US20100092509A1 - Hypo- and Hyper- Acetylated Meningococcal Capsular Saccharides - Google Patents

Hypo- and Hyper- Acetylated Meningococcal Capsular Saccharides Download PDF

Info

Publication number
US20100092509A1
US20100092509A1 US10/574,437 US57443704A US2010092509A1 US 20100092509 A1 US20100092509 A1 US 20100092509A1 US 57443704 A US57443704 A US 57443704A US 2010092509 A1 US2010092509 A1 US 2010092509A1
Authority
US
United States
Prior art keywords
saccharide
composition
sialic acid
serogroup
acid residues
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/574,437
Other languages
English (en)
Inventor
Paolo Costantino
Francesco Berti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29415385&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20100092509(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Assigned to NOVARTIS VACCINES AND DIAGNOSTICS SRL reassignment NOVARTIS VACCINES AND DIAGNOSTICS SRL ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BERTI, FRANCESCO, COSTANTINO, PAOLO
Assigned to NOVARTIS AG reassignment NOVARTIS AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOVARTIS VACCINES AND DIAGNOSTICS SRL
Publication of US20100092509A1 publication Critical patent/US20100092509A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/095Neisseria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/05Actinobacteria, e.g. Actinomyces, Streptomyces, Nocardia, Bifidobacterium, Gardnerella, Corynebacterium; Propionibacterium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/08Clostridium, e.g. Clostridium tetani
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/09Lactobacillales, e.g. aerococcus, enterococcus, lactobacillus, lactococcus, streptococcus
    • A61K39/092Streptococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/099Bordetella
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/102Pasteurellales, e.g. Actinobacillus, Pasteurella; Haemophilus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/125Picornaviridae, e.g. calicivirus
    • A61K39/13Poliovirus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • A61K39/292Serum hepatitis virus, hepatitis B virus, e.g. Australia antigen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/295Polyvalent viral antigens; Mixtures of viral and bacterial antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6037Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/64Medicinal preparations containing antigens or antibodies characterised by the architecture of the carrier-antigen complex, e.g. repetition of carrier-antigen units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • This invention is in the field of meningococcal capsular saccharides and their conjugated derivatives.
  • Polysaccharides are important biological molecules and they have been widely used in the pharmaceutical industry for the prevention and treatment of diseases.
  • capsular polysaccharides have been used for many years in vaccines against capsulated bacteria, such as meningococcus ( Neisseria meningitidis ), pneumococcus ( Streptococcus pneumoniae ) and Hib ( Haemophilus influenzae type B).
  • conjugate vaccines comprise a capsular saccharide conjugated to a carrier protein [e.g. refs. 1-3]. Conjugation converts T-independent antigens into T-dependent antigens.
  • MenW135 The capsular saccharide of Neisseria meningitidis serogroup W135 (“MenW135”) comprises a polymer of sialic acid-galactose disaccharide units:
  • Neuro refers to neuraminic acid, commonly known as sialic acid.
  • the capsular saccharide of Neisseria meningitidis serogroup Y comprises a polymer of sialic acid-glucose disaccharide units:
  • these capsular saccharides have been found to be O-acetylated at some of the 7 and 9 positions of some of the sialic acid residues.
  • O-acetylation of the W135 saccharide was “reported for the first time” in reference 4, with O-acetylation at the O-7 and O-9 positions being reported.
  • Acetylation at the O-7 and O-9 positions was also seen for the serogroup Y saccharide, although the authors noted that previous work had indicated O-acetylation at O-7, O′-3 or O′-4 positions. Further studies on the O-acetyl content of the saccharides was reported in reference 5.
  • Reference 5 reports that “there is growing body of evidence that O-acetylation is not important to elicit a protective antibody response” for serogroup W135.
  • reference 6 reports that there “is evidence that O-acetylation affects the immunogenicity of polysaccharide vaccines”.
  • the authors of reference 5 investigated acetylation in serogroups W135 and Y. Among their results, no change in O-acetylation was seen for these two serogroups after storage in basic conditions for 9 days at room temperature.
  • O-acetylation can indeed be relevant, particularly during preparation of conjugate vaccines.
  • the invention is based on the discovery that modified capsular saccharides derived from MenW135 and MenY having altered levels of O-acetylation at the 7 and 9 positions of the sialic acid residues can be used to make immunogenic compositions.
  • derivatives of the invention are preferentially selected during conjugation to carrier proteins.
  • conjugates of these derivatives show improved immunogenicity compared to native polysaccharides.
  • the invention provides a modified serogroup W135 meningococcal capsular saccharide, wherein: (a) ⁇ x % of the sialic acid residues in the saccharide are O-acetylated at the 7 position; and/or (b) ⁇ y % of the sialic acid residues in the saccharide are O-acetylated at the 9 position.
