIEEI 284
    TT-307 F. nucleatum NGDKKAKEELDKWDEVIKELNIQF 285
    TT-308 F. nucleatum GLVIIPNLIALIILFSQVRQQTKDYFSNPK 286
    LSSR
    TT-309 F. nucleatum EPLPLTKYDKKDTEMKKVFKEILAGKV 287
    GYEKEEE
    TT-310 F. nucleatum TKLKKNNKLLSAKKENTLHTKDK 288
    TT-311 S. mutans AIFDAMHNL 289
    S. sobrinus
    PVCFBP P. fluorescens DLys-Dorn-Gly-DThr-Thr-Gln-Gly-DSer- 290
    2461 cDOrn
    CHA0 P. fluorescens Asp-DOrn-Lys-c(Thr-Ala-Ala-DOrn-Lys) 291
    CFBP2461 P. putida Asp-Lys-DAsp-Ser-DThr-DAla-Thr-DLys- 292
    cOrn
    NCPPB2192 P. tolaasii DSer-Lys-Ser-DSer-Thr-DSer-Orn-Thr- 293
    DSer-cDOrn
    PyC-E P. aeruginosa DSer-Arg-DSer-Orn-c(Lys-Orn-Thr-Thr) 294
    PyR P. aeruginosa DSer-Dab-Orn-DGln-Gln-DOrn-G1y 295
    PyPa TII P. aeruginosa DSer-DOrn-Orn-Gly-DThr-Ser-cOrn 296
    Py Pap P. aptata DAla-Lys-Thr-DSer-Orm-cOrn 297
    Py Pau P. aureofaciens DSer-DOrn-Gly-DThr-Thr-Gln-Gly-DSer- 298
    cDOrn
    Ps P. fluorescens Lys-DAsp-Ala-DThr-Ala-cDOrn 299
    Py I-III P. fluorescens Asn-DOrn-Lys-c(Thr-DAla-DAla-DOrn- 300
    Lys)
    Py Gm P. fluorescens DAla-Lys-Gly-Gly-Asp-DGln-DSer-Ala- 301
    DAla-DAla-Ala-cOrn
    Py Pf 12 P. fluorescens DSer-Lys-Gly-Orn-DSer-Ser-Gly-c(Lys- 302
    DOrn-Glu-Ser)
    Py Pf P. fluorescens c(DSer-Dab)-Gly-Ser-Asp-Ala-Gly-DAla- 303
    2798 Gly-cOrn
    Py Pf P. fluorescens Ser-Lys-Gly-Orn-c(Lys-DOrn-Ser) 304
    13525
    Py Pf P. fluorescens DAla-DLys-Gly-Gly-Asp-DGln-Dab-Ser- 305
    17400 DAla-cOrn
    Py 51W P. fluorescens DAla-DLys-G1y-Gly-DAsp-DGln-DSer-Ala- 306
    Gly-DThr-cOrn
    Py 9AW P. fluorescens DSer-Lys-His-DThr-Ser-cOrn 307
    Ps A225 P. fluorescens DSer-DAla-DOrn-Gly-c(DSer-DAsp-DSer- 308
    DThr)
    Py Pf 1.3 P. fluorescens DAla-DLys-Gly-Gly-Asp-c(DGln-Dab)-Gly- 309
    Ser-cOrn
    Py Pf P. fluorescens DSer-Lys-Gly-Orn-Ser-DSer-Gly-c(Lys- 310
    18.1 DOrn-Ser)
    Py Pf P. fluorescens DSer-DOrn-Ala-Gly-DThr-Ala-cOrn 311
    PL7
    Py Pf P. fluorescens DLys-DOrn-Ala-Gly-DThr-Ser-cOrn 312
    PL8
    Py Pf P. fluorescens DSer-DSer-Orn-DSer-DSer-c(DSer-Orn- 313
    BTP7 Lys-Lys)
    Ps 589A P. putida Asp-Lys-Asp-DSer-Thr-DAla-DGlu-DSer- 314
    cOrn
    Py Pp
     1,2 P. putida Ser-Thr-DSer-Orn-Asp-DGln-Dab-Ser- 315
    DThr-cOrn
    Py Pp P. putida Asp-DOrn-DDab-Thr-Gly-DSer-Ser-Asp- 316
    C2,3 Thr
    Py G4R P. putida Asp-Orn-DAsp-Dab-Gly-Ser-cOrn 317
    Py P. putida Asp-DOrn-DDab-Thr-Gly-DSer-DSer-Thr- 318
    PpBTP16 Asp
    Py P. puida DSer-DAla-DOrn-Gly-DAla-DAsp-c(DSer- 319
    Pp39167 DThr)
    iPy Pp P. putida Asp-Ala-Asp-DOrn-Ser-cOrn 320
    BTP1
    Py P. tolaasii DSer-Lys-Ser-DSer-Thr-DSer-Orn-Thr- 321
    PT2192 DSer-Orn
    Ps 7SR1 Pseudomonas spp. DSer-DAsp-DThr-c(DSer-D-Orn-Ala-Gly- 322
    DSer)
    Ps A214 Pseudomonas spp. DSer-DAla-Gly-DSer-DAla-DAsp-DThr- 323
    DOrn
    Azoverdin Pseudomonas spp. Hse-DHse-Dab-DOrn-DSer-Orn 324
    A.macrocytogenes
    PF-S024 Corynebacteria SKRGRKRKDRRKKKANHGKRPNS 325
    spp.
    PF-001 S. epidermidis MNNWIIVAQLSVTVINEIIDIMKEKQKG 326
    M. luteus GK
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    E. faecalis
    C. jeikeium
    PF-002 S. epidermidis NDDAQ 327
    P. mirabilis
    C. albicans
    C. jeikeium
    C. jejuni
    PF-003 S. epidermidis MNNWIKVAQISVTVINEVIDIMKEKQN 328
    M. luteus GGK
    P. mirabilis
    C. albicans
    MRSA
    C. jeikeium
    PF-004 S. epidermidis ARLSKAIIIAVIVVYHLDVRGLF 329
    B. subtilis
    B. fragilis
    E. coli
    P. aeruginosa
    C. albicans
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-005 S. epidermidis MESIFKIKLMNGICRSENMNMKKKNKG 330
    E. coli EKI
    MRSA
    S. pneumoniae
    E. faecalis
    PF-006 S. epidermidis MGIIAGIIKFIKGLIEKFTGK 331
    M. luteus
    E. coli
    P. aeruginosa
    MRSA
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-007 S. epidermidis MGIIAGIIKVIKSLIEQFTGK 332
    M. luteus
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-008 S. epidermidis MIEIGSIAYLNGGSKKYNHILNQENR 333
    M. luteus
    MRSA
    C. jejuni
    PF-009 M. luteus SKKYNHILNQENR 334
    P. mirabilis
    C. albicans
    PF-010 S. epidermidis MDIDVNKLLQAFVYFKSFEKLRHNNS 335
    M. luteus
    E. coli
    C. albicans
    PF-011 M. luteus MFCYYKQHKGDNFSIEEVKNIIADNEM 336
    E. coli KVN
    P. aeruginosa
    S. pneumoniae
    C. jeikeium
    PF-012 S. epidermidis WRGPNTEAGGKSANNIVQVGGAPT 337
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    MRSA
    S. pneumoniae
    C. jeikeium
    C. jejuni
    PF-013 M. luteus LIQKGLNQTFIVVIRLNNFIKKS 338
    P. mirabilis
    E. coli
    P. aeruginosa
    MRSA
    S. pneumoniae
    C. jeikeium
    C. jejuni
    PF-014 E. coli HPTDNKHN 339
    C. jeikeium
    PF-015 E. faecalis SIDKRNLYNLKYYE 340
    C. jeikeium
    PF-016 S. epidermidis RKQYDDLSFNFLY 341
    E. faecalis
    C. jeikeium
    PF-017 E. coli ESIIE 342
    PF-018 E. coli YYKTYFKEV 343
    C. jeikeium
    PF-020 S. epidermidis MKIILLLFLIFGFIVVVTLKSEHQLTLFSI 344
    M. luteus
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-021 S. epidermidis FSLNFSKQKYVTVN 345
    M. luteus
    P. mirabilis
    E. coli
    C. albicans
    E. faecalis
    C. jeikeium
    PF-022 M. luteus MINELKNKNSGIMNNYVVTKESKL 346
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-023 M. luteus MTKNTIISLENEKTQINDSENESSDLRKA 347
    C. jeikeium K
    PF-024 M. luteus DLRKAK 348
    C. albicans
    MRSA
    E. faecalis
    C. jeikeium
    PF-025 S. epidermidis LLIIFRLWLELKWKNKK 349
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    MRSA
    E. faecalis
    C. jejuni
    PF-026 S. epidermidis SIHFIN 350
    M. luteus
    P. mirabilis
    C. albicans
    MRSA
    E. faecalis
    C. jeikeium
    PF-027 M. luteus HNARKYLEFISQKIDGDKLTKEDSL 351
    MRSA
    E. faecalis
    C. jejuni
    PF-028 S. epidermidis ALDCSEQSVILWYETILDKIVGVIK 352
    M. luteus
    MRSA
    PF-029 S. epidermidis NSTNE 353
    M. luteus
    C. albicans
    C. jejuni
    PF-030 S. epidermidis MTCHQAPTTTHQSNMA 354
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-031 M. luteus MPHHSTTSSRIVVPAHQSNMASTPNLSI 355
    C. albicans TP
    PF-033 S. epidermidis MFIFKTTSKSHFHNNVKSLECIKIPINKN 356
    M. luteus R
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    PF-034 M. luteus EPKKKHFPKMESASSEP 357
    PF-035 S. epidermidis SFYESY 358
    M. luteus
    E. coli
    C. albicans
    MRSA
    C. jeikeium
    C. jejuni
    PF-036 S. epidermidis ILNRLSRIVSNEVTSLIYSLK 359
    M. luteus
    P. mirabilis
    E. coli
    C. albicans
    MRSA
    S. pneumoniae
    C. jejuni
    PF-037 S. epidermidis MTKKRRYDTTEFGLAHSMTAKITLHQA 360
    M. luteus LYK
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-038 M. luteus MAYKDEGKETKFAVKGYKD 361
    PF-039 P. mirabilis MLEEKNKSL 362
    C. jeikeium
    PF-040 S. epidermidis MIHLTKQNTMEALHFIKQFYDMFFILNF 363
    M. luteus NV
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-041 MRSA ELLVILPGFI 364
    PF-042 S. epidermidis LLLSYFRYTGALLQSLF 365
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-043 M. luteus MIKNETAYQMNELLVIRSAYAK 366
    C. jejuni
    PF-044 S. epidermidis KLKKYIHKPD 367
    M. luteus
    MRSA
    C. jeikeium
    PF-045 S. epidermidis LDINDYRSTY 368
    E. coli
    E. faecalis
    C. jejuni
    PF-046 E. coli LDFYLTKHLTLML 369
    E. faecalis
    C. jeikeium
    PF-047 S. mutans NQEPSLQQDKEQKDNKG 370
    PF-048 S. epidermidis LYFAFKKYQERVNQAPNIEY 371
    M. luteus
    E. coli
    MRSA
    C. jeikeium
    C. jejuni
    PF-049 S. epidermidis AYYLKRREEKGK 372
    MRSA
    C. jeikeium
    C. jejuni
    PF-050 S. epidermidis SYYLKRREEKGK 373
    M. luteus
    E. coli
    C. jeikeium
    PF-051 S. epidermidis RFFNFEIKKSTKVDYVFAHVDLSDV 374
    M. luteus
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-052 S. epidermidis QELINEAVNLLVKSK 375
    M. luteus
    E. coli
    MRSA
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-053 S. epidermidis KLFGQWGPELGSIYILPALIGSIILIAIVTL 376
    M. luteus ILRAMRK
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-054 S. epidermidis VSISRFIGGGHVFNGNNKRNL 377
    E. coli
    PF-055 S. mutans GHVFNGNNKRNL 378
    PF-056 S. epidermidis AEQLFGKQKQRGVDLFLNRLTIILSILFF 379
    M. luteus VLMICISYLGM
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-057 S. epidermidis TMIVISIPRFEEYMKARHKKWM 380
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-058 S. epidermidis FADQSQDNA 381
    M. luteus
    E. coli
    C. albicans
    MRSA
    C. jeikeium
    C. jejuni
    PF-060 E. coli HSSHL 382
    C. albicans
    C. jeikeium
    PF-061 S. epidermidis GYNSYKAVQDVKTHSEEQRVTAKK 383
    S. pneumoniae
    PF-062 S. epidermidis MKKKRINNDILGRMIYSSSIDKRNLYNL 384
    M. luteus KYYE
    E. coli
    P. aeruginosa
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-063 S. epidermidis IAAIIVLVLFQKGLLQIFNWILIQLQ 385
    M. luteus
    E. coli
    P. aeruginosa
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-064 E. coli DYYGKE 386
    PF-065 M. luteus LEKNTRDNYFIHAIDRIYINTSKGLFPES 387
    E. coli ELVAWG
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    C. jeikeium
    C. jejuni
    PF-066 M. luteus IKGTVKAVDETTVVITVNGHGTELTFEK 388
    E. coli PAIKQVDPS
    C. jeikeium
    PF-067 S. epidermidis DLIVKVHICFVVKTASGYCYLNKREAQ 389
    M. luteus AAI
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-068 S. epidermidis SHLINNFGLSVINPSTPICLNFSPVFNLLT 390
    M. luteus VYGITCN
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-069 E. faecalis FDPVPLKKDKSASKHSHKHNH 391
    C. jejuni
    PF-070 S. epidermidis SMVKSEIVDLLNGEDNDD 392
    C. jejuni
    PF-071 S. epidermidis HCVIGNVVDIANLLKRRAVYRDIADVIK 393
    E. coli MR
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-073 S. epidermidis CPSVTMDACALLQKFDFCNNISHFRHFF 394
    M. luteus AIKQPIER
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-074 S. epidermidis RDIHPIYFMTKD 395
    M. luteus
    MRSA
    PF-075 M. luteus FVNSLIMKDLSDNDMRFKYEYYNREKD 396
    E. coli T
    P. aeruginosa
    MRSA
    C. jeikeium
    PF-076 S. epidermidis LYQYELLSKEEYLKCTLIINQRRNEQK 397
    M. luteus
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-097 C. jeikeium QPTQGEQGTRPRRPTPMRGLLI 398
    PF-099 S. epidermidis EIIAYLEGRFANA 399
    M. luteus
    E. coli
    C. jeikeium
    PF-101 S. mutans DPVPERQEQACACHRTAKPGK 400
    PF-104 MRSA ERTAVNDLWI 401
    C. jeikeium
    PF-123 M. luteus TTRPQVAEDRQLDDALKETFPASDPISP 402
    E. coli
    PF-124 S. epidermidis MADGQIAAIAKLHGVPVATRNIRHFQSF 403
    M. luteus GVELINPWSG
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    E. faecalis
    C. jejuni
    PF-125 S. epidermidis YVVGALVILAVAGLIYSMLRKA 404
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jejuni
    PF-126 S. epidermidis FSPEAFGIGAAGVLGSFVTGLLIGWVAS 405
    M. luteus LLRKAK
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-127 S. epidermidis MLRYLSLFAVGLATGYAWGWIDGLAA 406
    M. luteus SLAV
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-128 M. luteus GIKVVAARFEEIQFSENFDSIILA 407
    P. aeruginosa
    E. faecalis
    PF-129 S. epidermidis MKLLARDPWVCAWNDIW 408
    MRSA
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-130 E. faecalis LQRSDEESMPRRHEKYS 409
    C. jeikeium
    C. jejuni
    PF-131 S. epidermidis RRAAARTKGNRR 410
    E. coli
    MRSA
    C. jeikeium
    PF-132 S. epidermidis RPGDGAAEQGRSR 411
    C. jeikeium
    PF-133 S. epidermidis GDPTAGQKPVECP 412
    C. jeikeium
    C. jejuni
    M. smegmatis
    PF-134 S. epidermidis GKANIKRQDCSAL 413
    C. jeikeium
    PF-135 S. epidermidis PPARPARIPQTPTLHGASLFRQRS 414
    M. luteus
    E. coli
    P. aeruginosa
    MRSA
    C. jeikeium
    M. smegmatis
    PF-136 S. epidermidis LRGRVGRITACGYPP 415
    M. luteus
    P. mirabilis
    E. coli
    MRSA
    E. faecalis
    C. jeikeium
    C. jejuni
    M. smegmatis
    PF-137 S. epidermidis VLGKGHDLLDVGKTALKSRVFAWLGG 416
    P. mirabilis S
    S. pneumoniae
    C. jeikeium
    C. jejuni
    PF-138 S. epidermidis AVHHSLLFR 417
    M. luteus
    P. mirabilis
    E. coli
    C. albicans
    MRSA
    C. jeikeium
    C. jejuni
    PF-139 S. epidermidis ALSKPAIQARTLCRRQDPP 418
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-140 S. epidermidis FHRRVIRASEWALTTRSFSTPLRSAAR 419
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    M. smegmatis
    PF-141 S. epidermidis VVRRFQGM 420
    M. luteus
    C. albicans
    MRSA
    C. jeikeium
    PF-142 S. mutans GIDRGCQAAR 421
    PF-143 S. epidermidis LSPRPIIVSRRSRADNNNDWSR 422
    MRSA
    C. jeikeium
    PF-144 S. epidermidis RSGQPVGRPSRRAWLR 423
    M. luteus
    E. coli
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-145 S. epidermidis GIVLTGRAGLVSGACSMALGVGLG 424
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    M. smegmatis
    PF-146 S. epidermidis GCGKRRIITKSASRDTR 425
    M. luteus
    P. aeruginosa
    C. albicans
    MRSA
    C. jeikeium
    PF-147 S. epidermidis RRPRRRRSGHGQSASAA 426
    M. luteus
    MRSA
    PF-148 S. epidermidis RRGCTERLRRMARRNAWDLYAEHFY 427
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    M. smegmatis
    PF-149 S. epidermidis GKVSVLTRVPRSLGGAPANQ 428
    M. luteus
    E. coli
    MRSA
    C. jeikeium
    PF-150 S. epidermidis EIQAKGTG 429
    MRSA
    PF-151 S. epidermidis EEYPARVPLSGEDVTEARRH 430
    MRSA
    E. faecalis
    C. jeikeium
    PF-152 S. epidermidis VGYFIWKDSHSRKG 431
    C. albicans
    MRSA
    E. faecalis
    C. jeikeium
    PF-153 M. luteus GILARADCSQIA 432
    P. mirabilis
    E. coli
    MRSA
    PF-154 S. mutans GIKKSKHPSTDDYVVKTTIDSL 433
    PF-155 C. jeikeium GRYGDDSKERQGRAQ 434
    PF-156 S. epidermidis LITAEQPATAPIAGK 435
    C. jeikeium
    PF-157 S. epidermidis HTAVVWLAGVSGCVALSHCEPA 436
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-158 S. epidermidis VRLESRPADLPE 437
    PF-159 S. epidermidis TMAFVEKAQLRVPVGDDLPV 438
    PF-160 S. epidermidis SFHASLTKNEKPIKSTG 439
    PF-161 S. epidermidis RGRALASTATTRPARRRR 440
    M. luteus
    E. coli
    C. jejuni
    PF-162 S. epidermidis GIRRLHSVENLNREISHRMAGLR 441
    MRSA
    PF-163 S. epidermidis TSWLRAAERQEIGEPTKTFGEKTTSL 442
    PF-164 S. epidermidis EEVSRALAGIGLGLGCRIG 443
    M. luteus
    E. coli
    C. jeikeium
    PF-165 MRSA GPVSVVASLRRGTTVQRHSQNNHNKG 444
    C. jejuni KP
    PF-166 E. coli SKAVSRKRSI 445
    C. jeikeium
    PF-167 S. epidermidis AIEGVIKKGACFKLLRHEMF 446
    E. coli
    C. albicans
    MRSA
    C. jeikeium
    C. jejuni
    PF-168 S. epidermidis VLPFPAIPLSRRRACVAAPRPRSRQRAS 447
    M. luteus
    E. coli
    C. albicans
    MRSA
    C. jeikeium
    C. jejuni
    PF-169 S. epidermidis APGSAADSPRSRADD 448
    E. coli
    C. albicans
    E. faecalis
    C. jeikeium
    PF-170 S. epidermidis RLARGRPTNLCGRRG 449
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jejuni
    PF-171 S. epidermidis TQVTLCRTW 450
    E. coli
    P. aeruginosa
    S. pneumoniae
    PF-172 S. epidermidis LTGVRRPWRAPWAGTSGWALR 451
    M. luteus
    E. coli
    P. aeruginosa
    MRSA
    E. faecalis
    C. jejuni
    PF-173 S. epidermidis AGRTAIVQGGG 452
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    C. jeikeium
    C. jejuni
    PF-174 S. epidermidis RGGDSPARRRPGLAGPGGPG 453
    P. aeruginosa
    C. jeikeium
    PF-175 S. epidermidis RRRPAGQRPEKASQAMIAA 454
    E. faecalis
    PF-176 S. epidermidis RLTSNQFLTRITPFVFAQH 455
    M. luteus
    P. mirabilis
    E. coli
    C. albicans
    MRSA
    E. faecalis
    C. jeikeium
    PF-177 M. luteus VTSEPGIAHDIRLLPRAAAFR 456
    MRSA
    E. faecalis
    C. jeikeium
    PF-178 S. epidermidis EVYSSPTNNVAITVQNN 457
    M. luteus
    B. subtilis
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-180 S. epidermidis SGLGDLGFSSEAK 458
    M. luteus
    P. aeruginosa
    C. albicans
    MRSA
    E. faecalis
    C. jejuni
    M. smegmatis
    PF-181 S. epidermidis GIAPRRNEWGAVGGR 459
    M. luteus
    E. coli
    MRSA
    E. faecalis
    C. jeikeium
    PF-182 S. epidermidis LPATRDKTRVPASVAGAP 460
    M. luteus
    E. coli
    E. faecalis
    C. jeikeium
    PF-183 S. epidermidis KPGISVENRQ 461
    M. luteus
    E. coli
    C. albicans
    MRSA
    E. faecalis
    C. jeikeium
    PF-184 S. epidermidis LIADRHIRA 462
    M. luteus
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    C. jeikeium
    PF-185 E. coli RPAQARQGPGGLIADRHIRA 463
    P. aeruginosa
    PF-186 S. epidermidis DADKNLSLERDRFAWRVAAP 464
    M. luteus
    E. coli
    P. aeruginosa
    MRSA
    C. jeikeium
    PF-187 S. epidermidis EIQKIAKGVSGQVYGPSRQITISKKR 465
    M. luteus
    E. coli
    MRSA
    PF-188 S. epidermidis ARTFAGRLGTRYFGGLMRSTKA 466
    M. luteus
    E. coli
    C. albicans
    MRSA
    E. faecalis
    PF-189 S. epidermidis GNLTRSREAARATQ 467
    M. luteus
    C. albicans
    MRSA
    E. faecalis
    C. jejuni
    PF-190 S. epidermidis HFILRKPLLFMIHSLKTGPLDRF 468
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-191 E. coli QFCNFAWLFLASNNAQVSALA 469
    P. aeruginosa
    C. jejuni
    PF-192 S. epidermidis VEEDEAPPPHY 470
    M. luteus
    P. aeruginosa
    C. albicans
    E. faecalis
    C. jeikeium
    PF-193 S. epidermidis PPHCPPGHAKKGWC 471
    M. luteus
    E. coli
    MRSA
    E. faecalis
    C. jejuni
    PF-194 C. jeikeium MKGNKLATAHEQPVKNSAPPL 472
    PF-195 S. epidermidis EMAEGSADDRLRKTPRDC 473
    M. luteus
    E. faecalis
    C. jeikeium
    PF-196 S. epidermidis TTARYIRRQCHTSITPLSQG 474
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jejuni
    PF-197 S. epidermidis CNALLRRGHPPSAL 475
    M. luteus
    C. albicans
    E. faecalis
    C. jejuni
    PF-200 S. epidermidis GIELKSLIMAQIERWRQA 476
    M. luteus
    MRSA
    E. faecalis
    C. jeikeium
    PF-201 S. epidermidis GCRPASLSDADPDGR 477
    M. luteus
    E. coli
    C. albicans
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-202 S. epidermidis ALNRASLRLALGE 478
    M. luteus
    E. coli
    MRSA
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-203 S. epidermidis SWKCHHLAI 479
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jejuni
    PF-204 S. epidermidis ALQKQDMNLPSVKNQLVFLKSTG 480
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    C. jejuni
    PF-205 S. epidermidis AGVLETPRCRGEYGAN 481
    M. luteus
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-206 M. luteus KLRSASKKSLQEKSCGIMPEKPAG 482
    C. albicans
    C. jeikeium
    C. jejuni
    PF-207 M. luteus AAGCRDLGSLSSLVTNPS 483
    C. jeikeium
    PF-208 S. epidermidis DAYHCHLVRSPDAHDLSMRIGFV 484
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-209 C. albicans NYAVVSHT 485
    C. jeikeium
    C. jejuni
    PF-210 S. epidermidis EREDGCDAMPLP 486
    P. aeruginosa
    C. albicans
    MRSA
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-211 S. epidermidis DSFDSLSPFRERGGEREDGCDAMPLP 487
    M. luteus
    E. coli
    P. aeruginosa
    C. albicans
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    M. smegmatis
    PF-212 M. luteus NDSKASN 488
    P. aeruginosa
    PF-213 S. epidermidis MTTGVDFIIEKV 489
    PF-214 S. mutans GHLRVCWVFSASLLTPFRSATLI 490
    S. epidermidis
    M. luteus
    E. coli
    P. aeruginosa
    A. baumannii
    PF-215 S. epidermidis ELKITNYNVNTVLYRYYKWGNDLCE 491
    M. luteus
    P. aeruginosa
    A. baumannii
    PF-216 S. mutans ESVDKITEALEEDGFPAKVQ 492
    E. coli
    PF-217 S. mutans DWEFTHKTIPQKK 493
    PF-218 S. epidermidis SETPEKPVGTFFYSIYYKIIL 494
    M. luteus
    P. aeruginosa
    A. baumannii
    PF-219 S. epidermidis FLALAVIAGLFKVILIYAAPYLK 495
    M. luteus
    P. aeruginosa
    A. baumannii
    PF-221 S. epidermidis VFDNIDINF 496
    M. luteus
    P. aeruginosa
    PF-222 S. epidermidis HIKETR 497
    PF-223 S. epidermidis VKFCIECQTKLERKRR 498
    M. luteus
    A. baumannii
    PF-224 S. epidermidis DYFYITLSQKNTF 499
    P. aeruginosa
    A. baumannii
    PF-225 S. epidermidis MNCASPEFKKLMELYK 500
    PF-226 A. baumannii LMFFSENMDKRDTLSGKFRYFAGSKVI 501
    KLMNWLSENGK
    PF-228 S. mutans NQLGSQAFAQL 502
    PF-229 S. epidermidis DPILIQIGFTRFALRKAEAEKIEIQVEEGV 503
    M. luteus PA
    P. aeruginosa
    A. baumannii
    PF-230 S. mutans EDKPTNTIQEIKPVKWQ 504
    PF-231 S. mutans AVRDFKKSVREEDEAASLNSPRTIDAQ 505
    VKTSESTSVKS
    PF-232 S. epidermidis FDQLYALEREGKLDELLA 506
    M. luteus
    PF-233 S. epidermidis DANAMARTTIAIVYILALIALTISYSL 507
    M. luteus
    P. aeruginosa
    A. baumannii
    PF-234 S. epidermidis RTPYILRS 508
    M. luteus
    PF-235 S. epidermidis GIPFSKPHKRQVNYMKSDVLAYIEQNK 509
    M. luteus MAHTA
    PF-236 S. mutans KEIRTATVAELNAKRRLTSAEQALAEVS 510
    S. epidermidis
    E. coli
    C. albicans
    S. pneumoniae
    E. faecalis
    PF-237 S. epidermidis YVKPKVGVHE 511
    PF-238 S. mutans RNAVVVTEATFPKYEEEITNYLNRRFGE 512
    S. epidermidis DWSLKLEKCSVA
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-239 S. mutans PKHNVVTGVSVDLDYKP 513
    E. coli
    PF-240 S. mutans RITEVPPDEHSDR 514
    E. coli
    PF-242 S. mutans KLFEDPLIKSKAVENFQTTWHEQCLAK 515
    E. coli ELAKNM
    PF-244 S. epidermidis HMRTISYLLAFAKFSLFIPPKQSLKRL 516
    M. luteus
    P. aeruginosa
    A. baumannii
    PF-245 S. epidermidis MNDVKPVVQPKQTLKAFLVQLLSVRA 517
    M. luteus GVYIKQNNQLPKTKG
    P. aeruginosa
    A. baumannii
    PF-246 S. mutans QPDEKAEFFDPSLDKVYRHPTFYHIPDG 518
    IEHM
    PF-247 S. epidermidis ETAASETH 519
    PF-248 S. mutans ILSKLWFWMINSLGVVLLVSYWLLAK 520
    S. epidermidis WGVA
    M. luteus
    E. coli
    P. aeruginosa
    A. baumannii
    PF-249 S. epidermidis INSRYKISF 521
    M. luteus
    PF-252 S. mutans MKKLVAALAVIVILTGCVYDPVNYDKI 522
    HDQEFQDHLRQNG
    PF-253 S. epidermidis VRDDDS 523
    M. luteus
    PF-254 S. epidermidis FIYGVGFVPHFWLWKWLFSPWIAWPL 524
    M. luteus MLLGYYIWFLT
    P. aeruginosa
    A. baumannii
    PF-255 P. aeruginosa DHKINESQHNPFRSDSNKQNVDFF 525
    PF-256 S. epidermidis EYFKQVYVKNEKIYSFWICKDLSPKEA 526
    AKRAEDILVKLK
    PF-257 S. epidermidis VWENRKKYLENEIERHNVFLKLGQEVI 527
    KGLNALASRGR
    PF-259 S. epidermidis LPFSKIGRRVSYKKKDVLKYEQSKTVL 528
    P. aeruginosa NTAQLATV
    A. baumannii
    PF-262 S. mutans DPHSEIDVTRYCQLHHFTCQTMQISERE 529
    S. epidermidis FHYLIETQ
    M. luteus
    E. coli
    P. aeruginosa
    A. baumannii
    PF-263 S. epidermidis NLKKCPC 530
    M. luteus
    A. baumannii
    PF-265 S. epidermidis MKTLFFPLFLIIFVLIIQALDQSYQKKIGI 531
    M. luteus SKPQKHPEFMQ
    A. baumannii
    PF-266 S. mutans DQEKKNKTEESTEQ 532
    PF-267 M. luteus SDDKRTD 533
    PF-268 S. mutans EVLLSDLRPDIFSET534
    PF-270 S. epidermidis MYLTPYAWIAVGSIFAFSVTTIKIGDQN 535
    M. luteus DEKQKSHKNDVHKR
    P. aeruginosa
    PF-271 S. epidermidis AAQPQTTSP 536
    M. luteus
    P. aeruginosa
    A. baumannii
    PF-273 S. epidermidis LVGALLIFVALIYMVLKGNADKN 537
    M. luteus
    P. aeruginosa
    A. baumannii
    PF-275 S. mutans LVSGVANTVKNTAHTVGNTAKHAGHV 538
    AADTTVKATKKQQVK
    PF-276 S. epidermidis LDLALSTNSLNLEGFSF 539
    PF-278 M. luteus LSLATFAKIFMTRSNWSLKRFNRL 540
    A. baumannii
    PF-279 S. mutans SHIGFISISACLAVLLGIARLFVWTWVKF 541
    S. epidermidis FA
    M. luteus
    E. coli
    P. aeruginosa
    A. baumannii
    PF-281 S. mutans SYNTYYNKLIHGQRTPDGM 542
    E. coli
    PF-282 S. mutans QNNDTSAWCGSAHKNGNS 543
    PF-283 B. subtilis MIRIRSPTKKKLNRNSISDWKSNTSGRF 544
    B. fragilis FY
    C. difficile
    PF-284 C. difficile MRYITYSLIPRLLSKKVIHQQ 545
    PF-285 S. mutans VPAKLLRVIDEIPE 546
    PF-288 S. mutans IYQLLNIEYSEDD 547
    E. coli
    PF-289 C. difficile MGRHLWNPSYFVATVSENTEEQIRKYR 548
    KNK
    PF-291 S. mutans DVDGAIESEL 549
    E. coli
    PF-292 S. epidermidis SFVSTTVRLIFEESKRYKF 550
    B. subtilis
    B. fragilis
    PF-294 S. epidermidis DFLVNFLWFKGELNWGKKRYK 551
    C. difficile
    PF-295 C. difficile NIQVYESECGNYIFKKSDESFLIDIFDKN 552
    GTH
    PF-297 S. epidermidis ISKGIDDIVYVINKILSIGNIFKIIKRK 553
    B. subtilis
    B. fragilis
    PF-299 B. subtilis LATKLKYEKEHKKM 554
    PF-300 B. subtilis VKDVLLELFNKIIGA 555
    C. difficile
    PF-301 C. difficile GIVLIGLKLIPLLANVLN 556
    PF-304 S. mutans LVKDTSDIKNDLNNIEIVTSKNSNDIAKL 557
    KSVK
    PF-305 C. difficile MREWICPSCNETHDRDINASINILKEGL 558
    RLITIQNK
    PF-306 C. difficile GCILPHKKDNYNYIMSKFQDLVKITSKK 559
    PF-307 S. epidermidis MKRRRCNWCGKLFYLEEKSKEAYCCK 560
    B. subtilis ECRKKAKKVKK
    B. fragilis
    C. difficile
    PF-308 C. difficile QQYLILDRM 561
    PF-309 S. mutans GIPGMTAAPAEENEQEENADEE 562
    E. coli
    PF-311 C. difficile IDAVTKKKTTCMIRAPTKIPIAHTDN 563
    PF-313 S. epidermidis YITSHKNARAIIKKFERDEILEEVITHYL 564
    C. difficile NRK
    PF-314 S. mutans ECLKKAIKSKALNKAFKIDVPDEVYDN 565
    LLMELEEYEK
    PF-317 S. mutans LILVSDI 566
    PF-319 S. epidermidis SIGSMIGMYSFREIKTKHIKFTFGIPFILFL 567
    B. subtilis QFLLVYFYILK
    C. difficile
    PF-320 S. mutans DSGYYALLENKEERVVWDGEVVANNI 568
    E. coli FNNLWIVVNKVKTG
    PF-323 S. mutans ARESIEKSHVPVDATIVGVVDSFEVFDE 569
    PF-324 C. dffficile HFSLL 570
    PF-325 S. mutans LTIDEKLRNHR 571
    E. coli
    PF-326 S. mutans VIVGNLGAQKEKRNDTPISAKKDIIVIGD 572
    E. coli KTVRVRADLHH
    PF-328 S. mutans NGNEKAFSEVENLVK 573
    PF-329 S. epidermidis IGILFDKSVRKY 574
    PF-333 S. mutans YMTKKLVEMAEQQMAGKSNR 575
    PF-334 S. epidermidis QQYLILDRM 576
    C. dffficile
    PF-336 S. mutans MLTSRKKRLKKIVEEQNKKDESI 577
    E. coli
    PF-337 S. epidermidis YMTKKLVEMAERQMAGK 578
    PF-338 S. mutans KGTSCPDQLSKAIRQSI 579
    PF-340 S. mutans VKDVLLELFNKIIGA 580
    E. coli
    PF-344 B. subtilis DERLPEAKAIRNFNGSVMVLGR 581
    C. jejuni
    PF-347 S. epidermidis GIFTGVTVVVSLKHC 582
    B. subtilis
    B. fragilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-348 B. subtilis ESASAAEWYNPNMNVKKAICMG 583
    E. coli
    P. aeruginosa
    C. albicans
    E. faecalis
    C. jejuni
    PF-349 S. epidermidis MPKSCHVPVLCDFFFLVIIKFLALFKTIQ 584
    B. subtilis S
    B. fragilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-350 S. epidermidis LAVILRAIVY 585
    E. coli
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-351 S. mutans YLFFKGKKVAEEEATKDEVKR 586
    PF-352 C. jeikeium RVKKIG 587
    PF-353 S. epidermidis EKTNFKGVKRNFYKKASFFV 588
    M. luteus
    B. subtilis
    E. coli
    C. albicans
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-354 S. epidermidis FTFSKCRASNGRGFGTLWL 589
    B. subtilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-355 S. epidermidis WIAIGLLLYFSLKNQ 590
    B. subtilis
    B. fragilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-356 S. epidermidis VSIKIGAIVIGMIGLMELLTE 591
    B. subtilis
    B. fragilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-357 S. epidermidis MLTIIIGFIFWTMTLMLGYLIGEREGRK 592
    M. luteus RE
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-358 S. epidermidis RNTAHNIKWRSKN 593
    B. subtilis
    E. coli
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-359 S. epidermidis MTVMEDPGSEQRNKIQSPMKGEDFSAL 594
    B. fragilis FGR
    P. aeruginosa
    C. albicans
    MRSA
    E. faecalis
    C. jeikeium
    PF-360 S. epidermidis MEQKVKVIFVPRSKPDNQLKTFVSAVL 595
    B. subtilis FKA
    E. coli
    P. aeruginosa
    C. albicans
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-361 S. epidermidis NQVTEGIRLLVE 596
    E. coli
    E. faecalis
    C. jejuni
    PF-362 S. epidermidis NIERILKEKVWMIRCVE 597
    E. coli
    P. aeruginosa
    C. albicans
    E. faecalis
    C. jejuni
    PF-363 B. subtilis SMLSVTVMCLMHASVAANQAMEKKV 598
    E. coli
    P. aeruginosa
    C. albicans
    S. pneumoniae
    E. faecalis
    PF-364 S. epidermidis LVNGIKI 599
    B. fragilis
    P. aeruginosa
    C. jeikeium
    C. jejuni
    PF-365 S. epidermidis LYKQKIQLEEELEKLKDDRQ 600
    B. subtilis
    B. fragilis
    P. aeruginosa
    C. albicans
    PF-366 S. epidermidis ALCSVIKAIELGIINVHLQ 601
    M. luteus
    B. fragilis
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-367 B. subtilis TKTPGTFTPGTGIQKTAVPL 602
    PF-368 C. jeikeium MLKQTA 603
    C. jejuni
    PF-369 B. subtilis MSEAVNLLRGARYSQRYAKNQVPYEVI 604
    B. fragilis IEK
    E. coli
    P. aeruginosa
    C. albicans
    S. pneumoniae
    C. jeikeium
    C. jejuni
    PF-370 S. epidermidis VIFLHKESGNLKEIFY 605
    E. coli
    P. aeruginosa
    E. faecalis
    C. jejuni
    PF-371 S. epidermidis TFIYNEF 606
    B. fragilis
    C. jejuni
    PF-372 C. jeikeium KKQDKRIEDKYKRMKKGD 607
    C. jejuni
    PF-373 S. epidermidis HFYLLFER 608
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    E. faecalis
    C. jejuni
    PF-374 S. epidermidis HLFFVKGMFILCQKNQINDE 609
    B. subtilis
    B. fragilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-375 S. epidermidis MDSAKAQTMRTDWLAVSCLVASAYLR 610
    B. subtilis SMLA
    B. fragilis
    E. coli
    P. aeruginosa
    C. albicans
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-376 S. epidermidis MTVFEALMLAIAFATLIVKISNKNDKK 611
    B. subtilis
    B. fragilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-378 B. subtilis ESAKSNLNFLMQEEWALFLLL 612
    B. fragilis
    E. coli
    P. aeruginosa
    C. jeikeium
    PF-379 S. epidermidis VFVVLFIIYLASKLLTKLFPIKK 613
    B. subtilis
    B. fragilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-380 S. epidermidis KKIIPLITLFVVTLVG 614
    B. subtilis
    B. fragilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-381 E. coli QGANPCQQVGFTVNDPDCRLAKTV 615
    P. aeruginosa
    C. jejuni
    PF-382 S. epidermidis KYKCSWCKRVYTLRKDHKTAR 616
    B. subtilis
    B. fragilis
    E. coli
    P. aeruginosa
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-383 S. epidermidis WSEIEINTKQSN 617
    B. subtilis
    B. fragilis
    E. coli
    C. jejuni
    PF-384 E. faecalis HISKERFEAY 618
    C. jeikeium
    C. jejuni
    PF-385 S. epidermidis MIKKSILKIKYYVPVLISLTLILSA 619
    E. coli
    P. aeruginosa
    C. albicans
    E. faecalis
    PF-386 S. epidermidis FTLTLITTIVAILNYKDKKK 620
    B. subtilis
    B. fragilis
    E. coli
    P. aeruginosa
    C. albicans
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-387 B. subtilis GAVGIAFFAGNMKQDKRIADRQNKKSE 621
    E. coli KK
    P. aeruginosa
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-388 E. faecalis ITPLLDEIGKVCIDKISK 622
    C. jeikeium
    C. jejuni
    PF-389 S. epidermidis GLQFKEIAEEFHITTTALQQWHKDNGY 623
    C. albicans PIYNKNNRK
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-390 S. epidermidis VVAYVITQVGAIRF 624
    P. aeruginosa
    C. albicans
    MRSA
    PF-392 S. epidermidis DPAGCNDIVRKYCK 625
    B. subtilis
    S. pneumoniae
    C. jeikeium
    C. jejuni
    PF-393 S. epidermidis DLVQSILSEFKKSG 626
    E. coli
    C. albicans
    MRSA
    S. pneumoniae
    C. jejuni
    PF-394 S. epidermidis VLKEECYQKN 627
    MRSA
    C. jejuni
    PF-395 S. epidermidis YCVPLGNMGNMNNKIW 628
    E. coli
    P. aeruginosa
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-396 S. epidermidis LIYTILASLGVLTVLQAILGREPKAVKA 629
    E. coli
    P. aeruginosa
    C. albicans
    E. faecalis
    C. jeikeium
    PF-397 S. epidermidis VEDLMEDLNA 630
    MRSA
    S. pneumoniae
    E. faecalis
    C. jejuni
    PF-398 S. epidermidis ILVVLAGILLVVLSYVGISKFKMNC 631
    B. subtilis
    B. fragilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-399 S. epidermidis FPIISALLGAIICIAIYSFIVNRKA 632
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jejuni
    PF-400 S. epidermidis VIAWKFRNKFENSGV 633
    E. coli
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-401 S. epidermidis YWLSRVTTGHSFAFEKPVPLSLTIK 634
    E. coli
    P. aeruginosa
    MRSA
    E. faecalis
    C. jejuni
    PF-402 S. epidermidis FIDVLKSKINEFLN 635
    P. aeruginosa
    E. faecalis
    C. jejuni
    PF-403 E. coli LLSTEQLLKYYDGETFDGFQLPSNE 636
    P. aeruginosa
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-404 S. epidermidis VLYFQATVV 637
    E. coli
    P. aeruginosa
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-405 S. epidermidis LVRIEVDDLEEWYERNFI 638
    E. coli
    E. faecalis
    PF-406 E. coli YLEMNADYLSNMDIFDELWEKYLENN 639
    C. jejuni K
    PF-407 S. epidermidis KPKNKKEKTVISYEKLLSMY 640
    B. subtilis
    E. coli
    P. aeruginosa
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-408 S. epidermidis YCVPLGNMGNMNNKIW 641
    E. coli
    P. aeruginosa
    MRSA
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-409 S. epidermidis DLVQSILSEFKKSG 642
    MRSA
    C. jeikeium
    C. jejuni
    PF-410 S. epidermidis FALELIALCRNLFIVYFP 643
    M. luteus
    B. fragilis
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-411 M. luteus WVAVAILLNIALQTQLT 644
    B. subtilis
    B. fragilis
    P. mirabilis
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-412 M. luteus TSGWLGQLEQ 645
    E. coli
    C. albicans
    C. jeikeium
    C. jejuni
    PF-413 P. aeruginosa TFAGSIKIGVPDLVHVTFNCKR 646
    C. albicans
    C. jejuni
    PF-414 E. coli LLNKKLE 647
    C. albicans
    C. jeikeium
    PF-416 S. pneumoniae SKAGLYGKIERSDKRE 648
    C. jeikeium
    PF-417 S. epidermidis DSYFRS 649
    C. jeikeium
    C. jejuni
    PF-418 S. epidermidis FFLVHFYIRKRKGKVSIFLNYF 650
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-421 C. jeikeium KHCFEITDKTDVV 651
    PF-422 C. albicans MSRKKYENDEKSQKKLKIGRKSDVFYG 652
    MRSA IID
    C. jeikeium
    PF-423 S. epidermidis AGKKERLLSFREQFLNKNKKK 653
    M. luteus
    E. coli
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-424 S. epidermidis IAAFVTSRAFSDTVSPI 654
    C. albicans
    MRSA
    PF-425 S. epidermidis MMELVLKTIIGPIVVGVVLRIVDKWLN 655
    M. luteus KDK
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    C. jeikeium
    PF-426 S. epidermidis MLQKYTQMISVTKCIITKNKKTQENVD 656
    E. coli AYN
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-427 M. luteus YVLEYHGLRATQDVDAFMAL 657
    P. aeruginosa
    C. albicans
    C. jejuni
    PF-428 S. epidermidis ENEESIF 658
    C. albicans
    E. faecalis
    C. jeikeium
    PF-429 S. epidermidis AATLICVGSGIMSSL 659
    S. pneumoniae
    C. jeikeium
    PF-430 S. epidermidis AVVCGYLAYTATS 660
    M. luteus
    E. coli
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-431 S. epidermidis VAYAAICWW 661
    M. luteus
    E. coli
    P. aeruginosa
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-432 S. epidermidis FNGDSEFFLCIAF 662
    M. luteus
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-433 S. epidermidis MRKEFHNVLSSGQLLADKRPARDYNR 663
    E. coli K
    S. pneumoniae
    C. jeikeium
    PF-434 S. epidermidis GQLLADKRPARDYNRK 664
    M. luteus
    S. pneumoniae
    C. jeikeium
    PF-435 C. jeikeium MSRWDGHSDKGEAPAGKPPMHGFGLN 665
    GENK
    PF-436 C. jeikeium KKHVLVGKQEKNG 666
    PF-438 S. epidermidis QPYFQNQFKKITGYTPLQYRKEKR 667
    E. coli
    S. pneumoniae
    C. jeikeium
    C. jejuni
    PF-439 S. epidermidis RVLVLKKFHGIMDGNRNVAVFFVGQ 668
    M. luteus
    B. fragilis
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-440 S. epidermidis MFIISPDLFNIAVILYILFFIHDILLLILS 669
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-441 C. jeikeium TQVHKMARGIDPGPANGIYR 670
    PF-442 S. epidermidis MQIFYIKTKIFLSFFLFLLIFSQCFYKIEE 671
    E. coli
    C. albicans
    S. pneumoniae
    E. faecalis
    PF-443 S. epidermidis KLLYFFNYFENLQQVHLLVQL 672
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-444 M. luteus MAAKLWEEGKMVYASSASMTKRLKL 673
    C. albicans AMSKV
    S. pneumoniae
    C. jeikeium
    PF-445 M. luteus ASMTKRLKLAMSKV 674
    S. pneumoniae
    C. jeikeium
    PF-446 M. luteus SGNEKV 675
    C. jeikeium
    PF-447 S. epidermidis IDKSRNKDQFSHIFGLYNICSG 676
    M. luteus
    E. coli
    S. pneumoniae
    PF-448 S. epidermidis SLQSQLGPCLHDQRH 677
    M. luteus
    P. mirabilis
    E. coli
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-450 S. epidermidis HRNLIILQRTIFI 678
    M. luteus
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-451 S. epidermidis MVNYIIGSYMLYREQNNNEALRKFDIT 679
    M. luteus LAM
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    M. smegmatis
    PF-452 M. luteus MNNWIKVAQISVTVINEVIDIMKEKQN 680
    P. aeruginosa GGK
    C. albicans
    S. pneumoniae
    E. faecalis
    C. jeikeium
    M. smegmatis
    PF-453 M. luteus IIQDIAHAFGY 681
    E. coli
    P. aeruginosa
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-454 S. epidermidis MSVFVPVTNIFMFIMSPIFNVNLLHFKV 682
    M. luteus YI
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    M. smegmatis
    PF-456 C. albicans TCVKPRTIN 683
    MRSA
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-457 C. albicans INKYHHIA 684
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-458 S. epidermidis ISLIIFIMLFVVALFKCITNYKHQS 685
    M. luteus
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-459 P. aeruginosa EKRMSFNENQSHRPLL 686
    PF-460 S. epidermidis MEHVLPFQNTPPNIVIIYKDFTHLKSITF 687
    M. luteus S
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    M. smegmatis
    PF-461 E. coli MTLAIKNCSVTKCLGFGDFVNDDSDSY 688
    S. pneumoniae FDA
    PF-462 E. faecalis KNKTDTL 689
    C. jeikeium
    PF-463 S. epidermidis MVILVFSLIFIFTDNYLVYQSKSIKEDVM 690
    E. coli I
    P. aeruginosa
    C. albicans
    S. pneumoniae
    E. faecalis
    M. smegmatis
    PF-464 S. epidermidis VDMVNRFLGN 691
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-465 S. epidermidis KPVGKALEEIADGKIEPVVPKEYLG 692
    M. luteus
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-466 MRSA VRKSDQ 693
    C. jeikeium
    C. jejuni
    PF-467 MRSA YYKDYFKEI 694
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-469 S. epidermidis YKVNYNNIDNHFNTLRH 695
    M. luteus
    P. mirabilis
    E. coli
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-470 M. luteus PYSDSYATRPHWEQHRAR 696
    E. coli
    MRSA
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-471 S. epidermidis MVGKIRGVTPRNDLLNANITGQLNLNY 697
    M. luteus RLI
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-472 S. epidermidis MHISHLLDEVEQTEREKAVNVLENMNG 698
    E. coli NVI
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-473 S. epidermidis MAADIISTIGDLVKWIIDTVNKFKK 699
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-474 S. epidermidis MHRNLVLVKMEPIPHIMIIANQIGIIIEKA 700
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    M. smegmatis
    PF-475 S. epidermidis MREKVRFTQAFKLFWTNYFNFKGRSRR 701
    M. luteus SEY
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-476 M .luteus WADAQYKLCENCSE 702
    P. mirabilis
    C. albicans
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-477 S. epidermidis HKNKLNIPHIKS 703
    M. luteus
    C. albicans
    S. pneumoniae
    C. jeikeium
    C. jejuni
    PF-478 S. epidermidis HLFILKSHLKPFPPFRYTYD 704
    M. luteus
    P. mirabilis
    E. coli
    C. albicans
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF -479 S. epidermidis AYILKRREEKNK 705
    M. luteus
    P. mirabilis
    E. coli
    C. albicans
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-480 S. epidermidis MVEILVNTAISVYIVALYTQWLSTRDNL 706
    M. luteus KA
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    M. smegmatis
    PF-481 C. jeikeium DELYEIMDKVIEEFNKDIEQNNNNGNN 707
    EDLTENKIN
    PF-482 S. epidermidis LVGYVRTSGTVRSYKIN 708
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-483 P. mirabilis EDNKDKKDKKDK 709
    C. jeikeium
    C. jejuni
    PF-484 S. epidermidis HKKDIRKQVFKN 710
    M. luteus
    P. mirabilis
    E. coli
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-486 S. mutans MQKEGEEDY 711
    PF-487 S. mutans MYKAIAVLAMTIMAFFIFVYPFFIVGLIL 712
    E. coli G
    PF-488 S. mutans YPNEQGHHKNNLKNIIIE 713
    E. coli
    PF-489 S. mutans KVDRVSTTITEKIK 714
    PF-490 S. mutans RLILVSGNATVQK 715
    E. coli
    PF-491 S. mutans IHQYSSKPDIVGQEAKTVQQINS 716
    E. coli
    PF-492 S. mutans IQIDAASFYSISKSTIK 717
    B. subtilis
    E. coli
    PF-493 S. mutans PGAFFFCRGRGCWCGIGW 718
    B. subtilis
    E. coli
    PF-494 S. mutans FTEPLRPLQAKGQIISIKPSTSSS 719
    PF-495 S. mutans KGIYKKRTY 720
    E. coli
    PF-496 S. mutans EVTKRLVALAQQQLRG 721
    E. coli
    PF-497 S. mutans LVLRICTDLFTFIKWTIKQRKS 722
    B. subtilis
    E. coli
    PF-498 S. mutans MSEEEEVSEKVYNYLRRNEFFEVRKEE 723
    E. coli FSA
    PF-499 S. mutans VYSFLYVLVIVRKLLSMKKRIERL 724
    E. coli
    PF-500 S. mutans MGIFKEEKIKFIDCKGEEVILKIKIKDIKK 725
    E. coli
    PF-501 S. mutans GSTAHKSPIGSTNNQWGMKKTPTD 726
    PF-502 S. mutans NKGKQMQDQTGKQPIVDNG 727
    PF-503 S. mutans VVTLKDIVAVIEDQGYDVQ 728
    PF-504 S. mutans ILSVELSTKTSASGS 729
    E. coli
    PF-505 S. mutans GYTKDPGTGI 730
    PF-506 S. mutans SGRGFALIVVLFILLIIVGAACIR 731
    E. coli
    PF-507 S. mutans LALSIANLFKKKA 732
    E. coli
    PF-508 S. mutans VSTFGKVVKVVDEK 733
    PF-509 S. mutans EAKVQAKGEQIACNNY 734
    B. subtilis
    E. coli
    PF-510 S. mutans WYLYKKQSNQNDRGIPK 735
    E. coli
    PF-511 E. coli VMQSLYVKPPLILVTKLAQQN 736
    P. aeruginosa
    S. pneumoniae
    C. jeikeium
    PF-512 S. pneumoniae SFMPEIQKNTIPTQMK 737
    C. jeikeium
    PF-513 C. albicans SNGVGLGVGIGSGIRF-NH2 738
    PF-514 S. epidermidis QRFYKLFYHIDLTNEQALKLFQVK 739
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-515 S. epidermidis DKSTQDKDIKQAKLLAQELGL-NH2 740
    C. albicans
    S. pneumoniae
    C. jeikeium
    PF-517 C. jejuni VKPTMTASLISTVC 741
    PF-518 S. epidermidis SFYSKYSRYIDNLAGAIFLFF 742
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-519 M. luteus YLVYSGVLATAAAF-NH2 743
    E. faecalis
    C. jeikeium
    PF-520 S. epidermidis LGLTAGVAYAAQPTNQPTNQPTNQPTN 744
    M. luteus QPTNQPTNQPRW-NH2
    E. coli
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-521 S. epidermidis CGKLLEQKNFFLKTR 745
    E. coli
    P. aeruginosa
    S. pneumoniae
    E. faecalis
    PF-522 S. epidermidis FELVDWLETNLGKILKSKSA-NH2 746
    E. coli
    P. aeruginosa
    S. pneumoniae
    E. faecalis
    PF-523 S. epidermidis ASKQASKQASKQASKQASKQASRSLKN 747
    M. luteus HLL
    C. albicans
    S. pneumoniae
    C. jeikeium
    C. jejuni
    PF-524 S. epidermidis PDAPRTCYHKPILAALSRIVVTDR 748
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-526 S. epidermidis VLLLFIFQPFQKQLL-NH2 749
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-527 S. epidermidis GSVIKKRRKRMAKKKHRKLLKKTRIQR 750
    M. luteus RRAGK
    P. mirabilis
    E. coli
    P. aeruginosa
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-528 S. epidermidis LVDVVVLIRRHLPKSCS-NH2 751
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-529 S. epidermidis LSEMERRRLRKRA-NH2 752
    E. coli
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-537 S. epidermidis LANDYYKKTKKSW 753
    M. luteus
    P. mirabilis
    E. coli
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-539 S. epidermidis SIILTKKKRRKIPLSIDSQIYKYTFKQ 754
    M.luteus
    B. subtilis
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-540 C. albicans KSILILIKVIFIGQTTIIL 755
    PF-542 C. jeikeium KKDNPSLNDQDKNAVLNLLALAK 756
    PF-543 S. epidermidis NILFGIIGFVVAMTAAVIVTAISIAK 757
    M. luteus
    B. subtilis
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-544 S. epidermidis FGEKQMRSWWKVHWFHP 758
    M. luteus
    P. mirabilis
    P. aeruginosa
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-545 S. epidermidis RESKLIAMADMIRRRI-NH2 759
    E. coli
    P. aeruginosa
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-546 S. epidermidis PIIAPTIKTQIQ 760
    E. coli
    C. albicans
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-547 S. epidermidis WSRVPGHSDTGWKVWHRW-NH2 761
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-548 M. luteus ARPIADLIHFNSTTVTASGDVYYGPG 762
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-549 E. coli TGIGPIARPIEHGLDS 763
    C. albicans
    S. pneumoniae
    C. jeikeium
    PF-550 S. pneumoniae STENGWQEFESYADVGVDPRRYVPL 764
    PF-551 S. pneumoniae QVKEKRREIELQFRDAEKKLEASVQAE 765
    PF-552 S. pneumoniae ELDKADAALGPAKNLAPLDVINRS 766
    PF-553 S. epidermidis LTIVGNALQQKNQKLLLNQKKITSLG 767
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    C. jeikeium
    PF-554 S. pneumoniae AKNFLTRTAEEIGEQAVREGNINGP 768
    PF-555 MRSA EAYMRFLDREMEGLTAAYNVKLFTEAI 769
    S. pneumoniae S
    C. jeikeium
    PF-556 S. epidermidis SLQIRMNTLTAAKASIEAA 770
    M. luteus
    B. fragilis
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-557 S. pneumoniae AANKAREQAAAEAKRKAEEQAR 771
    PF-558 S. epidermidis ADAPPPLIVRYS 772
    E. coli
    C. albicans
    C. jeikeium
    C. jejuni
    PF-559 S. epidermidis SRPGKPGGVSIDVSRDRQDILSNYP 773
    M. luteus
    C. albicans
    C. jeikeium
    C. jejuni
    PF-560 S. epidermidis FGNPFRGFTLAMEADFKKRK 774
    M. luteus
    E. coli
    S. pneumoniae
    C. jeikeium
    C. jejuni
    PF-562 S. epidermidis TPEQWLERSTVVVTGLLNRK 775
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-563 S. epidermidis RPELDNELDVVQNSASLDKLQASYN 776
    M. luteus
    C. jeikeium
    PF-564 S. epidermidis TIILNDQINSLQERLNKLNAETDRR 777
    C. albicans
    S. pneumoniae
    C. jeikeium
    PF-566 P. mirabilis EAQQVTQQLGADFNAITTPTATKV 778
    S. pneumoniae
    PF-567 S. epidermidis QQRVKAVDASLSQVSTQVSGAVASA 779
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    C. jeikeium
    PF-568 S. epidermidis TQAVQVKTAQAQQQ 780
    PF-569 M. luteus KSKISEYTEKEFLEFVEDIYTNNK 781
    P. mirabilis
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-570 S. pneumoniae KKFPTEESHIQAVLEFKKLTEHPSG 782
    C. jeikeium
    PF-572 S. epidermidis WRASKGLPGFKAG 783
    M. luteus
    E. coli
    S. pneumoniae
    C. jeikeium
    PF-573 S. epidermidis EKKLIVKLIDSIGKSHEEIVGAG 784
    S. pneumoniae
    PF-575 M. luteus LNFRAENKILEKIHISLIDTVEGSA 785
    E. coli
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-576 M. luteus AYSGELPEPLVRKMSKEQVRSVMGK 786
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    S. pneumoniae
    PF-577 S. epidermidis PFETRESFRVPVIGILGGWDYFMHP 787
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. .faecalis
    PF-578 S. epidermidis QKANLRIGFTYTSDSNVCNLTFALLGSK 788
    M. luteus
    P. mirabilis
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-579 S. epidermidis MILVCAAVIWGRVLFILKFPIYFSIRLAF 789
    M. luteus L
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-580 S. epidermidis EILNNNQVIKELTMKYKTQFESNLGGW 790
    M. luteus TARARR
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-581 S. epidermidis WTARARR 791
    M. luteus
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-583 S. epidermidis KFQGEFTNIGQSYIVSASHMSTSLNTGK 792
    M. luteus
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-584 S. epidermidis SYIKNLSNQKFLIAF 793
    M. luteus
    P. mirabilis
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-585 S. epidermidis DYNHLLNVVQDWVNTN 794
    E. coli
    C. albicans
    MRSA
    S. pneumoniae
    C. jeikeium
    PF-586 S. epidermidis FFNQANYFFKEF 795
    M. luteus
    E. coli
    P. aeruginosa
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-587 S. epidermidis ASGKYQSYLLNVYVDSKKDRLDIFDKL 796
    M. luteus KAKAKFVL
    E. coli
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-588 S. epidermidis ESVEAIKAKAIK 797
    E. coli
    C. albicans
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-589 S. epidermidis APLRIDEIRNSNVIDEVLDCAPKKQEHFF 798
    C. albicans VVPKIIE
    MRSA
    S. pneumoniae
    PF-590 S. epidermidis YYQAKLFPLL 799
    M. luteus
    E. coli
    E. faecalis
    C. jeikeium
    PF-592 S. epidermidis IMKNYKYFKLFIVKYALF 800
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-593 C. jeikeium MEISTLKKEKLHVKDELSQYLANYKK 801
    PF-594 C. jeikeium IVSAIV 802
    PF-595 S. epidermidis LQNKIYELLYIKERSKLCS 803
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-596 S. epidermidis SKMWDKILTILILILELIRELIKL 804
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    MRSA
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-597 P. mirabilis DEIKVSDEEIEKFIKENNL 805
    PF-598 S. epidermidis MKFMLEVRNKAISAYKEITRTQI 806
    M. luteus
    P. mirabilis
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    C. jeikeium
    PF-599 S. epidermidis LFEIFKPKH 807
    P. mirabilis
    E. coli
    C. albicans
    MRSA
    S. pneumoniae
    C. jeikeium
    PF-600 S. epidermidis TKKIELKRFVDAFVKKSYENYILERELK 808
    M. luteus KLIKAINEELPTK
    B. subtilis
    P. mirabilis
    E. coli
    P. aeruginosa
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-601 C. jeikeium YRVTVKALE 809
    PF-602 P. mirabilis LEKEKKEYIEKLFKTK 810
    C. jeikeium
    PF-603 S. epidermidis IDKLKKMNLQKLSYEVRISQDGKSIYAR 811
    M. luteus IK
    B. subtilis
    E. coli
    P. aeruginosa
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-604 S. epidermidis LMEQVEV 812
    C. albicans
    C. jeikeium
    PF-605 S. epidermidis HYRWNTQWWKY 813
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-607 S. epidermidis YIESDPRKFDYIFGAIRDH 814
    P. mirabilis
    E. coli
    MRSA
    S. pneumoniae
    C. jeikeium
    PF-609 P. mirabilis TEIKLDNNEYLVLNLDDILGILK 815
    E. coli
    S. pneumoniae
    PF-610 S. epidermidis VFLKLKTSKIDLASIIFYP 816
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-612 S. epidermidis GTTLKYGLERQLKIDIHPEITIINLNGGA 817
    M. luteus DEFAKL
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-613 C. jeikeium ADEFAKL 818
    PF-614 S. epidermidis GLDIYA 819
    E. coli
    C. jeikeium
    PF-615 S. epidermidis FLNRFIFYIFTVKTKSALIKNLFLD 820
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    C. jeikeium
    C. jejuni
    PF-616 C. jeikeium IVFVVTKEKK 821
    PF-617 P. aeruginosa PMNAAEPE 822
    C. albicans
    PF-619 S. epidermidis WSRVPGHSDTGWKVWHRW 823
    M. luteus
    B. subtilis
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-621 S. epidermidis PPSSFLV 824
    C. albicans
    PF-622 S. epidermidis TREDVFSVRLINNIVNKQA 825
    P. aeruginosa
    C. albicans
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-623 S. epidermidis VLFAVYLGALDWLFSWLTQKM 826
    P. aeruginosa
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-625 S. epidermidis SDSTNNARTRKKARDVTTKDIDK 827
    M. luteus
    S. pneumoniae
    C. jeikeium
    PF-626 S. epidermidis KYDFDDFEPEEA 828
    M. luteus
    E. coli
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-627 S. epidermidis INDLLSYFTLHEK 829
    P. aeruginosa
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-629 S. epidermidis GLAAIATVFALY 830
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-630 S. epidermidis IPATPIIHS 831
    M. luteus
    P. mirabilis
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-631 S. epidermidis LIIYFSKTGNTARATRQI 832
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-632 S. epidermidis TTIQGVASLEKHGFRYTIIYPTRI 833
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-634 S. epidermidis MPKARPVNHNKKKSKITIKSNFTLFYM 834
    M. luteus FNP
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-635 S. epidermidis MNAHGHSLIFQKMIVHAFAFFSKQKNY 835
    P. aeruginosa LYF
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-636 S. epidermidis LVRLA 836
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-637 S. epidermidis SRIKQDARSVRKYDRIGIFFYSFKSA 837
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-638 S. epidermidis TFILPK 838
    C. albicans
    MRSA
    C. jeikeium
    PF-639 S. pneumoniae QATQIKSWIDRLLVSED 839
    C. jeikeium
    PF-640 C. albicans MGDINRNF 840
    PF-641 S. epidermidis SWKCHHLAIGGSWKCHHLAI 841
    M. luteus
    E. coli
    C. albicans
    MRSA
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-642 M. luteus FTTPMIGIPAGLLGGSYYLKRREEKGK 842
    MRSA
    C. jeikeium
    PF-643 Mycobacteria spp VRCRL 843
    PF-644 Mycobacteria spp TSGLIIGENGLNGL 844
    PF-645 Mycobacteria spp SNSVQQG 845
    PF-646 Mycobacteria spp APASPGRRPG 846
    PF-647 Mycobacteria spp GTFLGQKCAAATAS 847
    PF-648 S. mutans ARRYPAAGS 848
    E. coli
    PF-649 Mycobacteria spp CPRYPFVDVGPAGPWRARWRVGS 849
    PF-650 Mycobacteria spp IRSDQPGRQSRSSPRWPTGAGRHR 850
    PF-651 Mycobacteria spp PRWPTGAGRHR 851
    PF-652 Mycobacteria spp FLAPARPDLQAQRQALAQ 852
    PF-653 Mycobacteria spp QSVHPLPAETPVADVI 853
    PF-654 Mycobacteria spp LSGRLAGRR 854
    PF-655 M. smegmatis DAPCFDDQFGDLKCQMC 855
    PF-656 Mycobacteria spp RGMFVPFHDVDCVQ 856
    PF-657 Mycobacteria spp YVANYTITQFGRDFDDRLAVAIHFA 857
    PF-658 Mycobacteria spp PTTPPPTTPPEIPTGGTVIST 858
    PF-659 Mycobacteria spp TVIST 859
    PF-660 Mycobacteria spp TDPQATAAPRRRTSPR 860
    PF-661 Mycobacteria spp PDEDIRRRAILPPAGPCRPMSPE 861
    PF-662 Mycobacteria spp GKQSRAHGPVASRREFRRKSG 862
    PF-663 Mycobacteria spp ATLIPRKA 863
    PF-664 M. smegmatis DQLCVEYPARVSTG 864
    PF-665 Mycobacteria spp VLRVATAVGEVPTGL 865
    PF-666 Mycobacteria spp PNRRSRPR 866
    PF-667 Mycobacteria spp PAHQRLRIDQRLVADRDMVQDYES 867
    PF-668 Mycobacteria spp TNAESMALAFRGRVHMSVNIAGLT 868
    PF-669 Mycobacteria spp RADRIESYPADGDRVITLWRNPYR 869
    PF670 Mycobacteria spp TVIVAPMHSGV 870
    PF-671 S. mutans TVSAFRTVH 871
    E. coli
    PF-673 S. mutans VRRLRM 872
    E. coli
    PF-674 S. mutans DGCDSEPALTYR 873
    E. coli
    PF-675 Mycobacteria spp EIIPISPTRRCEMHTMSSAEYRGL 874
    PF-676 S. mutans AEYRGL 875
    E. coli
    PF-677 Mycobacteria spp TCRGAGMH 876
    PF-678 Mycobacteria spp RDRRWTRRDMYDWLESARV 877
    PF-679 S. mutans CRARFIRR 878
    E. coli
    PF-680 Mycobacteria spp ADPHPTTGI 879
    PF-681 M. smegmatis TALTTVGVSGARLITYCVGVEDI 880
    PF-682 Mycobacteria spp RRGKSEQGLSRR 881
    PF-683 Mycobacteria spp LWPVA 882
    PF-684 Mycobacteria spp RKLSLASGFALWRRSLV 883
    PF-685 Mycobacteria spp PTLWLACL 884
    PF-686 M. smegmatis LAVLMGYIGYRGWSGKRHINRQ 885
    PF-687 Mycobacteria spp AKRVLSLAVAPHRRQPVQGT 886
    PF-688 Mycobacteria spp ARNHAVIPAG 887
    PF-689 S. mutans SAPSG 888
    E. coli
    PF-690 Mycobacteria spp MIPLAGDPVSSHRTVEFGVLGTYLVSG 889
    GSL
    PF-691 Mycobacteria spp HRTVEFGVLGTYLVSGGSL 890
    PF-692 Mycobacteria spp GVAREDPLEPDPLAPIIDDSR 891
    PF-693 Mycobacteria spp PDPAR 892
    PF-694 Mycobacteria spp DLIRPLYSMSAPSVA 893
    PF-695 Mycobacteria spp ALSVMLGNIPLVVPNANQL 894
    PF-696 Mycobacteria spp IRSGISAAYARPLR 895
    PF-697 Mycobacteria spp RADARAK 896
    PF-698 Mycobacteria spp SSGRAGVKCRRPTGR 897
    PF-699 Mycobacteria spp GRAGVKCRRPTGR 898
    PF-700 Mycobacteria spp LNWPFTGR 899
    PF-701 S. mutans PRGAQSGHG 900
    PF-702 Mycobacteria spp LSGRLAGRR 901
    PF-703 Mycobacteria spp MTTVDNIVGLVIAVALMAFLFAALLFPE 902
    KF
    PF-704 Mycobacteria spp APAARAAL 903
    PF-705 S. mutans GEEEGTVAD 904
    E. coli
    PF-706 L. pneumophila LGYGAWIGCGLGLNGFHRID 905
    PF-707 S. mutans IDPESIVTTNNKQDNVDEQ 906
    E. coli
    PF-709 S. mutans NKKHSPMD 907
    PF-711 S. mutans KTAGPTGTIYKTN 908
    PF-712 S. mutans QIYRHVHKVQAKSANLRLY 909
    E. coli
    PF-714 L. pneumophila FVVTQRMLRMYKK 910
    PF-716 S. mutans HGENHEIFIKSDEKDNDSSEKKD 911
    PF-717 E. coli PQSEVTFENIYAPKANGGGLYGI 912
    PF-720 S. mutans SLDMGK 913
    PF-724 L. pneumophila CYRFLTPKRPTRIS 914
    PF-727 S. mutans AYARCRHDYPFTLGQMQTH 915
    E. coli
    PF-728 S. mutans AIGQEQDRREYYYYSGYPYYY 916
    E. coli
    PF-731 L. pneumophila RHKLIRLPLSESVFCFLNNPKI 917
    PF-732 E. coli DRPSQTTHHTLSSSRITGPS 918
    PF-733 S. mutans VISRQMGSEAVLELFIIM 919
    E. coli
    PF-735 S. mutans YDPLFPNDKN 920
    E. coli
    PF-737 S. epidermidis KSSGSSASASSTAGGSSSK 921
    S. pneumoniae
    PF-738 S. epidermidis KSGATSAASGAKSGASS 922
    C. albicans
    C. jeikeium
    PF-741 S. epidermidis AKREDTVAAQIGANILNLIQ 923
    M. luteus
    P. mirabilis
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. .faecalis
    PF-744 S. epidermidis LGVGTFVGKVLIKNQQKQKSKKKAQ 924
    M. luteus
    E. coli
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-745 S. epidermidis ANSQNSLFSNRSSFKSIFDKKSNITTNAT 925
    M. luteus TPNSNIIIN
    C. albicans
    PF-746 S. epidermidis FLGNSQYFTRK 926
    M. luteus
    E. coli
    C. albicans
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-748 S. epidermidis FQGFFDVAVNKWWEEHNKAKLWKNV 927
    M. luteus KGKFLEGEGEEEDDE
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-749 S. epidermidis GVNKWWEEHNKAKLWKNVKGKFLEG 928
    M. luteus EGEEEDDE
    E. coli
    P. aeruginosa
    C. albicans
    S. pneumoniae
    C. jeikeium
    PF-750 M. luteus AESSPAKTTA 929
    C. jeikeium
    PF-751 S. epidermidis AESSPAQETT 930
    E. coli
    C. albicans
    C. jeikeium
    PF-752 S. epidermidis LHVIRPRPELSELKFPITKILKVNKQGLK 931
    E. coli K
    MRSA
    S. pneumoniae
    E. faecalis
    PF-756 S. epidermidis DALLRLA 932
    M. luteus
    C. albicans
    MRSA
    C. jeikeium
    PF-757 M. luteus PQAISSVQQNA 933
    C. albicans
    MRSA
    PF-758 S. epidermidis PEIIKIVSGLL 934
    M. luteus
    E. coli
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-760 S. epidermidis DHITLDDYEIHDGFNFELYYG 935
    M. luteus
    PF-761 S. epidermidis SKFELVNYASGCSCGADCKCASETECK 936
    M. luteus CASKK
    P. mirabilis
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-762 M. luteus PAPAPSAPAPAPEQPEQPA 937
    C. albicans
    PF-763 S. epidermidis GIWMARNYFHRSSIRKVYVESDKEYER 938
    M. luteus VHPMQKIQYEGNYKSQ
    E. coli
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-764 S. epidermidis GYFEPGKRD 939
    M. luteus
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-765 S. epidermidis YLYWEVEHKPIIAKRDAYYAQLRKQKE 940
    M. luteus IEEGA
    E. coli
    MRSA
    E. faecalis
    C. jeikeium
    PF-766 S. epidermidis DAYYAQLRKQKEIEEGA 941
    M. luteus
    C. albicans
    MRSA
    E. faecalis
    C. jeikeium
    PF-767 S. epidermidis DGKQGEPVALKPTDN 942
    M. luteus
    E. coli
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-768 S. epidermidis GFRGGKRGGARG 943
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-770 S. epidermidis GVGIGFIMMGVVGYAVKLVHIPIRYLIV 944
    M. luteus
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    PF-772 S. epidermidis TKESSS 945
    C. albicans
    MRSA
    S. pneumoniae
    C. jeikeium
    PF-773 S. epidermidis TLKESK 946
    C. albicans
    C. jeikeium
    PF-776 S. epidermidis VSILLYLSATIMPNVLRLLVARAIIVRV 947
    M. luteus
    P. mirabilis
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    PF-777 Mycobacteria spp. PGADGKLAEASAAIARLVRS 948
    PF-778 Mycobacteria spp. MNLILTAHGT 949
    PF-779 Mycobacteria spp. IYGDFFNFYLCDISLKVNGLQPGGPVRT 950
    VKLFGQPTGRCTPQ
    PF-780 Mycobacteria spp. AVYDALVALAAAEHRAELATRDARAK 951
    DTYEKIGVHVVVAA
    PF-781 Mycobacteria spp. PLVVVNHRRAERSRG 952
    PF-782 Mycobacteria spp. TGPRRGIDLTSNRALSEVLDEGLELNSR 953
    K
    PF-783 Mycobacteria spp. FTSEVRGVFTYRVNKAGLITNMRGYW 954
    NLDMMTFGNQE
    PF-784 Mycobacteria spp. MAMTTVDNIVGLVIAVALMAFLFAALL 955
    FPEKF
    PF-785 Mycobacteria spp. MRPQHSPAGKAFVVKKITHEQS 956
    PF-786 Mycobacteria spp. LSERERRRLKRGII 957
    PF-787 Mycobacteria spp. MTERQRRALLKQHPEVVSWSDYLEKR 958
    KRRTGTAG
    PF-788 Mycobacteria spp. GLITVFAGTARILQLRRAAKKTHAAAL 959
    R
    PF-789 Mycobacteria spp. PRGAQSGHG 960
    PF-790 Mycobacteria spp. PAGPDHLDQRDHR 961
    PF-791 S. mutans IFLTTQNTDYSEHNAA 962
    PF-792 S. mutans ALHASGIQAI 963
    PF-793 S. mutans YTQUNNASAYAMLLTNKDTVP 964
    PF-794 S. mutans NLYFENQGN 965
    PF-795 S. mutans ALHKSGIQVIADWVPDQIYN 966
    PF-796 S. mutans YTQSNIPTAYALMLSNKDSI 967
    PF-797 S. mutans WYYFDNNGYM 968
    PF-798 S. mutans ALHSKGIKVMADWVPDQMYA 969
    PF-799 S. mutans YTHYNTALSYALLLTNKSSVP 970
    PF-800 S. mutans WYYFDNNGYM 971
    PF-0003 A. naeslundii FCSVDHDVITIAADHVKQGAEA 972
    P. gingivalis
    S. mutans
    PF-0008 A. naeslundii AQPRRTWLVNFGEVPSPGLTNDGMPDH 973
    PF-0034 S. mutans HPMPITVRSRKPGPLTAPSEH 974
    E. coli
    PF-0045 A. naeslundii FREGMGWPLSNEGSPTAPLPKHRNQV 975
    T. denticola
    PF-0050 A. naeslundii QGLARPVLRRIPL 976
    S. mutans
    PF-0052 A. naeslundii SRFRNGV 977
    F. nucleatum
    S. mutans
    PF-0055 A. naeslundii YNLSIYIYFLHTITIAGLITLPFII 978
    F. nucleatum
    P. gingivalis
    S. mutans
    PF-0057 A. naeslundii YFWWYWVQDCIPYKNNEVWLELSNN 979
    F. nucleatum MK
    P. gingivalis
    S. mutans
    PF-0058 A. naeslundii FETGFGDGYYMSLWGLNEKDEVCKVV 980
    F. nucleatum IPFINPELID
    P. gingivalis
    S. mutans
    PF-0061 A. naeslundii TLNYKKMFFSVIFLLGLNYLICNSPLFFK 981
    F. nucleatum QIEF
    P. gingivalis
    S. mutans
    T. denticola
    PF-0062 A. naeslundii PLARATEVVATLFIICSLLLYLTR 982
    F. nucleatum
    P. gingivalis
    S. mutans
    T. denticola
    PF-0063 A. naeslundii SHFRKGD 983
    F. nucleatum
    S. mutans
    PF-0064 A. naeslundii DEEALEMGANLYAQFAIDFLNSKK 984
    F. nucleatum
    P. gingivalis
    S. mutans
    T. denticola
    PF-0065 A. naeslundii DEERYSDSYFLKEKVFYLILALFLILFHQ 985
    F. nucleatum KYLYFLEIITI
    P. gingivalis
    S. mutans
    PF-0068 A. naeslundii LNLFASI 986
    F. nucleatum
    S. mutans
    PF-0069 A. naeslundii NALMLREMQLAKNIKVEVTDVLSNKK 987
    F. nucleatum YC
    P. gingivalis
    S. mutans
    T. denticola
    PF-0071 A. naeslundii QVIVKIL 988
    F. nucleatum
    S. mutans
    PF-0072 A. naeslundii KKMFSLIRKVNWIFFILFIVLDLTNVFPLI 989
    F. nucleatum RTILFAILSRQ
    P. gingivalis
    S. mutans
    T. denticola
    PF-0075 A. naeslundii KALVISVFAIVFSIIFVKFFYWRDKK 990
    F. nucleatum
    P. gingivalis
    S. mutans
    T. denticola
    PF-0080 A. naeslundii INIPGLF 991
    F. nucleatum
    S. mutans
    PF-0084 A. naeslundii FFSVIFLFGLNYLICNSPLFNILR 992
    F. nucleatum
    P. gingivalis
    S. mutans
    PF-0085 A. naeslundii KKFKIFVIINWFYHKYIILNFEENF 993
    F. nucleatum
    P. gingivalis
    S. mutans
    T. denticola
    PF-0086 A. naeslundii ELFFTILSDCNELFLLHLLQQPLFYIKKG 994
    F. nucleatum K
    P. gingivalis
    S. mutans
    T. denticola
    PF-0088 A. naeslundii DIANNILNSVSERLIIA 995
    F. nucleatum
    P. gingivalis
    S. mutans
    T. denticola
    PF-0091 A. naeslundii ASNTPRFVRLTLFNFYSKIWNVTHLFLF 996
    F. nucleatum NNL
    P. gingivalis
    S. mutans
    T. denticola
    PF-0093 A. naeslundii EKLGTMV 997
    F. nucleatum
    S. mutans
    PF-0095 A. naeslundii LLALNIVINEDTYYFELFFIFDNQNKKWL 998
    F. nucleatum IFDLKERG
    P. gingivalis
    S. mutans
    PF-0098 A. naeslundii PETKGKVSAFVFGIVVANVIAVVYILYM 999
    F. nucleatum LREIGIIQ
    P. gingivalis
    S. mutans
    T. denticola
    PF-C120 A. naeslundii ASLSTMTFKVMELKELIILLCGLTMLMI 1000
    F. nucleatum QTEFV
    P. gingivalis
    S. mutans
    T. denticola
    PF-C131 A. naeslundii QWIVAKREIRMHIYCHISVIHVIIFFG 1001
    F. nucleatum
    P. gingivalis
    S. mutans
    PF-C134 A. naeslundii NELMKYPATLTATATTPGIKYSHLCSVC 1002
    F. nucleatum L
    P. gingivalis
    S. mutans
    T. denticola
    PF-C135 A. naeslundii KNTHAYLRVLRLSSLILSYQASVYPLFA 1003
    F. nucleatum YLCQQKDY
    P. gingivalis
    S. mutans
    PF-C136 A. naeslundii LILSYQASVYPLFAYLCQQKDY 1004
    F. nucleatum
    P. gingivalis
    S. mutans
    T. denticola
    PF-C137 A. naeslundii QRMYWFKRGFETGDFSAGDTFAELK 1005
    F. nucleatum
    P. gingivalis
    S. mutans
    PF-C139 A. naeslundii LLASHPERLSLGVFFVYRVLHLLLENT 1006
    F. nucleatum
    P. gingivalis
    S. mutans
    T. denticola
    PF-C142 A. naeslundii DFPPLSFFRRRFHAYTAPIDNFFGANPF 1007
    F. nucleatum
    P. gingivalis
    S. mutans
    T. denticola
    PF-C143 A. naeslundii VVFGGGDRLV 1008
    F. nucleatum
    P. gingivalis
    S. mutans
    T. denticola
    PF-C145 A. naeslundii YGKESDP 1009
    F. nucleatum
    P. gingivalis
    S. mutans
    T. denticola
    PF-C160 F. nucleatum AASGFTYCASNGVWHPY 1010
    PF-C180 F. nucleatum TVEELDKAFTWGAAAALAIGVIAINVG 1011
    P. gingivalis LAAGYCYNNNDVF
    S. mutans
    T. denticola
    PF-C181 P. gingivalis KMRAGQVVFIYKLILVLLFYVLQKLFD 1012
    LKKGCF
    PF-C194 A. naeslundii NTNDLLQAFELMGLGMAGVFIVLGILYI 1013
    F. nucleatum VAELLIKIFPVNN
    P. gingivalis
    S. mutans
    T. denticola
    PF-C259 F. nucleatum AEIQPHCLSVL 1014
    S. mutans
    PF-C271 A. naeslundii FFPSYYSIIITYF 1015
    F. nucleatum
    P. gingivalis
    S. mutans
    T. denticola
    PF-C273 A. naeslundii KNMLKRRMKQKRLFDEEDRLRVLSKY 1016
    P. gingivalis TKSYY
    S. mutans
    T. denticola
    PF-C281 A. naeslundii KKEKLLTAIRLQHRAEIRGYFTIFFLFFRI 1017
    F. nucleatum
    P. gingivalis
    S. mutans
    T. denticola
    PF-C285 A. naeslundii FTIIELKKQKIKHGENNKKTAHPLNEPF 1018
    F. nucleatum CARA
    P. gingivalis
    S. mutans
    T. denticola
    PF-C290 A. naeslundii GNVHPESDFHNLIQFIKTFLYFTIFFKYF 1019
    F. nucleatum L
    P. gingivalis
    S. mutans
    T. denticola
    PF-C291 A. naeslundii HPFLTGTGCPLFLIFRLFFVKAYFSFTVF 1020
    F. nucleatum
    P. gingivalis
    S. mutans
    PF-S003 S. epidermidis ALALLKQDLLNFEGRGRIITSTYLQFNE 1021
    M. luteus GCVP
    P. mirabilis
    E. coli
    P. aeruginosa
    C. albicans
    MRSA
    S. pneumoniae
    E. faecalis
    C. jeikeium
    C. jejuni
    M. smegmatis
    PF-S004 S. epidermidis VLLNIFRTLLEFFSPSNAPGAEDVPLPDT 1022
    MRSA QA
    C. jeikeium
    PF-S007 S. epidermidis VVAGVVLLTALAVGSKRKEKKQIKEIQ 1023
    MRSA RLLAATR
    PF-S015 S. epidermidis IENLERGARRPP 1024
    MRSA
    C. jeikeium
    PF-S018 S. epidermidis GMPQIPRLRI 1025
    M. luteus
    C. albicans
    MRSA
    E. faecalis
    C. jeikeium
    C. jejuni
    PF-S023 S. epidermidis MAEDERRALKRRTNRGRTRTRKRITV 1026
    MRSA
    PF-S026 S. epidermidis TELKYNGEEYLLLTQRDILAVIEK 1027
    MRSA
    C. jeikeium
    PF-S029 M. luteus TSDTQSQSPWLFDNADIVNIYPVQLMHS 1028
    P. mirabilis SDND
    E. coli
    C. albicans
    C. jeikeium
    C. jejuni
    *Peptide binding was conducted in aqueous buffers that varied depending on peptidesolubility. For example: Brain Heart Infusion (BHI) Media; 1X Phosphate-buffered saline(PBS); 0.05% v/v Tween-20; 0.05% v/v Tween-80; 1% v/v Glycerol; 50 μM Guanidine hydrochloride; 0.05% v/v Acetic acid; 50 Urea; 1% v/v Polyethylene glycol 400 (PEG 400); 20 mM Sodium glutamate; 50 μM Piperazine-1,4-bis(2-ethanesulfonic acid) (PIPES); 50 mM Sodium acetate; 1% v/v Pluronic 17R4; 1% w/v Pluronic F108; 1% w/v Pluronic P123; 0.2% v/v Cetyl trimethylammonium bromide (CTAB); 0.8% v/v β-D-Octyl glucoside (BOG); 0.2% CTAB and 0.05% Tween-20; 0.2% CTAB and 0.05% Tween-80; 0.2% CTAB and 1% glycerol; and 20 mM HEPES (4-(2-hydroxyethyl)-1- piperazineethanesulfonic acid), 150 mM sodium chloride, 1mM magnesium chloride and 0.1% CTAB. Preferably, binding was evaluated in lx PBS.
    **Three-amino acid code: Dab: Diaminobutyric acid; Orn: Ornithine; cDOrn, cOrn: side- chain cyclical Ornithine; Abreviations: c(X...Y) indicates amino acids are cyclic, connected X to Y; DX indicates D-isoform amino acids.
  • In certain embodiments, the amino acid sequence of the targeting peptides comprises or consists of a single amino acid sequence, e.g., as listed above in Table 3. In certain embodiments the amino acid sequence of the targeting peptides comprises two copies, three copies, four copies, five copies six copies or more of one or more of the amino acid sequences listed in Table 3, and/or Table 10, and/or Table 12. Thus, compound targeting constructs are contemplated where the construct comprises multiple domains each having targeting activity. The targeting domains comprising such a construct can be the same or different. In certain embodiments the construct comprises at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 different targeting domains each domain comprising a different targeting sequence.
  • Various targeting domains comprising such a construct can be joined directly to each other or two or more of such domains can be attached to each other via a linker. An illustrative, but non-limiting, list of suitable linkers is provided in Table 16. Thus, in certain embodiments, two or more targeting domains comprising a compound/multiple targeting construct are chemically conjugated together.
  • In certain embodiments the two or more targeting domains comprising the construct are joined by a peptide linker. Where all the targeting domains are attached directly to each other or are joined by peptide linkers, the entire construct can be provided as a single-chain peptide (fusion protein).
  • In various embodiments, the targeting peptides described herein comprise one or more of the amino acid sequences shown in Table 3, and/or Table 10, and/or Table 12 (and/or the retro, inverso, retroinverso, etc. forms of such sequences). In certain embodiments the peptides range in length up to about 100 amino acids in length, preferably up to about 80, about 70, about 60, or about 51 amino acids in length. In certain embodiments the peptides range in length from about 8 amino acids up to about 100 amino acids 80 amino acids, 60 amino acids or about 51 amino acids in length. In certain embodiments the peptides range in length from about 8 up to about 50, 40, 30, 20, 15, 15, 13, or 12 amino acids in length.
  • As shown in Tables 3, 10, and 12 the various amino acid sequences described herein target particular microorganisms. The range of activity of the peptides or compositions comprising such peptides can be increased by including amino acid sequences that target different microorganisms either as separate components and/or as multiple domains within a single construct.
  • In some embodiments greater specificity and/or avidity can be obtained by including multiple different amino acid sequences that target the same microorganism.
  • II. Antimicrobial Peptides.
  • A) Uses of Antimicrobial Peptides.
  • The antimicrobial peptides described herein also have a wide variety of uses. For example, the peptides can be formulated individually, in combination, in combination with other antimicrobial peptides, and/or in combination with various antibacterial agents to provide antimicrobial pharmaceuticals.
  • In various embodiments, the antimicrobial peptides described herein can be formulated individually, in combination, in combination with other antimicrobial peptides, and/or in combination with various antibiotic (e.g., antibacterial) agents in “home healthcare” formulations. Such formulations include, but are not limited to toothpaste, mouthwash, tooth whitening strips or solutions, contact lens storage, wetting, or cleaning solutions, dental floss, toothpicks, toothbrush bristles, oral sprays, oral lozenges, nasal sprays, aerosolizers for oral and/or nasal application, wound dressings (e.g., bandages), and the like.
  • In various embodiments the antimicrobial peptides described herein can be formulated individually, in combination, in combination with other antimicrobial peptides, and/or in combination with various antibiotic (e.g., antibacterial) agents in various cleaning and/or sterilization formulations for use in agriculture, in fool preparation and transport, in the home, workplace, clinic, or hospital.
  • In certain embodiments the antimicrobial peptides described herein are attached to one or more targeting moieties to specifically and/or to preferentially deliver the peptide(s) to a target (e.g. a target microorganism, biofilm, bacterial film, particular tissue, etc.).
  • Other possible uses of the targeting and/or antimicrobial peptides disclosed herein include, but are not limited to biofilm dispersal, biofilm retention, biofilm formation, anti-biofilm formation, cell agglutination, induction of motility or change in motility type, chemoattractant or chemorepellent, extracellular signal for sporogenesis or other morphological change, induction or inhibition of virulence gene expression, utilized as extracellular scaffold, adhesin or binding site, induction or suppression of host immune response, induction or suppression of bacterial/fungal antimicrobial molecule production, quorum-sensing, induction of swarming behavior, apoptosis or necrosis inducing in eukaryotic cells, affecting control of or inducing the initiation of cell cycle in eukaryotes, in archaea or prokaryotes, induces autolysis or programmed cell death, inhibition of phage/virus attachment or replication, evasion of innate immunity, induction or inhibition of genetic transformation or transduction competence, induction or inhibition of pilus-mediated conjugation, induction or inhibition of mating behavior in bacteria and fungi, induction or inhibition of nodule formation or metabolic compartmentalization, metal, ion, or nutrient binding, acquisition or inhibition of metal, ion, or nutrient binding and acquisition, and the like.
  • In certain embodiments, compositions and methods are provided for decreasing the infectivity, morbidity, and rate of mortality associated with a variety of pathogens. The present invention also relates to methods and compositions for decontaminating areas, samples, solutions, and foodstuffs colonized or otherwise infected by pathogens and microorganisms. Certain embodiments of the present compositions are nontoxic and may be safely ingested by humans and other animals. Additionally, certain embodiments of the present invention are chemically stable and non-staining.
  • In some embodiments, the present invention provides compositions and methods suitable for treating animals, including humans, exposed to pathogens or the threat of pathogens. In some embodiments, the animal is contacted with effective amounts of the compositions prior to exposure to pathogenic organisms. In other embodiments, the animal or human is contacted with effective amounts of the compositions after exposure to pathogenic organisms. Thus, the present invention contemplates both the prevention and treatment of microbiological and other infections.
  • In certain embodiments compositions and methods are provided for decontaminating solutions and surfaces, including organic and inorganic samples that are exposed to pathogens or suspected of containing pathogens. In still other embodiments of the present invention, the compositions are used as additives to prevent the growth of harmful or undesired microorganisms in biological and environmental samples.
  • These applications of the peptides described herein are intended to be illustrative and not limiting. Using the teaching provided herein, other uses will be recognized by one of skill in the art.
  • B Illustrative Novel Antimicrobial Peptides.
  • Antimicrobial peptides (also called host defense peptides) are an evolutionarily conserved component of the innate immune response and are found among all classes of life. Unmodified, these peptides are potent, broad spectrum antibiotics which demonstrate potential as novel therapeutic agents. Antimicrobial peptides have been demonstrated to kill Gram-negative and Gram-positive bacteria (including strains that are resistant to conventional antibiotics), mycobacteria (including Mycobacterium tuberculosis), enveloped viruses, and fungi.
  • Naturally-occurring antimicrobial peptides are typically short peptides, generally between 12 and 50 amino acids. These peptides often include two or more positively charged residues provided by arginine, lysine or, in acidic environments, histidine, and frequently a large proportion (generally >50%) of hydrophobic residues (see, e.g., Papagianni et al. (2003) Biotechnol Adv 21: 465; Sitaram and Nagaraj (2002) Curr Pharm Des 8: 727; Durr et al. (2006) Biochim. Biophys. Acta 1758: 1408-1425).
  • Frequently the secondary structures of these molecules follow 4 themes, including i) α-helical, ii) β-stranded due to the presence of 2 or more disulfide bonds, iii) β-hairpin or loop due to the presence of a single disulfide bond and/or cyclization of the peptide chain, and iv) extended. Many of these peptides are unstructured in free solution, and fold into their final configuration upon partitioning into biological membranes. The ability to associate with membranes is a definitive feature of antimicrobial peptides although membrane permeabilisation is not necessary. These peptides have a variety of antimicrobial activities ranging from membrane permeabilization to action on a range of cytoplasmic targets.
  • The modes of action by which antimicrobial peptides kill bacteria is varied and includes, but is not limited to disrupting membranes, interfering with metabolism, and targeting cytoplasmic components. In many cases the exact mechanism of killing is not known.
  • In certain embodiments the antimicrobial peptides include peptides comprising or consisting of one or more of the amino acid sequences shown in Tables 4 (SEQ ID NOs:1029-1078), and/or Table 5 (SEQ ID NOs:1079-1566). In various embodiments the peptides include peptides comprising or consisting of the retro, inverso, retro-inverso, and/or beta form of one or more of the amino acid sequences shown in Tables 4 (SEQ ID NOs:1029-1078), and/or Table 5 (SEQ ID NOs:1079-1566). The peptides can comprise all “L” amino acids, all “D” amino acids, or combinations of “L” and “D” amino acids. Also contemplated are circular permutations of these sequences as well as peptides comprising or consisting of the retro, inverso, retro-inverso, and/or beta form of such circular permutations.
  • It will also be recognized, that in certain embodiments, any peptide or compound AMP described herein can be circularized.
  • In various embodiments the peptides can optionally bear one or more protecting groups, e.g., and the amino and/or carboxyl termini, and/or on side chains.
  • Also contemplated are peptides comprising one, two, three four, or five conservative substitutions of these amino acid sequences.
  • TABLE 4
    Novel antimicrobial peptides, target microorganisms and MIC values.
    Organism MIC SEQ
    ID (μM) Structure/sequence ID NO
    K-1 S.mutans, 25 GLGRVIGRLIKQIIWRR 1029
    K-2 S.mutans, 12.5 VYRKRKSILKIYAKLKGWH 1030
    K-7 S.mutans, 12.5 NYRLVNAIFSKIFKKKFIKF 1031
    K-8 S.mutans, 4 KILKFLFKKVF 1032
    K-9 S.mutans, 4 FIRKFLKKWLL 1033
    K-10 S.mutans, 4 KLFKFLRKHLL 1034
    K-11 S.mutans, 4 KILKFLFKQVF 1035
    K-12 S.mutans, 8 KILKKLFKFVF 1036
    K-13 S.mutans, 16 GILKKLFTKVF 1037
    K-14 S.mutans, 8 LRKFLHKLF 1038
    K-15 S.mutans, 4 LRKNLRWLF 1039
    K-16 S.mutans, 8 FIRKFLQKLHL 1040
    P.aeruginosa, 12.5
    MRSA, 25
    K-17 S.mutans, 8 FTRKFLKFLHL 1041
    K-18 S.mutans, 16 KKFKKFKVLKIL 1042
    K-19 S.mutans, 16 LLKLLKLKKLKF 1043
    K-20 S.mutans, 8 FLKFLKKFFKKLKY 1044
    K-21 S.mutans, 8 GWLKMFKKIIGKFGKF 1045
    K-22 S.mutans, 8 GIFKKFVKILYKVQKL 1046
    1T-88 GRLVLEITADEVKALGEALANAKI 1047
    PF-531 A.baumannii, 25 YIQFHLNQQPRPKVKKIKIFL-NH2 1048
    P.aeruginosa, 50
    T.rubrum, 50
    A.niger, 25
    B.subtilis, 25
    C.difficile, 12.5
    C.jeikeium, 6.25
    S.epidermidis, 50
    S.mutans, 12.5
    PF-527 P.aeruginosa, 50 GSVIKKRRKRMAKKKHRKLLKKTRIQR 1049
    T.rubrum, 25 RRAGK
    A.niger, 50
    B.subtilis, 12.5
    C.jeikeium, 6.25
    MRSA, 50
    S.epidermidis, 25
    PF-672 C.albicans, 1.56 MRFGSLALVAYDSAIKHSWPRPSSVRR 1050
    T.rubrum, 0.78 LRM
    A.niger, 3
    B.subtilis, 0.78
    E.faecalis, 3.13
    MRSA, 1.56
    S.epidermidis, 0.39
    PF-606 E.coli, 50 FESKILNASKELDKEKKVNTALSFNSHQ 1051
    MRSA, 50 DFAKAYQNGKI
    S.epidermidis, 50
    S.mutans, 50
    S.pneumoniae, 50
    PF-547 T.rubrum, 25 WSRVPGHSDTGWKVWHRW-NH2 1052
    B.subtilis, 25
    S.mutans, 12.5
    PF-006 A.baumannii, 50 MGIIAGIIKFIKGLIEKFTGK 1053
    B.subtilis, 25
    MRSA, 50
    PF-545 A.niger, 50 RESKLIAMADMIRRRI-NH2 1054
    B.subtilis, 25
    MRSA, 50
    PF-278 C.albicans, 50 L SLATFAKIFMTRSNWSLKRFNRL 1055
    T.rubrum, 50
    S.epidermidis, 50
    PF-283 T.rubrum, 50 MIRIRSPTKKKLNRNSISDWKSNTSGRF 1056
    B.subtilis, 50 FY
    S.epidermidis, 50
    PF-307 C.albicans, 50 MKRRRCNWCGKLFYLEEKSKEAYCCK 1057
    T.rubrum, 50 ECRKKAKKVKK
    B.subtilis, 50
    PF-168 T.rubrum, 50 VLPFPAIPLSRRRACVAAPRPRSRQRAS 1058
    A.niger, 50
    MRSA, 50
    PF-538 A.baumannii, 25 KNKKQTDILEKVKEILDKKKKTKSVGQ 1059
    C.difficile, 25 KLY
    PF-448 A.niger, 25 SLQSQLGPCLHDQRH 1060
    S.pneumoniae, 50
    PF-583 MRSA, 50 KFQGEFTNIGQSYIVSASHMSTSLNTGK 1061
    S.epidermidis, 50
    PF-600 E.coli, 50 TKKIELKRFVDAFVKKSYENYILERELK 1062
    S.pneumoniae, 50 KLIKAINEELPTK
    PF-525 A.niger, 50 KFSDQIDKGQDALKDKLGDL 1063
    S.pneumoniae, 50
    PF-529 A.niger, 50 LSEMERRRLRKRA-NH2 1064
    S.pneumoniae, 50
    PF-148 A.niger, 50 RRGCTERLRRMARRNAWDLYAEHFY 1065
    B.subtilis, 50
    PF-530 A.baumannii, 25 SKFKVLRKIIIKEYKGELMLSIQKQR 1066
    PF-522 C.difficile, 25 FELVDWLETNLGKILKSKSA-NH2 1067
    PF-497 B.subtilis, 50 LVLRICTDLFTFIKWTIKQRKS 1068
    PF-499 B.subtilis, 50 VYSFLYVLVIVRKLLSMKKRIERL 1069
    PF-322 B.subtilis, 50 GIVLIGLKLIPLLANVLR 1070
    PF-511 S.pneumoniae, 50 VMQSLYVKPPLILVTKLAQQN 1071
    PF-512 S.pneumoniae, 50 SFMPEIQKNTIPTQMK 1072
    PF-520 S.pneumoniae, 50 LGLTAGVAYAAQPTNQPTNQPTNQPTN 1073
    QPTNQPTNQPRW-NH2
    PF-521 S.pneumoniae, 50 CGKLLEQKNFFLKTR 1074
    PF-523 S.pneumoniae, 50 ASKQASKQASKQASKQASKQASRSLKN 1075
    HLL
    PF-524 S.pneumoniae, 50 PDAPRTCYHKPILAALSRIVVTDR 1076
    PF-209 MRSA, 50 NYAVVSHT 1077
    PF-437 S.pneumoniae, 50 FQKPFTGEEVEDFQDDDEIPTII 1078