  • the invention provides a modified serogroup Y meningococcal capsular saccharide, wherein (a) ⁇ x % of the sialic acid residues in the saccharide are O-acetylated at the 7 position; and/or (b) ⁇ y % or ⁇ z % of the sialic acid residues in the saccharide are O-acetylated at the 9 position.
  • x depends on the serogroup: for serogroup W135, x is 29 or less (e.g. 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5 or 0); for serogroup Y, x is 9 or less (e.g. 8, 7, 6, 5, 4, 3, 2, 1, 0.5 or 0).
  • y is 26 or more (e.g. 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100); for serogroup Y, y is 29 or more (e.g.
  • z is 27 or less (e.g. 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5 or 0).
  • x>m where m is selected from: 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.
  • z>p where p is selected from: 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.
  • the invention provides a modified meningococcal capsular saccharide, optionally conjugated to a carrier protein, wherein the saccharide comprises n or more repeating units of the disaccharide unit ⁇ [sialic acid]-[hexose]) where the hexose is either galactose or glucose and n is an integer from 1 to 100, and wherein (a) ⁇ x % of the sialic acid residues in said n or more repeating units are O-acetylated at the 7 position; and/or (b) when hexose is galactose, ⁇ y % of the sialic acid residues in said n or more repeating units are O-acetylated at the 9 position, and when hexose is glucose, ⁇ y % or ⁇ z % of the sialic acid residues in said n or more repeating units are O-acetylated at the 9 position. .
  • x depends on the hexose: when hexose is galactose, x is p or less (e.g. 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5 or 0); when hexose is glucose, x is 9 or less (e.g. 8, 7, 6, 5, 4, 3, 2, 1, 0.5 or 0).
  • y depends on the hexose: when hexose is galactose, y is 26 or more (e.g. 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100); when hexose is “glucose, y is 29 or more (e.g.
  • z is 27 or less (e.g. 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5 or 0).
  • x>m as defined above.
  • z>p as defined above.
  • the sialic acid is N-acetyl neuraminic acid.
  • the ⁇ [sialic acid]-[hexose] ⁇ disaccharide unit is preferably:
  • the ⁇ [sialic acid]-[hexose] ⁇ disaccharide unit is preferably:
  • the modified meningococcal capsular saccharide is conjugated to a carrier protein.
  • conjugates preferably between 2-9%, more preferably between 4-8%, more preferably between 5-7%, even more preferably about 6% of the sialic acid residues are O-acetylated at the 7 position; (ii) preferably between 35-55%, more preferably between 40-50%, more preferably between 42-46%, even more preferably about 43% (when hexose is Gal) or about 45% (when hexose is Glc) of the sialic acid residues are O-acetylated at the 9 position.
  • the invention also provides a composition comprising a molecules of serogroup W135 meningococcal capsular saccharide, wherein the average number of sialic acid residues per capsular saccharide molecule is b, and wherein: (a) ⁇ x % of the a ⁇ b serogroup W135 sialic acid residues in the composition are O-acetylated at the 7 position; and/or (b) ⁇ y % of the a ⁇ b serogroup W135 sialic acid residues in the composition are O-acetylated at the 9 position, and wherein x and y are as defined above.
  • the invention also provides a composition
  • a composition comprising a molecules of serogroup Y meningococcal capsular saccharide, wherein the average number of sialic acid residues per capsular saccharide molecule is b, and wherein: (a) ⁇ x % of the ab serogroup Y sialic acid residues in the composition are O-acetylated at the 7 position; and/or (b) ⁇ y % or ⁇ z % of the ab serogroup Y sialic acid residues in the composition are O-acetylated at the 9 position, and wherein x, y and z are as defined above.
  • the saccharides in said populations may be conjugated to protein carriers and/or be free in solution.
  • the saccharides or conjugates of the invention are in a purified form e.g. substantially in the absence of native polysaccharide.
  • This invention also provides a saccharide, optionally conjugated to a carrier protein, comprising n or more repeats of the following disaccharide unit:
  • x is 29 or less (e.g. 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5 or 0) and y is 26 or more (e.g.
  • x is 9 or less (e.g. 8, 7, 6, 5, 4, 3, 2, 1 or 0.5)
  • y is 29 or more (e.g. 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100) and z is 27 or less (e.g. 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
  • x>m where m is as defined above.
  • z>p where p is as defined above.
  • the saccharide is conjugated to a carrier protein.
  • the O-acetylation status of the sialic acid residues . at the 7 and 9 positions in saccharides and conjugates of the invention may be measured using 1D and 2D proton NMR, as described below.
  • HPAEC can be used to measure total O-acetylation, but it cannot distinguish between different positions [234].
  • Ion spray MS has been used for analysing O-acetylation in MenA [235].
  • the invention also provides a process for preparing an immunogenic conjugate comprising the steps of (1) p roviding a starting meningococcal capsular saccharide and a carrier protein, either or both of which is/are optionally modified to render it/them reactive towards the other; (2) forming a covalent bond between the saccharide and the carrier protein; and (3) purifying the resulting glycoconjugates, wherein, between steps (1) and (3) (e.g. during reaction step (2)), the degree of O-acetylation at the 9 position of sialic acid residues in the starting saccharide increases.
  • the meningococcal capsular saccharide is preferably from serogroup W135 or Y.
  • the modified capsular saccharides of the invention are obtainable from the saccharides found in the capsule of N. meningitidis serogroups W135 or Y. Saccharides of the invention are thus preferably modified N. meningitidis serogroup W135 saccharides and modified N. meningitidis serogroup Y saccharides.
  • Meningococcal capsular polysaccharides are typically prepared by a process comprising the steps of polysaccharide precipitation (e.g. using a cationic detergent), ethanol fractionation, cold phenol extraction (to remove protein) and ultracentrifugation (to remove LPS) [e.g. ref. 13].
  • a more preferred process [14] involves polysaccharide precipitation followed by solubilisation of the precipitated polysaccharide using a lower alcohol.
  • Precipitation can be achieved using a cationic detergent such as tetrabutylammonium and cetyltrimethylammonium salts (e.g. the bromide salts), or hexadimethrine bromide and myristyltrimethylammonium salts.
  • a cationic detergent such as tetrabutylammonium and cetyltrimethylammonium salts (e.g. the bromide salts), or hexadimethrine bromide and myristyltrimethylammonium salts.
  • CTAB Cetyltrimethylammonium bromide
  • Solubilisation of the precipitated material can be achieved using a lower alcohol such as methanol, propan-1-ol, propan-2-ol, butan-1-ol, butan-2-ol, 2-methyl-propan-1-ol, 2-methyl-propan-2-ol, diols, etc., but ethanol is particularly suitable for solubilising CTAB-polysaccharide complexes.
  • Ethanol is preferably added to the precipitated polysaccharide to give a final concentration (based on total content of ethanol and water) of between 50% and 95%.
  • the polysaccharide may be further treated to remove contaminants. This is particularly important in situations where even minor contamination is not acceptable (e.g. for human vaccine production). This will typically involve one or more steps of filtration e.g. depth filtration, filtration through activated carbon may be used, size filtration and/or ultrafiltration. Once filtered to remove contaminants, the polysaccharide may be precipitated for further treatment and/or processing. This can be conveniently achieved by exchanging cations (e.g. by the addition of calcium or sodium salts).
  • Saccharides of the invention may be polysaccharides or oligosaccharides. Oligosaccharides have a degree of polymerisation less than that found in native capsular polysaccharides present in bacteria.
  • the invention preferably uses oligosaccharides. These preferably have an average degree of polymerisation of less than 30 e.g. between 15 and 25, preferably around 15-20). The degree of polymerisation can conveniently be measured by ion exchange chromatography or by colorimetric assays [16].
  • Oligosaccharides are conveniently formed by fragmentation of purified capsular polysaccharide (e.g. by hydrolysis, by mild acid treatment, by heating, etc.), which will usually be followed by purification of the fragments of the desired size. If hydrolysis is performed, the hydrolysate will generally be sized in order to remove short-length oligosaccharides. This can be achieved in various ways, such as ultrafiltration followed by ion-exchange chromatography. Oligosaccharides with a degree of polymerisation of less than around 4 are preferably removed for serogroups W135 and Y.
  • capsular saccharides and oligosaccharides in Particular
  • capsular saccharides may be obtained by total or partial synthesis e.g. Hib synthesis is disclosed in ref. 17, and MenA synthesis in ref. 18.
  • Modified saccharides of the invention may be subjected to any usual downstream processing which is applied to saccharides (e.g. derivatisation, conjugation, fragmentation, etc.).
  • modified saccharides of the invention are preferably conjugated to a carrier protein: Conjugation to carrier proteins is particularly useful for paediatric vaccines [19] and is a well known technique [e.g. reviewed in refs. 20 to 28 etc.].
  • the invention thus provides a conjugate of a carrier protein and a saccharide of the invention.
  • Preferred carrier proteins are bacterial toxins or toxoids, such as diphtheria toxoid or tetanus toxoid.
  • the CRM 197 derivative of diphtheria toxin [29-31] is particularly preferred.
  • Other suitable carrier proteins include the N. meningitidis outer membrane protein [32], synthetic peptides [33,34], heat shock proteins [35,36], pertussis proteins [37,38], cytokines [39], lymphokines [39], hormones [39], growth factors [39], artificial proteins comprising multiple human CD 4+ T cell epitopes from various pathogen-derived antigens [40] such as the N19 protein [41], protein D from H.