    Where protecting groups are shown (e.g., —NH2) they are optional. Conversely any peptide shown without protecting groups can bear one or more such groups.
  • In certain embodiments peptides that induce alterations in phenotype or other biological activities can also be used as antimicrobial effector moieties. Illustrative alternative peptides are shown in Table 5.
  • TABLE 5
    Illustrative list of novel morphology, biofilm and growth disrupting peptides.
    SEQ ID
    ID Organism, effect Structure/sequence NO
    G-1 S.mutans: Ca2 DSSQSDSDSDSNSSNTNSNSSITNG 1079
    binding
    G-2 S.mutans: biofilm LPGTLHIQAEFPVQLEAGSLIQIFD 1080
    structure
    G-4 S.mutans: EIPIQLANDLANYYDISLDSIFFW 1081
    Biofilm structure
    G-5 M.xanthus: RDMTVAGKRPNFLIITTDEE 1082
    Altered cell
    morphology
    G-6 M.xanthus: NTSIVCAVTFAPIKEVPLLWRAGLTLRS 1083
    Altered cell RQS
    morphology
    G-7 M.xanthus: QAKVEREVERDLVYTLRRLCDPSGSER 1084
    Altered cell TK
    morphology
    G-8 S.mutans: PRMIDIISFHGCHGDHQVWTDPQATAL 1085
    Altered biofilm PR
    structure
    PF-001 S.epidermidis (C) MNNWIIVAQLSVTVINEIIDIMKEKQKG 1086
    M.luteus (C) GK
    MRSA (R)
    C.jeikeium (D)
    PF-002 B.subtilis (R) NDDAQ 1087
    S.pneumoniae (H)
    PF-003 S.epidermidis (D) MNNWIKVAQISVTVINEVIDIMKEKQN 1088
    M.luteus (A) GGK
    MRSA (R)
    C.jeikeium (A)
    PF-004 S.epidermidis (A) ARLSKAIIIAVIVVYHLDVRGLF 1089
    M.luteus (A)
    MRSA (R)
    C.jeikeium (A)
    PF-005 B.subtilis (C) MESIFKIKLMNGICRSENMNMKKKNK 1090
    S.pneumoniae (H) GEKI
    PF-006 S.epidermidis (D) MGIIAGIIKFIKGLIEKFTGK 1091
    M.luteus (A)
    B.subtilis (I)
    MRSA (I)
    S.pneumoniae (R)
    C.jejuni (D)
    PF-007 S.epidermidis (A) MGIIAGIIKVIKSLIEQFTGK 1092
    M.luteus (A)
    E.coli (A)
    MRSA (R)
    E.faecalis (A)
    PF-008 B.subtilis (D) MIEIGSIAYLNGGSKKYNHILNQENR 1093
    C.jejuni (R)
    PF-009 S.epidermidis (S) SKKYNHILNQENR 1094
    PF-010 S.epidermidis (S) MDIDVNKLLQAFVYFKSFEKLRHNNS 1095
    M.luteus (A)
    MRSA (R)
    C.jeikeium (A)
    PF-011 MRSA (R) MFCYYKQHKGDNFSIEEVKNIIADNEM 1096
    C.jeikeium (C) KVN
    PF-012 S.epidermidis (S) WRGPNTEAGGKSANNIVQVGGAPT 1097
    M.luteus (C)
    MRSA (R)
    C.jeikeium (A)
    PF-013 S.epidermidis (C) LIQKGLNQTFIVVIRLNNFIKKS 1098
    M.luteus (D)
    MRSA (R)
    C.jeikeium (D)
    PF-015 MRSA (W) SIDKRNLYNLKYYE 1099
    PF-017 MRSA (M) ESIIE 1100
    PF-019 MRSA (M) NDTNK 1101
    PF-020 S.mutans (F) MKIILLLFLIFGFIVVVTLKSEHQLTLFSI 1102
    S.epidermidis (C)
    M.luteus (C)
    MRSA (C)
    S.pneumoniae (D)
    PF-021 S.epidermidis (A) FSLNFSKQKYVTVN 1103
    M.luteus (A)
    MRSA (R)
    C.jeikeium (R)
    PF-022 S.epidermidis (D) MINELKNKNSGIMNNYVVTKESKL 1104
    M.luteus (A)
    MRSA (R)
    C.jeikeium (A)
    PF-023 MRSA (S) MTKNTIISLENEKTQINDSENESSDLRK 1105
    AK
    PF-024 S.epidermidis (D) DLRKAK 1106
    MRSA (M)
    PF-025 S.epidermidis (S) LLIIFRLWLELKWKNKK 1107
    M.luteus (A)
    MRSA (R)
    C.jeikeium (A)
    PF-026 MRSA (M) SIHFIN 1108
    PF-027 S.epidermidis (D) HNARKYLEFISQKIDGDKLTKEDSL 1109
    MRSA (M)
    PF-028 S.epidermidis (M) ALDCSEQSVILWYETILDKIVGVIK 1110
    MRSA (R)
    C.jeikeium (M)
    PF-029 MRSA (M) NSTNE 1111
    PF-030 S.epidermidis (D) MTCHQAPTTTHQSNMA 1112
    M.luteus (C)
    MRSA (R)
    C.jeikeium (C)
    PF-031 MRSA (M) MPHHSTTSSRIVVPAHQSNMASTPNLSI 1113
    TP
    PF-032 S.epidermidis (S) RIVVPAHQSNMASTPNLSITP 1114
    C.jeikeium (C)
    PF-033 S.epidermidis (M) MFIFKTTSKSHFHNNVKSLECIKIPINK 1115
    B.subtilis (C) NR
    MRSA (M)
    S.pneumoniae (R)
    C.jeikeium (D)
    C.jejuni (R)
    PF-034 S.epidermidis (A) EPKKKHFPKMESASSEP 1116
    PF-035 MRSA (M) SFYESY 1117
    PF-036 S.epidermidis (S) ILNRLSRIVSNEVTSLIYSLK 1118
    M.luteus (A)
    MRSA(R)
    C.jeikeium (A)
    PF-037 S.epidermidis (D) MTKKRRYDTTEFGLAHSMTAKITLHQ 1119
    M.luteus (C) ALYK
    MRSA (R)
    C.jeikeium (D)
    PF-040 S.mutans (F) MIHLTKQNTMEALHFIKQFYDMFFILN 1120
    S.epidermidis (D) FNV
    M.luteus (D)
    B.subtilis (D)
    P. mirabilis (C)
    E.coli (C)
    MRSA (D)
    S.pneumoniae (D)
    C.jeikeium (D)
    C.jejuni (D)
    PF-041 S.epidermidis (R) ELLVILPGFI 1121
    MRSA (M)
    PF-042 S.epidermidis (D) LLSYFRYTGALLQSLF 1122
    M.luteus (C)
    MRSA (R)
    C.jeikeium (S)
    PF-043 S.epidermidis (D) MIKNETAYQMNELLVIRSAYAK 1123
    M.luteus (C)
    MRSA (R)
    C.jeikeium (A)
    PF-045 MRSA (S) LDINDYRSTY 1124
    PF-046 S.epidermidis (C) LDFYLTKHLTLML 1125
    MRSA (R)
    C.jeikeium (R)
    PF-048 S.epidermidis (D) LYFAFKKYQERVNQAPNIEY 1126
    MRSA (W)
    C.jeikeium (S)
    PF-049 MRSA (S) AYYLKRREEKGK 1127
    PF-051 S.mutans (D) RFFNFEIKKSTKVDYVFAHVDLSDV 1128
    S.epidermidis (D)
    M.luteus (C)
    MRSA (D)
    S.pneumoniae (D)
    PF-052 S.epidermidis (S) QELINEAVNLLVKSK 1129
    M.luteus (A)
    MRSA (R)
    C.jeikeium (D)
    PF-053 S.epidermidis (C) KLFGQWGPELGSIYILPALIGSIILIAIVT 1130
    M.luteus (D) LILRAMRK
    B.subtilis (H)
    E.coli (A)
    P.aeruginosa (A)
    C.albicans (A)
    MRSA (D)
    S.pneumoniae (S)
    E.faecalis (A)
    C.jeikeium (D)
    C.jejuni (D)
    PF-056 S.epidermidis (D) AEQLFGKQKQRGVDLFLNRLTIILSILF 1131
    M.luteus (D) FVLMICISYLGM
    B.subtilis (C)
    C.albicans (B)
    MRSA (M)
    S.pneumoniae (D)
    C.jeikeium (S)
    C.jejuni (D)
    PF-057 S.epidermidis (D) TMIVISIPRFEEYMKARHKKWM 1132
    M.luteus (C)
    E.coli (M)
    C.albicans (A)
    MRSA (M)
    S.pneumoniae (R)
    E.faecalis(A)
    C.jeikeium (A)
    C.jejuni (D)
    PF-058 MRSA (M) FADQSQDNA 1133
    PF-059 C.jejuni (C) TITLKAGIERALHEEVPGVIEVEQVF 1134
    PF-061 S.epidermidis (R) GYNSYKAVQDVKTHSEEQRVTAKK 1135
    B.subtilis (R)
    S.pneumoniae (R)
    C.jejuni (R)
    PF-063 S.epidermidis (R) IAAIIVLVLFQKGLLQIFNWILIQLQ 1136
    M.luteus (R)
    B.subtilis (C)
    P.aeruginosa (A)
    MRSA (M)
    S.pneumoniae (D)
    C.jeikeium(D)
    C.jejuni (D)
    PF-064 S.epidermidis (D) DYYGKE 1137
    MRSA (M)
    PF-065 S.epidermidis (D) LEKNTRDNYFIHAIDRIYINTSKGLFPES 1138
    MRSA (R) ELVAWG
    C.jeikeium (A)
    PF-066 MRSA (S) IKGTVKAVDETTVVITVNGHGTELTFE 1139
    KPAIKQVDPS
    PF-067 S.epidermidis (D) DLIVKVHICFVVKTASGYCYLNKREAQ 1140
    M.luteus (R) AAI
    B.subtilis (C)
    P.aeruginosa (A)
    MRSA (M)
    S.pneumoniae (D)
    C.jeikeium (D)
    C.jejuni (D)
    PF-068 S.epidermidis (M) SHLINNFGLSVINPSTPICLNFSPVFNLL 1141
    M.luteus (D) TVYGITCN
    B.subtilis (A)
    E.coli (A)
    MRSA (M)
    S.pneumoniae (D)
    E.faecalis (A)
    C.jeikeium (R)
    C.jejuni (D)
    PF-069 B.subtilis (D) FDPVPLKKDKSASKHSHKHNH 1142
    C.jejuni (R)
    PF-070 B.subtilis (D) SMVKSEIVDLLNGEDNDD 1143
    PF-071 S.epidermidis (R) HCVIGNVVDIANLLKRRAVYRDIADVI 1144
    M.luteus (R) KMR
    B.subtilis (D)
    C.albicans (B)
    MRSA (C)
    S.pneumoniae (A)
    C.jejuni (A)
    PF-073 S.epidermidis (R) CPSVTMDACALLQKFDFCNNISHFRHF 1145
    M.luteus (R) FAIKQPIER
    MRSA (M)
    S.pneumoniae (D)
    C.jeikeium (D)
    C.jejuni (D)
    PF-074 S.epidermidis (D) RDIHPIYFMTKD 1146
    MRSA (M)
    PF-075 S.epidermidis (D) FVNSLIMKDLSDNDMRFKYEYYNREK 1147
    M.luteus (A) DT
    MRSA (R)
    C.jeikeium (D)
    PF-076 S.epidermidis (S) LYQYELLSKEEYLKCTLIINQRRNEQK 1148
    M.luteus (A)
    MRSA (R)
    C.jeikeium (A)
    PF-099 S.epidermidis (D) EIIAYLEGRFANA 1149
    C.jeikeium (C)
    PF-123 S.epidermidis (M) TTRPQVAEDRQLDDALKETFPASDPISP 1150
    PF-124 S.epidermidis (C) MADGQIAAIAKLHGVPVATRNIRHFQS 1151
    C.jeikeium (R) FGVELINPWSG
    PF-125 S.epidermidis (D) YVVGALVILAVAGLIYSMLRKA 1152
    M.luteus (C)
    PF-127 S.epidermidis (M) MLRYLSLFAVGLATGYAWGWIDGLA 1153
    M.luteus (A) ASLAV
    C.jeikeium (A)
    PF-128 S.epidermidis (D) GIKVVAARFEEIQFSENFDSIILA 1154
    P.aeruginosa (C)
    PF-129 S.epidermidis (M) MKLLARDPWVCAWNDIW 1155
    C.jeikeium (R)
    PF-133 C.jeikeium (R) GDPTAGQKPVECP 1156
    PF-135 C.jeikeium (R) PPARPARIPQTPTLHGASLFRQRS 1157
    PF-137 S.epidermidis (D) VLGKGHDLLDVGKTALKSRVFAWLG 1158
    M.luteus (D) GS
    C.jeikeium (A)
    PF-139 S.epidermidis (M) ALSKPAIQARTLCRRQDPP 1159
    M.luteus (C)
    C.jeikeium (R)
    PF-140 S.epidermidis (D) FHRRVIRASEWALTTRSFSTPLRSAAR 1160
    M.luteus (R)
    P.aeruginosa (A)
    C.albicans (B)
    MRSA (M)
    S.pneumoniae (D)
    C.jeikeium (D)
    C.jejuni (D)
    PF-143 P.aeruginosa (C) LSPRPIIVSRRSRADNNNDWSR 1161
    PF-144 S.pneumoniae (H) RSGQPVGRPSRRAWLR 1162
    PF-145 S.epidermidis (D) GIVLTGRAGLVSGACSMALGVGLG 1163
    M.luteus (A)
    B.subtilis (C)
    MRSA (M)
    S.pneumoniae (R)
    C.jeikeium (R)
    C.jejuni (R)
    PF-148 S.epidermidis (D) RRGCTERLRRMARRNAWDLYAEHFY 1164
    M.luteus (A)
    B.subtilis (I)
    C.albicans (B)
    MRSA (C)
    S.pneumoniae (R)
    C.jeikeium (H)
    C.jejuni (H)
    PF-149 MRSA (H) GKVSVLTRVPRSLGGAPANQ 1165
    PF-153 S.epidermidis (M) GILARADCSQIA 1166
    C.jeikeium (C)
    PF-156 MRSA (H) LITAEQPATAPIAGK 1167
    PF-157 S.epidermidis (M) HTAVVWLAGVSGCVALSHCEPA 1168
    PF-164 C.jeikeium (R) EEVSRALAGIGLGLGCRIG 1169
    PF-168 P.aeruginosa (H) VLPFPAIPLSRRRACVAAPRPRSRQRAS 1170
    MRSA (I)
    PF-171 S.epidermidis (R) TQVTLCRTW 1171
    M.luteus (R)
    B.subtilis (D)
    MRSA (M)
    S.pneumoniae (D)
    C.jejuni (R)
    PF-173 S.epidermidis (A) AGRTAIVQGGG 1172
    C.jeikeium (D)
    PF-175 M.luteus (S) RRRPAGQRPEKASQAMIAA 1173
    B.subtilis (D)
    C.albicans (B)
    S.pneumoniae (A)
    C.jejuni (M)
    PF-176 S.epidermidis (C) RLTSNQFLTRITPFVFAQH 1174
    M.luteus (C)
    C.jeikeium (D)
    PF-178 S.epidermidis (D) EVYSSPTNNVAITVQNN 1175
    E.coli (C)
    MRSA (M)
    S.pneumoniae (D)
    PF-180 S.epidermidis (C) SGLGDLGFSSEAK 1176
    PF-186 S.epidermidis (C) DADKNLSLERDRFAWRVAAP 1177
    C.jeikeium (A)
    PF-188 C.jeikeium (H) ARTFAGRLGTRYFGGLMRSTKA 1178
    PF-190 S.epidermidis (C) HFILRKPLLFMIHSLKTGPLDRF 1179
    C.jeikeium (R)
    PF-191 S.epidermidis (A) QFCNFAWLFLASNNAQVSALA 1180
    MRSA (H)
    C.jeikeium (R)
    PF-192 S.epidermidis (D) VEEDEAPPPHY 1181
    PF-196 S.epidermidis (C) TTARYIRRQCHTSITPLSQG 1182
    C.jeikeium (R)
    PF-199 S.epidermidis (C) FPAFSFGAIAGSVSVAR 1183
    M.luteus (A)
    C.jeikeium (R)
    PF-203 S.epidermidis (A) SWKCHHLAI 1184
    C.jeikeium (R)
    PF-204 S.epidermidis (C) ALQKQDMNLPSVKNQLVFLKSTG 1185
    M.luteus (C)
    P.aeruginosa (H)
    C.jeikeium (D)
    PF-208 S.epidermidis (D) DAYHCHLVRSPDAHDLSMRIGFV 1186
    C.jeikeium (A)
    PF-209 S.epidermidis (C) NYAVVSHT 1187
    P.aeruginosa (H)
    MRSA (I)
    PF-212 M.luteus (M) NDSKASN 1188
    PF-215 M.luteus (T) ELKITNYNVNTVLYRYYKWGNDLCE 1189
    PF-220 S.pneumoniae (H) VDPADDGTRHIRPEDGDPIEIDE 1190
    PF-224 M.luteus (T) DYFYITLSQKNTF 1191
    PF-226 S.epidermidis (C) LMFFSENMDKRDTLSGKFRYFAGSKVI 1192
    M.luteus (T) KLMNWLSENGK
    PF-233 S.epidermidis (C) DANAMARTTIAIVYILALIALTISYSL 1193
    PF-234 M.luteus (T) RTPYILRS 1194
    PF-235 M.luteus (T) GIPFSKPHKRQVNYMKSDVLAYIEQNK 1195
    MAHTA
    PF-249 M.luteus (R) INSRYKISF 1196
    PF-250 M.luteus (T) SEDIFGRLANEKANGLEELRKIRLKQ 1197
    PF-255 M.luteus (M) DHKINESQHNPFRSDSNKQNVDFF 1198
    PF-257 M.luteus (R) VWENRKKYLENEIERHNVFLKLGQEVI 1199
    KGLNALASRGR
    PF-264 M.luteus (H) MQSLSNRQSLIASYILMGIFLSFGYPPA 1200
    SLSKFFCRLSHL
    PF-270 M.luteus (H) MYLTPYAWIAVGSIFAFSVTTIKIGDQN 1201
    DEKQKSHKNDVHKR
    PF-271 M.luteus (T) AAQPQTTSP 1202
    PF-273 S.epidermidis (C) LVGALLIFVALIYMVLKGNADKN 1203
    PF-274 M.luteus (M) SIQEAEKIIKNDPFYIHDVADYDFMWF 1204
    EPSKSLEEIKEFV
    PF-276 M.luteus (M) LDLALSTNSLNLEGFSF 1205
    PF-278 S.epidermidis (I) LSLATFAKIFMTRSNWSLKRFNRL 1206
    M.luteus (R)
    C.albicans (B)
    PF-283 S.epidermidis (H) MIRIRSPTKKKLNRNSISDWKSNTSGRF 1207
    B.subtilis (H) FY
    PF-289 B.subtilis (C) MGRHLWNPSYFVATVSENTEEQIRKY 1208
    RKNK
    PF-290 S.epidermidis (C) MVHDMTNGTLIIVKH 1209
    PF-292 S.epidermidis (C) SFVSTTVRLIFEESKRYKF 1210
    B.subtilis (C)
    PF-293 S.epidermidis (C) YDPLK 1211
    PF-294 S.epidermidis (C) DFLVNFLWFKGELNWGKKRYK 1212
    PF-296 S.epidermidis (C) GAFGMPSIKTNTICGEKGKFISACDAW 1213
    B.subtilis (C) LSNLK
    PF-297 S.epidermidis (C) ISKGIDDIVYVINKILSIGNIFKIIKRK 1214
    B.subtilis (C)
    PF-301 S.epidermidis (C) GIVLIGLKLIPLLANVLN 1215
    B.subtilis (C)
    PF-303 B.subtilis (C) EYPWSWISEPWPWDKSFYK 1216
    PF-305 B.subtilis (C) MREWICPSCNETHDRDINASINILKEGL 1217
    RLITIQNK
    PF-306 B.subtilis (C) GCILPHKKDNYNYIMSKFQDLVKITSK 1218
    K
    PF-307 S.epidermidis (T) MKRRRCNWCGKLFYLEEKSKEAYCC 1219
    B.subtilis (H) KECRKKAKKVKK
    C.albicans (B)
    PF-310 S.epidermidis (C) GVALIGTILVPLLSGLFG 1220
    PF-313 S.epidermidis (C) YITSHKNARAIIKKFERDEILEEVITHYL 1221
    NRK
    PF-318 S.epidermidis (C) MGRHLWNPSYFVATVSENTEEQIRKYI 1222
    B.subtilis (C) NNQKKQVK
    PF-319 S.epidermidis (C) SIGSMIGMYSFRHKTKHIKFTFGIPFILF 1223
    B.subtilis (C) LQFLLVYFYILK
    PF-322 S.epidermidis (C) GIVLIGLKLIPLLANVLR 1224
    B.subtilis (H)
    PF-335 S.epidermidis (C) AAYPIEDWSDWYEDFFIMLSNI 1225
    B.subtilis (C)
    PF-339 S.epidermidis (C) KKIDILINKYMYLSK 1226
    B.subtilis (C)
    PF-342 S.epidermidis (C) AFSGVYKTLIVYTRRK 1227
    B.subtilis (C)
    PF-344 E.coli (A) DERLPEAKAIRNFNGSVMVLGR 1228
    PF-347 S.epidermidis (C) GIFTGVTVVVSLKHC 1229
    E.coli (C)
    MRSA (C)
    E.faecalis (C)
    PF-349 S.epidermidis (C) MPKSCHVPVLCDFFFLVIIKFLALFKTI 1230
    E.coli (C) QS
    MRSA (C)
    E.faecalis (C)
    PF-350 S.epidermidis (C) LAVILRAIVY 1231
    E.coli (C)
    MRSA (C)
    PF-354 MRSA (H) FTFSKCRASNGRGFGTLWL 1232
    PF-355 S.epidermidis (C) WIAIGLLLYFSLKNQ 1233
    E.coli (C)
    P.aeruginosa (A)
    MRSA (A)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jejuni (D)
    PF-356 S.epidermidis (S) VSIKIGAIVIGMIGLMELLTE 1234
    P.aeruginosa (A)
    MRSA (C)
    S.pneumoniae (R)
    E.faecalis (R)
    C.jejuni (D)
    PF-357 S.epidermidis (M) MLTIIIGFIFWTMTLMLGYLIGEREGRK 1235
    M.luteus (C) RE
    MRSA (M)
    S.pneumoniae (M)
    PF-360 S.epidermidis (S) MEQKVKVIFVPRSKPDNQLKTFVSAVL 1236
    E.coli (C) FKA
    MRSA (H)
    PF-362 E.coli (C) NIERILKEKVWMIRCVE 1237
    MRSA (C)
    PF-363 S.epidermidis (S) SMLSVTVMCLMHASVAANQAMEKKV 1238
    E.coli (C)
    MRSA (H)
    S.pneumoniae (R)
    E.faecalis (D)
    C.jejuni (D)
    PF-366 S.epidermidis (R) ALCSVIKAIELGIINVHLQ 1239
    E.coli (C)
    P.aeruginosa (A)
    MRSA (D)
    S.pneumoniae (C)
    E.faecalis (C)
    C.jejuni (D)
    PF-369 S.epidermidis (S) MSEAVNLLRGARYSQRYAKNQVPYEV 1240
    E.coli (R) IIEK
    MRSA (H)
    E.faecalis (C)
    PF-370 S.epidermidis (C) VIFLHKESGNLKEIFY 1241
    E.coli (R)
    MRSA (C)
    PF-373 S.epidermidis (M) HFYLLFER 1242
    MRSA (M)
    PF-374 S.epidermidis (C) HLFFVKGMFILCQKNQINDE 1243
    E.coli (C)
    MRSA (M)
    E.faecalis (C)
    PF-375 S.epidermidis (C) MDSAKAQTMRTDWLAVSCLVASAYL 1244
    E.coli (C) RSMLA
    MRSA (C)
    E.faecalis (C)
    PF-376 S.epidermidis (C) MTVFEALMLAIAFATLIVKISNKNDKK 1245
    E.coli (C)
    MRSA (C)
    E.faecalis (C)
    PF-378 S.epidermidis (M) ESAKSNLNFLMQEEWALFLLL 1246
    MRSA (M)
    PF-379 S.epidermidis (C) VFVVLFIIYLASKLLTKLFPIKK 1247
    E.coli (C)
    MRSA (C)
    E.faecalis (C)
    PF-380 S.epidermidis (C) KKIIPLITLFVVTLVG 1248
    E.coli (C)
    P.aeruginosa (A)
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (C)
    C.jejuni (D)
    PF-381 S.epidermidis (C) QGANPCQQVGFTVNDPDCRLAKTV 1249
    E.coli (R)
    MRSA (C)
    E.faecalis (C)
    PF-382 MRSA (M) KYKCSWCKRVYTLRKDHKTAR 1250
    PF-383 S.epidermidis (C) WSEIEINTKQSN 1251
    E.coli (R)
    PF-385 E.coli (A) MIKKSILKIKYYVPVLISLTLILSA 1252
    PF-386 S.epidermidis (C) FTLTLITTIVAILNYKDKKK 1253
    E.coli (C)
    MRSA (C)
    E.faecalis (C)
    PF-387 S.epidermidis (C) GAVGIAFFAGNMKQDKRIADRQNKKS 1254
    E.coli (M) EKK
    MRSA (C)
    E.faecalis (C)
    PF-389 S.epidermidis (R) GLQFKEIAEEFHITTTALQQWHKDNGY 1255
    MRSA (C) PIYNKNNRK
    S.pneumoniae (D)
    E.faecalis (R)
    C.jejuni (R)
    PF-390 S.epidermidis (D) VVAYVITQVGAIRF 1256
    E.coli (C)
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jejuni (D)
    PF-392 MRSA (S) DPAGCNDIVRKYCK 1257
    E.faecalis (A)
    C.jejuni (A)
    PF-393 S.epidermidis (R) DLVQSILSEFKKSG 1258
    MRSA (C)
    S.pneumoniae (R)
    E.faecalis (A)
    C.jejuni (R)
    PF-394 MRSA (C) VLKEECYQKN 1259
    E.faecalis (A)
    PF-395 S.epidermidis (C) YCVPLGNMGNMNNKIW 1260
    E.coli (R)
    MRSA (C)
    PF-396 S.epidermidis (S) LIYTILASLGVLTVLQAILGREPKAVKA 1261
    E.coli (C)
    MRSA (C)
    E.faecalis (C)
    PF-397 S.epidermidis (C) VEDLMEDLNA 1262
    PF-398 S.epidermidis (C) ILVVLAGILLVVLSYVGISKFKMNC 1263
    E.coli (C)
    MRSA (C)
    E.faecalis (C)
    PF-399 S.epidermidis (C) FPIISALLGAIICIAIYSFIVNRKA 1264
    E.coli (C)
    MRSA (C)
    E.faecalis (C)
    PF-401 S.epidermidis (C) YWLSRVTTGHSFAFEKPVPLSLTIK 1265
    E.coli (R)
    MRSA (C)
    E.faecalis (C)
    PF-403 S.epidermidis (M) LLSTEQLLKYYDGETFDGFQLPSNE 1266
    E.coli (R)
    MRSA (M)
    PF-404 S.epidermidis (M) VLYFQATVV 1267
    MRSA (M)
    PF-405 MRSA (M) LVRIEVDDLEEWYERNFI 1268
    PF-406 S.epidermidis (C) YLEMNADYLSNMDIFDELWEKYLENN 1269
    MRSA (M) K
    PF-407 S.epidermidis (M) KPKNKKEKTVISYEKLLSMY 1270
    MRSA (C)
    S.pneumoniae (R)
    E.faecalis (R)
    PF-408 S.epidermidis (M) YCVPLGNMGNMNNKIW 1271
    MRSA (M)
    PF-410 S.epidermidis (C) FALELIALCRNLFIVYFP 1272
    E.coli (S)
    MRSA (M)
    E.faecalis (C)
    PF-411 S.epidermidis (C) WVAVAILLNIALQTQLT 1273
    E.coli (C)
    P.aeruginosa (A)
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jejuni (D)
    PF-413 S.epidermidis (C) TFAGSIKIGVPDLVHVTFNCKR 1274
    E.coli (S)
    MRSA (C)
    PF-414 S.pneumoniae (H) LLNKKLE 1275
    PF-415 S.pneumoniae (D) MIDVTIGQKSKTGAFNASYSICFSGENF 1276
    SF
    PF-416 S.pneumoniae (H) SKAGLYGKIERSDKRE 1277
    PF-417 S.epidermidis (M) DSYFRS 1278
    MRSA (M)
    S.pneumoniae (M)
    PF-418 S.epidermidis (M) FFLVHFYIRKRKGKVSIFLNYF 1279
    E.coli (C)
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jejuni (D)
    PF-419 S.pneumoniae (H) VVTGKVGSLPQIK 1280
    PF-421 S.pneumoniae (H) KHCFEITDKTDVV 1281
    PF-422 S.epidermidis (R) MSRKKYENDEKSQKKLKIGRKSDVFY 1282
    MRSA (C) GIID
    S.pneumoniae (C)
    E.faecalis (R)
    C.jejuni (R)
    PF-423 S.pneumoniae (H) AGKKERLLSFREQFLNKNKKK 1283
    PF-424 S.pneumoniae (H) IAAFVTSRAFSDTVSPI 1284
    PF-425 S.epidermidis (D) MMELVLKTIIGPIVVGVVLRIVDKWLN 1285
    E.coli (C) KDK
    P.aeruginosa (A)
    C.albicans (A)
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jejuni (D)
    PF-426 S.epidermidis (D) MLQKYTQMISVTKCIITKNKKTQENVD 1286
    E.coli (C) AYN
    C.albicans (A)
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jejuni (D)
    PF-427 E.coli (C) YVLEYHGLRATQDVDAFMAL 1287
    MRSA (C)
    S.pneumoniae (R)
    E.faecalis (C)
    PF-428 S.pneumoniae (H) ENEESIF 1288
    PF-429 S.epidermidis (C) AATLICVGSGIMSSL 1289
    MRSA (C)
    S.pneumoniae (M)
    E.faecalis (C)
    PF-430 S.epidermidis (M) AVVCGYLAYTATS 1290
    MRSA (M)
    S.pneumoniae (M)
    PF-431 S.epidermidis (M) VAYAAICWW 1291
    MRSA (C)
    S.pneumoniae (R)
    E.faecalis (R)
    C.jejuni (R)
    PF-432 S.epidermidis (M) FNGDSEFFLCIAF 1292
    E.coli (R)
    P.aeruginosa (A)
    MRSA (M)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jejuni (D)
    PF-433 S.pneumoniae (H) MRKEFHNVLSSGQLLADKRPARDYNR 1293
    K
    PF-434 S.pneumoniae (S) GQLLADKRPARDYNRK 1294
    PF-437 S.pneumoniae (I) FQKPFTGEEVEDFQDDDEIPTII 1295
    PF-439 S.epidermidis (C) RVLVLKKFHGIMDGNRNVAVFFVGQ 1296
    E.coli (R)
    MRSA (M)
    S.pneumoniae (R)
    E.faecalis (C)
    PF-440 S.epidermidis (C) MFIISPDLFNIAVILYILFFIHDILLLILS 1297
    E.coli (R)
    MRSA (C)
    S.pneumoniae (R)
    E.faecalis (C)
    PF-442 MRSA (M) MQIFYIKTKIFLSFFLFLLIFSQCFYKIEE 1298
    S.pneumoniae (C)
    PF-443 E.coli (R) KLLYFFNYFENLQQVHLLVQL 1299
    MRSA (C)
    S.pneumoniae (C)
    PF-444 S.epidermidis (C) MAAKLWEEGKMVYASSASMTKRLKL 1300
    E.coli (R) AMSKV
    MRSA (C)
    S.pneumoniae (R)
    E.faecalis (C)
    PF-445 S.pneumoniae (M) ASMTKRLKLAMSKV 1301
    PF-446 S.pneumoniae (H) SGNEKV 1302
    PF-447 S.epidermidis (C) IDKSRNKDQFSHIFGLYNICSG 1303
    MRSA (C)
    S.pneumoniae (C)
    E.faecalis (C)
    PF-448 S.pneumoniae (I) SLQSQLGPCLHDQRH 1304
    PF-449 S.pneumoniae (H) MPTTKSKQKGWTNTKKASNTQ 1305
    PF-450 MRSA (C) HRNLIILQRTIFI 1306
    S.pneumoniae (C)
    E.faecalis (C)
    PF-451 S.epidermidis (C) MVNYIIGSYMLYREQNNNEALRKFDIT 1307
    E.coli (R) LAM
    MRSA (C)
    S.pneumoniae (C)
    E.faecalis (C)
    PF-452 S.epidermidis (C) MNNWIKVAQISVTVINEVIDIMKEKQN 1308
    E.coli (C) GGK
    MRSA (C)
    S.pneumoniae (R)
    E.faecalis (C)
    PF-453 S.epidermidis (C) IIQDIAHAFGY 1309
    E.coli (C)
    MRSA (C)
    S.pneumoniae (C)
    PF-454 S.epidermidis (C) MSVFVPVTNIFMFIMSPIFNVNLLHFKV 1310
    E.coli (R) YI
    P.aeruginosa (H)
    MRSA (C)
    S.pneumoniae (R)
    E.faecalis (C)
    PF-455 S.pneumoniae (A) MARNDDDIKKIKGTLGQSPEVYGERK 1311
    LPYT
    PF-456 E.faecalis (A) TCVKPRTIN 1312
    C.jejuni (A)
    PF-457 S.pneumoniae (M) INKYHHIA 1313
    PF-458 P.aeruginosa (H) ISLIIFIMLFVVALFKCITNYKHQS 1314
    MRSA (M)
    S.pneumoniae (M)
    PF-459 S.pneumoniae (H) EKRMSFNENQSHRPLL 1315
    PF-460 S.epidermidis (C) MEHVLPFQNTPPNIVIIYKDFTHLKSITF 1316
    E.coli (H) S
    MRSA (C)
    S.pneumoniae (R)
    E.faecalis (C)
    PF-461 MRSA (R) MTLAIKNCSVTKCLGFGDFVNDDSDS 1317
    S.pneumoniae (R) YFDA
    E.faecalis (A)
    PF-462 S.pneumoniae (H) KNKTDTL 1318
    PF-464 S.pneumoniae (S) VDMVNRFLGN 1319
    PF-465 S.pneumoniae (H) KPVGKALEEIADGKIEPVVPKEYLG 1320
    PF-466 S.pneumoniae (H) VRKSDQ 1321
    PF-467 S.pneumoniae (H) YYKDYFKEI 1322
    PF-468 S.pneumoniae (H) EDNKDKKDKKDK 1323
    PF-469 S.epidermidis (D) YKVNYNNIDNHFNTLRH 1324
    E.coli (C)
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jejuni (D)
    PF-470 E.faecalis (A) PYSDSYATRPHWEQHRAR 1325
    C.jejuni (A)
    PF-471 S.epidermidis (C) MVGKIRGVTPRNDLLNANITGQLNLN 1326
    E.coli (C) YRLI
    P.aeruginosa (A)
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (C)
    C.jejuni (D)
    PF-472 MRSA (C) MHISHLLDEVEQTEREKAVNVLENMN 1327
    S.pneumoniae (R) GNVI
    E.faecalis (A)
    C.jejuni (R)
    PF-473 S.epidermidis (R) MAADIISTIGDLVKWIIDTVNKFKK 1328
    E.coli (C)
    MRSA (C)
    S.pneumoniae (H)
    E.faecalis (R)
    C.jejuni (R)
    PF-474 S.epidermidis (C) MHRNLVLVKMEPIPHIMIIANQIGIIIEK 1329
    E.coli (C) A
    P.aeruginosa (A)
    C.albicans (B)
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (C)
    C.jejuni (D)
    PF-475 S.epidermidis (M) MREKVRFTQAFKLFWTNYFNFKGRSR 1330
    C.albicans (B) RSEY
    MRSA (S)
    S.pneumoniae (R)
    E.faecalis (R)
    C.jejuni (R)
    PF-476 S.pneumoniae (H) WADAQYKLCENCSE 1331
    PF-477 S.pneumoniae (H) HKNKLNIPHIKS 1332
    PF-478 S.epidermidis (C) HLFILKSHLKPFPPFRYTYD 1333
    E.coli (C)
    MRSA (H)
    S.pneumoniae (C)
    PF-479 S.pneumoniae (C) AYILKRREEKNK 1334
    PF-480 S.epidermidis (C) MVEILVNTAISVYIVALYTQWLSTRDN 1335
    E.coli (R) LKA
    MRSA (C)
    S.pneumoniae (R)
    E.faecalis (C)
    PF-482 S.pneumoniae (S) LVGYVRTSGTVRSYKIN 1336
    PF-484 E.faecalis (A) HKKDIRKQVFKN 1337
    PF-485 S.pneumoniae (A) KNSMSRSIALID 1338
    PF-511 S.pneumoniae (H) VMQ SLYVKPPLILVTKLAQQN 1339
    PF-512 S.pneumoniae (H) SFMPEIQKNTIPTQMK 1340
    PF-513 S.pneumoniae (M) SNGVGLGVGIGSGIRF-NH2 1341
    PF-514 S.epidermidis (C) QRFYKLFYHIDLTNEQALKLFQVK 1342
    E.coli (R)
    S.pneumoniae (M)
    E.faecalis (C)
    PF-515 S.pneumoniae (H) DKSTQDKDIKQAKLLAQELGL-NH2 1343
    PF-516 S.pneumoniae (H) ASKQASKQASKQASKQ 1344
    PF-517 S.pneumoniae (M) VKPTMTASLISTVC 1345
    PF-518 S.epidermidis (C) SFYSKYSRYIDNLAGAIFLFF 1346
    E.coli (R)
    MRSA (C)
    S.pneumoniae (M)
    E.faecalis (C)
    PF-519 E.coli (R) YLVYSGVLATAAAF-NH2 1347
    MRSA (C)
    S.pneumoniae (S)
    E.faecalis (C)
    PF-520 S.pneumoniae (M) LGLTAGVAYAAQPTNQPTNQPTNQPT 1348
    NQPTNQPTNQPRW-NH2
    PF-521 S.pneumoniae (H) CGKLLEQKNFFLKTR 1349
    PF-522 S.pneumoniae (H) FELVDWLETNLGKILKSKSA-NH2 1350
    PF-524 E.coli (M) PDAPRTCYHKPILAALSRIVVTDR 1351
    MRSA (C)
    S.pneumoniae (M)
    E.faecalis (C)
    PF-525 S.pneumoniae (H) KFSDQIDKGQDALKDKLGDL 1352
    PF-526 S.epidermidis (C) VLLLFIFQPFQKQLL-NH2 1353
    E.coli (R)
    C.albicans (C)
    MRSA (C)
    S.pneumoniae (R)
    PF-527 S.epidermidis (M) GSVIKKRRKRMAKKKHRKLLKKTRIQ 1354
    M.luteus (S) RRRAGK
    B.subtilis (I)
    P.aeruginosa (I)
    C.albicans (B)
    MRSA (I)
    S.pneumoniae (H)
    C.jeikeium (I)
    C.jejuni (M)
    PF-528 S.epidermidis (H) LVDVVVLIRRHLPKSCS-NH2 1355
    E.coli (H)
    C.albicans (C)
    MRSA (H)
    S.pneumoniae (R)
    PF-529 S.pneumoniae (H) LSEMERRRLRKRA-NH2 1356
    PF-530 S.epidermidis (H) SKFKVLRKIIIKEYKGELMLSIQKQR 1357
    E.coli (R)
    MRSA (C)
    S.pneumoniae (R)
    E.faecalis (C)
    PF-531 S.epidermidis (I) YIQFHLNQQPRPKVKKIKIFL-NH2 1358
    E.coli (M)
    P.aeruginosa (I)
    S.pneumoniae (C)
    PF-532 E.coli (C) KFIYKYKLSFIIYKILIQTLTMELNK 1359
    MRSA (C)
    S.pneumoniae (C)
    E.faecalis (C)
    PF-533 S.epidermidis (H) KTPNDKIHKTIIIKHIIL 1360
    E.coli (R)
    MRSA (H)
    S.pneumoniae (C)
    E.faecalis (C)
    PF-534 S.epidermidis (C) KYFHLFYHNIIHYSKQHLSLKVDFKN- 1361
    E.coli (R) NH2
    MRSA (C)
    S.pneumoniae (R)
    E.faecalis (C)
    PF-535 P.aeruginosa (H) NIKTRKRALKIIKQHQRSK 1362
    S.pneumoniae (H)
    PF-536 S.epidermidis (C) MEPIPHIMIIANQIGIIIEKA 1363
    E.coli (R)
    P.aeruginosa (H)
    MRSA (C)
    S.pneumoniae (M)
    E.faecalis (C)
    PF-537 S.pneumoniae (C) LANDYYKKTKKSW 1364
    PF-538 S.pneumoniae (H) KNKKQTDILEKVKEILDKKKKTKVG 1365
    QKLY
    PF-539 MRSA (H) SIITKKKRRKIPLSIDSQIYKYTFKQ 1366
    S.pneumoniae (A)
    PF-540 S.epidermidis (H) KSILILIKVIFIGQTTIIL 1367
    E.coli (R)
    MRSA (H)
    S.pneumoniae (R)
    PF-541 E.coli (H) RRNLNSPNIKTRKRALKIIKQHQRSK 1368
    S.pneumoniae (H)
    PF-542 S.pneumoniae (H) KKDNPSLNDQDKNAVLNLLALAK 1369
    PF-543 S.mutans (S) NILFGIIGFVVAMTAAVIVTAISIAK 1370
    S.epidermidis (D)
    M.luteus (C)
    E.coli (C)
    MRSA (D)
    S.pneumoniae (D)
    PF-544 S.epidermidis (D) FGEKQMRSWWKVHWFHP 1371
    MRSA (D)
    S.pneumoniae (M)
    E.faecalis (R)
    PF-545 B.subtilis (I) RESKLIAMADMIRRRI-NH2 1372
    C.albicans (B)
    E.faecalis (H)
    C.jeikeium (H)
    PF-546 S.epidermidis (D) PIIAPTIKTQIQ 1373
    E.coli (R)
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jeikeium (D)
    PF-547 S.epidermidis (R) WSRVPGHSDTGWKVWHRW-NH2 1374
    B.subtilis (I)
    MRSA (M)
    E.faecalis (R)
    PF-548 S.epidermidis (M) ARPIADLIHFNSTTVTASGDVYYGPG 1375
    M.luteus (A)
    B.subtilis (C)
    MRSA (M)
    S.pneumoniae (D)
    C.jeikeium (R)
    C.jejuni (D)
    PF-549 B.subtilis (D) TGIGPIARPIEHGLDS 1376
    MRSA (C)
    PF-550 B.subtilis (D) STENGWQEFESYADVGVDPRRYVPL 1377
    PF-551 MRSA (C) QVKEKRREIELQFRDAEKKLEASVQAE 1378
    PF-552 B.subtilis (D) ELDKADAALGPAKNLAPLDVINRS 1379
    PF-553 B.subtilis (D) LTIVGNALQQKNQKLLLNQKKITSLG 1380
    MRSA (M)
    S.pneumoniae (R)
    C.jeikeium (R)
    PF-554 B.subtilis (D) AKNFLTRTAEEIGEQAVREGNINGP 1381
    PF-555 MRSA (M) EAYMRFLDREMEGLTAAYNVKLFTEA 1382
    S.pneumoniae (R) IS
    C.jejuni (R)
    PF-556 S.epidermidis (A) SLQIRMNTLTAAKASIEAA 1383
    M.luteus (A)
    B.subtilis (C)
    MRSA (M)
    S.pneumoniae (D)
    E.faecalis (A)
    C.jeikeium (D)
    C.jejuni (R)
    PF-557 B.subtilis (D) AANKAREQAAAEAKRKAEEQAR 1384
    PF-558 S.epidermidis (M) ADAPPPLIVRYS 1385
    B.subtilis (D)
    MRSA (C)
    S.pneumoniae (R)
    C.jejuni (H)
    PF-559 B.subtilis (C) SRPGKPGGVSIDVSRDRQDILSNYP 1386
    C.jejuni (A)
    PF-560 B.subtilis (D) FGNPFRGFTLAMEADFKKRK 1387
    MRSA (C)
    S.pneumoniae (R)
    C.jejuni (A)
    PF-561 B.subtilis (D) ESLEADVQAELDTEAAKYPALPASF 1388
    MRSA (M)
    PF-562 S.epidermidis (A) TPEQWLERSTVVVTGLLNRK 1389
    M.luteus (R)
    MRSA (M)
    S.pneumoniae (D)
    C.jejuni (R)
    PF-563 B.subtilis (D) RPELDNELDVVQNSASLDKLQASYN 1390
    S.pneumoniae (H)
    C.jejuni (H)
    PF-564 B.subtilis (D) TIILNDQINSLQERLNKLNAETDRR 1391
    MRSA (C)
    C.jeikeium (R)
    C.jejuni (R)
    PF-565 B.subtilis (D) RAEAEAQRQAEADAKRKAEEAARL 1392
    MRSA (C)
    PF-566 M.luteus (D) EAQQVTQQLGADFNAITTPTATKV 1393
    B.subtilis (C)
    MRSA (M)
    S.pneumoniae (D)
    C.jeikeium (C)
    C.jejuni (D)
    PF-567 M.luteus (C) QQRVKAVDASLSQVSTQVSGAVASA 1394
    MRSA (D)
    S.pneumoniae (D)
    C.jeikeium (C)
    C.jejuni (D)
    PF-569 B.subtilis (D) KSKISEYTEKEFLEFVEDIYTNNK 1395
    PF-571 B.subtilis (D) SDLLYYPNENREDSPAGVVKEVKE 1396
    PF-572 B.subtilis (D) WRASKGLPGFKAG 1397
    S.pneumoniae (R)
    PF-573 S.pneumoniae (C) EKKLIVKLIDSIGKSHEEIVGAG 1398
    PF-574 B.subtilis (D) LVKSGKLESPYEHSEHLTLSQEKGLE 1399
    PF-575 P.aeruginosa (A) LNFRAENKILEKIHISLIDTVEGSA 1400
    S.pneumoniae (A)
    C.jeikeium (A)
    C.jejuni (R)
    PF-576 S.epidermidis (A) AYSGELPEPLVRKMSKEQVRSVMGK 1401
    E.coli (A)
    MRSA (R)
    S.pneumoniae (C)
    C.jejuni (C)
    PF-577 S.epidermidis (A) PFETRESFRVPVIGILGGWDYFMHP 1402
    E.coli (A)
    P.aeruginosa (A)
    MRSA (M)
    S.pneumoniae (R)
    E.faecalis (A)
    C.jejuni (R)
    PF-578 S.mutans (D) QKANLRIGFTYTSDSNVCNLTFALLGS 1403
    S.epidermidis (D) K
    M.luteus (C)
    P. mirabilis (C)
    E.coli (C)
    MRSA (C)
    S.pneumoniae (D)
    PF-580 S.epidermidis (M) EILNNNQVIKELTMKYKTQFESNLGG 1404
    M.luteus (C) WTARARR
    MRSA (M)
    S.pneumoniae (C)
    PF-581 MRSA (A) WTARARR 1405
    S.pneumoniae (A)
    E.faecalis (A)
    C.jejuni (A)
    PF-582 E.faecalis (A) NLKTIEKECPFCNNKMDIKLKD 1406
    PF-583 S.mutans (F) KFQGEFTNIGQSYIVSASHMSTSLNTG 1407
    S.epidermidis (I) K
    MRSA (I)
    S.pneumoniae (D)
    PF-584 S.epidermidis (C) SYIKNLSNQKFLIAF 1408
    E.coli (C)
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jejuni (D)
    PF-585 S.epidermidis (S) DYNHLLNVVQDWVNTN 1409
    MRSA (S)
    S.pneumoniae (R)
    E.faecalis (A)
    C.jejuni (R)
    PF-586 S.epidermidis (C) FFNQANYFFKEF 1410
    E.coli (C)
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jejuni (D)
    PF-587 S.pneumoniae (C) ASGKYQSYLLNVYVDSKKDRLDIFDK 1411
    LKAKAKFVL
    PF-588 E.faecalis (A) ESVEAIKAKAIK 1412
    PF-589 MRSA (M) APLRIDEIRNSNVIDEVLDCAPKKQEHF 1413
    S.pneumoniae (C) FVVPKIIE
    PF-590 C.jejuni (R) YYQAKLFPLL 1414
    PF-591 S.pneumoniae (R) DLLKSLLGQDGAKNDEIIEFIKIIMEK 1415
    E.faecalis (A)
    C.jejuni (C)
    PF-592 S.epidermidis (M) IMKNYKYFKLFIVKYALF 1416
    E.coli (C)
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jejuni (S)
    PF-593 E.faecalis (A) MEISTLKKEKLHVKDELSQYLANYKK 1417
    PF-594 E.faecalis (C) IVSAIV 1418
    PF-595 S.epidermidis (C) LQNKIYELLYIKERSKLCS 1419
    E.coli (C)
    MRSA (D)
    S.pneumoniae (R)
    E.faecalis (D)
    C.jejuni (D)
    PF-596 S.epidermidis (D) SKMWDKILTILILILELIRELIKL 1420
    E.coli (C)
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jejuni (D)
    PF-597 E.faecalis (A) DEIKVSDEEIEKFIKENNL 1421
    PF-598 S.epidermidis (R) MKFMLEVRNKAISAYKEITRTQI 1422
    E.coli (C)
    MRSA (D)
    S.pneumoniae (R)
    E.faecalis (R)
    C.jejuni (R)
    PF-599 S.epidermidis (M) LFEIFKPKH 1423
    MRSA (C)
    S.pneumoniae (R)
    E.faecalis (A)
    C.jejuni (R)
    PF-600 S.mutans (S) TKKIELKRFVDAFVKKSYENYILEREL 1424
    S.epidermidis (C) KKLIKAINEELPTK
    M.luteus (C)
    E.coli (H)
    MRSA (M)
    S.pneumoniae (R)
    PF-601 E.faecalis (A) YRVTVKALE 1425
    C.jejuni (A)
    PF-602 E.faecalis (A) LEKEKKEYIEKLFKTK 1426
    PF-603 S.epidermidis (D) IDKLKKMNLQKLSYEVRISQDGKSIYA 1427
    M.luteus (A) RIK
    E.coli (M)
    MRSA (M)
    S.pneumoniae (C)
    PF-604 E.faecalis (A) LMEQVEV 1428
    PF-605 S.epidermidis (R) HYRWNTQWWKY 1429
    E.coli (C)
    P.aeruginosa (A)
    C.albicans (B)
    MRSA (C)
    S.pneumoniae (D)
    E.faecalis (R)
    C.jejuni (R)
    PF-606 S.mutans (I) FESKILNASKELDKEKKVNTALSFNSH 1430
    S.epidermidis (I) QDFAKAYQNGKI
    C.albicans (B)
    MRSA (I)
    S.pneumoniae (H)
    PF-607 S.epidermidis (M) YIESDPRKFDYIFGAIRDH 1431
    MRSA (S)
    S.pneumoniae (R)
    E.faecalis (A)
    C.jejuni (R)
    PF-609 MRSA (C) TEIKLDNNEYLVLNLDDILGILK 1432
    S.pneumoniae (R)
    E.faecalis (A)
    C.jejuni (R)
    PF-610 S.epidermidis (C) VFLKLKTSKIDLASIIFYP 1433
    E.coli (C)
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jejuni (D)
    PF-612 S.mutans (F) GTTLKYGLERQLKIDIHPEITIINLNGGA 1434
    S.epidermidis (C) DEFAKL
    M.luteus (A)
    P. mirabilis (C)
    E.coli (C)
    MRSA (C)
    S.pneumoniae (C)
    PF-613 S.epidermidis (R) ADEFAKL 1435
    MRSA (C)
    E.faecalis (A)
    PF-614 S.epidermidis (M) GLDIYA 1436
    S.pneumoniae (R)
    E.faecalis (A)
    C.jejuni (R)
    PF-615 S.epidermidis (D) FLNRFIFYIFTVKTKSALIKNLFLD 1437
    E.coli (C)
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jejuni (D)
    PF-616 S.epidermidis (R) IVFVVTKEKK 1438
    E.faecalis (A)
    PF-617 C.albicans (H) PMNAAEPE 1439
    S.pneumoniae (I)
    E.faecalis (H)
    PF-618 S.pneumoniae (I) KLNTLNKKDNPSLNDQDKNAVLNLLA 1440
    E.faecalis (H) LAK
    PF-619 S.epidermidis (M) WSRVPGHSDTGWKVWHRW 1441
    E.coli (C)
    MRSA (M)
    S.pneumoniae (C)
    PF-621 S.pneumoniae (I) PPSSFLV 1442
    E.faecalis (H)
    PF-622 S.epidermidis (D) TREDVFSVRLINNIVNKQA 1443
    MRSA (D)
    S.pneumoniae (M)
    E.faecalis (D)
    C.jeikeium (D)
    PF-623 S.epidermidis (M) VLFAVYLGALDWLFSWLTQKM 1444
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jeikeium (R)
    PF-624 S.mutans (D) VFLLDSYCFVKINL 1445
    S.epidermidis (D)
    M.luteus (C)
    P. mirabilis (C)
    E.coli (C)
    MRSA (C)
    S.pneumoniae (D)
    PF-625 S.pneumoniae (H) SDSTNNARTRKKARDVTTKDIDK 1446
    PF-626 S.pneumoniae (H) KYDFDDFEPEEA 1447
    PF-627 S.epidermidis (H) INDLLSYFTLHEK 1448
    C.albicans (B)
    MRSA (R)
    S.pneumoniae (I)
    E.faecalis (H)
    PF-629 S.epidermidis (C) GLAAIATVFALY 1449
    MRSA (D)
    S.pneumoniae (M)
    E.faecalis (R)
    C.jeikeium (R)
    PF-630 MRSA (M) IPATPIIHS 1450
    PF-631 S.pneumoniae (I) LIIYFSKTGNTARATRQI 1451
    E.faecalis (H)
    PF-632 S.epidermidis (D) TTIQGVASLEKHGFRYTITYPTRI 1452
    B.subtilis (H)
    C.albicans (B)
    MRSA (D)
    S.pneumoniae (M)
    E.faecalis (D)
    C.jeikeium (D)
    PF-634 S.mutans (D) MPKARPVNHNKKKSKITIKSNFTLFYM 1453
    S.epidermidis (D) FNP
    M.luteus (C)
    P. mirabilis (C)
    E.coli (C)
    MRSA (D)
    S.pneumoniae (D)
    PF-635 S.epidermidis (M) MNAHGHSLIFQKMIVHAFAFFSKQKN 1454
    C.albicans (B) YLYF
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (D)
    C.jeikeium (D)
    PF-636 B.subtilis (H) LVRLA 1455
    C.albicans (B)
    S.pneumoniae (H)
    E.faecalis (H)
    PF-637 S.epidermidis (M) SRIKQDARSVRKYDRIGIFFYSFKSA 1456
    MRSA (M)
    S.pneumoniae (M)
    E.faecalis (D)
    C.jeikeium (D)
    PF-638 S.epidermidis (R) TFILPK 1457
    MRSA (M)
    S.pneumoniae (I)
    E.faecalis (H)
    PF-639 C.albicans (B) QATQIKSWIDRLLVSED 1458
    MRSA (R)
    S.pneumoniae (I)
    E.faecalis (H)
    PF-640 C.albicans (B) MGDINRNF 1459
    S.pneumoniae (I)
    E.faecalis (H)
    PF-642 MRSA (M) FTTPMIGIPAGLLGGSYYLKRREEKGK 1460
    PF-643 MRSA (C) VRCRL 1461
    S.pneumoniae (R)
    E.faecalis (R)
    PF-644 S.pneumoniae (H) TSGLIIGENGLNGL 1462
    PF-645 C.albicans (B) SNSVQQG 1463
    S.pneumoniae (I)
    PF-646 C.albicans (B) APASPGRRPG 1464
    S.pneumoniae (H)
    PF-647 C.albicans (B) GTFLGQKCAAATAS 1465
    S.pneumoniae (R)
    PF-649 E.faecalis (R) CPRYPFVDVGPAGPWRARWRVGS 1466
    PF-651 S.pneumoniae (H) PRWPTGAGRHR 1467
    PF-652 S.pneumoniae (A) FLAPARPDLQAQRQALAQ 1468
    PF-653 S.pneumoniae (H) QSVHPLPAETPVADVI 1469
    PF-654 C.albicans (B) LSGRLAGRR 1470
    MRSA (R)
    S.pneumoniae (A)
    PF-655 S.epidermidis (R) DAPCFDDQFGDLKCQMC 1471
    B.subtilis (H)
    MRSA (M)
    S.pneumoniae (H)
    PF-656 MRSA (R) RGMFVPFHDVDCVQ 1472
    PF-657 S.epidermidis (C) YVANYTITQFGRDFDDRLAVAIHFA 1473
    MRSA (D)
    S.pneumoniae (H)
    E.faecalis (D)
    C.jeikeium (D)
    PF-658 MRSA (R) PTTPPPTTPPEIPTGGTVIST 1474
    S.pneumoniae (H)
    PF-659 S.epidermidis (M) TVIST 1475
    B.subtilis (H)
    MRSA (R)
    S.pneumoniae (C)
    PF-660 S.pneumoniae (H) TDPQATAAPRRRTSPR 1476
    PF-661 MRSA (R) PDEDIRRRAILPPAGPCRPMSPE 1477
    PF-662 S.pneumoniae (A) GKQSRAHGPVASRREFRRKSG 1478
    PF-663 S.pneumoniae (A) ATLIPRKA 1479
    PF-664 S.epidermidis (M) DQLCVEYPARVSTG 1480
    MRSA (R)
    S.pneumoniae (M)
    E.faecalis (R)
    PF-665 S.pneumoniae (H) VLRVATAVGEVPTGL 1481
    PF-666 S.pneumoniae (A) PNRRSRPR 1482
    PF-667 S.epidermidis (R) PAHQRLRIDQRLVADRDMVQDYES 1483
    MRSA (R)
    S.pneumoniae (R)
    E.faecalis (R)
    PF-668 S.epidermidis (M) TNAESMALAFRGRVHMSVNIAGLT 1484
    B.subtilis (A)
    C.albicans (A)
    MRSA (R)
    S.pneumoniae (M)
    E.faecalis (D)
    C.jeikeium (D)
    PF-670 B.subtilis (H) TVIVAPMHSGV 1485
    S.pneumoniae (H)
    PF-672 S.epidermidis (I) MRFGSLALVAYDSAIKHSWPRPSSVRR 1486
    B.subtilis (I) LRM
    C.albicans (I)
    MRSA (I)
    S.pneumoniae (I)
    E.faecalis (I)
    C.jeikeium (R)
    PF-675 S.pneumoniae (C) EIIPISPTRRCEMHTMSSAEYRGL 1487
    E.faecalis (R)
    PF-677 S.epidermidis (R) TCRGAGMH 1488
    MRSA (D)
    S.pneumoniae (D)
    E.faecalis (R)
    PF-680 MRSA (R) ADPHPTTGI 1489
    PF-681 S.epidermidis (M) TALTTVGVSGARLITYCVGVEDI 1490
    MRSA (M)
    S.pneumoniae (M)
    E.faecalis (R)
    C.jeikeium (R)
    PF-682 S.pneumoniae (A) RRGKSEQGLSRR 1491
    PF-683 S.epidermidis (R) LWPVA 1492
    MRSA (R)
    S.pneumoniae (H)
    PF-684 C.albicans (B) RKLSLASGFALWRRSLV 1493
    S.pneumoniae (C)
    E.faecalis (A)
    PF-685 S.epidermidis (M) PTLWLACL 1494
    MRSA (M)
    S.pneumoniae (M)
    E.faecalis (R)
    C.jeikeium (R)
    PF-686 S.epidermidis (H) LAVLMGYIGYRGWSGKRHINRQ 1495
    B.subtilis (I)
    C.albicans (B)
    MRSA (M)
    S.pneumoniae (A)
    E.faecalis (R)
    PF-687 S.pneumoniae (A) AKRVLSLAVAPHRRQPVQGT 1496
    PF-688 S.pneumoniae (A) ARNHAVIPAG 1497
    PF-690 S.epidermidis (R) MIPLAGDPVSSHRTVEFGVLGTYLVSG 1498
    MRSA (R) GSL
    S.pneumoniae (M)
    E.faecalis (R)
    PF-691 S.pneumoniae (R) HRTVEFGVLGTYLVSGGSL 1499
    PF-692 MRSA (R) GVAREDPLEPDPLAPIIDDSR 1500
    PF-693 S.pneumoniae (A) PDPAR 1501
    PF-694 MRSA (R) DLIRPLYSMSAPSVA 1502
    S.pneumoniae (A)
    PF-695 MRSA (R) ALSVMLGNIPLVVPNANQL 1503
    S.pneumoniae (C)
    E.faecalis (R)
    PF-696 S.pneumoniae (H) IRSGISAAYARPLR 1504
    PF-697 C.albicans (H) RADARAK 1505
    S.pneumoniae (H)
    PF-698 C.albicans (H) SSGRAGVKCRRPTGR 1506
    S.pneumoniae (A)
    E.faecalis (A)
    PF-699 S.pneumoniae (A) GRAGVKCRRPTGR 1507
    PF-700 S.pneumoniae (C) LNWPFTGR 1508
    PF-702 S.pneumoniae (H) LSGRLAGRR 1509
    PF-704 S.pneumoniae (C) APAARAAL 1510
    PF-737 S.pneumoniae (D) KSSGSSASASSTAGGSSSK 1511
    PF-738 MRSA (M) KSGATSAASGAKSGASS 1512
    PF-741 S.mutans (D) AKREDTVAAQIGANILNLIQ 1513
    S.epidermidis (C)
    M.luteus (C)
    P. mirabilis (C)
    E.coli (C)
    MRSA (C)
    S.pneumoniae (D)
    PF-744 S.pneumoniae (H) LGVGTFVGKVLIKNQQKQKSKKKAQ 1514
    PF-745 S.mutans (D) ANSQNSLFSNRSSFKSIFDKKSNITTNA 1515
    M.luteus (C) TTPNSNIIIN
    MRSA (C)
    S.pneumoniae (C)
    PF-746 S.mutans (D) FLGNSQYFTRK 1516
    S.epidermidis (C)
    M.luteus (C)
    E.coli (C)
    P.aeruginosa (A)
    MRSA (C)
    S.pneumoniae (C)
    PF-748 S.pneumoniae (H) FQGFFDVAVNKWWEEHNKAKLWKN 1517
    VKGKFLEGEGEEEDDE
    PF-749 S.pneumoniae (H) GVNKWWEEHNKAKLWKNVKGKFLE 1518
    GEGEEEDDE
    PF-752 S.pneumoniae (C) LHVIRPRPELSELKFPITKILKVNKQGL 1519
    KK
    PF-756 S.pneumoniae (A) DALLRLA 1520
    PF-757 S.pneumoniae (H) PQAISSVQQNA 1521
    PF-760 S.epidermidis (M) DHITLDDYEIHDGFNFELYYG 1522
    MRSA (M)
    S.pneumoniae (C)
    PF-761 S.mutans (D) SKFELVNYASGCSCGADCKCASETECK 1523
    S.epidermidis (C) CASKK
    M.luteus (C)
    E.coli (C)
    P.aeruginosa (C)
    MRSA (D)
    S.pneumoniae (C)
    PF-762 S.pneumoniae (H) PAPAPSAPAPAPEQPEQPA 1524
    PF-763 S.epidermidis (M) GIWMARNYFHRSSIRKVYVESDKEYE 1525
    M.luteus (C) RVHPMQKIQYEGNYKSQ
    MRSA (D)
    S.pneumoniae (C)
    PF-764 MRSA (D) GYFEPGKRD 1526
    S.pneumoniae (H)
    PF-770 S.mutans (D) GVGIGFIMMGVVGYAVKLVHIPIRYLI 1527
    S.epidermidis (D) V
    M.luteus (C)
    P. mirabilis (C)
    E.coli (C)
    MRSA (D)
    S.pneumoniae (C)
    PF-776 S.mutans (D) VSILLYLSATIILPNVLRLLVARAIIVRV 1528
    S.epidermidis (D)
    M.luteus (C)
    E.coli (C)
    MRSA (D)
    S.pneumoniae (C)
    PF-C052 P.gingivalis (H) SRFRNGV 1529
    PF-C055 F.nucleatum (T) YNLSIYIYFLHTITIAGLITLPFII 1530
    S.mutans (I)
    PF-C057 S.mutans (I) YFWWYWVQDCIPYKNNEVWLELSNN 1531
    MK
    PF-C058 S.mutans (F) FETGFGDGYYMSLWGLNEKDEVCKV 1532
    VIPFINPELID
    PF-C061  F.nucleatum (T) TLNYKKMFFSVIFLLGLNYLICNSPLFF 1533
    S.mutans (F) KQIEF
    PF-C062 F.nucleatum (T) PLARATEVVATLFIICSLLLYLTR 1534
    S.mutans (I)
    PF-C064 F.nucleatum (T) DEEALEMGANLYAQFAIDFLNSKK 1535
    PF-C065 F.nucleatum (T) DEERYSDSYFLKEKVFYLILALFLILFH 1536
    QKYLYFLEIITI
    PF-C069 F.nucleatum (T) NALMLREMQLAKNIKVEVTDVLSNKK 1537
    YC
    PF-C071 F.nucleatum (T) QVIVKIL 1538
    PF-C072 F.nucleatum (T) KKMFSLIRKVNWIFFILFIVLDLTNVFP 1539
    P.gingivalis (T) LIRTILFAILSRQ
    S.mutans (F)
    PF-C075 F.nucleatum (T) KALVISVFAIVFSIIFVKFFYWRDKK 1540
    P.gingivalis (R)
    S.mutans (F)
    PF-C084 F.nucleatum (T) FFSVIFLFGLNYLICNSPLFNILR 1541
    P.gingivalis (R)
    S.mutans (F)
    PF-C085 S.mutans (F) KKFKIFVIINWFYHKYIILNFEENF 1542
    PF-C086 F.nucleatum (T) ELFFTILSDCNELFLLHLLQQPLFYIKK 1543
    GK
    PF-C088 F.nucleatum (H) DIANNILNSVSERLIIA 1544
    P.gingivalis (R)
    S.mutans (I)
    PF-C089 P.gingivalis (R) MPKRHYYKLEAKALQFGLPFAYSPIQL 1545
    LK
    PF-C091 F.nucleatum (T) ASNTPRFVRLTLFNFYSKIWNVTHLFLF 1546
    NNL
    PF-C095 F.nucleatum (T) LLALNMNEDTYYFELFFIFDNQNKKW 1547
    LIFDLKERG
    PF-C098 F.nucleatum (T) PETKGKVSAFVFGIVVANVIAVVYILY 1548
    S.mutans (F) MLREIGIIQ
    PF-C120 F.nucleatum (T) ASLSTMTFKVMELKELIILLCGLTMLMI 1549
    QTEFV
    PF-C131 F.nucleatum (T) QWIVAKREIRMHIYCHISVIHVIIFFG 1550
    S.mutans (F)
    PF-C135 F.nucleatum (C) KNTHAYLRVLRLSSLILSYQASVYPLF 1551
    S.mutans (F) AYLCQQKDY
    PF-C136 F.nucleatum (C) LILSYQASVYPLFAYLCQQKDY 1552
    P.gingivalis (R)
    PF-C 137 F.nucleatum (T) QRMYWFKRGFETGDFSAGDTFAELK 1553
    PF-C 139 S.mutans (F) LLASHPERLSLGVFFVYRVLHLLLENT 1554
    PF-C 142 S.mutans (I) DFPPLSFFRRRFHAYTAPIDNFFGANPF 1555
    PF-C 143 F.nucleatum (C) VVFGGGDRLV 1556
    PF-C 145 F.nucleatum (C) YGKESDP 1557
    S.mutans (I)
    PF-C180 P.gingivalis (R) TVEELDKAFTWGAAAALAIGVIAINVG 1558
    S.mutans (S) LAAGYCYNNNDVF
    PF-C181 F.nucleatum (T) KMRAGQVVFIYKLILVLLFYVLQKLFD 1559
    LKKGCF
    PF-C194 F.nucleatum (T) NTNDLLQAFELMGLGMAGVFIVLGILY 1560
    P.gingivalis (T) IVAELLIKIFPVNN
    S.mutans (F)
    PF-C214 F.nucleatum (T) GGHKQLVIEPLVSQ 1561
    PF-C281 S.mutans (F) KKEKLLTAIRLQHRAEIRGYFTIFFLFFR 1562
    I
    PF-C290 S.mutans (F) GNVHPESDFHNLIQFIKTFLYFTIFFKYF 1563
    L
    PF-C291 F.nucleatum (T) HPFLTGTGCPLFLIFRLFFVKAYFSFTVF 1564
    S.mutans (F)
    PF-C293 F.nucleatum (T) IIIILPKIYLVCKTV 1565
    P.gingivalis (R)
    S.mutans (F)
    PF-S003 S.epidermidis (R) ALALLKQDLLNFEGRGRIITSTYLQFNE 1566
    M.luteus (R) GCVP
    B.subtilis (A)
    P.aeruginosa (A)
    C.albicans (A)
    MRSA (M)
    S.pneumoniae (D)
    C.jeikeium (D)
    C.jejuni (D)
    Key to Abbreviations: (A) Peptide aggregates; (B) Less hyphal formation; (C) Clumps; (D) Diffuse clumps and small polyps; (F) Diffuse growth; (H) Thin; (I) Growth inhibition; (M) Microcolony formation; (R) Rippled; (S) Small polyps; (T) Thick; (W) Halo formation on top, microlonies on bottom. These data thus indicate peptide-mediated interruption of bacterial biofilm formation processes, cellular metabolism, cellular import/export, nutrient acquisition, quorum sensing and communication, motility, chemotaxis, replication, translation, and/or transcription. Accordingly, without being bound to a particular theory, it is believed that the alteration of one or more of these basic pathways is important to pathogenesis, or the stopping thereof
  • In certain embodiments, the amino acid sequence of the antimicrobial peptides comprises or consists of a single amino acid sequence, e.g., as listed above in Tables 4 and/or 5, and/or Table 15, and/or below in Table 14. In certain embodiments the amino acid sequence of the antimicrobial peptides comprises two copies, three copies, four copies, five copies six copies or more of one or more of the amino acid sequences listed in Tables 4, and/or 5, and/or Table 15, and/or Table 14. Thus, compound antimicrobial constructs are contemplated where the construct comprises multiple domains each having antimicrobial activity. The AMP domains comprising such a construct can be the same or different. In certain embodiments the construct comprises at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 different AMP domains each domain comprising a different AMP sequence.
  • Various AMP domains comprising such a construct can be joined directly to each other or two or more of such domains can be attached to each other via a linker. An illustrative, but non-limiting, list of suitable linkers is provided in Table 16. Thus, in certain embodiments, two or more AMP domains comprising a compound AMP construct are chemically conjugated together.
  • In certain embodiments the two or more AMP domains comprising the AMP construct are joined by a peptide linker. Where all the AMP domains are attached directly to each other or are joined by peptide linkers, the entire construct can be provided as a single-chain peptide (fusion protein).
  • In various embodiments, the antimicrobial peptides described herein comprise one or more of the amino acid sequences shown in Tables 4, and/or 5, and/or 15 and/or 14 (and/or the retro, inverso, retroinverso, etc. forms of such sequences). In certain embodiments the peptides range in length up to about 100 amino acids in length, preferably up to about 80, about 70, about 60, or about 51 amino acids in length. In certain embodiments the peptides range in length from about 8 amino acids up to about 100 amino acids 80 amino acids, 60 amino acids or about 51 amino acids in length. In certain embodiments the peptides range in length from about 8 up to about 50, 40, 30, 20, 15, 15, 13, or 12 amino acids in length.
  • As shown in Tables 4, and/or 5, and/or 15 and/or 14, the various amino acid sequences described herein are effective against particular microorganisms. The range of activity of the peptides or compositions comprising such peptides can be increased by including amino acid sequences effective against different microorganisms either as separate components and/or as multiple domains within a single construct.
  • TABLE 6
    Illustrative target microorganisms and peptides effective against that target.
    Gram Positive Bacteria:
    A. naeslundii PF-531, PF-527, PF-672, PF-545, PF-168, PF-448, PF-525, PF-529, PF-
    148
    B. subtilis PF-002, PF-005, PF-006, PF-040, PF-053, PF-056, PF-061, PF-063, PF-
    067, PF-068, PF-069, PF-070, PF-071, PF-145, PF-148, PF-171, PF-175,
    PF-283, PF-289, PF-292, PF-296, PF-297, PF-301, PF-303, PF-305, PF-
    306, PF-307, PF-318, PF-319, PF-322, PF-335, PF-339, PF-342, PF-497,
    PF-499, PF-527, PF-531, PF-545, PF-547, PF-548, PF-549, PF-550, PF-
    552, PF-553, PF-554, PF-556, PF-557, PF-558, PF-559, PF-560, PF-561,
    PF-563, PF-564, PF-565, PF-566, PF-569, PF-571, PF-572, PF-574, PF-
    632, PF-636, PF-655, PF-659, PF-668, PF-670, PF-672, PF-686, PF-998,
    PF-2003
    C. difficile PF-522, PF-531, PF-538
    C. jeikeium PF-001, PF-003, PF-004, PF-101, PF-011, PF-012, PF-013, PF-021, PF-
    022, PF-025, PF-028, PF-030, PF-032, PF-033, PF-036, PF-037, PF-040,
    PF-042, PF-043, PF-046, PF-048, PF-052, PF-053, PF-056, PF-057, PF-
    063, PF-065, PF-067, PF-068, PF-073, PF-075, PF-076, PF-099, PF-124,
    PF-127, PF-129, PF-133, PF-135, PF-137, PF-139, PF-140, PF-145, PF-
    148, PF-164, PF-173, PF-176, PF-186, PF-188, PF-190, PF-191, PF-196,
    PF-199, PF-203, PF-204, PF-208, PF-527, PF-531, PF-545, PF-546, PF-
    548, PF-553, PF-556, PF-564, PF-566, PF-567, PF-575, PF-622, PF-523,
    PF-629, PF-632, PF-635, PF-637, PF-657, PF-668, PF-672, PF-681, PF-
    685, PF-S003
    E. faecalis PF-007, PF-053, PF-057, PF-068, PF-347, PF-349, PF-355, PF-356, PF-
    363, PF-366, PF-369, PF-374, PF-375, PF-376, PF-379, PF-380, PF-381,
    PF-386, PF-387, PF-389, PF-390, PF-392, PF-393, PF-394, PF-396, PF-
    398, PF-399, PF-401, PF-407, PF-410, PF-411, PF-418, PF-422, PF-425,
    PF-426, PF-427, PF-429, PF-431, PF-432, PF-439, PF-440, PF-444, PF-
    447, PF-450, PF-451, PF-452, PF-454, PF-456, PF-460, PF-461, PF-469,
    PF-470, PF-471, PF-472, PF-473, PF-474, PF-475, PF-480, PF-484, PF-
    514, PF-518, PF-519, PF-524, PF-530, PF-532, PF-533, PF-534, PF-536,
    PF-544, PF-545, PF-546, PF-547, PF-556, PF-577, PF-581, PF-582, PF-
    584, PF-585, PF-586, PF-588, PF-591, PF-592, PF-593, PF-594, PF-595,
    PF-596, PF-597, PF-598, PF-599, PF-601, PF-602, PF-604, PF-605, PF-
    607, PF-609, PF-610, PF-613, PF-614, PF-615, PF-616, PF-617, PF-618,
    PF-621, PF-622, PF-623, PF-627, PF-629, PF-631, PF-632, PF-635, PF-
    636, PF-637, PF-638, PF-639, PF-640, PF-643, PF-649, PF-657, PF-664,
    PF-667, PF-668, PF-672, PF-675, PF-677, PF-681, PF-684, PF-685, PF-
    686, PF-690, PF-695, PF-698
    M. luteus PF-001, PF-003, PF-004, PF-006, PF-007, PF-010, PF-012, PF-013, PF-
    020, PF-021, PF-022, PF-025, PF-030, PF-036, PF-037, PF-040, PF-042,
    PF-043, PF-051, PF-052, PF-053, PF-056, PF-057, PF-063, PF-067, PF-
    068, PF-071, PF-073, PF-075, PF-076, PF-125, PF-127, PF-137, PF-139,
    PF-140, PF-145, PF-148, PF-171, PF-175, PF-176, PF-199, PF-204, PF-
    212, PF-215, PF-224, PF-226, PF-234, PF-235, PF-249, PF-250, PF-255,
    PF-257, PF-264, PF-270, PF-271, PF-274, PF-276, PF-278, PF-357, PF-
    527, PF-543, PF-548, PF-556, PF-562, PF-566, PF-567, PF-578, PF-580,
    PF-600, PF-603, PF-612, PF-624, PF-634, PF-741, PF-745, PF-746, PF-
    761, PF-763, PF-770, PF-776, PF-S003
    MRSA PF-001, PF-003, PF-004, PF-006, PF-007, PF-010, PF-011, PF-012, PF-
    013, PF-015, PF-017, PF-019, PF-020, PF-021, PF-022, PF-023, PF-024,
    PF-025, PF-026, PF-027, PF-028, PF-029, PF-030, PF-031, PF-033, PF-
    035, PF-036, PF-037, PF-040, PF-041, PF-042, PF-043, PF-045, PF-046,
    PF-048, PF-049, PF-051, PF-052, PF-053, PF-056, PF-057, PF-058, PF-
    063, PF-064, PF-065, PF-066, PF-067, PF-068, PF-071, PF-073, PF-074,
    PF-075, PF-076, PF-140, PF-145, PF-148, PF-149, PF-156, PF-168, PF-
    171, PF-178, PF-191, PF-209, PF-347, PF-349, PF-350, PF-354, PF-355,
    PF-356, PF-357, PF-360, PF-362, PF-366, PF-369, PF-370, PF-373, PF-
    374, PF-375, PF-376, PF-378, PF-379, PF-380, PF-381, PF-382, PF-386,
    PF-387, PF-389, PF-390, PF-392, PF-393, PF-394, PF-395, PF-396, PF-
    398, PF-399, PF-401, PF-403, PF-404, PF-405, PF-406, PF-407, PF-408,
    PF-410, PF-411, PF-413, PF-417, PF-418, PF-422, PF-425, PF-426, PF-
    427, PF-429, PF-430, PF-431, PF-432, PF-439, PF-440, PF-442, PF-443,
    PF-444, PF-447, PF-450, PF-451, PF-452, PF-453, PF-454, PF-458, PF-
    460, PF-461, PF-469, PF-471, PF-472, PF-473, PF-474, PF-475, PF-478,
    PF-480, PF-518, PF-519, PF-524, PF-526, PF-527, PF-528, PF-530, PF-
    532, PF-533, PF-534, PF-536, PF-539, PF-540, PF-543, PF-544, PF-545,
    PF-546, PF-547, PF-548, PF-549, PF-551, PF-553, PF-555, PF-556, PF-
    558, PF-560, PF-561, PF-562, PF-564, PF-565, PF-566, PF-567, PF-576,
    PF-577, PF-578, PF-580, PF-581, PF-583, PF-584, PF-585, PF-586, PF-
    589, PF-592, PF-595, PF-596, PF-598, PF-599, PF-600, PF-603, PF-605,
    PF-606, PF-607, PF-609, PF-610, PF-612, PF-613, PF-615, PF-619, PF-
    622, PF-623, PF-624, PF-627, PF-629, PF-630, PF-632, PF-634, PF-635,
    PF-637, PF-638, PF-639, PF-652, PF-643, PF-654, PF-655, PF-656, PF-
    657, PF-658, PF-659, PF-661, PF-664, PF-667, PF-778, PF-672, PF-677,
    PF-680, PF-683, PF-685, PF-686, PF-690, PF-692, PF-694, PF-695, PF-
    738, PF-741, PF-745, PF-746, PF-760, PF-761, PF-763, PF-764, PF-770,
    PF-776, PF-S003
    S. epidermidis PF-001, PF-003, PF-004, PF-006, PF-007, PF-009, PF-010, PF-012, PF-
    013, PF-020, PF-021, PF-022, PF-024, PF-025, PF-027, PF-028, PF-030,
    PF-032, PF-033, PF-034, PF-036, PF-037, PF-040, PF-041, PF-042, PF-
    043, PF-046, PF-048, PF-051, PF-052, PF-953, PF-956, PF-957, PF-961,
    PF-963, PF-964, PF-965, PF-967, PF-968, PF-971, PF-073, PF-074, PF-
    075, PF-076, PF-099, PF-123, PF-124, PF-125, PF-127, PF-128, PF-129,
    PF-137, PF-139, PF-140, PF-145, PF-148, PF-153, PF-157, PF-171, PF-
    173, PF-176, PF-178, PF-180, PF-186, PF-190, PF-191, PF-192, PF-196,
    PF-199, PF-203, PF-204, PF-208, PF-209, PF-226, PF-233, PF-273, PF-
    278, PF-283, PF-290, PF-292, PF-293, PF-294, PF-296, PF-297, PF-301,
    PF-307, PF-310, PF-313, PF-318, PF-319, PF-322, PF-335, PF-339, PF-
    342, PF-347, PF-349, PF-350, PF-355, PF-356, PF-357, PF-360, PF-363,
    PF-366, PF-369, PF-370, PF-373, PF-374, PF-375, PF-376, PF-378, PF-
    379, PF-380, PF-381, PF-383, PF-386, PF-387, PF-389, PF-390, PF-393,
    PF-395, PF-396, PF-397, PF-398, PF-399, PF-401, PF-403, PF-404, PF-
    406, PF-407, PF-408, PF-410, PF-411, PF-413, PF-417, PF-418, PF-422,
    PF-425, PF-246, PF-249, PF-430, PF-431, PF-432, PF-439, PF-440, PF-
    444, PF-447, PF-451, PF-452, PF-453, PF-454, PF-460, PF-469, PF-471,
    PF-473, PF-474, PF-475, PF-478, PF-480, PF-514, PF-518, PF-526, PF-
    527, PF-528, PF-530, PF-531, PF-533, PF-534, PF-536, PF-540, PF-543,
    PF-544, PF-546, PF-547, PF-548, PF-556, PF-558, PF-562, PF-576, PF-
    577, PF-578, PF-580, PF-583, PF-584, PF-585, PF-586, PF-592, PF-595,
    PF-596, PF-598, PF-599, PF-600, PF-603, PF-605, PF-606, PF-607, PF-
    610, PF-612, PF-613, PF-614, PF-615, PF-616, PF-619, PF-622, PF-623,
    PF-624, PF-627, PF-632, PF-634, PF-635, PF-637, PF-638, PF-655, PF-
    657, PF-659, PF-664, PF-667, PF-778, PF-672, PF-677, PF-681, PF-683,
    PF-685, PF-686, PF-690, PF-741, PF-746, PF-760, PF-761, PF-763, PF-
    770, PF-776, PF-S003
    S. mutans G-1, G-2, G-4, G-8, PF-020, PF-040, PF-051, PF-531, PF-543, PF-547,
    PF-578, PF-583, PF-600, PF-606, PF-612, PF-624, PF-634, PF-741, PF-
    745, PF-746, PF-761, PF-770, PF-776, PF-C055, PF-C057, PF-C058, PF-
    C061, PF-C062, PF-C072, PF-C075, PF-C084, PF-C085, PF-C088, PF-
    C098, PF-C131, PF-C135, PF-C139, PF-C142, PF-C146, PF-C180, PF-
    C194, PF-C281, PF-C290, PF-C291, PF-C293
    S. pneumoniae PF-002, PF-005, PF-006, PF-020, PF-033, PF-040, PF-051, PF-053, PF-
    056, PF-057, PF-061, PF-063, PF-068, PF-071, PF-073, PF-140, PF-144,
    PF-145, PF-148, PF-171, PF-175, PF-178, PF-220, PF-355, PF-356, PF-
    357, PF-363, PF-366, PF-380, PF-389, PF-390, PF-393, PF-407, PF-411,
    PF-414, PF-415, PF-416, PF-417, PF-418, PF-419, PF-421, PF-422, PF-
    423, PF-424, PF-425, PF-426, PF-427, PF-428, PF-429, PF-430, PF-431,
    PF-432, PF-433, PF-434, PF-437, PF-439, PF-440, PF-442, PF-443, PF-
    444, PF-445, PF-446, PF-447, PF-448, PF-449, PF-450, PF-451, PF-452,
    PF-453, PF-454, PF-455, PF-457, PF-458, PF-469, PF-460, PF-461, PF-
    462, PF-464, PF-465, PF-466, PF-467, PF-468, PF-469, PF-471, PF-472,
    PF-473, PF-474, PF-475, PF-476, PF-477, PF-478, PF-479, PF-480, PF-
    482, PF-485, PF-511, PF-512, PF-513, PF-514, PF-515, PF-516, PF-517,
    PF-518, PF-519, PF-520, PF-521, PF-522, PF-523, PF-524, PF-525, PF-
    526, PF-527, PF-528, PF-529, PF-530, PF-531, PF-532, PF-533, PF-534,
    PF-535, PF-536, PF-537, PF-538, PF-539, PF-540, PF-541, PF-542, PF-
    543, PF-544, PF-546, PF-548, PF-553, PF-555, PF-556, PF-558, PF-560,
    PF-562, PF-563, PF-566, PF-567, PF-572, PF-573, PF-575, PF-576, PF-
    577, PF-578, PF-580, PF-581, PF-583, PF-585, PF-585, PF-586, PF-587,
    PF-589, PF-591, PF-592, PF-595, PF-596, PF-598, PF-599, PF-600, PF-
    603, PF-605, PF-606, PF-607, PF-609, PF-610, PF-612, PF-614, PF-615,
    PF-617, PF-618, PF-619, PF-621, PF-622, PF-623, PF-624, PF-625, PF-
    626, PF-627, PF-629, PF-631, PF-632, PF-634, PF-635, PF-636, PF-637,
    PF-638, PF-639, PF-640, PF-643, PF-644, PF-645, PF-646, PF-647, PF-
    651, PF-652, PF-653, PF-654, PF-655, PF-657, PF-658, PF-659, PF-660,
    PF-662, PF-663, PF-664, PF-665, PF-666, PF-667, PF-668, PF-670, PF-
    672, PF-675, PF-677, PF-681, PF-682, PF-683, PF-684, PF-685, PF-686,
    PF-687, PF-688, PF-690, PF-691, PF-693, PF-694, PF-695, PF-696, PF-
    697, PF-698, PF-699, PF-700, PF-702, PF-704, PF-737, PF-741, PF-744,
    PF-745, PF-746, PF-748, PF-749, PF-752, PF-756, PF-757, PF-760, PF-
    761, PF-762, PF-763, PF-764, PF-770, PF-776, PF-S003
    Gram Negative Bacteria:
    A. baumannii PF-531, PF-006, PF-538, PF-530
    C. jejuni PF-006, PF-008, PF-033, PF-040, PF-053, PF-056, PF-057, PF-059, PF-
    061, PF-063, PF-067, PF-068, PF-069, PF-071, PF-073, PF-140, PF-145,
    PF-148, PF-171, PF-175, PF-355, PF-356, PF-363, PF-366, PF-380, PF-
    389, PF-390, PF-392, PF-393, PF-411, PF-418, PF-422, PF-425, PF-426,
    PF-431, PF-432, PF-456, PF-469, PF-470, PF-471, PF-472, PF-473, PF-
    474, PF-475, PF-527, PF-548, PF-555, PF-556, PF-558, PF-559, PF-560,
    PF-562, PF-563, PF-564, PF-566, PF-567, PF-575, PF-576, PF-577, PF-
    581, PF-584, PF-585, PF-586, PF-590, PF-591, PF-592, PF-595, PF-596,
    PF-598, PF-599, PF-601, PF-605, PF-607, PF-609, PF-610, PF-614, PF-
    615, PF-S003
    E. coli PF-007, PF-040, PF-053, PF-057, PF-068, PF-178, PF-344, PF-347, PF-
    349, PF-350, PF-355, PF-360, PF-362, PF-363, PF-366, PF-369, PF-370,
    PF-374, PF-375, PF-376, PF-379, PF-380, PF-381, PF-383, PF-385, PF-
    386, PF-387, PF-390, PF-395, PF-396, PF-398, PF-399, PF-401, PF-403,
    PF-410, PF-411, PF-413, PF-418, PF-425, PF-426, PF-427, PF-432, PF-
    439, PF-440, PF-443, PF-444, PF-451, PF-452, PF-453, PF-454, PF-460,
    PF-469, PF-471, PF-473, PF-474, PF-478, PF-480, PF-514, PF-518, PF-
    519, PF-524, PF-526, PF-528, PF-530, PF-531, PF-532, PF-533, PF-534,
    PF-536, PF-540, PF-541, PF-543, PF-546, PF-576, PF-577, PF-578, PF-
    584, PF-586, PF-592, PF-595, PF-596, PF-598, PF-600, PF-603, PF-605,
    PF-606, PF-610, PF-612, PF-615, PF-619, PF-624, PF-634, PF-741, PF-
    746, PF-761, PF-770, PF-776
    F. nucleatum PF-C055, PF-C061, PF-C062, PF-C064, PF-C065, PF-C069, PF-C071,
    PF-C072, PF-C075, PF-C084, PF-C086, PF-C088, PF-C091, PF-C095,
    PF-C098, PF-C120, PF-C131, PF-C135, PF-C136, PF-C137, PF-C143,
    PF-C145, PF-C181, PF-C194, PF-C214, PF-C291, PF-C293
    M. xanthus G-5, G-6, G-7
    P. aeruginosa PF-053, PF-063, PF-067, PF-128, PF-140, PF-143, PF-168, PF-204, PF-
    209, PF-355, PF-356, PF-366, PF-380, PF-411, PF-425, PF-432, PF-454,
    PF-458, PF-471, PF-474, PF-527, PF-531, PF-535, PF-536, PF-575, PF-
    577, PF-605, PF-746, PF-761, PF-S003
    P. gingivalis PF-C052, PF-C072, PF-C075, PF-C084, PF-C088, PF-C089, PF-C136,
    PF-C180, PF-C194, C293
    P. mirabilis PF-040, PF-578, PF-612, PF-624, PF-634, PF-741, PF-770
    Yeast Fungi:
    A. niger PF-531, PF-527, PF-672, PF-545, PF-168, PF-448, PF-525, PF-529, PF-
    148
    C. albicans PF-053, PF-056, PF-057, PF-071, PF-140, PF-148, PF-175, PF-278, PF-
    307, PF-425, PF-426, PF-474, PF-475, PF-526, PF-527, PF-528, PF-545,
    PF-605, PF-606, PF-617, PF-627, PF-632, PF-635, PF-636, PF-639, PF-
    640, PF-645, PF-646, PF-647, PF-654, PF-668, PF-672, PF-684, PF-686,
    PF-697, PF-698, PF-S003
    T. rubrum PF-283, PF-307, PF-527, PF-531, PF-547, PF-672
  • In certain embodiments the activity against a particular microorganism or group of microorganisms can be increased by increasing the number of peptides or peptide domains with activity against that microorganism or group of microorganisms.
  • Thus, for example, in certain embodiments, a peptide or composition effective to kill or inhibit the growth and/or proliferation of a yeast or fungus can comprise or more peptides and/or one or more peptide domains having sequences selected from the sequences shown in Tables 4, 5, or 6 (e.g., PF-S003, PF-053, PF-056, PF-057, PF-071, PF-140, PF-148, PF-168, PF-175, PF-278, PF-283, PF-307, PF-425, PF-426, PF-448, PF-474, PF-475, PF-525, PF-526, PF-527, PF-528, PF-529, PF-531, PF-545, PF-547, PF-606, PF-617, PF-627, PF-632, PF-635, PF-636, PF-639, PF-640, PF-645, PF-646, PF-647, PF-654, PF-668, PF-672, PF-684, PF-686, PF-697, and PF-69)8. A peptide or composition effective to kill or inhibit the growth and/or proliferation of Aspergillus niger can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-531, PF-527, PF-672, PF-545, PF-168, PF-448, PF-525, PF-529, and PF-148. A peptide or composition effective to kill or inhibit the growth and/or proliferation of Candida albicans can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-053, PF-056, PF-057, PF-071, PF-140, PF-148, PF-175, PF-278, PF-307, PF-425, PF-426, PF-474, PF-475, PF-526, PF-527, PF-528, PF-545, PF-605, PF-606, PF-617, PF-627, PF-632, PF-635, PF-636, PF-639, PF-640, PF-645, PF-646, PF-647, PF-654, PF-668, PF-672, PF-684, PF-686, PF-697, PF-698, and PF-S003. A peptide or composition effective to kill or inhibit the growth and/or proliferation of Trichophyton rubrum can comprise one or more peptides and/or one or more peptide domains having sequences selected from the group consisting of PF-283, PF-307, PF-527, PF-531, PF-547, and PF-672.
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of a bacterium can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against a bacterium in Tables 4, 5, or 6.
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of a gram positive bacterium can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against a gram positive bacterium in Tables 4, 5, or 6. In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of a gram negative bacterium can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against a gram negative bacterium in Tables 4, 5, or 6.
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of A. naeslundii can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against A. Naeslundii in Tables 4, 5, or 6 (e.g., from the group consisting of PF-531, PF-527, PF-672, PF-545, PF-168, PF-448, PF-525, PF-529, and PF-148).
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of B. subtilis can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against B. subtilis in Tables 4, 5, or 6 (e.g., from the group consisting of PF-002, PF-005, PF-006, PF-040, PF-053, PF-056, PF-061, PF-063, PF-067, PF-068, PF-069, PF-070, PF-071, PF-145, PF-148, PF-171, PF-175, PF-283, PF-289, PF-292, PF-296, PF-297, PF-301, PF-303, PF-305, PF-306, PF-307, PF-318, PF-319, PF-322, PF-335, PF-339, PF-342, PF-497, PF-499, PF-527, PF-531, PF-545, PF-547, PF-548, PF-549, PF-550, PF-552, PF-553, PF-554, PF-556, PF-557, PF-558, PF-559, PF-560, PF-561, PF-563, PF-564, PF-565, PF-566, PF-569, PF-571, PF-572, PF-574, PF-632, PF-636, PF-655, PF-659, PF-668, PF-670, PF-672, PF-686, PF-998, and PF-2003).
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of C. difficile can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against C. difficile in Tables 4, 5, or 6 (e.g., from the group consisting of PF-522, PF-531, and PF-538).
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of C. jeikeium can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against C. jeikeium in Tables 4, 5, or 6 (e.g., from the group consisting of PF-001, PF-003, PF-004, PF-101, PF-011, PF-012, PF-013, PF-021, PF-022, PF-025, PF-028, PF-030, PF-032, PF-033, PF-036, PF-037, PF-040, PF-042, PF-043, PF-046, PF-048, PF-052, PF-053, PF-056, PF-057, PF-063, PF-065, PF-067, PF-068, PF-073, PF-075, PF-076, PF-099, PF-124, PF-127, PF-129, PF-133, PF-135, PF-137, PF-139, PF-140, PF-145, PF-148, PF-164, PF-173, PF-176, PF-186, PF-188, PF-190, PF-191, PF-196, PF-199, PF-203, PF-204, PF-208, PF-527, PF-531, PF-545, PF-546, PF-548, PF-553, PF-556, PF-564, PF-566, PF-567, PF-575, PF-622, PF-523, PF-629, PF-632, PF-635, PF-637, PF-657, PF-668, PF-672, PF-681, PF-685, and PF-S003).
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of E. faecalis can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against E. faecalis in Tables 4, 5, or 6 (e.g., from the group consisting of PF-007, PF-053, PF-057, PF-068, PF-347, PF-349, PF-355, PF-356, PF-363, PF-366, PF-369, PF-374, PF-375, PF-376, PF-379, PF-380, PF-381, PF-386, PF-387, PF-389, PF-390, PF-392, PF-393, PF-394, PF-396, PF-398, PF-399, PF-401, PF-407, PF-410, PF-411, PF-418, PF-422, PF-425, PF-426, PF-427, PF-429, PF-431, PF-432, PF-439, PF-440, PF-444, PF-447, PF-450, PF-451, PF-452, PF-454, PF-456, PF-460, PF-461, PF-469, PF-470, PF-471, PF-472, PF-473, PF-474, PF-475, PF-480, PF-484, PF-514, PF-518, PF-519, PF-524, PF-530, PF-532, PF-533, PF-534, PF-536, PF-544, PF-545, PF-546, PF-547, PF-556, PF-577, PF-581, PF-582, PF-584, PF-585, PF-586, PF-588, PF-591, PF-592, PF-593, PF-594, PF-595, PF-596, PF-597, PF-598, PF-599, PF-601, PF-602, PF-604, PF-605, PF-607, PF-609, PF-610, PF-613, PF-614, PF-615, PF-616, PF-617, PF-618, PF-621, PF-622, PF-623, PF-627, PF-629, PF-631, PF-632, PF-635, PF-636, PF-637, PF-638, PF-639, PF-640, PF-643, PF-649, PF-657, PF-664, PF-667, PF-668, PF-672, PF-675, PF-677, PF-681, PF-684, PF-685, PF-686, PF-690, PF-695, and PF-698).
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of M. luteus can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against M. luteus in Tables 4, 5, or 6 (e.g., from the group consisting of PF-001, PF-003, PF-004, PF-006, PF-007, PF-010, PF-012, PF-013, PF-020, PF-021, PF-022, PF-025, PF-030, PF-036, PF-037, PF-040, PF-042, PF-043, PF-051, PF-052, PF-053, PF-056, PF-057, PF-063, PF-067, PF-068, PF-071, PF-073, PF-075, PF-076, PF-125, PF-127, PF-137, PF-139, PF-140, PF-145, PF-148, PF-171, PF-175, PF-176, PF-199, PF-204, PF-212, PF-215, PF-224, PF-226, PF-234, PF-235, PF-249, PF-250, PF-255, PF-257, PF-264, PF-270, PF-271, PF-274, PF-276, PF-278, PF-357, PF-527, PF-543, PF-548, PF-556, PF-562, PF-566, PF-567, PF-578, PF-580, PF-600, PF-603, PF-612, PF-624, PF-634, PF-741, PF-745, PF-746, PF-761, PF-763, PF-770, PF-776, and PF-S003).
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of MRSA can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against MRSA in Tables 4, 5, or 6 (e.g., from the group consisting of PF-001, PF-003, PF-004, PF-006, PF-007, PF-010, PF-011, PF-012, PF-013, PF-015, PF-017, PF-019, PF-020, PF-021, PF-022, PF-023, PF-024, PF-025, PF-026, PF-027, PF-028, PF-029, PF-030, PF-031, PF-033, PF-035, PF-036, PF-037, PF-040, PF-041, PF-042, PF-043, PF-045, PF-046, PF-048, PF-049, PF-051, PF-052, PF-053, PF-056, PF-057, PF-058, PF-063, PF-064, PF-065, PF-066, PF-067, PF-068, PF-071, PF-073, PF-074, PF-075, PF-076, PF-140, PF-145, PF-148, PF-149, PF-156, PF-168, PF-171, PF-178, PF-191, PF-209, PF-347, PF-349, PF-350, PF-354, PF-355, PF-356, PF-357, PF-360, PF-362, PF-366, PF-369, PF-370, PF-373, PF-374, PF-375, PF-376, PF-378, PF-379, PF-380, PF-381, PF-382, PF-386, PF-387, PF-389, PF-390, PF-392, PF-393, PF-394, PF-395, PF-396, PF-398, PF-399, PF-401, PF-403, PF-404, PF-405, PF-406, PF-407, PF-408, PF-410, PF-411, PF-413, PF-417, PF-418, PF-422, PF-425, PF-426, PF-427, PF-429, PF-430, PF-431, PF-432, PF-439, PF-440, PF-442, PF-443, PF-444, PF-447, PF-450, PF-451, PF-452, PF-453, PF-454, PF-458, PF-460, PF-461, PF-469, PF-471, PF-472, PF-473, PF-474, PF-475, PF-478, PF-480, PF-518, PF-519, PF-524, PF-526, PF-527, PF-528, PF-530, PF-532, PF-533, PF-534, PF-536, PF-539, PF-540, PF-543, PF-544, PF-545, PF-546, PF-547, PF-548, PF-549, PF-551, PF-553, PF-555, PF-556, PF-558, PF-560, PF-561, PF-562, PF-564, PF-565, PF-566, PF-567, PF-576, PF-577, PF-578, PF-580, PF-581, PF-583, PF-584, PF-585, PF-586, PF-589, PF-592, PF-595, PF-596, PF-598, PF-599, PF-600, PF-603, PF-605, PF-606, PF-607, PF-609, PF-610, PF-612, PF-613, PF-615, PF-619, PF-622, PF-623, PF-624, PF-627, PF-629, PF-630, PF-632, PF-634, PF-635, PF-637, PF-638, PF-639, PF-652, PF-643, PF-654, PF-655, PF-656, PF-657, PF-658, PF-659, PF-661, PF-664, PF-667, PF-778, PF-672, PF-677, PF-680, PF-683, PF-685, PF-686, PF-690, PF-692, PF-694, PF-695, PF-738, PF-741, PF-745, PF-746, PF-760, PF-761, PF-763, PF-764, PF-770, PF-776, and PF-5003).
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of S. epidermidis can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against of S. epidermidis in Tables 4, 5, or 6 (e.g., from the group consisting of PF-001, PF-003, PF-004, PF-006, PF-007, PF-009, PF-010, PF-012, PF-013, PF-020, PF-021, PF-022, PF-024, PF-025, PF-027, PF-028, PF-030, PF-032, PF-033, PF-034, PF-036, PF-037, PF-040, PF-041, PF-042, PF-043, PF-046, PF-048, PF-051, PF-052, PF-953, PF-956, PF-957, PF-961, PF-963, PF-964, PF-965, PF-967, PF-968, PF-971, PF-073, PF-074, PF-075, PF-076, PF-099, PF-123, PF-124, PF-125, PF-127, PF-128, PF-129, PF-137, PF-139, PF-140, PF-145, PF-148, PF-153, PF-157, PF-171, PF-173, PF-176, PF-178, PF-180, PF-186, PF-190, PF-191, PF-192, PF-196, PF-199, PF-203, PF-204, PF-208, PF-209, PF-226, PF-233, PF-273, PF-278, PF-283, PF-290, PF-292, PF-293, PF-294, PF-296, PF-297, PF-301, PF-307, PF-310, PF-313, PF-318, PF-319, PF-322, PF-335, PF-339, PF-342, PF-347, PF-349, PF-350, PF-355, PF-356, PF-357, PF-360, PF-363, PF-366, PF-369, PF-370, PF-373, PF-374, PF-375, PF-376, PF-378, PF-379, PF-380, PF-381, PF-383, PF-386, PF-387, PF-389, PF-390, PF-393, PF-395, PF-396, PF-397, PF-398, PF-399, PF-401, PF-403, PF-404, PF-406, PF-407, PF-408, PF-410, PF-411, PF-413, PF-417, PF-418, PF-422, PF-425, PF-246, PF-249, PF-430, PF-431, PF-432, PF-439, PF-440, PF-444, PF-447, PF-451, PF-452, PF-453, PF-454, PF-460, PF-469, PF-471, PF-473, PF-474, PF-475, PF-478, PF-480, PF-514, PF-518, PF-526, PF-527, PF-528, PF-530, PF-531, PF-533, PF-534, PF-536, PF-540, PF-543, PF-544, PF-546, PF-547, PF-548, PF-556, PF-558, PF-562, PF-576, PF-577, PF-578, PF-580, PF-583, PF-584, PF-585, PF-586, PF-592, PF-595, PF-596, PF-598, PF-599, PF-600, PF-603, PF-605, PF-606, PF-607, PF-610, PF-612, PF-613, PF-614, PF-615, PF-616, PF-619, PF-622, PF-623, PF-624, PF-627, PF-632, PF-634, PF-635, PF-637, PF-638, PF-655, PF-657, PF-659, PF-664, PF-667, PF-778, PF-672, PF-677, PF-681, PF-683, PF-685, PF-686, PF-690, PF-741, PF-746, PF-760, PF-761, PF-763, PF-770, PF-776, and PF-S003).
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of S. mutans can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against S. mutans in Tables 4, 5, or 6 (e.g., from the group consisting of G-1, G-2, G-4, G-8, PF-020, PF-040, PF-051, PF-531, PF-543, PF-547, PF-578, PF-583, PF-600, PF-606, PF-612, PF-624, PF-634, PF-741, PF-745, PF-746, PF-761, PF-770, PF-776, PF-0055, PF-0057, PF-0058, PF-0061, PF-0062, PF-0072, PF-0075, PF-0084, PF-0085, PF-0088, PF-0098, PF-C131, PF-C135, PF-C139, PF-C142, PF-C146, PF-C180, PF-C194, PF-C281, PF-C290, PF-C291, PF-C293
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of S. pneumoniae can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against S. pneumoniae in Tables 4, 5, or 6 (e.g., from the group consisting of PF-002, PF-005, PF-006, PF-020, PF-033, PF-040, PF-051, PF-053, PF-056, PF-057, PF-061, PF-063, PF-068, PF-071, PF-073, PF-140, PF-144, PF-145, PF-148, PF-171, PF-175, PF-178, PF-220, PF-355, PF-356, PF-357, PF-363, PF-366, PF-380, PF-389, PF-390, PF-393, PF-407, PF-411, PF-414, PF-415, PF-416, PF-417, PF-418, PF-419, PF-421, PF-422, PF-423, PF-424, PF-425, PF-426, PF-427, PF-428, PF-429, PF-430, PF-431, PF-432, PF-433, PF-434, PF-437, PF-439, PF-440, PF-442, PF-443, PF-444, PF-445, PF-446, PF-447, PF-448, PF-449, PF-450, PF-451, PF-452, PF-453, PF-454, PF-455, PF-457, PF-458, PF-469, PF-460, PF-461, PF-462, PF-464, PF-465, PF-466, PF-467, PF-468, PF-469, PF-471, PF-472, PF-473, PF-474, PF-475, PF-476, PF-477, PF-478, PF-479, PF-480, PF-482, PF-485, PF-511, PF-512, PF-513, PF-514, PF-515, PF-516, PF-517, PF-518, PF-519, PF-520, PF-521, PF-522, PF-523, PF-524, PF-525, PF-526, PF-527, PF-528, PF-529, PF-530, PF-531, PF-532, PF-533, PF-534, PF-535, PF-536, PF-537, PF-538, PF-539, PF-540, PF-541, PF-542, PF-543, PF-544, PF-546, PF-548, PF-553, PF-555, PF-556, PF-558, PF-560, PF-562, PF-563, PF-566, PF-567, PF-572, PF-573, PF-575, PF-576, PF-577, PF-578, PF-580, PF-581, PF-583, PF-585, PF-585, PF-586, PF-587, PF-589, PF-591, PF-592, PF-595, PF-596, PF-598, PF-599, PF-600, PF-603, PF-605, PF-606, PF-607, PF-609, PF-610, PF-612, PF-614, PF-615, PF-617, PF-618, PF-619, PF-621, PF-622, PF-623, PF-624, PF-625, PF-626, PF-627, PF-629, PF-631, PF-632, PF-634, PF-635, PF-636, PF-637, PF-638, PF-639, PF-640, PF-643, PF-644, PF-645, PF-646, PF-647, PF-651, PF-652, PF-653, PF-654, PF-655, PF-657, PF-658, PF-659, PF-660, PF-662, PF-663, PF-664, PF-665, PF-666, PF-667, PF-668, PF-670, PF-672, PF-675, PF-677, PF-681, PF-682, PF-683, PF-684, PF-685, PF-686, PF-687, PF-688, PF-690, PF-691, PF-693, PF-694, PF-695, PF-696, PF-697, PF-698, PF-699, PF-700, PF-702, PF-704, PF-737, PF-741, PF-744, PF-745, PF-746, PF-748, PF-749, PF-752, PF-756, PF-757, PF-760, PF-761, PF-762, PF-763, PF-764, PF-770, PF-776, and PF-S003).
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of A. baumannii can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against A. baumannii in Tables 4, 5, or 6 (e.g., from the group consisting of PF-531, PF-006, PF-538, and PF-530).
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of C. jejuni can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against C. jejuni in Tables 4, 5, or 6 (e.g., from the group consisting of PF-006, PF-008, PF-033, PF-040, PF-053, PF-056, PF-057, PF-059, PF-061, PF-063, PF-067, PF-068, PF-069, PF-071, PF-073, PF-140, PF-145, PF-148, PF-171, PF-175, PF-355, PF-356, PF-363, PF-366, PF-380, PF-389, PF-390, PF-392, PF-393, PF-411, PF-418, PF-422, PF-425, PF-426, PF-431, PF-432, PF-456, PF-469, PF-470, PF-471, PF-472, PF-473, PF-474, PF-475, PF-527, PF-548, PF-555, PF-556, PF-558, PF-559, PF-560, PF-562, PF-563, PF-564, PF-566, PF-567, PF-575, PF-576, PF-577, PF-581, PF-584, PF-585, PF-586, PF-590, PF-591, PF-592, PF-595, PF-596, PF-598, PF-599, PF-601, PF-605, PF-607, PF-609, PF-610, PF-614, PF-615, and PF-S003).
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of E. coli can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against E. coli in Tables 4, 5, or 6 (e.g., from the group consisting of PF-007, PF-040, PF-053, PF-057, PF-068, PF-178, PF-344, PF-347, PF-349, PF-350, PF-355, PF-360, PF-362, PF-363, PF-366, PF-369, PF-370, PF-374, PF-375, PF-376, PF-379, PF-380, PF-381, PF-383, PF-385, PF-386, PF-387, PF-390, PF-395, PF-396, PF-398, PF-399, PF-401, PF-403, PF-410, PF-411, PF-413, PF-418, PF-425, PF-426, PF-427, PF-432, PF-439, PF-440, PF-443, PF-444, PF-451, PF-452, PF-453, PF-454, PF-460, PF-469, PF-471, PF-473, PF-474, PF-478, PF-480, PF-514, PF-518, PF-519, PF-524, PF-526, PF-528, PF-530, PF-531, PF-532, PF-533, PF-534, PF-536, PF-540, PF-541, PF-543, PF-546, PF-576, PF-577, PF-578, PF-584, PF-586, PF-592, PF-595, PF-596, PF-598, PF-600, PF-603, PF-605, PF-606, PF-610, PF-612, PF-615, PF-619, PF-624, PF-634, PF-741, PF-746, PF-761, PF-770, and PF-776).
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of F. nucleatum can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against F. nucleatum in Tables 4, 5, or 6 (e.g., from the group consisting of PF-0055, PF-0061, PF-0062, PF-0064, PF-0065, PF-0069, PF-0071, PF-0072, PF-0075, PF-C084, PF-0086, PF-0088, PF-0091, PF-0095, PF-0098, PF-C120, PF-C131, PF-C135, PF-C136, PF-C137, PF-C143, PF-C145, PF-C181, PF-C194, PF-C214, PF-C291, and PF-C293).
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of M. Xanthus can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against M. Xanthus in Tables 4, 5, or 6 (e.g., from the group consisting of G-5, G-6, and G-7).
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of P. aeruginosa can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against P. aeruginosa in Tables 4, 5, or 6 (e.g., from the group consisting of PF-053, PF-063, PF-067, PF-128, PF-140, PF-143, PF-168, PF-204, PF-209, PF-355, PF-356, PF-366, PF-380, PF-411, PF-425, PF-432, PF-454, PF-458, PF-471, PF-474, PF-527, PF-531, PF-535, PF-536, PF-575, PF-577, PF-605, PF-746, PF-761, and PF-S003).
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of P. gingivalis can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against P. gingivalis in Tables 4, 5, or 6 (e.g., from the group consisting of PF-C052, PF-0072, PF-0075, PF-0084, PF-0088, PF-0089, PF-C136, PF-C180, PF-C194, and C293).
  • In certain embodiments a peptide or composition effective to kill or inhibit the growth and/or proliferation of P. mirabilis can comprise one or more peptides and/or one or more peptide domains comprising or consisting of sequences identified as having activity against P. mirabilis in Tables 4, 5, or 6 (e.g., from the group consisting of PF-040, PF-578, PF-612, PF-624, PF-634, PF-741, and PF-770).
  • It was also a surprising discovery that a number of novel antimicrobial peptides are characterized by the presence of particular amino acid motifs. Such motifs include KIF, FIK, KIH, HIK, and KIV, as illustrated in Table 7.
  • TABLE 7
    Antimicrobial peptides characterized by particular motifs.
    Omnibus SEQ ID
    Motif # Sequence NO
    KIF PF-278 LSLATFA KIF MTRSNWSLKRFNRL 1567
    PF-C059 QKIIDMSKFLFSLILFIMIVVIYIGKSIGGYSAIVSS 1568
    IMLELDTVLYNK KIF FIYK
    PF-C073 FESLLPQATKKIVNNKGSKIN KIF 1569
    PF-C085 KKF KIF VIINWFYHKYIILNFEENF 1570
    PF-531 YIQFHLNQQPRPKVKKI KIF L 1571
    PF-C194 NTNDLLQAFELMGLGMAGVFIVLGILYIVAELLI 1572
    KIF PVNN
    PF-C201 IFKLFEEHLLYLLDAFYYS KIF RRLKQGLYRRKE 1573
    QPYTQDLFRM
    PF-442 MQIFYIKT KIF LSFFLFLLIFSQCFYKIEE 1574
    PF-C252 NYRLVNAIFS KIF KKKFIKF 1575
    FIK PF-251 MAWK FIK LDKVVSQKECNNFLEKEENKKLLKL 1576
    LRIQKNMR
    PF-261 MDIWK FIK SFNTVNTYLLLSCVLLIILVLYFYVI 1577
    NPA
    PF-497 LVLRICTDLFT FIK WTIKQRKS 1578
    PF-775 DLCGQE FIK FKTCVTNQLAKK 1579
    PF-591 DLLKSLLGQDGAKNDEIIE FIK IIMEK 1580
    PF-597 DEIKVSDEEIEK FIK ENNL 1581
    PF-608 LICEVVKPEED FIK VKLNEDNVTAKISREFIAKKI 1582
    DA
    IT-133 Y FIK DDNEALSKDWEVIGNDLKGTIDKYGKEFK 1583
    VR
    PF-C252 NYRLVNAIFSKIFKKK FIK F 1584
    PF-C278 DMKIIKLYIKILSFL FIK YCNKKLNSVKLKA 1585
    PF-C290 GNVHPESDFHNLIQ FIK TFLYFTIFFKYFL 1586
    PF-006 MGIIAGIIK FIK GLIEKFTGK 1587
    PF-013 LIQKGLNQTFIVVIRLNN FIK KS 1588
    PF-040 MIHLTKQNTMEALH FIK QFYDMFFILNFNV 1589
    KIH PF-252 MKKLVAALAVIVILTGCVYDPVNYD KIH DQEF 1590
    QDHLRQNG
    PF-575 LNFRAENKILE KIH ISLIDTVEGSA 1591
    PF-533 KTPND KIH KTIIIKHIIL 1592
    HIK PF-222 HIK ETR 1593
    PF-319 SIGSMIGMYSFRHKTK HIK FTFGIPFILFLQFLLV 1594
    YFYILK
    PF-477 HKNKLNIP HIK S 1595
    KIV PF-272 MTLTIKIKHRS KIV PLNLISLVYAFFTYNFVANRI 1596
    MFLTND
    PF-758 PEII KIV SGLL 1597
    PF-336 MLTSRKKRLK KIV EEQNKKDESI 1598
    PF-C073 FESLLPQATK KIV NNKGSKINKIF 1599
    PF-721 TEQAK KIV DILNNWLE 1600
    PF-730 FEDIEQIIKYHLIDG KIV APLLLDR 1601
    PF-095 KRGS KIV IAIAVVLIVLAGVWVW 1602
    PF-028 ALDCSEQSVILWYETILD KIV GVIK 1603
    VIK PF-257 VWENRKKYLENEIERHNVFLKLGQE VIK GLNA 1604
    LASRGR
    PF-226 LMFFSENMDKRDTLSGKFRYFAGSK VIK LMNW 1605
    LSENGK
    PF-580 EILNNNQ VIK ELTMKYKTQFESNLGGWTARAR 1606
    R
    PF-366 ALCS VIK AIELGIINVHLQ 1607
    PF-C092 NGDKKAKEELDKWDE VIK ELNIQF 1608
    PF-S028 GS VIK KRRKRMSKKKHRKMLRRTRVQRRKLG 1609
    K
    PF-103 VIK ISVPGQVQMLIP 1610
    PF-527 GS VIK KRRKRMAKKKHRKLLKKTRIQRRRAGK 1611
    PF-167 AIEG VIK KGACFKLLRHEMF 1612
    PF-C166 KRKHENVIVAEEMR VIK N 1613
    PF-007 MGIIAGIIK VIK SLIEQFTGK 1614
    PF-071 HCVIGNVVDIANLLKRRAVYRDIAD VIK MR 1615
    PF-028 ALDCSEQSVILWYETILDKIVG VIK 1616
    PRP PF-C031 WSESQPPTAT PRP HAEVARAGLVTPPTL 1617
    PF-752 LHVIR PRP ELSELKFPITKILKVNKQGLKK 1618
    PF-672 MRFGSLALVAYDSAIKHSW PRP SSVRRLRM 1619
    PF-088 VMFVLTRGRS PRP MIPAY 1620
    PF-143 LS PRP IIVSRRSRADNNNDWSR 1621
    PF-168 VLPFPAIPLSRRRACVAA PRP RSRQRAS 1622
    PF-531 YIQFHLNQQ PRP KVKKIKIFL 1623