  • influenzae [ 42,43], pneumococcal surface protein PspA [44], pneumolysin [45], iron-uptake proteins [46], toxin A or B from C. difficile [ 47], mutant bacterial toxins (e.g. cholera toxin ‘CT’ or E. coli heat labile toxin ‘LT’), such as a CT with a substitution at Glu-29 [48], etc.
  • Preferred carriers are diphtheria toxoid, tetanus toxoid, H. influenzae protein D, and CRM 197 .
  • composition of the invention it is possible to use more than one carrier protein e.g. to reduce the risk of carrier suppression.
  • different carrier proteins can be used for different serogroups e.g. serogroup W135 saccharides might be conjugated to CRM 197 while serogroup Y saccharides might be conjugated to tetanus toxoid.
  • more than one carrier protein for a particular saccharide antigen e.g. serogroup Y saccharides might be in two groups, with some conjugated to CRM 197 and others conjugated to tetanus toxoid. In general, however, it is preferred to use the same carrier protein for all serogroups, with CRM 197 being the preferred choice.
  • a single carrier protein might carry more than one saccharide antigen [49].
  • a single carrier protein might have conjugated to it saccharides from serogroups W135 and Y. In general, however, it is preferred to have separate conjugates for each serogroup.
  • Conjugates with a saccharide:carrier ratio (w/w) of between 1:5 (i.e. excess protein) and 5:1 (i.e. excess saccharide) are preferred. Ratios between 1:2 and 5:1 are preferred, as are ratios between 1:1.25 and 1:2.5 are more preferred. The ratio may be about 1.1, for MenW135 conjugates and 0.7 for MenY conjugates. Based on a 10 ⁇ g quantity of MenW135 or MenY saccharide, preferred conjugates comprise from 6.6-20 ⁇ g CRM 197 carrier.
  • Conjugates may be used in conjunction with free carrier protein [50].
  • the unconjugated form is preferably no more than 5% of the total amount of the carrier protein in the composition as a whole, and more preferably present at less than 2% by weight.
  • the saccharide will typically be activated or functionalised prior to conjugation. Activation may involve, for example, cyanylating reagents such as CDAP (e.g. 1-cyano-4-dimethylamino pyridinium tetrafluoroborate [51,52, etc.]).
  • CDAP cyanylating reagents
  • Other suitable techniques use carbodiimides, hydrazides, active esters, norborane, p-nitrobenzoic acid, N-hydroxysuccinimide, S-NHS, EDC, TSTU; see also the introduction to reference 26).
  • Linkages via a linker group may be made using any known procedure, for example, the procedures described in references 3 and 53.
  • One type of linkage involves reductive amination of the polysaccharide, coupling the resulting amino group with one end of an adipic acid linker group, and then coupling a protein to the other end of the adipic acid linker group [24,54,55].
  • a preferred type of linkage is a carbonyl linker, which may be formed by reaction of a free hydroxyl group of the modified saccharide with CDI [56, 57] followed by reaction with a protein to form a carbamate linkage.
  • linkage is an adipic acid linker, which may be formed by coupling a free —NH 2 group on the modified saccharide with adipic acid (using, for example, diimide activation), and then coupling a protein to the resulting saccharide-adipic acid intermediate. [24,54, 58].
  • Another preferred type of linkage may be formed by reaction of a free hydroxyl group of a saccharide with a cyanylating agent (e.g.
  • linkers include B-propionamido [61], nitrophenyl-ethylamine [62], haloacyl halides [63], glycosidic linkages [2,64], 6-aminocaproic acid [65], ADH [66], C 4 to C 12 moieties [67], etc.
  • direct linkage can be used. Direct linkages to the protein may comprise oxidation of the polysaccharide followed by reductive amination with the protein, as described in, for example, references 2 and 68.
  • Conjugation may involve: reduction of the anomeric terminus to a primary hydroxyl group, optional protection/deprotection of the primary hydroxyl group; reaction of the primary hydroxyl group with CDI to form a CDI carbamate intermediate; and coupling the CDI carbamate intermediate with an amino group on a protein.
  • a process involving the introduction of amino groups into the saccharide e.g. by replacing terminal ⁇ O groups with —NH 2
  • derivatisation with an adipic diester e.g. adipic acid N-hydroxysuccinimido diester
  • Another preferred reaction uses CDAP activation with a protein D carrier.
  • composition of the invention includes a conjugated oligosaccharide
  • oligosaccharide preparation precedes conjugation
  • the invention provides an immunogenic composition (e.g. a vaccine) comprising (a), a modified capsular saccharide of the invention and/or a conjugate of the invention, and (b) a pharmaceutically acceptable carrier.
  • Vaccines based on saccharides or saccharide-protein conjugates are well known in the art, including conjugates based on de-O-acetylated saccharides (NeisVac-CTM).
  • Vaccines of the invention may either be prophylactic (i.e. to prevent infection) or therapeutic (i.e. to treat infection), but will typically be prophylactic.
  • ‘Pharmaceutically acceptable carriers’ include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the pharmaceutical composition. Suitable carriers are typically large, slowly metabolised macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, trehalose [71] lipid aggregates (such as oil droplets or liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.
  • the vaccines may also contain diluents, such as water, saline, glycerol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present. A thorough discussion of pharmaceutically acceptable excipients is available in reference 72.
  • the pharmaceutical compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared.
  • the preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect.
  • Direct delivery of the pharmaceutical compositions will generally be parenteral (e.g. by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly, or delivered to the interstitial space of a tissue).
  • the pharmaceutical compositions can also be administered into a lesion.
  • Other modes of administration include oral and pulmonary administration, rectal (suppositories), and transdermal or transcutaneous applications [e.g. ref. 73], needles, and hyposprays.
  • the pH of the composition is preferably between 6 and 8, preferably about 7. Stable pH may be maintained by the use of a buffer. Where a composition comprises an aluminium hydroxide salt, it is preferred to use a histidine buffer [74].
  • the composition may be sterile and/or pyrogen-free. Compositions of the invention may be isotonic with respect to humans.
  • compositions of the invention may be in aqueous form (i.e. solutions or suspensions) or in dry form (e.g. lyophilised powders).
  • Liquid formulation allow the compositions to be administered direct from their packaged form, without the need for reconstitution in an aqueous medium, and are thus ideal for injection.
  • Such compositions may be presented in vials, or they may be presented in ready-filled syringes.
  • the syringes may be supplied with or without needles.
  • a syringe will include a single dose of the composition, whereas a vial may include a single dose or multiple doses.
  • Liquid compositions of the invention are also suitable for reconstituting other vaccines from a lyophilised form e.g. to reconstitute lyophilised Hib or DTP antigens.
  • a composition of the invention is to be used for such extemporaneous reconstitution, the invention provides a kit, which may comprise two vials, or may comprise one ready-filled syringe and one vial, with the contents of the syringe being used to reactivate the contents of the vial prior to injection.
  • Dry compositions of the invention offer storage stability, but must be reconstituted into liquid form prior to administration.
  • the invention provides a kit comprising a first container containing a dry composition of the invention and a second container containing an aqueous composition for reconstituting the contents of the first container.
  • the aqueous composition in the second container may contain antigens (e.g. non-meningococcal), or may contain only excipients.
  • the first container will generally be a vial; the second container may also be a vial, or it may be a ready-filled syringe.
  • stabilisers may be used e.g. disaccharides such as trehalose and sucrose, or sugar alcohols such as mannitol. These components will be added prior to lyophilisation and will appear in the reconstituted composition.
  • compositions include: sodium chloride (for tonicity), e.g. at about 9 mg/ml; detergent e.g. a Tween (polysorbate), such as Tween 80, generally at low levels e.g. ⁇ 0.01%; and buffer salts e.g. a phosphate buffer.
  • the Composition may include an antibiotic agent.
  • compositions of the invention may be packaged in unit dose form or in multiple dose form.
  • vials are preferred to pre-filled syringes.
  • Effective doses can be routinely established, but a typical human dose of the composition for injection has a volume of 0.5 ml.
  • Immunogenic compositions used as vaccines comprise an immunologically effective amount of antigen(s), as well as any other components, as needed.
  • immunologically effective amount it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, age, the taxonomic group of individual to be treated (e.g. non-human primate, primate, etc.), the capacity of the individual's immune system to synthesise antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.
  • a typical quantity of each meningococcal saccharide antigen per dose is between 1 ⁇ g and 20 ⁇ g e.g. about 1 ⁇ g, about 2.5 ⁇ g, about 4 ⁇ g, about 5 ⁇ g, or about 10 ⁇ g (expressed as saccharide).
  • Each saccharide may be present at substantially the same quantity per dose. However, an excess of MenY saccharide may be preferred e.g. a MenY:MenW135 ratio (w/w) of 1.5:1 or more.
  • a composition may also comprise free carrier protein [50].
  • the free carrier protein is present at less than 5% by weight of the composition; more preferably, it is present at less than 2% by weight.
  • compositions of the invention will generally include one or more adjuvants.
  • adjuvants include, but are not limited to:
  • Mineral containing compositions suitable for use as adjuvants in the invention include mineral salts, such as aluminium salts and calcium salts.