    All groups are associated with antimicrobial activity
  • In certain embodiments, peptides described herein can have multiple activities. Thus for example, a peptide can have both binding/targeting activity and antimicrobial activity. Illustrative peptides having multiple activities are shown in Table 8. Such peptides can be used, e.g., in a chimeric construct, for any or all of these properties. Thus, for example, a peptide designated “B” in Table 8 can be used as a targeting peptide. If it is also designated G or M it can also be used for antimicrobial activity.
  • TABLE 8
    Peptides having multiple activities. B: targeting/binding activity;
    M: antimicrobial activity; G: Growth or phenotype altering.
    Peptide Activities
    PF-001 G B
    PF-002 G B
    PF-003 G B
    PF-004 G B
    PF-005 G B
    PF-006 G B M
    PF-007 G B
    PF-008 G B
    PF-009 G B
    PF-010 G B
    PF-011 G B
    PF-012 G B
    PF-013 G B
    PF-015 G B
    PF-017 G B
    PF-020 G B
    PF-021 G B
    PF-022 G B
    PF-023 G B
    PF-024 G B
    PF-025 G B
    PF-026 G B
    PF-027 G B
    PF-028 G B
    PF-029 G B
    PF-030 G B
    PF-031 G B
    PF-033 G B
    PF-034 G B
    PF-035 G B
    PF-036 G B
    PF-037 G B
    PF-040 G B
    PF-041 G B
    PF-042 G B
    PF-043 G B
    PF-045 G B
    PF-046 G B
    PF-048 G B
    PF-049 G B
    PF-051 G B
    PF-052 G B
    PF-053 G B
    PF-056 G B
    PF-057 G B
    PF-058 G B
    PF-061 G B
    PF-063 G B
    PF-064 G B
    PF-065 G B
    PF-066 G B
    PF-067 G B
    PF-068 G B
    PF-069 G B
    PF-070 G B
    PF-071 G B
    PF-073 G B
    PF-074 G B
    PF-075 G B
    PF-076 G B
    PF-099 G B
    PF-123 G B
    PF-124 G B
    PF-125 G B
    PF-127 G B
    PF-128 G B
    PF-129 G B
    PF-133 G B
    PF-135 G B
    PF-137 G B
    PF-139 G B
    PF-140 G B
    PF-143 G B
    PF-144 G B
    PF-145 G B
    PF-148 G B M
    PF-149 G B
    PF-153 G B
    PF-156 G B
    PF-157 G B
    PF-164 G B
    PF-168 G B M
    PF-171 G B
    PF-173 G B
    PF-175 G B
    PF-176 G B
    PF-178 G B
    PF-180 G B
    PF-186 G B
    PF-188 G B
    PF-190 G B
    PF-191 G B
    PF-192 G B
    PF-196 G B
    PF-203 G B
    PF-204 G B
    PF-208 G B
    PF-209 G B M
    PF-212 G B
    PF-215 G B
    PF-224 G B
    PF-226 G B
    PF-233 G B
    PF-234 G B
    PF-235 G B
    PF-249 G B
    PF-255 G B
    PF-257 G B
    PF-270 G B
    PF-271 G B
    PF-273 G B
    PF-276 G B
    PF-278 G B M
    PF-283 G B M
    PF-289 G B
    PF-292 G B
    PF-294 G B
    PF-297 G B
    PF-301 G B
    PF-305 G B
    PF-306 G B
    PF-307 G B M
    PF-313 G B
    PF-319 G B
    PF-322 G M
    PF-344 G B
    PF-347 G B
    PF-349 G B
    PF-350 G B
    PF-354 G B
    PF-355 G B
    PF-356 G B
    PF-357 G B
    PF-360 G B
    PF-362 G B
    PF-363 G B
    PF-366 G B
    PF-369 G B
    PF-370 G B
    PF-373 G B
    PF-374 G B
    PF-375 G B
    PF-376 G B
    PF-378 G B
    PF-379 G B
    PF-380 G B
    PF-381 G B
    PF-382 G B
    PF-383 G B
    PF-385 G B
    PF-386 G B
    PF-387 G B
    PF-389 G B
    PF-390 G B
    PF-392 G B
    PF-393 G B
    PF-394 G B
    PF-395 G B
    PF-396 G B
    PF-397 G B
    PF-398 G B
    PF-399 G B
    PF-401 G B
    PF-403 G B
    PF-404 G B
    PF-405 G B
    PF-406 G B
    PF-407 G B
    PF-408 G B
    PF-410 G B
    PF-411 G B
    PF-413 G B
    PF-414 G B
    PF-416 G B
    PF-417 G B
    PF-418 G B
    PF-421 G B
    PF-422 G B
    PF-423 G B
    PF-424 G B
    PF-425 G B
    PF-426 G B
    PF-427 G B
    PF-428 G B
    PF-429 G B
    PF-430 G B
    PF-431 G B
    PF-432 G B
    PF-433 G B
    PF-434 G B
    PF-437 G M
    PF-439 G B
    PF-440 G B
    PF-442 G B
    PF-443 G B
    PF-444 G B
    PF-445 G B
    PF-446 G B
    PF-447 G B
    PF-S003 G B
    PF-448 G B M
    PF-450 G B
    PF-451 G B
    PF-452 G B
    PF-453 G B
    PF-454 G B
    PF-456 G B
    PF-457 G B
    PF-458 G B
    PF-459 G B
    PF-460 G B
    PF-461 G B
    PF-462 G B
    PF-464 G B
    PF-465 G B
    PF-466 G B
    PF-467 G B
    PF-469 G B
    PF-470 G B
    PF-471 G B
    PF-472 G B
    PF-473 G B
    PF-474 G B
    PF-475 G B
    PF-476 G B
    PF-477 G B
    PF-478 G B
    PF-479 G B
    PF-480 G B
    PF-482 G B
    PF-484 G B
    PF-497 B M
    PF-499 B M
    PF-511 G B M
    PF-512 G B M
    PF-513 G B
    PF-514 G B
    PF-515 G B
    PF-516 G
    PF-517 G B
    PF-518 G B
    PF-519 G B
    PF-520 G B M
    PF-521 G B M
    PF-522 G B M
    PF-523 B M
    PF-524 G B M
    PF-525 G M
    PF-526 G B
    PF-527 G B M
    PF-528 G B
    PF-529 G B M
    PF-530 G M
    PF-531 G M
    PF-537 G B
    PF-538 G M
    PF-539 G B
    PF-540 G B
    PF-542 G B
    PF-543 G B
    PF-544 G B
    PF-545 G B M
    PF-546 G B
    PF-547 G B M
    PF-548 G B
    PF-549 G B
    PF-550 G B
    PF-551 G B
    PF-552 G B
    PF-553 G B
    PF-554 G B
    PF-555 G B
    PF-556 G B
    PF-557 G B
    PF-558 G B
    PF-559 G B
    PF-560 G B
    PF-562 G B
    PF-563 G B
    PF-564 G B
    PF-566 G B
    PF-567 G B
    PF-569 G B
    PF-572 G B
    PF-573 G B
    PF-575 G B
    PF-576 G B
    PF-577 G B
    PF-578 G B
    PF-580 G B
    PF-581 G B
    PF-583 G B M
    PF-584 G B
    PF-585 G B
    PF-586 G B
    PF-587 G B
    PF-588 G B
    PF-589 G B
    PF-590 G B
    PF-592 G B
    PF-593 G B
    PF-594 G B
    PF-595 G B
    PF-596 G B
    PF-597 G B
    PF-598 G B
    PF-599 G B
    PF-600 G B M
    PF-601 G B
    PF-602 G B
    PF-603 G B
    PF-604 G B
    PF-605 G B
    PF-606 G M
    PF-607 G B
    PF-609 G B
    PF-610 G B
    PF-612 G B
    PF-613 G B
    PF-614 G B
    PF-615 G B
    PF-616 G B
    PF-617 G B
    PF-619 G B
    PF-621 G B
    PF-622 G B
    PF-623 G B
    PF-625 G B
    PF-626 G B
    PF-627 G B
    PF-629 G B
    PF-630 G B
    PF-631 G B
    PF-632 G B
    PF-634 G B
    PF-635 G B
    PF-636 G B
    PF-637 G B
    PF-638 G B
    PF-639 G B
    PF-640 G B
    PF-642 G B
    PF-655 G B
    PF-664 G B
    PF-672 G B M
    PF-681 G B
    PF-686 G B
    PF-737 G B
    PF-738 G B
    PF-741 G B
    PF-744 G B
    PF-745 G B
    PF-746 G B
    PF-748 G B
    PF-749 G B
    PF-752 G B
    PF-756 G B
    PF-757 G B
    PF-760 G B
    PF-761 G B
    PF-762 G B
    PF-763 G B
    PF-764 G B
    PF-770 G B
    PF-776 G B
    PF-C052 G B
    PF-C055 G B
    PF-C057 G B
    PF-C058 G B
    PF-C061 G B
    PF-C062 G B
    PF-C064 G B
    PF-C065 G B
    PF-C069 G B
    PF-C071 G B
    PF-C072 G B
    PF-C075 G B
    PF-C084 G B
    PF-C085 G B
    PF-C086 G B
    PF-C088 G B
    PF-C091 G B
    PF-C095 G B
    PF-C098 G B
    PF-C120 G B
    PF-C131 G B
    PF-C135 G B
    PF-C136 G B
    PF-C137 G B
    PF-C139 G B
    PF-C142 G B
    PF-C143 G B
    PF-C145 G B
    PF-C180 G B
    PF-C181 G B
    PF-C194 G B
    PF-C281 G B
    PF-C290 G B
    PF-C291 G B
  • Other peptides believed to show binding, growth altering, and/or antimicrobial activity are shown in Table 9.
  • TABLE 9
    Additional peptides believed to have binding, growth
    altering,mand/or antimicrobial activity.
    SEQ
    ID Sequence ID No.
    PF-198 RRLASRRSLVVST 1624
    PF-227 RLLGLYGENSAAGFIASVIGAVIILFIYNLIARKS 1625
    PF-260 GHLRVCWILWLQSANPLSFRHHYLAVMW 1626
    PF-261 MDIWKFIKSFNTVNTYLLLSCVLLIILVLYFYVINPA 1627
    PF-277 MIIQNKKIEKIYKYQTKEIFLNKTSLRAGFVFRMVRVLI 1628
    PF-280 MLIDWQEPDIEKSFCAAFLKISVSVLVYRTPLGYGNQLRE 1629
    PF-286 FFDGEVGCGC 1630
    PF-287 ILEQNIEEVFFIQS 1631
    PF-312 MDKIRIWNNFHISNEYIKQRYGIISIPLFYVYLF 1632
    PF-321 FAKKNPCRMRVPNTGTWYLVVNQDGNSGIVNFSINTIQN 1633
    PF-327 MLVFQMRYQMRYVDKTSTVLKQTKNSDYADK 1634
    PF-330 MLMNFEVYQQRILIIYNKCYHLKAVGKNLQLFIIVD 1635
    PF-331 MGRHLWNPSYFVATVSENTEEQIRKYINNQKKQVK 1636
    PF-341 DDKNEGKIAQGEY 1637
    PF-391 EASVYRE 1638
    PF-420 MVKHNFDVTDKTGKISSKHCFEITDKTDVV 1639
    PF-708 DRPSQTTHHTLSSSRITGPS 1640
    PF-710 EALLPPDPPDEDSQRIIPQ 1641
    PF-713 DRPSQTTHHTLSSSRITGPS 1642
    PF-715 LEDTKALFPCFVPI 1643
    PF-718 KKYSSFKSMIDDLEYDA 1644
    PF-719 FKSMIDDLEYDA 1645
    PF-721 TEQAKKIVDILNNWLE 1646
    PF-722 STSPSVTSVYAEALGLK 1647
    PF-723 VGAMAIFLNVVAMLAGV 1648
    PF-725 ARTIQNNGCLIHNSRYP 1649
    PF-726 CDDLYALEAQGTLNELLKK 1650
    PF-729 TPEPVVIVKP 1651
    PF-730 FEDIEQIIKYHLIDGKIVAPLLLDR 1652
    PF-734 SDIIAENIFQQGELEPMLRDAVAA 1653
    PF-736 KGSASGSASGSGSAK 1654
    PF-739 KSGASSVASAAKSG 1655
    PF-742 AAATTATTAK 1656
    PF-743 TKGTTTGTAKTTGVTTGTAK 1657
    PF-769 GSRGGAKRGGARG 1658
    PF-C031 WSESQPPTATPRPHAEVARAGLVTPPTL 1659
    PF-C038 QPIGFPTDSVHGTDLVHRLRGTTSSR 1660
    PF-C077 LENLDIEGLTEMKEHIEDLIAEKSAAESIEEVIVEAE 1661
    PF-C205 AYSLTFQNPNDNLTDEEVAKYMEKITKALTEKIGAEVR 1662
    PF-S016 PLTRETFAERGIRKARVARTFSEEEPPF 1663
  • III. Design and Construction of STAMPs and Other Chimeric Constructs.
  • In various embodiments this invention provides chimeric moieties comprising one or more targeting moieties attached to one or more effectors. The targeting moieties can be selected to preferentially bind to a target microorganism (e.g., bacteria, virus, fungi, yeast, alga, protozoan, etc.) or group of microorganisms (e.g., gram-negative or gram-positive bacteria, particular genus, species, etc.) In certain embodiments the targeting moiety comprises one or more novel microorganism-binding peptides as described herein (see, e.g., Table 3, and/or Table 10, and/or Table 12). In certain embodiments the targeting moiety comprises non-peptide moieties (e.g., antibodies, receptor, receptor ligand, lectin, and the like).
  • In various embodiments the effector comprises a moiety whose activity is to be delivered to the target microorganism(s), to a biofilm comprising the target microorganism(s), to a cell or tissue comprising the target microorganism(s), and the like. In certain embodiments the targeting moiety comprises one or more antimicrobial peptide(s) as described herein (see, e.g., Tables 4, 5 and/or 14), an antibiotic (including, but not limited to a steroid antibiotic), a detectable label, a porphyrin, a photosensitizing agent, an epitope tag, a lipid or liposome, a nanoparticle, a dendrimer, and the like.
  • In certain embodiments one or more targeting moieties are attached to a single effector. In certain embodiments one or more effectors are attached to a single targeting moiety. In certain embodiments multiple targeting moieties are attached to multiple effectors. The targeting moieties(s) can be attached directly to the effector(s) or through a linker. Where the targeting moiety and the effector comprise peptides the chimeric moiety can be a fusion protein.
  • A) Targeting Moieties.
  • In various embodiments this invention provides targeting moieties that preferentially and/or specifically bind to a microorganism (e.g., a bacterium, a fungus, a yeast, etc.). One or more such targeting moieties can be attached to one or more effectors to provide chimeric moieties that are capable of delivering the effector(s) to a target (e.g., a bacterium, a fungus, a yeast, a biofilm comprising the bacterium or fungus or yeast, etc.).
  • In various embodiments, targeting moieties include, but are not limited to peptides that preferentially bind particular microorganisms (e.g., bacteria, fungi, yeasts, protozoa, algae, viruses, etc.) or groups of such microorganisms, e.g., as described above, antibodies that bind particular microorganisms or groups of microorganisms, receptor ligands that bind particular microorganisms or groups of microorganisms, porphyrins (e.g., metalloporphyrins), lectins that bind particular microorganisms or groups of microorganisms, and the like. As indicated it will be appreciated that references to microorganisms or groups of microorganism include bacteria or groups of bacteria, viruses or groups of viruses, yeasts or groups of yeasts, protozoa or groups of protozoa, viruses or groups of viruses, and the like.
  • i. Targeting Peptides.
  • In certain embodiments, the targeting moiety comprises one or more targeting peptides that bind particular bacteria, fungi, and/or yeasts, and/or algae, and/or viruses and/or that bind particular groups of bacteria, and/or groups of fungi, and/or groups of yeasts, and/or groups of algae.
  • In certain embodiments the targeting peptide can comprise one or more domains capable of binding, specifically binding, or preferentially binding to a microorganism, e.g., a target microbial organism (see, e.g., Table 3). In certain embodiment, the targeting peptide be identified via screening peptide libraries. For example, a phage display peptide library can be screened against a target microbial organism or a desired antigen or epitope thereof. Any peptide identified through such screening can be used as a targeting peptide for the target microbial organism. Illustrative additional targeting peptides are shown in Table 10.
  • TABLE 10
    Additional illustrative targeting moieties.
    Targeting Moiety/ SEQ ID
    Organism Structure/sequence NO
    LPSB-1 RGLRRLGRRGLRRLGR 1664
    Phob-1 KPVLPVLPVLPVL 1665
    LPSB-2 VLRIIRIAVLRIIRIA 1666
    LPTG-1 LPETGGSGGSLPETG 1667
    α-1 RAHIRRAHIRR 1668
    ANION-1 DEDEDDEEDDDEEE 1669
    PHILIC-1 STMCGSTMCGSTMCG 1670
    SA5.1/S.aureus VRLPLWLPSLNE 1671
    SA5.3/S.aureus ANYFLPPVLSSS 1672
    SA5.4/S.aureus SHPWNAQRELSV 1673
    SA5.5/S.aureus SVSVGMRPMPRP 1674
    SA5.6/S.aureus WTPLHPSTNRPP 1675
    SA5.7/S.aureus SVSVGMKPSPRP 1676
    SA5.8/S.aureus SVSVGMKPSPRP 1677
    SA5.9/S.aureus SVPVGPYNESQP 1678
    SA5.10/S.aureus WAPPLFRSSLFY 1679
    SA2.2/S.aureus WAPPXPXSSLFY 1680
    SA2.4/S.aureus HHGWTHHWPPPP 1681
    SA2.5/S.aureus SYYSLPPIFHIP 1682
    SA2.6/S.aureus HFQENPLSRGGEL 1683
    SA2.7/S.aureus FSYSPTRAPLNM 1684
    SA2.8/S.aureus SXPXXMKXSXXX 1685
    SA2.9/S.aureus VSRHQSWHPHDL 1686
    SA2.10/S.aureus DYXYRGLPRXET 1687
    SA2.11/S.aureus SVSVGMKPSPRP 1688
    S.aureus/ V/Q/H-P/H-H-E-F/Y-K/H-H/A-L/H-X-X-K/R-P/L 1689
    Consensus
    DH5.1/Ecoli. KHLQNRSTGYET 1690
    DH5.2/Ecoli. HIHSLSPSKTWP 1691
    DH5.3/Ecoli. TITPTDAEMPFL 1692
    DH5.4/Ecoli. HLLESGVLERGM 1693
    DH5.5/Ecoli. HDRYHIPPLQLH 1694
    DH5.6/Ecoli. VNTLQNVRHMAA 1695
    DH5.7/Ecoli. SNYMKLRAVSPF 1696
    DH5.8/Ecoli. NLQMPYAWRTEF 1697
    DH5.9/Ecoli. QKPLTGPHFSLI 1698
    CSP/S.mutans SGSLSTFFRLFNRSFTQALGK 1699
    CSPC18/ S. mutans LSTFFRLFNRSFTQALGK 1700
    CSPC16/S.mutans TFFRLFNRSFTQALGK 1701
    CSPM8/S.mutans TFFRLFNR 1702
    KH/Pseudomonas spp KKHRKHRKHRKH 1703
    (US 2004/0137482)
    cCF10 LVTLVFV 1704
    AgrD1 YSTCDFIM 1705
    AgrD2 GVNACSSLF 1706
    AgrD3 YINCDFLL 1707
    NisinA ITSISLCTPGCKTGALMGCNMRTATCIICSIIIVSK 1708
    PlnA KSSAYSLQMGATAIKQVKKLFKKWGW 1709
    S3L1-5 WWYNWWQDW 1710
    Penetratin RQIKIWFWNRRMKWKK* 1711
    Tat EHWSYCDLRPG 1712
    Pep-1N KETWWETWWTEW 1713
    Pep27 MRKEFHNVLS SGQLLADKRPARDYNRK 1714
    HABP35 LKQKIKHVVKLKVVVKLRSQLVKRKQN 1715
    HABP42 (all D) STMMSRSHKTRSHHV 1716
    HABP52 GAHWQFNALTVRGGGS 1717
    Hi3/17 KQRTSIRATEGCLPS 1718
    α-E.coli peptide QEKIRVRLSA 1719
    Salivary Receptor QLKTADLPAGRDETTSFVLV* 1720
    Adhesion Fragment
    S1 (Sushi frag.) GFKLKGMARISCLPNGQWSNFPPKCIRECAMVSS 1721
    (LPS binding)
    S3 (Sushi frag.) HAEHKVKIGVEQKYGQFPQGTEVTYTC SGNYFL 1722
    (LPS binding) M
    MArg.1 AMDMYSIEDRYFGGYAPEVG 1723
    (Mycoplasma infected
    cell line binding
    peptide
    BPI fragment
     1 ASQQGTAALQKELKRIKPDYSDSFKIKH 1724
    (LPS binding)
    6,376,462
    BPI fragment 2 SSQISMVPNVGLKFSISNANIKISGKWKAQKRFL 1725
    (LPS binding) K
    6,376,462
    BPI fragment 3 VHVHISKSKVGWLIQLFHKKIESALRNK 1726
    (LPS binding)
    6,376,462
    LBP fragment 1 AAQEGLLALQSELLRITLPDFTGDLRIPH 1727
    (LPS binding)
    6,376,462
    LBP fragment 2 HSALRPVPGQGLSLSISDSSIRVQGRWKVRKSFF 1728
    (LPS binding) K
    6,376,462
    LBP fragment 3 VEVDMSGDLGWLLNLFHNQIESKFQKV 1729
    (LPS binding)
    6,376,462
    B.anthracis spore ATYPLPIR 1730
    binding
    (WO/1999/036081)
    Bacillus peptides of 5-12 amino acids containing the 1731
    sporebinding sequence
    (WO/1999/036081) Asn-His-Phe-Leu
    peptides of 5-12 amino acids containing the 1732
    sequence
    Asn-His-Phe-Leu-Pro
    Thr-Ser-Glu-Asn-Val-Arg-Thr (TSQNVRT) 1733
    A peptide of formula Thr-Tyr-Pro-X-Pro-X-Arg 1734
    (TYPXPXR) where X is a Ile, Val or Leu.
    A peptide having the sequence TSQNVRT. 1735
    A peptide having the sequence TYPLPIR 1736
    LPS binding peptide  TFRRLKWK 1737
    1 (6,384,188)
    LPS BP 2 (6,384,188) RWKVRKSFFKLQ 1738
    LPS BP 3 (6,384,188) KWKAQKRFLKMS 1739
    Pseudomonas pilin KCTSDQDEQFIPKGCSK 1740
    binding peptide
    (5,494,672)
    RNAII inhibiting YSPWTNF 1741
    peptide (S. Aureus)