  • the invention includes mineral salts such as hydroxides (e.g. oxyhydroxides), phosphates (e.g. hydroxyphosphates, orthophosphates), sulphates, etc. [e.g. see chapters 8 & 9 of ref. 75], or mixtures of different mineral compounds, with the compounds taking any suitable form (e.g. gel, crystalline, amorphous, etc.), and with adsorption being preferred.
  • the mineral containing compositions may also be formulated as a particle of metal salt [76].
  • Oil emulsion compositions suitable for use as adjuvants in the invention include squalene-water emulsions, such as MF59 [Chapter 10 of ref. 75; see also ref. 77] (5% Squalene, 0.5% Tween 80, and 0.5% Span 85, formulated into submicron particles using a microfluidizer). Complete Freund's adjuvant (CFA) and incomplete Freund's adjuvant (IFA) may also be used.
  • CFA Complete Freund's adjuvant
  • IFA incomplete Freund's adjuvant
  • Saponin formulations may also be used as adjuvants in the invention.
  • Saponins are a heterologous group of sterol glycosides and triterpenoid glycosides that are found in the bark, leaves, stems, roots and even flowers of a wide range of plant species. Saponin from the bark of the Quillaia saponaria Molina tree have been widely studied as adjuvants. Saponin can also be commercially obtained from Smilax ornata (sarsaprilla), Gypsophilla paniculata (brides veil), and Saponaria officianalis (soap root).
  • Saponin adjuvant formulations include purified formulations, such as QS21, as well as lipid formulations, such as ISCOMs. QS21 is marketed as StimulonTM.
  • Saponin compositions have been purified using HPLC and RP-HPLC. Specific purified fractions using these techniques have been identified, including QS7, QS17, QS18, QS21, QH-A, QH-B and QH-C.
  • the saponin is QS21.
  • a method of production of QS21 is disclosed in ref. 78.
  • Saponin formulations may also comprise a sterol, such as cholesterol [79].
  • ISCOMs immunostimulating complexs
  • phospholipid such as phosphatidylethanolamine or phosphatidylcholine.
  • Any known saponin can be used in ISCOMs.
  • the ISCOM includes one or more of QuilA, QHA & QHC. ISCOMs are further described in refs. 79-81.
  • the ISCOMS may be devoid of additional detergent [82].
  • Virosomes and virus-like particles can also be used as adjuvants in the invention.
  • These structures generally contain one or more proteins from a virus optionally combined or formulated with a phospholipid. They are generally non-pathogenic, non-replicating and generally do not contain any of the native viral genome.
  • the viral proteins may be recombinantly produced or isolated from whole viruses.
  • viral proteins suitable for use in virosomes or VLPs include proteins derived from influenza virus (such as HA or NA), Hepatitis B virus (such as core or capsid proteins), Hepatitis E virus, measles virus, Sindbis virus, Rotavirus, Foot-and-Mouth Disease virus, Retrovirus, Norwalk virus, human Papilloma virus, HIV, RNA-phages, QB-phage (such as coat proteins), GA-phage, fr-phage, AP205 phage, and Ty (such as retrotransposon Ty protein p1).
  • VLPs are discussed further in refs. 85-90.
  • Virosomes are discussed further in, for example, ref. 91
  • Adjuvants suitable for use in the invention include bacterial or microbial derivatives such as non-toxic derivatives of enterobacterial lipopolysaccharide (LPS), Lipid A derivatives, immunostimulatory oligonucleotides and ADP-ribosylating toxins and detoxified derivatives thereof.
  • LPS enterobacterial lipopolysaccharide
  • Lipid A derivatives Lipid A derivatives
  • immunostimulatory oligonucleotides and ADP-ribosylating toxins and detoxified derivatives thereof.
  • Non-toxic derivatives of LPS include monophosphoryl lipid A (MPL) and 3-O-deacylated MPL (3dMPL).
  • 3dMPL is a mixture of 3 de-O-acylated monophosphoryl lipid A with 4, 5 or 6 acylated chains.
  • a preferred “small particle” form of 3 De-O-acylated monophosphoryl lipid A is disclosed in ref. 92. Such “small particles” of 3dMPL are small enough to be sterile filtered through a 0.22 ⁇ m membrane [92].
  • Other non-toxic LPS derivatives include monophosphoryl lipid A mimics, such as aminoalkyl glucosaminide phosphate derivatives e.g. RC-529 [93,94].
  • Lipid A derivatives include derivatives of lipid A from Escherichia coli such as OM-174.
  • OM-174 is described for example in refs. 95 & 96.
  • Immunostimulatory oligonucleotides suitable for use as adjuvants in the invention include nucleotide sequences containing a CpG motif (a dinucleotide sequence containing an unmethylated cytosine linked by a phosphate bond to a guanosine). Double-stranded RNAs and oligonucleotides containing palindromic or poly(dG) sequences have also been shown to be immunostimulatory.