    Patents and patent publications disclosing the referenced antibodies are identified in the table.
  • In certain embodiments the targeting moieties can comprise other entities, particularly when utilized with an antimicrobial peptide as described, for example, in Table 4. Illustrative targeting moieties can include a polypeptide, a peptide, a small molecule, a ligand, a receptor, an antibody, a protein, or portions thereof that specifically interact with a target microbial organism, e.g., the cell surface appendages such as flagella and pili, and surface exposed proteins, lipids and polysaccharides of a target microbial organism.
  • ii. Targeting Antibodies.
  • In certain embodiments the targeting moieties can comprise one or more antibodies that bind specifically or preferentially a microorganism or group of microorganisms (e.g., bacteria, fungi, yeasts, protozoa, viruses, algae, etc.). The antibodies are selected to bind an epitope characteristic or the particular target microorganism(s). In various embodiments such epitopes or antigens are typically is gram-positive or gram-negative specific, or genus-specific, or species-specific, or strain specific and located on the surface of a target microbial organism. The antibody that binds the epitope or antigen can direct an anti-microbial peptide moiety or other effector to the site. Furthermore, in certain embodiments the antibody itself can provide anti-microbial activity in addition to the activity provided by effector moiety since the antibody may engage an immune system effector (e.g., a T-cell) and thereby elicit an antibody-associated immune response, e.g., a humoral immune response.
  • Antibodies that bind particular target microorganisms can be made using any methods readily available to one skilled in the art. For example, as described in U.S. Pat. No. 6,231,857 (incorporated herein by reference) three monoclonal antibodies, i.e., SWLA1, SWLA2, and SWLA3 have been made against S. mutans. Monoclonal antibodies obtained from non-human animals to be used in a targeting moiety can also be humanized by any means available in the art to decrease their immunogenicity and increase their ability to elicit anti-microbial immune response of a human. Illustrative microorganisms and/or targets to which antibodies may be directed are shown, for example, in Tables 3 and 11.
  • Various forms of antibody include, without limitation, whole antibodies, antibody fragments (e.g., (Fab′)2 Fab′, etc.), single chain antibodies (e.g., scFv), minibodies, Di-miniantibody, Tetra-miniantibody, (scFv)2, Diabody, scDiabody, Triabody, Tetrabody, Tandem diabody, VHH, nanobodies, affibodies, unibodies, and the like.
  • Methods of making such antibodies are well known to those of skill in the art. In various embodiments, such methods typically involve providing the microorganism, or a component thereof for use as an antigen to raise an immune response in an organism or for use in a screening protocol (e.g., phage or yeast display).
  • For example, polyclonal antibodies are typically raised by one or more injections (e.g. subcutaneous or intramuscular injections) of the target microorganism(s) or components thereof into a suitable non-human mammal (e.g., mouse, rabbit, rat, etc.).
  • If desired, the immunizing microorganism or antigen derived therefrom can be administered with or coupled to a carrier protein by conjugation using techniques that are well-known in the art. Such commonly used carriers which are chemically coupled to the peptide include keyhole limpet hemocyanin (KLH), thyroglobulin, bovine serum albumin (BSA), and tetanus toxoid. The coupled peptide is then used to immunize the animal (e.g. a mouse or a rabbit).
  • The antibodies are then obtained from blood samples taken from the mammal. The techniques used to develop polyclonal antibodies are known in the art (see, e.g., Methods of Enzymology, “Production of Antisera With Small Doses of Immunogen: Multiple Intradermal Injections”, Langone, et al. eds. (Acad. Press, 1981)). Polyclonal antibodies produced by the animals can be further purified, for example, by binding to and elution from a matrix to which the peptide to which the antibodies were raised is bound. Those of skill in the art will know of various techniques common in the immunology arts for purification and/or concentration of polyclonal antibodies, as well as monoclonal antibodies see, for example, Coligan, et al. (1991) Unit 9, Current Protocols in Immunology, Wiley Interscience).
  • In certain embodiments the antibodies produced will be monoclonal antibodies (“mAb's”). The general method used for production of hybridomas secreting mAbs is well known (Kohler and Milstein (1975) Nature, 256:495
  • Antibody fragments, e.g. single chain antibodies (scFv or others), can also be produced/selected using phage display and/or yeast display technology. The ability to express antibody fragments on the surface of viruses that infect bacteria (bacteriophage or phage) or yeasts makes it possible to isolate a single binding antibody fragment, e.g., from a library of greater than 1010 nonbinding clones. To express antibody fragments on the surface of phage (phage display) or yeast, an antibody fragment gene is inserted into the gene encoding a phage surface protein (e.g., pIII) and the antibody fragment-pIII fusion protein is displayed on the phage surface (McCafferty et al. (1990) Nature, 348: 552-554; Hoogenboom et al. (1991) Nucleic Acids Res. 19: 4133-4137).
  • Since the antibody fragments on the surface of the phage or yeast are functional, phage bearing antigen binding antibody fragments can be separated from non-binding phage by antigen affinity chromatography (McCafferty et al. (1990) Nature, 348: 552-554). Depending on the affinity of the antibody fragment, enrichment factors of 20 fold-1,000,000 fold are obtained for a single round of affinity selection.
  • Human antibodies can be produced without prior immunization by displaying very large and diverse V-gene repertoires on phage (Marks et al. (1991) J. Mol. Biol. 222: 581-597.
  • In certain embodiments, nanobodies can be used as targeting moieties. Methods of making VhH (nanobodies) are also well known to those of skill in the art. The Camelidae heavy chain antibodies are found as homodimers of a single heavy chain, dimerized via their constant regions. The variable domains of these camelidae heavy chain antibodies are referred to as VHH domains or VHH, and can be either used per se as nanobodies and/or as a starting point for obtaining nanobodies. Isolated VHH retain the ability to bind antigen with high specificity (see, e.g., Hamers-Casterman et al. (1993) Nature 363: 446-448). In certain embodiments such VHH domains, or nucleotide sequences encoding them, can be derived from antibodies raised in Camelidae species, for example in camel, dromedary, llama, alpaca and guanaco. Other species besides Camelidae (e.g. shark, pufferfish) can produce functional antigen-binding heavy chain antibodies, from which (nucleotide sequences encoding) such naturally occurring VHH can be obtained, e.g. using the methods described in U.S. Patent Publication US 2006/0211088.
  • In various embodiments, for use in therapy, human proteins are preferred, primarily because they are not as likely to provoke an immune response when administered to a patient. Comparisons of camelid VHH with the VH domains of human antibodies reveals several key differences in the framework regions of the camelid VHH domain corresponding to the VH/VL interface of the human VH domains. Mutation of these human residues to VHH resembling residues has been performed to produce “camelized” human VH domains that retain antigen binding activity, yet have improved expression and solubility.
  • Libraries of single VH domains have also been derived for example from VH genes amplified from genomic DNA or from mRNA from the spleens of immunized mice and expressed in E. coli (Ward et al. (1989) Nature 341: 544-546) and similar approaches can be performed using the VH domains and/or the VL domains described herein. The isolated single VH domains are called “dAbs” or domain antibodies. A “dAb” is an antibody single variable domain (VH or VL) polypeptide that specifically binds antigen. A “dAb” binds antigen independently of other V domains; however, as the term is used herein, a “dAb” can be present in a homo- or heteromultimer with other VH or VL domains where the other domains are not required for antigen binding by the dAb, i.e., where the dAb binds antigen independently of the additional VH or VL domains.
  • As described in U.S. Patent Publication US 2006/0211088 methods are known for the cloning and direct screening of immunoglobulin sequences (including but not limited to multivalent polypeptides comprising: two or more variable domains—or antigen binding domains—and in particular VH domains or VHH domains; fragments of VL, VH or VHH domains, such as CDR regions, for example CDR3 regions; antigen-binding fragments of conventional 4-chain antibodies such as Fab fragments and scFv's, heavy chain antibodies and domain antibodies; and in particular of VH sequences, and more in particular of VHH sequences) that can be used as part of and/or to construct such nanobodies.
  • Methods and procedures for the production of VHH/nanobodies can also be found for example in WO 94/04678, WO 96/34103, WO 97/49805, WO 97/49805 WO 94/25591, WO 00/43507 WO 01/90190, WO 03/025020, WO 04/062551, WO 04/041863, WO 04/041865, WO 04/041862, WO 04/041867, PCT/BE2004/000159, Hamers-Casterman et al. (1993) Nature 363: 446; Riechmann and Muyldermans (1999) J. Immunological Meth., 231: 25-38; Vu et al. (1997) Molecular Immunology, 34(16-17): 1121-1131; Nguyen et al. (2000) EMBO J., 19(5): 921-930; Arbabi Ghahroudi et al. (19997) FEBS Letters 414: 521-526; van der Linden et al. (2000) J. Immunological Meth., 240: 185-195; Muyldermans (2001) Rev. Molecular Biotechnology 74: 277-302; Nguyen et al. (2001) Adv. Immunol. 79: 261, and the like.
  • In certain embodiments the antibody targeting moiety is a unibody. Unibodies provide an antibody technology that produces a stable, smaller antibody format with an anticipated longer therapeutic window than certain small antibody formats. In certain embodiments unibodies are produced from IgG4 antibodies by eliminating the hinge region of the antibody. Unlike the full size IgG4 antibody, the half molecule fragment is very stable and is termed a uniBody. Halving the IgG4 molecule left only one area on the UniBody that can bind to a target. Methods of producing unibodies are described in detail in PCT Publication WO2007/059782, which is incorporated herein by reference in its entirety (see, also, Kolfschoten et al. (2007) Science 317: 1554-1557).
  • Affibody molecules are class of affinity proteins based on a 58-amino acid residue protein domain, derived from one of the IgG-binding domains of staphylococcal protein A. This three helix bundle domain has been used as a scaffold for the construction of combinatorial phagemid libraries, from which Affibody variants that target the desired molecules can be selected using phage display technology (see, e.g., Nord et al. (1997) Nat. Biotechnol. 15: 772-777; Ronmark et al. (2002) Eur. J Biochem., 269: 2647-2655.). Details of Affibodies and methods of production are known to those of skill (see, e.g., U.S. Pat. No. 5,831,012 which is incorporated herein by reference in its entirety).
  • It will also be recognized that antibodies can be prepared by any of a number of commercial services (e.g., Berkeley antibody laboratories, Bethyl Laboratories, Anawa, Eurogenetec, etc.).
  • Illustrative antibodies that bind various microorganisms are shown in Table 11.
  • TABLE 11
    Illustrative antibodies that bind target microorganisms.
    Source Antibody
    U.S. Pat. No. 7,195,763 Polyclonal/monoclonal binds specific
    Gram(+) cell wall repeats
    U.S. Pat. No. 6,939,543 Antibodies against G(+) LTA
    U.S. Pat. No. 7,169,903 Antibodies against G(+) peptidoglycan
    U.S. Pat. No. 6,231,857 Antibody against S. mutans (Shi)
    U.S. Pat. No. 5,484,591 Gram(−) binding antibodies
    US 2007/0231321 Diabody binding to Streptococcus surface
    antigen I/II
    US 2003/0124635 Antibody against S. mutans
    US 2006/0127372 Antibodies to Actinomyces naeslundii,
    Lactobacillus casei
    US 2003/0092086 Antibody to S. sobrinus
    U.S. Pat. No. 7,364,738 Monoclonal antibodies to the ClfA protein
    in S. aureus
    U.S. Pat. No. 7,632,502 Antibodies against C. albicans
    U.S. Pat. No. 7,608,265 Monoclonal against C. difficile
    U.S. Pat. No. 4,777,136 Monoclonal Antibodies against
    Pseudomonas aeruginosa
    see, e.g., ab20429, ab20560, Antibody against S. pneumoniae
    ab79522, ab35165, ab65602
    from AbCAMm Cambridge
    Science Park, U.K.
  • In addition, antibodies (targeting moieties) that bind other microorganisms can readily be produced using, for example, the methods described above.
  • iii. Porphyrins.
  • In certain embodiments porphyrins, or other photosensitizing agents, can be used as targeting moieties in the constructs described herein. In particular, metalloporphyrins, particularly a number of non-iron metalloporphyrins mimic heme in their molecular structure and are actively accumulated by bacteria via high affinity heme-uptake systems. The same uptake systems can be used to deliver antibiotic-porphyrin and antibacterial-porphyrin conjugates. Illustrative targeting porphyrins suitable for this purpose are described in U.S. Pat. No. 6,066,628 and shown herein, for example, in FIGS. 1 and 2.
  • For example, certain artificial (non-iron) metalloporphyrins (MPs) (Ga-IX, Mn-IX,) are active against Gram-negative and Gram-positive bacteria and acid-fast bacilli (e.g., Y. enterocolitica, N. meningitides, S. marcescens, E. coli, P. mirabilis, K pneumoniae, K. oxytoca, Ps. aeruginosa, C. freundii, E. aerogenes, F. menigosepticum, S. aureus, B. subtilis, S. pyogenes A, E. faecalis, M. smegmatis, M. bovis, M. tuber., S. crevisiae) as described in Tables 1-5 of U.S. Pat. No. 6,066,628. These MPs can be used as targeting moieties against these microorganisms.
  • Similarly, some MPs are also growth-inhibitory against yeasts, indicating their usefulness targeting moieties to target Candida species (e.g., Candida albicans, C. krusei, C. pillosus, C. glabrata, etc.) and other mycoses including but not limited to those caused by as Trichophyton, Epidermophyton, Histoplasma, Aspergillus, Cryptococcus, and the like.
  • Porphyrins, and other photosensitizers, also have antimicrobial activity. Accordingly, in certain embodiments, the porphyrins, or other photosensitizers, can be used as effectors (e.g., attached to targeting peptides as described herein). In various embodiments the porphyrins or other photosensitizers can provide a dual functionality, e.g., as a targeting moiety and an antimicrobial and can be attached to a targeting peptide and/or to an antimicrobial peptide as described herein.
  • Illustrative porphyrins and other photosensitizers are shown in FIGS. 1-11 and described in more detail in the discussion of effectors below.
  • iv. Pheromones.
  • In certain embodiments, pheromones from microorganisms can be used as targeting moieties. Illustrative pheromones from bacteria and fungi are shown in Table 12.
  • TABLE 12
    Illustrative bacterial and fungal pheromones utilizable as targeting moieties.
    Locus tag Product Sequence SEQ ID
    Bacterial Pheromones
    gi|1041118|dbj|BAA11198.1| iPD1 [Enterococcusfaecalis] MKQQKKHIAALLF 1742
    ALILTLVS
    gi|l113947|gb|AAB35253.1| iAM373sex pheromone SIFTLVA 1743
    inhibito [Enterococcus
    faecalis, Peptide, 7 aa]
    gi|115412|sp|1313268.1|CAD1_ Sex pheromone CAD1 LFSLVLAG 1744
    ENTFA
    gi|116406|sp|P11932.1|CIA_ Sex pheromone cAM373 AIFILAS 1745
    ENTFA (Clumping-inducing
    agent) (CIA)
    gi|117240|sp|P13269.1|CPD1_ Sex pheromone cPD1 FLVMFLSG 1746
    ENTFA
    gi|12056953|gb|AAG48144.1| putative peptide DSIRDVSPTFNKIRR 1747
    AF322594_1 pheromone PrcA WFDGLFK
    [Lactobacillusparacasei]
    gi|123988|sp|P24803.1|IAD1_ Sex pheromone inhibitor MSKRAMKKIIPLIT 1748
    ENTFA determinant precursor LFVVTLVG
    (iAD1)
    gi|126362994|emb|CAM35812 .1| precursor of pheromone KDEIYWKPS 1749
    peptide ComX [Bacillus
    amyloliquefaciens FZB42]
    gi|1587088|prf|2205353A pheromone YSTCDFIM 1750
    gi|15900442|ref|NP_345046.1| peptide pheromone BlpC GLWEDLLYNINRY 1751
    [Streptococcus AHYIT
    pneumoniae TIGR4]
    gi|1617436|emb|CAA66791.1| competence pheromone DIRHRINNSIWRDIF 1752
    [Streptococcusgordonii] LKRK
    gi|1617440|emb|CAA66786.1| competence pheromone DVRSNKIRLWWEN 1753
    [Streptococcusgordonii] IFFNKK
    gi|18307870|gb|AAL67728.1| ComX pheromone PTTREWDG 1754
    AF456134_2 precursor [Bacillus
    mojavensis]
    gi|18307874|gb|AAL67731.1|_ ComX pheromone LQIYTNGNWVPS 1755
    AF456135_2 precursor [Bacillus
    mojavensis]
    gi|29377808|ref|NP_816936.1| sex pheromone inhibitor MSKRAMKKIIPLIT 1756
    determinant [Enterococcus LFVVTLVG
    faecalis V583]
    gi|3342125|gb|AAC27522.1| putative pheromone GAGKNLIYGMGYG 1757
    [Enterococcusfaecium] YLRSCNRL
    gi|41018893|sp|P60242.1|CSP1_ Competence-stimulating EMRLSKFFRDFILQ 1758
    STRPN peptide type 1 precursor RKK
    (CSP-1)
    gi|57489126|gb|AAW51333.1| PcfP [Enterococcus WSEIEINTKQSN 1759
    faecalis]
    gi|57489152|gb|AAW51349.1| PrgT [Enterococcus HISKERFEAY 1760
    faecalis]
    gi|58616083|ref|YP_195761.1| UvaF [Enterococcus KYKCSWCKRVYTL 1761
    faecalis] RKDHRTAR
    gi|58616111|ref|YP_195802.1| PcfP [Enterococcus WSEIEINTKQSN 1762
    faecalis]
    gi|58616132|ref|YP_195769.1| PrgQ [Enterococcus MKTTLKKLSRYIA 1763
    faecalis] VVIAITLIFI
    gi|58616137|ref|YP_195772.1| PrgT [Enterococcus HISKERFEAY 1764
    faecalis]
    gi|6919848|sp|O33689.1|CSP_ Competence-stimulating DKRLPYFFKHLFSN 1765
    STROR peptide precursor (CSP) RTK
    gi|6919849|sp|O33666.1|CSP2_ Competence-stimulating EMRKPDGALFNLF 1766
    STRMT peptide precursor (CSP) RRR
    gi|6919850|sp|O33668.1|CSP3_ Competence-stimulating EMRKSNNNFFHFL 1767
    STRMT peptide precursor (CSP) RRI
    gi|6919851|sp|O33672.1|CSP1_ Competence-stimulating ESRLPKIRFDFIFPR 1768
    STRMT peptide precursor (CSP) KK
    gi|6919852|sp|O33675.1|CSP4_ Competence-stimulating EIRQTHNIFFNFFKR 1769
    STRMT peptide precursor (CSP) R
    gi|6919853|sp|O33690.1|CSP2_ Competence-stimulating DWRISETIRNLIFPR 1770
    STROR peptide precursor (CSP) RK
    gi|999344|gb|AAB34501.1| cOB1 bacterial sex VAVLVLGA 1771
    pheromone [Enterococcus
    faecalis, Peptide, 8 aa]
    gi|18307878|gb|AAL67734.1| ComX pheromone FFEDDKRKSFI 1772
    AF456136_2 precursor [Bacillus
    subtilis]
    gi|18307882|gb|AAL67737.1| ComX pheromone FFEDDKRKSFI 1773
    AF456137_2 precursor [Bacillus
    subtilis]
    gi|28272731|emb|CAD65660.1| accessory gene regulator MKQKMYEAIAHLF 1774
    protein D, peptide KYVGAKQLVMCC
    pheromone precursor VGIWFETKIPDELR
    [Lactobacillusplantarum K
    WCFS1]
    gi|28379890|ref|NP_786782.1| accessory gene regulator MKQKMYEAIAHLF 1775
    protein D, peptide KYVGAKQLVMCC
    pheromone precursor VGIWFETKIPDELR
    [Lactobacillusplantarum K
    WCFS1]
    gi|57489105|gb|AAW51312.1| PrgF [Enterococcus VVAYVITQVGAIRF 1776
    faecalis]
    gi|58616090|ref|YP_195779.1| PrgF [Enterococcus VVAYVITQVGAIRF 1777
    faecalis]
    gi|58616138|ref|YP_195762.1| PrgN [Enterococcus LLKLQDDYLLHLE 1778
    faecalis] RHRRTKKIIDEN
    gi|57489117|gb|AAW51324.1| Pcff [Enterococcus EDIKDLTDKVQSLN 1779
    faecalis] ALVQSELNKLIKRK
    DQS
    gi|57489119|gb|AAW51326.1| PcfH [Enterococcus WFLDFSDWLSKVP 1780
    faecalis] SKLWAE
    gi|58616102|ref|YP_195792.1| Pcff [Enterococcus EDIKDLTDKVQSLN 1781
    faecalis] ALVQSELNKLIKRK
    DQS
    gi1586161041ref1YP_195794.11 PcfH [Enterococcus WFLDFSDWLSKVP 1782
    faecalis] SKLWAE
    Fungi
    gi|1127585|gb|AAA99765.1| mfa1 gene product MLSIFAQTTQTSAS 1783
    EPQQSPTAPQGRDN
    GSPIGYSSCVVA
    gi|1127592|gbIAAA99771.1| mfa2 gene product MLSIFETVAAAAPV 1784
    TVAETQQASNNEN
    RGQPGYYCLIA
    gi|11907715|gb|AAG41298.1| pheromone precursor PSLPSSPPSLLPPLPL 1785
    MFalpha1D LKLLATRRPTLVG
    [Cryptococcusneoformans MTLCV
    var. neoformans]
    gi|13810235|emb|CAC37424.1| M-factor precursor Mfm1 MDSMANSVSSSSV 1786
    [Schizosaccharomyces VNAGNKPAETLNK
    pombe] TVKNYTPKVPYMC
    VIA
    gi|14269436|gb|AAK58071.1| peptide mating pheromone MDTFTYVDLAAVA 1787
    AF378295_1 precursor Bbp2-3 AAAVADEVPRDFE
    [Schizophyllum DQITDYQSYCIIC
    commune]
    gi|14269440|gb|AAK58073.1| peptide mating pheromone SNVHGWCVVA 1788
    AF378297_1 precursor Bbp2-1
    [Schizophyllum
    commune]
    gi|1813600|gb|AAB41859.1| pheromone precursor NTTAHGWCVVA 1789
    Bbp1(1) [Schizophyllum
    commune]
    gi|24940428|emb|CAD56313.1| a-pheromone MQPSTVTAAPKDK 1790
    [Saccharomyces TSAEKKDNYIIKGV
    paradoxus] FWDPAC VIA
    gi|27549492|gb|AA017258.1| pheromone phb3.1 GPTWWCVNA 1791
    [Coprinopsiscinerea]
    gi|27549494|gb|AA017259.1| pheromone phb3.2 SGPTWFCIIQ 1792
    [Coprinopsiscinerea]
    gi|27752314|gb|AA019469.1| pheromone protein a FTAIFSTLSSSVASK 1793
    pecursor [Cryptococcus TDAPRNEEAYSSG
    neoformans var. grubii] NSP
    gi|2865510|gb|AACO2682.1| MAT-1 pheromone MFSIFAQPAQTSVS 1794
    [Ustilagohordei] ETQESPANHGANP
    GKSGSGLGYSTCV
    VA
    gi|3023372|sp|P78742.1|BB11_ RecName: Full = Mating- NTTAHGWCVVA 1795
    SCHCO type pheromone BBP1(1);
    Flags: Precursor
    gi|3025079|sp|P56508.1|SNA2 RecName: Full = Protein SDDNYGSLA 1796
    YEAST SNA2
    gi|37626077|gb|AAQ96360.1| pheromone precursor Phb3 NGLTFWCVIA 1797
    B5 [Coprinopsiscinerea]
    gi|37626081|gb|AAQ96362.1| pheromone precursor PSWFCVIA 1798
    Phb3.2 B45 [Coprinopsis
    cinerea]
    gi|37626083|gb|AAQ96363.1| pheromone precursor ASWFCTIA 1799
    Phb3.1 B47 [Coprinopsis
    cinerea]
    gi|37961432|gb|AAP57503.1| 5te3-like pheromone PHHKIANASDKRR 1800
    receptor [Thanatephorus RMYFEIFMCAVL
    cucumeris]
    gi|400250|sp|P31962.1|MFA1_ RecName: Full = A1- MLSIFAQTTQTSAS 1801
    USTMA specific pheromone; EPQQSPTAPQGRDN
    AltName: Full = Mating GSPIGYSSCVVA
    factor A1
    gi|400251|sp|P31963.1|MFA2_ RecName: Full = A2- MLSIFETVAAAAPV 1802
    USTMA specific pheromone; TVAETQQASNNEN
    AltName: Full = Mating RGQPGYYCLIA
    factor A2
    gi|41209131|gb|AAR99617.1| lipopeptide mating SLTYAWCVVA 1803
    pheromone precursor
    Bap2(3) [Schizophyllum
    commune]
    gi|41209146|gb|AAR99650.1| lipopeptide mating TSMAHAWCVVA 1804
    pheromone precursor
    Bap3(2) [Schizophyllum
    commune]
    gi|41209149|gb|AAR99653.1| lipopeptide mating GYCVVA 1805
    pheromone precursor
    Bbp2(8) [Schizophyllum
    commune]
    gi|46098187|gb|EAK83420.1| MFA1_USTMA A1- MLSIFAQTTQTSAS 1806
    SPECIFIC PHEROMONE EPQQSPTAPQGRDN
    (MATING FACTOR A1) GSPIGYSSCVVA
    [Ustilagomaydis 521]
    gi|546861|gb|AAB30833.1| M-factor mating MDSMANTVSSSVV 1807
    pheromone NTGNKPSETLNKT
    [Schizosaccharomyces VKNYTPKVPYMCV
    pombe] IA
    gi|5917793|gb|AAD56043.1| pheromone Mfa2 MFSLFETVAAAVK 1808
    AF184069_1 [Ustilagohordei] VVSAAEPEHAPTNE
    GKGEPAPYCIIA
    gi|6014618|gb|AAF01424.1| Phb3.2.42 [Coprinus LTWFCVIA 1809
    AF186389_1 cinereus]
    gi|68266363|gb|AAY88882.1| putative pheromone LREKRRRRWFEAF 1810
    receptor STE3.4 MGFGL
    [Coprinellusdisseminatus]
    gi|71012805|ref|XP_758529.1| A1-specific pheromone MLSIFAQTTQTSAS 1811
    [Ustilagomaydis 521] EPQQSPTAPQGRDN
    GSPIGYSSCVVA
    gi|72414834|emb|CAI59748.1| mating factor a1.3 MDALTLFAPVSLG 1812
    [Sporisoriumreilianum] AVATEQAPVDEER
    PNRQTFPWIGCVV
    A
    gi|72414854|emb|CAI59758.1| mating factor a2.1 MFIFESVVASVQAV 1813
    [Sporisoriumreilianum] SVAEQDQTPVSEG
    RGKPAVYCTIA
    gi|11275871gbIAAA99767.1| rba1 gene product PWMSLLFSFLALLA 1814
    LILPKLSKDDPLGL
    TRQPR
    gi|151941959|gb|EDN60315.1| pheromone-regulated ASISLIMEGSANIEA 1815
    membraneprotein VGKLVWLAAALPL
    AFI
    [Saccharomycescerevisiae
    YJM789]
    gi|3025095|sp907549.1|SNA4_ Protein SNA4 ARNVYPSVETPLLQ 1816
    YEAST GAAPHDNKQSLVE
    SPPPYVP
    gi|73921293|sp|Q08245.3|ZEO1_ RecName: Full = Protein FLKKLNRKIASIFN 1817
    YEAST ZEO1; AltName:
    Ful1 = Zeocin resistance
    protein 1
    gi|74644573|sp|Q9P305.3|IGO2_ RecName: Full = Protein DSISRQGSISSGPPP 1818
    YEAST IGO2 RSPNK
    EDF (E.coli) NNWNN 1819
  • v. Targeting Enhancers/Opsonins
  • In certain embodiments compositions are contemplated that incorporate a targeting enhancer (e.g., an opsonin) along with one or more targeting moieties (e.g., targeting peptides). Targeting enhancers include moieties that increase binding affinity, and/or binding specificity, and/or internalization of a moiety by the target cell/microorganism.
  • Accordingly, in certain embodiments, a targeting moiety and/or a targeted antimicrobial molecule comprise a peptide, with the desired level of binding specificity and/or avidity, attached (e.g., conjugated) to an opsonin. When bound to a target cell through the targeting peptide, the opsonin component encourages phagocytosis and destruction by resident macrophages, dendritic cells, monocytes, or PMNs. Opsonins contemplated for conjugation can be of a direct or indirect type.
  • Direct opsonins include, fore example, any bacterial surface antigen, PAMP (pathogen-associated molecular pattern), or other molecule recognized by host PRRs (pathogen recognizing receptors). Opsonins can include, but are not limited to, bacterial protein, lipid, nucleic acid, charbohydrate and/or oligosaccharide moieties.
  • In certain embodiments opsonins include, but are not limited to, N-acetyl-D-glucosamine (GlcNAc), N-acetyl-D-galactosamine (GlaNAc), N-acetylglucosamine-containing muramyl peptides, NAG-muramyl peptides, NAG-NAM, peptidoglycan, teichoic acid, lipoteichoic acid, LPS, o-antigen, mannose, fucose, ManNAc, galactose, maltose, glucose, glucosamine, sucrose, mannosamine, galactose-alpha-1,3-galactosyl-beta-1,4-N-acetyl glucosamine, or alpha-1,3-gal-gal, or other sugars.
  • In certain embodiments, opsonins include indirect opsonins. Indirect opsonins function through binding to a direct opsonin already present. For example an Fc portion of an antibody, a sugar-binding lectin protein (example MBL), or host complement factors (example C3b, C4b, iC3b).
  • In certain embodiments the opsonin is to galactose-alpha-1,3-galactosyl-beta-1,4-N-acetyl glucosamine, or alpha-1,3-gal-gal.
  • Other examples of opsonin molecules include, but are not limited to antibodies (e.g., IgG and IgA), components of the complement system (e.g., C3b, C4b, and iC3b), mannose-binding lectin (MBL) (initiates the formation of C3b), and the like.
  • Methods of coupling an opsonin to a targeting moiety are well known to those of skill in the art (see, e.g., discussion below regarding attachment of effectors to targeting moieties).
  • B) Effectors.
  • Any of a wide number of effectors can be coupled to targeting moieties as described herein to preferentially deliver the effector to a target organism and/or tissue. Illustrative effectors include, but are not limited to detectable labels, small molecule antibiotics, antimicrobial peptides, porphyrins or other photosensitizers, epitope tags/antibodies for use in a pretargeting protocol, agents that physically disrupt the extracellular matrix within a community of microorganisms, microparticles and/or microcapsules, nanoparticles and/or nanocapsules, “carrier” vehicles including, but not limited to lipids, liposomes, dendrimers, cholic acid-based peptide mimics or other peptide mimics, steroid antibiotics, and the like.
  • i. Detectable Labels.
  • In certain embodiments chimeric moieties are provided comprising a targeting moiety (e.g., as described in Table 3) attached directly or through a linker to a detectable label. Such chimeric moieties are effective for detecting the presence and/or quantity, and/or location of the microorganism(s) to which the targeting moiety is directed. Similarly these chimeric moieties are useful to identify cells and/or tissues and/or food stuffs and/or other compositions that are infected with the targeted microorganism(s).
  • Detectable labels suitable for use in such chimeric moieties include any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical, or chemical means. Illustrative useful labels include, but are not limited to, biotin for staining with labeled streptavidin conjugates, avidin or streptavidin for labeling with biotin conjugates fluorescent dyes (e.g., fluorescein, texas red, rhodamine, green fluorescent protein, and the like, see, e.g., Molecular Probes, Eugene, Oreg., USA), radiolabels (e.g., 3H, 125I, 35S, 14C, 32P, 99Tc, 203Pb, 67Ga, 68Ga, 72As, 111In, 113mIn, 97Ru, 62Cu, 641Cu, 52Fe, 52mMn, 51Cr, 186Re, 188Re, 77As, 90Y, 67Cu, 169Er, 121Sn, 127Te, 142Pr, 143Pr, 198Au, 199Au, 161Tb, 109Pd, 165Dy, 149Pm, 151Pm, 153Sm, 157Gd, 159Gd, 166Ho, 172Tm, 169Yb, 175Yb, 177Lu, 105Rh, 111Ag, and the like), enzymes (e.g., horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA), various colorimetric labels, magnetic or paramagnetic labels (e.g., magnetic and/or paramagnetic nanoparticles), spin labels, radio-opaque labels, and the like. Patents teaching the use of such labels include, for example, U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241.
  • It will be recognized that fluorescent labels are not to be limited to single species organic molecules, but include inorganic molecules, multi-molecular mixtures of organic and/or inorganic molecules, crystals, heteropolymers, and the like. Thus, for example, CdSe—CdS core-shell nanocrystals enclosed in a silica shell can be easily derivatized for coupling to a biological molecule (Bruchez et al. (1998) Science, 281: 2013-2016). Similarly, highly fluorescent quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection (Warren and Nie (1998) Science, 281: 2016-2018).
  • In various embodiments spin labels are provided by reporter molecules with an unpaired electron spin which can be detected by electron spin resonance (ESR) spectroscopy. Illustrative spin labels include organic free radicals, transitional metal complexes, particularly vanadium, copper, iron, and manganese, and the like. Exemplary spin labels include, for example, nitroxide free radicals.
  • Means of detecting such labels are well known to those of skill in the art. Thus, for example, where the label is a radioactive label, means for detection include a scintillation counter or photographic film as in autoradiography. Where the label is a fluorescent label, it may be detected by exciting the fluorochrome with the appropriate wavelength of light and detecting the resulting fluorescence, e.g., by microscopy, visual inspection, via photographic film, by the use of electronic detectors such as charge coupled devices (CCDs) or photomultipliers and the like. Similarly, enzymatic labels may be detected by providing appropriate substrates for the enzyme and detecting the resulting reaction product. Finally, simple colorimetric labels may be detected simply by observing the color associated with the label.
  • ii. Antibiotics.
  • In certain embodiments chimeric moieties are provided comprising a targeting moiety (e.g. as described in Table 3) attached directly or through a linker to a small molecule antibiotic and/or to a carrier (e.g., a lipid or liposome, a polymer, etc.) comprising a small molecule antibiotic. Illustrative antibiotics are shown in Table 13.
  • TABLE 13
    Illustrative antibiotics for use in the chimeric moieties described herein.
    Class Generic Name BRAND NAME
    Aminoglycosides Amikacin AMIKIN ®
    Gentamicin GARAMYCIN ®
    Kanamycin KANTREX ®
    Neomycin
    Netilmicin NETROMYCIN ®
    Streptomycin
    Tobramycin NEBCIN ®
    Paromomycin HUMATIN ®
    Carbacephem Loracarbef LORABID ®
    Carbapenems Ertapenem INVANZ ®
    Doripenem FINIBAX ®
    Imipenem/Cilastatin PRIMAXIN ®
    Meropenem MERREM ®
    Cephalosporins Cefadroxil DURICEF ®
    (First generation) Cefazolin ANCEF ®
    Cefalotin or Cefalothin KEFLIN ®
    Cefalexin KEFLEX ®
    Cephalosporins Cefaclor CECLOR ®
    (Second Cefamandole MANDOLE ®
    generation) Cefoxitin MEFOXIN ®
    Cefprozil CEFZIL ®
    Cefuroxime CEFTIN, ZINNAT ®
    Cephalosporins Cefixime SUPRAX ®
    (Third Cefdinir OMNICEF ®
    generation) Cefditoren SPECTRACEF ®
    Cefoperazone CEFOBID ®
    Cefotaxime CLAFORAN ®
    Cefpodoxime
    Ceftazidime FORTAZ ®
    Ceftibuten CEDAX ®
    Ceftizoxime
    Ceftriaxone ROCEPHIN ®
    Cephalosporins Cefepime MAXIPIME ®
    (Fourth
    generation)
    Cephalosporins Ceftobiprole
    (Fifth generation)
    Glycopeptides Teicoplanin
    Vancomycin VANCOCIN ®
    Macrolides
    Azithromycin Zithromax
    Clarithromycin Biaxin
    Dirithromycin
    Erythromycin Erythocin, Erythroped
    Roxithromycin
    Troleandomycin
    Telithromycin Ketek
    Monobactams Aztreonam
    Penicillins Amoxicillin NOVAMOX ®, AMOXIL ®
    Ampicillin
    Azlocillin
    Carbenicillin
    Cloxacillin
    Dicloxacillin
    Flucloxacillin FLOXAPEN ®
    Mezlocillin
    Meticillin
    Nafcillin
    Oxacillin
    Penicillin
    Piperacillin
    Ticarcillin
    Polypeptides Bacitracin
    Colistin
    Polymyxin B
    Quinolones Mafenide
    Prontosil (archaic)
    Sulfacetamide
    Sulfamethizole
    Sulfanilimide (archaic)
    Sulfasalazine
    Sulfisoxazole
    Trimethoprim BACTRIM ®
    Trimethoprim-
    Sulfamethoxazole (Co-
    trimoxazole)
    (TMP-SMX)
    Tetracyclines Demeclocycline
    Doxycycline VIBRAMYCIN ®
    Minocycline MINOCIN ®
    Oxytetracycline TERRACIN ®
    Tetracycline SUMYCIN ®
    Natural products Antimicrobial herbal
    extracts
    Essential oils
    Farnesol
    Licorice root extracts
    Glycyrrhizol A
    Glycyrrhizol B
    6,8-diisoprenyl-5,7,4′-
    trihydroxyisoflavone
    Others Arsphenamine SALVARSAN ®
    Chloramphenicol CHLOROMYCETIN ®
    Clindamycin CLEOCIN ®
    Lincomycin
    Ethambutol
    Fosfomycin
    Fusidic acid FUCIDIN ®
    Furazolidone
    Isoniazid
    Linezolid ZYVOX ®
    Metronidazole FLAGYL ®
    Mupirocin BACTROBAN ®
    Nitrofurantoin MACRODANTIN ®,
    MACROBID ®
    Platensimycin
    Pyrazinamide
    Quinupristin/ SYNCERCID ®
    Dalfopristin
    Rifampin or
    Rifampicin
    Tinidazole
    Artemisinin
    Antifungals Amphotericin B
    Anidulafungin
    Caspofungin acetate
    Clotrimazole
    Fluconazole
    Flucytosine
    Griseofulvin
    Itraconazole
    Ketoconazole
    Micafungin
    Miconazole
    Nystatin
    Pentamidine
    Posaconazole
    Terbinafine
    Voriconazole
    Antimycobiotics Aminosalicylic Acid
    Capreomycin
    Clofazimine
    Cycloserine
    Ethionamide
    Rifabutin
    Rifapentine
    Antivirals Abacavir
    Acyclovir
    Adefovir
    Amantadine
    Atazanavir
    Cidofovir
    Darunavir
    Didanosine
    Docosanol
    Efavirenz
    Emtricitabine
    Enfuvirtide
    Entecavir
    Etravirine
    Famciclovir
    Fomivirsen
    Fosamprenavir
    Foscarnet
    Ganciclovir
    Idoxuridine
    Indinavir
    Interferon alpha
    Lamivudine
    Lopinavir/ritonavir
    Maraviroc
    Nelfinavir
    Nevirapine
    Oseltamivir
    Penciclovir
    Peramivir
    Raltegravir
    Ribavirin
    Rimantadine
    Ritonavir
    Saquinavir
    Stavudine
    Telbivudine
    Tenofovir
    Tipranavir
    Trifluridine
    Valacyclovir
    Valganciclovir
    Zanamivir
    Zidovudine
    Anti-parasitics Albendazole
    Artesunate
    Atovaquone
    Bephenium
    hydroxynaphthoate
    Chloroquine
    Dapsone
    Diethyl-carbamazine
    Diloxanide furoate
    Eflornithine
    Emetine HCl
    Furazolidone
    Ivermectin
    Lindane
    Mebendazole
    Mefloquine
    Melarsoprol
    Miltefosine
    Niclosamide
    Nifurtimox
    Nitazoxanide
    Oxamniquine
    Paromomycin
    Permethrin
    Piperazine
    Praziquantel
    Primaquine
    Pyrantel pamoate
    Pyrimethamine
    Proguanil
    Quinacrine HCl
    Quinidine
    Quinine
    Sodium Stibogluconate
    Spiramycin
    Thiabendazole
    Tinidazole
  • iii. Porphyrins and Non-Porphyrin Photosensitizers.
  • In certain embodiments, porphyrins and other photosensitizers can be used as targeting moieties and/or as effectors in the methods and compositions of this invention. A photosensitizer is a drug or other chemical that increases photosensitivity of the organism (e.g., bacterium, yeast, fungus, etc.). As targeting moieties the photosensitizers (e.g., porphyrins) are preferentially uptaken by the target microorganisms and thereby facilitate delivery of the chimeric moiety to the target microorganism.
  • As effectors, photosensitizers can be useful in photodynamic antimicrobial chemotherapy (PACT). In various embodiments PACT utilizes photosensitizers and light (e.g., visible, ultraviolet, infrared, etc.) in order to give a phototoxic response in the target organism(s), often via oxidative damage.
  • Currently, the major use of PACT is in the disinfection of blood products, particularly for viral inactivation, although more clinically-based protocols are used, e.g. in the treatment of oral infection or topical infection. The technique has been shown to be effective in vitro against bacteria (including drug-resistant strains), yeasts, viruses, parasites, and the like.
  • Attaching a targeting moiety (e.g., a targeting peptide) to the photosensitizer, e.g., as described herein, provides a means of specifically or preferentially targeting the photosensitizer(s) to particular species or strains(s) of microorganism.
  • A wide range of photosensitizers, both natural and synthetic are known to those of skill in the art (see, e.g., Wainwright (1998) J. Antimicrob. Chemotherap. 42: 13-28). Photosensitizers are available with differing physicochemical make-up and light-absorption properties. In various embodiments photosensitizers are usually aromatic molecules that are efficient in the formation of long-lived triplet excited states. In terms of the energy absorbed by the aromatic-system, this again depends on the molecular structure involved. For example, furocoumarin photosensitizers (psoralens) absorb relatively high energy ultraviolet (UV) light (c. 300-350 nm), whereas macrocyclic, heteroaromatic molecules such as the phthalocyanines absorb lower energy, near-infrared light.
  • Illustrative photosensitizers include, but are not limited to porphyrinic macrocyles (especially porphyrins, chlorines, etc., see, e.g., FIGS. 1 and 2). In particular, metalloporphyrins, particularly a number of non-iron metalloporphyrins mimic haem in their molecular structure and are actively accumulated by bacteria via high affinity haem-uptake systems. The same uptake systems can be used to deliver antibiotic-porphyrin and antibacterial-porphyrin conjugates. Illustrative targeting porphyrins suitable for this purpose are described in U.S. Pat. No. 6,066,628 and shown herein in FIGS. 1 and 2.
  • Illustrative examples of targeted porphyrins are described in Example 5 and associated figures and in FIG. 13.
  • For example, certain artificial (non-iron) metalloporphyrins (MPs) (Ga-IX, Mn-IX,) are active against Gram-negative and Gram-positive bacteria and acid-fast bacilli (e.g., Y. enterocolitica, N. meningitides, S. marcescens, E. coli, P. mirabilis, K pneumoniae, K. oxytoca, Ps. aeruginosa, C. freundii, E. aerogenes, F. menigosepticum, S. aureus, B. subtilis, S. pyogenes A, E. faecalis, M. smegmatis, M. bovis, M. tuber., S. crevisiae) as described in Tables 1-5 of U.S. Pat. No. 6,066,628. These MPs can be used as targeting moieties against these microorganisms.
  • Similarly, some MPs are also growth-inhibitory against yeasts, indicating their usefulness targeting moieties to target Candida species (e.g., Candida albicans, C. krusei, C. pillosus, C. glabrata, etc.) and other mycoses including but not limited to those caused by as Trichophyton, Epidermophyton, Histoplasma, Aspergillus, Cryptococcus, and the like.
  • Other photosensitizers include, but are not limited to cyanines (see, e.g., FIG. 6) and phthalocyanines (see, e.g., FIG. 4), azines (see, e.g., FIG. 5) including especially methylene blue and touidine blue, hypericin (see, e.g., FIG. 8), acridines (see, e.g., FIG. 9) including especially Rose Bengal (see, e.g., FIG. 10), crown ethers (see, e.g., FIG. 11), and the like. In certain embodiments, the photosensitizers include tin chlorin 6 and related compounds (e.g., other chlorines and tin porphyrins).
  • Another light-activated compound is cucumin (see, FIG. 12).
  • In certain embodiments the photosensitizers are toxic or growth inhibitors without light activation. For example, some non-iron metalloporphyrins (MPs) (see, e.g., FIGS. 1 and 2 herein) possess a powerful light-independent antimicrobial activity. In addition, haemin, the most well known natural porphyrin, possesses a significant antibacterial activity that can augmented by the presence of physiological concentrations of hydrogen peroxide or a reducing agent.
  • Typically, when activated by light, the toxicity or growth inhibition effect is substantially increased. Typically, they generate radical species that affect anything within proximity. In certain embodiments to get the best selectivity from targeted photosensitizers, anti-oxidants can be used to quench un-bound photosensitizers, limiting the damage only to cells where the conjugates have accumulated due to the targeting peptide. The membrane structures of the target cell act as the proton donors in this case.
  • In typical photodynamic antimicrobial chemotherapy (PACT) the targeted photosensitizer is “activated by the application of a light source (e.g., a visible light source, an ultraviolate light source, an infrared light source, etc.). PACT applications however need not be limited to topical use. Regions of the mouth, throat, nose, sinuses are readily illuminated. Similarly regions of the gut can readily be illuminated using endoscopic techniques. Other internal regions can be illumined using laparoscopic methods or during other surgical procedures. For example, in certain embodiments involving the insertion or repair or replacement of an implantable device (e.g., a prosthetic device) it contemplated that the device can be coated or otherwise contacted with a chimeric moiety comprising a targeting moiety attached to a photosensitizer as described herein. During the surgical procedure and/or just before closing, the device can be illuminated with an appropriate light source to activate the photosensitizer.
  • The targeted photosensitizers and uses thereof described herein are illustrative and not to be limiting. Using the teachings provided herein, other targeted photosensitizers and uses thereof will be available to one of skill in the art.
  • iv. Antimicrobial Peptides.
  • In certain embodiments, the effector can comprise one or more antimicrobial peptides or compound antimicrobial peptides, e.g., as described above. Numerous antimicrobial peptides are well known to those of skill in the art.
  • In certain embodiments the antimicrobial peptides comprise one or more amino acid sequences described above (e.g., one or more domains comprising amino acid sequences in Tables 4 and/or 5) and/or one or more of the amino acid sequences shown in Table 14. In certain embodiments the antimicrobial peptides comprise one or more amino acid sequences described in the “Collection of Anti-Microbial Peptides” (CAMP) an online database developed for advancement the understanding of antimicrobial peptides (see, e.g., Thomas et al. (2009) Nucleic Acids Research, 2009, 1-7.doi:10.1093/nar/gkp1021) available at www.bicnirrh.res.in/antimicrobial.
  • TABLE 14
    Other illustrative antimicrobial peptides. AP numbers refer to ID in
    antimicrobial peptide database (http://aps.unmc.edu/AP/main.php).
    SEQ ID
    Effector Structure/Sequence No
    AP00274 1BH4, Circulin A GIPCGESCVWIPCISAALGCSCKNK 1820
    (CirA, plant VCYRN
    cyclotides,XXC,
    ZZHp)
    AP00036 1BNB, Beta- DFASCHTNGGICLPNRCPGHMIQIG 1821
    defensin 1 (cow) ICFRPRVKCCRSW
    AP00047 1BNB, Bovine GPLSCGRNGGVCIPIRCPVPMRQIG 1822
    neutrophil beta- TCFGRPVKCCRSW
    defensin 12
    (BNBD-12, cow)
    AP00428 1C01, MiAMP1 SAFTVWSGPGCNNRAERYSKCGCS 1823
    (Macadamia AIHQKGGYDFSYTGQTAALYNQA
    integrifolia GCSGVAHTRFGSSARACNPFGWKS
    antimicrobial IFIQC
    peptide 1, plant)
    AP00154 1CIX, Tachystatin YSRCQLQGFNCVVRSYGLPTIPCC 1824
    A2 (Horseshoe RGLTCRSYFPGSTYGRCQRY
    crabs, Crustacea,
    BBS)
    AP00145 1CW5, VNYGNGVSCSKTKCSVNWGQAFQ 1825
    Carnobacteriocin ERYTAGINSFVSGVASGAGSIGRRP
    B2 (CnbB2, class
    IIA
    bacteriocin, bacteria)
    AP00153 1CZ6, Androctonin RSVCRQIKICRRRGGCYYKCTNRP 1826
    (scorpions) Y
    AP00152 1D6X, Tritrpticin VRRFPWWWPFLRR 1827
    (synthetic)
    AP00201 1D7N, Mastoparan INLKALAALAKKIL 1828
    (insect)
    AP00140 1D9J, CecropinA- KWKLFKKIGIGKFLHSAKKF 1829
    Magainin2 hybrid
    (synthetic)
    AP00178 1DFN, human DCYCRIPACIAGERRYGTCIYQGRL 1830
    alpha Defensin WAFCC
    HNP-3 (human
    neutrophil peptide-
    3, HNP3, human
    defensin, ZZHh)
    AP01153 1DQC, Tachycitin YLAFRCGRYSPCLDDGPNVNLYSC 1831
    (horseshoe crabs, CSFYNCHKCLARLENCPKGLHYN
    Crustacea, BBS) AYLKVCDWPSKAGCT
    AP00437 1DUM, Magainin 2 GIGKYLHSAKKFGKAWVGEIMNS 1832
    analog (synthetic)
    AP00451 1E4S, Human beta DHYNCVSSGGQCLYSACPIFTKIQG 1833
    defensin 1 (HBD-1, TCYRGKAKCCK
    human defensin)
    AP00149 1EWS, Rabbit NIPCSCKKYCDPWEVIDGSCGLFNS 1834
    kidney defensin 1 KYICCREK
    (RK-1)
    AP00141 1F0E, CecropinA- KWKLFKKIPKFLHSAKKF 1835
    Magainin2 Hybrid
    (P18, synthetic)
    AP00142 1F0G, CecropinA- KLKLFKKIGIGKFLHSAKKF 1836
    Magainin2 Hybrid
    (synthetic)
    AP00143 1FOH, CecropinA- KAKLFKKIGIGKFLHSAKKF 1837
    Magainin2 Hybrid
    (synthetic)
    AP00524 1FD4, Human beta GIGDPVTCLKSGAICHPVFCPRRYK 1838
    defensin 2 (HBD-2, QIGTCGLPGTKCCKKP
    human defensin,
    ZZHh)
    AP00438 1FJN, Mussel GFGCPNNYQCHRHCKSIPGRCGGY 1839
    Defensin MGD-1 CGGWHRLPCTCYRCG
    AP00155 1FRY, SMAP-29 RGLRRLGRKIAHGVKKYGPTVLRII 1840
    (SMAP29, sheep RIAG
    cathelicidin)
    AP00150 1G89, Indolicidin ILPWKWPWWPWRR 1841
    (cow cathelicidin,
    BBN, ZZHa)
    AP00156 1GR4, Microcin VGIGTPISFYGGGAGHVPEYF 1842
    J25, linear
    (MccJ25,
    bacteriocin,
    bacteria)
    AP00151 1HR1, Indolicidin ILAWKWAWWAWRR 1843
    P to A mutant
    (synthetic)
    AP00196 1HU5, Ovispirin-1 KNLRRIIRKIIHIIKKYG 1844
    (synthetic)
    AP00197 1HU6, Novispirin KNLRRIIRKGIHIIKKYG 1845
    G10 (synthetic)
    AP00198 1HU7, Novispirin KNLRRITRKIIHIIKKYG 1846
    T7 (synthetic)
    AP00445 1HVZ, Monkey GFCRCLCRRGVCRCICTR 1847
    RTD-1 (rhesus
    theta-defensin-1,
    minidefensin-1,
    animal defensin,
    XXC, BBS, lectin,
    ZZHa)
    AP00103 li2v, Heliomicin DKLIGSCVWGAVNYTSDCNGECL 1848
    variant (Hel-LL, LRGYKGGHCGSFANVNCWCET
    synthetic)
    AP00216 lICA, Phormia ATCDLLSGTGINHSACAAHCLLRG 1849
    defensin A (insect NRGGYCNGKGVCVCRN
    defensin A)
    AP01224 1Jo3, Gramicidin B VGALAVVVWLFLWLW 1850
    (bacteria)
    AP01225 ljo4, Gramicidin C VGALAVVVWLYLWLW 1851
    (bacteria)
    AP00191 1KFP, Gomesin ECRRLCYKQRCVTYCRGR 1852
    (Gm, Spider, XXA)
    AP00283 1KJ6, Huamn beta GIINTLQKYYCRVRGGRCAVLSCL 1853
    defensin 3 (HBD-3, PKEEQIGKCSTRGRKCCRRKK
    human defensin,
    ZZHh)
    AP00147 1KV4, Moricin AKIPIKAIKTVGKAVGKGLRAINIA 1854
    STAND VFNFLKPKKRKA
    (insect, silk moth)
    AP00227 1L4V, Sapecin ATCDLLSGTGINHSACAAHCLLRG 1855
    (insect, flesh fly) NRGGYCNGKAVCVCRN
    AP01161 1L9L, Human GRDYRTCLTIVQKLKKMVDKPTQ 1856
    granulysin RSVSNAATRVCTRGRSRWRDVCR
    (huGran) NFMRRYQSRVIQGLVAGETAQQIC
    EDLRLCIPSTGPL
    AP00026 1LFC, FKCRRWQWRMKKLGAPSITCVRR 1857
    Lactoferricin B AF
    (LfcinB, cow,
    ZZHa)
    AP00193 1M4F, human DTHFPICIFCCGCCHRSKCGMCCKT 1858
    LEAP-1 (Hepcidin
    25)
    AP00499 1MAG, Gramicidin VGALAVVVWLWLWLW 1859
    A (gA, bacteria)
    AP00403 1MM0, Termicin ACNFQSCWATCQAQHSIYFRRAFC 1860
    (termite defensin, DRSQCKCVFVRG
    insect defensin)
    AP00194 1MMC, Ac-AMP2 VGECVRGRCPSQFGYCGKSGMCC 1861
    (plant defensin, GPKYCGR
    BBS)
    AP01206 1MQZ, Mersacidin CTFTLPGGGGVCTLTSECIC 1862
    (bacteria)
    AP00429 1NKL, Porcine GYFCESCRKIIQKLEDMVGPQPNE 1863
    NK-Lysin (pig) DTVTQAASQVCDKLKILRGLCKKI
    IVIRSFLRRISWDILTGKKPQAICVDI
    KICKE
    AP00633 log7, Sakacin P/ KYYGNGVHCGKHSCTVDWGTAIG 1864
    Sakacin 674 (SakP, NIGNNAAANWATGGNAGWNK
    class IIA
    bacteriocin,
    bacteria)
    AP00195 1PG1, Protegrin 1 RGGRLCYCRRRFCVCVGR 1865
    (Protegrin-1, PG-1,
    pig cathelicidin,
    XXA, ZZHa,
    BBBm)
    AP00928 1PXQ, Subtilosin NKGCATCSIGAACLVDGPIPDFEIA 1866
    A (XXC, class I GATGLFGLWG
    bacteriocin, Gram-
    positive bacteria)
    AP00480 1Q71, Microcin VGIGTPIFSYGGGAGHVPEYF 1867
    J25 (cyclic
    MccJ25, class I
    microcins,
    bacteriocins, Gram-
    negative bacteria,
    XXC; BBP)
    AP00211 1RKK, RRWCFRVCYRGFCYRKCR 1868
    Polyphemusin I
    (crabs, Crustacea)
    AP00430 1T51, IsCT ILGKIWEGIKSLF 1869
    (Scorpion)
    AP00731 1ut3, Spheniscin-2 SFGLCRLRRGFCARGRCRFPSIPIGR 1870
    (Sphe-2, penguin CSRFVQCCRRVW
    defensin, avian
    defensin)
    AP00013 1VM5, Aurein 1.2 GLFDIIKKIAESF 1871
    (frog)
    AP00214 1WO1, KWCFRVCYRGICYRRCR 1872
    Tachyplesin I
    (crabs, Crustacea,
    XXA, ZZHa)
    AP00644 lxc0, Pardaxin 4 GFFALIPKIISSPLFKTLLSAVGSALS 1873
    (Pardaxin P-4, SSGGQE
    Pardaxin P4, Pa4,
    flat fish)
    AP00493 1XKM, Distinctin NLVSGLIEARKYLEQLHRKLKNCK 1874
    (two chains for V
    stability and
    transport frog)
    AP00420 1XV3, Penaeidin- HSSGYTRPLRKPSRPIFIRPIGCDVC 1875
    4d (penaeidin 4, YGIPSSTARLCCFRYGDCCHL
    shrimp, Crustacea)
    AP00035 lYTR, Plantaricin KSSAYSLQMGATAIKQVKKLFKK 1876
    A (PlnA, WGW
    bacteriocin,
    bacteria)
    AP00166 1Z64, Pleurocidin GWGSFFKKAAHVGKHVGKAALT 1877
    (fish) HYL
    AP00780 1Z6V, Human GRRRRSVQWCAVSQPEATKCFQW 1878
    lactoferricin QRNMRKVRGPPVSCIKRDSPIQCIQ
    A
    AP00549 1ZFU, Plectasin GFGCNGPWDEDDMQCHNHCKSIK 1879
    (fungi, fungal GYKGGYCAKGGFVCKCY
    defensin)
    AP00177 IZMH, human CYCRIPACIAGERRYGTCIYQGRL 1880
    alpha Defensin WAFCC
    HNP-2 (human
    neutrophil peptide-
    2, HNP2, human
    defensin, ZZHh)
    AP00179 1ZMM, human VCSCRLVFCRRTELRVGNCLIGGV 1881
    alpha Defensin SFTYCCTRVD
    HNP-4 (human
    neutrophil peptide-
    4, HNP4, human
    defensin)
    AP00180 1ZMP, human QARATCYCRTGRCATRESLSGVCE 1882
    alpha Defensin ISGRLYRLCCR
    HD-5 (HD5,
    human defensin)
    AP00181 1ZMQ, human STRAFTCHCRRSCYSTEYSYGTCT 1883
    alpha Defensin VMGINHRFCCL
    HD-6 (HD6,
    human defensin)
    AP00399 1ZRW, Spinigerin HVDKKVADKVLLLKQLRIMRLLT 1884
    (insect, termite) RL
    AP01157 1ZRX, Stomoxyn RGFRKHFNKLVKKVKHTISETAHV 1885
    (insect) AKDTAVIAGSGAAVVAAT
    AP00637 2A2B, Curvacin A/ ARSYGNGVYCNNKKCWVNRGEA 1886
    sakacin A (CurA, TQSIIGGMISGWASGLAGM
    SakA, class IIA
    bacteriocin,
    bacteria)
    AP00558 2B68, Cg-Def GFGCPGNQLKCNNHCKSISCRAGY 1887
    (Crassostrea gigas CDAATLWLRCTCTDCNGKK
    defensin, oyster
    defensin, animal
    defensin)
    AP01154 2B9K, LCI AIKLVQSPNGNFAASFVLDGTKWI 1888
    (bacteria) FKSKYYDSSKGYWVGIYEVWDRK
    AP01005 2DCV, Tachystatin YVSCLFRGARCRVYSGRSCCFGYY 1889
    B1 (BBS, CRRDFPGSIFGTCSRRNF
    horseshoe crabs)
    AP01006 2DCW, YITCLFRGARCRVYSGRSCCFGYY 1890
    Tachystatin B1 CRRDFPGSIFGTCSRRNF
    (BBS, horseshoe
    crabs)
    AP00275 2ERI, Circulin B CGESCVFIPCISTLLGCSCKNKVCY 1891
    (CirB, plant RNGVIP
    cyclotides,XXC,
    ZZHp)
    AP00707 2f3a, LLAA (LL- RLFDKIRQVIRKF 1892
    37-derived aurein
    1.2 analog, retro-
    FK13, synthetic)
    AP00708 2fbs, FK-13 (FK13, FKRIVQRIKDFLR 1893
    NMR-discovered
    LL-37 core peptide,
    XXA, ZZHs,
    synthetic)
    AP00088 2G9L, Gaegurin-4 GILDTLKQFAKGVGKDLVKGAAQ 1894
    (Gaegurin 4, frog) GVLSTVSCKLAKTC
    AP01011 2G9P, Latarcin 2a GLFGKLIKKFGRKAISYAVKKARG 1895
    (Ltc2a, BBM, KH
    spider)
    AP00612 2GDL, Fowlicidin- LVQRGRFGRFLRKIRRFRPKVTITI 1896
    2 (chCATH-2, bird QGSARFG
    cathelicidin,
    chicken
    cathelicidin, BBL)
    AP00402 2GL1, VrD2 KTCENLANTYRGPCFTTGSCDDHC 1897
    (Vigna radiata KNKEHLRSGRCRDDFRCWCTRNC
    defensin 2, plant
    defensin, mung
    bean)
    AP00285 2GW9, Cryptdin-4 GLLCYCRKGHCKRGERVRGTCGIR 1898
    (Crp4, animal FLYCCPRR
    defensin, alpha,
    mouse)
    AP00613 2hfr, Fowlicidin-3 RVKRFWPLVPVAINTVAAGINLYK 1899
    (chCATH-3, bird AIRRK
    cathelicidin,
    chicken
    cathelicidin)
    AP01007 2JMY, CM15 KWKLFKKIGAVLKVL 1900
    (Synthetic)
    AP00728 2jni, Arenicin-2 RWCVYAYVRIRGVLVRYRRCW 1901
    (marine polychaeta,
    BBBm)
    AP00473 2j0s, Piscidin 1 FFHHIFRGIVHVGKTIHRLVTG 1902
    (fish)
    AP01151 2JPJ, Lactococcin GTWDDIGQGIGRVAYWVGKALGN 1903
    G-a (chain a, class LSDVNQASRINRKKKH
    IIb bacteriocin,
    bacteria. For chain
    b, see info)
    AP00757 2jpy, Phylloseptin- FLSLIPHAINAVSTLVHHF 1904
    H2 (PLS-H2,
    Phylloseptin-2, PS-
    2) (XXA, frog)
    AP00546 2jq0, Phylloseptin- FLSLIPHAINAVSAIAKHN 1905
    1 (Phylloseptin-H1,
    PLS-H1, PS-1,
    XXA, frog)
    AP00758 2jq1, Phylloseptin- FLSLIPHAINAVSALANHG 1906
    3 (Phylloseptin-H3,
    PLS-H3, PS-3)
    (XXA, frog)
    AP00727 2jsb, Arenicin-1 RWCVYAYVRVRGVLVRYRRCW 1907
    (marine polychaeta,
    BBBm)
    AP00592 2k10, Ranatuerin- GILSSFKGVAKGVAKDLAGKLLET 1908
    2CSa (frog) LKCKITGC
    AP00485 2K38, Cupiennin GFGALFKFLAKKVAKTVAKQAAK 1909
    1a (spider) QGAKYVVNKQME
    AP00310 2K6O, Human LL- LLGDFFRKSKEKIGKEFKRIVQRIK 1910
    37 (LL37, human DFLRNLVPRTES
    cathelicidin;
    released by
    proteinase 3 from
    its precursor in
    neutrophils; FALL-
    39; BBB, BBM,
    BBP, BBW, BBD,
    BBL, ZZHh)
    AP00199 2LEU, Leucocin A KYYGNGVHCTKSGCSVNWGEAFS 1911
    (LeuA, class Ha AGVHRLANGGNGFW
    bacteriocin,
    bacteria)
    AP00144 2MAG, Magainin 2 GIGKFLHSAKKFGKAFVGEIMNS 1912
    (frog)
    AP00146 2MLT, Melittin GIGAVLKVLTTGLPALISWIKRKRQ 1913
    (insect, ZZHa) Q
    AP01010 2PCO, Latarcin 1 SMWSGMWRRKLKKLRNALKKKL 1914
    (Ltc1, BBM, KGEK
    spider)
    AP00176 2PM1, human ACYCRIPACIAGERRYGTCIYQGRL 1915
    alpha Defensin WAFCC
    HNP-1 (human
    neutrophil peptide-
    1, HNP1, human
    defensin, ZZHh)
    AP01158 2RLG, RP-1 ALYKKFKKKLLKSLKRL 1916
    (synthetic)
    AP00102 8TFV, Thanatin GSKKPVPHYCNRRTGKCQRM 1917
    (insect)
    AP00995 A58718, Carnocin GSEIQPR 1918
    UI49 (bacteria)
    AP01002 AAC18827, KSWSLCTPGCARTGSFNSYCC 1919
    Mutacin III
    (mutacin 1140,
    bacteria)
    AP00987 ABI74601, Arasin SRWPSPGRPRPFPGRPKPIFRPRPCN 1920
    1 (Crustacea) CYAPPCPCDRW
    AP01000 CAA63706, GSGVIPTISHECHMNSFQFVFTCCS 1921
    variacin
    (lantibiotic, class I
    bacteriocin,
    bacteria)
    AP00361 O15946, Lebocin 4 DLRFWNPREKLPLPTLPPFNPKPIYI 1922
    (insect, silk moth) DMGNRY
    AP00343 O16825, Andropin VFIDILDKMENAIHKAAQAGIGIAK 1923
    (insect, fruit fly) PIEKMILPK
    AP00417 O17513, SIGTAVKKAVPIAKKVGKVAIPIAK 1924
    Ceratotoxin D AVLSVVGQLVG
    (insect, fly)
    AP00435 O18494, Styelin C GWFGKAFRSVSNFYKKHKTYIHA 1925
    (sea squirt, GLSAATLL
    tunicate, XXA)
    AP00330 O18495, Styelin D GWLRKAAKSVGKFYYKHKYYIKA 1926
    (Sea squirt, AWQIGKHAL
    tunicate, XXA)
    AP00331 O18495, Styelin E GWLRKAAKSVGKFYYKHKYYIKA 1927
    (Sea squirt, AWKIGRHAL
    tunicate, XXA)
    AP01001 O54329, Mutacin II NRWWQGVVPTVSYECRMNSWQH 1928
    (lantibiotic, VFTCC
    mutacin H-29B, J-
    T8, class I
    bacteriocin,
    bacteria)
    AP00342 O81338, AKCIKNGKGCREDQGPPFCCSGFC 1929
    Antimicrobial YRQVGWARGYCKNR
    peptide 1 (plant)
    AP00373 O96059, Moricin 2 AKIPIKAIKTVGKAVGKGLRAINIA 1930
    (insect) STANDVFNFLKPKKRKH
    AP00449 P01190, SYSMEHFRWGKPV 1931
    Melanotropin alpha
    (Alpha-MSH)
    AP00187 P01376, VVCACRRALCLPRERRAGFCRIRG 1932
    CORTICOSTATIN RIHPLCCRR
    III (MCP-1, rabbit
    neutrophil peptide
    1, NP-1) (animal
    defensin, alpha-
    defensin, rabbit)
    AP00188 P01377, VVCACRRALCLPLERRAGFCRIRG 1933
    CORTICOSTATIN RIHPLCCRR
    IV ( MCP-2, rabbit
    neutrophil defensin
    2, NP-2, animal
    defensin, rabbit)
    AP00049 P01505, Bombinin GIGALSAKGALKGLAKGLAEHFAN 1934
    (toad)
    AP00139 P01507, Cecropin KWKLFKKIEKVGQNIRDGIIKAGP 1935
    A (insect, ZZHa) AVAVVGQATQIAK
    AP00128 P01509, Cecropin KWKIFKKIEKVGRNIRNGIIKAGPA 1936
    B (insect, silk VAVLGEAKAL
    moth)
    AP00131 P01511, Cecropin WNPFKELERAGQRVRDAIISAGPA 1937
    D (insect, moth) VATVAQATALAK
    AP00136 P01518, Crabrolin FLPLILRKIVTAL 1938
    (insect, XXA)
    AP00183 P04142, Cecropin RWKIFKKIEKMGRNIRDGIVKAGP 1939
    B (insect) AIEVLGSAKAI
    AP00448 P04205, INLKAIAALAKKLL 1940
    Mastoparan M
    (MP-M, insect,
    XXA)
    AP00234 P06833, SDEKASPDKHHRFSLSRYAKLANR 1941
    Seminalplasmin LANPKLLETFLSKWIGDRGNRSV
    (SPLN, calcium
    transporter
    inhibitor, caltrin,
    cow)
    AP00314 P07466, Rabbit VFCTCRGFLCGSGERASGSCTINGV 1942
    neutrophil peptide RHTLCCRR
    5 (NP-5, animal
    defensin, alpha-
    defensin)
    AP00189 P07467, Rabbit VSCTCRRFSCGFGERASGSCTVNG 1943
    neutrophil peptide VRHTLCCRR
    4 (NP-4)
    AP00186 P07468, GRCVCRKQLLCSYRERRIGDCKIR 1944
    CORTICOSTATIN GVRFPFCCPR
    II (Rabbit
    neutrophil peptide
    3b (NP-3b, rabbit)
    AP00185 P07469, ICACRRRFCPNSERFSGYCRVNGA 1945
    CORTICOSTATIN RYVRCCSRR
    I (rabbit)
    AP00217 P07469, Rabbit GICACRRRFCPNSERFSGYCRVNG 1946
    neutrophil defensin ARYVRCCSRR
    3a (NP-3a, animal
    defensin, alpha-
    defensin)
    AP00067 P07493, SKITDILAKLGKVLAHV 1947
    Bombolitin II
    (insect, bee)
    AP00068 P07494, IKIMDILAKLGKVLAHV 1948
    Bombolitin III
    (insect, bee)
    AP00069 P07495, INIKDILAKLVKVLGHV 1949
    Bombolitin IV
    (insect, bee)
    AP00070 P07496, INVLGILGLLGKALSHL 1950
    Bombolitin V
    (insect, bee)
    AP00236 P07504, Pyrularia KSCCRNTWARNCYNVCRLPGTISR 1951
    thionin (Pp-TH, EICAKKCDCKIISGTTCPSDYPK
    plant)
    AP00230 P08375, Sarcotoxin GWLKKIGKKIERVGQHTRDATIQG 1952
    IA (insect, flesh LGIAQQAANVAATAR
    AP00231 P08376, Sarcotoxin GWLKKIGKKIERVGQHTRDATIQV 1953
    IB (insect, flesh IGVAQQAANVAATAR
    AP00232 P08377, Sarcotoxin GWLRKIGKKIERVGQHTRDATIQV 1954
    IC (insect, flesh LGIAQQAANVAATAR
    AP00066 P10521, IKITTMLAKLGKVLAHV 1955
    Bombolitin I
    (insect, bee)
    AP00206 P10946, Lantibiotic WKSESLCTPGCVTGALQTCFLQTL 1956
    subtilin (class I TCNCKISK
    bacteriocin,
    bacteria)
    AP00312 P11477, Cryptdin-2 LRDLVCYCRARGCKGRERMNGTC 1957
    (Crp2, animal RKGHLLYMLCCR
    defensin, alpha,
    mouse)
    AP00205 P13068, Nisin A ITSISLCTPGCKTGALMGCNMKTA 1958
    (lantibiotic, class I TCHCSIHVSK
    bacteriocin,
    bacteria)
    AP00215 P14214, RWCFRVCYRGICYRKCR 1959
    Tachyplesin II
    (crabs, Crustacea)
    AP00212 P14216, RRWCFRVCYKGFCYRKCR 1960
    Polyphemusin II
    (crabs, Crustacea,
    XXA, ZZHa.
    Derivatives: T22)
    AP00134 P14661, Cecropin SWLSKTAKKLENSAKKRISEGIAIA 1961
    P1 (pig) IQGGPR
    AP00011 P14662, WNPFKELERAGQRVRDAVISAAPA 1962
    Bactericidin B2 VATVGQAAAIARG
    (insect)
    AP00032 P14663, WNPFKELERAGQRVRDAIISAGPA 1963
    Bactericidin B-3 VATVGQAAAIARG
    (insect)
    AP00033 P14664, WNPFKELERAGQRVRDAIISAAPA 1964
    Bactericidin B-4 VATVGQAAAIARG
    (insect)
    AP00034 P14665, WNPFKELERAGQRVRDAVISAAA 1965
    Bactericidin B-5P VATVGQAAAIARG
    (insect)
    AP00125 P14666, Cecropin RWKIFKKIEKVGQNIRDGIVKAGP 1966
    (insect, silk moth) AVAVVGQAATI
    AP00002 P15450, YVPLPNVPQPGRRPFPTFPGQGPFN 1967
    ABAECIN PKIKWPQGY
    (insect,
    honeybee)
    AP00505 P15516, human DSHAKRHHGYKRKFHEKHHSHRG 1968
    Histatin 5 (ZZHs; Y
    derivatives Dh-5)
    AP00520 P15516, human DSHAKRHHGYKRKFHEKHHSHRG 1969
    Histatin 3 YRSNYLYDN
    AP00523 P15516, human KFHEKHHSHRGY 1970
    Histatin 8
    AP00226 P17722, Royalisin VTCDLLSFKGQVNDSACAANCLSL 1971
    (insect, honeybee) GKAGGHCEKVGCICRKTSFKDLW
    DKRF
    AP00213 P18252, KWCFRVCYRGICYRKCR 1972
    Tachyplesin III
    (horseshoe crabs,
    Crustacea)
    AP00233 P18312, Sarcotoxin GWIRDFGKRIERVGQHTRDATIQTI 1973
    ID (insect, flesh AVAQQAANVAATLKG
    AP00207 P19578, Lantibiotic TAGPAIRASVKQCQKTLKATRLFT 1974
    PEPS (class I VSCKGKNGCK
    bacteriocin,
    bacteria)
    AP00009 P19660, RFRPPIRRPPIRPPFYPPFRPPIRPPIF 1975
    BACTENECIN 5 PPIRPPFRPPLGPFP
    (bac5, cow
    cathelicidin)
    AP00010 P19661, RRIRPRPPRLPRPRPRPLPFPRPGPR 1976
    BACTENECIN 7 PIPRPLPFPRPGPRPIPRPLPFPRPGP
    (bac7, cow RPIPRPL
    cathelicidin)
    AP00200 P21564, LKLKSIVSWAKKVL 1977
    Mastoparan B
    (MP-B, insect,
    XXA)
    AP00005 P21663, Andropin VFIDILDKVENAIHNAAQVGIGFAK 1978
    (insect, fly) PFEKLINPK
    AP00008 P22226, Cyclic RLCRIVVIRVCR 1979
    dodecapeptide
    (cow cathelicidin)
    AP01205 P23826, Lactocin S STPVLASVAVSMELLPTASVLYSD 1980
    (XXD3, bacteria) VAGCFKYSAKHHC
    AP00239 P24335, XPF (the GWASKIGQTLGKIAKVGLKELIQP 1981
    xenopsin precursor  K
    fragment, African
    clawed frog)
    AP00235 P25068, Bovine NPVSCVRNKGICVPIRCPGSMKQIG 1982
    tracheal TCVGRAVKCCRKK
    antimicrobial
    peptide (TAP, cow)
    AP00418 P25230, CAP18 GLRKRLRKFRNKIKEKLKKIGQKIQ 1983
    (rabbit cathelicidin, GFVPKLAPRTDY
    BBL)
    AP00203 P25403, Mj-AMP1 QCIGNGGRCNENVGPPYCCSGFCL 1984
    (Mj AMP1, plant RQPGQGYGYCKNR
    defensin)
    AP00202 P25404, Mj-AMP2 CIGNGGRCNENVGPPYCCSGFCLR 1985
    (MjAMP2, plant QPNQGYGVCRNR
    defensin)
    AP00138 P28310, Cryptdi n-3 LRDLVCYCRKRGCKRRERMNGTC 1986
    (Crp3, animal RKGHLMYTLCCR
    defensin, alpha,
    mouse)
    AP00184 P28794, MBP-1 RSGRGECRRQCLRRHEGQPWETQ 1987
    (plant) ECMRRCRRRG
    AP00050 P29002, Bombinin- GIGASILSAGKSALKGLAKGLAEHF 1988
    like peptide 1 AN
    (BLP-1, toad)
    AP00051 P29003, Bombinin- GIGSAILSAGKSALKGLAKGLAEHF 1989
    like peptide 2 AN
    (BLP-2, toad)
    AP00052 P29004, Bombinin- GIGAAILSAGKSALKGLAKGLAEH 1990
    like peptide 3 F
    (BLP-3, XXA,
    toad)
    AP00053 P29005, Bombinin- GIGAAILSAGKSIIKGLANGLAEHF 1991
    like peptide 4
    (BLP-4, toad)
    AP00634 P29430, Pediocin KYYGNGVTCGKHSCSVDWGKATT 1992
    PA-1/ AcH CIINNGAMAWATGGHQGNHKC
    (PedPA1, class IIA
    bacteriocin, bacteria)
    AP00204 P29559, Nisin Z ITSISLCTPGCKTGALMGCNMKTA 1993
    (lantibiotic, class I TCNCSIHVSK
    bacteriocin,
    bacteria)
    AP00130 P29561, Cecropin GWLKKLGKRIERIGQHTRDATIQG 1994
    C (insect, fly) LGIAQQAANVAATAR
    AP00001 P31107, GLWSKIKEVGKEAAKAAAKAAGK 1995
    ADENOREGULIN AALGAVSEAV
    (Dermaseptin B2,
    Dermaseptin-B2,
    DRS-B2, DRS B2,
    frog)
    AP00228 P31529, Sapecin B LTCEIDRSLCLLHCRLKGYLRAYCS 1996
    (insect, flesh fly) QQKVCRCVQ
    AP00229 P31530, Sapecin C ATCDLLSGIGVQHSACALHCVFRG 1997
    (insect, flesh fly) NRGGYCTGKGICVCRN
    AP00218 P32195, Protegrin RGGRLCYCRRRFCICV 1998
    2 (PG-2, pig
    cathelicidin)
    AP00219 P32196, Protegrin RGGGLCYCRRRFCVCVGR 1999
    3 (PG-3, pig
    cathelicidin)
    AP00073 P32412, Brevinin- FLPLLAGLAANFLPKIFCKITRKC 2000
    1E (frog)
    AP00080 P32414, GIFSKLGRKKIKNLLISGLKNVGKE 2001
    Esculentin-1 (frog) VGMDVVRTGIDIAGCKIKGEC
    AP00074 P32423, Brevinin-1 FLPVLAGIAAKVVPALFCKITKKC 2002
    (frog)
    AP00075 P32424, Brevinin-2 GLLDSLKGFAATAGKGVLQSLLST 2003
    (frog) ASCKLAKTC
    AP00175 P34084, Macaque DSHEERHHGRHGHHKYGRKFHEK 2004
    histatin (M-Histatin HHSHRGYRSNYLYDN
    1, primate,
    monkey)
    AP00006 P35581, Apidaecin GNNRPVYIPQPRPPHPRI 2005
    IA (insect,
    honeybee)
    AP00007 P35581, Apidaecin GNNRPVYIPQPRPPHPRL 2006
    IB (insect,
    honeybee)
    AP00414 P36190, SIGSALKKALPVAKKIGKIALPIAK 2007
    Ceratotoxin A AALP
    (insect, fly)
    AP00415 P36191, SIGSAFKKALPVAKKIGKAALPIAK 2008
    Ceratotoxin B AALP
    (insect, fly)
    AP00172 P36193, Drosocin GKPRPYSPRPTSHPRPIRV 2009
    (insect)
    AP00170 P37362, Pyrrhocoricin VDKGSYLPRPTPPRPIYNRN 2010
    (insect)
    AP00635 P38577, KYYGNGVHCTKSGCSVNWGEAAS 2011
    Mesentericin Y105 AGIHRLANGGNGFW
    (MesY105, class
    IIA bacteriocin,
    bacteria)
    AP00636 P38579, AISYGNGVYCNKEKCWVNKAENK 2012
    Carnobacteriocin QAITGIVIGGWASSLAGMGH
    BM1 (CnbBM1,
    PiscV1b, class IIA
    bacteriocin,
    bacteria)
    AP00209 P39080, Peptide GVLSNVIGYLKKLGTGALNAVLK 2013
    PGQ (frog) Q
    AP00513 P39084, Ranalexin FLGGLIKIVPAMICAVTKKC 2014
    (frog)
    AP00071 P40835, Brevinin- FLPAIFRMAAKVVPTIICSITKKC 2015
    1EA (frog)
    AP00072 P40836, Brevinin- VIPFVASVAAEMQHVYCAASRKC 2016
    1EB (frog)
    AP00076 P40837, Brevinin- GILDTLKNLAISAAKGAAQGLVNK 2017
    2EA (frog) ASCKLSGQC
    AP00077 P40838, Brevinin- GILDTLKNLAKTAGKGALQGLVK 2018
    2EB (frog) MASCKLSGQC
    AP00078 P40839, Brevinin- GILLDKLKNFAKTAGKGVLQSLLN 2019
    2EC (frog) TASCKLSGQC
    AP00079 P40840, Brevinin- GILDSLKNLAKNAGQILLNKASCK 2020
    2ED (frog) LSGQC
    AP00081 P40843, GIFSKLAGKKIKNLLISGLKNVGKE 2021
    Esculentin-1A VGMDVVRTGIDIAGCKIKGEC
    (frog)
    AP00082 P40844, GIFSKLAGKKLKNLLISGLKNVGK 2022
    Esculentin-1B EVGMDVVRTGIDIAGCKIKGEC
    (frog)
    AP00083 P40845, GILSLVKGVAKLAGKGLAKEGGKF 2023
    Esculentin-2A GLELIACKIAKQC
    (frog)
    AP00084 P40846, GIFSLVKGAAKLAGKGLAKEGGKF 2024
    Esculentin-2B GLELIACKIAKQC
    (ES2B RANES,
    frog)
    AP00299 P46156, Chicken GRKSDCFRKSGFCAFLKCPSLTLIS 2025
    gallinacin 1 (Gal 1, GKCSRFYLCCKRIW
    avian beta-
    defensin, bird)
    AP00300 P46157, Gallinacin GRKSDCFRKNGFCAFLKCPYLTLIS 2026
    1 alpha (avian beta- GKCSRFHLCCKRIW
    defensin, Bird),
    AP00298 P46158, Chicken LFCKGGSCHFGGCPSHLIKVGSCFG 2027
    gallinacin 2 (Gal 2, FRSCCKWPWNA
    avian beta-
    defensin, bird)
    AP00037 P46160, Beta- VRNHVTCRINRGFCVPIRCPGRTRQ 2028
    defensin 2 (cow) IGTCFGPRIKCCRSW
    AP00038 P46161, Beta- QGVRNHVTCRINRGFCVPIRCPGR 2029
    defensin 3 (cow) TRQIGTCFGPRIKCCRSW
    AP00039 P46162, Beta- QRVRNPQSCRWNMGVCIPFLCRV 2030
    defensin 4 (cow) GMRQIGTCFGPRVPCCRR
    AP00040 P46163, Beta- QVVRNPQSCRWNMGVCIPISCPGN 2031
    defensin 5 (cow) MRQIGTCFGPRVPCCRRW
    AP00041 P46164, Beta- QGVRNHVTCRIYGGFCVPIRCPGR 2032
    defensin 6 (cow) TRQIGTCFGRPVKCCRRW
    AP00042 P46165, Beta- QGVRNFVTCRINRGFCVPIRCPGHR 2033
    defensin 7 (cow) RQIGTCLGPRIKCCR
    AP00043 P46166, Beta- VRNFVTCRINRGFCVPIRCPGHRRQ 2034
    defensin 8 (cow) IGTCLGPQIKCCR
    AP00044 P46167, Beta- QGVRNFVTCRINRGFCVPIRCPGHR 2035
    defensin 9 (cow) RQIGTCLAPQIKCCR
    AP00045 P46168, Beta- QGVRSYLSCWGNRGICLLNRCPGR 2036
    defensin 10 (cow) MRQIGTCLAPRVKCCR
    AP00046 P46169, Beta- GPLSCRRNGGVCIPIRCPGPMRQIG 2037
    defensin 11 (cow) TCFGRPVKCCRSW
    AP00048 P46171, Bovine SGISGPLSCGRNGGVCIPIRCPVPM 2038
    beta-defensin 13 RQIGTCFGRPVKCCRSW
    (cow)
    AP00350 P48821, Enbocin PWNIFKEIERAVARTRDAVISAGPA 2039
    (insect, moth) VRTVAAATSVAS
    AP00173 P49112, GNCP-2 RCICTTRTCRFPYRRLGTCLFQNRV 2040
    (Guinea pig YTFCC
    neutrophil cationic
    peptide 2)
    AP00369 P49930, PMAP-23 RIIDLLWRVRRPQKPKFVTVWVR 2041
    (PMAP23, pig
    cathelicidin)
    AP00370 P49931, PMAP-36 VGRFRRLRKKTRKRLKKIGKVLK 2042
    (PMAP36, pig WIPPIVGSIPLGCG
    cathelicidin)
    AP00371 P49932, PMAP-37 GLLSRLRDFLSDRGRRLGEKIERIG 2043
    (PMAP37, pig QKIKDLSEFFQS
    cathelicidin)
    AP00220 P49933, Protegrin RGGRLCYCRGWICFCVGR 2044
    4 (PG-4, pig
    cathelicidin)
    AP00221 P49934, Protegrin RGGRLCYCRPRFCVCVGR 2045
    5 (PG-5, pig
    cathelicidin)
    AP00346 P50720, Hyphancin RWKIFKKIERVGQNVRDGIIKAGP 2046
    MD (Fall AIQVLGTAKAL
    webworm, insect)
    AP00347 P50721, Hyphancin RWKFFKKIERVGQNVRDGLIKAGP 2047
    IIIE (Fall AIQVLGAAKAL
    webworm, insect)
    AP 00348 P50722, Hyphancin RWKVFKKIEKVGRNIRDGVIKAGP 2048
    IIIF (Fall AIAVVGQAKAL
    webworm, insect)
    AP00349 P50723, Hyphancin RWKVFKKIEKVGRHIRDGVIKAGP 2049
    IIIG (Fall AITVVGQATAL
    webworm, insect)
    AP00281 P51473, mCRAMP GLLRKGGEKIGEKLKKIGQKIKNFF 2050
    (mouse QKLVPQPEQ
    cathelicidin;
    derivatives:
    CRAMP 18)
    AP00366 P54228, BMAP-27 GRFKRFRKKFKKLFKKLSPVIPLLH 2051
    (BMAP27, cow LG
    cathelicidin, ZZHs,
    derivatives BMAP-
    18 and BMAP-15)
    AP00367 P54229, BMAP-28 GGLRSLGRKILRAWKKYGPIIVPIIR 2052
    (BMAP28, cow IG
    cathelicidin)
    AP00450 P54230, Cyclic RICRIIFLRVCR 2053
    dodecapeptide
    (sheep cathelicidin)
    AP00359 P54684, Lebocin DLRFLYPRGKLPVPTPPPFNPKPIYI 2054
    1/2 (insect, silk DMGNRY
    moth)
    AP00360 P55796, Lebocin 3 DLRFLYPRGKLPVPTLPPFNPKPIYI 2055
    (insect, silk moth) DMGNRY
    AP00307 P55897, Buforin I AGRGKQGGKVRAKAKTRSSRAGL 2056
    (toad) QFPVGRVHRLLRKGNY
    AP00308 P55897, Buforin II TRSSRAGLQFPVGRVHRLLRK 2057
    (toad)
    AP00240 P56226, Caerin 1.1 GLLSVLGSVAKHVLPHVVPVIAEH 2058
    (frog, ZZHa) L
    AP00241 P56227, Caerin 1.2 GLLGVLGSVAKHVLPHVVPVIAEH 2059
    (frog) L
    AP00242 P56228, Caerin 1.3 GLLSVLGSVAQHVLPHVVPVIAEH 2060
    (frog) L
    AP00243 P56229, Caerin 1.4 GLLSSLSSVAKHVLPHVVPVIAEHL 2061
    (frog)
    AP00244 P56230, Caerin 1.5 GLLSVLGSVVKHVIPHVVPVIAEHL 2062
    (frog)
    AP00245 P56231, Caerin 1.6 GLFSVLGAVAKHVLPHVVPVIAEK 2063
    (frog)
    AP00246 P56232, Caerin 1.7 GLFKVLGSVAKHLLPHVAPVIAEK 2064
    (frog)
    AP00249 P56233, Caerin 2.1 GLVSSIGRALGGLLADVVKSKGQP 2065
    (frog) A
    AP00250 P56234, Caerin 2.2 GLVSSIGRALGGLLADVVKSKEQP 2066
    (frog) A
    AP00251 P56236, Caerin 2.4 GLVSSIGKALGGLLADVVKTKEQP 2067
    (frog) A
    AP00252 P56236, Caerin 2.5 GLVSSIGRALGGLLADVVKSKEQP 2068
    (frog) A
    AP00253 P56238, Caerin 3.1 GLWQKIKDKASELVSGIVEGVK 2069
    (frog)
    AP00254 P56238, Caerin 3.2 GLWEKIKEKASELVSGIVEGVK 2070
    (frog)
    AP00255 P56240, Caerin 3.3 GLWEKIKEKANELVSGIVEGVK 2071
    (frog)
    AP00256 P56241, Caerin 3.4 GLWEKIREKANELVSGIVEGVK 2072
    (frog)
    AP00257 P56242, Caerin 4.1 GLWQKIKSAAGDLASGIVEGIKS 2073
    (frog)
    AP00258 P56243, Caerin 4.2 GLWQKIKSAAGDLASGIVEAIKS 2074
    (frog)
    AP00259 P56244, Caerin 4.3 GLWQKIKNAAGDLASGIVEGIKS 2075
    (frog)
    AP00434 P56249, Frenatin 3 GLMSVLGHAVGNVLGGLFKS 2076
    (frog)
    AP00272 P56386, Murine DQYKCLQHGGFCLRSSCPSNTKLQ 2077
    beta-defensin 1 GTCKPDKPNCCKS
    (mBD-1, mouse)
    AP00368 P56425, BMAP-34 GLFRRLRDSIRRGQQKILEKARRIG 2078
    (BMAP34, cow ERIKDIFRG
    cathelicidin)
    AP00273 P56685, Buthinin SIVPIRCRSNRDCRRFCGFRGGRCT 2079
    (Sahara scorpion) YARQCLCGY
    AP00282 P56872, SIPCGESCVFIPCTVTALLGCSCKSK 2080
    Cyclopsychotride VCYKN
    A (CPT, plant
    cyclotides, XXC)
    AP00094 P56917, Temporin FLPLIGRVLSGIL 2081
    A (XXA, frog)
    AP00096 P56918, Temporin LLPILGNLLNGLL 2082
    C (XXA, frog)
    AP00097 P56920, Temporin VLPIIGNLLNSLL 2083
    E (XXA,frog)
    AP00098 P56921, Temporin FLPLIGKVLSGIL 2084
    F (XXA,frog)
    AP00100 P56923, Temporin LLPNLLKSLL 2085
    K (XXA,frog)
    AP00295 P56928, eNAP-2 EVERKHPLGGSRPGRCPTVPPGTF 2086
    (horse) GHCACLCTGDASEPKGQKCCSN
    AP00101 P57104, Temporin FVQWFSKFLGRIL 2087
    L (XXA,frog)
    AP00095 P79874, Temporin LLPIVGNLLKSLL 2088
    B (XXA, frog)
    AP00099 P79875, Temporin FFPVIGRILNGIL 2089
    G (XXA,frog)
    AP00413 P80032, SLQGGAPNFPQPSQQNGGWQVSP 2090
    Coleoptericin DLGRDDKGNTRGQIEIQNKGKDH
    (insect) DFNAGWGKVIRGPNKAKPTWHVG
    GTYRR
    AP00396 P80054, PR-39 RRRPRPPYLPRPRPPPFFPPRLPPRIP 2091
    (PR39, pig PGFPPRFPPRFP
    cathelicidin)
    AP00182 P80154, Insect GFGCPLDQMQCHRHCQTITGRSGG 2092
    defensin YCSGPLKLTCTCYR
    AP00444 P80223, GICACRRRFCLNFEQFSGYCRVNG 2093
    Corticostatin VI ARYVRCCSRR
    (CS-VI) (animal
    defensin, rabbit)
    AP00208 P80230, Peptide RADTQTYQPYNKDWIKEKIYVLLR 2094
    3910 (pig) RQAQQAGK
    AP00157 P80277, ALWKTMLKKLGTMALHAGKAAL 2095
    Dermaseptin-S1 GAAADTISQGTQ
    (Dermaseptin S1,
    DRS S1, DRS-S1,
    frog)
    AP00158 P80278, ALWFTMLKKLGTMALHAGKAAL 2096
    Dermaseptin-S2 GAAANTISQGTQ
    (Dermaseptin S2,
    DRS S2, DRS-S2,
    frog)
    AP00159 P80279, ALWKNMLKGIGKLAGKAALGAV 2097
    Dermaseptin-S3 KKLVGAES
    (Dermaseptin S3,
    DRS S3, DRS-S3,
    frog)
    AP00160 P80280, ALWMTLLKKVLKAAAKALNAVL 2098
    Dermaseptin-S4 VGANA
    (Dermaseptin S4,
    DRS S4, DRS-S4,
    frog)
    AP00161 P80281, GLWSKIKTAGKSVAKAAAKAAVK 2099
    Dermaseptin-S5 AVTNAV
    (Dermaseptin S5,
    DRS S5, DRS-S5,
    frog)
    AP00293 P80282, AMWKDVLKKIGTVALHAGKAAL 2100
    Dermaseptin-B1 GAVADTISQ
    (DRS-B1, DRS B1,
    frog)
    AP00264 P80389, Chicken GRKSDCFRKSGFCAFLKCPSLTLIS 2101
    Heterophil Peptide GKCSRFYLCCKRIR
    1 (CHP1, bird,
    animal)
    AP00265 P80390, Chicken GRKSDCFRKNGFCAFLKCPYLTLIS 2102
    Heterophil Peptide GLCSFHLC
    2 (CHP2, bird,
    animal)
    AP00266 P80391, Turkey GKREKCLRRNGFCAFLKCPTLSVIS 2103
    Heterophil Peptide GTCSRFQVCC
    1 (THP1, turkey)
    AP00267 P80392, Turkey LFCKRGTCHFGRCPSHLIKVGSCFG 2104
    Heterophil Peptide FRSCCKWPWDA
    2 (THP2, bird,
    anaimal)
    AP00269 P80393, Turkey LSCKRGTCHFGRCPSHLIKGSCSGG 2105
    Heterophil Peptide
    3 (THP3, bird,
    animal)
    AP00085 P80395, Gaegurin- SLFSLIKAGAKFLGKNLLKQGACY 2106
    1 (Gaegurin 1, AACKASKQC
    frog)
    AP00086 P80396, Gaegurin- GIMSIVKDVAKNAAKEAAKGALST 2107
    2 (Gaegurin 2, LSCKLAKTC
    frog)
    AP00087 P80397, Gaegurin- GIMSIVKDVAKTAAKEAAKGALST 2108
    3 (Gaegurin 3, LSCKLAKTC
    frog)
    AP00089 P80399, Gaegurin- FLGALFKVASKVLPSVFCAITKKC 2109
    5 (Gaegurin 5,
    frog)
    AP00090 P80400, Gaegurin- FLPLLAGLAANFLPTIICKISYKC 2110
    6 (Gaegurin 6,
    frog)
    AP00362 P80408, VDKPDYRPRPRPPNM 2111
    Metalnikowin I
    (insect)
    AP00363 P80409, VDKPDYRPRPWPRPN 2112
    Metalnikowin IIA
    (insect)
    AP00364 P80410, VDKPDYRPRPWPRNMI 2113
    Metalnikowin IIB
    (insect)
    AP00365 P80411, VDKPDYRPRPWPRPNM 2114
    Metalnikowin III
    (insect)
    AP00632 P80569, Piscicolin KYYGNGVSCNKNGCTVDWSKAIG 2115
    126/Piscicocin IIGNNAAANLTTGGAAGWNKG
    Via (PiscV1a,
    Pisc126, class IIA
    bacteriocin,
    bacteria)
    AP01003 P80666, Mutacin FKSWSFCTPGCAKTGSFNSYCC 2116
    B-Ny266 (bacteria)
    AP00276 P80710, Clavanin VFQFLGKIIHHVGNFVHGFSHVF 2117
    A (urochordates,
    sea squirts, and sea
    pork, tunicate)
    AP00277 P80711, Clavanin VFQFLGRIIHHVGNFVHGFSHVF 2118
    B (Sea squirt,
    tunicate)
    AP00278 P80712, Clavanin VFHLLGKIIHHVGNFVYGFSHVF 2119
    C (Sea squirt,
    tunicate)
    AP00279 P80713, Clavanin AFKLLGRIIHHVGNFVYGFSHVF 2120
    D (Sea squirt,
    tunicate)
    AP00280 P80713, Clavanin LFKLLGKIIHHVGNFVHGFSHVF 2121
    D (Sea squirt,
    tunicate)
    AP00294 P80930, eNAP-1 DVQCGEGHFCHDQTCCRASQGGA 2122
    (horse) CCPYSQGVCCADQRHCCPVGF
    AP00400 P80952, Skin YPPKPESPGEDASPEEMNKYLTAL 2123
    peptide tyrosine- RHYINLVTRQRY
    tyrosine (skin-
    PYY, SPYY, frog)
    AP00091 P80954, Rugosin A GLLNTFKDWAISIAKGAGKGVLTT 2124
    (frog) LSCKLDKSC
    AP00092 P80955, Rugosin B SLFSLIKAGAKFLGKNLLKQGAQY 2125
    (frog) AACKVSKEC
    AP00093 P80956, Rugosin C GILDSFKQFAKGVGKDLIKGAAQG 2126
    (frog) VLSTMSCKLAKTC
    AP00392 P81056, Penaeidin- YRGGYTGPIPRPPPIGRPPLRLVVC 2127
    1 (shrimp, ACYRLSVSDARNCCIKFGSCCHLV
    Crustacea) K
    AP00393 P81057, Penaeidin- YRGGYTGPIPRPPPIGRPPFRPVCN 2128
    2a (shrimp, ACYRLSVSDARNCCIKFGSCCHLV
    Crustacea) K
    AP00394 P81058, Penaeidin- QVYKGGYTRPIPRPPPFVRPLPGGP 2129
    3a (shrimp, IGPYNGCPVSCRGISFSQARSCCSR
    Crustacea) LGRCCHVGKGYS
    AP00247 P81251, Caerin 1.8 GLFKVLGSVAKHLLPHVVPVIAEK 2130
    (frog)
    AP00248 P81252, Caerin 1.9 GLFGVLGSIAKHVLPHVVPVIAEK 2131
    (frog, ZZHa)
    AP00126 P81417, Cecropin GGLKKLGKKLEGVGKRVFKASEK 2132
    A (insect, ALPVAVGIKALG
    mosquito)
    AP00169 P81437, Formaecin GRPNPVNTKPTPYPRL 2133
    2 (insect, ants)
    AP00168 P81438, Formaecin GRPNPVNNKPTPHPRL 2134
    1 (insect, ants)
    AP00296 P81456, Fabatin -1 LLGRCKVKSNRFHGPCLTDTHCST 2135
    (plant defensin) VCRGEGYKGGDCHGLRRRCMCLC
    AP00297 P81457, Fabatin -2 LLGRCKVKSNRFNGPCLTDTHCST 2136
    (plant defensin) VCRGEGYKGGDCHGLRRRCMCLC
    AP01215 P81463, European FVPYNPPRPYQSKPFPSFPGHGPFN 2137
    bumblebee abaecin PKIQWPYPLPNPGH
    (insect)
    AP01214 P81464, Apidaecin GNRPVYIPPPRPPHPRL 2138
    (insect)
    AP00440 P81465, defensin VTCFCRRRGCASRERHIGYCRFGN 2139
    HANP-1 (hamster) TIYRLCCRR
    AP00441 P81466, defensin CFCKRPVCDSGETQIGYCRLGNTF 2140
    HANP-2 (hamster) YRLCCRQ
    AP00442 P81467, defensin VTCFCRRRGCASRERLIGYCRFGN 2141
    HANP-3 (hamster) TIYGLCCRR
    AP00439 P81468, defensin VTCFCKRPVCDSGETQIGYCRLGN 2142
    HANP-4 (hamster) TFYRLCCRQ
    AP00328 P81469, Styelin A GFGKAFHSVSNFAKKHKTA 2143
    (Sea squirt,
    tunicate, XXA)
    AP00329 P81470, Styelin B GFGPAFHSVSNFAKKHKTA 2144
    (Sea squirt,
    tunicate, XXA)
    AP00492 P81474, Misgurin RQRVEELSKFSKKGAAARRRK 2145
    (fish)
    AP00165 P81485, ALWKNMLKGIGKLAGQAALGAV 2146
    Dermaseptin-B3 KTLVGAE
    (Dermaseptin B3,
    DRS-B3, DRS B3,
    frog)
    AP00163 P81486, ALWKDILKNVGKAAGKAVLNTVT 2147
    Dermaseptin-B4 DMVNQ
    (Dermaseptin B4,
    DRS-B4, DRS B4,
    DRS-TR1, IRP,
    frog)
    AP00162 P81487, GLWNKIKEAASKAAGKAALGFVN 2148
    Dermaseptin-B5 EMV
    (Dermaseptin B5,
    DRS-B5, DRS B5,
    frog)
    AP00164 P81488, ALWKTIIKGAGKMIGSLAKNLLGS 2149
    Dermaseptin-B9 QAQPES
    (Dermaseptin B9,
    DRS-B9, DRS
    DRG3, frog)
    AP00167 P81565, Phylloxin GWMSKIASGIGTFLSGMQQ 2150
    (phylloxin-B1,
    PLX-B1, XXA,
    frog)
    AP00291 P81568, Defensin NIFFSSKKCKTVSKTFRGPCVRNAN 2151
    D5 (So-D5) (plant
    defensin)
    AP00290 P81569, Defensin NIFFSSKKCKTVSKTFRGPCVRNA 2152
    D4 (So-D4) (plant
    defensin)
    AP00289 P81570, Defensin GIFSSRKCKTVSKTFRGICTRNANC 2153
    D3 (So-D3) (plant
    defensin)
    AP00288 P81572, Defensin TCESPSHKFKGPCATNRNCES 2154
    D1 (So-D1) (plant
    defensin)
    AP00292 P81573, Defensin GIFSSRKCKTPSKTFKGYCTRDSNC 2155
    D7 (So-D7) (plant DTSCRYEGYPAGD
    defensin)
    AP00270 P81591, Pn-AMP QQCGRQASGRLCGNRLCCSQWGY 2156
    (PnAMP, plant CGSTASYCGAGCQSQCRS
    defensin)
    AP00412 P81592, SLQPGAPNVNNKDQPWQVSPHISR 2157
    Acaloleptin A1 DDSGNTRTDINVQRHGENNDFEAG
    (insect) WSKVVRGPNKAKPTWHIGGTHRW
    AP00433 P81605, human SSLLEKGLDGAKKAVGGLGKLGK 2158
    Dermcidin (DCD- DAVEDLESVGKGAVHDVKDVLDS
    1) V
    AP00332 P81612, Mytilin A GCASRCKAKCAGRRCKGWASASF 2159
    (Blue mussel) RGRCYCKCFRC
    AP00333 P81613, Mytilin B SCASRCKGHCRARRCGYYVSVLY 2160
    (Blue mussel) RGRCYCKCLRC
    AP00334 P81613, FFHHIFRGIVHVGKTIHKLVTG 2161
    Moronecidin (fish)
    AP00351 P81835, Citropin GLFDVIKKVASVIGGL 2162
    1.1 (amphibian,
    frog)
    AP00352 P81840, Citropin GLFDIIKKVASVVGGL 2163
    1.2 (amphibian,
    frog)
    AP00353 P81846, Citropin GLFDIIKKVASVIGGL 2164
    1.3 (amphibian,
    frog)
    AP00338 P81903, Hi stone PDPAKTAPKKGSKKAVTKA 2165
    H2B-1(HLP-1)
    (fish)
    AP00271 P82018, ChB ac5 RFRPPIRRPPIRPPFNPPFRPPVRPPF 2166
    (Goat cathelicidin) RPPFRPPFRPPIGPFP
    AP00316 P82027, Uperin 2.1 GIVDFAKKVVGGIRNALGI 2167
    (amphibian, toad)
    AP00317 P82028, Uperin 2.2 GFVDLAKKVVGGIRNALGI 2168
    (amphibian, toad)
    AP00318 P82029, Uperin 2.3 GFFDLAKKVVGGIRNALGI 2169
    (amphibian, toad)
    AP00319 P82030, Uperin 2.4 GILDFAKTVVGGIRNALGI 2170
    (amphibian, toad)
    AP00320 P82031, Uperin 2.5 GIVDFAKGVLGKIKNVLGI 2171
    (amphibian, toad)
    AP00323 P82032, Uperin 3.1 GVLDAFRKIATVVKNVV 2172
    (amphibian, toad)
    AP00326 P82035, Uperin 4.1 GVGSFIHKVVSAIKNVA 2173
    (amphibian, toad)
    AP00321 P82039, Uperin 2.7 GIIDIAKKLVGGIRNVLGI 2174
    (amphibian, toad)
    AP00322 P82040, Uperin 2.8 GILDVAKTLVGKLRNVLGI 2175
    (amphibian, toad)
    AP00324 P82042, Uperin 3.5 GVGDLIRKAVSVIKNIV 2176
    (amphibian, toad)
    AP00325 P82042, Uperin 3.6 GVIDAAKKVVNVLKNLP 2177
    (amphibian, toad)
    AP00327 P82050, Uperin 7.1 GWFDVVKHIASAV 2178
    (amphibian, frog)
    AP00260 P82066, Maculatin GLFVGVLAKVAAHVVPAIAEHF 2179
    1.1 (XXA, frog,
    ZZHa)
    AP00261 P82067, Maculatin GLFVGLAKVAAHNNPAIAEHFQA 2180
    1.2 (XXA, frog)
    AP00262 P82068, Maculatin GFVDFLKKVAGTIANVVT 2181
    2.1 (frog)
    AP00263 P82069, Maculatin GLLQTIKEKLESLESLAKGIVSGIQ 2182
    3.1 (frog) A
    AP00345 P82104, Caerin GLLSVLGSVAKHVLPHVVPVIAEK 2183
    1.10 (frog) L
    AP00456 P82232, Brevinin- VNPIILGVLPKFVCLITKKC 2184
    1T (frog)
    AP00459 P82233, Brevinin- FITLLLRKFICSITKKC 2185
    1TA (frog)
    AP00457 P82234, Brevinin- GLWETIKNFGKKFTLNILHKLKCKI 2186
    2TC (frog) GGGC
    AP00458 P82235, Brevinin- GLWETIKNFGKKFTLNILHNLKCKI 2187
    2TD (frog) GGGC
    AP00397 P82238, SGFVLKGYTKTSQ 2188
    Salmocidin 2A
    (fish, trout)
    AP00398 P82239, AGFVLKGYTKTSQ 2189
    Salmocidin 2B
    (fish, trout)
    AP00055 P82282, Bombinin IIGPVLGMVGSALGGLLKKI 2190
    H1 (frog)
    AP00056 P82284, Bombinin LIGPVLGLVGSALGGLLKKI 2191
    H4 (frog, XXA,
    XXD)
    AP00057 P82285, Bombinin IIGPVLGLVGSALGGLLKKI 2192
    H5 (frog, XXD)
    AP00419 P82286, Bombinin- GIGASILSAGKSALKGFAKGLAEHF 2193
    like peptides 2 AN
    (amphibian, toad)
    AP00137 P82293, Cryptdin-1 LRDLVCYCRTRGCKRRERMNGTC 2194
    (Crp1, animal RKGHLMYTLCCR
    defensin, alpha,
    mouse)
    AP00443 P82317, defensin ACYCRIPACLAGERRYGTCFYMGR 2195
    RMAD-2 (monkey) VWAFCC
    AP00012 P82386, Aurein 1.1 GLFDIIKKIAESI 2196
    (amphibian,frog)
    AP00014 P82388, Aurein 2.1 GLLDIVKKVVGAFGSL 2197
    (amphibian,frog)
    AP00015 P82389, Aurein 2.2 GLFDIVKKVVGALGSL 2198
    (amphibian,frog)
    AP00016 P82390, Aurein 2.3 GLFDIVKKVVGAIGSL 2199
    (XXA,
    amphibian,frog)
    AP00017 P82391, Aurein 2.4 GLFDIVKKVVGTIAGL 2200
    (XXA,
    amphibian,frog)
    AP00018 P82392, Aurein 2.5 GLFDIVKKVVGAFGSL 2201
    (XXA,
    amphibian,frog)
    AP00019 P82393, Aurein 2.6 GLFDIAKKVIGVIGSL 2202
    (XXA,
    amphibian,frog)
    AP00020 P82394, Aurein 3.1 GLFDIVKKIAGHIAGSI 2203
    (XXA,
    amphibian,frog)
    AP00021 P82395, Aurein 3.2 GLFDIVKKIAGHIASSI 2204
    (XXA,
    amphibian,frog)
    AP00022 P82396, Aurein 3.3 GLFDIVKKIAGHIVSSI 2205
    (XXA,
    amphibian,frog)
    AP00376 P82414, Ponericin GWKDWAKKAGGWLKKKGPGMA 2206
    G1 (ants) KAALKAAMQ
    AP00377 P82415, Ponericin GWKDWLKKGKEWLKAKGPGIVK 2207
    G2 (ants) AALQAATQ
    AP00378 P82416, Ponericin GWKDWLNKGKEWLKKKGPGIMK 2208
    G3 (ants) AALKAATQ
    AP00379 P82417, Ponericin DFKDWMKTAGEWLKKKGPGILKA 2209
    G4 (ants) AMAAAT
    AP00380 P82418, Ponericin GLKDWVKIAGGWLKKKGPGILKA 2210
    G5 (ants) AMAAATQ
    AP00381 P82419, Ponericin GLVDVLGKVGGLIKKLLP 2211
    G6 (ants)
    AP00382 P82420, Ponericin GLVDVLGKVGGLIKKLLPG 2212
    G7 (ants)
    AP00383 P82421, Ponericin LLKELWTKMKGAGKAVLGKIKGL 2213
    L1 (ants) L
    AP00384 P82422, Ponericin LLKELWTKIKGAGKAVLGKIKGLL 2214
    L2 (ants)
    AP00386 P82423, Ponericin WLGSALKIGAKLLPSVVGLFKKKK 2215
    W1 (ants) Q
    AP00387 P82424, Ponericin WLGSALKIGAKLLPSVVGLFQKKK 2216
    W2 (ants) K
    AP00388 P82425, Ponericin GIWGTLAKIGIKAVPRVISMLKKK 2217
    W3 (ants) KQ
    AP00389 P82426, Ponericin GIWGTALKWGVKLLPKLVGMAQT 2218
    W4 (ants) KKQ
    AP00390 P82427, Ponericin FWGALIKGAAKLIPSVVGLFKKKQ 2219
    W5 (ants)
    AP00391 P82428, Ponericin FIGTALGIASAIPAIVKLFK 2220
    W6 (ants)
    AP00303 P82651, Tigerinin- FCTMIPIPRCY 2221
    1 (frog)
    AP00304 P82652, Tigerinin- RVCFAIPLPICH 2222
    2 (frog)
    AP00305 P82653, Tigerinin- RVCYAIPLPICY 2223
    3 (frog)
    AP00301 P82656, Hadrurin GILDTIKSIASKVWNSKTVQDLKR 2224
    (scorpion) KGINWVANKLGVSPQAA
    AP00113 P82740, GLLSGLKKVGKHVAKNVAVSLMD 2225
    RANATUERIN 1T SLKCKISGDC
    (frog)
    AP00114 P82741, SMLSVLKNLGKVGLGFVACKINK 2226
    RANATUERIN 1 QC
    (Ranatuerin-1,
    frog)
    AP00115 P82742, GLFLDTLKGAAKDVAGKLEGLKC 2227
    RANATUERIN 2 KITGCKLP
    (Ranatuerin-2,
    frog)
    AP00116 P82780, GFLDIINKLGKTFAGHMLDKIKCTI 2228
    RANATUERIN 3 GTCPPSP
    (Ranatuerin-3,
    frog)
    AP00117 P82819, FLPFIARLAAKVFPSIICSVTKKC 2229
    RANATUERIN 4
    (Ranatuerin-4,
    frog)
    AP00405 P82821, FISAIASMLGKFL 2230
    RANATUERIN 6
    (frog)
    AP00406 P82822, FLSAIASMLGKFL 2231
    RANATUERI 7
    (frog)
    AP00407 P82823, FISAIASFLGKFL 2232
    RANATUERIN 8
    (frog)
    AP00408 P82824, FLFPLITSFLSKVL 2233
    RANATUERIN 9
    (frog)
    AP00461 P82825, Brevinin- FLPMLAGLAASMVPKLVCLITKKC 2234
    1LA (frog)
    AP00462 P82826, Brevinin- FLPMLAGLAASMVPKFVCLITKKC 2235
    1LB (frog)
    AP00118 P82828, GILDSFKGVAKGVAKDLAGKLLD 2236
    RANATUERIN KLKCKITGC
    2La (Ranatuerin-
    2La, frog)
    AP00119 P82829, GILSSIKGVAKGVAKNVAAQLLDT 2237
    RANATUERIN LKCKITGC
    2Lb (Ranatuerin-
    2Lb, frog)
    AP00109 P82830, Temporin- VLPLISMALGKLL 2238
    1La (Temporin
    1La, frog)
    AP00110 P82831, Temporin- NFLGTLINLAKKIM 2239
    1Lb (Temporin
    1Lb, frog)
    AP00111 P82832, Temporin- FLPILINLIHKGLL 2240
    1Lc (Temporin
    1Lc, frog)
    AP00463 P82833, Brevinin- FLPFIAGMAAKFLPKIFCAISKKC 2241
    1BA (frog)
    AP00464 P82834, Brevinin- FLPAIAGMAAKFLPKIFCAISKKC 2242
    1BB (frog)
    AP00465 P82835, Brevinin- FLPFIAGVAAKFLPKIFCAISKKC 2243
    1BC (frog)
    AP00466 P82836, Brevinin- FLPAIAGVAAKFLPKIFCAISKKC 2244
    1BD (frog)
    AP00467 P82837, Brevinin- FLPAIVGAAAKFLPKIFCVISKKC 2245
    1BE (frog)
    AP00468 P82838, Brevinin- FLPFIAGMAANFLPKIFCAISKKC 2246
    1BF (frog)
    AP00120 P82840, GLLDTIKGVAKTVAASMLDKLKC 2247
    RANATUERIN 2B KISGC
    (Ranatuerin-2B,
    frog)
    AP00469 P82841, Brevinin- FLPIIAGVAAKVFPKIFCAISKKC 2248
    1PA (frog)
    AP00460 P82842, Brevinin- FLPIIAGIAAKVFPKIFCAISKKC 2249
    1PB (frog)
    AP00470 P82843, Brevinin- FLPIIASVAAKVFSKIFCAISKKC 2250
    1PC (frog)
    AP00471 P82844, Brevinin- FLPIIASVAANVFSKIFCAISKKC 2251
    1PD (frog)
    AP00472 P82845, Brevinin- FLPIIASVAAKVFPKIFCAISKKC 2252
    1PE (frog)
    AP00121 P82847, GLMDTVKNVAKNLAGHMLDKLK 2253
    RANATUERIN 2P CKITGC
    (Ranatuerin-2P,
    frog)
    AP00112 P82848, Temporin- FLPIVGKLLSGLL 2254
    1P (Temporin 1P,
    frog)
    AP00452 P82871, Brevinin- FLPVVAGLAAKVLPSIICAVTKKC 2255
    1SY (frog)
    AP00122 P82875, SMLSVLKNLGKVGLGLVACKINK 2256
    Ranatuerin-1C QC
    (Ranatuerin 1C,
    frog)
    AP00514 P82876, Ranalexin- FLGGLMKAFPALICAVTKKC 2257
    1Ca (frog)
    AP00515 P82877, Ranalexin- FLGGLMKAFPAIICAVTKKC 2258
    1Cb (frog)
    AP00124 P82878, GLFLDTLKGAAKDVAGKLLEGLK 2259
    Ranatuerin-2Ca CKIAGCKP
    (Ranatuerin 2Ca,
    frog)
    AP00123 P82879, GLFLDTLKGLAGKLLQGLKCIKAG 2260
    Ranatuerin-2Cb CKP
    (Ranatuerin 2Cb,
    frog)
    AP00104 P82880, Temporin- FLPFLAKILTGVL 2261
    1Ca (Temporin
    1Ca, frog)
    AP00105 P82881, Temporin- FLPLFASLIGKLL 2262
    1Cb (Temporin
    1Cb, frog)
    AP00106 P82882, Temporin- FLPFLASLLTKVL 2263
    1Cc (Temporin
    1Cc, frog)
    AP00107 P82883, Temporin- FLPFLASLLSKVL 2264
    1Cd (Temporin
    1Cd, frog)
    AP00108 P82884, Temporin- FLPFLATLLSKVL 2265
    1Ce (Temporin
    1Ce, frog)
    AP00453 P82904, Brevinin- FLPAIVGAAGQFLPKIFCAISKKC 2266
    1SA (frog)
    AP00454 P82905, Brevinin- FLPAIVGAAGKFLPKIFCAISKKC 2267
    1SB (frog)
    AP00455 P82906, Brevinin- FFPIVAGVAGQVLKKIYCTISKKC 2268
    1SC (frog)
    AP00996 P82907, Lichenin ISLEICAIFHDN 2269
    (bacteria)
    AP00302 P82951, Hepcidin GCRFCCNCCPNMSGCGVCCRF 2270
    (fish)
    AP00058 P83080, Maximin 1 GIGTKILGGVKTALKGALKELAST 2271
    (toad) YAN
    AP00059 P83081, Maximin 2 GIGTKILGGVKTALKGALKELAST 2272
    (toad) YVN
    AP00060 P83082, Maximin 3 GIGGKILSGLKTALKGAAKELAST 2273
    (toad, ZZHa) YLH
    AP00061 P83083, Maximin 4 GIGGVLLSAGKAALKGLAKVLAE 2274
    (toad) KYAN
    AP00062 P83084, Maximin 5 SIGAKILGGVKTFFKGALKELASTY 2275
    (toad) LQ
    AP00063 P83085, Maximin 6 ILGPVISTIGGVLGGLLKNL 2276
    (toad)
    AP00064 P83086, Maximin 7 ILGPVLGLVGNALGGLIKNE 2277
    (toad)
    AP00065 P83087, Maximin 8 ILGPVLSLVGNALGGLLKNE 2278
    (toad)
    AP00355 P83171, ANTAFVSSAHNTQKIPAGAPFNRN 2279
    Ginkbilobin LRAMLADLRQNAAFAG
    (Chinese plant)
    AP00475 P83188, Pseudin 1 GLNTLKKVFQGLHEAIKLINNHVQ 2280
    (frog)
    AP00476 P83189, Pseudin 2 GLNALKKVFQGIHEAIKLINNHVQ 2281
    (frog)
    AP00477 P83190, Pseudin 3 GINTLKKVIQGLHEVIKLVSNHE 2282
    (frog)
    AP00478 P83191, Pseudin 4 GINTLKKVIQGLHEVIKLVSNHA 2283
    (frog)
    AP00410 P83287, SKGKKANKDVELARG 2284
    Oncorhyncin III
    (fish)
    AP00357 P83305, Japonicin- FFPIGVFCKIFKTC 2285
    1 (amphibian, frog)
    AP00358 P83306, Japonicin- FGLPMLSILPKALCILLKRKC 2286
    2 (amphibian, frog)
    AP00385 P83312, FKLGSFLKKAWKSKLAKKLRAKG 2287
    Parabutoporin KEMLKDYAKGLLEGGSEEVPGQ
    (scorpion)
    AP00374 P83313, GKVWDWIKSTAKKLWNSEPVKEL 2288
    Opistoporin 1 KNTALNAAKNLVAEKIGATPS
    (scorpion)
    AP00375 P83314, GKVWDWIKSTAKKLWNSEPVKEL 2289
    Opistoporin 2 KNTALNAAKNFVAEKIGATPS
    (scorpion)
    AP00336 P83327, Histone AERVGAGAPVYL 2290
    H2A (fish)
    AP00335 P83338, Histone PKRKSATKGDEPA 2291
    H6-like protein
    (fish)
    AP00411 P83374, KAVAAKKSPKKAKKPAT 2292
    Oncorhyncin II
    (fish)
    AP00999 P83375, Serracin-P DYHHGVRVL 2293
    43 kDa subunit
    (bacteria)
    AP00284 P83376, SHQDCYEALHKCMASHSKPFSCS 2294
    Dolabellanin B2 MKFHMCLQQQ
    (sea hare)
    AP00998 P83378, Serracin-P ALPKKLKYLNLFNDGFNYMGVV 2295
    23 kDa subunit
    (bacteriocin,
    bacteria)
    AP00129 P83403, Cecropin GWLKKIGKKIERVGQNTRDATVK 2296
    (insect, moth) GLEVAQQAANVAATVR
    AP00127 P83413, Cecropin RWKVFKKIEKVGRNIRDGVIKAAP 2297
    A (insect, moth) AIEVLGQAKAL
    AP00372 P83416, Virescein GKIPIGAIKKAGKAIGKGLRAVNIA 2298
    (insect) STAHDVYTFFKPKKRH
    AP00356 P83427, Heliocin QRFIHPTYRPPPQPRRPVIMRA 2299
    (insect)
    AP00409 P83428, Locustin ATTGCSCPQCIIFDPICASSYKNGRR 2300
    (insect) GFSSGCHMRCYNRCHGTDYFQISK
    GSKCI
    AP00339 P83545, FFGWLIKGAIHAGKAIHGLIHRRRH 2301
    Chrysophsin-1
    (Red sea bream,
    madai)
    AP00340 P83546, FFGWLIRGAIHAGKAIHGLIHRRRH 2302
    Chrysophsin-2
    (Red sea bream,
    madai)
    AP00341 P83547, FIGLLISAGKAIHDLIRRRH 2303
    Chrysophsin-3
    (Red sea bream,
    madai)
    AP01004 P84763, Thuricin-S DWTAWSALVAAACSVELL 2304
    (bacteria)
    AP00553 P84868, Sesquin KTCENLADTY 2305
    (plant, ZZHp)
    AP00132 Q06589, Cecropin GWLKKIGKKIERVGQHTRDATIQTI 2306
    1 (insect, fly) AVAQQAANVAATAR
    AP00135 Q06590, Cecropin GWLKKIGKKIERVGQHTRDATIQTI 2307
    2 (insect fly) GVAQQAANVAATLK
    AP00416 Q17313, SLGGVISGAKKVAKVAIPIGKAVLP 2308
    Ceratotoxin C VVAKLVG
    (insect, fly)
    AP00171 Q24395, HRHQGPIFDTRPSPFNPNQPRPGPIY 2309
    Metchnikowin
    (insect)
    AP00354 Q27023, Tenecin 1 VTCDILSVEAKGVKLNDAACAAH 2310
    (insect) CLFRGRSGGYCNGKRVCVCR
    AP00401 Q28880, Lingual GFTQGVRNSQSCRRNKGICVPIRCP 2311
    antimicrobial GSMRQIGTCLGAQVKCCRRK
    peptide (LAP, beta
    defensin, cow)
    AP00224 Q62713, RatNP-3 CSCRTSSCRFGERLSGACRLNGRIY 2312
    (rat) RLCC
    AP00225 Q62714, RatNP-4 ACYCRIGACVSGERLTGACGLNGR 2313
    (rat) IYRLCCR
    AP00223 Q62715, RatNP-2 VTCYCRSTRCGFRERLSGACGYRG 2314
    (rat) RIYRLCCR
    AP00222 Q62716, RatNP-1 VTCYCRRTRCGFRERLSGACGYRG 2315
    (rat) RIYRLCCR
    AP00174 Q64365, GNCP-1 RRCICTTRTCRFPYRRLGTCIFQNR 2316
    (Guinea pig VYTFCC
    neutrophil cationic
    peptide 1)
    AP00311 Q90W78, Galensin CYSAAKYPGFQEFINRKYKSSRF 2317
    (frog)
    AP00395 Q95NT0, HSSGYTRPLPKPSRPIFIIRPIGCDVC 2318
    Penaeidin-4a YGIPSSTARLCCFRYGDCCHR
    (shrimp, Crustacea)
    AP00423 Q962B0, QGYKGPYTRPILRPYVRPVVSYNA 2319
    Penaeidin-3n CTLSCRGITTTQARSCSTRLGRCCH
    (shrimp, Crustacea) VAKGYS
    AP00422 Q962B1, QGCKGPYTRPILRPYVRPVVSYNA 2320
    Penaeidin-3m CTLSCRGITTTQARSCCTRLGRCCH
    (shrimp, Crustacea) VAKGYS
    AP00421 Q963C3, YSSGYTRPLPKPSRPIFIRPIGCDVC 2321
    Penaeidin-4C YGIPSSTARLCCFRYGDCCHR
    (shrimp, Crustacea)
    AP00210 Q99134, PGLa GMASKAGAIAGKIAKVALKAL 2322
    (African clawed
    frog, XXA)
    AP00054 Q9DET7, GIGGALLSAGKSALKGLAKGLAEH 2323
    Bombinin-like FAN
    peptide 7 (BLP-7,
    toad)
    AP00315 Q9PT75, SLGSFLKGVGTTLASVGKVVSDQF 2324
    Dermatoxin (Two- GKLLQAGQ
    colored leaf frog)
    AP00133 Q9Y0Y0, Cecropin GGLKKLGKKLEGVGKRVFKASEK 2325
    B (insect, ALPVLTGYKAIG
    mosquito)
    AP00004 Ref, Ct-AMP1 NLCERASLTWTGNCGNTGHCDTQ 2326
    (CtAMP1, C. CRNWESAKHGACHKRGNWKCFC
    ternatea- YFDC
    antimicrobial
    peptide
     1, plant
    defensin)
    AP00027 Ref, hexapeptide RRWQWR 2327
    (synthetic)
    AP00529 Ref, Lantibiotic WKSESVCTPGCVTGVLQTCFLQTI 2328
    Ericin S (bacteria) TCNCHISK
    AP00306 Ref, Tigerinin-4 RVCYAIPLPIC 2329
    (frog)
    AP00309 Ref, Human KS-27 KSKEKIGKEFKRIVQRIKDFLRNLV 2330
    (KS27 from LL-37) PR
    AP00344 Ref, Apidaecin II GNNRPIYIPQPRPPHPRL 2331
    (honeybee, insect)
    AP00424 Ref, XT 1 (frog) GFLGPLLKLAAKGVAKVIPHLIPSR 2332
    QQ
    AP00425 Ref, XT 2 (frog) GCWSTVLGGLKKFAKGGLEAIVNP 2333
    K
    AP00426 Ref, XT 4 (frog) GVFLDALKKFAKGGMNAVLNPK 2334
    AP00427 Ref, XT 7 (frog) GLLGPLLKIAAKVGSNLL 2335
    AP00431 Ref, human LLP 1 RVIEVVQGACRAIRHIPRRIRQGLE 2336
    RIL
    AP00432 Ref, human LLP RIAGYGLRGLAVIIRICIRGLNLIFEI 2337
    IR
    AP00447 Ref, Anoplin GLLKRIKTLL 2338
    (insect)
    AP00474 Ref, Piscidin 3 FIHHIFRGIVHAGRSIGRFLTG 2339
    (fish)
    AP00481 Ref, Kaliocin-1 FFSASCVPGADKGQFPNLCRLCAG 2340
    (synthetic) TGENKCA
    AP00482 Ref, Thionin KSCCRNTWARNCYNVCRLPGTISR 2341
    mutation EICAKKCRCKIISGTTCPSDYPK
    (synthetic)
    AP00484 Ref, Stomoxyn RGFRKHFNKLVKKVKHTISETAHV 2342
    (insect, fly) AKDTAVIAGSGAAVVAAT
    AP00486 Ref, Cupiennin 1b GFGSLFKFLAKKVAKTVAKQAAK 2343
    (spider) QGAKYIANKQME
    AP00487 Ref, Cupiennin 1c GFGSLFKFLAKKVAKTVAKQAAK 2344
    (spider) QGAKYIANKQTE
    AP00488 Ref, Cupiennin 1D GFGSLFKFLAKKVAKTVAKQAAK 2345
    (spider) QGAKYVANKHME
    AP00489 Ref, Hipposin SGRGKTGGKARAKAKTRSSRAGL 2346
    (fish) QFPVGRVHRLLRKGNYAHRVGAG
    APVYL
    AP00923 Ref, AISYGNGVYCNKEKCWVNKAENK 2347
    Carnobacteriocin QAITGIVIGGWASSLAGMGH
    B1 (XXO, class Ha
    bacteriocin,
    bacteria)
    AP00496 Ref, HP 2-20 AKKVFKRLEKLFSKIQNDK 2348
    (synthetic)
    AP00497 Ref, Maximin H5 ILGPVLGLVSDTLDDVLGIL 2349
    (toad)
    AP00498 Ref, rCRAMP (rat GLVRKGGEKFGEKLRKIGQKIKEF 2350
    cathelicidin) FQKLALEIEQ
    AP00500 Ref, S9-P18 KWKLFKKISKFLHLAKKF 2351
    (synthetic)
    AP00501 Ref, L9-P18 KWKLFKKILKFLHLAKKF 2352
    (synthetic)
    AP00502 Ref, Clavaspirin FLRFIGSVIHGIGHLVHHIGVAL 2353
    (sea squirt,
    tunicate)
    AP00503 Ref, human P- AKRHHGYKRKFH 2354
    113D
    AP00504 Ref, human MUC7 LAHQKPFIRKSYKCLHKRCR 2355
    20-Mer
    AP00507 Ref, Nigrocin 2 GLLSKVLGVGKKVLCGVSGLC 2356
    (frog)
    AP00508 Ref, Nigrocin 1 GLLDSIKGMAISAGKGALQNLLKV 2357
    (frog) ASCKLDKTC
    AP00509 Ref, human VAIALKAAHYHTHKE 2358
    Calcitermin
    AP00510 Ref, Dicynthaurin ILQKAVLDCLKAAGSSLSKAAITAI 2359
    (sea peach) YNKIT
    AP00511 Ref, KIGAKI KIGAKIKIGAKIKIGAKI 2360
    (synthetic)
    AP00516 Ref, Lycotoxin I IWLTALKFLGKHAAKHLAKQQLS 2361
    (spider) KL
    AP00517 Ref, Lycotoxin II KIKWFKTMKSIAKFIAKEQMKKHL 2362
    (spider) GGE
    AP00518 Ref, Ib-AMP3 QYRHRCCAWGPGRKYCKRWC 2363
    (plant defensin,
    balsam)
    AP00519 Ref, Ib-AMP4 EWGRRCCGWGPGRRYCRRWC 2364
    (plant defensin,
    balsam)
    AP00521 Ref, Dhvar4 KRLFKKLLFSLRKY 2365
    (synthetic)
    AP00522 Ref, Dhvar5 LLLFLLKKRKKRKY 2366
    (synthetic)
    AP00525 Ref, Maximin H2 ILGPVLSMVGSALGGLIKKI 2367
    (toad)
    AP00526 Ref, Maximin H3 ILGPVLGLVGNALGGLIKKI 2368
    (toad)
    AP00527 Ref, Maximin H4 ILGPVISKIGGVLGGLLKNL 2369
    (toad)
    AP00528 Ref, Anionic DDDDDD 2370
    peptide SAAP
    (sheep)
    AP00530 Ref, Lantibiotic VLSKSLCTPGCITGPLQTCYLCFPT 2371
    Ericin A (bacteria) FAKC
    AP00531 Ref, Kenoj einin I GKQYFPKVGGRLSGKAPLAAKTH 2372
    (sea skate) RRLKP
    AP00532 Ref, Lunatusin KTCENLADTFRGPCFATSNC 2373
    (plant, ZZHp)
    AP00533 Ref, Fallaxin (frog) GVVDILKGAAKDIAGHLASKVMN 2374
    KL
    AP00534 Ref, Tu-AMP 2 KSCCRNTTARNCYNVCRIPG 2375
    (TuAMP2, thionin-
    like antimicrobial
    peptides, plant
    defensin, tulip)
    AP00535 Ref, Pilosulin 1 GLGSVFGRLARILGRVIPKVAKKL 2376
    (Myr b I) GPKVAKVLPKVMKEAIPMAVEMA
    (Australian ants) KSQEEQQPQ
    AP00536 Ref, Luxuriosin SVRTQDNAVNRQIFGSNGPYRDFQ 2377
    (insect) LSDCYLPLETNPYCNEWQFAYHW
    NNALMDCERAIYHGCNRTRNNFIT
    LTACKNQAGPICNRRRH
    AP00537 Ref, SAMP H1 AEVAPAPAAAAPAKAPKKKAAAK 2378
    (fish, Atlantic PKKAGPS
    salmon)
    AP00538 Ref, Halocidin WLNALLHHGLNCAKGVLA 2379
    (dimer Hal18 +
    Hal 15) (tunicate)
    AP00539 Ref, AOD GFGCPWNRYQCHSHCRSIGRLGGY 2380
    (American oyster CAGSLRLTCTCYRS
    defensin, animal
    defensin)
    AP00540 Ref, Pentadactylin GLLDTLKGAAKNVVGSLASKVME 2381
    (frog) KL
    AP00541 Ref, Polybia-MPI IDWKKLLDAAKQIL 2382
    (insect, social
    wasp)
    AP00542 Ref, Polybia-CP ILGTILGLLKSL 2383
    (insect, social
    wasp)
    AP00543 Ref, Ocellatin-1 GVVDILKGAGKDLLAHLVGKISEK 2384
    (XXA, frog) V
    AP00544 Ref, Ocellatin-2 GVLDIFKDAAKQILAHAAEKQI 2385
    (XXA, frog)
    AP00545 Ref, Ocellatin-3 GVLDILKNAAKNILAHAAEQI 2386
    (frog)
    AP00548 Ref, CMAP 27 RFGRFLRKIRRFRPKVTITIQGSARF 2387
    (chicken myeloid G
    antimicrobial
    peptide 27, bird
    cathelicidin,
    chicken
    cathelicidin)
    AP00550 Ref, Tu-AMP-1 KSCCRNTVARNCYNVCRIPGTPRP 2388
    (TuAMP1, thionin- VCAATCDCKLITGTKCPPGYEK
    like antimicrobial
    peptides, plant
    defensin, tulip)
    AP00551 Ref, Combi-2 FRWWHR 2389
    (synthetic)
    AP00552 Ref, Maximin 9 GIGRKFLGGVKTTFRCGVKDFASK 2390
    (frog) HLY
    AP00554 Ref, Sl moricin GKIPVKAIKKAGAAIGKGLRAINIA 2391
    (insect) STAHDVYSFFKPKHKKK
    AP00555 Ref, Parasin I KGRGKQGGKVRAKAKTRSS 2392
    (catfish)
    AP00556 Ref, Kassinatuerin- GFMKYIGPLIPHAVKAISDLI 2393
    1 (frog)
    AP00557 Ref, Fowlicidin-1 RVKRVWPLVIRTVIAGYNLYRAIK 2394
    (chCATH-1, bird KK
    cathelicidin,
    chicken
    cathelicidin)
    AP00559 Ref, Eryngin ATRVVYCNRRSGSVVGGDDTVYY 2395
    (mushroom, fungi) EG
    AP00560 Ref, Dendrocin TTLTLHNLCPYPVWWLVTPNNGG 2396
    (plant, bamboo) FPIIDNTPVVLG
    AP00561 Ref, Coconut EQCREEEDDR 2397
    antifungal peptide
    (plant)
    AP00562 Ref, Pandinin 1 GKVWDWIKSAAKKIWSSEPVSQL 2398
    (African scorpion) KGQVLNAAKNYVAEKIGATPT
    AP00563 Ref, White cloud KTCENLADTFRGPCFATSNCDDHC 2399
    bean defensin KNKEHLLSGRCRDDFRCWCTRNC
    (plant defensin)
    AP00564 Ref, Dybowskin-1 FLIGMTHGLICLISRKC 2400
    (frog)
    AP00565 Ref, Dybowskin-2 FLIGMTQGLICLITRKC 2401
    (frog)
    AP00566 Ref, Dybowskin-3 GLFDVVKGVLKGVGKNVAGSLLE 2402
    (frog) QLKCKLSGGC
    AP00567 Ref, Dybowskin-4 VWPLGLVICKALKIC 2403
    (frog)
    AP00568 Ref, Dybowskin-5 GLFSVVTGVLKAVGKNVAKNVGG 2404
    (frog) SLLEQLKCKKISGGC
    AP00569 Ref, Dybowskin-6 FLPLLLAGLPLKLCFLFKKC 2405
    (frog)
    AP00570 Ref, Pleurain-A1 SIITMTKEAKLPQLWKQIACRLYNT 2406
    (frog) C
    AP00571 Ref, Pleurai n-A2 SIITMTKEAKLPQSWKQIACRLYNT 2407
    (frog) C
    AP00574 Ref, Esculentin- GLFSKFAGKGIKNLIFKGVKHIGKE 2408
    IGRa (frog) VGMDVIRTGIDVAGCKIKGEC
    AP00575 Ref, Brevinin- GLLDTFKNLALNAAKSAGVSVLNS 2409
    2GRa (frog) LSCKLSKTC
    AP00576 Ref, Brevinin- GVLGTVKNLLIGAGKSAAQSVLKT 2410
    2GRb (frog) LSCKLSNDC
    AP00577 Ref, Brevinin- GLFTLIKGAAKLIGKTVAKEAGKT 2411
    2GRc (frog) GLELMACKITNQC
    AP00578 Ref, Brevinin- FLPLLAGLAANFLPKIFCKITKKC 2412
    1GRa (frog)
    AP00579 Ref, Nigrocin- GLLSGILGAGKHIVCGLSGLC 2413
    2GRa (frog)
    AP00580 Ref, Nigrocin- GLFGKILGVGKKVLCGLSGMC 2414
    2GRb (frog)
    AP00581 Ref, Nigrocin- GLLSGILGAGKNIVCGLSGLC 2415
    2GRc (frog)
    AP00582 Ref, Brevinin- GFSSLFKAGAKYLLKSVGKAGAQ 2416
    2GHa (frog) QLACKAANNCA
    AP00583 Ref, Brevinin- GVITDALKGAAKTVAAELLRKAH 2417
    2GHb (frog) CKLTNSC
    AP00584 Ref, Guentherin VIDDLKKVAKKVRRELLCKKHHK 2418
    (frog) KLN
    AP00585 Ref, Brevinin- SIWEGIKNAGKGFLVSILDKVRCK 2419
    2GHc (frog) VAGGCNP
    AP00586 Ref, Temporin-GH FLPLLFGAISHLL 2420
    (frog)
    AP00587 Ref, Brevinin-2T Sa GIMSLFKGVLKTAGKHVAGSLVD 2421
    (frog) QLKCKITGGC
    AP00588 Ref, Brevinin-1T Sa FLGSIVGALASALPSLISKIRN 2422
    (frog)
    AP00589 Ref, Temporin- FLGALAKIISGIF 2423
    1T S a (frog)
    AP00593 Ref, B revi nin-1CSa FLPILAGLAAKIVPKLFCLATKKC 2424
    (frog)
    AP00594 Ref, Temporin- FLPIVGKLLSGLL 2425
    1CSa (frog)
    AP00595 Ref, Temporin- FLPIIGKLLSGLL 2426
    1CSb (frog)
    AP00596 Ref, Temporin- FLPLVTGLLSGLL 2427
    1CSc (frog)
    AP00597 Ref, Temporin- NFLGTLVNLAKKIL 2428
    1CSd (frog)
    AP00598 Ref, Temporin- FLSAITSLLGKLL 2429
    1SPb (frog)
    AP00599 Ref, Brevinin-2- GIWDTIKSMGKVFAGKILQNL 2430
    related (frog)
    AP00600 Ref, Odorranain- GLLRASSVWGRKYYVDLAGCAKA 2431
    HP (frog)
    AP00601 Ref, Brevinin- FLSLALAALPKFLCLVFKKC 2432
    1DYa (frog)
    AP00602 Ref, Brevinin- FLSLALAALPKLFCLIFKKC 2433
    1DYb (frog)
    AP00603 Ref, Brevinin- FLPLLLAGLPKLLCLFFKKC 2434
    1DYc (frog)
    AP00607 Ref, Brevinin- GLFDVVKGVLKGAGKNVAGSLLE 2435
    2DYb (frog) QLKCKLSGGC
    AP00608 Ref, Brevinin- GLFDVVKGVLKGVGKNVAGSLLE 2436
    2DYc (frog) QLKCKLSGGC
    AP00609 Ref, Brevinin- GIFDVVKGVLKGVGKNVAGSLLE 2437
    2DYd (frog) QLKCKLSGGC
    AP00610 Ref, Brevinin- GLFSVVTGVLKAVGKNVAKNVGG 2438
    2DYe (frog) SLLEQLKCKISGGC
    AP00611 Ref, Temporin- FIGPIISALASLFG 2439
    1DYa (frog)
    AP00615 Ref, Palustrin-1b ALFSILRGLKKLGNMGQAFVNCKI 2440
    (frog) YKKC
    AP00616 Ref, Palustrin-1c ALSILRGLEKLAKMGIALTNCKAT 2441
    (frog) KKC
    AP00617 Ref, Palustrin-1d ALSILKGLEKLAKMGIALTNCKAT 2442
    (frog) KKC
    AP00619 Ref, Palustrin-2b GFFSTVKNLATNVAGTVIDTLKCK 2443
    (frog) VTGGCRS
    AP00620 Ref, Palustrin-2c GFLSTVKNLATNVAGTVIDTLKCK 2444
    (frog) VTGGCRS
    AP00621 Ref, Palustrin-3a GIFPKIIGKGIKTGIVNGIKSLVKGV 2445
    (frog) GMKVFKAGLNNIGNTGCNEDEC
    AP00622 Ref, Palustrin-3b GIFPKIIGKGIKTGIVNGIKSLVKGV 2446
    (frog) GMKVFKAGLSNIGNTGCNEDEC
    AP00624 Ref, human ALL- ALLGDFFRKSKEKIGKEFKRIVQRI 2447
    38 (an LL-37 KDFLRNLVPRTES
    analog released
    from its precursor
    hCAP-18 by
    gastricsin in vivo)
    AP00625 Ref, human KR-20 KRIVQRIKDFLRNLVPRTES 2448
    (KR20 from LL-
    37)
    AP00626 Ref, human KS-30 KSKEKIGKEFKRIVQRIKDFLRNLV 2449
    (KS30 from LL-37)
    PRTES
    AP00627 Ref, human RK-31 RKSKEKIGKEFKRIVQRIKDFLRNL 2450
    (RK31 from LL- VPRTES
    37)
    AP00628 Ref, human LL-23 LLGDFFRKSKEKIGKEFKRIVQR 2451
    (LL23 from LL-37)
    AP00629 Ref, human LL-29 LLGDFFRKSKEKIGKEFKRIVQRIK 2452
    (LL29 from LL-37) DFLR
    AP00630 Ref, Amoeba GEILCNLCTGLINTLENLLTTKGAD 2453
    peptide (protozoan
    para
    AP00631 Ref, Mundticin KYYGNGVSCNKKGCSVDWGKAIG 2454
    (bacteria) IIGNNSAANLATGGAAGWSK
    AP00638 Ref, Citropin 2.1 GLIGSIGKALGGLLVDVLKPKL 2455
    (frog)
    AP00639 Ref, Citropin 2.1.3 GLIGSIGKALGGLLVDVLKPKLQA 2456
    (frog) AS
    AP00640 Ref, Maculatin 1.3 GLLGLLGSVVSHVVPAIVGHF 2457
    (frog)
    AP00641 Ref, Pardaxin 1 GFFALIPKIISSPLFKTLLSAVGSALS 2458
    (Pardaxin P-1, SSGEQE
    Pardaxin P1, Pa1,
    flat fish)
    AP00642 Ref, Pardaxin 2 GFFALIPKIISSPIFKTLLSAVGSALS 2459
    (Pardaxin P-2, SSGGQE
    Pardaxin P2,Pa2,
    flat fish)
    AP00643 Ref, Pardaxin 3 GFFAFIPKIISSPLFKTLLSAVGSALS 2460
    (Pardaxin P-3, SSGEQE
    Pardaxin P3,Pa3,
    flat fish)
    AP00645 Ref, Pardaxin 5 GFFAFIPKIISSPLFKTLLSAVGSALS 2461
    (Pardaxin P-5, SSGDQE
    Pardaxin P5, Pa5,
    flat fish)
    AP00647 Ref, Brevinin-1PLb FLPLIAGLAANFLPKIFCAITKKC 2462
    (frog)
    AP00648 Ref, Brevinin-1PLc FLPVIAGVAAKFLPKIFCAITKKC 2463
    (frog)
    AP00649 Ref, Esculentin- GLFPKINKKKAKTGVFNIIKTVGKE 2464
    1PLa (frog) AGMDLIRTGIDTIGCKIKGEC
    AP00650 Ref, Esculentin- GIFTKINKKKAKTGVFNIIKTIGKEA 2465
    1PLb (frog) GMDVIRAGIDTISCKIKGEC
    AP00651 Ref, Esculentin- GLFSILKGVGKIALKGLAKNMGK 2466
    2PLa (frog) MGLDLVSCKISKEC
    AP00652 Ref, Ranatuerin- GIMDTVKNVAKNLAGQLLDKLKC 2467
    2PLa (frog) KITAC
    AP00653 Ref, Ranatuerin- GIMDTVKNAAKDLAGQLLDKLKC 2468
    2PLb (frog) RITGC
    AP00654 Ref, Ranatuerin- GLLDTIKNTAKNLAVGLLDKIKCK 2469
    2PLc (frog) MTGC
    AP00655 Ref, Ranatuerin- GIMDSVKNVAKNIAGQLLDKLKC 2470
    2PLd (frog) KITGC
    AP00656 Ref, Ranatuerin- GIMDSVKNAAKNLAGQLLDTIKCK 2471
    2PLe (frog) ITAC
    AP00657 Ref, Ranatuerin- GIMDTVKNAAKDLAGQLDKLKCR 2472
    2PLf (frog) ITGC
    AP00658 Ref, Temporin- FLPLVGKILSGLI 2473
    1PLa (frog)
    AP00659 Ref, Ranatuerin 5 FLPIASLLGKYL 2474
    (frog)
    AP00661 Ref, Esculentin-2L GILSLFTGGIKALGKTLFKMAGKA 2475
    (frog) GAEHLACKATNQC
    AP00662 Ref, Esculentin-2B GLFSILRGAAKFASKGLGKDLTKL 2476
    (ESC2B-RANBE, GVDLVACKISKQC
    frog)
    AP00663 Ref, Esculentin-2P GFSSIFRGVAKFASKGLGKDLARL 2477
    (frog) GVNLVACKISKQC
    AP00664 Ref, Peptide A1 FLPAIAGILSQLF 2478
    (frog)
    AP00665 Ref, Peptide B9 FLPLIAGLIGKLF 2479
    (frog)
    AP00666 Ref, PG-L (frog) EGGGPQWAVGHFM 2480
    AP00667 Ref, PG-KI (frog) EPHPDEFVGLM 2481
    AP00668 Ref, PG-KIT (frog) EPNPDEFVGLM 2482
    AP00669 Ref, PG-KIII (frog) EPHPNEFVGLM 2483
    AP00670 Ref, PG-SPI (frog) EPNPDEFFGLM 2484
    AP00660 Ref, Pandinin 2 FWGALAKGALKLIPSLFSSFSKKD 2485
    (African scorpion)
    AP00671 Ref, PG-SPIT (frog) EPNPNEFFGLM 2486
    AP00673 Ref, Lantibiotic WKSESVCTPGCVTGVLQTCFLQTI 2487
    Ericin S (bacteria TCNCHISK
    AP00674 Ref, Lantibiotic VLSKSLCTPGCITGPLQTCYLCFPT 2488
    Ericin A (bacteria FAKC
    AP00675 Ref, Human beta FELDRICGYGTARCRKKCRSQEYRI 2489
    defensin 4 (HBD-4, GRCPNTYACCLRKWDESLLNRTKP
    HBD4, human
    defensin)
    AP00676 Ref, RL-37 (RL37, RLGNFFRKVKEKIGGGLKKVGQKI 2490
    monkey KDFLGNLVPRTAS
    cathelicidin)
    AP00677 Ref, CAP11 GLRKKFRKTRKRIQKLGRKIGKTG 2491
    (Guinea pig RKVWKAWREYGQIPYPCRI
    cathelicidin)
    AP00678 Ref, Canine RLKELITTGGQKIGEKIRRIGQRIKD 2492
    cathelicidin FFKNLQPREEKS
    (K9CATH) (dog)
    AP00679 Ref, Esculentin GLFSILKGVGKIAIKGLGKNLGKM 2493
    2VEb (frog) GLDLVSCKISKEC
    AP00680 Ref, SMAP-34 GLFGRLRDSLQRGGQKILEKAERI 2494
    (sheep cathelicidin) WCKIKDIFR
    AP00681 Ref, OaBac5 RFRPPIRRPPIRPPFRPPFRPPVRPPIR 2495
    (sheep cathelicidin) PPFRPPFRPPIGPFP
    AP00682 Ref, OaBac6 RRLRPRHQHFPSERPWPKPLPLPLP 2496
    (sheep cathelicidin) RPGPRPWPKPLPLPLPRPGLRPWPK
    PL
    AP00683 Ref, OaBac7.5 RRLRPRRPRLPRPRPRPRPRPRSLPL 2497
    (sheep cathelicidin) PRPQPRRIPRPILLPWRPPRPIPRP Q I
    QPIPRWL
    AP00684 Ref, OaBac11 RRLRPRRPRLPRPRPRPRPRPRSLPL 2498
    (sheep cathelicidin) PRPKPRPIPRPLPLPRPRPKPIPRPLP
    LPRPRPRRIPRPLPLPRPRPRPIPRPL
    PLPQPQPSPIPRPL
    AP00685 Ref, Ranatuerin GIMDTVKGVAKTVAASLLDKLKC 2499
    2VEb (frog) KITGC
    AP00686 Ref, eCATH-1 KRFGRLAKSFLRMRILLPRRKILLA 2500
    (horse cathelicidin) S
    AP00687 Ref, eCATH-2 KRRHWFPLSFQEFLEQLRRFRDQL 2501
    (horse cathelicidin) PFP
    AP00688 Ref, eCATH-3 KRFHSVGSLIQRHQQMIRDKSEAT 2502
    (horse cathelicidin) RHGIRIITRPKLLLAS
    AP00689 Ref, P rop h eni n-1 AFPPPNVPGPRFPPPNFPGPRFPPPN 2503
    (pig cathelicidin) FPGPRFPPPNFPGPRFPPPNFPGPPFP
    PPIFPGPWFPPPPPFRPPPFGPPRFP
    AP00690 Ref, Prophenin-2 AFPPPNVPGPRFPPPNVPGPRFPPPN 2504
    (pig cathelicidin) FPGPRFPPPNFPGPRFPPPNFPGPPFP
    PPIFPGPWFPPPPPFRPPPFGPPRFP
    AP00691 Ref, HFIAP-1 GFFKKAWRKVKHAGRRVLDTAK 2505
    (hagfish GVGRHYVNNWLNRYR
    cathelicidin)
    AP00692 Ref, HFIAP-3 GWFKKAWRKVKNAGRRVLKGVG 2506
    (hagfish IHYGVGLI
    cathelicidin)
    AP00693 Ref, Trout cath RICSRDKNCVSRPGVGSIIGRPGGG 2507
    (fish cathelicidin) SLIGRPGGGSVIGRPGGGSPPGGGS
    FNDEFIRDHSDGNRFA
    AP00694 Ref, MRP AIGSILGALAKGLPTLISWIKNR 2508
    (melittin-related
    peptide)
    AP00695 Ref, Temporin- FLPILGKLLSGIL 2509
    1TGa (frog)
    AP00696 Ref, Dahlein 1.1 GLFDIIKNIVSTL 2510
    (frog)
    AP00697 Ref, Dahlein 1.2 GLFDIIKNIFSGL 2511
    (frog)
    AP00698 Ref, Dahlein 4.1 GLWQLIKDKIKDAATGFVTGIQS 2512
    (frog)
    AP00699 Ref, Dahlein 4.2 GLWQFIKDKLKDAATGLVTGIQS 2513
    (frog)
    AP00700 Ref, Dahlein 4.3 GLWQFIKDKFKDAATGLVTGIQS 2514
    (frog)
    AP00701 Ref, Dahlein 5.1 GLLGSIGNAIGAFIANKLKP 2515
    (frog)
    AP00702 Ref, Dahlein 5.2 GLLGSIGNAIGAFIANKLKPK 2516
    (frog)
    AP00703 Ref, Dahlein 5.3 GLLASLGKVLGGYLAEKLKP 2517
    (frog)
    AP00704 Ref, Dahlein 5.4 GLLGSIGKVLGGYLAEKLKPK 2518
    (frog)
    AP00705 Ref, Dahlein 5.5 GLLASLGKVLGGYLAEKLKPK 2519
    (frog)
    AP00706 Ref, Dahlein 5.6 GLLASLGKVFGGYLAEKLKPK 2520
    (frog)
    AP00709 Ref, Mytilus GFGCPNDYPCHRHCKSIPGRAGGY 2521
    defensin (mytilin) CGGAHRLRCTCYR
    A (mollusc)
    AP00711 Ref, Mussel GFGCPNNYACHQHCKSIRGYCGG 2522
    defensin MGD2 YCAGWFRLRCTCYRCG
    AP00712 Ref, scorpion GFGCPLNQGACHRHCRSIRRRGGY 2523
    defensin CAGFFKQTCCYRN
    AP00713 Ref, Androctonus GFGCPFNQGACHRHCRSIRRRGGY 2524
    defensin CAGLFKQTCTCYR
    AP00714 Ref, Orinthodoros GYGCPFNQYQCHSHCSGIRGYKGG 2525
    defensin A (soft YCKGTFKQTCKCY
    ticks)
    AP00715 Ref, VaD1 (plant RTCMKKEGWGKCLIDTTCAHSCK 2526
    defensin) NRGYIGGNCKGMTRTCYCLVNC
    AP00722 Ref, Cryptonin GLLNGLALRLGKRALKKIIKRLCR 2527
    (insect, cicada)
    AP00723 Ref, Decoralin SLLSLLRKLIT 2528
    (insect)
    AP00724 Ref, RTD-2 (rhesus RCLCRRGVCRCLCRRGVC 2529
    theta-defensin-2,
    minidefensin,
    XXC, BBS, lectin,
    ZZHa)
    AP00725 Ref, RTD-3 (rhesus RCICTRGFCRCICTRGFC 2530
    theta-defensin-3,
    minidefensin,
    XXC, BBS, lectin,
    ZZHa)
    AP00726 Ref, Combi-1 RRWWRF 2531
    (synthetic)
    AP00748 Ref, Gm pro-rich DIQIPGIKKPTHRDIIIPNWNPNVRT 2532
    peptl (insect) QPWQRFGGNKS
    AP00749 Ref, Gm anionic EADEPLWLYKGDNIERAPTTADHP 2533
    pept 1 (insect) ILPSIIDDVKLDPNRRYA
    AP00750 Ref, Gm pro-rich EIRLPEPFRFPSPTVPKPIDIDPILPHP 2534
    pept 2 (insect) WSPRQTYPIIARRS
    AP00752 Ref, Gm defensin- DKLIGSCVWGATNYTSDCNAECK 2535
    like peptide (insect) RRGYKGGHCGSFWNVNCWCEE
    AP00753 Ref, Gm VQETQKLAKTVGANLEETNKKL A 2536
    apolipophoricin PQIKSAYDDFVKQAQEVQKKLHE
    (insect) AASKQ
    AP00754 Ref, Gm anionic ETESTPDYLKNIQQQLEEYTKNFNT 2537
    pept2 (insect) QVQNAFDSDKIKSEVNNFIESLGKI
    LNTEKKEAPK
    AP00755 Ref, Gm cecropin ENFFKEIERAGQRIRDAIISAAPAVE 2538
    D-like pept,insect TLAQAQKIIKGGD
    AP00756 Ref, Dermaseptin- ALWKDILKNAGKAALNEINQLVN 2539
    B6 (DRS-B6, DRS Q
    B6, XXA, frog)
    AP00759 Ref, Phylloseptin- FLSLIPHAINAVSTLVHHSG 2540
    O1 (PLS-O1,
    Phylloseptin-4, PS-
    4, XXA, frog)
    AP00760 Ref, Phylloseptin- FLSLIPHAINAVSAIAKHS 2541
    O2 (PLS-O2,
    Phylloseptin-5, PS-
    5, XXA, frog)
    AP00761 Ref, Phylloseptin-6 SLIPHAINAVSAIAKHF 2542
    (Phylloseptin-H4,
    PLS-H4, PS-6,
    XXA, frog)
    AP00762 Ref, Phylloseptin-7 FLSLIPHAINAVSAIAKHF 2543
    (Phylloseptin-H5,
    PLS-H5, PS-7,
    XXA, frog)
    AP00763 Ref, Dermaseptin GLWSTIKNVGKEAAIAAGKAALG 2544
    DPh-1 (XXA, frog) AL
    AP00764 Ref, Dermaseptin- GLRSKIWLWVLLMIWQESNKFKK 2545
    S9 (DRS-S9, DRS M
    S9, frog)
    AP00765 Ref, Human salvic MHDFWVLWVLLEYIYNSACSVLS 2546
    ATSSVSSRVLNRSLQVKVVKITN
    AP00766 Ref, Gassericin A IYWIADQFGIHLATGTARKLLDAM 2547
    (XXC, XXD2, ASGASLGTAFAAILGVTLPAWALA
    class IV AAGALGATAA
    bacteriocin, Gram-
    positive bacteria)
    AP00767 Ref, Circularin AVAGALGVQTAAATTIVNVILNAGT 2548
    (XXC, class IV LVTVLGIIASIASGGAGTLMTIGWA
    bacteriocin, Gram- TFKATVQKLAKQSMARAIAY
    positive bacteria)
    AP00768 Ref, Closticin 574 PNWTKIGKCAGSIAWAIGSGLFGG 2549
    (bacteria) AKLIKIKKYIAELGGLQKAAKLLV
    GATTWEEKLHAGGYALINLAAELT
    GVAGIQANCF
    AP00769 Ref, Caerin 1.11 GLLGAMFKVASKVLPHVVPAITEH 2550
    (XXA, frog) F
    AP00770 Ref, Maculatin 1.4 GLLGLLGSVVSHVLPAITQHL 2551
    (XXA, frog)
    AP00771 Ref, Magainin 1 GIGKFLHSAGKFGKAFVGEIMKS 2552
    (frog)
    AP00772 Ref, Oxyopinin 1 FRGLAKLLKIGLKSFARVLKKVLP 2553
    (spider) KAAKAGKALAKSMADENAIRQQN
    Q
    AP00773 Ref, Oxyopinin 2a GKFSVFGKILRSIAKVFKGVGKVR 2554
    (spider) KQFKTASDLDKNQ
    AP00774 Ref, Oxyopinin 2b GKFSGFAKILKSIAKFFKGVGKVR 2555
    (spider) KGFKEASDLDKNQ
    AP00775 Ref, Oxyopinin 2c GKLSGISKVLRAIAKFFKGVGKAR 2556
    (spider) KQFKEASDLDKNQ
    AP00776 Ref, Oxyopinin 2d GKFSVFSKILRSIAKVFKGVGKVRK 2557
    (spider) GFKTASDLDKNQ
    AP00777 Ref, NRC-1 (XXA, GKGRWLERIGKAGGIIIGGALDHL 2558
    fish, gene
    predicted)
    AP00778 Ref, NRC-2 (XXA, WLRRIGKGVKIIGGAALDHL 2559
    fish, gene
    predicted)
    AP00779 Ref, NRC-3 (XXA, GRRKRKWLRRIGKGVKIIGGAALD 2560
    fish, gene HL
    predicted)
    AP00781 Ref, NRC-5 (XXA, FLGALIKGAIHGGRFIHGMIQNHH 2561
    fish, gene
    predicted)
    AP00782 Ref, NRC-6 (XXA, GWGSIFKHGRHAAKHIGHAAVNH 2562
    fish, gene YL
    predicted)
    AP00783 Ref, NRC-7 (XXA, RWGKWFKKATHVGKHVGKAALT 2563
    fish, gene AYL
    predicted)
    AP00784 Ref, NRC-10 FFRLLFHGVHHVGKIKPRA 2564
    (XXA, fish, gene
    predicted)
    AP00785 Ref, NRC-11 GWKSVFRKAKKVGKTVGGLALD 2565
    (XXA, fish, gene HYL
    predicted)
    AP00786 Ref, NRC-12 GWKKWFNRAKKVGKTVGGLAVD 2566
    (XXA, fish, gene HYL
    predicted)
    AP00787 Ref, NRC-13 GWRLLLKKAEVKTVGKLALKHYL 2567
    (XXA, fish, gene
    predicted)
    AP00788 Ref, NRC-14 AGWGSIFKHIFKAGKFIHGAIQAHN 2568
    (XXA, fish, gene D
    predicted)
    AP00789 Ref, NRC-15 GFWGKLFKLGLHGIGLLHLHL 2569
    (XXA, fish, gene
    predicted)
    AP00790 Ref, NRC-16 GWKKWLRKGAKHLGQAAIK 2570
    (XXA, fish, gene
    predicted)
    AP00791 Ref, NRC-17 GWKKWLRKGAKHLGQAAIKGLA 2571
    (XXA, fish, gene S
    predicted)
    AP00792 Ref, NRC-19 FLGLLFHGVHHVGKWIHGLIHGHH 2572
    (XXA, fish, gene
    predicted)
    AP00793 Ref, Bombinin H2 IIGPVLGLVGSALGGLLKKI 2573
    (XXA, frog)
    AP00794 Ref, Bombinin H3 IIGPVLGMVGSALGGLLKKI 2574
    (frog, XXD, XXA)
    AP00795 Ref, Bombinin H7 ILGPILGLVSNALGGLL 2575
    (frog, XXD, XXA)
    AP00796 Ref, Bombinin GH- IIGPVLGLVGKPLESLLE 2576
    1L (XXA, toad)
    AP00797 Ref, Bombinin GH- IIGPVLGLVGKPLESLLE 2577
    1D (toad,XXD,
    XXA)
    AP00807 Ref, Enterocin E- NRWYCNSAAGGVGGAAGCVLAG 2578
    760 (bacteriocin, YVGEAKENIAGEVRKGWGMAGGF
    bacteria) THNKACKSFPGSGWASG
    AP00808 Ref, hepcidin (fish) CRFCCRCCPRMRGCGLCCRF 2579
    AP00809 Ref, hepcidin TH1- GIKCRFCCGCCTPGICGVCCRF 2580
    5 (fish)
    AP00810 Ref, hepcidin TH2- QSHLSLCRWCCNCCRSNKGC 2581
    3 (fish)
    AP00811 Ref, human LEAP- MTPFWRGVSLRPIGASCRDDSECIT 2582
    2 RLCRKRRCSLSVAQE
    AP00812 Ref, Enkelytin FAEPLPSEEEGESYSKEPPEMEKRY 2583
    (cow) GGFM
    AP00732 Ref, Spheniscin-1 SFGLCRLRRGSCAHGRCRFPSIPIG 2584
    (Sphe-1, avian RCSRFVQCCRRVW
    defensin)
    AP00733 Ref, Organgutan LLGDFFRKAREKIGEEFKRIVQRIK 2585
    ppyLL-37 (Great DFLRNLVPRTES
    Ape, primate
    cathelicidin)
    AP00734 Ref, Gibbon SLGNFFRKARKKIGEEFKRIVQRIK 2586
    hmdSL-37 DFLQHLIPRTEA
    (hylobatidae,
    primate
    cathelicidin)
    AP00735 Ref, pobRL-37 RLGNFFRKAKKKIGRGLKKIGQKI 2587
    (cercopithecidae, KDFLGNLVPRTES
    primate
    cathelicidin)
    AP00736 Ref, cjaRL-37 RLGDILQKAREKIEGGLKKLVQKI 2588
    (primate KDFFGKFAPRTES
    cathelicidin)
    AP00737 Ref, Plasticin GLVTSLIKGAGKLLGGLFGSVTG 2589
    PBN2KF (XXA,
    DRP-PBN2, frog)
    AP00738 Ref, Plasticin GLVTGLLKTAGKLLGDLFGSLTG 2590
    ANCKF (XXA,
    synthetic)
    AP00739 Ref, Plasticin GVVTDLLKTAGKLLGNLFGSLSG 2591
    PD36KF (XXA,
    synthetic)
    AP00740 Ref, Plasticin GVVTDLLKTAGKLLGNLVGSLSG 2592
    PD36K (XXA,
    synthetic)
    AP00741 Ref, Chicken PITYLDAILAAVRLLNQRISGPCILR 2593
    cathelicidin-B1 LREAQPRPGWVGTLQRRREVSFLV
    (bird cathelicidin) EDGPCPPGVDCRSCEPGALQHCVG
    TVSIEQQPTAELRCRPLRPQ
    AP00742 Ref, Chicken MRILYLLLSVLFVVLQGVAGQPYF 2594
    gallinacin 4 (Gal 4) SSPIHACRYQRGVCIPGPCRWPYY
    RVGSCGSGLKSCCVRNRWA
    AP00743 Ref, Chicken MKILCFFIVLFVAVHGAVGFSRSPR 2595
    gallinacin 7 (Gal 7) YHMQCGYRGTFCTPGKCPYGNAY
    LGLCRPKYSCCRWL
    AP00744 Ref, Chicken MQILPLLFAVLLLMLRAEPGLSLA 2596
    gallinacin 9 (Gal 9) RGLPQDCERRGGFCSHKSCPPGIGR
    IGLCSKEDFCCRSRWYS
    AP00745 Ref, Chicken MTPFWRGVSLRPVGASCRDNSECI 2597
    LEAP-2 (cLEAP- TMLCRKNRCFLRTASE
    2)
    AP00814 Ref, Caerulein GLGSILGKILNVAGKVGKTIGKVA 2598
    precursor-related DAVGNKE
    fragment Ea
    (CPRF-Ea, frog)
    AP00815 Ref, Caerulein GLGSFLKNAIKIAGKVGSTIGKVAD 2599
    precursor-related AIGNKE
    fragment Eb
    (CPRF-Eb, frog)
    AP00816 Ref, Caerulein GLGSFFKNAIKIAGKVGSTIGKVAD 2600
    precursor-related AIGNKE
    fragment Ec
    (CPRF-Ec, frog)
    AP00817 Ref, Temporin-10a FLPLLASLFSRLL 2601
    (frog)
    AP00818 Ref, Temporin-10b FLPLIGKILGTIL 2602
    (frog)
    AP00819 Ref, Temporin-10c FLPLLASLFSRLF 2603
    (frog)
    AP00820 Ref, Temporin-10d FLPLLASLFSGLF 2604
    (frog)
    AP00821 Ref, Brevinin-20a GLFNVFKGLKTAGKHVAGSLLNQ 2605
    (frog) LKCKVSGGC
    AP00822 Ref, Brevinin-20b GIFNVFKGALKTAGKHVAGSLLNQ 2606
    (frog) LKCKVSGEC
    AP00824 Ref, Temporin-1Gb SILPTIVSFLSKFL 2607
    (XXA, frog)
    AP00825 Ref, Temporin-1Gc SILPTIVSFLTKFL 2608
    (XXA, frog)
    AP00826 Ref, Temporin-1Gd FILPLIASFLSKFL 2609
    (XXA, frog)
    AP00827 Ref, Ranatuerin- SMISVLKNLGKVGLGFVACKVNK 2610
    1Ga (frog) QC
    AP00829 Ref, Ranalexin-1G FLGGLMKIIPAAFCAVTKKC 2611
    (frog)
    AP00830 Ref, Ranatuerin-2G GLLLDTLKGAAKDIAGIALEKLKC 2612
    (frog) KITGCKP
    AP00831 Ref, Odorranain- GLLSGILGAGKHIVCGLTGCAKA 2613
    NR (frog)
    AP00832 Ref, Maximin H1 ILGPVISTIGGVLGGLLKNL 2614
    (XXA, toad)
    AP00834 Ref, G.mellonella KVNANAIKKGGKAIGKGFKVISAA 2615
    moricin-like STAHDVYEHIKNRRH
    peptide A (Gm-
    mlpA, insect)
    AP00835 Ref, G.mellonella GKIPVKAIKKGGQIIGKALRGINIAS 2616
    moricin-like TAHDIISQFKPKKKKNH
    peptide B (Gm-
    m1pB, insect)
    AP00836 Ref, G.mellonella KVPIGAIKKGGKIIKKGLGVIGAAG 2617
    moricin-like TAHEVYSHVKNRH
    peptide Cl (Gm-
    m1pC1, insect)
    AP00837 Ref, G.mellonella KVPIGAIKKGGKIIKKGLGVLGAA 2618
    moricin-like GTAHEVYNHVRNRQ
    peptide C2 (Gm-
    m1pC2, insect)
    AP00838 Ref, G.mellonella KVPIGAIKKGGKIIKKGLGVIGAAG 2619
    moricin-like TAHEVYSHVKNRQ
    peptide C3 (Gm-
    m1pC3, insect)
    AP00839 Ref, G.mellonella KVPVGAIKKGGKAIKTGLGVVGA 2620
    moricin-like AGTAHEVYSHIRNRH
    peptide C4/C5
    (Gm-m1pC4/C5,
    insect)
    AP00840 Ref, G.mellonella KGIGSALKKGGKIIKGGLGALGAIG 2621
    moricin-like TGQQVYEHVQNRQ
    peptide D (Gm-
    m1pD, insect)
    AP00841 Ref, Enterocin A TTHSGKYYGNGVYCTKNKCTVD 2622
    (EntA, class IIA WAKATTCIAGMSIGGFLGGAIPGK
    bacteriocin, i.e. C
    pediocin-like
    peptide, bacteria)
    AP00842 Ref, Divercin V41 TKYYGNGVYCNSKKCWVDWGQA 2623
    (DvnV41, class IIa SGCIGQTVVGGWLGGAIPGKC
    bacteriocin,
    pediocin-like
    peptide, bacteria.
    DvnRV41 is the
    recombinant form)
    AP00843 Ref, Divergicin TKYYGNGVYCNSKKCWVDWGTA 2624
    M35 (class IIa QGCIDVVIGQLGGGIPGKGKC
    bacteriocin,
    pediocin-like
    peptide, bacteria)
    AP00844 Ref, Coagulin KYYGNGVTCGKHSCSVDWGKATT 2625
    (bacteriocin, CIINNGAMAWATGGHQGTHKC
    pediocin-like
    peptide, bacteria)
    AP00845 Ref, Listeriocin KSYGNGVHCNKKKCWVDWGSAIS 2626
    743A (class IIa TIGNNSAANWATGGAAGWKS
    bacteriocin,
    pediocin-like
    peptide, bacteria)
    AP00846 Ref, Mundticin KSKYYGNGVSCNKKGCSVDWGKAIG 2627
    (enterocin CRL35, IIGNNSAANLATGGAAGWKS
    mundticin ATO6,
    mundticin QU2,
    class IIa
    bacteriocin,
    pediocin-like
    peptide, bacteria)
    AP00847 Ref, Sakacin 5X KYYGNGLSCNKSGCSVDWSKAISII 2628
    (Sak5X, class IIa GNNAVANLTTGGAAGWKS
    bacteriocin,
    pediocin-like
    peptide, bacteria)
    AP00848 Ref, Leucocin CKNYGNGVHCTKKGCSVDWGYAW 2629
    (class IIa ANIANNSVMNGLTGGNAGWHN
    bacteriocin,
    pediocin-like
    peptide, bacteria)
    AP00849 Ref, Lactococcin TSYGNGVHCNKSKCWIDVSELETY 2630
    MMFII (class IIa KAGTVSNPKDILW
    bacteriocin,
    pediocin-like
    peptide, bacteria)
    AP00850 Ref, Sakacin G KYYGNGVSCNSHGCSVNWGQAW 2631
    (SakG, class IIa TCGVNHLANGGHGVC
    bacteriocin,
    pediocin-like
    peptide, bacteria)
    AP00851 Ref, Plantaricin KYYGNGVTCGKHSCSVNWGQAFS 2632
    423 (class IIa CSVSHLANFGHGKC
    bacteriocin,
    pediocin-like
    peptide, bacteria)
    AP00852 Ref, Plantaricin KYYGNGLSCSKKGCTVNWGQAFS 2633
    C19 (class IIa CGVNRVATAGHHKC
    bacteriocin,
    pediocin-like
    peptide, bacteria)
    AP00853 Ref, Enterocin P ATRSYGNGVYCNNSKCWVNWGE 2634
    (EntP, class IIa AKENIAGIVISGWASGLAGMGH
    bacteriocin,
    pediocin-like
    peptide, bacteria)
    AP00854 Ref, Bacteriocin 31 ATYYGNGLYCNKQKCWVDWNKA 2635
    (Bac31, Bac31, SREIGKIIVNGWVQHGPWAPR
    class IIa
    bacteriocin,
    pediocin-like
    peptide, bacteria)
    AP00855 Ref, MSI-78 GIGKFLKKAKKFGKAFVKILKK 2636
    (XXA, synthetic)
    AP00856 Ref, MSI-594 GIGKFLKKAKKGIGAVLKVLTTGL 2637
    (XXA, synthetic)
    AP00857 Ref, Catestatin SSMKLSFRARAYGFRGPGPQL 2638
    (human
    CHGA(352-372),
    human Cst)
    AP00858 Ref, Temporin D LLPIVGNLLNSLL 2639
    (XXA, frog)
    AP00859 Ref, Temporin H LSPNLLKSLL 2640
    (XXA, frog)
    AP00861 Ref, Brevinin-ALb FLPLAVSLAANFLPKLFCKITKKC 2641
    (frog)