  • the CpG's can include nucleotide modifications/analogs such as phosphorothioate modifications and can be double-stranded or single-stranded.
  • References 97, 98 and 99 disclose possible analog substitutions e.g. replacement of guinosine with 2′-deoxy-7-deazaguanosine.
  • the adjuvant effect of CpG oligonucleotides is further discussed in refs. 100-105.
  • the CpG sequence may be directed to TLR9, such as the motif GTCGTT or TTCGTT [106].
  • the CpG sequence may be specific for inducing a Th1 immune response, such as a CpG-A ODN, or it may be more specific for inducing a B cell response, such a CpG-B ODN.
  • CpG-A and CpG-B ODNs are discussed in refs. 107-109.
  • the CpG is a CpG-A ODN.
  • the CpG oligonucleotide is constructed so that the 5′ end is accessible for receptor recognition.
  • two CpG oligonucleotide sequences may be attached at their 3′ ends to form “immunomers”. See, for example, refs. 106 & 110-112.
  • Bacterial ADP-ribosylating toxins and detoxified derivatives thereof may be used as adjuvants in the invention.
  • the protein is derived from E. coli ( E. coli heat labile enterotoxin “LT”), cholera (“CT”), or pertussis (“PT”).
  • LT E. coli heat labile enterotoxin
  • CT cholera
  • PT pertussis
  • the use of detoxified ADP-ribosylating toxins as mucosal adjuvants is described in ref. 113 and as parenteral adjuvants in ref. 114.
  • the toxin or toxoid is preferably in the form of a holotoxin, comprising both A and B subunits.
  • the A subunit contains a detoxifying mutation; preferably the B subunit is not mutated.
  • the adjuvant is a detoxified LT mutant such as LT-K63, LT-R72, and LT-G192.
  • LT-K63 LT-K63
  • LT-R72 LT-G192.
  • ADP-ribosylating toxins and detoxified derivaties thereof, particularly LT-K63 and LT-R72, as adjuvants can be found in refs. 115-122.
  • Numerical reference for amino acid substitutions is preferably based on the alignments of the A and B subunits of ADP-ribosylating toxins set forth in ref. 123, specifically incorporated herein by reference in its entirety.
  • Human immunomodulators suitable for use as adjuvants in the invention include cytokines, such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.) [124], interferons (e.g. interferon- ⁇ ), macrophage colony stimulating factor, and tumor necrosis factor.
  • cytokines such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.) [124], interferons (e.g. interferon- ⁇ ), macrophage colony stimulating factor, and tumor necrosis factor.
  • Bioadhesives and mucoadhesives may also be used as adjuvants in the invention.
  • Suitable bioadhesives include esterified hyaluronic acid microspheres [125] or mucoadhesives such as cross-linked derivatives of poly(acrylic acid), polyvinyl alcohol, polyvinyl pyrollidone, polysaccharides and carboxymethylcellulose. Chitosan and derivatives thereof may also be used as adjuvants in the invention [126].
  • Microparticles may also be used as adjuvants in the invention.
  • Microparticles i.e. a particle of ⁇ 100 nm to ⁇ 150 ⁇ m in diameter, more preferably ⁇ 200 nm to ⁇ 30 ⁇ m in diameter, and most preferably ⁇ 500 nm to ⁇ 10 ⁇ m in diameter
  • materials that are biodegradable and non-toxic e.g. a poly( ⁇ -hydroxy acid), a polyhydroxybutyric acid, a polyorthoester, a polyanhydride, a polycaprolactone, etc.
  • a negatively-charged surface e.g. with SDS
  • a positively-charged surface e.g. with a cationic detergent, such as CTAB
  • liposome formulations suitable for use as adjuvants are described in refs. 127-129.
  • Adjuvants suitable for use in the invention include polyoxyethylene ethers and polyoxyethylene esters [130]. Such formulations further include polyoxyethylene sorbitan ester surfactants in combination with an octoxynol [131] as well as polyoxyethylene alkyl ethers or ester surfactants in combination with at least one additional non-ionic surfactant such as an octoxynol [132].
  • Preferred polyoxyethylene ethers are selected from the following group: polyoxyethylene-9-lauryl ether (laureth 9), polyoxyethylene-9-steoryl ether, polyoxytheylene-8-steoryl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether.
  • PCPP Polyphosphazene
  • PCPP formulations are described, for example, in refs. 133 and 134.
  • muramyl peptides suitable for use as adjuvants in the invention include N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), and N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1′-2′-dipahnitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine MTP-PE).
  • thr-MDP N-acetyl-muramyl-L-threonyl-D-isoglutamine
  • nor-MDP N-acetyl-normuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1′-2′-dipahni
  • imidazoquinolone compounds suitable for use adjuvants in the invention include Imiquamod and its homologues (e,g. “Resiquimod 3M”), described further in refs. 135 and 136.
  • the invention may also comprise combinations of aspects of one or more of the adjuvants identified above.
  • the following adjuvant compositions may be used in the invention: (1) a saponin and an oil-in-water emulsion [137]; (2) a saponin (e.g. QS21)+a non-toxic LPS derivative (e.g. 3dMPL) [138]; (3) a saponin (e.g. QS21)+a non-toxic LPS derivative (e.g. 3dMPL)+a cholesterol; (4) a saponin (e.g.
  • RibiTM adjuvant system (RAS), (Ribi Immunochem) containing 2% squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (WM), and cell wall skeleton (CWS), preferably MPL+CWS (DetoxTM); and (8) one or more mineral salts (such as an aluminum salt)+a non-toxic derivative of LPS (such as 3dMPL).
  • MPL monophosphorylipid A
  • WM trehalose dimycolate
  • CWS cell wall skeleton
  • LPS such as 3dMPL
  • Aluminium salts and calcium phosphate are preferred parenteral adjuvants. Mutant toxins are preferred mucosal adjuvants.
  • compositions of the invention that include an aluminium phosphate adjuvant are preferred.
  • Aluminium hydroxide is preferably absent.
  • Aluminium phosphate adjuvant may be included at about 0.6 mg Al 3+ per ml.
  • compositions of the invention may comprise both a modified serogroup W135 meningococcal capsular saccharide of the invention and a modified serogroup Y meningococcal capsular saccharide of the invention.
  • compositions of the invention provides a composition comprising a modified serogroup W135 meningococcal capsular saccharide of the invention and/or a modified serogroup Y meningococcal capsular saccharide of the invention, and further comprising one or more antigen(s) selected from the following list
  • Toxic protein antigens may be detoxified where necessary (e.g. detoxification of pertussis toxin by chemical and/or genetic means [179]).
  • diphtheria antigen is included in the pharmaceutical composition it is preferred also to include tetanus antigen and pertussis antigens. Similarly, where a tetanus antigen is included it is preferred also to include diphtheria and pertussis antigens. Similarly, where a pertussis antigen is included it is preferred also to include diphtheria and tetanus antigens.
  • Antigens in the pharmaceutical composition will typically be present at a concentration of at least 1 ⁇ g/ml each. In general, the concentration of any given antigen will be sufficient to elicit an immune response against that antigen.
  • Antigens are preferably adsorbed to an aluminium salt adjuvant.
  • nucleic acid encoding the antigen may be used [e.g. refs. 184 to 192]. Protein components of the pharmaceutical compositions of the invention may thus be replaced by nucleic acid (preferably DNA e.g. in the form of a plasmid) that encodes the protein.
  • compositions of the invention may comprise proteins which mimic saccharide antigens e.g. mimotopes [193] or anti-idiotype antibodies. These may replace individual saccharine components, or may supplement them.
  • the vaccine may comprise a peptide mimic of the MenC [194] or the MenA [195] capsular polysaccharide in place of the saccharide itself.
  • compositions of the invention comprise a modified serogroup W135 meningococcal capsular saccharide of the invention, a modified serogroup Y meningococcal capsular saccharide of the invention, and a serogroup C capsular saccharide, wherein the capsular saccharides are conjugated to carrier proteins.
  • the composition may also include a serogroup A capsular saccharide, preferably conjugated to a carrier protein.
  • the saccharides in these compositions are preferably oligosaccharides. Oligosaccharide conjugates can be prepared as disclosed in reference 14.
  • Serogroup A saccharides may be O-acetylated or de-O-acetylated.
  • Serogroup C saccharides may be O-acetylated or de-O-acetylated.
  • Preferred MenC conjugates include, based on 10 ⁇ g saccharide, 12.5-25 ⁇ g CRM 197 carrier.
  • Preferred MenA conjugates include, based on 10 ⁇ g saccharide, 12.5-33 ⁇ g CRM 197 carrier.
  • Typical doses for MenC and MenA conjugates are the same as for MenW135 and MenY i.e. between 1 ⁇ g and 20 ⁇ g e.g. about about 2.5 ⁇ g, about 4 ⁇ g, about 5 ⁇ g, or about 10 ⁇ g.
  • Preferred ratios (w/w) for saccharides from serogroups C:W135:Y are: 1:1:1; 1:1:2; 1:1:1; 2:1:1; 4:2:1; 2:1:2; 4:1:2; 2:2:1; and 2:1:1.
  • Preferred ratios for saccharides from serogroups A:C:W135:Y are: 1:1:1:1; 1:1:1:2; 2:1:1:1; 4:2:1:1; 8:4:2:1; 4:2:1:2; 8:4:1:2; 4:2:2:1; 2:2:1:1; 