    AP00862 Ref, Brevinin 1E FLPLLAGLAANFLPKIFCKITKRC 2642
    (frog)
    AP00863 Ref, Temporin- FLPIVGKLLSGLSGLL 2643
    ALa (XXA, frog)
    AP00864 Ref, Temporin FLPIVGRLISGLL 2644
    1ARa (XXA, frog)
    AP00865 Ref, Temporin FLPIIGQLLSGLL 2645
    1AUa (XXA,
    Temporin-lAtJa)
    (frog)
    AP00866 Ref, Temporin FLPIIAKVLSGLL 2646
    1Bya (XXA,
    Temporin-lBya,
    frog)
    AP00867 Ref, Temporin 1Ec FLPVIAGLLSKLF 2647
    (XXA, frog)
    AP00869 Ref, Temporin 1Ja ILPLVGNLLNDLL 2648
    (XXA, Temporin-
    1Ja, frog)
    AP00873 Ref, Temporin 1Pra ILPILGNLLNGLL 2649
    (XXA, frog)
    AP00874 Ref, Temporin 1VE FLPLVGKILSGLI 2650
    (XXA, frog)
    AP00875 Ref, Temporin 1Va FLSSIGKILGNLL 2651
    (XXA, frog)
    AP00876 Ref, Temporin 1Vb FLSIIAKVLGSLF 2652
    (XXA, frog)
    AP00877 Ref, Brevinin-lJa FLGSLIGAAIPAIKQLLGLKK 2653
    (frog)
    AP00878 Ref, Brevinin- FLPILASLAAKFGPKLFCLVTKKC 2654
    1BYa (frog)
    AP00884 Ref, Ixosin-B (tick) QLKVDLWGTRSGIQPEQHSSGKSD 2655
    VRRWRSRY
    AP00885 Ref, Brevinin- FLPILASLAAKLGPKLFCLVTKKC 2656
    1BYb (frog)
    AP00886 Ref, Brevinin- FLPILASLAATLGPKLLCLITKKC 2657
    1BYc (frog)
    AP00887 Ref, Brevinin- GILSTFKGLAKGVAKDLAGNLLDK 2658
    2BYa (frog) FKCKITGC
    AP00888 Ref, Brevinin- GIMDSVKGLAKNLAGKLLDSLKC 2659
    2BYb (frog) KITGC
    AP00891 Ref, Pilosulin 3 IIGLVSKGTCVLVKTVCKKVLKQG 2660
    (Myr b III)(ants)
    AP00892 Ref, Pilosulin 4 PDITKLNIKKLTKATCKVISKGASM 2661
    (Myr b IV)(ants) CKVLFDKKKQE
    AP00893 Ref, Pilosulin 5 DVKGMKKAIKGILDCVIEKGYDKL 2662
    (Myr b III)(ants) AAKLKKVIQQLWE
    AP00894 Ref, Ocellatin 4 GLLDFVTGVGKDIFAQLIKQI 2663
    (XXA, frog)
    AP00895 Ref, OH-CATH KRFKKFFKKLKNSVKKRAKKFFK 2664
    (snake cathelicidin, KPRVIGVSIPF
    reptile cathelicidin,
    or elapid
    cathelicidins)
    AP00896 Ref, BF-CATH KRFKKFFKKLKKSVKKRAKKFFK 2665
    (snake cathelicidin) KPRVIGVSIPF
    AP00897 Ref, NA-CATH KRFKKFFKKLKNSVKKRAKKFFK 2666
    (snake cathelicidin) KPKVIGVTFPF
    AP00898 Ref, Temporin-1Sa FLSGIVGMLGKLF 2667
    (XXA, frog)
    AP00899 Ref, Temporin-1Sb FLPIVTNLLSGLL 2668
    (XXA, frog)
    AP00900 Ref, Temporin-1Sc FLSHIAGFLSNLF 2669
    (XXA, frog)
    AP00913 Ref, Ib-AMP1 EWGRRCCGWGPGRRYCVRWC 2670
    (IbAMP1, plant
    defensin)
    AP00914 Ref, Ib-AMP2 QYGRRCCNWGPGRRYCKRWC 2671
    (IBAMP2, plant
    defensin)
    AP00915 Ref, Ee-CBP QQCGRQAGNRRCANNLCCSQYGY 2672
    (EeCBP, plant CGRTNEYCCTSQGCQSQCRRCG
    defensin, hevein-
    type, E.europaeus
    chitin-binding
    protein)
    AP00916 Ref, Pa-AMP1 AGCIKNGGRCNASAGPPYCCSSYC 2673
    (PaAMP1, plant FQIAGQSYGVCKNR
    defensin, C6 type)
    AP00917 Ref, Pa-AMP2 ACIKNGGRCVASGGPPYCCSNYCL 2674
    (PaAMP2, plant QIAGQSYGVCKKH
    defensin, C6 type)
    AP00924 Ref, Ornithodoros GYGCPFNQYQCHSHCRGIRGYKG 2675
    defensin B (soft GYCTGRFKQTCKCY
    ticks)
    AP00925 Ref, Ornithodoros GYGCPFNQYQCHSHCSGIRGYKGG 2676
    defensin C (soft YCKGLFKQTCNCY
    ticks)
    AP00926 Ref, Ornithodoros GFGCPFNQYECHAHCSGVPGYKG 2677
    defensin D (soft GYCKGLFKQTCNCY
    ticks)
    AP00927 Ref, IYFIADKMGIQLAPAWYQDIVNWV 2678
    Butyrivibriocin SAGGTLTTGFAIIVGVTVPAWIAEA
    AR10 (XXC, class AAAFGIASA
    IV bacteriocin,
    gram-positive
    bacteria)
    AP00929 Ref, AS-48 ASLQFLPIAHMAKEFGIPAAVAGT 2679
    (enterocin 4, XXC, VINVVEAGGWVTTIVSILTAVGSG
    class IV bacteriocin GLSLLAAAGRESIKAYLKKEIKKK
    or class lid GKRAVIAW
    bacteriocin, Gram-
    positive bacteria)
    AP00930 Ref, Reutericin 6 IYWIADQFGIHLATGTARKLLDAM 2680
    (XXC, XXD1, ASGASLGTAFAAILGVTLPAWALA
    class IV AAGALGATAA
    bacteriocin, Gram-
    positive bacteria)
    AP00931 Ref, Uberolysin LAGYTGIASGTAKKVVDAIDKGAA 2681
    (XXC, class IV AFVIISIISTVISAGALGAVSASADFI
    bacteriocin, Gram- ILTVKNYISRNLKAQAVIW
    positive bacteria)
    AP00932 Ref, Acidocin B IYWIADQFGIHLATGTARKLLDAV 2682
    (XXC, class IV ASGASLGTAFAAILGVTLPAWALA
    bacteriocin, Gram- AAGALGATAA
    positive bacteria)
    AP00980 Ref, Phormia ATCDLLSGTGINHSACAAHCLLRG 2683
    defensin B (insect NRGGYCNRKGVCVCRN
    defensin B)
    AP00990 Ref, Pth-St1 (plant RNCESLSHRFKGPCTRDSN 2684
    defensin)
    AP00991 Ref, Snakin-1 GSNFCDSKCKLRCSKAGLADRCLK 2685
    (StSN1, plant YCGICCEECKCVPSGTYGNKHECP
    defensin) CYRDKKNSKGKSKCP
    AP00992 Ref, Snakin-2 YSYKKIDCGGACAARCRLSSRPRL 2686
    (StSN2, plant CNRACGTCCARCNCVPPGTSGNTE
    defensin) TCPCYASLTTHGNKRKCP
    AP00993 Ref, So-D2 (S. GIFSSRKCKTPSKTFKGICTRDSNC 2687
    oleracea defensin DTSCRYEGYPAGDCKGIRRRCMCS
    D2, plant defensin) KPC
    AP00994 Ref, So-D6 (S. GIFSNMYARTPAGYFRGP 2688
    oleracea defensin
    D6, plant defensin)
    AP00997 Ref, Nisin Q ITSISLCTPGCKTGVLMGCNLKTAT 2689
    (lantibiotic, CNCSVHVSK
    bacteriocins,
    bacteria)
    AP01008 Ref, Tachystatin YSRCQLQGFNCVVRSYGLPTIPCC 2690
    A1 (BBS, RGLTCRSYFPGSTYGRCQRF
    horseshoe crabs)
    AP01009 Ref, Tachystatin C DYDWSLRGPPKCATYGQKCRTWS 2691
    (BBS, horseshoe PRNCCWNLRCKAFRCRPR
    crabs)
    AP01012 Ref, Latarcin 3a SWKSMAKKLKEYMEKLKQRA 2692
    (Ltc3a, XXA,
    BBM, spider)
    AP01013 Ref, Latarcin 3b SWASMAKKLKEYMEKLKQRA 2693
    (Ltc3b, XXA,
    BBM, spider)
    AP01014 Ref, Latarcin 4a GLKDKFKSMGEKLKQYIQTWKAK 2694
    (Ltc4a, XXA, F
    BBM, spider)
    AP01015 Ref, Latarcin 4b SLKDKVKSMGEKLKQYIQTWKAK 2695
    (Ltc4b, XXA, F
    BBM, spider)
    AP01016 Ref, Latarcin 5 GFFGKMKEYFKKFGASFKRRFANL 2696
    (Ltc5, XXA, BBM, KKRL
    spider)
    AP01018 Ref, Latarcin 6a QAFQTFKPDWNKIRYDAMKMQTS 2697
    (Ltc6a, BBM, LGQMKKRFNL
    spider)
    AP01019 Ref, Latarcin 7 GETFDKLKEKLKTFYQKLVEKAED 2698
    (Ltc7, BBM, LKGDLKAKLS
    spider)
    AP01049 Ref, Kalata B2 VCGETCFGGTCNTPGCSCTWPICT 2699
    (plant cyclotides, RDGLP
    XXC)
    AP01141 Ref, Cryptdin-6 LRDLVCYCRARGCKGRERMNGTC 2700
    (Crp6, animal RKGHLLYMLCCR
    defensin, alpha,
    mouse)
    AP01142 Ref, Rabbit kidney KPYCSCKWRCGIGEEEKGICHKFPI 2701
    defensin RK-2 VTYVCCRRP
    (animal defensin,
    alpha-defensin)
    AP01146 Ref, Gallinacin 6 DTLACRQSHGSCSFVACRAPSVDI 2702
    (Gal6, Gal-6, avian GTCRGGKLKCCKWAPSS
    beta defensin, bird)
    AP01147 Ref, Gallinacin 8 DTVACRIQGNFCRAGACPPTFTISG 2703
    (Gal8, Gal-8, avian QCHGGLLNCCAKIPAQ
    beta defensin, bird)
    AP01148 Ref, Gallinacin 3 IATQCRIRGGFCRVGSCRFPHIAIGK 2704
    (Gal3, Gal-3, avian CATFISCCGRAY
    beta defensin, bird)
    AP01152 Ref, Lactococcin Q SIWGDIGQGVGKAAYWVGKAMG 2705
    (class IIb NMSDVNQASRINRKKKH
    bacteriocin,
    bacteria, chain a.
    For chain b, see
    Info)
    AP01155 Ref, Enterocin ESVFSKIGNAVGPAAYWILKGLGN 2706
    1071 (Ent1071A, MSDVNQADRINRKKH
    class IIb
    bacteriocin,
    bacteria; chain B is
    Enterocin 1071B or
    Ent1071B, see
    info)
    AP01156 Ref, Plantaricin S NKLAYNMGHYAGKATIFGLAAW 2707
    (chain a, class IIb ALLA
    bacteriocin,
    bacteria)
    AP01159 Ref, Hinnavin II KWKIFKKIEHMGQNIRDGLIKAGP 2708
    (Hin II, XXA, AVQVVGQAATIYK
    insect)
    AP01160 Ref, NK-2 KILRGLCKKIMRSFLRRISWDILTG 2709
    (synthetic, XXA) KK
    AP01167 Ref, Plantaricin LTTKLWSSWGYYLGKKARWNLK 2710
    NC8 (PLNC8, HPYVQF
    chain a, class IIb
    bacteriocin,
    bacteria. For chain
    b, see Info)
    AP01168 Ref, Carnocyclin A LVAYGIAQGTAEKVVSLINAGLTV 2711
    (a circular GSIISILGGVTVGLSGVFTAVKAAI
    bacteriocin, XXC, AKQGIKKAIQL
    bacteria)
    AP01169 Ref, Lactacin F NRWGDTVLSAASGAGTGIKACKSF 2712
    (LafX, class IIb GPWGMAICGVGGAAIGGYFGYTH
    bacteriocin, N
    bacteria. For LafA,
    see Info)
    AP01170 Ref, Brochocin C YSSKDCLKDIGKGIGAGTVAGAAG 2713
    (BrcC, chain BrcA, GGLAAGLGAIPGAFVGAHFGVIGG
    class IIb SAACIGGLLGN
    bacteriocin,
    bacteria. For BrcB,
    see Info)
    AP01171 Ref, Thermophilin YSGKDCLKDMGGYALAGAGSGAL 2714
    13 (chain a ThmA, WGAPAGGVGALPGAFVGAHVGAI
    2-chain class IIb AGGFACMGGMIGNKFN
    bacteriocin,
    bacteria. For chain
    B ThmB, see Info)
    AP01172 Ref, ABP-118 KRGPNCVGNFLGGLFAGAAAGVP 2715
    (chain a: LGPAGIVGGANLGMVGGALTCL
    Abp118alpha, class
    IIb bacteriocin,
    bacteria. For chain
    b: Abp118beta, see
    Info)
    AP01173 Ref, Salivaricin P KRGPNCVGNFLGGLFAGAAAGVP 2716
    (chain a: Sln1; LGPAGIVGGANLGMVGGALTCL
    class IIb
    bacteriocin,
    bacteria. For chain
    b: Sln2, see Info)
    AP01174 Ref, Mutacin IV KVSGGEAVAAIGICATASAAIGGL 2717
    (chain a: NlmA, AGATLVTPYCVGTWGLIRSH
    class IIb
    bacteriocin,
    bacteria. For chain
    b:NLmB, see Info)
    AP01175 Ref, Lactocin 705 GMSGYIQGIPDFLKGYLHGISAAN 2718
    (chain a: KHKKGRLGY
    Lac705alpha; class
    IIb bacteriocin,
    bacteria. For chain
    b: Lac705beta, see
    Info)
    AP01176 Ref, Cytolysin TTPACFTIGLGVGALFSAKFC 2719
    (CylLS, bacteria;
    Chain B: CylLL)
    AP01177 Ref, Plantaricin EFFNRGGYNFGKSVRHVVDAIGSVA 2720
    (chain a: PlnE, GILKSIR
    class IIb
    bacteriocin,
    bacteria. Chain b:
    PlnF)
    AP01178 Ref, Plantaricin JKGAWKNFWSSLRKGFYDGEAGRAI 2721
    (chain a: PlnJ; class RR
    IIb bacteriocin,
    bacteria. Chain b:
    PlnK)
    AP01179 Ref, Enterocin SE- NGVYCNKQKCWVDWSRARSEIID 2722
    K4 (class IIa RGVKAYVNGFTKVLGGIGGR
    bacteriocin,
    bacteria)
    AP01180 Ref, Acidocin NPKVAHCASQIGRSTAWGAVSGA 2723
    J1132 (class IIb
    bacteriocin,
    bacteria)
    AP01181 Ref, Curvaticin AYPGNGVHCGKYSCTVDKQTAIG 2724
    L442 (class IIa NIGNNAA
    bacteriocin,
    bacteria)
    AP01182 Ref, Bacteriocin 32 FTPSVSFSQNGGVVEAAAQRGYIY 2725
    (Bac 32, class IIa KKYPKGAKVPNKVKMLVNIRGKQ
    bacteriocin, TMRTCYLMSWTASSRTAKYYYYI
    bacteria)
    AP01183 Ref, Bacteriocin 43 ATYYGNGLYCNKEKCWVDWNQA 2726
    (Bac 43, KGEIGKIIVNGWVNHGPWAPRR
    bacteriocin,
    bacteria)
    AP01184 Ref, Bacteriocin T8 ATYYGNGLYCNKEKCWVDWNQA 2727
    (Bac T8, class Ha KGEIGKIIVNGWVNHGPWAPRR
    bacteriocin,
    bacteria)
    AP01185 Ref, Enterocin B ENDHRMPNNLNRPNNLSKGGAKC 2728
    (EntB, bacteriocin, GAAIAGGLFGIPKGPLAWAAGLAN
    bacteria) VYSKCN
    AP01186 Ref, Acidocin A KTYYGTNGVHCTKKSLWGKVRLK 2729
    (bacteriocin, NVIPGTLCRKQSLPIKQDLKILLGW
    bacteria) ATGAFGKTFH
    AP01187 Ref, Enterocin Q MNFLKNGIAKWMTGAELQAYKK 2730
    (EntQ, class IIc KYGCLPWEKISC
    bacteriocin,
    leaderless, i.e. no
    signal peptide,
    bacteria)
    AP01188 Ref, Enterocin MLAKIKAMIKKFPNPYTLAAKLTT 2731
    EJ97 (EntEJ97, YEINWYKQQYGRYPWERPVA
    class IIc
    bacteriocin,
    leaderless, i.e. no
    signal peptide,
    bacteria)
    AP01189 Ref, Enterocin RJ- APAGLVAKFGRPIVKKYYKQIIVIQF 2732
    11 (EntRJ-11, class IGEGSAINKIIPWIARMWRT
    IIc bacteriocin,
    leaderless, i.e. no
    signal sequence,
    bacteria)
    AP01190 Ref, Enterocin L50 MGAIAKLVAKFGWPIVKKYYKQI 2733
    (old name: MQFIGEGWAINKIIEWIKKHI
    pediocin L50,
    EntL50A, a two-
    chain class He
    bacteriocin,
    leaderless, i.e. no
    signal peptide,
    bacteria. The
    sequence of
    EntL50B is
    provided in Info)
    AP01191 Ref, MR10 MGAIAKLVAKFGWPIVKKYYKQI 2734
    (MR10A, class IIc MQFIGEGWAINKIIDWIKKHI
    bacteriocin,
    leaderless, i.e. no
    signal peptide,
    bacteria. For the
    sequence of chain
    b, see Info)
    AP01192 Ref, Halocin S8 SDCNINSNTAADVILCFNQVGSCA 2735
    (Hal S8, LCSPTLVGGPVP
    microhalocin,
    archaeocins,
    archeae)
    AP01193 Ref, Halocin C8 DIDITGCSACKYAAGQVCTIGCSA 2736
    (HalC8, AGGFICGLLGITIPVAGLSCLGFVEI
    microhalocins, VCTVADEYSGCGDAVAKEACNRA
    archaeocins, GLC
    archaea)
    AP01194 Ref, Lacticin 3147 CSTNTFSLSDYWGNNGAWCTLTH 2737
    (chain Al, a two- ECMAWCK
    chain lantibiotic,
    bacteriocin,
    bacteria. The
    sequence of chain
    A2 is given in Info;
    XXD3)
    AP01195 Ref, Salivaricin A KRGSGWIATITDDCPNSVFVCC 2738
    (SalA, lantibiotic,
    bacteriocin,
    bacteria)
    AP01196 Ref, Microcin E492 ATYYGNGLYCNKEKCWVDWNQA 2739
    (MccE492, class KGEIGKIIVNGWVNHGPWAPRR
    IIb microcins,
    bacteriocin,
    bacteria; BBM; u-
    MccE492,
    siderophore
    peptide, BBI, XXG)
    AP01197 Ref, Hiracin JM79 ATYYGNGLYCNKEKCWVDWNQA 2740
    (HirJM79, a Sec- KGEIGKIIVNGWVNHGPWAPRR
    dependent class II
    bacteriocin,
    bacteria)
    AP01198 Ref, Thermophilin LSCDEGMLAVGGLGAVGGPWGA 2741
    9 (BlpDst, class IIb AVGVLVGAALYCF
    bacteriocin,
    bacteria. beta-
    chains: BlpUst,
    BlpEst, BapFst)
    AP01199 Ref, Penocin AKYYGNGVHCGKKTCYVDWGQAT 2742
    (PenA, class IIa ASIGKIIVNGWTQHGPWAHR
    bacteriocin,
    bacteria)
    AP01200 Ref, Salivaricin B GGGVIQTISHECRMNSWQFLFTCC 2743
    (SalB, lantibotic, S
    bacteriocin,
    bacteria)
    AP01201 Ref, Lacticin 481 KGGSGVIHTISHECNMNSWQFVFT 2744
    (lantibiotic, class I
    CCS
    bacteriocin,
    bacteria)
    AP01202 Ref, Bacteriocin KGGSGVIHTISHEVIYNSWNFVFTC 2745
    J46 (BacJ46, CS
    bacteriocin,
    bacteria)
    AP01203 Ref, Nukacin A KKKSGVIPTVSHDCHMNSFQFVFT 2746
    (NucA, Nukacin CCS
    ISK-1, NukISK-1,
    bacteriocin,
    bacteria)
    AP01204 Ref, Streptococcin GKNGVFKTISHECHLNTWAFLATC 2747
    A-FF22 CS
    (LANTIBIOTIC,
    class I bacteriocin,
    bacteria)
    AP01210 Ref, Jelleine-I PFKLSLHL 2748
    (honeybees, insect,
    XXA)
    AP01211 Ref, Jelleine-II TPFKLSLHL 2749
    (honeybees, insect,
    XXA)
    AP01212 Ref, Jelleine-III EPFKLSLHL 2750
    (honeybees, insect,
    XXA)
    AP01213 Ref, EFRGSIVIQGTKEGKSRPSLDIDYK 2751
    Hymenoptaecin QRVYDKNGMTGDAYGGLNIRPGQ
    (honeybees, insect PSRQHAGFEFGKEYKNGFIKGQSE
    defensin, XXcooh) VQRGPGGRLSPYFGINGGFRF
    AP01216 Ref, Ascaphin-1 GFRDVLKGAAKAFVKTVAGHIAN 2752
    (frog, XXA)
    AP01218 Ref, Ascaphin-3 GFRDVLKGAAKAFVKTVAGHIANI 2753
    (frog)
    AP01220 Ref, Ascaphin-5 GIKDWIKGAAKKLIKTVASNIANQ 2754
    (frog)
    AP01222 Ref, Ascaphin-7 GFKDWIKGAAKKLIKTVASSIANQ 2755
    (frog)
    AP01223 Ref, Ascaphin-8 GFKDLLKGAAKALVKTVLF 2756
    (frog, XXA)
    AP01226 Ref, Microcin C7 MRTGNAD 2757
    (MccC7, microcin
    C51, MccC51,
    class I microcins,
    bacteriocins,
    bacteria. Others:
    MccA; XXamp;
    BBPe)
    AP01227 Ref, Microcin B17 VGIGGGGGGGGGGSCGGQGGGCG 2758
    (MccB17, class I GCSNGCSGGNGGSGGSGSHI
    microcins,
    bacteriocins, Gram-
    negative bacteria;
    BBPe)
    AP01228 Ref, Microcin V ASGRDIAMAIGTLSGQFVAGGIGA 2759
    (MccV, (old name) AAGGVAGGAIYDYASTHKPNPAM
    Colicin V, ColV; SPSGLGGTIKQKPEGIPSEAWNYAA
    class II microcins, GRLCNWSPNNLSDVCL
    bacteriocins, Gram-
    negative bacteria)
    AP01229 Ref, Microcin L GDVNWVDVGKTVATNGAGVIGG 2760
    (MccL, class Ha AFGAGLCGPVCAGAFAVGSSAAV
    microcins, AALYDAAGNSNSAKQKPEGLPPEA
    bacteriocins, Gram- WNYAEGRMCNWSPNNLSDVCL
    negative bacteria)
    AP01230 Ref, Microcin M DGNDGQAELIAIGSLAGTFISPGFG 2761
    (MccM, class IIb SIAGAYIGDKVHSWATTATVSPSM
    microcins, SPSGIGLSSQFGSGRGTSSASSSAGS
    bacteriocins, Gram- GS
    negative bacteria)
    AP01231 Ref, Microcin H47 GGAPATSANAAGAAAIVGALAGIP 2762
    (MccH47, class IIb GGPLGVVVGAVSAGLTTGIGSTVG
    microcins, SGSASSSAGGGS
    bacteriocins, Gram-
    negative bacteria)
    AP 01232 Ref, Microcin 147 MNLNGLPASTNVIDLRGKDMGTYI 2763
    (MccI47, class IIb DANGACWAPDTPSIIMYPGGSGPS
    microcins, YSMSSSTSSANSGS
    bacteriocins, Gram-
    negative bacteria)
    Aibellin *AcUAUAUAQUFUGUUPVUUEE 2764
    [NHC(CH2Ph)HCH2NHCH2CH2]OH
    Alamethicin_F-30 *AcUPUAUAQUVUGLUPVUUEQF 2765
    OH
    Alamethicin_F-50 *AcUPUAUAQUVUGLUPVUUQQF 2766
    OH
    Alamethicin_II *AcUPUAUUQUVUGLUPVUUEQF 2767
    OH
    Ampullosporin *AcWAUULUQUUUQLUQLOH 2768
    Ampullosporin_B *AcWAUULUQAUUQLUQLOH 2769
    Ampullosporin_C *AcWAUULUQUAUQLUQLOH 2770
    Ampullosporin_D *AcWAUULUQUUAQLUQLOH 2771
    Ampullosporin_E1 *AcWAUULUQAUUQLAQLOH 2772
    Ampullosporin_E2 *AcWAUULUQUAAQLUQLOH 2773
    Ampullosporin_E3 *AcWAUULUQUUAQLAQLOH 2774
    Ampullosporin_E4 *AcWAUULUQAAUQLUQLOH 2775
    Antiamoebin_I *AcFUUUJGLUUOQJOUPFOH 2776
    Antiamoebin_II *AcFUUUJGLUUOQJPUPFOH 2777
    Antiamoebin_III *AcFUUUUGLUUOQJOUPFOH 2778
    Antiamoebin_IV *AcFUUUJGLUUOQJOUPFOH 2779
    Antiamoebin_V *AcFUUUJALUUOQJOUPFOH 2780
    Antiamoebin_VI *AcFUUUUGLUUOQUOUPFOH 2781
    Antiamoebin_VII *AcFAUJUGLUUOQJOUPFOH 2782
    Antiamoebin_VIII *AcFUUUJGLUUOQUOUPFOH 2783
    Antiamoebin_IX *AcFUAUJGLUUOQJOUPFOH 2784
    Antiamoebin_X *AcFUUUJGLJUOQUOUPFOH 2785
    Antiamoebin_XI *AcFUUUUALUUOQJOUPFOH 2786
    Antiamoebin_XII *AcFUUUUGLAUOQJOUPFOH 2787
    Antiamoebin_XIII *AcVUUUUGLUUOQJOUPFOH 2788
    Antiamoebin_XIV *AcVUUUVGLUUOQJOUPFOH 2789
    Antiamoebin_XV *AcLUUUUGLUUOQJOUPFOH 2790
    Antiamoebin_XVI *AcLUUUJGLUUOQJOUPFOH 2791
    Atroviridin_A *AcUPUAUAQUVUGLUPVUUQQF 2792
    OH
    Atroviridin_B *AcUPUAUAQUVUGLUPVUJQQF 2793
    OH
    Atroviridin_C *AcUPUAUUQUVUGLUPVUJQQF 2794
    OH
    Bergofungin_A *AcVUUUVGLUUOQJOUFOH 2795
    Bergofungin_B *AcVUUUVGLVUOQUOUFOH 2796
    Bergofungin_C *AcVUUUVGLUUOQUOUFOH 2797
    Bergofungin_D *AcVUUVGLUUOQUOUFOH 2798
    Boletusin *AcFUAUJLQGUUAAUPUUUQW 2799
    OH
    Cephaibol_A *AcFUUUUGLJUOQJOUPFOH 2800
    Cephaibol_A2 *AcFUUUUALJUOQJOUPFOH 2801
    Cephaibol_B *AcFUUUJGLJUOQJOUPFOH 2802
    Cephaibol_C *AcFUUUUGLJUOQUOUPFOH 2803
    Cephaibol_D *AcFUUUUGLUUOQUOUPFOH 2804
    Cephaibol_E *AcFUUUUGLUUOQJOUPFOH 2805
    Cephaibol_P *AcFJQUITULUOQUOUPFSOH 2806
    Cephaibol_Q *AcFJQUITULUPQUOUPFSOH 2807
    Cervinin_1 *AcLUPULUPAUPVLOH 2808
    Cervinin_2 *AcLUPULUPAUPVLOCOCH3 2809
    Chrysospermin_A *AcFUSUULQGUUAAUPUUUQW 2810
    OH
    Chrysospermin_B *AcFUSUULQGUUAAUPJUUQW 2811
    OH
    Chrysospermin_C *AcFUSUJLQGUUAAUPUUUQW 2812
    OH
    Chrysospermin_D *AcFUSUJLQGUUAAUPJUUQW 2813
    OH
    Clonostachin *AcUOLJOLJOUJUOJI 2814
    O[CH(CH(OH)CH2OH)CH(OH)CH(OH)CH2]OH
    Emerimicin_II_A *AcWIQUITULUOQUOUPFOH 2815
    Emerimicin_II_B *AcWIQJITULUOQUOUPFOH 2816
    Emerimicin_III *AcFUUUVGLUUOQJOUFOH 2817
    Emerimicin_IV *AcFUUUVGLUUOQJOAFOH 2818
    Harzianin_HB_I *AcUNLIUPJLUPLOH 2819
    Harzianin_HC_I *AcUNLUPSVUPULUPLOH 2820
    Harzianin_HC_III *AcUNLUPSVUPJLUPLOH 2821
    Harzianin_HC_IX *AcUNLUPAIUPJLUPLOH 2822
    Harzianin_HC_VI *AcUNLUPAVUPULUPLOH 2823
    Harzianin_HC_VIII *AcUNLUPAVUPJLUPLOH 2824
    Harzianin_HC_VIII *AcUNLUPAVUPJLUPLOH 2825
    Harzianin_HC_X *AcUQLUPAVUPJLUPLOH 2826
    Harzianin_HC_XI *AcUNLUPSIUPULUPLOH 2827
    Harzianin_HC_XII *AcUNLUPSIUPJLUPLOH 2828
    Harzianin_HC_XIII *AcUQLUPSIUPJLUPLOH 2829
    Harzianin_HC_XIV *AcUNLUPAIUPULUPLOH 2830
    Harzianin_HC_XV *AcUQLUPAIUPJLUPLOH 2831
    Harzianin_HK_VI *AcUNIIUPLLUPLOH 2832
    Harzianin_PCU4 *AcUNLUPSIUPULUPVOH 2833
    Helioferin_A *FaPZZAUIIUUAAE 2834
    Helioferin_B *FaPZZAUIIUUANIAE 2835
    Heptaibin *AcFUUUVGLUUOQUOUFOH 2836
    Hypelcin_A *AcUPUAUUQLUGUUUPVUUQQL 2837
    OH
    Hypelcin_A_I *AcUPUAUUQULUGUUPVUUQQL 2838
    OH
    Hypelcin_A_II *AcUPUAUAQULUGUUPVUUQQL 2839
    OH
    Hypelcin_A_III *AcUPUAUUQULUGUUPVUUQQ 2840
    [C7H16NO]
    Hypelcin_A_IV *AcUPUAUUQUIUGUUPVUUQQL 2841
    OH
    Hypelcin_A-III *AcUPUAUUQULUGUUPVUJQQL 2842
    OH
    Hypelcin_A-IX *AcUPUAUUQUIUGUUPVUJQQL 2843
    OH
    Hypelcin_A-V *AcUPUAUUQULUGUUPVUUQQI 2844
    OH
    Hypelcin_A-VI *AcUPUAUAQULUGUUPVUUQQI 2845
    OH
    Hypelcin_A-VII *AcUPUAUAQULUGUUPVUJQQL 2846
    OH
    Hypelcin_A-VIII *AcUPUAUAQUIUGUUPVUUQQL 2847
    OH
    Hypelcin_B_I *AcUPUAUUQULUGUUPVUUEQL 2848
    OH
    Hypelcin_B_II *AcUPUAUAQULUGUUPVUUEQL 2849
    OH
    Hypelcin_B_III *AcUPUAUUQULUGUUPVUJEQL 2850
    OH
    Hypelcin_B_IV *AcUPUAUUQUIUGUUPVUUEQL 2851
    OH
    Hypelcin_B_V *AcUPUAUUQULUGUUPVUUEQI 2852
    OH
    Hypomurocin_A_I *AcUQVVUPLLUPLOH 2853
    Hypomurocin_A_II *AcJQVVUPLLUPLOH 2854
    Hypomurocin_A_III *AcUQVLUPLIUPLOH 2855
    Hypomurocin_A_IV *AcUQIVUPLLUPLOH 2856
    Hypomurocin_A_V *AcUQIIUPLLUPLOH 2857
    Hypomurocin_A_Va *AcUQILUPLIUPLOH 2858
    Hypomurocin_B_I *AcUSALUQUVUGUUPLUUQVOH 2859
    Hypomurocin_B_II *AcUSALUQUVUGUUPLUUQLOH 2860
    Hypomurocin_B_Ma *AcUAALUQUVUGUUPLUUQVOH 2861
    Hypomurocin_B_Mb *AcUSALUQJVUGUUPLUUQVOH 2862
    Hypomurocin_B_IV *AcUSALUQUVUGJUPLUUQVOH 2863
    Hypomurocin_B_V *AcUSALUQUVUGJUPLUUQLOH 2864
    Leul_Zervamicin *AcLIQJITULUOQUOUPFOH 2865
    Longibrachin_A_I *AcUAUAUAQUVUGLUPVUUQQF 2866
    OH
    Longibrachin_A_II *AcUAUAUAQUVUGLUPVUJQQF 2867
    OH
    Longibrachin_A_III *AcUAUAUUQUVUGLUPVUUQQF 2868
    OH
    Longibrachin_A_IV *AcUAUAUUQUVUGLUPVUJQQF 2869
    OH
    Longibrachin_B_II *AcUAUAUAQUVUGLUPVUUEQF 2870
    OH
    Longibrachin_B_III *AcUAUAUAQUVUGLUPVUJEQF 2871
    OH
    LP237_F5 *OcUPYUQQUZorQALOH 2872
    LP237_F7 *AcUPFUQQUUQALOH 2873
    LP237_F8 *OcUPFUQQUZorQALOH 2874
    NA_VII *AcUAAUJQUUUSLUOCH3 2875
    Paracelsin_A *AcUAUAUAQUVUGUUPVUUQQ 2876
    FOH
    Paracelsin_B *AcUAUAUAQULUGUUPVUUQQF 2877
    OH
    Paracelsin_C *AcUAUAUUQUVUGUUPVUUQQ 2878
    FOH
    Paracelsin_D *AcUAUAUUQULUGUUPVUUQQF 2879
    OH
    Paracelsin_E *AcUAUAUAQULUGUAPVUUQQF 2880
    OH
    Peptaibolin *AcLULUFOH 2881
    Peptaivirin_A *AcFUAUJLQGUUAAUPJUUQW 2882
    OH
    Peptaivirin_B *AcFUSUJLQGUUAAUPJUUQFOH 2883
    Polysporin_A *AcUPUAUUQUVUGVUPVUUQQF 2884
    OH
    Polysporin_B *AcUPUAUUQUVUGLUPVUUQQF 2885
    OH
    Polysporin_C *AcUPUAUUQUIUGLUPVUUQQF 2886
    OH
    Polysporin_D *AcUPUAUUQUIUGLUPVUVQQF 2887
    OH
    Pseudokinin_KLIII *AcUNIIUPLLUPNH2 2888
    Pseudokinin_KLVI *AcUNIIUPLVhydroxyketopiperazine 2889
    Samarosporin_I *AcFUUUVGLUUOQJOAFOH 2890
    Samarosporin_II *AcFUUUVGLUUOQJOUFOH 2891
    Saturnisporin_SA_ *AcUAUAUAQULUGUUPVUUQQF
    I OH 2892
    Saturnisporin_SA_ *AcUAUAUAQULUGUUPVUJQQF
    II OH
    Saturnisporin_SA_  *AcUAUAUUQULUGUUPVUUQQF 2893
    III OH 2894
    Saturnisporin_SA_ *AcUAUAUUQULUGUUPVUJQQF
    IV OH 2895
    Stilbellin_I *AcFUUUVGLUUOQJOAFOH 2896
    Stilbellin_II *AcFUUUVGLUUOQJOUFOH 2897
    Stilboflavin_A_1 *AcUPUAUAQUVUGUUPVUUEQV 2898
    OH
    Stilboflavin_A_2 *AcUPUAUAQULUGUUPVUUEQV 2999
    OH
    Stilboflavin_A_3 *AcUPUAUUQUVUGUAPVUUEQL 2900
    OH
    Stilboflavin_A_4 *AcUPUAUAQULUGUUPVUUEQL 2901
    OH
    Stilboflavin_A_5 *AcUPUAUUQULUGUUPVUUEQV 2902
    OH
    Stilboflavin_A_6 *AcUPUAUAQULUGUUPVUUEQJ 2903
    OH
    Stilboflavin_A_7 *AcUPUAUUQULUGUUPVUUEQI 2904
    OH
    Stilboflavin_B_1 *AcUPUAUAQUVUGUUPVUUQQ 2905
    VOH
    Stilboflavin_B_2 *AcUPUAUAQULUGUUPVUUQQV 2906
    OH
    Stilboflavin_B_3 *AcUPUAUAQUVUGUUPVUUQQL 2907
    OH
    Stilboflavin_B_4 *AcUPUAUAQULUGUUPVUUQQL 2908
    OH
    Stilboflavin_B_5 *AcUPUAUUQULUGUUPVUUQQV 2909
    OH
    Stilboflavin_B_6 *AcUPUAUUQUVUGUUPVUUQQ 2910
    VOH
    Stilboflavin_B_7 *AcUPUAUUQULUGUUPVUUQQL 2911
    OH
    Stilboflavin_B_8 *AcUPUAUUQUVUGUUPVUUQQL 2912
    OH
    Stilboflavin_B_9 *AcUPUAUUQULUGUUPVUUQQI 2913
    OH
    Stilboflavin_B_10 *AcUPUAUUQUVUGUUPVUUQQI 2914
    OH
    Suzukacillin *AcUAUAUAQUUUGLUPVUUQQF 2915
    OH
    Trichobrachin_A-I *AcUNLLUPLUUPLOH 2916
    Trichobrachin_A-II *AcUNLLUPVLUPVOH 2917
    Trichobrachin_A-III *AcUNVLUPLLUPVOH 2918
    Trichobrachin_A-IV *AcUNLVUPLLUPVOH 2919
    Trichobrachin_B-I *AcUNLLUPVUVPLOH 2920
    Trichobrachin_B-I_ *AcUNVLUPLUVPLOH 2921
    Trichobrachin_B-III *AcUNLVUPLUVPLOH 2922
    Trichobrachin_B-IV *AcUNLLUPLUVPVOH 2923
    Trichocellin_TC-A-I *AcUAUAUAQULUGUUPVUUQQF 2924
    OH
    Trichocellin_TC-A- *AcUAUAUAQULUGUUPVUJQQF 2925
    II OH
    Trichocellin_TC-A- *AcUAUAUAQUIUGUUPVUUQQF 2926
    III OH
    Trichocellin_TC-A- *AcUAUAUAQUIUGUUPVUJQQF 2927
    IV  OH
    Trichocellin_TC-A-V *AcUAUAUAQULUGLUPVUUQQF 2928
    OH
    Trichocellin_TC-A- *AcUAUAUAQULUGLUPVUJQQF 2929
    VI OH
    Trichocellin_TC-A- *AcUAUAUAQUIUGLUPVUUQQF 2930
    VII OH
    Trichocellin_TC-A- *AcUAUAUAQUIUGLUPVUJQQF 2931
    VIII OH
    Trichocellin_TC-B-I *AcUAUAUAQULUGUUPVUUEQF 2932
    OH
    Trichocellin_TC-B-II *AcUAUAUAQULUGUUPVUJEQF 2933
    OH
    Trichodecenin_TD_I *(Z)-4-decenoylGGLUGILOH 2934
    Trichodecenin_TD_II *(Z)-4-decenoylGGLUGLLOH 2935
    Trichogin AIV*OcUGLUGGLUGILOH 2936
    Trichokindin_Ia *AcUSAUUQJLUAUUPLUUQIOH 2937
    Trichokindin_Ib *AcUSAUJQULUAUUPLUUQIOH 2938
    Trichokindin_IIa *AcUSAUUQULUAJUPLUUQIOH 2939
    Trichokindin_IIb *AcUSAUJQJLUAUUPLUUQLOH 2940
    Trichokindin_Ma *AcUSAUUQJLUAJUPLUUQLOH 2941
    Trichokindin_Mb *AcUSAUJQULUAJUPLUUQLOH 2942
    Trichokindin_IV *AcUSAUJQJLUAUUPLUUQIOH 2943
    Trichokindin_Va *AcUSAUUQJLUAJUPLUUQIOH 2944
    Trichokindin_Vb *AcUSAUJQULUAJUPLUUQIOH 2945
    Trichokindin_VI *AcUSAUJQJLUAJUPLUUQLOH 2946
    Trichokindin_VII *AcUSAUJQJLUAJUPLUUQIOH 2947
    Trichokoninb_Ia *AcUAUAUAQUVUGLAPVUUQQF 2948
    OH
    Trichokonin_Ib *AcUGUAUAQUVUGLUPVUUQQF 2949
    OH
    Trichokonin_IIa *AcUAUAUAQUVUGLUPAUUQQF 2950
    OH
    Trichokonin_IIb *AcAAUAUAQUVUGLUPVUUQQF 2951
    OH
    Trichokonin_IIc *AcUAAAUAQUVUGLUPVUUQQF 2952
    OH
    Trichokonin_V *AcUAUAUQUVUGLUPVUUQQF 2953
    OH
    Trichokonin_VII *AcUAUAUAQUVUGLUPVUJQQF 2954
    OH
    Trichokonin_VIII *AcUAUAUUQUVUGLUPVUUQQF 2955
    OH
    Trichokonin_IX *AcUAUAUAQUVUGLUPVUJQQF 2956
    OH
    Tricholongin_BI *AcUGFUUQUUUSLUPVUUQQL 2957
    OH
    Tricholongin_BII *AcUGFUUQUUUSLUPVUJQQL 2958
    OH
    Trichopolyn_I *FaPZZAUUIAUUANIAE 2959
    Trichopolyn_II *FaPZZAUUVAUUANIAE 2960
    Trichopolyn_III *FaPZZAUUIAUAANIAE 2961
    Trichopolyn_IV *FaPZZAUUVAUAANIAE 2962
    Trichopolyn_V *Fa′PZZAUUIAUUAN/JAB 2963
    Trichorovin_TV_Ia *AcUNVLxUPLxLxUPVOH 2964
    Trichorovin_TV_Ib *AcUNVVUPLxLxUPLxOH 2965
    Trichorovin_TV_IIa *AcUNVVUPLxLxUPLxOH 2966
    Trichorovin_TV_IIb *AcUNLxVUPLxLxUPVOH 2967
    Trichorovin_TV_IIIa *AcUQVVUPLxLxUPLxOH 2968
    Trichorovin_TV_IIIb *AcUQVLxUPLxLxUPVOH 2969
    Trichorovin_TV_IVa *AcUQVVUPLxLxUPLxOH 2970
    Trichorovin_TV_IVb *AcUQLxVUPLxLxUPVOH 2971
    Trichorovin_TV_IVc *AcUNVLxUPLxLxUPLxOH 2972
    Trichorovin_TV_IXa *AcUQVLxUPLxLxUPLxOH 2973
    Trichorovin_TV_IXb *AcUQLxLxUPLxLxUPVOH 2974
    Trichorovin_TV_Va *AcUNVLxUPLxLxUPLxOH 2975
    Trichorovin_TV_Vb *AcUNLxLxUPLxLxUPVOH 2976
    Trichorovin_TV_VIa *AcUNVLxUPLxLxUPLxOH 2977
    Trichorovin_TV_VIb *AcUNLxLxUPLxLxUPVOH 2978
    Trichorovin_TV_VIIa *AcUNLxVUPLxLxUPLxOH 2979
    Trichorovin_TV_VIIb *AcUQVLxUPLxLxUPVOH 2980
    Trichorovin_TV_VIII *AcUQVLxUPLxLxUPLxOH 2981
    Trichorovin_TV_Xa *AcUQLxVUPLxLxUPLxOH 2982
    Trichorovin_TV_Xb *AcUNLxLxUPLxLxUPLxOH 2983
    Trichorovin_TV_XIIa *AcUNIIUPLLUPIOH 2984
    Trichorovin_TV_XIIb *AcUNLxLxUPLxLxUPLOH 2985
    Trichorovin_TV_XIII *AcUQLxLxUPLxLxUPLxOH 2986
    Trichorovin_TV_XIV *AcUQLxLxUPLxLxUPLxOH 2987
    Trichorozin_I *AcUNILUPILUPVOH 2988
    Trichorozin_II *AcUQILUPILUPVOH 2989
    Trichorozin_III *AcUNILUPILUPLOH 2990
    Trichorozin_IV *AcUOILUPILUPLOH 2991
    Trichorzianine_TA_I *AcUAAUUQUUUSLUPVUIQQW 2992
    IIc OH
    Trichorzianine_TB_ *AcUAAUUQUUUSLUPLUIQEW 2993
    IIa OH
    Trichorzianine_TB_ *AcUAAUUQUUUSLUPVUIQEW 2994
    IIIc OH
    Trichorzianine_TB_ *AcUAAUJQUUUSLUPVUIQEW 2995
    IVb OH
    Trichorzianine_TB_ *AcUAAUUQUUUSLUPLUIQEFOH 2996
    Vb
    Trichorzianine_TB_ *AcUAAUJQUUUSLUPLUIQEFOH 2997
    VIa
    Trichorzianine_TB_ *AcUAAUUQUUUSLUPVUIQEF 2998
    VIb OH
    Trichorzianine_TB_ *AcUAAUJQUUUSLUPVUIQEFOH 2999
    VII
    Trichorzin_HA_I *AcUGAUUQUVUGLUPLUUQLOH 3000
    Trichorzin_HA_II *AcUGAUUQUVUGLUPLUJQLOH 3001
    Trichorzin_HA_III *AcUGAUJQUVUGLUPLUUQLOH 3002
    Trichorzin_HA_V *AcUGAUJQUVUGLUPLUJQLOH 3003
    Trichorzin_HA_VI *AcUGAUJQJVUGLUPLUJQLOH 3004
    Trichorzin_HA_VII *AcUGAUJQVVUGLUPLUJQLOH 3005
    Trichorzin_MA_I *AcUSAUUQULUGLUPLUUQVOH 3006
    Trichorzin_MA_II *AcUSAUJQULUGLUPLUUQVOH 3007
    Trichorzin_MA_III *AcUSAUJQJLUGLUPLUUQVOH 3008
    Trichorzin_PA_II *AcUSAUJQUVUGLUPLUUQWOH 3009
    Trichorzin_PA_IV *AcUSAUJQJVUGLUPLUUQWOH 3010
    Trichorzin_PA_V *AcUSAJJQUVUGLUPLUUQWOH 3011
    Trichorzin_PA_VI *AcUSAUJQUVUGLUPLUUQFOH 3012
    Trichorzin_PA_VII *AcUSAJJQUVUGLUPLUUQWOH 3013
    Trichorzin_PA_VIII *AcUSAUJQJVUGLUPLUUQFOH 3014
    Trichorzin_PA_IX *AcUSAJJQUVUGLUPLUUQFOH 3015
    Trichorzin_PAU4 *AcUSAUUQUVUGLUPLUUQWOH 3016
    Trichosporin_TS-B- *AcUAGUAUQULxAAVxAPVUVxQ 3017
    1a-1 QFOH
    Trichosporin_TS-B- *AcUAGAUUQULxAAVxAPVUVxQ 3018
    1a-2 QFOH
    Trichosporin_TS-B- *AcUAGAUUQULxUGLxAPVUAQ 3019
    1b QFOH
    Trichosporin_TS-B- *AcUASAUUQULxUGLxAPVUUQQ 3020
    1d FOH
    Trichosporin_TS-B- *AcUAGAUUQULxUGLxUPVUUQ 3021
    1e QFOH
    Trichosporin_TS-B- *AcUASAUUQULxUGLxUPVUUQQ 3022
    1f FOH
    Trichosporin_TS-B- *AcUAGAUUQULxUGLxAPVUUQ 3023
    1g QFOH
    Trichosporin_TS-B- *AcUAGAUUQULxUGLxUPVUVxQ 3024
    1h QFOH
    Trichosporin_TS-B-Ia *AcUASAUUQULUGLUPVUUQQF 3025
    OH
    Trichosporin_TS-B- *AcUAAAUUQULUGLUPVUUQQF 3026
    IIIa OH
    Trichosporin_TS-B- *AcUAAAUUQUIUGLUPVUAQQF 3027
    IIIb OH
    Trichosporin_TS-B- *AcUAAAAUQUIUGLUPVUUQQF 3028
    IIIc OH
    Trichosporin_TS-B- *AcUAAAUUQUVUGLUPVUUQQF 3029
    IIId OH
    Trichosporin_TS-B- *AcUAAAUUQULUGLUPVUJQQF 3030
    IVb OH
    Trichosporin_TS-B- *AcUAUAUUQUVUGLUPVUUQQF 3031
    IVc OH
    Trichosporin_TS-B- *AcUAAAUUQUVUGLUPVUJQQF 3032
    IVd OH
    Trichosporin_TS-B- *AcUAAAUUQUIUGLUPVUUQQF 3033
    V OH
    Trichosporin_TS-B- *AcUAUAUUQUIUGLUPVUUQQF 3034
    VIa OH
    Trichosporin_TS-B- *AcUAAAUUQUIUGLUPVUJQQF 3035
    VIb OH
    Trichotoxin_A-40 *AcUGULUEUUUAUUPLUJQVOH 3036
    Trichotoxin_A-40_I *AcUGULUQUUAAUUPLUUEVOH 3037
    Trichotoxin_A-40_II *AcUGULUQUUUAAUPLUUEVOH 3038
    Trichotoxin_A-40_III *AcUGULUQUUAAUUPLUJEVOH 3039
    Trichotoxin_A-40_IV *AcUGULUQUUUAUUPLUUEVOH 3040
    Trichotoxin_A-40_V *AcUGULUQUUUAUUPLUJEVOH 3041
    Trichotoxin_A-40_Va *AcUAULUQUUUAUUPLUUEVOH 3042
    Trichotoxin_A-50_E *AcUGULUQUUUAAUPLUUQVOH 3043
    Trichotoxin_A-50_F *AcUGULUQUUAAAUPLUJQVOH 3044
    Trichotoxin_A-50_G *AcUGULUQUUUAAUPLUJQVOH 3045
    Trichotoxin_A-50_H *AcUAULUQUUUAAUPLUJQVOH 3046
    Trichotoxin_A-50_I *AcUGULUQUUUAUUPLUJQVOH 3047
    Trichotoxin_A-50_J *AcUAULUQUUUAUUPLUJQVOH 3048
    Trichovirin-1a *AcUGALAQVxVUGUUPLUUQL 3049
    OH
    Trichovirin-Ib *AcUGALUQAVUGJUPLUUQLOH 3050
    Trichovirin-IIa *AcUGALAQUVUGJUPLUUQLOH 3051
    Trichovirin-lIb *AcUGALUQUVUGUUPLUUQLOH 3052
    Trichovirin-IIc *AcUGALUQVxVUGUUPLUUQL 3053
    OH
    Trichovirin-IIIa *AcUGALUQJVUGUUPLUUQLOH 3054
    Trichovirin-IIb *AcUGALJQJUUGUUPLUUQLOH 3055
    Trichovirin-IVa *AcUGALJQJVUGUUPLUUQLOH 3056
    Trichovirin-IVb *AcUGALUQUVUGJUPLUUQLOH 3057
    Trichovirin-V *AcUGALUQJVUGJUPLUUQLOH 3058
    Trichovirin-VIa *AcUGALUQJLUGJUPLUUQLOH 3059
    Trichovirin-VIb *AcUGALJQJVUGJUPLUUQLOH 3060
    Trikoningin_KA_V *AcUGAUIQUUUSLUPVUIQQLOH 3061
    Trikoningin_KB_I *OcUGVUGGVUGILOH 3062
    Trikoningin_KB_II *OcJGVUGGVUGILOH 3063
    Tylopeptin_A *AcWVUJAQAUSUALUQLOH 3064
    Tylopeptin_B *AcWVUUAQAUSUALUQLOH 3065
    XR586 *AcWJQUITULUPQUOJPFGOH 3066
    Zervamicin_A-1-16 *B0cWIAUIVULUPAUPUPFOCH3 3067
    Zervamicin_ZIA *AcWIEJVTULUOQUOUPFOH 3068
    Zervamicin_ZIB *AcWVEJITULUOQUOUPFOH 3069
    Zervamicin_ZIB′ *AcWIEUITULUOQUOUPFOH 3070
    Zervamicin_ZIC *AcWIEJITULUOQUOUPFOH 3071
    Zervamicin_ZII-1 *AcWIQUVTULUOQUOUPFOH 3072
    Zervamicin_ZII-2 *AcWIQUITUVUOQUOUPFOH 3073
    Zervamicin_ZII-3 *AcWVQUITULUOQUOUPFOH 3074
    Zervamicin_ZII-4 *AcWIQJVTULUOQUOUPFOH 3075
    Zervamicin_ZII-5 *AcWIQJITUVUOQUOUPFOH 3076
    Zervamicin_ZIIA *AcWIQUITULUOQUOUPFOH 3077
    Zervamicin_ZIIB *AcWIQJITULUOQUOUPFOH 3078
    CAMEL135 GWRLIKKILRVFKGL 3079
    (CAM135)
    Novispirin G2 KNLRIIRKGIHIIKKY* 3080
    B-33 FKKFWKWFRRF 3081
    B-34 LKRFLKWFKRF 3082
    B-35 KLFKRWKHLFR 3083
    B-36 RLLKRFKHLFK 3084
    B-37 FKTFLKWLHRF 3085
    B-38 IKQLLHFFQRF 3086
    B-39 KLLQTFKQIFR 3087
    B-40 RILKELKNLFK 3088
    B-41 LKQFVHFIHRF 3089
    B-42 VKTLLHIFQRF 3090
    B-43 KLVEQLKEIFR 3091
    B-44 RVLQEIKQILK 3092
    B-45 VKNLAELVHRF 3093
    B-46 ATHLLHALQRF 3094
    B-47 KLAENVKEILR 3095
    B-48 RALHEAKEALK 3096
    B-49 FHYFWHWFHRF 3097
    B-50 LYHFLHWFQRF 3098
    B-51 YLFQTWQHLFR 3099
    B-52 YLLTEFQHLFK 3100
    B-53 FKTFLQWLHRF 3101
    B-54 IKTLLHFFQRF 3102
    B-55 KLLQTFNQIFR 3103
    B-56 TILQSLKNIFK 3104
    B-57 LKQFVKFIHRF 3105
    B-58 VKQLLKIFNRF 3106
    B-59 KLVQQLKNIFR 3107
    B-60 RVLNQVKQILK 3108
    B-61 VKKLAKLVRRF 3109
    B-62 AKRLLKVLKRF 3110
    B-63 KLAQKVKRVLR 3111
    B-64 RALKRIKHVLK 3112
    1C-1 RRRRWWW 3113
    1C-2 RRWWRRW 3114
    1C-3 RRRWWWR 3115
    1C-4 RWRWRWR 3116
    2C-1 RRRFWWR 3117
    2C-2 RRWWRRF* 3118
    2C-3 RRRWWWF* 3119
    2C-4 RWRWRWF* 3120
    3C-1 RRRRWWK 3121
    3C-2 RRWWRRK 3122
    3C-3 RRRWWWK 3123
    3C-4 RWRWRWK 3124
    4C-1 RRRKWWK 3125
    4C-2 RRWKRRK 3126
    4C-3 RRRKWWK 3127
    4C-4 RWRKRWK 3128
    a-3 LHLLHQLLHLLHQF* 3129
    a-4 AQAAHQAAHAAHQF* 3130
    a-5 KLKKLLKKLKKLLK 3131
    a-6 LKLLKKLLKLLKKF* 3132
    a-7 LQLLKQLLKLLKQF* 3133
    a-8 AQAAKQAAKAAKQF* 3134
    a-9 RWRRWWRHFHHFFH* 3135
    a-10 KLKKLLKRWRRWWR 3136
    a-11 RWRRLLKKLHHLLH* 3137
    a-12 KLKKLLKHLHHLLH* 3138
    BD-1 FVF RHK WVW KHR FLF 3139
    BD-2 VFI HRH VWV HKH VLF 3140
    BD-3 WR WR ARWR WR LR WR F 3141
    BD-4 WR IH LR AR LH VK FR F 3142
    BD-5 LR IH AR FK VH IR LK F 3143
    BD-6 FH IK FR VH LK VR FH F 3144
    BD-7 FH VK IH FR LH VK FH F 3145
    BD-8 LH IH AH FH VH IH LH F 3146
    BD-9 FK IHFRLK VHIRFK F 3147
    BD-10 FK AH IR FK LR VK FH F 3148
    BD-11 LK AK IK FK VK LK IK F 3149
    BD-12 WIW KHK FL HRH FLF 3150
    BD-13 VFL HRH VI KHK LVF 3151
    BD-14 FL HKH VL RHR IVF 3152
    BD-15 VF KHK IV HRH ILF 3153
    BD-16 FLF KH LFL HR IFF 3154
    BD-17 LF KH ILI HR VIF 3155
    BD-18 FL HKH LF KHK LF 3156
    BD-19 VF RHR FI HRH VF 3157
    BD-20 FI HK LV HKH VLF 3158
    BD-21 VL RH LF RHR IVF 3159
    BD-22 LV HK LIL RH LLF 3160
    BD-23 VF KR VLI HK LIF 3161
    BD-24 IV RK FLF RHK VF 3162
    BD-25 VL KH VIA HKR LF 3163
    BD-26 FI RK FLF KH LF 3164
    BD-27 VI RH VWV RK LF 3165
    BD-28 FLF RHR F RHR LVF 3166
    BD-29 LFL HKH A KHK FLF 3167
    BD-30 F KHK F KHK FIF 3168
    BD-31 L RHR L RHR LIF 3169
    BD-32 LIL K FLF K FVF 3170
    BD-33 VLI R ILV R VIF 3171
    BD-34 F RHR F RHR F 3172
    BD-35 L KHK L KHK F 3173
    BD-36 F K F KHK LIF 3174
    BD-37 L R L RHR VLF 3175
    BD-38 F K FLF K FLF 3176
    BD-39 L R LFL R WLF 3177
    BD-40 F K FLF KHK F 3178
    BD-41 L R LFL RHR F 3179
    BD-42 FKFLFKF 3180
    BD-43 LRLFLRF 3181
    AA-1 HHFFHHFHHFFHHF* 3182
    AA-2 FHFFHEIFFHFFHHF* 3183
    AA-3 KLLK-GAT-FHFFHHFFHFFHHF 3184
    AA-4 KLLK-FHFFHHFFHFFHHF 3185
    AA-5 FHFFHHFFHFFHHFKLLK 3186
    RIP YSPWTNF* 3187
    Lariatin A c(Gly-Ser-Gln-Leu-Val-Tyr-Arg-Glu)-Trp- 3188
    (anti-mycobacteria) Val-Gly-His-Ser-Asn-Val-Ile-Lys-Pro
    Lariatin B c(Gly-Ser-Gln-Leu-Val-Tyr-Arg-Glu)-Trp- 3189
    (anti-mycobacteria) Val-Gly-His-Ser-Asn-Val-Ile-Lys-Gly-
    Pro-Pro
    Abreviations:
    U-Aminoisobutyric Acid (Aib);
    J-Isovaline (Iva);
    O-Hydroxyproline (Hyp);
    Z-Ethylnorvaline (EtNor);
    x or xx means L or I at that position;
    Ac-optionally acetylated N-term;
    OH, OCH3-optional C-term;
    Alkane long chains are noted in brackets;
    *optionally amidated C-terminus. Where protecting groups are shown, the gropus are optional. Conversely any of the peptides shown without protecting groups can, optionally one or more protecting groups. Where peptides are shown circularized, linear forms bear are also contemplated. Conversely, where linear peptides are shown circularlized versions are also contemplated.
  • In certain embodiments the antimicrobial peptide consists of or comprises the amino acid sequence of LL-37 (LLGDFFRK SKEKIGKEFKRIVQRIKD FLRNL VPRTES, SEQ ID NO:3190) or a variant of LL-37. LL-37 is a cathelicidin anti-microbial corresponding to amino acids 134-170 of the human cationic antimicrobial protein 18 (hCAP18). In certain embodiments the antimicrobial peptide consists of or comprises the amino acid sequence of an LL-37 variant as described in U.S. Patent Publication No: 2009/0156499 A1). Illustrative variants comprise or consist of the amino acid sequence having at least 90%, 95%, or 98% sequence identity with the amino acid sequence FKRIVQRIKDFLRX1 (SEQ ID NO:3191), where X1 is selected from the group consisting of 0, 1, 2, 3, 4, 5, 6, 7, and 8 amino acids. In certain embodiments illustrative variants comprise or consist of the amino acid sequence having at least 90%, 95%, or 98% sequence identity with the amino acid sequence X1RLFDKIRQVIRKFX2 (SEQ ID NO:3192) where X1 is 0, 1, 2, 3, 4, 5, 6, 7, or 8 amino acids and X2 is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16 amino acids.
  • In certain embodiments the antimicrobial peptide consists of or comprises the amino acid sequence of an LL-37 variant shown in Table 15.
  • TABLE 15
    LL-37 peptide and variants.
    SEQ
    ID
    ID Amino acid sequence NO
    LL-37 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNL 3193
    VPRTES
    Cys-LL -37 CLLGDFFRKSKEKIGKEFKRIVQRIKDFLRN 3194
    LVPRTES
    LL-37(17-32) FKRIVQRIKDFLRNLV 3195
    Cys-LL-37- CLLGDFFRKSKEKIGKEFKRIVQRIKDFLRN 3196
    Cys LVPRTESC
    LL-37FK-13 FKRIVQRIKDFLR 3197
    LL-37FKR FKRIVQRIKDFLRNLVPRTES 3198
    LL-37GKE GKEFKRIVQRIKDFLRNLVPR 3199
    LL-37KRI KRIVQRIKDFLRNLVPRTES 3200
    LL-37LLG LLGDFFRKSKEKIGKEFKRIV 3201
    LL-37RKS RKSKEKIGKEFKRIVQRIKDFLRNLVPRTES 3202
    LL-37SKE SKEKIGKEFKRIVQRIKDFLR 3203
    LL-37-Cys LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNL 3204
    VPRTESC
  • A number of antimicrobial peptides are also disclosed in U.S. Pat. Nos. 7,271,239, 7,223,840, 7,176,276, 6,809,181, 6,699,689, 6,420,116, 6,358,921, 6,316,594, 6,235,973, 6,183,992, 6,143,498, 6,042,848, 6,040,291, 5,936,063, 5,830,993, 5,428,016, 5,424,396, 5,032,574, 4,623,733, which are incorporated herein by reference for the disclosure of particular antimicrobial peptides.
  • v. Ligands.
  • In certain embodiments the effector can comprise one ore more ligands, epitope tags, and/or antibodies. In certain embodiments preferred ligands and antibodies include those that bind to surface markers on immune cells. Chimeric moieties utilizing such antibodies as effector molecules act as bifunctional linkers establishing an association between the immune cells bearing binding partner for the ligand or antibody and the target microorganism(s).
  • The terms “epitope tag” or “affinity tag” are used interchangeably herein, and used refers to a molecule or domain of a molecule that is specifically recognized by an antibody or other binding partner. The term also refers to the binding partner complex as well. Thus, for example, biotin or a biotin/avidin complex are both regarded as an affinity tag. In addition to epitopes recognized in epitope/antibody interactions, affinity tags also comprise “epitopes” recognized by other binding molecules (e.g. ligands bound by receptors), ligands bound by other ligands to form heterodimers or homodimers, His6 bound by Ni-NTA, biotin bound by avidin, streptavidin, or anti-biotin antibodies, and the like.
  • Epitope tags are well known to those of skill in the art. Moreover, antibodies specific to a wide variety of epitope tags are commercially available. These include but are not limited to antibodies against the DYKDDDDK (SEQ ID NO:3205) epitope, c-myc antibodies (available from Sigma, St. Louis), the HNK-1 carbohydrate epitope, the HA epitope, the HSV epitope, the His4 (SEQ ID NO:3206), His5 (SEQ ID NO:3207), and His6 (SEQ ID NO:3208) epitopes that are recognized by the His epitope specific antibodies (see, e.g., Qiagen), and the like. In addition, vectors for epitope tagging proteins are commercially available. Thus, for example, the pCMV-Tag1 vector is an epitope tagging vector designed for gene expression in mammalian cells. A target gene inserted into the pCMV-Tag1 vector can be tagged with the FLAG® epitope (N-terminal, C-terminal or internal tagging), the c-myc epitope (C-terminal) or both the FLAG (N-terminal) and c-myc (C-terminal) epitopes.
  • vi. Lipids and Liposomes.
  • In certain embodiments the effectors comprise one or more microparticles or nanoparticles that can be loaded with an effector agent (e.g., a pharmaceutical, a label, etc.). In certain embodiments the microparticles or nanoparticles are lipidic particles. Lipidic particles are microparticles or nanoparticles that include at least one lipid component forming a condensed lipid phase. Typically, a lipidic nanoparticle has preponderance of lipids in its composition. Various condensed lipid phases include solid amorphous or true crystalline phases; isomorphic liquid phases (droplets); and various hydrated mesomorphic oriented lipid phases such as liquid crystalline and pseudocrystalline bilayer phases (L-alpha, L-beta, P-beta, Lc), interdigitated bilayer phases, and nonlamellar phases (see, e.g., The Structure of Biological Membranes, ed. by P. Yeagle, CRC Press, Bora Raton, Fla., 1991). Lipidic microparticles include, but are not limited to a liposome, a lipid-nucleic acid complex, a lipid-drug complex, a lipid-label complex, a solid lipid particle, a microemulsion droplet, and the like. Methods of making and using these types of lipidic microparticles and nanoparticles, as well as attachment of affinity moieties, e.g., antibodies, to them are known in the art (see, e.g., U.S. Pat. Nos. 5,077,057; 5,100,591; 5,616,334; 6,406,713; 5,576,016; 6,248,363; Bondi et al. (2003) Drug Delivery 10: 245-250; Pedersen et al., (2006) Eur. J. Pharm. Biopharm. 62: 155-162, 2006 (solid lipid particles); U.S. Pat. Nos. 5,534,502; 6,720,001; Shiokawa et al. (2005) Clin. Cancer Res. 11: 2018-2025 (microemulsions); U.S. Pat. No. 6,071,533 (lipid-nucleic acid complexes), and the like).
  • A liposome is generally defined as a particle comprising one or more lipid bilayers enclosing an interior, typically an aqueous interior. Thus, a liposome is often a vesicle formed by a bilayer lipid membrane. There are many methods for the preparation of liposomes. Some of them are used to prepare small vesicles (d<0.05 micrometer), some for larger vesicles (d>0.05 micrometer). Some are used to prepare multilamellar vesicles, some for unilamellar ones. Methods for liposome preparation are exhaustively described in several review articles such as Szoka and Papahadjopoulos (1980) Ann. Rev. Biophys. Bioeng., 9: 467, Deamer and Uster (1983) Pp. 27-51 In: Liposomes, ed. M. J. Ostro, Marcel Dekker, New York, and the like.
  • In various embodiments the liposomes include a surface coating of a hydrophilic polymer chain. “Surface-coating” refers to the coating of any hydrophilic polymer on the surface of liposomes. The hydrophilic polymer is included in the liposome by including in the liposome composition one or more vesicle-forming lipids derivatized with a hydrophilic polymer chain. In certain embodiments, vesicle-forming lipids with diacyl chains, such as phospholipids, are preferred. One illustrative phospholipid is phosphatidylethanolamine (PE), which contains a reactive amino group convenient for coupling to the activated polymers. One illustrative PE is distearoyl PE (DSPE). Another example is non-phospholipid double chain amphiphilic lipids, such as diacyl- or dialkylglycerols, derivatized with a hydrophilic polymer chain.
  • In certain embodiments a hydrophilic polymer for use in coupling to a vesicle forming lipid is polyethyleneglycol (PEG), preferably as a PEG chain having a molecular weight between 1,000-10,000 Daltons, more preferably between 1,000-5,000 Daltons, most preferably between 2,000-5,000 Daltons. Methoxy or ethoxy-capped analogues of PEG are also useful hydrophilic polymers, commercially available in a variety of polymer sizes, e.g., 120-20,000 Daltons.
  • Other hydrophilic polymers that can be suitable include, but are not limited to polylactic acid, polyglycolic acid, polyvinylpyrrolidone, polymethyloxazoline, polyethyloxazoline, polyhydroxypropyl methacrylamide, polymethacrylamide, polydimethylacrylamide, and derivatized celluloses, such as hydroxymethylcellulose or hydroxyethylcellulose.
  • Preparation of lipid-polymer conjugates containing these polymers attached to a suitable lipid, such as PE, have been described.
  • The liposomes can, optionally be prepared for attachment to one or more targeting moieties described herein. Here the lipid component included in the liposomes would include either a lipid derivatized with the targeting moiety, or a lipid having a polar-head chemical group, e.g., on a linker, that can be derivatized with the targeting moiety in preformed liposomes, according to known methods.
  • Methods of functionalizing lipids and liposomes with affinity moieties such as antibodies are well known to those of skill in the art (see, e.g., DE 3,218,121; Epstein et al. (1985) Proc. Natl. Acad. Sci., USA, 82:3688 (1985); Hwang et al. (1980) Proc. Natl. Acad. Sci., USA, 77: 4030; EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese patent application 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324, all of which are incorporated herein by reference).
  • vii. Agents that Physically Disrupt the Extracellular Matrix within a Community of Microorganisms
  • In certain embodiments, peptides can be coupled to agents that physically disrupt the extracellular matrix within a community of microorganisms, for example a biofilm. In certain preferred embodiments, such an agent could be a bacterial cell-wall degrading enzyme, for example SAL-2, or any species of glycosidase, alginase, peptidase, proteinase, lipase, or DNA or RNA degrading enzyme or compound, for example rhRNase. Disruption of extracellular matrix of biofilms can result in clearance and therapeutic benefit.
  • Peptides can also be attached to antimicrobial proteins, such as Protein Inhibitor C or Colicin, or fragments thereof, for example the IIa domain of Colicin, or the heparin-binding domain of Protein Inhibitor C.
  • viii. Polymeric Microparticles and/or Nanoparticles.
  • In certain embodiments the effector(s) comprise polymeric microparticles and/or nanoparticles and/or micelles.
  • Microparticle and nanoparticle-based drug delivery systems have considerable potential for treatment of various microorganisms. Technological advantages of polymeric microparticles or nanoparticles used as drug carriers are high stability, high carrier capacity, feasibility of incorporation of both hydrophilic and hydrophobic substances, and feasibility of variable routes of administration, including oral application and inhalation. Polymeric nanoparticles can also be designed to allow controlled (sustained) drug release from the matrix. These properties of nanoparticles enable improvement of drug bioavailability and reduction of the dosing frequency.
  • Polymeric nanoparticles are typically micron or submicron (<1 μm) colloidal particles. This definition includes monolithic nanoparticles (nanospheres) in which the drug is adsorbed, dissolved, or dispersed throughout the matrix and nanocapsules in which the drug is confined to an aqueous or oily core surrounded by a shell-like wall. Alternatively, in certain embodiments, the drug can be covalently attached to the surface or into the matrix.
  • Polymeric microparticles and nanoparticles are typically made from biocompatible and biodegradable materials such as polymers, either natural (e.g., gelatin, albumin) or synthetic (e.g., polylactides, polyalkylcyanoacrylates), or solid lipids. In the body, the drug loaded in nanoparticles is usually released from the matrix by diffusion, swelling, erosion, or degradation. One commonly used material is poly(lactide-co-glycolide) (PLG).
  • Methods of fabricating and loading polymeric nanoparticles or microparticles are well known to those of skill in the art. Thus, for example, Matsumoto et al. (1999) Intl. J. Pharmaceutics, 185: 93-101 teaches the fabrication of poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) nanoparticles, Chawla et al. (2002) Intl. J. Pharmaceutics 249: 127-138, teaches the fabrication and use of poly(e-caprolactone) nanoparticles delivery of tamifoxen, and Bodmeier et al. (1988) Intl. J. Pharmaceutics, 43: 179-186, teaches the preparation of poly(D,L-lactide) microspheres using a solvent evaporation method. “Intl. J. Pharmaceutics, 1988, 43, 179-186. Other nanoparticle formulations are described, for example, by Williams et al. (2003) J. Controlled Release, 91: 167-172; Leroux et al. (1996) J. Controlled Release, 39: 339-350; Soppimath et al. (2001) J. Controlled Release, 70: 1-20; Brannon-Peppas (1995) Intl. J. Pharmaceutics, 116: 1-9; and the like.
  • C) Peptide Preparation.
  • The peptides described herein can be chemically synthesized using standard chemical peptide synthesis techniques or, particularly where the peptide does not comprise “D” amino acid residues, the peptide can be recombinantly expressed. Where the “D” polypeptides are recombinantly expressed, a host organism (e.g. bacteria, plant, fungal cells, etc.) can be cultured in an environment where one or more of the amino acids is provided to the organism exclusively in a D form. Recombinantly expressed peptides in such a system then incorporate those D amino acids.
  • In certain embodiments, D amino acids can be incorporated in recombinantly expressed peptides using modified amino acyl-tRNA synthetases that recognize D-amino acids.
  • In certain embodiments the peptides are chemically synthesized by any of a number of fluid or solid phase peptide synthesis techniques known to those of skill in the art. Solid phase synthesis in which the C-terminal amino acid of the sequence is attached to an insoluble support followed by sequential addition of the remaining amino acids in the sequence is a preferred method for the chemical synthesis of the polypeptides of this invention. Techniques for solid phase synthesis are well known to those of skill in the art and are described, for example, by Barany and Merrifield (1963) Solid-Phase Peptide Synthesis; pp. 3-284 in The Peptides: Analysis, Synthesis, Biology. Vol. 2: Special Methods in Peptide Synthesis, Part A.; Merrifield et al. (1963) J. Am. Chem. Soc., 85: 2149-2156, and Stewart et al. (1984) Solid Phase Peptide Synthesis, 2nd ed. Pierce Chem. Co., Rockford, Ill.
  • In one embodiment, the peptides can be synthesized by the solid phase peptide synthesis procedure using a benzhyderylamine resin (Beckman Bioproducts, 0.59 mmol of NH2/g of resin) as the solid support. The COOH terminal amino acid (e.g., t-butylcarbonyl-Phe) is attached to the solid support through a 4-(oxymethyl)phenacetyl group. This is a more stable linkage than the conventional benzyl ester linkage, yet the finished peptide can still be cleaved by hydrogenation. Transfer hydrogenation using formic acid as the hydrogen donor can be used for this purpose.
  • It is noted that in the chemical synthesis of peptides, particularly peptides comprising D amino acids, the synthesis usually produces a number of truncated peptides in addition to the desired full-length product. Thus, the peptides are typically purified using, e.g., HPLC.
  • D-amino acids, beta amino acids, non-natural amino acids, and the like can be incorporated at one or more positions in the peptide simply by using the appropriately derivatized amino acid residue in the chemical synthesis. Modified residues for solid phase peptide synthesis are commercially available from a number of suppliers (see, e.g., Advanced Chem Tech, Louisville; Nova Biochem, San Diego; Sigma, St Louis; Bachem Calif. Inc., Torrance, etc.). The D-form and/or otherwise modified amino acids can be completely omitted or incorporated at any position in the peptide as desired. Thus, for example, in certain embodiments, the peptide can comprise a single modified acid, while in other embodiments, the peptide comprises at least two, generally at least three, more generally at least four, most generally at least five, preferably at least six, more preferably at least seven or even all modified amino acids. In certain embodiments, essentially every amino acid is a D-form amino acid.
  • As indicated above, the peptides and/or fusion proteins of this invention can also be recombinantly expressed. Accordingly, in certain embodiments, the antimicrobial peptides and/or targeting moieties, and/or fusion proteins of this invention are synthesized using recombinant expression systems. Generally this involves creating a DNA sequence that encodes the desired peptide or fusion protein, placing the DNA in an expression cassette under the control of a particular promoter, expressing the peptide or fusion protein in a host, isolating the expressed peptide or fusion protein and, if required, renaturing the peptide or fusion protein.
  • DNA encoding the peptide(s) or fusion protein(s) described herein can be prepared by any suitable method as described above, including, for example, cloning and restriction of appropriate sequences or direct chemical synthesis.
  • This nucleic acid can be easily ligated into an appropriate vector containing appropriate expression control sequences (e.g. promoter, enhancer, etc.), and, optionally, containing one or more selectable markers (e.g. antibiotic resistance genes).
  • The nucleic acid sequences encoding the peptides or fusion proteins described herein can be expressed in a variety of host cells, including, but not limited to, E. coli, other bacterial hosts, yeast, fungus, and various higher eukaryotic cells such as insect cells (e.g. SF3), the COS, CHO and HeLa cells lines and myeloma cell lines. The recombinant protein gene will typically be operably linked to appropriate expression control sequences for each host. For E. coli this can include a promoter such as the T7, trp, or lambda promoters, a ribosome binding site and preferably a transcription termination signal. For eukaryotic cells, the control sequences can include a promoter and often an enhancer (e.g., an enhancer derived from immunoglobulin genes, SV40, cytomegalovirus, etc.), and a polyadenylation sequence, and may include splice donor and acceptor sequences.
  • The plasmids can be transferred into the chosen host cell by well-known methods such as calcium chloride transformation for E. coli and calcium phosphate treatment or electroporation for mammalian cells. Cells transformed by the plasmids can be selected by resistance to antibiotics conferred by genes contained on the plasmids, such as the amp, gpt, neo and hyg genes.
  • Once expressed, the recombinant peptide(s) or fusion protein(s) can be purified according to standard procedures of the art, including ammonium sulfate precipitation, affinity columns, column chromatography, gel electrophoresis and the like (see, generally, R. Scopes, (1982) Protein Purification, Springer-Verlag, N.Y.; Deutscher (1990) Methods in Enzymology Vol. 182: Guide to Protein Purification., Academic Press, Inc. N.Y.). Substantially pure compositions of at least about 90 to 95% homogeneity are preferred, and 98 to 99% or more homogeneity are most preferred.
  • One of skill in the art would recognize that after chemical synthesis, biological expression, or purification, the peptide(s) or fusion protein(s) may possess a conformation substantially different than desired native conformation. In this case, it may be necessary to denature and reduce the peptide or fusion protein and then to cause the molecule to re-fold into the preferred conformation. Methods of reducing and denaturing proteins and inducing re-folding are well known to those of skill in the art (see, e.g., Debinski et al. (1993) J. Biol. Chem., 268: 14065-14070; Kreitman and Pastan (1993) Bioconjug. Chem., 4: 581-585; and Buchner, et al., (1992) Anal. Biochem., 205: 263-270). Debinski et al., for example, describes the denaturation and reduction of inclusion body proteins in guanidine-DTE. The protein is then refolded in a redox buffer containing oxidized glutathione and L-arginine.
  • One of skill would recognize that modifications can be made to the peptide(s) and/or fusion protein(s) proteins without diminishing their biological activity. Some modifications may be made to facilitate the cloning, expression, or incorporation of the targeting molecule into a fusion protein. Such modifications are well known to those of skill in the art and include, for example, a methionine added at the amino terminus to provide an initiation site, or additional amino acids (e.g., poly His) placed on either terminus to create conveniently located restriction sites or termination codons or purification sequences.
  • D) Joining Targeting Moieties to Effectors.
  • i. Chemical Conjugation.
  • Chimeric moieties are formed by joining one or more of the targeting moieties described herein to one or more effectors. In certain embodiments the targeting moieties are attached directly to the effector(s) via naturally occurring reactive groups or the targeting moiety and/or the effector(s) can be functionalized to provide such reactive groups.
  • In various embodiments the targeting moieties are attached to effector(s) via one or more linking agents. Thus, in various embodiments the targeting moieties and the effector(s) can be conjugated via a single linking agent or multiple linking agents. For example, the targeting moiety and the effector can be conjugated via a single multifunctional (e.g., bi-, tri-, or tetra-) linking agent or a pair of complementary linking agents. In another embodiment, the targeting moiety and the effector are conjugated via two, three, or more linking agents. Suitable linking agents include, but are not limited to, e.g., functional groups, affinity agents, stabilizing groups, and combinations thereof
  • In certain embodiments the linking agent is or comprises a functional group. Functional groups include monofunctional linkers comprising a reactive group as well as multifunctional crosslinkers comprising two or more reactive groups capable of forming a bond with two or more different functional targets (e.g., labels, proteins, macromolecules, semiconductor nanocrystals, or substrate). In some preferred embodiments, the multifunctional crosslinkers are heterobifunctional crosslinkers comprising two or more different reactive groups.
  • Suitable reactive groups include, but are not limited to thiol (—SH), carboxylate (COOH), carboxyl (—COOH), carbonyl, amine (NH2), hydroxyl (—OH), aldehyde (—CHO), alcohol (ROH), ketone (R2CO), active hydrogen, ester, sulfhydryl (SH), phosphate (—PO3), or photoreactive moieties. Amine reactive groups include, but are not limited to e.g., isothiocyanates, isocyanates, acyl azides, NHS esters, sulfonyl chlorides, aldehydes and glyoxals, epoxides and oxiranes, carbonates, arylating agents, imidoesters, carbodiimides, and anhydrides. Thiol-reactive groups include, but are not limited to e.g., haloacetyl and alkyl halide derivates, maleimides, aziridines, acryloyl derivatives, arylating agents, and thiol-disulfides exchange reagents. Carboxylate reactive groups include, but are not limited to e.g., diazoalkanes and diazoacetyl compounds, such as carbonyldiimidazoles and carbodiimides. Hydroxyl reactive groups include, but are not limited to e.g., epoxides and oxiranes, carbonyldiimidazole, oxidation with periodate, N,N′-disuccinimidyl carbonate or N-hydroxylsuccimidyl chloroformate, enzymatic oxidation, alkyl halogens, and isocyanates. Aldehyde and ketone reactive groups include, but are not limited to e.g., hydrazine derivatives for schiff base formation or reduction amination. Active hydrogen reactive groups include, but are not limited to e.g., diazonium derivatives for mannich condensation and iodination reactions. Photoreactive groups include, but are not limited to e.g., aryl azides and halogenated aryl azides, benzophenones, diazo compounds, and diazirine derivatives.
  • Other suitable reactive groups and classes of reactions useful in forming chimeric moieties include those that are well known in the art of bioconjugate chemistry. Currently favored classes of reactions available with reactive chelates are those which proceed under relatively mild conditions. These include, but are not limited to, nucleophilic substitutions (e.g., reactions of amines and alcohols with acyl halides, active esters), electrophilic substitutions (e.g., enamine reactions), and additions to carbon-carbon and carbon-heteroatom multiple bonds (e.g., Michael reaction, Diels-Alder addition). These and other useful reactions are discussed in, for example, March (1985) Advanced Organic Chemistry, 3rd Ed., John Wiley & Sons, New York, Hermanson (1996) Bioconjugate Techniques, Academic Press, San Diego; and Feeney et al. (1982) Modification of Proteins; Advances in Chemistry Series, Vol. 198, American Chemical Society, Washington, D.C.
  • In certain embodiments, the linking agent comprises a chelator. For example, the chelator comprising the molecule, DOTA (DOTA=1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane), can readily be labeled with a radiolabel, such as Gd3+ and 64Cu, resulting in Gd3+-DOTA and 64Cu-DOTA respectively, attached to the targeting moiety. Other suitable chelates are known to those of skill in the art, for example, 1,4,7-triazacyclononane-N,N′,N″-triacetic acid (NOTA) derivatives being among the most well known (see, e.g., Lee et al. (1997) Nucl Med Biol. 24: 2225-23019).
  • A “linker” or “linking agent” as used herein, is a molecule that is used to join two or more molecules. In certain embodiments the linker is typically capable of forming covalent bonds to both molecule(s) (e.g., the targeting moiety and the effector). Suitable linkers are well known to those of skill in the art and include, but are not limited to, straight or branched-chain carbon linkers, heterocyclic carbon linkers, or peptide linkers. In certain embodiments the linkers can be joined to the constituent amino acids through their side groups (e.g., through a disulfide linkage to cysteine). However, in certain embodiments, the linkers will be joined to the alpha carbon amino and carboxyl groups of the terminal amino acids.
  • A bifunctional linker having one functional group reactive with a group on one molecule (e.g., a targeting peptide), and another group reactive on the other molecule (e.g., an antimicrobial peptide), can be used to form the desired conjugate. Alternatively, derivatization can be performed to provide functional groups. Thus, for example, procedures for the generation of free sulfhydryl groups on peptides are also known (See U.S. Pat. No. 4,659,839).
  • In certain embodiments the linking agent is a heterobifunctional crosslinker comprising two or more different reactive groups that form a heterocyclic ring that can interact with a peptide. For example, a heterobifunctional crosslinker such as cysteine may comprise an amine reactive group and a thiol-reactive group can interact with an aldehyde on a derivatized peptide. Additional combinations of reactive groups suitable for heterobifunctional crosslinkers include, for example, amine- and sulfhydryl reactive groups; carbonyl and sulfhydryl reactive groups; amine and photoreactive groups; sulfhydryl and photoreactive groups; carbonyl and photoreactive groups; carboxylate and photoreactive groups; and arginine and photoreactive groups. In one embodiment, the heterobifunctional crosslinker is SMCC.
  • Many procedures and linker molecules for attachment of various molecules to peptides or proteins are known (see, e.g., European Patent Application No. 188,256; U.S. Pat. Nos. 4,671,958, 4,659,839, 4,414,148, 4,699,784; 4,680,338; 4,569,789; and 4,589,071; and Borlinghaus et al. (1987) Cancer Res. 47: 4071-4075). Illustrative linking protocols are provided herein in Examples 2 and 3.
  • ii. Fusion Proteins.
  • In certain embodiments where the targeting moiety and effector are both peptides or both comprise peptides, the chimeric moiety can be chemically synthesized or recombinantly expressed as a fusion protein (i.e., a chimeric fusion protein).
  • In certain embodiments the chimeric fusion proteins are synthesized using recombinant DNA methodology. Generally this involves creating a DNA sequence that encodes the fusion protein, placing the DNA in an expression cassette under the control of a particular promoter, expressing the protein in a host, isolating the expressed protein and, if required, renaturing the protein.
  • DNA encoding the fusion proteins can be prepared by any suitable method, including, for example, cloning and restriction of appropriate sequences or direct chemical synthesis by methods such as the phosphotriester method of Narang et al. (1979) Meth. Enzymol. 68: 90-99; the phosphodiester method of Brown et al. (1979)Meth. Enzymol. 68: 109-151; the diethylphosphoramidite method of Beaucage et al. (1981) Tetra. Lett., 22: 1859-1862; and the solid support method of U.S. Pat. No. 4,458,066.
  • Chemical synthesis produces a single stranded oligonucleotide. This can be converted into double stranded DNA by hybridization with a complementary sequence or by polymerization with a DNA polymerase using the single strand as a template. One of skill would recognize that while chemical synthesis of DNA is limited to sequences of about 100 bases, longer sequences can be obtained by the ligation of shorter sequences.
  • Alternatively, subsequences can be cloned and the appropriate subsequences cleaved using appropriate restriction enzymes. The fragments can then be ligated to produce the desired DNA sequence.
  • In certain embodiments, DNA encoding fusion proteins of the present invention may be cloned using DNA amplification methods such as polymerase chain reaction (PCR). Thus, for example, the nucleic acid encoding a targeting antibody, a targeting peptide, and the like is PCR amplified, using a sense primer containing the restriction site for NdeI and an antisense primer containing the restriction site for HindIII. This produces a nucleic acid encoding the targeting sequence and having terminal restriction sites. Similarly an effector and/or effector/linker/spacer can be provided having complementary restriction sites. Ligation of sequences and insertion into a vector produces a vector encoding the fusion protein.
  • While the targeting moieties and effector(s) can be directly joined together, one of skill will appreciate that they can be separated by a peptide spacer/linker consisting of one or more amino acids. Generally the spacer will have no specific biological activity other than to join the proteins or to preserve some minimum distance or other spatial relationship between them. However, the constituent amino acids of the spacer may be selected to influence some property of the molecule such as the folding, net charge, or hydrophobicity.
  • The nucleic acid sequences encoding the fusion proteins can be expressed in a variety of host cells, including E. coli, other bacterial hosts, yeast, and various higher eukaryotic cells such as the COS, CHO and HeLa cells lines and myeloma cell lines. The recombinant protein gene will be operably linked to appropriate expression control sequences for each host. For E. coli this includes a promoter such as the T7, trp, or lambda promoters, a ribosome binding site and preferably a transcription termination signal. For eukaryotic cells, the control sequences will include a promoter and preferably an enhancer derived from immunoglobulin genes, SV40, cytomegalovirus, etc., and a polyadenylation sequence, and may include splice donor and acceptor sequences.
  • The plasmids can be transferred into the chosen host cell by well-known methods such as calcium chloride transformation for E. coli and calcium phosphate treatment or electroporation for mammalian cells. Cells transformed by the plasmids can be selected by resistance to antibiotics conferred by genes contained on the plasmids, such as the amp, gpt, neo and hyg genes.
  • Once expressed, the recombinant fusion proteins can be purified according to standard procedures of the art, including ammonium sulfate precipitation, affinity columns, column chromatography, gel electrophoresis and the like (see, generally, R. Scopes (1982) Protein Purification, Springer-Verlag, N.Y.; Deutscher (1990) Methods in Enzymology Vol. 182: Guide to Protein Purification., Academic Press, Inc. N.Y.). Substantially pure compositions of at least about 90 to 95% homogeneity are preferred, and 98 to 99% or more homogeneity are most preferred for pharmaceutical uses. Once purified, partially or to homogeneity as desired, the polypeptides may then be used therapeutically.
  • One of skill in the art would recognize that after chemical synthesis, biological expression, or purification, the fusion protein may possess a conformation substantially different than the native conformations of the constituent polypeptides. In this case, it may be necessary to denature and reduce the polypeptide and then to cause the polypeptide to re-fold into the preferred conformation. Methods of reducing and denaturing proteins and inducing re-folding are well known to those of skill in the art (See, Debinski et al. (1993) J. Biol. Chem., 268: 14065-14070; Kreitman and Pastan (1993) Bioconjug. Chem., 4: 581-585; and Buchner, et al. (1992) Anal. Biochem., 205: 263-270).
  • One of skill would recognize that modifications can be made to the fusion proteins without diminishing their biological activity. Some modifications may be made to facilitate the cloning, expression, or incorporation of the targeting molecule into a fusion protein. Such modifications are well known to those of skill in the art and include, for example, a methionine added at the amino terminus to provide an initiation site, or additional amino acids placed on either terminus to create conveniently located restriction sites or termination codons.
  • As indicated above, in various embodiments a peptide linker/spacer is used to join the one or more targeting moieties to one or more effector(s). In various embodiments the peptide linker is relatively short, typically less than about 10 amino acids, preferably less than about 8 amino acids and more preferably about 3 to about 5 amino acids. Suitable illustrative linkers include, but are not limited to PSGSP ((SEQ ID NO:3209), ASASA (SEQ ID NO: 3210), or GGG. In certain embodiments longer linkers such as (GGGGS)3 (SEQ ID NO:3211) can be used. Illustrative peptide linkers and other linkers are shown in Table 16.
  • TABLE 16
    Illustrative peptide and non-peptide linkers.
    Linker SEQ ID NO:
    AAA
    GGG
    GGGG 3212
    SGG
    GGSGGS 3213
    SAT
    PYP
    PSPSP 3214
    ASA
    ASASA 3215
    PSPSP 3216
    KKKK 3217
    RRRR 3218
    GGGGS 3219
    GGGGS GGGGS 3220
    GGGGS GGGGS GGGGS 3221
    GGGGS GGGGS GGGGS GGGGS 3222
    GGGGS GGGGS GGGGS GGGGS GGGGS 3223
    GGGGS GGGGS GGGGS GGGGS GGGGS GGGGS 3224
    2-nitrobenzene or O-nitrobenzyl
    Nitropyridyl disulfide
    Dioleoylphosphatidylethanolamine (DOPE)
    S-acetylmercaptosuccinic acid
    1, 4, 7, 10-tetraa7acyclododecane-1, 4, 7, 10-tetracetic acid (DOTA)
    β-glucuronide and β-glucuronide variants
    Poly(alkylacrylic acid)
    Benzene-based linkers (for example: 2,5-Bis(hexyloxy)-1,4-bis[2,5-
    bis(hexyloxy)-4-formyl-phenylenevinylene]benzene) and like
    molecules
    Disulfide linkages
    Poly(amidoamine) or like dendrimers linking multiple target 
    and killing peptides in one molecule
    Carbon nanotubes
    Hydrazone and hydrazone variant linkers
    PEG of any chain length
    Succinate, formate, acetate butyrate, other like organic acids
    Aldols, alcohols, or enols
    Peroxides
    alkane or alkene groups of any chain length
    One or more porphyrin or dye molecules containing free amide and
    carboxylic acid groups
    One or more DNA or RNA nucleotides, including polyamine and
    polycarboxyl-containing variants
    Inulin, sucrose, glucose, or other single, di or polysaccharides
    Linoleic acid or other polyunsaturated fatty acids
    Variants of any of the above linkers containing halogen or thiol
    groups
    (All amino-acid-based linkers could be L, D, combinations of L and D forms, β-form, and the like)
  • E) Multiple Targeting Moieties and/or Effectors.
  • As indicated above, in certain embodiments, the chimeric moieties described herein comprise multiple targeting moieties attached to a single effector or multiple effectors attached to a single targeting moiety, or multiple targeting moieties attached to multiple effectors.
  • Where the chimeric construct is a fusion protein this is easily accomplished by providing multiple domains that are targeting domains attached to one or more effector domains. FIG. 14 schematically illustrates a few, but not all, configurations. In various embodiments the multiple targeting domains and/or multiple effector domains can be attached to each other directly or can be separated by linkers (e.g., amino acid or peptide linkers as described above).
  • When the chimeric construct is a chemical conjugate linear or branched configurations (e.g., as illustrated in FIG. 14) are readily produced by using branched or multifunctional linkers and/or a plurality of different linkers.
  • F) Protecting Groups.
  • While the various peptides (e.g., targeting peptides, antimicrobial peptides, STAMPs) described herein may be shown with no protecting groups, in certain embodiments they can bear one, two, three, four, or more protecting groups. In various embodiments, the protecting groups can be coupled to the C- and/or N-terminus of the peptide(s) and/or to one or more internal residues comprising the peptide(s) (e.g., one or more R-groups on the constituent amino acids can be blocked). Thus, for example, in certain embodiments, any of the peptides described herein can bear, e.g., an acetyl group protecting the amino terminus and/or an amide group protecting the carboxyl terminus. One example of such a protected peptide is the 1845L6-21 STAMP having the amino acid sequence KFINGVLSQFVLERKPYPKLFKFLRKHLL* (SEQ ID NO:3225), where the asterisk indicates an amidated carboxyl terminus. Of course, this protecting group can be can be eliminated and/or substituted with another protecting group as described herein.
  • Without being bound by a particular theory, it was discovered that addition of a protecting group, particularly to the carboxyl and in certain embodiments the amino terminus can improve the stability and efficacy of the peptide.
  • A wide number of protecting groups are suitable for this purpose. Such groups include, but are not limited to acetyl, amide, and alkyl groups with acetyl and alkyl groups being particularly preferred for N-terminal protection and amide groups being preferred for carboxyl terminal protection. In certain particularly preferred embodiments, the protecting groups include, but are not limited to alkyl chains as in fatty acids, propionyl, formyl, and others. Particularly preferred carboxyl protecting groups include amides, esters, and ether-forming protecting groups. In one preferred embodiment, an acetyl group is used to protect the amino terminus and an amide group is used to protect the carboxyl terminus. These blocking groups enhance the helix-forming tendencies of the peptides. Certain particularly preferred blocking groups include alkyl groups of various lengths, e.g., groups having the formula: CH3—(CH2)n—CO— where n ranges from about 1 to about 20, preferably from about 1 to about 16 or 18, more preferably from about 3 to about 13, and most preferably from about 3 to about 10.
  • In certain embodiments, the protecting groups include, but are not limited to alkyl chains as in fatty acids, propionyl, formyl, and others. Particularly preferred carboxyl protecting groups include amides, esters, and ether-forming protecting groups. In one embodiment, an acetyl group is used to protect the amino terminus and/or an amino group is used to protect the carboxyl terminus (i.e., amidated carboxyl terminus). In certain embodiments blocking groups include alkyl groups of various lengths, e.g., groups having the formula: CH3—(CH2)n—CO— where n ranges from about 3 to about 20, preferably from about 3 to about 16, more preferably from about 3 to about 13, and most preferably from about 3 to about 10.
  • In certain embodiments, the acid group on the C-terminal can be blocked with an alcohol, aldehyde or ketone group and/or the N-terminal residue can have the natural amide group, or be blocked with an acyl, carboxylic acid, alcohol, aldehyde, or ketone group.
  • Other protecting groups include, but are not limited to Fmoc, t-butoxycarbonyl (t-BOC), 9-fluoreneacetyl group, 1-fluorenecarboxylic group, 9-florenecarboxylic group, 9-fluorenone-1-carboxylic group, benzyloxycarbonyl, xanthyl (Xan), trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), benzyloxy (BzlO), benzyl (Bzl), benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), 1-(4,4-dimentyl-2,6-diaxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl—Z), 2-bromobenzyloxycarbonyl (2-Br—Z), Benzyloxymethyl (Bom), cyclohexyloxy (cHxO), t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), Acetyl (Ac), and Trifluoroacetyl (TFA).
  • Protecting/blocking groups are well known to those of skill as are methods of coupling such groups to the appropriate residue(s) comprising the peptides of this invention (see, e.g., Greene et al., (1991) Protective Groups in Organic Synthesis, 2nd ed., John Wiley & Sons, Inc. Somerset, N.J.). In illustrative embodiment, for example, acetylation is accomplished during the synthesis when the peptide is on the resin using acetic anhydride. Amide protection can be achieved by the selection of a proper resin for the synthesis. For example, a rink amide resin can be used. After the completion of the synthesis, the semipermanent protecting groups on acidic bifunctional amino acids such as Asp and Glu and basic amino acid Lys, hydroxyl of Tyr are all simultaneously removed. The peptides released from such a resin using acidic treatment comes out with the n-terminal protected as acetyl and the carboxyl protected as NH2 and with the simultaneous removal of all of the other protecting groups.
  • Where amino acid sequences are disclosed herein, amino acid sequences comprising, one or more protecting groups, e.g., as described above (or any other commercially available protecting groups for amino acids used, e.g., in boc or fmoc peptide synthesis) are also contemplated.
  • G) Peptide Circularization.
  • In certain embodiments the peptides described herein (e.g., AMPs, compound AMPs, STAMPs, etc.) are circularized/cyclized to produce cyclic peptides. Cyclic peptides, as contemplated herein, include head/tail, head/side chain, tail/side chain, and side chain/side chain cyclized peptides. In addition, peptides contemplated herein include homodet, containing only peptide bonds, and heterodet containing in addition disulfide, ester, thioester-bonds, or other bonds.
  • The cyclic peptides can be prepared using virtually any art-known technique for the preparation of cyclic peptides. For example, the peptides can be prepared in linear or non-cyclized form using conventional solution or solid phase peptide syntheses and cyclized using standard chemistries. Preferably, the chemistry used to cyclize the peptide will be sufficiently mild so as to avoid substantially degrading the peptide. Suitable procedures for synthesizing the peptides described herein as well as suitable chemistries for cyclizing the peptides are well known in the art.
  • In various embodiments cyclization can be achieved via direct coupling of the N- and C-terminus to form a peptide (or other) bond, but can also occur via the amino acid side chains. Furthermore it can be based on the use of other functional groups, including but not limited to amino, hydroxy, sulfhydryl, halogen, sulfonyl, carboxy, and thiocarboxy. These groups can be located at the amino acid side chains or be attached to their N- or C-terminus.
  • Accordingly, it is to be understood that the chemical linkage used to covalently cyclize the peptides of the invention need not be an amide linkage. In many instances it may be desirable to modify the N- and C-termini of the linear or non-cyclized peptide so as to provide, for example, reactive groups that may be cyclized under mild reaction conditions. Such linkages include, by way of example and not limitation amide, ester, thioester, CH2—NH, etc. Techniques and reagents for synthesizing peptides having modified termini and chemistries suitable for cyclizing such modified peptides are well-known in the art.
  • Alternatively, in instances where the ends of the peptide are conformationally or otherwise constrained so as to make cyclization difficult, it may be desirable to attach linkers to the N- and/or C-termini to facilitate peptide cyclization. Of course, it will be appreciated that such linkers will bear reactive groups capable of forming covalent bonds with the termini of the peptide. Suitable linkers and chemistries are well-known in the art and include those previously described.
  • Cyclic peptides and depsipeptides (heterodetic peptides that include ester (depside) bonds as part of their backbone) have been well characterized and show a wide spectrum of biological activity. The reduction in conformational freedom brought about by cyclization often results in higher receptor-binding affinities. Frequently in these cyclic compounds, extra conformational restrictions are also built in, such as the use of D- and N-alkylated-amino acids, α,β-dehydro amino acids or α,α-disubstituted amino acid residues.
  • Methods of forming disulfide linkages in peptides are well known to those of skill in the art (see, e.g., Eichler and Houghten (1997) Protein Pept. Lett. 4: 157-164). Reference may also be made to Marlowe (1993) Biorg. Med. Chem. Lett. 3: 437-44 who describes peptide cyclization on TFA resin using trimethylsilyl (TMSE) ester as an orthogonal protecting group; Pallin and Tam (1995) J. Chem. Soc. Chem. Comm. 2021-2022) who describe the cyclization of unprotected peptides in aqueous solution by oxime formation; Algin et al. (1994) Tetrahedron Lett. 35: 9633-9636 who disclose solid-phase synthesis of head-to-tail cyclic peptides via lysine side-chain anchoring; Kates et al. (1993) Tetrahedron Lett. 34: 1549-1552 who describe the production of head-to-tail cyclic peptides by three-dimensional solid phase strategy; Tumelty et al. (1994) J. Chem. Soc. Chem. Comm. 1067-1068, who describe the synthesis of cyclic peptides from an immobilized activated intermediate, where activation of the immobilized peptide is carried out with N-protecting group intact and subsequent removal leading to cyclization; McMurray et al. (1994) Peptide Res. 7: 195-206) who disclose head-to-tail cyclization of peptides attached to insoluble supports by means of the side chains of aspartic and glutamic acid; Hruby et al. (1994) Reactive Polymers 22: 231-241) who teach an alternate method for cyclizing peptides via solid supports; and Schmidt and Langer (1997) J. Peptide Res. 49: 67-73, who disclose a method for synthesizing cyclotetrapeptides and cyclopentapeptides.
  • These methods of peptide cyclization are illustrative and non-limiting. Using the teaching provide herein, other cyclization methods will be available to one of skill in the art.
  • H) Identification/Verification of Active Peptides
  • The active AMPs, STAMPs and the like can be identified and/or validated using an in vitro screening assay. Indeed, in many instances the AMPs and/or STAMPS described herein will be used in vitro as preservatives, topical antimicrobial treatments, and the like. Additionally, despite certain apparent limitations of in vitro susceptibility tests, clinical data indicate that a good correlation exists between minimal inhibitory concentration (MIC) test results and in vivo efficacy of antibiotic compounds (see, e.g., Murray et al. (1994) Antimicrobial Susceptibility Testing, Poupard et al., eds., Plenum Press, New York; Knudsen et al. (1995) Antimicrob. Agents Chemother. 39(6): 1253-1258; and the like). Thus, AMPs useful for treating infections and diseases related thereto are also conveniently identified by demonstrated in vitro antimicrobial activity against specified microbial targets, e.g., as illustrated in Table 4).
  • Typically, the in vitro antimicrobial activity of antimicrobial agents is tested using standard NCCLS bacterial inhibition assays, or MIC tests (see, National Committee on Clinical Laboratory Standards “Performance Standards for Antimicrobial Susceptibility Testing,” NCCLS Document M100-S5 Vol. 14, No. 16, December 1994; “Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically-Third Edition,” Approved Standard M7-A3, National Committee for Clinical Standards, Villanova, Pa.).
  • It will be appreciated that other assays as are well known in the art or that will become apparent to those having skill in the art upon review of this disclosure may also be used to identify active AMPs. Such assays include, for example, the assay described in Lehrer et al. (1988) J. Immunol. Meth., 108: 153 and Steinberg and Lehrer, “Designer Assays for Antimicrobial Peptides: Disputing the ‘One Size Fits All’ Theory,” In: Antibacterial Peptide Protocols, Shafer, Ed., Humana Press, N.J. Generally, active peptides of the invention will exhibit MICs (as measured using the assays described in the examples) of less than about 100 preferably less than about 80 or 60 more preferably about 50 μM or less, about 25 μM or less, or about 15 μM or less, or about 10 μM or less.
  • IV. Administration and Formulations.
  • A) Pharmaceutical Formulations.
  • In certain embodiments, the antimicrobial peptides and/or the chimeric constructs (e.g., targeting moieties attached to antimicrobial peptide(s), targeting moieties attached to detectable label(s), etc.) are administered to a mammal in need thereof, to a cell, to a tissue, to a composition (e.g., a food), etc.). In various embodiments the compositions can be administered to detect and/or locate, and/or quantify the presence of particular microorganisms, microorganism populations, biofilms comprising particular microorganisms, and the like. In various embodiments the compositions can be administered to inhibit particular microorganisms, microorganism populations, biofilms comprising particular microorganisms, and the like.
  • These active agents (antimicrobial peptides and/or chimeric moieties) can be administered in the “native” form or, if desired, in the form of salts, esters, amides, prodrugs, derivatives, and the like, provided the salt, ester, amide, prodrug or derivative is suitable pharmacologically, i.e., effective in the present method(s). Salts, esters, amides, prodrugs and other derivatives of the active agents can be prepared using standard procedures known to those skilled in the art of synthetic organic chemistry and described, for example, by March (1992) Advanced Organic Chemistry; Reactions, Mechanisms and Structure, 4th Ed. N.Y. Wiley-Interscience.
  • Methods of formulating such derivatives are known to those of skill in the art. For example, the disulfide salts of a number of delivery agents are described in PCT Publication WO 2000/059863 which is incorporated herein by reference. Similarly, acid salts of therapeutic peptides, peptoids, or other mimetics, and can be prepared from the free base using conventional methodology that typically involves reaction with a suitable acid. Generally, the base form of the drug is dissolved in a polar organic solvent such as methanol or ethanol and the acid is added thereto. The resulting salt either precipitates or can be brought out of solution by addition of a less polar solvent. Suitable acids for preparing acid addition salts include, but are not limited to both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like. An acid addition salt can be reconverted to the free base by treatment with a suitable base. Certain particularly preferred acid addition salts of the active agents herein include halide salts, such as may be prepared using hydrochloric or hydrobromic acids. Conversely, preparation of basic salts of the active agents of this invention are prepared in a similar manner using a pharmaceutically acceptable base such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, trimethylamine, or the like. In certain embodiments basic salts include alkali metal salts, e.g., the sodium salt, and copper salts.
  • For the preparation of salt forms of basic drugs, the pKa of the counterion is preferably at least about 2 pH lower than the pKa of the drug. Similarly, for the preparation of salt forms of acidic drugs, the pKa of the counterion is preferably at least about 2 pH higher than the pKa of the drug. This permists the counterion to bring the solution's pH to a level lower than the pHmax to reach the salt plateau, at which the solubility of salt prevails over the solubility of free acid or base. The generalized rule of difference in pKa units of the ionizable group in the active pharmaceutical ingredient (API) and in the acid or base is meant to make the proton transfer energetically favorable. When the pKa of the API and counterion are not significantly different, a solid complex may form but may rapidly disproportionate (i.e., break down into the individual entities of drug and counterion) in an aqueous environment.
  • Preferably, the counterion is a pharmaceutically acceptable counterion. Suitable anionic salt forms include, but are not limited to acetate, benzoate, benzylate, bitartrate, bromide, carbonate, chloride, citrate, edetate, edisylate, estolate, fumarate, gluceptate, gluconate, hydrobromide, hydrochloride, iodide, lactate, lactobionate, malate, maleate, mandelate, mesylate, methyl bromide, methyl sulfate, mucate, napsylate, nitrate, pamoate (embonate), phosphate and diphosphate, salicylate and disalicylate, stearate, succinate, sulfate, tartrate, tosylate, triethiodide, valerate, and the like, while suitable cationic salt forms include, but are not limited to aluminum, benzathine, calcium, ethylene diamine, lysine, magnesium, meglumine, potassium, procaine, sodium, tromethamine, zinc, and the like.
  • In various embodiments preparation of esters typically involves functionalization of hydroxyl and/or carboxyl groups that are present within the molecular structure of the active agent. In certain embodiments, the esters are typically acyl-substituted derivatives of free alcohol groups, i.e., moieties that are derived from carboxylic acids of the formula RCOOH where R is alky, and preferably is lower alkyl. Esters can be reconverted to the free acids, if desired, by using conventional hydrogenolysis or hydrolysis procedures.
  • Amides can also be prepared using techniques known to those skilled in the art or described in the pertinent literature. For example, amides may be prepared from esters, using suitable amine reactants, or they may be prepared from an anhydride or an acid chloride by reaction with ammonia or a lower alkyl amine.
  • In various embodiments, the active agents identified herein are useful for parenteral, topical, oral, nasal (or otherwise inhaled), rectal, or local administration, such as by aerosol or transdermally, for detection and/or quantification, and or localization, and/or prophylactic and/or therapeutic treatment of infection (e.g., microbial infection). The compositions can be administered in a variety of unit dosage forms depending upon the method of administration. Suitable unit dosage forms, include, but are not limited to powders, tablets, pills, capsules, lozenges, suppositories, patches, nasal sprays, injectables, implantable sustained-release formulations, lipid complexes, etc.
  • The active agents (e.g., antimicrobial peptides and/or chimeric constructs) described herein can also be combined with a pharmaceutically acceptable carrier (excipient) to form a pharmacological composition. In certain embodiments, pharmaceutically acceptable carriers include those approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in/on animals, and more particularly in/on humans. A “carrier” refers to, for example, a diluent, adjuvant, excipient, auxiliary agent or vehicle with which an active agent of the present invention is administered.
  • Pharmaceutically acceptable carriers can contain one or more physiologically acceptable compound(s) that act, for example, to stabilize the composition or to increase or decrease the absorption of the active agent(s). Physiologically acceptable compounds can include, for example, carbohydrates, such as glucose, sucrose, or dextrans, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins, protection and uptake enhancers such as lipids, compositions that reduce the clearance or hydrolysis of the active agents, or excipients or other stabilizers and/or buffers.
  • Other physiologically acceptable compounds, particularly of use in the preparation of tablets, capsules, gel caps, and the like include, but are not limited to binders, diluent/fillers, disentegrants, lubricants, suspending agents, and the like.
  • In certain embodiments, to manufacture an oral dosage form (e.g., a tablet), an excipient (e.g., lactose, sucrose, starch, mannitol, etc.), an optional disintegrator (e.g. calcium carbonate, carboxymethylcellulose calcium, sodium starch glycollate, crospovidone etc.), a binder (e.g. alpha-starch, gum arabic, microcrystalline cellulose, carboxymethylcellulose, polyvinylpyrrolidone, hydroxypropylcellulose, cyclodextrin, etc.), and an optional lubricant (e.g., talc, magnesium stearate, polyethylene glycol 6000, etc.), for instance, are added to the active component or components (e.g., active peptide) and the resulting composition is compressed. Where necessary the compressed product is coated, e.g., known methods for masking the taste or for enteric dissolution or sustained release. Suitable coating materials include, but are not limited to ethyl-cellulose, hydroxymethylcellulose, polyoxyethylene glycol, cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, and Eudragit (Rohm & Haas, Germany; methacrylic-acrylic copolymer).
  • Other physiologically acceptable compounds include wetting agents, emulsifying agents, dispersing agents or preservatives that are particularly useful for preventing the growth or action of microorganisms. Various preservatives are well known and include, for example, phenol and ascorbic acid. One skilled in the art would appreciate that the choice of pharmaceutically acceptable carrier(s), including a physiologically acceptable compound depends, for example, on the route of administration of the active agent(s) and on the particular physio-chemical characteristics of the active agent(s).
  • In certain embodiments the excipients are sterile and generally free of undesirable matter. These compositions can be sterilized by conventional, well-known sterilization techniques. For various oral dosage form excipients such as tablets and capsules sterility is not required. The USP/NF standard is usually sufficient.
  • In certain therapeutic applications, the compositions of this invention are administered, e.g., topically administered or administered to the oral or nasal cavity, to a patient suffering from infection or at risk for infection or prophylactically to prevent dental caries or other pathologies of the teeth or oral mucosa characterized by microbial infection in an amount sufficient to prevent and/or cure and/or at least partially prevent or arrest the disease and/or its complications. An amount adequate to accomplish this is defined as a “therapeutically effective dose.” Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the active agents of the formulations of this invention to effectively treat (ameliorate one or more symptoms in) the patient.
  • The concentration of active agent(s) can vary widely, and will be selected primarily based on activity of the active ingredient(s), body weight and the like in accordance with the particular mode of administration selected and the patient's needs. Concentrations, however, will typically be selected to provide dosages ranging from about 0.1 or 1 mg/kg/day to about 50 mg/kg/day and sometimes higher. Typical dosages range from about 3 mg/kg/day to about 3.5 mg/kg/day, preferably from about 3.5 mg/kg/day to about 7.2 mg/kg/day, more preferably from about 7.2 mg/kg/day to about 11.0 mg/kg/day, and most preferably from about 11.0 mg/kg/day to about 15.0 mg/kg/day. In certain preferred embodiments, dosages range from about 10 mg/kg/day to about 50 mg/kg/day. In certain embodiments, dosages range from about 20 mg to about 50 mg given orally twice daily. It will be appreciated that such dosages may be varied to optimize a therapeutic and/or phophylactic regimen in a particular subject or group of subjects.
  • In certain embodiments, the active agents of this invention are administered to the oral cavity. This is readily accomplished by the use of lozenges, aersol sprays, mouthwash, coated swabs, and the like.
  • In certain embodiments, the active agent(s) of this invention are administered topically, e.g., to the skin surface, to a topical lesion or wound, to a surgical site, and the like.
  • In certain embodiments the active agents of this invention are administered systemically (e.g., orally, or as an injectable) in accordance with standard methods well known to those of skill in the art. In other preferred embodiments, the agents, can also be delivered through the skin using conventional transdermal drug delivery systems, i.e., transdermal “patches” wherein the active agent(s) are typically contained within a laminated structure that serves as a drug delivery device to be affixed to the skin. In such a structure, the drug composition is typically contained in a layer, or “reservoir,” underlying an upper backing layer. It will be appreciated that the term “reservoir” in this context refers to a quantity of “active ingredient(s)” that is ultimately available for delivery to the surface of the skin. Thus, for example, the “reservoir” may include the active ingredient(s) in an adhesive on a backing layer of the patch, or in any of a variety of different matrix formulations known to those of skill in the art. The patch may contain a single reservoir, or it may contain multiple reservoirs.
  • In one embodiment, the reservoir comprises a polymeric matrix of a pharmaceutically acceptable contact adhesive material that serves to affix the system to the skin during drug delivery. Examples of suitable skin contact adhesive materials include, but are not limited to, polyethylenes, polysiloxanes, polyisobutylenes, polyacrylates, polyurethanes, and the like. Alternatively, the drug-containing reservoir and skin contact adhesive are present as separate and distinct layers, with the adhesive underlying the reservoir which, in this case, may be either a polymeric matrix as described above, or it may be a liquid or hydrogel reservoir, or may take some other form. The backing layer in these laminates, which serves as the upper surface of the device, preferably functions as a primary structural element of the “patch” and provides the device with much of its flexibility. The material selected for the backing layer is preferably substantially impermeable to the active agent(s) and any other materials that are present.
  • Other formulations for topical delivery include, but are not limited to, ointments, gels, sprays, fluids, and creams. Ointments are semisolid preparations that are typically based on petrolatum or other petroleum derivatives. Creams containing the selected active agent are typically viscous liquid or semisolid emulsions, often either oil-in-water or water-in-oil. Cream bases are typically water-washable, and contain an oil phase, an emulsifier and an aqueous phase. The oil phase, also sometimes called the “internal” phase, is generally comprised of petrolatum and a fatty alcohol such as cetyl or stearyl alcohol; the aqueous phase usually, although not necessarily, exceeds the oil phase in volume, and generally contains a humectant. The emulsifier in a cream formulation is generally a nonionic, anionic, cationic or amphoteric surfactant. The specific ointment or cream base to be used, as will be appreciated by those skilled in the art, is one that will provide for optimum drug delivery. As with other carriers or vehicles, an ointment base should be inert, stable, nonirritating and nonsensitizing.
  • As indicated above, various buccal, and sublingual formulations are also contemplated.
  • In certain embodiments, one or more active agents of the present invention can be provided as a “concentrate”, e.g., in a storage container (e.g., in a premeasured volume) ready for dilution, or in a soluble capsule ready for addition to a volume of water, alcohol, hydrogen peroxide, or other diluent.
  • While the invention is described with respect to use in humans, it is also suitable for animal, e.g., veterinary use. Thus certain preferred organisms include, but are not limited to humans, non-human primates, canines, equines, felines, porcines, ungulates, largomorphs, and the like.
  • B) Nanoemulsion Formulations.
  • In certain embodiments the targeting peptides, antimicrobial peptides and/or chimeric moieties (e.g., STAMPs) as described herein are formulated in a nanoemulsion. Nanoemulsions include, but are not limited to oil in water (O/W) nanoemulsions, and water in oil (W/O) nanoemulsions. Nanoemulsions can be defined as emulsions with mean droplet diameters ranging from about 20 to about 1000 nm. Usually, the average droplet size is between about 20 nm or 50 nm and about 500 nm. The terms sub-micron emulsion (SME) and mini-emulsion are used as synonyms.
  • Illustrative oil in water (O/W) nanoemulsions include, but are not limited to:
  • Surfactant micelles—micelles composed of small molecules surfactants or detergents (e.g., SDS/PBS/2-propanol) which are suitable for predominantly hydrophobic peptides.
  • Polymer micelles—micelles composed of polymer, copolymer, or block copolymer surfactants (e.g., Pluronic L64/PBS/2-propanol) which are suitable for predominantly hydrophobic peptides;
  • Blended micelles: micelles in which there is more than one surfactant component or in which one of the liquid phases (generally an alcohol or fatty acid compound) participates in the formation of the micelle (e.g., Octanoic acid/PBS/EtOH) which are suitable for predominantly hydrophobic peptides;
  • Integral peptide micelles—blended micelles in which the peptide serves as an auxiliary surfactant, forming an integral part of the micelle (e.g., amphipathic peptide/PBS/mineral oil) which are suitable for amphipathic peptides; and
  • Pickering (solid phase) emulsions—emulsions in which the peptides are associated with the exterior of a solid nanoparticle (e.g., polystyrene nanoparticles/PBS/no oil phase) which are suitable for amphipathic peptides.
  • Illustrative water in oil (W/O) nanoemulsions include, but are not limited to:
  • Surfactant micelles—micelles composed of small molecules surfactants or detergents (e.g., dioctyl sulfosuccinate/PBS/2-propanol, Isopropylmyristate/PBS/2-propanol, etc.) which are suitable for predominantly hydrophilic peptides;
  • Polymer micelles—micelles composed of polymer, copolymer, or block copolymer surfactants (e.g., PLURONIC® L121/PBS/2-propanol), which are suitable for predominantly hydrophilic peptides;
  • Blended micelles—micelles in which there is more than one surfactant component or in which one of the liquid phases (generally an alcohol or fatty acid compound) participates in the formation of the micelle (e.g., capric/caprylic diglyceride/PBS/EtOH) which are suitable for predominantly hydrophilic peptides;
  • Integral peptide micelles—blended micelles in which the peptide serves as an auxiliary surfactant, forming an integral part of the micelle (e.g., amphipathic peptide/PBS/polypropylene glycol) which are suitable for amphipathic peptides; and
  • Pickering (solid phase) emulsions—emulsions in which the peptides are associated with the exterior of a solid nanoparticle (e.g., chitosan nanoparticles/no aqueous phase/mineral oil) which are suitable for amphipathic peptides.
  • As indicated above, in certain embodiments the nanoemulsions comprise one or more surfactants or detergents. In some embodiments the surfactant is a non-anionic detergent (e.g., a polysorbate surfactant, a polyoxyethylene ether, etc.). Surfactants that find use in the present invention include, but are not limited to surfactants such as the TWEEN®, TRITON®, and TYLOXAPOL® families of compounds.
  • In certain embodiments the emulsions further comprise one or more cationic halogen containing compounds, including but not limited to, cetylpyridinium chloride. In still further embodiments, the compositions further comprise one or more compounds that increase the interaction (“interaction enhancers”) of the composition with microorganisms (e.g., chelating agents like ethylenediaminetetraacetic acid, or ethylenebis(oxyethylenenitrilo)tetraacetic acid in a buffer).
  • In some embodiments, the nanoemulsion further comprises an emulsifying agent to aid in the formation of the emulsion. Emulsifying agents include compounds that aggregate at the oil/water interface to form a kind of continuous membrane that prevents direct contact between two adjacent droplets. Certain embodiments of the present invention feature oil-in-water emulsion compositions that may readily be diluted with water to a desired concentration without impairing their anti-pathogenic properties.
  • In addition to discrete oil droplets dispersed in an aqueous phase, certain oil-in-water emulsions can also contain other lipid structures, such as small lipid vesicles (e.g., lipid spheres that often consist of several substantially concentric lipid bilayers separated from each other by layers of aqueous phase), micelles (e.g., amphiphilic molecules in small clusters of 50-200 molecules arranged so that the polar head groups face outward toward the aqueous phase and the apolar tails are sequestered inward away from the aqueous phase), or lamellar phases (lipid dispersions in which each particle consists of parallel amphiphilic bilayers separated by thin films of water).
  • These lipid structures are formed as a result of hydrophobic forces that drive apolar residues (e.g., long hydrocarbon chains) away from water. The above lipid preparations can generally be described as surfactant lipid preparations (SLPs). SLPs are minimally toxic to mucous membranes and are believed to be metabolized within the small intestine (see e.g., Hamouda et al., (1998) J. Infect. Disease 180: 1939).
  • In certain embodiments the emulsion comprises a discontinuous oil phase distributed in an aqueous phase, a first component comprising an alcohol and/or glycerol, and a second component comprising a surfactant or a halogen-containing compound. The aqueous phase can comprise any type of aqueous phase including, but not limited to, water (e.g., dionized water, distilled water, tap water) and solutions (e.g., phosphate buffered saline solution, or other buffer systems). The oil phase can comprise any type of oil including, but not limited to, plant oils (e.g., soybean oil, avocado oil, flaxseed oil, coconut oil, cottonseed oil, squalene oil, olive oil, canola oil, corn oil, rapeseed oil, safflower oil, and sunflower oil), animal oils (e.g., fish oil), flavor oil, water insoluble vitamins, mineral oil, and motor oil. In certain embodiments, the oil phase comprises 30-90 vol % of the oil-in-water emulsion (i.e., constitutes 30-90% of the total volume of the final emulsion), more preferably 50-80%.
  • In certain embodiments the alcohol, when present, is ethanol.
  • While the present invention is not limited by the nature of the surfactant, in some preferred embodiments, the surfactant is a polysorbate surfactant (e.g., TWEEN 20®, TWEEN 40®, TWEEN 60®, and TWEEN 80®)), a pheoxypolyethoxyethanol (e.g., TRITON® X-100, X-301, X-165, X-102, and X-200, and TYLOXAPOL®), or sodium dodecyl sulfate, and the like.
  • In certain embodiments a halogen-containing component is present. the nature of the halogen-containing compound, in some preferred embodiments the halogen-containing compound comprises a chloride salt (e.g., NaCl, KCl, etc.), a cetylpyridinium halide, a cetyltrimethylammonium halide, a cetyldimethylethylammonium halide, a cetyldimethylbenzylammonium halide, a cetyltributylphosphonium halide, dodecyltrimethylammonium halides, tetradecyltrimethylammonium halides, cetylpyridinium chloride, cetyltrimethylammonium chloride, cetylbenzyldimethylammonium chloride, cetylpyridinium bromide, cetyltrimethylammonium bromide, cetyldimethylethylammonium bromide, cetyltributylphosphonium bromide, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, and the like
  • In certain embodiments the emulsion comprises a quaternary ammonium compound. Quaternary ammonium compounds include, but are not limited to, N-alkyldimethyl benzyl ammonium saccharinate, 1,3,5-Triazine-1,3,5(2H,4H,6H)-triethanol; 1-Decanaminium, N-decyl-N,N-dimethyl-, chloride (or) Didecyl dimethyl ammonium chloride; 2-(2-(p-(Diisobuyl)cresosxy)ethoxy)ethyl dimethyl benzyl ammonium chloride; 2-(2-(p-(Diisobutyl)phenoxy)ethoxy)ethyl dimethyl benzyl ammonium chloride; alkyl 1 or 3 benzyl-1-(2-hydroxethyl)-2-imidazolinium chloride; alkyl bis(2-hydroxyethyl)benzyl ammonium chloride; alkyl demethyl benzyl ammonium chloride; alkyl dimethyl 3,4-dichlorobenzyl ammonium chloride (100% C12); alkyl dimethyl 3,4-dichlorobenzyl ammonium chloride (50% C14, 40% C12, 10% C16); alkyl dimethyl 3,4-dichlorobenzyl ammonium chloride (55% C14, 23% C12, 20% C16); alkyl dimethyl benzyl ammonium chloride; alkyl dimethyl benzyl ammonium chloride (100% C14); alkyl dimethyl benzyl ammonium chloride (100% C16); alkyl dimethyl benzyl ammonium chloride (41% C14, 28% C12); alkyl dimethyl benzyl ammonium chloride (47% C12, 18% C14); alkyl dimethyl benzyl ammonium chloride (55% C16, 20% C14); alkyl dimethyl benzyl ammonium chloride (58% C14, 28% C16); alkyl dimethyl benzyl ammonium chloride (60% C14, 25% C12); alkyl dimethyl benzyl ammonium chloride (61% C11, 23% C14); alkyl dimethyl benzyl ammonium chloride (61% C12, 23% C14); alkyl dimethyl benzyl ammonium chloride (65% C12, 25% C14); alkyl dimethyl benzyl ammonium chloride (67% C12, 24% C14); alkyl dimethyl benzyl ammonium chloride (67% C12, 25% C14); alkyl dimethyl benzyl ammonium chloride (90% C14, 5% C12); alkyl dimethyl benzyl ammonium chloride (93% C14, 4% C12); alkyl dimethyl benzyl ammonium chloride (95% C16, 5% C18); alkyl dimethyl benzyl ammonium chloride (and) didecyl dimethyl ammonium chloride; alkyl dimethyl benzyl ammonium chloride (as in fatty acids); alkyl dimethyl benzyl ammonium chloride (C12-C16); alkyl dimethyl benzyl ammonium chloride (C12-C18); alkyl dimethyl benzyl and dialkyl dimethyl ammonium chloride; alkyl dimethyl dimethybenzyl ammonium chloride; alkyl dimethyl ethyl ammonium bromide (90% C14, 5% C16, 5% C12); alkyl dimethyl ethyl ammonium bromide (mixed alkyl and alkenyl groups as in the fatty acids of soybean oil); alkyl dimethyl ethylbenzyl ammonium chloride; alkyl dimethyl ethylbenzyl ammonium chloride (60% C14); alkyl dimethyl isoproylbenzyl ammonium chloride (50% C12, 30% C14, 17% C16, 3% C18); alkyl trimethyl ammonium chloride (58% C18, 40% C16, 1% C14, 1% C12); alkyl trimethyl ammonium chloride (90% C18, 10% C16); alkyldimethyl(ethylbenzyl) ammonium chloride (C12-18); Di-(C8-10)-alkyl dimethyl ammonium chlorides; dialkyl dimethyl ammonium chloride; dialkyl dimethyl ammonium chloride; dialkyl dimethyl ammonium chloride; dialkyl methyl benzyl ammonium chloride; didecyl dimethyl ammonium chloride; diisodecyl dimethyl ammonium chloride; dioctyl dimethyl ammonium chloride; dodecyl bis(2-hydroxyethyl) octyl hydrogen ammonium chloride; dodecyl dimethyl benzyl ammonium chloride; dodecylcarbamoyl methyl dimethyl benzyl ammonium chloride; heptadecyl hydroxyethylimidazolinium chloride; hexahydro-1,3,5-thris(2-hydroxyethyl)-s-triazine; myristalkonium chloride (and) Quat RNIUM 14; N,N-Dimethyl-2-hydroxypropylammonium chloride polymer; n-alkyl dimethyl benzyl ammonium chloride; n-alkyl dimethyl ethylbenzyl ammonium chloride; n-tetradecyl dimethyl benzyl ammonium chloride monohydrate; octyl decyl dimethyl ammonium chloride; octyl dodecyl dimethyl ammonium chloride; octyphenoxyethoxyethyl dimethyl benzyl ammonium chloride; oxydiethylenebis (alkyl dimethyl ammonium chloride); quaternary ammonium compounds, dicoco alkyldimethyl, chloride; trimethoxysily propyl dimethyl octadecyl ammonium chloride; trimethoxysilyl quats, trimethyl dodecylbenzyl ammonium chloride; n-dodecyl dimethyl ethylbenzyl ammonium chloride; n-hexadecyl dimethyl benzyl ammonium chloride; n-tetradecyl dimethyl benzyl ammonium chloride; n-tetradecyl dimethyl ethylbenzyl ammonium chloride; and n-octadecyl dimethyl benzyl ammonium chloride.
  • Nanoemulsion formulations and methods of making such are well known to those of skill in the art and described for example in U.S. Pat. Nos. 7,476,393, 7,468,402, 7,314,624, 6,998,426, 6,902,737, 6,689,371, 6,541,018, 6,464,990, 6,461,625, 6,419,946, 6,413,527, 6,375,960, 6,335,022, 6,274,150, 6,120,778, 6,039,936, 5,925,341, 5,753,241, 5,698,219, an d5,152,923 and in Fanun et al. (2009) Microemulsions: Properties and Applications (Surfactant Science), CRC Press, Boca Ratan Fl.
  • C) Formulations Optimizing Activity.
  • In certain embodiments, formulations are selected to optimize binding specificity, and/or binding avidity, and/or antimicrobial activity, and/or stability/conformation of the targeting peptide, antimicrobial peptide, chimeric moiety, and/or STAMP. In this regard, it was a surprising discovery that the activity of certain STAMPs, and presumably the constituent targeting peptides and/or antimicrobial peptides was optimized in the presence of a salt. Accordingly, certain embodiments are contemplated where the targeting peptide and/or antimicrobial peptide, and/or STAMP is formulated in combination with one or more salts. The formulations disclosed herein, however, are not limited to those containing salt(s). Embodiments, are also contemplated where the targeting peptide and/or antimicrobial peptide, and/or STAMP is formulated without the presence of a salt.
  • In certain embodiments, sodium chloride plus a little potassium chloride resulted in the best activity of the salts tested. However, other salts, e.g., CaCl2, MgCl2, MnCl2 also enhanced activity. Accordingly, in certain embodiments, it is contemplated that the targeting peptide(s), and/or antimicrobial peptide(s), and/or chimeric moieties, and/or STAMPs are formulated with one or more salts.
  • In certain embodiments suitable salts include any of a number of pharmaceutically acceptable salts. Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, napthylate, mesylate, besylate, glucoheptonate, lactobionate, and laurylsulphonate salts and the like (see, e.g., Berge et al. (1977) J. Pharm. Sci. 66: 1-19), although it is noted that citrate salts appear to inhibit the activity of certain STAMPs.
  • In certain embodiments pharmaceutically acceptable salts of the present invention include the conventional nontoxic salts or quaternary ammonium salts of the compounds, e.g., from non-toxic organic or inorganic acids. For example, such conventional nontoxic salts include those derived from inorganic acids such as hydrochloride, hydrobromic, sulfuric, sulfamic, phosphoric, nitric, and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, palmitic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicyclic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, benzenesulfonic, ethane disulfonic, oxalic, isothionic, and the like.
  • In other cases, the compounds of the present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically-acceptable salts with pharmaceutically-acceptable bases. The term “pharmaceutically-acceptable salts” in these instances refers to the relatively non-toxic, inorganic and organic base addition salts of compounds of the present invention. These salts can likewise be prepared in situ in the administration vehicle or the dosage form manufacturing process, or by separately treating the compound in its free acid form with a suitable base, such as the hydroxide, carbonate or bicarbonate of a pharmaceutically-acceptable metal cation, with ammonia, or with a pharmaceutically-acceptable organic primary, secondary or tertiary amine. Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like. Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like (see, for example, Berge et al., supra; and Stahl and Wermuth (2002) Handbook of Pharmaceutical Salts: Properties, Selection, and Use, Wiley-VCH, Zurich, Switzerland).
  • In various embodiments, the salt is simply a sodium chloride and/or a potassium chloride and can readily be prepared, for example, as a phosphate buffered saline (PBS) solution. In certain embodiments, the salt concentration is comparable to that found in 0.5×PBS to about 2.5×PBS, more preferably from about 0.5×PBS to about 1.5×PBS. In certain embodiments optimum activity has been observed in 1×PBS.
  • In various embodiments, the pH of the formulation ranges from about pH 5.0 to about pH 8.5, preferably from about pH 6.0 to about pH 8.0, more preferably from about pH 7.0 to about pH 8.0. In certain embodiments the pH is about pH 7.4.
  • While optimum results have been observed for certain STAMPS using a PBS buffer system, other buffer systems are also acceptable. Such buffers include, but are not limited to sulfate buffers, carbonate buffers, Tris buffers, CHAPS buffers, PIPES buffers, and the like, as long as the salt is included.
  • In various embodiments, the targeting peptide, and/or antimicrobial peptide, and/or chimeric moiety, and/or STAMP is present in the formulation at a concentration ranging from about 1 nM, to about 1, 10, or 100 mM, more preferably from about 1 nM, about 10 nM, about 100 nM, about 1 or about 10 μM to about 50 about 100 about 200 μm, about 300 about 400 or about 500 preferably from about 1 about 10 about 25 or about 50 μM to about 1 mM, about 10 mM, about 20 mM, or about 5 mM, most preferably from about 10 about 20 or about 50 μM to about 100 μM, about 150 μM, or about 200 μM.
  • D) Home Health Care/Hygiene Product Formulations.
  • In certain embodiments, one or more of the targeting peptide(s), and/or antimicrobial peptides (AMPs) and/or chimeric moieties, and/or STAMPS described herein are incorporated into healthcare formulations, e.g., for home use. Such formulations include, but are not limited to toothpaste, mouthwash, tooth whitening strips or solutions, contact lens storage, wetting, or cleaning solutions, dental floss, toothpicks, toothbrush bristles, oral sprays, oral lozenges, nasal sprays, aerosolizers for oral and/or nasal application, wound dressings (e.g., bandages), and the like.
  • For example, chimeric moieties and/or STAMPs, and/or AMPs directed against S. mutans are well suited for inhibiting frequency or severity of dental caries formation, plaque formation, periodontal disease, and/or halitosis.
  • Chimeric moieties and/or STAMPs, and/or AMPs directed against Corynebacterium spp, when applied to a skin surface can reduce/eliminate Corynebacterium resulting in a reduction of odors. Such moieties are readily incorporated in soaps, antibiotics, antiseptics, disinfectants, and the like.
  • The formulation of such health products is well known to those of skill, and the antimicrobial peptides and/or chimeric constructs are simply added to such formulations in an effective dose (e.g., a prophylactic dose to inhibit dental carie formation, etc.).
  • For example, toothpaste formulations are well known to those of skill in the art. Typically such formulations are mixtures of abrasives and surfactants; anticaries agents, such as fluoride; tartar control ingredients, such as tetrasodium pyrophosphate and methyl vinyl ether/maleic anhydride copolymer; pH buffers; humectants, to prevent dry-out and increase the pleasant mouth feel; and binders, to provide consistency and shape (see, e.g., Table 17). Binders keep the solid phase properly suspended in the liquid phase to prevent separation of the liquid phase out of the toothpaste. They also provide body to the dentifrice, especially after extrusion from the tube onto the toothbrush.
  • TABLE 17
    Typical components of toothpaste.
    Ingredients Wt %
    Humectants 40-70
    Water  0-50
    Buffers/salts/tartar 0.5-10 
    control
    Organic thickeners 0.4-2  
    (gums)
    Inorganic thickeners  0-12
    Abrasives 10-50
    Actives (e.g., triclosan) 0.2-1.5
    Surfactants 0.5-2  
    Flavor and sweetener 0.8-1.5

    Fluoride sources provide 1000-15000 ppm fluorine.
  • Table 18 lists typical ingredients used in formulations; the final combination will depend on factors such as ingredient compatibility and cost, local customs, and desired benefits and quality to be delivered in the product. It will be recognized that one or more antimicrobial peptides and/or chimeric constructs described herein can simply be added to such formulations or used in place of one or more of the other ingredients.
  • TABLE 18
    List of typical ingredients.
    Tartar
    Inorganic Control
    Gums Thickeners Abrasives Surfactants Humectants Ingredient
    Sodium Silica Hydrated Sodium Glycerine Tetrasodium
    carboxymethyl thickeners silica lauryl sulfate pyrophosphate
    cellulose
    Cellulose ethers Sodium Dicalcium Sodium N- Sorbitol Gantrez S-70
    aluminum phosphate lauryl
    silicates digydrate sarcosinate
    Xanthan Gum Clays Calcium Pluronics Propylene Sodium tri-
    carbonate glycol polyphosphate
    Carrageenans Sodium Xylitol
    bicarbonate
    Sodium alginate Calcium Sodium Polyethylene
    pyrophosphate lauryl glycol
    sulfoacetate
    Carbopols Alumina
  • One illustrative formulation described in U.S. Pat. No. 6,113,887 comprises (1) a water-soluble bactericide selected from the group consisting of pyridinium compounds, quaternary ammonium compounds and biguanide compounds in an amount of 0.001% to 5.0% by weight, based on the total weight of the composition; (2) a cationically-modified hydroxyethylcellulose having an average molecular weight of 1,000,000 or higher in the hydroxyethylcellulose portion thereof and having a cationization degree of 0.05 to 0.5 mol/glucose in an amount of 0.5% to 5.0% by weight, based on the total weight of the composition; (3) a surfactant selected from the group consisting of polyoxyethylene polyoxypropylene block copolymers and alkylolamide compounds in an amount of 0.5% to 13% by weight, based on the total weight of the composition; and (4) a polishing agent of the non-silica type in an amount of 5% to 50% by weight, based on the total weight of the composition. In certain embodiments, the antimicrobial peptide(s) and/or chimeric construct(s) described herein can be used in place of the bactericide or in combination with the bactericide.
  • Similarly, mouthwash formulations are also well known to those of skill in the art. Thus, for example, mouthwashes containing sodium fluoride are disclosed in U.S. Pat. Nos. 2,913,373, 3,975,514, and 4,548,809, and in US Patent Publications US 2003/0124068 A1, US 2007/0154410 A1, and the like. Mouthwashes containing various alkali metal compounds are also known: sodium benzoate (WO 9409752); alkali metal hypohalite (US 20020114851A1); chlorine dioxide (CN 1222345); alkali metal phosphate (US 2001/0002252 A1, US 2003/0007937 A1); hydrogen sulfate/carbonate (JP 8113519); cetylpyridium chloride (CPC) (see, e.g., U.S. Pat. No. 6,117,417, U.S. Pat. No. 5,948,390, and JP 2004051511). Mouthwashes containing higher alcohol (see, e.g., US 2002/0064505 A1, US 2003/0175216 A1); hydrogen peroxide (see, e.g., CN 1385145); CO2 gas bubbles (see, e.g., JP 1275521 and JP 2157215) are also known. In certain embodiments, these and other mouthwash formulations can further comprise one or more of the AMPs or compound AMPs of this invention.
  • Contact lens storage, wetting, or cleaning solutions, dental floss, toothpicks, toothbrush bristles, oral sprays, oral lozenges, nasal sprays, and aerosolizers for oral and/or nasal application, and the like are also well known to those of skill in the art and can readily be adapted to incorporate one or more antimicrobial peptide(s) and/or chimeric construct(s) described herein.
  • The foregoing pharmaceutical and/or home healthcare formulations and/or devices are meant to be illustrative and not limiting. Using teaching provided herein, the antimicrobial peptide(s) and/or chimeric construct(s) described herein can readily be incorporated into other products.
  • E) Illustrative Oral Care Formulations.
  • The targeting peptide(s), and/or antimicrobial peptide(s), and/or chimeric moieties, and/or STAMPs described herein can be used for a number of applications, e.g., as described above. In certain embodiments anti-S. mutans STAMPs, AMPs, and/or other chimeric moieties can be used to reduce the incidence or severity of dental caries, inhibit plaque formation, reduce halitosis, and the like. Accordingly, in certain embodiments, such moieties are included in devices and formulations for dental applications e.g., tea or other drinks, toothpick coatings, dental floss coatings, toothpaste, gel, mouthwash, varnish, even professional dental products.
  • In certain embodiments, methods of treating or reducing the incidence, duration, or severity of periodontal disease are provided. The methods can include applying to the gingival crevice or periodontal pocket a composition comprising a targeting peptide, and/or antimicrobial peptide, and/or STAMP, and/or other chimeric moiety as described herein with a carrier/stabilizing agent. In the composition applied, the carrier/stabilizing agent can provide retention, tissue penetration, deposition and sustained release of the active agent (e.g., STAMP) for reducing the population of specific bacterial species within a periodontal biofilm and associated tissues. In certain embodiments, the carrier agent provides penetration and retention into the gingival crevice or periodontal pocket and associated tissues with sustained release of the active agent to enhance the reduction in population of select bacteria within the gingival tissue and dentinal tubule tissue.
  • In various embodiments, carrier agents can include, but are not limited to polylactide, polyglycolide, polylactide-co-glycolide, polycaprolactone, cellulosic-based polymers, ethylene glycol polymers and its copolymers, oxyethylene polymers, polyvinyl alcohol, chitosan and hyaluronan and its copolymers. In an aspect, the carrier agents include hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose, hydroxymethyl cellulose, polyvinyl alcohol, polyethylene glycol, polyethylene oxide, ethylene oxide-propylene oxide co-polymers, chitosan, hyaluronan and its copolymers, or combinations thereof. In another aspect, the carrier agents include hyaluronan or hyaluronic acid and copolymers including salts of hyaluronic acid, esters of hyaluronic acid, cross-linked gels of hyaluronic acid, enzymatic derivatives of hyaluronic acid, chemically modified derivatives of hyaluronic acid or combinations thereof. As used herein, hyaluronic acid broadly refers to naturally occurring, microbial and synthetic derivatives of acidic polysaccharides of various molecular weights constituted by residues of D-glucuronic acid polysaccharides and N-acetyl-D-glucosamine.
  • In certain embodiments, the active agent (e.g., STAMP, AMP, etc.) and the carrier agent are in the form of an admixture, in the form of a complex, covalently coupled, or a combination thereof. In certain embodiments, the carrier agent comprises a bioadhesive. Suitable bioadhesive carrier agents include, but are not limited to a cellulose based polymer and/or a dextrin. Suitable cellulose based polymers include, but are not limited to hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxymethyl cellulose, or a mixture thereof. In one illustrative embodiment, the bioadhesive carrier agent includes polylactide, polyglycolide, polylactide-co-glycolide, polyethylene glycol, hyaluronan, hyaluronic acid, chitosan, or a mixture thereof. In certain embodiments the bioadhesive carrier agent can include a copolymer comprising polyethylene glycol, hyaluronan, hyaluronic acid, chitosan, or a mixture thereof.
  • In certain embodiments, the carrier agent penetrates periodontal tissues. Suitable penetrating carrier agents include, but are not limited to hyaluronic acid, a hyaluronic acid derivative, chitosan, a chitosan derivative, or a mixture thereof. In an embodiment, the penetrating carrier agent includes a salt of hyaluronic acid, an ester of hyaluronic acid, an enzymatic derivative of hyaluronic acid, a cross-linked gel of hyaluronic acid, a chemically modified derivative of hyaluronic acid, or a mixture thereof.
  • V. Microorganism Detection.
  • As indicated above, the targeting moieties and/or STAMPs are useful in diagnostic compositions and methods to determine the presence or absence and/or to quantify the amount of one or microorganisms present in the environment, in a food stuff, in a biological sample, and the like.
  • For example, targeting peptide-antimicrobial peptide conjugates (e.g. Specifically targeted antimicrobial peptides (STAMPs)) can be used as diagnostic reagents. STAMPs (and other targeted antimicrobial constructs described herein) have the ability to specifically bind to microorganisms, for example, S. mutans, and permeabilize or disrupt their membrane such that cell impermeable dyes or other reagent (propidium iodide, etc.) may enter the microorganism or intracellular molecules or contents (ATP, DNA, Calcium, etc.) of the targeted microorganism are caused to be released into the environment for analysis. In one method a STAMP, for example, C16G2, can permeabilize or disrupt the membrane of target microorganisms, for example, S. mutans, in a prepared culture or clinical sample by itself, in a biofilm in vitro or in vivo. To the sample a cell impermeable dye (e.g. propidium iodide, etc.) is added to label and allow for detection of those microorganisms targeted by the STAMP. Cell permeable dyes (e.g. SYTO9) can also be added to label and detect the entire population of microorganisms in the sample. Labeled cells can then be quantified by fluorescence microscopy, fluorometry, flow cytometry or other method.
  • In another example, a STAMP treated sample is mixed with luciferase and luciferin which reacts with the ATP released from the STAMP treated cells and the resulting luminescence is used to detected and quantify targeted cells.
  • VI. Kits.
  • In another embodiment this invention provides kits for the inhibition of an infection and/or for the treatment and/or prevention of dental caries in a mammal. The kits typically comprise a container containing one or more of the active agents (i.e., the antimicrobial peptide(s) and/or chimeric construct(s)) described herein. In certain embodiments the active agent(s) can be provided in a unit dosage formulation (e.g., suppository, tablet, caplet, patch, etc.) and/or may be optionally combined with one or more pharmaceutically acceptable excipients.
  • In certain embodiments the kits comprise one or more of the home healthcare product formulations described herein (e.g., toothpaste, mouthwash, tooth whitening strips or solutions, contact lens storage, wetting, or cleaning solutions, dental floss, toothpicks, toothbrush bristles, oral sprays, oral lozenges, nasal sprays, aerosolizers for oral and/or nasal application, and the like).
  • In certain embodiments kits are provided for detecting and/or locating and/or quantifying certain target microorganisms and/or cells or tissues comprising certain target microorganisms, and/or prosthesis bearing certain target microorganisms, and/or biofilms comprising certain target microorganisms. In various embodiments these kits typically comprise a chimeric moiety comprising a targeting moiety and a detectable label as described herein and/or a targeting moiety attached to an affinity tag for use in a pretargeting strategy as described herein.
  • In addition, the kits optionally include labeling and/or instructional materials providing directions (i.e., protocols) for the practice of the methods or use of the “therapeutics” or “prophylactics” or detection reagents of this invention. Certain instructional materials describe the use of one or more active agent(s) of this invention to therapeutically or prophylactically to inhibit or prevent infection and/or to inhibit the formation of dental caries. The instructional materials may also, optionally, teach preferred dosages/therapeutic regiment, counter indications and the like.
  • While the instructional materials typically comprise written or printed materials they are not limited to such. Any medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.
  • EXAMPLES
  • The following examples are offered to illustrate, but not to limit the claimed invention.
  • Example 1 Design and Activity of a “Dual-Targeted” Antimicrobial Peptide
  • Numerous reports have indicated the important role of human normal flora in the prevention of microbial pathogenesis and disease. Evidence suggests that infections at mucosal surfaces result from the outgrowth of subpopulations or clusters within a microbial community, and are not linked to one pathogenic organism alone. In order to preserve the protective normal flora while treating the majority of infective bacteria in the community, a tunable therapeutic is necessary that can discriminate between benign bystanders and multiple pathogenic organisms. Here we describe the proof-of-principle for such a multi-targeted antimicrobial: a multiple-headed specifically-targeted antimicrobial peptide (MH-STAMP). The completed MH-STAMP, M8(KH)-20, displays specific activity against targeted organisms in vitro (Pseudomonas aeruginosa and Streptococcus mutans) and can remove both species from a mixed planktonic culture with little impact against untargeted bacteria. These results demonstrate that a functional, dual-targeted molecule can be constructed from wide-spectrum antimicrobial peptide precursor.
  • Introduction
  • For nearly 30 years antimicrobial peptides (AMPs) have been rigorously investigated as alternatives to small molecule antibiotics and potential solutions to the growing crisis of antibiotic resistant bacterial infections (Ganz (2003) Nat Rev Immunol., 3: 710-720; Hancock and Lehrer (1998)., 16: 82-88). Numerous reports have characterized potential AMPs from natural sources, and a great body of work has been carried out designing “tailor-made” AMPs due to the approachable nature of solid-phase peptide synthesis (SPPS) (Genco et al. (2003) Int J Antimicrob Agents, 21: 75-78; He and Eckert (2007) Antimicrob Agents Chemother., 51: 1351-1358). Several examples of the latter have shown remarkable activities in vitro against fungi, Gram-positive and Gram-negative bacteria, as well as some enveloped viruses (Brogden (2005) Nat Rev Microbiol. 3: 238-250).
  • Unlike small molecule antibiotics that may lose activity when their basic structures are modified even incrementally, peptides are a convenient canvas for molecular alteration. AMPs can be optimized through the incorporation of more or less hydrophobic or charged amino acids, which has been shown to affect selectivity for Gram-positive, Gram-negative or fungal membranes (Muhle and Tam J P (2001) Biochemistry, 40: 5777-5785; Tossi et al. (2000) Biopolymers 55: 4-30). Additionally, lysine residues can be utilized to improve AMP activity per μM. In this approach, multiple AMP chains can be attached to a single peptide scaffold through branching from lysine epsilon-amines (Tam et al. (2992) Eur. J. Biochem., 269: 923-932; Pini et al. (2005) Antimicrob Agents Chemother., 2005; 49: 2665-2672). AMP activity can be specifically tuned through the attachment of a targeting peptide region, as described for a novel class of molecules, the specifically-targeted antimicrobial peptides, or STAMPs (Eckert et al. (2006) Antimicrob Agents Chemother., 50: 3651-3657; Eckert et al. (2006) Antimicrob Agents Chemother., 50: 1480-1488). These chimeric molecules can consist of functionally independent targeting and killing moieties within a linear peptide sequence. A pathogenic bacterium recognized (i.e. bound) by the targeting peptide can be eliminated from a multi-species community with little impact to bystander normal flora. As an extension of this concept, we hypothesized that a STAMP could be constructed with multiple targeting peptide “heads” attached to a single AMP by utilizing a central lysine residue branch point. Potentially, targeting “heads” could be specific for the same pathogen, or have different binding profiles. Utilizing the former approach, microbial resistance evolution linked to a targeting peptide could be inhibited or reduced, as no single microbial population would have the genetic diversity necessary to mutate multiple discrete targeting peptide receptors in one cell (Drake et al. (1998) Genetics 148: 1667-1686).
  • Multi-headed STAMP (MH-STAMP) molecules with differing bacterial targets may have appeal in treating poly-microbial infections, or where it may be advantageous to remove a cluster of biofilm constituents without utilizing several distinct molecules; for example in the simultaneously treatment of dental caries and periodontitis, or in the eradication of the Propionibacteria spp. and Staphylococcus spp. involved in acne and skin infections, respectively.
  • In this example, we present the proof-of-principle design, synthesis and in vitro activity of such a MH-STAMP, M8(KH)-20. Previously, we identified two functional STAMP targeting domains, one with specific recognition of the cariogenic pathogen S. mutans (Eckert et al. (2006) Antimicrob Agents Chemother., 50: 3651-3657), and the other with Pseudomonas spp.-level selectivity (Eckert et al. (2006) Antimicrob Agents Chemother., 50: 3833-3838). Conjoined to a normally wide-spectrum linear AMP, we observed antimicrobial effects directed specifically to P. aeruginosa and S. mutans in vitro. Additionally, treatment of mixed bacterial communities with the multi-headed MH-STAMP resulted in the specific eradication of the target organisms with little impact on bystander population levels.
  • Materials and Methods
  • Bacterial Strains and Growth Conditions
  • P. aeruginosa ATCC 15692, Klebsiella pneumoniae KAY 2026 (Sprenger and Lengeler (1984) J Bacteriol., 157: 39-45), Escherichia coli DH5α (pFW5, spectinomycin resistance) (Podbielski et al. (1996) Gene, 177: 137-147), Staphylococcus aureus Newmann (Duthie and Lorenz (1952) J Gen Microbiol., 6: 95-107), and Staphylococcus epidermidis ATCC 35984 were cultivated under aerobic conditions at 37° C. with vigorous shaking. Aerobic Gram-negative organisms were grown in Lauri-Bertaini (LB) broth and Gram-positive bacteria in Brain-heart infusion (BHI) broth. Streptococcus mutans JM11 (spectinomycin resistant, UA140 background) was grown in Todd-Hewitt (TH) broth under anaerobic conditions (80% N2, 15% CO2, 5% H2) at 37° C. Merritt et al. (2005) J Microbiol Meth., 61: 161-170. All bacteria were grown overnight to an OD600 of 0.8-1.0 prior to appropriate dilution and antimicrobial testing.
  • Synthesis of Multi-Head STAMP Peptides
  • Conventional solid-phase peptide synthesis (SPPS) methodologies were utilized for the construction of all peptides shown in FIG. 15 (Symphony Synthesizer, PTI, Tucson, Ariz.). Chemicals, amino acids, and synthesis resins were purchased from Anaspec (San Jose, Calif.). BD2.20 (FIRKFLKKWLL (SEQ ID NO:3226), amidated c-terminus, mw 1491.92), an antimicrobial peptide developed in our laboratory with robust antimicrobial activity against a number of bacterial species (Table 19), served as the root sequence to which differing targeting peptides were attached: Firstly, BD2.20 was synthesized by SPPS (Rink-Amide-MBHA resin, 0.015 mmol), followed by the stepwise coupling of a functionalized alkane (NH2(CH2)7COOH), and an Fmoc-protected Lys (side-chain protected with 4-methyltrityl (Mtt)) to the N-terminus. Standard SPPS methods were then employed for the step-wise addition of the S. mutans targeting peptide M8 plus a tri-Gly linker region (TFFRFLNR-GGG (SEQ ID NO:3227)) to the N-terminal of the central Lys. After assembly of Fmoc-M8-GGG-K(Mtt)-(CH2)7CO-BD2.20 (SEQ ID NO:3228), the Fmoc group was removed with 25% piperidine in DMF and the N-terminal was re-protected with an acetyl group with Ac2O/DIEA (1:1, 20 molar excess) for 2 hours. The Mtt-protected amino group of the central Lys was then selectively exposed with 2% TFA in DCM (1.5 mL) for 15 minutes (three cycles of 5 min). The resulting product was reloaded into the synthesizer and the peptide sequence built from the Lys side-chain was completed with standard Fmoc SPPS methods. As shown in FIG. 15, the completed MH-STAMP M8(KH)-20 contained the side-chain peptide KH (Pseudomonas spp.-targeting, KKHRKHRKHRKH-GGG (SEQ ID NO:3229)), while in MH-STAMP M8(BL)-20 a peptide with no bacterial binding (data not shown), BL-1 (DAANEA-GGG), was utilized. BL(KH)-20 was constructed identically to M8(KH)-20, utilizing BL-1 in place of M8 (FIG. 15).
  • TABLE 19
    MICs of MH-STAMPs and component peptides.
    MIC (μM)
    P. aeruginosa E. coli K. pneumoniae S. mutans S. epidermidis S. aureus
    BD2.20 14.4 ± 4.40 5.47 ± 1.41 2.98 ± 0.47 2.86 ± 0.60 5.11 ± 1.58 5.625 ± 1.29
    M8(KH)-20 11.95 ± 3.32  2.72 ± 0.59 3.13 6.25 3.13  5.64 ± 1.07
    M8(BL)-20 50 5.97 ± 0.94 6.88 ± 1.98 6.25 6.25 18.05 ± 6.58
    BL(KH)-20 27.5 ± 7.90 6.25 6.25 6.25 6.25 6.25
    Average MIC with standard deviation, n = 10 assays.
  • Synthesis progression was monitored by the ninhydrin test, and completed peptides cleaved from the resin with 95% TFA utilizing appropriate scavengers, and precipitated in methyl tert-butyl ether. Purification and MH-STAMP quality was confirmed by HPLC (Waters, Milford, Mass.) using a linear gradient of increasing mobile phase (acetonitrile 10 to 90% in water with 0.1% TFA) and a Waters)(Bridge BEH 130 C18 column (4.6×100 mm, particle size 5 μm). Absorbance at 215 nm was utilized as the monitoring wavelength, though 260 and 280 nm were also collected. LC spectra were analyzed with MassLynx Software v.4.1 (Waters). Matrix-assisted laser desorption ionization (MALDI) mass spectroscopy was utilized to confirm correct peptide mass (Voyager System 4291, Applied Biosystems) (Anderson et al. (2008) Biotechnol Lett., 30: 813-818).
  • MIC Assay
  • Peptides were evaluated for basic antimicrobial activity by broth microdilution, as described previously (Eckert et al. (2006) Antimicrob Agents Chemother., 50: 3651-3657; Eckert et al. (2006) Antimicrob Agents Chemother., 50: 1480-1488). Briefly, ˜1×105 cfu/mL bacteria were diluted in TH (S. mutans), or Mueller-Hinton (MH) broth (all other organisms) and distributed to 96-well plates. Serially-diluted (2-fold) peptides were then added and the plates incubated at 37° C. for 18-24 h. Peptide MIC was determined as the concentration of peptide that completely inhibited organism growth when examined by eye (clear well). All experiments were conducted 10 times.
  • Post-Antibiotic Effect Assay
  • The activity and selectivity of MH-STAMPs after a 10 min incubation was determined by growth retardation experiments against targeted and untargeted bacteria in monocultures, as described previously (Id.). Cells from overnight cultures were diluted to ˜5×106 cfu/mL in MH (or TH with 1% sucrose for S. mutans), normalized by OD600 0.05-0.1 and seeded to 96-well plates. Cultures were then grown under the appropriate conditions for 2 h (3 h for S. mutans) prior to the addition of peptides for 10 min. Plates were then centrifuged at 3000×g for 5 min, the supernatants discarded, fresh medium returned (MH or TH without sucrose for S. mutans), and incubation resumed. Bacterial growth after treatment was then monitored over time by OD600.
  • Microbial Population Shift Assay
  • Mixed planktonic populations of P. aeruginosa, E. coli, S. epidermidis, and S. mutans were utilized to examine the potential of MH-STAMPs to direct species composition within a culture after treatment. Samples were prepared containing: ˜6×104 cfu/mL S. mutans, ˜2×104 cfu/mL E. coli, ˜2×104 cfu/mL S. epidermidis, and ˜0.5×104 cfu/mL P. aeruginosa in BHI (mixed immediately before peptide addition). Peptide (10 μM) or mock-treatment (1×PBS) was then added and samples were incubated at 37° C. for 24 h under anaerobic conditions (80% N2, 15% CO2, 5% H2). After incubation, samples were serially diluted (1:10) in 1×PBS and aliquots from each dilution were then spotted to agar plates selective for each species in the mixture: TH plus 800 μg/mL spectinomycin (S. mutans), LB plus 25 μg/mL ampicillin (P. aeruginosa), LB plus 200 μg/mL spectinomycin (E. coli), and mannitol salt agar (MSA, S. epidermidis) in order to quantitate survivors from each species. Plates were then incubated 37° C. under aerobic conditions (TH plates were incubated anaerobically) and colonies counted after 24 h to determine survivors. Expected colony morphologies were observed for each species when plated on selective media. Gram stains and direct microscopic observation (from select isolated colonies) were undertaken to confirm species identity (data not shown). The detection limit of the assay was 200 cfu/mL.
  • Results
  • Design and Synthesis of Multi-Headed STAMPs
  • We constructed a prototype MH-STAMP from the well-established targeting peptides KH (specific to Pseudomonas spp) and M8 (specific for Streptococcus mutans). The wide-spectrum antimicrobial peptide BD2.20 was utilized as the base AMP for all MH171 STAMP construction. BD2.20 is a novel synthetic AMP with a cationic and amphipathic residue arrangement, which has robust MICs against a variety of Gram-negative and Gram-positive organisms (Table 19). For the synthesis of MH-STMAP M8(KH)-20 (construct presented in FIG. 15), BD2.20 and a Lys (Mtt-protected side-chain) residue were joined via an activated alkane spacer, followed by addition of the M8 targeting peptide to the N-terminus of the product. Selective deprotection of the central Lys(Mtt) side chain was then undertaken and the KH targeting peptide attached. The correct molecular mass (4888.79) and ˜90% purity was confirmed by HPLC and MALDI mass spectrometry (FIG. 16).
  • The non-binding “blank” targeting peptide BL-1 was incorporated into the synthesis scheme in place of KH or M8 to construct variant MH-STAMPs possessing a single functional targeting head: M8(BL)-20 and BL(KH)-20. The correct MW and acceptable purity were observed for these MH-STAMPs (FIG. 15, data not shown).
  • General Antimicrobial Activity of Multi-Head Constructs
  • After synthesis, the completed MH-STAMPs were evaluated for general antimicrobial activity by MIC against a panel of bacteria. As shown in Table 19, the MH-STAMP constructs M8(KH)-20, BL(KH)-20, and M8(BL)-20 were found to have similar activity profiles to that of BD2.20 for the organisms examined (less than two titration steps in 10-fold difference). Additionally, we observed a difference in general susceptibility between P. aeruginosa and the other organisms tested, suggesting this bacterium is more resistant to BD2.20. Overall, these data indicate that the addition of the targeting domains to the base sequence was tolerated and did not completely inhibit the activity of the antimicrobial peptide.
  • Peptide selectivity could not be determined utilizing these methods, as STAMPs and their parent AMP molecules often display similar MICs, but have radically different antimicrobial kinetics and selectivity due to increased specific-killing mediated by the targeting regions (Id.). Therefore, we performed different experiments to test for antimicrobial selectivity and functional MH-STAMP construction.
  • Selectivity and Post-Antibiotic Effect of MH-STAMP Constructs
  • MH-STAMP antimicrobial kinetics was ascertained utilizing a variation of the classical post-antibiotic effect assay, which measures the ability of an agent to affect an organism's growth after a short exposure period. Monocultures of WI-STAMP-targeted and untargeted organisms were exposed to M8(KH)-20, M8(BL)-20, BL(KH)-20, or unmodified BD2.20, then allowed to recover. As shown in FIG. 17A, S. mutans growth was effectively retarded by M8-containing constructs (M8(KH)-20, M8(BL)-20), but was not altered by a MH-STAMP construct lacking this region (BL(KH)-20). Similarly, the growth of the other targeted bacterium, P. aeruginosa, was inhibited in a KH-dependant manner (FIG. 17B). In comparison, the non-targeted bacteria E. coli, S. aureus, and S. epidermidis were not inhibited by treatment with any MH-STAMP and were only inhibited by the base antimicrobial peptide BD2.20, which displayed robust antimicrobial activity against all examined strains. These results indicate that MH-STAMPs containing KH or M8 targeting domains have activity against P. aeruginosa or S. mutans, respectively, and not other bacteria. Furthermore, replacement of the targeting region with a non-binding peptide abolishes specific activity.
  • Ability of MH-STAMPs to Direct a “Population Shift” within a Mixed Species Population
  • We hypothesized that potential MH-STAMP dual-functionality could affect a particular set of bacteria within a mixed population, thereby promoting the outgrowth of non-targeted organisms and “shifting” the constituent makeup. To examine this possibility, defined mixed populations of planktonic cells were treated continuously and the make-up of the community examined after 24 h. As shown in FIG. 18, treatment with the wide spectrum AMP BD2.20 resulted in a significant loss of recoverable cfu/mL after 24 h from all species in the mixture. Treatment with M8(KH)-20 was found to alter this pattern; we observed ˜1×105 cfu/mL surviving E. coli and S. epidermidis, but did not recover S. mutans or P. aeruginosa cfu/mL. In BL(KH)-20 treated samples, P. aeruginosa cfu/mL were not observed, though we recovered higher than input cfu/mL from S. mutans and unchanged numbers of S. epidermidis and E. coli. In samples exposed to M8(BL)-20, S. mutans recoverable cfu/mL were greatly reduced compared to input cfu/mL, while other species were not affected or affected to a lesser extent. Interestingly, these results suggest that M8(KH)-20, M8(BL)-20, and BL(KH)-20 retain their ability to affect organisms recognized by the targeting regions present, even within a mixed population of bacteria.
  • Discussion
  • Our results indicate that we have successfully constructed a STAMP with dual antimicrobial specificities controlled by the targeting peptides present in the molecule; KH for Pseudomonas spp, M8 for S. mutans. In a closed multi-species system (FIG. 18), the dual specificity of M8(KH)-20 was readily discernable: the population of the culture “shifted” away from targeted organisms after MH-STAMP treatment. The targeted bacteria were eliminated and the population of untargeted organisms increased, to varying degrees, above-input cfu/mL. Additionally, interruption of KH or M8 in the MH-STAMP construct with the non-binding peptide BL-1 resulted in the expected elimination of only one targeted species. These results support the hypothesis that functional MH-STAMPs could be constructed from a wide-spectrum AMP base.
  • The emergence of metagenomics and the development of more sensitive molecular diagnostics has driven an increase in the understanding of human-associated microbial ecologies and host-microbe interactions (Aas et al. (2005) J Clin Microbiol., 43: 5721-5732; Boman (2000) Immunol Rev., 173: 5-16; Kreth et al. (2005) J Bacteria, 187: 7193-7203). At mucosal surfaces, it has become clear that our bodies harbor an abundance of residential flora which may impact innate and humoral immunity, nutrient availability, protection against pathogens, and even host physiology (Metges (2000) J Nutr., 130: 1857S-64; Sears (2005) Anaerobe, 11: 247-251; Lievin-Le et al. (2006) Clin Microbiol Rev., 19: 315-337; DiBaise et al. (2008) Mayo Clinic Proceedings 83: 460-469). Furthermore, findings have indicated that shifts in the diversity of normal flora are associated with negative clinical consequences; for example the overgrowth of S. mutans in the oral cavity during cariogenesis (linked to the uptake of sucrose) or the antibiotic-assisted colonization of the intestine by Clostridium difficle (Loesche (1986) Microbiol Rev., 50: 353-380; Gould and McDonald (2998) Crit Care 12: 203). Other population shifts may be linked to axilla odor (Corynebacteria spp) (Leyden et al. (1981) J Invest Dermatol., 77: 413-416; Elsner (2006) Curr Probl Dermatol., 33: 35-41), or even host obesity. Given the quantity and diversity of microbes present, pathogenesis at mucosal surfaces is not likely to be associated with the overgrowth of a single strain or species. More often, it is a population shift resulting in the predominance of two or more species; for example the persistence of Burkholderia cepacia and P. aeruginosa in cystic fibrosis airway or Treponema denticola and Porphymonas gingivalis and other “red cluster” organisms in gingivitis (Govan and Deretic (1996) Microbiol Rev., 60: 539-574; Paster et al. (2001) J Bacteriol., 183: 3770-3783). In many cases (such as the latter) these species may have only distant phylogenetic relationships and display differential susceptibilities to antibiotic therapies resulting in persistent disease progression despite treatment (Schlessinger (1988) Clin Microbiol Rev., 1: 54-59; Tresse et al. (1997) J Antimicrob Chemother., 40: 419-421). Currently, available treatments for infections of mucosal surfaces are largely non-specific (traditional small-molecule antibiotics, mechanical removal), and thus are not effective in retaining flora or shifting the constituent balance back to a health-associated composition (Keene and Shklair (1974) J Dent Res., 53: 1295). There is a need for a therapeutic treatment that can selectively target multiple pathogens, regardless of their phylogenetic relationship, and MH-STAMPs can help achieve this goal.
  • In monoculture experiments (FIG. 17), our results suggest that M8 or KH inclusion in the MH-STAMP drove activity towards S. mutans or P. aeruginosa, but also that the presence of a targeting domain reduced the activity of the parent AMP BD2.20 against untargeted organisms. In contrast, the results of our MIC assays (Table 19) indicate little difference in activity between BD2.20 and any MH-STAMP. Against untargeted organisms, the M8 and KH regions are likely to have a negative, but not completely inhibitory, impact on BD2.20 activity. Given the long duration of activity and the lower inoculum size in the MIC assay (compared with experiments in FIG. 17), it is likely that all BD2.20-containing peptides could reach equal levels of growth inhibition, despite large and target-specific differences in antimicrobial speed. This pattern of results was also observed when comparing MICs of targeted and untargeted organisms utilizing STAMPs against S. mutans and Pseudomonas mendocina (Eckert et al. (2006) Antimicrob Agents Chemother., 50: 3651-3657; Eckert et al. (2006) Antimicrob Agents Chemother., 50: 1480-1488).
  • Although more rigorous studies and a more medically relevant combination of pathogen targets is desirable, these findings indicate that it is possible to design an antimicrobial peptide-based therapeutic with multiple and defined fidelities in vitro. MH-STAMPs may help improve human health through the promotion of healthy microbial constituencies.
  • Example 2 Synthesis of Peptide—Porphyrin Conjugate
  • The mixture of coupling reagent HATU (5 eq. excess, 10 mg) and purpurin-18 (MW 564, 5 eq excess, 15 mg) in 600 mL dry dichloromethane (DCM):DMF:dimethylsulphoxide (DMSO) (1:1:1 (v/v)) was added to the peptide resin (1 molar equivalent, 15 mg) which was swelled by placing in minimal DMF for 30 min prior to reaction. 26 μL (10 molar equivalents) DIPEA was then added to the reaction flask to initiate the reaction. The reaction mixture was protected with argon and stirred at room temperature for 3 h.
  • After finishing, the reaction mixture was then passed down a sintered glass filtered vial and extensively washed with DMF and DCM to remove all waste reagents. The resin was then dried overnight in vacuum, and cleaved with 1 ml of trifluoroacetic acid (TFA)/thioanisole/water/EDT (10/0.5/0.5/025) for 2 hr at room temperature, and the cleavage solution was precipitated with 10 mL methyl-tert butyl ether. The precipitate was washed twice with the same amount of ether.
  • Example 3 Synthesis of Peptide—CSA Conjugate
  • To the fully protected peptide (solution of B43-GGG (FIDSFIRSF-GGG, 0.025 mmol) and tri-Boc-CSA-15 (0.0125 mol) in 300 μL DMF, DCC (7.7 mg), HOBt (5.1 mg) and 13 μL DIEA were added in iced-bath. After stirred at room temperature for four days, the reaction mixture was poured into 5 ml water and extracted with chloroform (5×3 mL). The CHCl3 extract was evaporated under vacuum and dried in a lyophilizer overnight. The dried CHCl3 extracts was then dissolved in 1 mL DCM followed by added 1 mL of TFA in iced-bath. The reaction mixture was further stirred at room temperature for 2 hours and precipitated with methyl tert-butyl ether (10 mL). The precipitate was further washed once with the same amount ether and dried in vacuum.
  • Example 4 STAMPs Against Corynebacterium jeikeium and Streptococcus mutans
  • This example illustrates the development of STAMPs to selectively target and reduce or eliminate Streptococcus mutans (dental caries) or Corynebacterium jeikeium (body odor, opportunistic infections) from mixed microbial populations.
  • Axilla odor is caused by overgrowth of, and metabolite production from, Corynebacterium spp, which replaces Staphylococcus and Micrococcus spp associated with less odor. Current hygiene (soaps, antibiotics, antiseptics, disinfectants) practices remove all bacteria, allowing the ratio of Corynebacteria to normal flora to remain high during regrowth. Deodorants and anti-perspirants are temporary solutions that hide or even exacerbate the problem.
  • S. mutans is the major etiological agent of dental caries. Current methods (tooth brushing, antiseptic mouthrinses) to treat cariogenesis have focused on complete bacterial removal, i.e., elimination of S. mutans and other harmless oral bacteria. Caries have persisted despite these methods, and in many cases, S. mutans can become the dominant organism in the mouth. Several S. mutans and acid-targeted approaches (probiotic replacement, saliva pH adjustment) are under development, but none have shown clinical efficacy.
  • This example describes a number of STAMPs that preferentially or selectively reduce or eliminate S. mutans and/or Corynebacterium spp from mixed populations.
  • Several lead STAMPs with specific activity against Corynebacterium jeikeium are also disclosed herein.
  • The STAMPs described herein comprise functional regions within a peptide molecule or a chemical conjugate. These regions include a targeting region comprising one or more targeting moieties (e.g., targeting peptides), a linker, and one or more killing moieties (e.g., antimicrobial peptides (AMPs), porphyrins, etc.).
  • The STAMPs function through the targeting region, which selectively accumulates STAMPs, and therefore killing regions, on or in proximity to the microorganism of interest. Other flora are not recognized by the targeting region, and therefore avoid or have reduced STAMP accumulation and cellular damage.
  • In certain embodiments, STAMPs against oral S. mutans are best applied formulated in a mouthrinse, toothpaste, cream, gel, or adhesive strip, and in certain preferably embodiments, are provided in a formulation that comprises 0.5 to 2.5×PBS (or other salt) and other ingredients commonly found in oral healthcare formulations (e.g., mouthrinse formulations). Certain illustrative formulations are shown in Table 20.
  • During the course of evaluating STAMPs, antimicrobial peptides (AMPs), and binding peptides for desired activity, it was discovered that certain formulations can attenuate or promote peptide activity, as compared to activity levels in a default buffer system (1×PBS). In some cases, 1×PBS may provide the best level of activity. Below are a number of formulations that alter, or may alter, peptide or STAMP activity. For complex buffer systems, assume the base solvent is water unless otherwise stated.
  • Formulation 1 (1×PBS, pH 7.4): 136.8 mM NaCl, 2.68 mM KCl, 1.01 mM Na2HPO4, and 1.37 mM KH2PO4.
  • Formulation 2 (HEPES/CTAB): 20 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 150 mM NaCl, 1 mM MgCl2, and 0.1% CTAB (Cetyl trimethylammonium bromide).
  • Formulation 3 (TRIS/CTAB): 20 mM Tris (tris(hydroxymethyl)aminomethane), pH 7.5, 150 mM NaCl, 1 mM MgCl2, and 0.1% CTAB.
  • Formulation 4: 20 mM HEPES.
  • Formulation 5: 20 mM Tris, pH 7.5.
  • Formulation 6: 0.2% CTAB.
  • Formulation 7: 1% Glycerol.
  • Formulation 8: 1% Pluronic F108 (nonionic surfactant: α-Hydro-.omega.-hydroxypoly(oxyethylene)poly(oxypropylene)poly(oxyethylene) block copolymer).
  • Formulation 9: 1% Pluronic F123 (Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol), average Mn ˜5,800).
  • Formulation 10: 1% Pluronic F17R4 (Poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol), average Mn ˜2,700).
  • Formulation 11: 1% to 7% PEG400.
  • Formulation 12: 50 mM Urea.
  • Formulation 13: 10 mM AOT (Sodium bis(2-ethylhexyl) sulfosuccinate).
  • Formulation 14: 0.5-0.1% Tween 20 (nonionic detergent, also known as polysorbate 20 or PEG(20)sorbitan monolauratesorbitan monolaurate).
  • Formulation 15: 0.5-0.1% Tween 80 (nonionic surfactant, C64H124O26, also known as polyoxyethylene (20) sorbitan monooleate, (x)-sorbitan mono-9-octadecenoate poly(oxy-1,2-ethanediyl), or POE (20) sorbitan monooleate).
  • Formulation 16: 5-10% Ethanol.
  • Formulation 17: 20% Glycerin.
  • Formulation 18: 20% Sorbitol.
  • Formulation 19: 10% Glycerin/10% Sorbitol.
  • Formulation 20: 0.1% SLS (Sodium lauryl sulfate).
  • Formulation 21: 1% Pluronic F127 (nonionic surfactant: α-Hydro-.omega.-hydroxypoly(oxyethylene)poly(oxypropylene)poly(oxyethylene) block copolymer).
  • Formulation 21: 0.1% Tween 20 (nonionic detergent, also known as Polysorbate 20, or PEG(20)sorbitan monolaurate).
  • Formulation 21: 10% PG (phospholipid gel).
  • Mouthrinse neat solution #1 (made in 1×PBS): 7% ETOH, 20% Glycerin, 7% PEG 400, and 1% PLURONIC® F127.
  • Mouthrinse neat solution #2 (made in 1×PBS): 7% ETOH, 20% Sorbitol, 7% PEG 400, and 1% PLURONIC® F127.
  • Mouthrinse neat solution #3 (made in 1×PBS): 7% ETOH, 20% Glycerin and 7% PEG 400.
  • Mouthrinse neat solution #4 (made in 1×PBS): 7% ETOH, 20% Sorbitol and 7% PEG 400.
  • Other illustrative, but not limiting, mouthrinse formulations are shown in Table 20.
  • TABLE 20
    Illustrative mouthrinse formulations.
    Rinse# ETOH Glycerin PEG400 F127 Water1 Fluoride
    1 5 22.5 7 1 64.5 187.5
    2 6 25 1 0 68 0
    3 6 20 7 0 67 0
    4 6 20 1 1 72 0
    5 7 25 7 0 61 0
    6 7 20 1 0 72 0
    7 7 20 7 0 66 250
    8 5 20 7 1 67 0
    9 6.472 21.139 5.361 0.722 66.306 250
    10 7 22.5 1 0 69.5 250
    11 5 25 1 0 69 250
    12 7 20 7 0 66 250
    13 5 20 1 1 73 250
    14 5 25 7 0.5 62.5 250
    15 7 25 1 0.5 66.5 250
    16 7 25 7 1 60 250
    17 5 25 7 0.5 62.5 0
    18 7 20 1 1 71 250
    19 6 25 1 1 67 250
    20 7 25 7 1 60 125
    21 5 25 1 0 69 250
    22 5 20 1.5 0.5 73 0
    23 7 20 1 1 71 250
    24 6 20 1 0 73 250
    25 5 22.333 3.778 0.444 68.444 125
    26 7 25 1 1 66 0
    27 6 25 7 0 62 250
    28 7 20 7 1 65 0
    29 7 25 4 1 63 62.5
    30 5 25 4 0 66 0
    31 5 25 1 1 68 0
    32 7 25 7 1 60 0
    33 7 22.5 4 0.5 66 0
    34 5 20 4.5 0 70.5 250
    35 5 23 1 0 71 62.5
    36 6 20 1 1 72 0
    37 5 20 7 1 67 250
    38 7 20 1 0 72 0
    39 5 25 4 1 65 250
    40 5 22.5 7 0 65.5 0
    n1 7 20 7 1 65 0
    n2 7 20% 7 1 65 0
    Sorbitol
    n3 7 20 7 0 66 0
    n4 7 20% 7 0 66 0
    Sorbitol
    11xPBS can be substituted for water
  • In certain embodiments, Corynebacterium-specific STAMPs are formulated in any number of creams, nanoemulsions, lipid micelles, aqueous or no-aqueous gels, sprays, soaps or roll-on bars, or other products used for axilla or other hygiene.
  • STAMP-mediated selective antimicrobial activity can result in preservation of the normal flora at the oral or axilla mucosal surface, resulting in protective colonization and the conversion of a harmful flora to a beneficial one. Recurrence of pathogen overgrowth would be reduced, which also limits the amount and frequency (and therefore cost) of STAMP delivery. STAMPs allow for “surgical” antimicrobial precision, which limits antimicrobial resistance evolution as well due to the general mechanism of cell membrane damage mediated by the killing region.
  • A number of anti-S. mutans STAMPs (see Table 21) and anti-C. jeikeium STAMPs have been designed and tested, some in formulations. All show potent selective activity against their bacterial targets in vitro, including against biofilm forms. When tested, STAMPs have little cytotoxicity against cell lines in vitro.
  • TABLE 21
    Illustrative anti-S. mutans STAMPs. Single underline is
    binding peptide. Double underline is antimicrobial
    peptide (AMP). No underline is linker. *indicates
    optionally protected (e.g., amidated) C terminal.
    STAMP Amino Acid Sequence SEQ ID NO
    2_1G2 FIKHFIHRFGGGKNLRIIRKGIHIIKKY* 3230
    C16AF5 TFFRLFNRSFTQALGKGGGFLKFLKKFFKKLKY* 3231
    1845L621 KFINGVLSQFVLERKPYPKLFKFLRKHLL* 3232
    1903-21 NIFEYFLEGGGKLFKFLRKHLL* 3233
  • TABLE 22
    Illustrative anti-C. jeikeium STAMPs. Single underline is
    binding peptide. Double underline is antimicrobial peptide
    (AMP). No underline is linker. *indicates optionally protected
    (e.g., amidated) C terminal.
    STAMP Amino Acid Sequence SEQ ID NO
    2038L6CAM GKAKPYQVRQVLRAVDKLETRRKKGGRPYPGWR 3234
    135 LIKKILRVFKGL*
    1619- SKRGRKRKDRRKKKANHGKRPNSGGGGWRLIKKI 3235
    CAM135 LRVFKGL*
    1599-BD2.16 YSKTLHFADGGGKILKFLFKKVF* 3236
    1619-BD2.16 SKRGRKRKDRRKKKANHGKRPNSGGGKILKFLFK 3237
    KVF*
    1904-BD2.16 GSVIKKRRKRMSKKKHRKMLRRTRVQRRKLGKG 3238
    GGKILKFLFKKVF*
  • It was a surprising discovery that certain anti-S. mutans STAMPs required a salt in the formulation (e.g., PBS) for optimum activity. Thus, for example, the anti-S. mutans STAMP C16G2 (TFFRLFNRSFTQALGKGGGKNLRIIRKGIHIIKKY*, SEQ ID NO:2) comprising the TFFRLFNRSFTQALGK (SEQ ID NO:1) attached to the antimicrobial peptide (AMP) KNLRIIRKGIHIIKKY (SEQ ID NO: 3080) by a peptide linker (GGG) was substantially inactive in water-based salt-free buffers and nanoemulsions, but was active in a phosphate buffered saline (PBS) formulation. Suitable PBS formulations ranged from 0.5×PBS to about 2.5×PBS with an activity optimum at about 1×PBS. Similar results are believed to obtain for other anti-S. mutans STAMPS as well as a number of other STAMPs. In certain embodiments STAMP stability in solution was improved by inclusion of fluoride in mouthrinse.
  • Example 5 Photodynamic Therapy Targeted Against Streptococcus mutans
  • Dental caries (tooth decay) is one of the most prevalent and costly infectious diseases in the United States. Currently, the annual expenditures on dental services exceed $85 billion, with the majority of these costs attributable to dental caries and its sequelae (www.ada.org/). The oral cavity harbors a complex microbial community consisting of over 600 different non-harmful/commensal microbial species together with a limited number of pathogenic bacteria, including the major etiological agent of dental caries, Streptococcus mutans. Once established, S. mutans generates acid during the fermentation of dietary sugars, which causes the demineralization of tooth structure and inhibits the growth of non-pathogenic commensal bacteria within the same microbial niche. Despite diligent use of broad-spectrum antimicrobial compounds and tooth brushing, S. mutans persists within the oral cavity and causes repeated cycles of cariogenesis. Current “remove all, kill-all” approaches have shown limited efficacy, since a “cleaned” tooth surface provides an equal opportunity for commensal as well as pathogenic bacteria to re-colonize in the non-sterile environment of the oral cavity. To address this shortcoming, we have constructed and evaluated a light-activated S. mutans-selective antimicrobial agent. C16-RB, constructed via conjugation of the S. mutans competence-stimulating peptide to the photodynamic dye rose bengal, displays robust anti-S. mutans activity in vitro under blue exposure from a handheld dental curing light. C16-RB has reduced activity against other oral streptococci under mixed biofilm conditions and has limited cytotoxicity in vitro.
  • To develop a method of selectively eliminating S. mutans from a dental biofilm so that beneficial species exert a protective colonization effect and long-term protection from S. mutans re-colonization can be attained we created a novel class of targeted antimicrobials, known as specifically-targeted antimicrobial peptides, or STAMPs. STAMPs consist of functionally independent, yet conjoined, domains within a linear peptide sequence; a targeting region and an antimicrobial region. The targeting region, which binds specifically to a bacterial species of interest, delivers the killing portion of the molecule that consists of a normally wide-spectrum antimicrobial peptide. Previously, we successfully designed STAMPs against S. mutans by taking advantage of the competence stimulating pheromone (CSP) peptide produced by this organism that has demonstrated S. mutans-specific recognition. STAMPs synthesized with portions of CSP as targeting domains were capable of specific antimicrobial activity against S. mutans, and not other oral streptococci or non-cariogenic organisms in biofilms.
  • We hypothesized that targeted killing might be achieved through the use of non-peptide antimicrobial molecules, such as porphyrins or dyes utilized in PDT. Here we present the proof-of-principle construction and in vitro efficacy of the targeted, peptide-guided, photodynamic molecule C16-RB. C16-RB displays S. mutans selective antimicrobial activity upon blue light activation with limited activity against non-cariogenic oral streptococci and epithelial cells.
  • Materials and Methods
  • Synthesis of C16-RB
  • All amino acids, synthesis resins and reagents were peptide synthesis grade (Anaspec, San Jose, Calif.; Fisher Scientific). To construct our C16-RB conjugate, conventional 9-fluorenylmethoxy carbonyl (Fmoc) solid-phase methodology was employed to synthesize the CSPC16 peptide and attach the succinate and PEG linkers, utilizing double coupling cycles in N-hdroxybenzotrazole, HBTU (O-benzotriazole-N,N,N,N-tetramethyl-uronium hexafluoro-phosphate) and diisopropyl ethylamine (DIEA), with dimethylformamide (DMF) and N-methylpyrrolidone (NMP) as solvents, as described previously. The peptide resin (1 molar equivalent, 15 mg) was then swollen in DMF for 30 min prior to attachment of the PEG terminal amide group to the carboxyl lactone in RB (FIG. 19B). This reaction was carried out in a mixture of 2-(7-Aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU, 5-molar excess) in dichloromethane (DCM):DMF:dimethylsulphoxide (DMSO) (1:1:1 (v/v)). Ten molar equivalents of DIEA were added to the reaction flask to initiate the reaction, which was protected with argon and stirred at room temperature for 5 h. After completion, the reaction mixture was passed down sintered glass filtered vial and extensively washed with DMF and DCM to remove all waste reagents. The resin was then dried overnight in vacuum, and cleaved with 1 mL of trifluoroacetic acid (TFA)/thioanisole/water/EDT (10/0.5/0.5/025) for 2 hr at room temperature. The cleavage solution was precipitated with 10 mL methyl-tert butyl ether, and the precipitate was washed twice with the same amount of ether. The crude product was purified via preparative-level HPLC (Source 15RPC column, ACTA purifier, Amersham) and eluted with gradient acetonitrile/water from 10 to 35% in 10 min, which was increased to 90% over 8 min before finally being washed 15 min with 95% acetonitrile.
  • C16-RB was purified further to >90% and the molecular mass confirmed via LC/MS, utilizing increasing hydrophobicity gradient of acetonitrile in water with 0.01% TFA as described above (Waters X-bridge BEH 130 C18 column, 4.6×100 mm, particle size 5 μm, Waters 3100 system). LC spectra were analyzed with MassLynx Softward v. 4.1 (Waters). C16-RB mass (3118.0) was confirmed by electrospray ionization (ESI) mass spectroscopy in linear, positive ion mode. The final product was lyophilized and protected from light at all times. C16-RB was soluble in 50% methanol.
  • Bacterial and Cellular Growth
  • Streptococcus oralis ATCC 10557, Streptococcus gordonii (Challis), Streptococcus sanguinis (NY101), Streptococcus mitis ATCC 903, Streptococcus salivarius ATCC 13419 and S. mutans wild-type UA140 and JM11 (spectinomycin-resistant) strains were grown in Todd-Hewitt (TH) broth 37° C. in an anaerobic atmosphere of 80% N2, 10% CO2, and 10% H2. BHK-21 (ATCC CRL-10) fibroblasts were propagated in DMEM with 10% FBS, 1 mM sodium pyruvate, 100 units/mL penicillin G, and 100 μg/mL streptomycin at 37° C. with 5% CO2. Cells were detached with 0.25% trypsin and subcultured as recommended by the supplier.
  • Photodynamic Antimicrobial Assays Against Biofilms
  • To evaluate C16-RB against monoculture biofilms, S. mutans UA140 was grown overnight in TH prior to inoculation for biofilm formation. For biofilms, 1:5000 dilution of overnight culture was made into TH with 1% sucrose in 2 mL centrifuge tubes (200 μL volume) and grown 24 h under anaerobic conditions. After incubation, biofilms were treated for 5 min with 5 or 25 μM C16-RB or 5 μM RB in 1×PBS, or PBS alone, followed by removal of supernatant and exposure to 5 min blue light (emission 400-550 nm, power 400 mW/cm2) from an Astralis 7 (Ivoclar Vivodent, Austria) handheld LED commonly used as a dental curing light. The light source was suspended 4 cm from the tube bottom (even with the mouth of the tube). A duplicate set of samples were left covered to serve as dark controls. After treatment, biofilms were mechanically disrupted and plated to determine cfu/mL.
  • To gauge C16-RB selectivity for S. mutans, similar assays were conducted against multispecies biofilms. Mixed biofilms were seeded by diluting (1:5000) a mixture of equal parts S. oralis, S. gordonii, S. mitis, S. sanguinis, S. salivarius, and S. mutans JM11 (made from overnight cultures) into TH with 1% sucrose, 1% glucose, and 1% mannose. Biofilms were incubated and treated as described above with the addition of vitamin C or potassium gluconate. After the addition of agent and 5 min incubation, biofilms were washed 1× with 1×PBS prior to light exposure. After PDT and biofilm disruption, survivors were plated on TH, and TH supplemented with 800 μg/mL spectinomycin, which allowed for quantitation of surviving total oral streptococci and surviving S. mutans, respectively.
  • Evaluation of C16-RB Cytotoxicity
  • The effect of RB and C16-RB on human fibroblasts was ascertained by utilizing the Promega CellTiterGlo assay, as described by the manufacturer. Briefly, fibroblasts were grown to confluence, detached, and seeded to ˜5,000 cells per well in a 96-well opaque walled, clear bottom 96-well plate (Nunc International). For long-term dark toxicity, cells were allowed to attach to for 18 h before the culture medium was replaced with medium plus serially-diluted RB or C16-RB (200 μM to 390 nM) or medium alone. After 18-24 h, equal volume Cell Titer Glo reagent was added to each well and mixed. Luciferace activity was then quantified to measure cell viability (Varian Fluorometer in Biolumenescence mode). To measure cytotoxicity after RB or C16-RB light exposure, cells were seeded at ˜10,000 cells per well and allowed to attach for 4 h. Cell growth medium was then replaced with RB or C16-RB containing medium, prior to exposure (a single well at a time) with blue light (400 mW/cm2) suspended ˜3 cm from the well bottom. After exposure, cultures were disrupted with Cell Titer Glo and luciferase activity quantitated as above.
  • Results
  • Design of Photodynamic Peptide-Dye Conjugate
  • For the targeting peptide component of the chimeric molecule, we selected a shortened derivative of S. mutans CSP, CSPC16 (sequence: TFFRLFNRSFTQALGK). CSPC16 has been utilized successfully as a STAMP targeting peptide in several constructs, and demonstrates selective binding to S. mutans and not other non-cariogenic bacteria. For the photodynamic dye, we selected rose bengal (RB, FIG. 19A), a xanthene dye with a demonstrated record of safety as a diagnostic tool in optometry. Unlike TBO or methylene blue, RB is not recognized by efflux pumps, and has shown robust activity against a variety of bacteria in vitro in the presence of green or blue light (max absorption ˜549 nm), and can be activated by a handheld dental curing LED.
  • C16-RB Synthesis
  • As shown in FIG. 19B, RB was attached to the N-terminus of CSPC16 through a succinate/PEG linker to construct the C16-RB molecule. Conventional solid-phase peptide methods were utilized to synthesize CSPC16, followed by linker and RB coupling prior to cleavage from the resin. After cleavage, C16-RB was repeatedly purified by LC/MS prior to evaluation. As shown in FIG. 20, over 95% purity was achieved with the expected mass species observed. The lactone ring in RB was opened as a result of CSPC16 attachment. However, we hypothesized that the conjugate would retain enough singlet-oxygen generating activity for a proof-of-principle demonstration, as other xanthene dyes with activity lack this ring.
  • C16-RB Efficacy Against Single-Species S. mutans Biofilms
  • After synthesis, the basic photosensitization potential of C16-RB was assessed by challenging mature single-species S. mutans biofilms (grown 24 h) with C16-RB or unmodified RB, followed by blue emission from a dental curing light. As shown in FIG. 21, potent antimicrobial activity was observed in cultures exposed to C16-RB or RB and blue light: a reduction in over 3 login from input cfu/mL at 5 or 25 μM In contrast, appreciable decreases in cfu/mL were not observed in S. mutans treated with blue light alone, or 5 μM RB or C16-RB dark controls. Modest dark toxicity was observed in samples treated with 25 μM C16-RB. Overall, these results indicate that the peptide-dye conjugate is active against S. mutans and at roughly similar levels to the parental RB molecule.
  • Selective PDT Against Multi-Species Biofilms
  • C16-RB was next evaluated for selectivity in mixed cultures containing S. mutans and non-cariogenic oral streptococci that compete for the same niche on the tooth surface. We utilized mixed biofilms of S. mutans transformed with spectinomycin resistance (strain JM11, Merritt, et al., 2005), plus S. oralis, S. gordonii, S. mitis, S. sanguinis, and S. salivarius. The mixed cultures were grown 24 and then treated with RB or C16-RB as indicated, plus potassium gluconate to minimize killing of untargeted bacteria by reducing the superoxide-producing activity of the free C16-RB not bound to S. mutans. Ethanol treatment served as an indiscriminant killing control. As shown in FIG. 21, RB alone exhibited strong indiscriminant photodynamic antimicrobial effects against S. mutans and non-S. mutans in the mixed biofilm system (ratio of surviving S. mutans:non-cariogenic streptococci cfu ˜1). In contrast, C16-RB displayed specific photodynamic activity towards S. mutans, and not the other oral streptococci examined, as reflected in the low ratio of recovered S. mutans to other streptococci. These results suggest C16-RB has antimicrobial activity in the presence of blue light that is specific for S. mutans and dependent on the CSPC16 targeting peptide.
  • Cytotoxicity Against Eukaryotic Cells
  • Given the demonstrated PDT potential of RB-C16, experiments were conducted to examine the cytotoxicity for this conjugate and RB alone. IC50s were obtained for BHK cells exposed C16-RB, RB, or Melittin B (positive control for cytotoxicity), with and without blue light exposure. As shown in Table 23, cytotoxicity was noted for cells exposed to Melittin B at the lowest peptide dilution tested at either 5 min or 24 h, with or without light (IC50<1.56 while light-dependent toxicity was observed only for RB-treated samples. No photo-associated toxicity was noted in BHK cells treated with C16-RB, though modest light-independent cytotoxicity (IC50=90 μM) was detected after 24 h of exposure. These results suggest that C16-RB is not toxic to BHK cells after illumination, and displays mild toxic effects (when compared to Melittin B) after 24 h exposure.
  • TABLE 23
    Cytotoxicity of RB and C16-RB compounds.
    IC50 (μM)
    BHK
    5 min dark:
    RB-C16 >100
    RB >100
    Melittin B <1.56
    5 min w/blue light:
    RB-C16 >100
    RB 40
    Melittin B <1.56
    24 h dark
    RB-C16 55
    RB 90
    Melittin B <1.56
  • It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.

Claims (32)

1. A chimeric construct, said construct comprising:
an effector attached to a peptide targeting moiety comprising an amino acid sequence found in Table 3 and/or Table 12.
2-5. (canceled)
6. The chimeric construct of claim 1, wherein said effector comprises a moiety selected from the group consisting of an antimicrobial peptide, an antibiotic, a ligand, a lipid or liposome, an agent that physically disrupts the extracellular matrix within a community of microorganisms, and a polymeric particle.
7. The chimeric construct of claim 1, wherein said effector comprises an antimicrobial peptide comprising an amino acid sequence found in Table 4, and/or Table 5, and/or Table 14, and/or Table 15.
8-12. (canceled)
13. The chimeric construct of claim 1, wherein said targeting moiety is chemically conjugated to said effector.
14. The chimeric construct of claim 13, wherein said targeting moiety is chemically conjugated to said effector via a linker.
15. The chimeric construct of claim 13, wherein said targeting moiety is chemically conjugated to said effector via a linker comprising a polyethylene glycol (PEG).
16. The chimeric construct of claim 13, wherein said targeting moiety is chemically conjugated to said effector via a non-peptide linker found in Table 16.
17. The chimeric construct of claim 1, wherein said targeting moiety is linked directly to said effector.
18. The chimeric construct of claim 1, wherein said targeting moiety is linked to said effector via a peptide linkage.
19. The chimeric construct of claim 18, wherein said effector comprises an antimicrobial peptide and said construct is a fusion protein.
20. The chimeric construct of claim 18, wherein said targeting moiety is attached to said effector by a peptide linker comprising or consisting of an amino acid sequence found in Table 16.
21-26. (canceled)
27. A pharmaceutical composition comprising a chimeric construct of claim 1 in a pharmaceutically acceptable carrier.
28.-29. (canceled)
30. An antimicrobial composition effective to kill or to inhibit the growth and/or of a microorganism and/or the formation and/or maintenance of a biofilm, said composition comprising one or more isolated antimicrobial peptides, the amino acid sequences of said peptides comprising one or more sequences selected from the amino acid sequences listed in Table 4 and/or Table 5.
31.-55. (canceled)
56. The composition of claim 30, wherein said peptides comprise all “L” amino acids.
57. The composition of claim 30, wherein said peptides comprise all “D” amino acids.
58. (canceled)
59. The composition of claim 30, wherein said peptides are β peptides.
60. The composition of claim 30, wherein said peptides comprise one or more protecting groups.
61-65. (canceled)
66. A method of killing and/or inhibiting the growth and/or proliferation of a microorganism, said method comprising contacting said microorganism with a chimeric construct of claim 1.
67-80. (canceled)
81. A method of detecting a bacterium and/or a bacterial film, said method comprising:
contacting said bacterium or bacterial film with a composition comprising a detectable label attached to a targeting peptide comprising one or more amino acid sequences found Table 3 and/or Table 12; and
detecting said detectable label wherein the quantity and/or location of said detectable label is an indicator of the presence of said bacterium and/or bacterial film.
82-83. (canceled)
84. A composition comprising a photosensitizing agent attached to a targeting peptide comprising an amino acid sequence of a peptide found in Table 3 and/or Table 12.
85-90. (canceled)
91. A method of inhibiting the growth or proliferation of a microorganism or a biofilm, said method comprising contacting said microorganism or biofilm with a composition of claim 84.
92-112. (canceled)
US15/433,926 2009-01-06 2017-02-15 Targeted antimicrobial moieties Abandoned US20170266306A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/433,926 US20170266306A1 (en) 2009-01-06 2017-02-15 Targeted antimicrobial moieties

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US14283009P 2009-01-06 2009-01-06
US15144509P 2009-02-10 2009-02-10
US24390509P 2009-09-18 2009-09-18
US24393009P 2009-09-18 2009-09-18
US12/683,160 US8754039B2 (en) 2009-01-06 2010-01-06 Targeted antimicrobial moieties
US14/255,858 US9597407B2 (en) 2009-01-06 2014-04-17 Targeted antimicrobial moieties
US15/433,926 US20170266306A1 (en) 2009-01-06 2017-02-15 Targeted antimicrobial moieties

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/255,858 Division US9597407B2 (en) 2009-01-06 2014-04-17 Targeted antimicrobial moieties

Publications (1)

Publication Number Publication Date
US20170266306A1 true US20170266306A1 (en) 2017-09-21

Family

ID=42316784

Family Applications (9)

Application Number Title Priority Date Filing Date
US12/683,286 Abandoned US20100184684A1 (en) 2009-01-06 2010-01-06 Antibacterial and antifungal peptides
US12/683,188 Active US8303962B2 (en) 2009-01-06 2010-01-06 Antibacterial and antifungal peptides
US12/683,352 Abandoned US20110039763A1 (en) 2009-01-06 2010-01-06 Targeted antimicrobial moieties
US12/683,327 Abandoned US20110039762A1 (en) 2009-01-06 2010-01-06 Targeted antimicrobial moieties
US12/683,258 Abandoned US20100184683A1 (en) 2009-01-06 2010-01-06 Antibacterial and antifungal peptides
US12/683,160 Active 2031-09-14 US8754039B2 (en) 2009-01-06 2010-01-06 Targeted antimicrobial moieties
US13/653,246 Expired - Fee Related US9072793B2 (en) 2009-01-06 2012-10-16 Antibacterial and antifungal peptides
US14/255,858 Active US9597407B2 (en) 2009-01-06 2014-04-17 Targeted antimicrobial moieties
US15/433,926 Abandoned US20170266306A1 (en) 2009-01-06 2017-02-15 Targeted antimicrobial moieties

Family Applications Before (8)

Application Number Title Priority Date Filing Date
US12/683,286 Abandoned US20100184684A1 (en) 2009-01-06 2010-01-06 Antibacterial and antifungal peptides
US12/683,188 Active US8303962B2 (en) 2009-01-06 2010-01-06 Antibacterial and antifungal peptides
US12/683,352 Abandoned US20110039763A1 (en) 2009-01-06 2010-01-06 Targeted antimicrobial moieties
US12/683,327 Abandoned US20110039762A1 (en) 2009-01-06 2010-01-06 Targeted antimicrobial moieties
US12/683,258 Abandoned US20100184683A1 (en) 2009-01-06 2010-01-06 Antibacterial and antifungal peptides
US12/683,160 Active 2031-09-14 US8754039B2 (en) 2009-01-06 2010-01-06 Targeted antimicrobial moieties
US13/653,246 Expired - Fee Related US9072793B2 (en) 2009-01-06 2012-10-16 Antibacterial and antifungal peptides
US14/255,858 Active US9597407B2 (en) 2009-01-06 2014-04-17 Targeted antimicrobial moieties

Country Status (6)

Country Link
US (9) US20100184684A1 (en)
EP (1) EP2381953A4 (en)
CN (1) CN102405053B (en)
AU (2) AU2010203698B2 (en)
CA (1) CA2749082A1 (en)
WO (2) WO2010080819A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019099678A1 (en) * 2017-11-16 2019-05-23 Synthex, Inc. Selective modulation of protein-protein interactions
WO2019209982A1 (en) 2018-04-24 2019-10-31 Laboratory Corporation Of America Holdings Indicator bacteriophage for selecting and monitoring for efficacy of therapeutics and methods for using same
WO2020154498A1 (en) * 2019-01-24 2020-07-30 The Broad Institute, Inc. Combining metabolic stimulation and amino acids to sensitize tolerant bacteria to antibiotics
WO2020206459A1 (en) * 2019-04-05 2020-10-08 Northeastern University Biosynthesis of selenium nanoparticles having antimicrobial activity
CN113185614A (en) * 2021-04-22 2021-07-30 江南大学 Protease degradation resistant swine-derived antibacterial peptide mutant and preparation method and application thereof
US20220064219A1 (en) * 2020-08-26 2022-03-03 The Trustee Of The University Of Pennsylvania Antimicrobial And Antibiofilm Peptides Sequences With Metal-Binding Motifs
US11452291B2 (en) 2007-05-14 2022-09-27 The Research Foundation for the State University Induction of a physiological dispersion response in bacterial cells in a biofilm
US11541105B2 (en) 2018-06-01 2023-01-03 The Research Foundation For The State University Of New York Compositions and methods for disrupting biofilm formation and maintenance
WO2023163891A1 (en) * 2022-02-23 2023-08-31 University Of Rochester Compositions for use in treating biofilm-related diseases

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006130974A1 (en) * 2005-06-08 2006-12-14 Cangene Corporation Hyaluronic acid binding peptides enhance host defense against pathogenic bacteria
US8669418B2 (en) 2005-12-22 2014-03-11 Vib Vzw Means and methods for mediating protein interference
US8691945B2 (en) * 2006-04-27 2014-04-08 Singapore Health Services Pte Ltd. Antimicrobial peptides
AU2010203698B2 (en) 2009-01-06 2016-07-21 C3 Jian, Inc. Targeted antimicrobial moieties
US8389679B2 (en) * 2009-02-05 2013-03-05 The Regents Of The University Of California Targeted antimicrobial moieties
FR2955772B1 (en) * 2010-02-03 2015-01-02 Inst Rech R Pour Le Dev Ird ANTIMICROBIAL PEPTIDES AND THEIR USES IN THERAPEUTICS
GB201010500D0 (en) * 2010-06-23 2010-08-04 Univ Cardiff Therapeutic conjugates
FR2968999B1 (en) * 2010-12-20 2013-01-04 Guerbet Sa CHELATE NANOEMULSION FOR MRI
LT2683419T (en) * 2011-03-11 2018-07-25 Vib Vzw Molecules and methods for inhibition and detection of proteins
EP2697386B1 (en) 2011-04-08 2017-11-01 Tufts Medical Center, Inc. Pepducin design and use
US9408889B2 (en) * 2011-04-22 2016-08-09 Rutgers, The State University Of New Jersey Fusion peptide designed to reduce plaque bacteria and yeast in the oral cavity
CU24076B1 (en) * 2011-09-30 2015-01-29 Ct De Ingeniería Genética Y Biotecnología COMPOSITION FOR PATHOGEN CONTROL
EP2765855A4 (en) * 2011-10-12 2015-03-25 Merck Sharp & Dohme Pharmaceutical compositions that inhibit disproportionation
WO2013106485A2 (en) * 2012-01-09 2013-07-18 The Scripps Research Institute Ultralong complementarity determining regions and uses thereof
WO2013106489A1 (en) 2012-01-09 2013-07-18 The Scripps Research Institute Humanized antibodies with ultralong cdr3s
WO2013153532A1 (en) 2012-04-12 2013-10-17 University Of Saskatchewan Phthalocyanine compounds useful as reca inhibitors and methods of using same
CN102827288B (en) * 2012-08-30 2015-07-29 兰州大学 A kind of acid active CSP target antibacterial peptide and Synthesis and applications thereof
CN105073781A (en) 2013-01-11 2015-11-18 加州生物医学研究所 Bovine fusion antibodies
US10371643B2 (en) * 2013-03-15 2019-08-06 Siemens Healthcare Diagnostics Inc. Luminescent oxygen channeling immunoassays
CN103172701B (en) * 2013-03-18 2015-09-30 中国科学院过程工程研究所 A kind of novel cell-penetrating peptide and application thereof
US9387189B2 (en) 2013-05-22 2016-07-12 Professional Compounding Centers Of America (Pcca) Antibiotic composition comprising a chemotactic agent and a nutrient dispersion
CN105814074B (en) 2013-07-18 2020-04-21 图鲁斯生物科学有限责任公司 Humanized antibodies with ultralong complementarity determining regions
US20150099010A1 (en) 2013-10-07 2015-04-09 Reoxcyn Discoveries Group, Inc Redox signaling gel formulation
CN103698515B (en) * 2013-12-24 2015-09-16 广西医科大学 A kind of biomembranous method of destruction aspergillus fumigatus
CN104761621B (en) * 2014-01-06 2016-04-13 长春新悦然科技有限公司 A kind of antibacterial protein
KR101445243B1 (en) 2014-03-28 2014-09-29 서울대학교산학협력단 Early diagnosis of obesity-related diseases using changes in the gut microbial community structure and function
WO2016109443A1 (en) * 2014-12-29 2016-07-07 C3 Jian, Inc. Clostridium difficile targeting moieties and constructs comprising said moieties
CN105982825B (en) * 2015-02-13 2018-12-14 沛进生命科学公司 A kind of purposes of composition in the cosmetics that preparation has moisture-keeping functions
CA2975971A1 (en) * 2015-02-22 2016-08-25 Omnix Medical Ltd. Antimicrobial peptides
CN107709572A (en) * 2015-05-20 2018-02-16 谷万达公司 Promote to extract the method for enzyme and the assay method of enzymatic activity from animal feed
CN106279361A (en) 2015-06-26 2017-01-04 韩震 A kind of polypeptide compound and preparation method and application
US10183059B2 (en) * 2015-07-23 2019-01-22 General Biologicals Corporation Method for treating microbial infection
EP3337464B1 (en) * 2015-08-17 2022-03-09 The Johns Hopkins University In situ forming composite material for tissue restoration
US20180312542A1 (en) * 2015-10-20 2018-11-01 President And Fellows Of Harvard College Endosomal escape peptides
WO2017083618A1 (en) 2015-11-13 2017-05-18 Oasis Pharmaceuticals, LLC Protease-activated receptor-2 modulators
WO2017127452A1 (en) 2016-01-19 2017-07-27 Reoxcyn Discoveries Group, Inc. Hypochlorite formulations for wound healing
US10736928B2 (en) * 2016-01-20 2020-08-11 Richard Brian Murphy, JR. Pegylated recombinant bacteriophage
CN105837674A (en) * 2016-03-08 2016-08-10 无限极(中国)有限公司 Bombina orientalis polypeptide, and preparation method and application thereof
CN106008718A (en) * 2016-03-31 2016-10-12 西北民族大学 Recombinant human-derived antimicrobial peptide C16LL-37 and application method thereof in streptococcus mutans bioactivity role
US9474768B1 (en) 2016-05-18 2016-10-25 Reoxcyn Discoveries Group, Inc. Lubricant formulations
US11857674B2 (en) 2016-05-18 2024-01-02 Reoxcyn, Llc Lubricant formulations
CN106117232B (en) * 2016-06-21 2018-10-23 中国石油大学(华东) A kind of quorum-quenching agent and its application
WO2018022936A1 (en) * 2016-07-29 2018-02-01 C3 Jian, Llc Clostridium difficile targeting moieties and constructs comprising said moieties
EP3496740B1 (en) * 2016-08-09 2022-05-04 Omnix Medical Ltd. A combination of antimicrobial peptides and antibiotic drugs for treating diseases
US9833471B1 (en) 2016-09-15 2017-12-05 Reoxcyn Discoveries Group, Inc. Hypochlorous acid-based hand sanitizer
US11174288B2 (en) * 2016-12-06 2021-11-16 Northeastern University Heparin-binding cationic peptide self-assembling peptide amphiphiles useful against drug-resistant bacteria
US11180535B1 (en) 2016-12-07 2021-11-23 David Gordon Bermudes Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria
CA3047043A1 (en) * 2016-12-13 2018-06-21 Ferring B.V. Antimicrobial peptides
CN106632264B (en) * 2016-12-19 2019-03-08 山东大学 It is a kind of that differentiation and the simultaneously probe and its application of imaging cells film Lipid Rafts and non-Lipid Rafts microcell can be understood with two kinds of fluorescence colors
US20180200165A1 (en) 2017-01-16 2018-07-19 Reoxcyn Innovation Group, Llc Dentifrice formulations and methods of oral care
EP3573642A4 (en) * 2017-01-24 2020-12-23 Flagship Pioneering Innovations V, Inc. Compositions and related methods for agriculture
CN110869038A (en) * 2017-01-24 2020-03-06 旗舰创业创新五公司 Compositions and related methods for controlling vector-transmitted diseases
JP2020505067A (en) 2017-01-24 2020-02-20 フラグシップ パイオニアリング イノベーションズ ブイ,インコーポレーテッド Agricultural compositions and related methods
JP2020509078A (en) * 2017-01-24 2020-03-26 フラグシップ パイオニアリング イノベーションズ ブイ,インコーポレーテッド Compositions and related methods for controlling vector-borne diseases
EP3573465A4 (en) 2017-01-24 2020-11-04 Flagship Pioneering Innovations V, Inc. Methods and related compositions for manufacturing food and feed
US11707431B2 (en) 2017-04-14 2023-07-25 C3 Jian, Llc Dental strips for the delivery of specifically targeted antimicrobial peptides
WO2018191529A1 (en) * 2017-04-14 2018-10-18 C3 Jian, Llc Dental varnishes that release specifically targeted antimicrobial peptides and/or fluoride
US11872262B2 (en) 2017-05-09 2024-01-16 Vib Vzw Means and methods for treating bacterial infections
WO2018209129A1 (en) * 2017-05-11 2018-11-15 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Antimicrobial type-ii bacteriocins
CN108976288B (en) 2017-06-05 2021-09-21 复旦大学 Lipophilic derivatives based on wild-type membrane-penetrating peptide penetratin
GB201710097D0 (en) * 2017-06-23 2017-08-09 Univ Ulster A sensitizer - peptide conjugate
US11299513B2 (en) 2017-07-28 2022-04-12 Circle Pharma, Inc. Cyclative release of peptidic compounds
CN107459568B (en) * 2017-08-22 2020-12-25 广东药科大学 Musca domestica cecropin derived peptide M27-39 and application thereof
SE541313C2 (en) * 2017-10-13 2019-06-25 Amferia Ab Amphiphilic antimicrobial hydrogel
WO2019094962A2 (en) * 2017-11-13 2019-05-16 The Regents Of The University Of California Antimicrobial particles and sanitization methods
JP2021522938A (en) 2018-05-09 2021-09-02 ザ ジョンズ ホプキンス ユニバーシティ Nanofiber-hydrogel complex for cell and tissue delivery
CN108828106A (en) * 2018-08-30 2018-11-16 上海市农业科学院 A method of amino acid content in detection straw mushroom
US11457625B1 (en) * 2018-11-13 2022-10-04 U.S. Government As Represented By The Secretary Of The Army Tuning a broad acting antimicrobial textile to act as a narrow spectrum antimicrobial textile
CA3128733A1 (en) * 2019-02-15 2020-08-20 Suncor Energy Inc. The use of protoporphyrin ix derivatives to improve the health of plants
CN111693691B (en) * 2019-03-14 2023-09-05 天津华科泰生物技术有限公司 Polymer label based on porphyrin structure
CN110066317B (en) * 2019-04-19 2020-08-07 武汉大学 Dimer polypeptide with antibacterial and immunoregulation double functions and application thereof
CN110028557B (en) * 2019-04-26 2022-07-05 常州大学 Ce 6-labeled double-chain antibacterial peptide and synthesis method and application thereof
CN110204597B (en) * 2019-05-29 2021-06-11 遵义医科大学珠海校区 Antibacterial peptide and application thereof
US11471433B1 (en) 2019-08-01 2022-10-18 Flagship Pioneering Innovations V, Inc. Postbiotic compositions and related methods for agriculture
AU2020333754A1 (en) 2019-08-19 2022-02-24 Baylor University Probiotic delivery of guided antimicrobial peptides
WO2021092379A1 (en) * 2019-11-08 2021-05-14 Geaenzymes Co. Antifungal protein composition
JP2021075483A (en) * 2019-11-08 2021-05-20 静岡県公立大学法人 Compound or salt thereof
CN111349177B (en) * 2020-03-13 2022-04-22 西北农林科技大学 Preparation method and application of fusion antibacterial peptide CAT
US11638722B2 (en) * 2020-03-25 2023-05-02 Therapeutica Borealis Oy C/O Avance Attorneys Ltd. Medicine for Covid-19 and treatment
KR102444119B1 (en) * 2020-04-22 2022-09-16 주식회사 인트론바이오테크놀로지 Antibacterial Protein CDL200 Having Lytic Activity to Clostridioides difficile
CN114014923B (en) * 2020-10-27 2022-11-01 厦门大学 Scylla paramamosain antibacterial polypeptide Sp-LECin and application thereof
WO2022115510A1 (en) * 2020-11-24 2022-06-02 Academia Sinica Antimicrobial peptides and method of preventing or treating infection by using the same
BR112023015142A2 (en) * 2021-01-29 2023-10-03 Bombi Biomics Bv SELECTIVE ANTIMICROBIAL FUSION PEPTIDES
KR102302983B1 (en) * 2021-06-16 2021-09-17 주식회사 쓰리빅스 Novel antimicrobial peptide and uses thereof
CN113698285B (en) * 2021-07-28 2023-02-10 浙江海洋大学 Halogenated curcumin derivative, preparation method thereof and application thereof in aquatic product preservation
CN113845460B (en) * 2021-07-29 2023-02-14 浙江海洋大学 Curcumin derivative with photosensitive bactericidal activity, preparation method and fresh shrimp photodynamic sterilization and preservation method
US20230074829A1 (en) * 2021-08-25 2023-03-09 George Mason University Antimicrobial peptides and related methods
CN113912690B (en) * 2021-10-29 2023-06-23 中国科学院昆明动物研究所 Tick defensin OPTX-1 and application thereof
CN113980112B (en) * 2021-11-25 2024-01-26 中国科学院昆明动物研究所 Expression vector and expression product of cobra antibacterial peptide OH-CATH30 and construction preparation method thereof
US20230233299A1 (en) * 2022-01-27 2023-07-27 EdgeEndo, LLC Dental, endodontic, and periodontic treatment methods and systems
CN114702598B (en) * 2022-04-02 2023-09-08 中国海洋大学 Recombinant antibacterial peptide and application thereof
WO2023212558A1 (en) * 2022-04-25 2023-11-02 The Regents Of The University Of California Electro magnetic transducer network in the enhancement of anti-infective strategies

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP051497A0 (en) * 1997-11-24 1997-12-18 University Of Melbourne, The Antimicrobial peptides
US7018637B2 (en) * 1998-02-23 2006-03-28 Aventis Pasteur, Inc Multi-oligosaccharide glycoconjugate bacterial meningitis vaccines
US20040052814A1 (en) 1998-09-28 2004-03-18 Wenyuan Shi Fusion proteins for targeted delivery of antimicrobial peptides
US6107460A (en) 1999-03-01 2000-08-22 The Board Of Regents Of The University Of Oklahoma Antimicrobial peptides and methods of use thereof
US7244710B2 (en) * 2002-05-21 2007-07-17 Zengen, Inc. Treatment of ophthalmic infections using antimicrobial peptides
US20030143234A1 (en) * 1999-08-20 2003-07-31 Wenyuan Shi Anti-microbial targeting chimeric pharmaceutical
US20040072777A1 (en) * 2000-01-05 2004-04-15 Otto Froelich Epididymal antimicrobial peptides
US6337317B1 (en) * 2000-06-27 2002-01-08 The University Of British Columbia Antimicrobial peptides and methods of use thereof
US6492328B2 (en) * 2000-06-28 2002-12-10 The University Of Iowa Research Foundation Novispirins: antimicrobial peptides
FR2810993B1 (en) * 2000-06-29 2002-08-23 Rhobio ANTIMICROBIAL PEPTIDES FROM THE DEFENSIN FAMILY, POLYNUCLEOTIDES ENCODING THESE PEPTIDES, VECTORS AND TRANSFORMED ORGANISMS CONTAINING THEM
CA2417357A1 (en) 2000-08-08 2002-02-14 St. Jude Children's Research Hospital Group b streptococcus polypeptides nucleic acids and therapeutic compositions and vaccines thereof
WO2002014345A2 (en) * 2000-08-15 2002-02-21 North Carolina State University Antimicrobial peptides isolated from mast cells
US6875907B2 (en) 2000-09-13 2005-04-05 Pioneer Hi-Bred International, Inc. Antimicrobial peptides and methods of use
GB0107658D0 (en) 2001-03-27 2001-05-16 Chiron Spa Streptococcus pneumoniae
US6713078B2 (en) 2001-04-18 2004-03-30 The Regents Of The University Of California Retrocyclins: antiviral and antimicrobial peptides
US7314858B2 (en) * 2001-04-18 2008-01-01 The Regents Of The University Of California Retrocyclins: antiviral and antimicrobial peptides
US7550558B2 (en) * 2001-06-01 2009-06-23 Fundacao De Ampara A Pesquiso Do Estado De Sao Paolo (Fapesp) Antimicrobial peptides and methods for identifying and using such peptides
CN1516598A (en) * 2001-06-22 2004-07-28 ��ͯ����ҽԺ Antimicrobial peptides
US20040072990A1 (en) 2002-09-20 2004-04-15 Shiou-Ru Tzeng Antimicrobial peptides with reduced hemolysis and methods of their use
US20060128614A1 (en) * 2002-09-20 2006-06-15 Jya-Wei Cheng Antimicrobial peptides with reduced hemolysis and methods of their use
US7091185B2 (en) 2003-02-24 2006-08-15 Dow Global Technologies Inc. Periodic antimicrobial peptides
SE0301431D0 (en) * 2003-05-19 2003-05-19 Dermagen Novel antimicrobial peptides
AU2004245173B2 (en) * 2003-06-11 2010-12-02 Novozymes Adenium Biotech A/S Antimicrobial polypeptides
BRPI0411228A (en) * 2003-06-11 2006-07-11 Novazymes As "polypeptide, polynucleotide, nucleic acid construct, recombinant expression vector, recombinant host cell, method for producing a polypeptide, composition, method for exterminating or inhibiting microbial cell growth, detergent composition, use of an antimicrobial polypeptide, transgenic plant, plant part or plant cell, and animal feed additive and composition
WO2005019241A2 (en) * 2003-08-18 2005-03-03 E.I. Dupont De Nemours And Company Cationic antimicrobial peptides and compositions thereof
WO2005049819A1 (en) * 2003-10-29 2005-06-02 Toagosei Co., Ltd. Antibacterial peptide and utilization of the same
EP1621205A1 (en) * 2004-07-28 2006-02-01 OctoPlus Technologies B.V. Antimicrobial peptides derived from CAP18
JP4507080B2 (en) * 2004-07-30 2010-07-21 東亞合成株式会社 Antibacterial peptides and their use
EP3147293B1 (en) 2004-08-18 2022-05-04 Novabiotics Limited Antimicrobial peptides
WO2006050611A1 (en) * 2004-11-12 2006-05-18 The University Of British Columbia Antimicrobial peptides
SE0402807D0 (en) * 2004-11-17 2004-11-17 Dermagen Ab Novel antimicrobial peptides
JP4730584B2 (en) 2004-12-06 2011-07-20 東亞合成株式会社 Antibacterial peptides and their use
US8252737B2 (en) * 2004-12-15 2012-08-28 The Regents Of The University Of Colorado Antimicrobial peptides and methods of use
US7563764B2 (en) * 2004-12-30 2009-07-21 E. I. Du Pont De Nemours And Company Antimicrobial peptides based on tripeptide repeats
US20070231833A1 (en) * 2005-05-23 2007-10-04 Arcidiacono Steven M Labeled antimicrobial peptides and method of using the same to detect microorganisms of interest
US7745390B2 (en) 2005-05-23 2010-06-29 The Board Of Trustees Of The Leland Stanford Junior University Antimicrobial peptides
US8202835B2 (en) * 2005-06-17 2012-06-19 Yitzchak Hillman Disease treatment via antimicrobial peptides or their inhibitors
WO2007057872A2 (en) * 2005-11-21 2007-05-24 Teagasc-National Diary Products Research Centre Casein-derived antimicrobial peptides and lactobacillus strains that produce them
WO2007072037A1 (en) * 2005-12-22 2007-06-28 Novabiotics Limited Cyclic antimicrobial peptides
CA2637216A1 (en) * 2006-02-10 2007-08-16 Dermagen Ab Novel antimicrobial peptides and use thereof
CA2637221A1 (en) * 2006-02-10 2007-08-16 Dermagen Ab Novel antimicrobial peptides and use thereof
JP5322108B2 (en) * 2006-07-10 2013-10-23 ペーベーアードライ ビオメッド ゲゼルシャフト ミット ベシュレンクテル ハフツング Antibacterial peptide
WO2008030988A2 (en) * 2006-09-06 2008-03-13 The Regents Of The University Of California Selectively targeted antimicrobial peptides and the use thereof
US7465784B2 (en) * 2006-10-26 2008-12-16 Board Of Regents Of The University Of Nebraska Antimicrobial peptides and methods of identifying the same
ES2548767T3 (en) * 2007-01-16 2015-10-20 The Regents Of The University Of California New antimicrobial peptides
EP1955712A1 (en) * 2007-02-09 2008-08-13 Scil proteins GmbH Multimeric conjugate
WO2009012143A2 (en) * 2007-07-13 2009-01-22 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Virus derived antimicrobial peptides
WO2009117473A2 (en) * 2008-03-18 2009-09-24 Massachusetts Institute Of Technology Structures including antimicrobial peptides
AU2010203698B2 (en) * 2009-01-06 2016-07-21 C3 Jian, Inc. Targeted antimicrobial moieties

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11452291B2 (en) 2007-05-14 2022-09-27 The Research Foundation for the State University Induction of a physiological dispersion response in bacterial cells in a biofilm
WO2019099678A1 (en) * 2017-11-16 2019-05-23 Synthex, Inc. Selective modulation of protein-protein interactions
GB2584211A (en) * 2017-11-16 2020-11-25 Synthex Inc Selective modulation of protein-protein interactions
GB2584211B (en) * 2017-11-16 2023-05-24 Synthex Inc Selective modulation of protein-protein interactions
US11840743B2 (en) 2017-11-16 2023-12-12 Synthex, Inc. Selective modulation of protein-protein interactions
WO2019209982A1 (en) 2018-04-24 2019-10-31 Laboratory Corporation Of America Holdings Indicator bacteriophage for selecting and monitoring for efficacy of therapeutics and methods for using same
US11541105B2 (en) 2018-06-01 2023-01-03 The Research Foundation For The State University Of New York Compositions and methods for disrupting biofilm formation and maintenance
WO2020154498A1 (en) * 2019-01-24 2020-07-30 The Broad Institute, Inc. Combining metabolic stimulation and amino acids to sensitize tolerant bacteria to antibiotics
WO2020206459A1 (en) * 2019-04-05 2020-10-08 Northeastern University Biosynthesis of selenium nanoparticles having antimicrobial activity
US20220064219A1 (en) * 2020-08-26 2022-03-03 The Trustee Of The University Of Pennsylvania Antimicrobial And Antibiofilm Peptides Sequences With Metal-Binding Motifs
CN113185614A (en) * 2021-04-22 2021-07-30 江南大学 Protease degradation resistant swine-derived antibacterial peptide mutant and preparation method and application thereof
WO2023163891A1 (en) * 2022-02-23 2023-08-31 University Of Rochester Compositions for use in treating biofilm-related diseases

Also Published As

Publication number Publication date
US9072793B2 (en) 2015-07-07
EP2381953A1 (en) 2011-11-02
US20110039761A1 (en) 2011-02-17
WO2010080836A2 (en) 2010-07-15
AU2010203698A1 (en) 2011-07-21
US20110039763A1 (en) 2011-02-17
AU2010203698B2 (en) 2016-07-21
US8303962B2 (en) 2012-11-06
EP2381953A4 (en) 2016-06-29
US8754039B2 (en) 2014-06-17
CA2749082A1 (en) 2010-07-15
US20100184681A1 (en) 2010-07-22
WO2010080836A9 (en) 2014-07-17
US20130108575A1 (en) 2013-05-02
US20110039762A1 (en) 2011-02-17
AU2016204543A1 (en) 2016-07-14
AU2010203698A2 (en) 2011-09-22
US9597407B2 (en) 2017-03-21
US20100184683A1 (en) 2010-07-22
CN102405053A (en) 2012-04-04
AU2016204543B2 (en) 2018-01-18
US20140349917A1 (en) 2014-11-27
WO2010080819A1 (en) 2010-07-15
CN102405053B (en) 2015-07-29
US20100184684A1 (en) 2010-07-22

Similar Documents

Publication Publication Date Title
AU2016204543B2 (en) Targeted antimicrobial moieties
US8389679B2 (en) Targeted antimicrobial moieties
US20160031941A1 (en) Targeting peptides that bind s. mutans, constructs comprising such peptides and uses thereof
CN101511382B (en) Selectively targeted antimicrobial peptides and the use thereof
ES2548767T3 (en) New antimicrobial peptides
ES2429108T3 (en) Antibiotic peptides
Pepperney et al. Antibacterial peptides: opportunities for the prevention and treatment of dental caries
JP2017526640A5 (en)
US20160207969A1 (en) Clostridium difficile targeting moieties and constructs comprising said moieties
EP2750689B1 (en) Modified apidaecin derivatives as antibiotic peptides

Legal Events

Date Code Title Description
AS Assignment

Owner name: C3 JIAN, LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:C3 JIAN, INC.;REEL/FRAME:043302/0385

Effective date: 20160427

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION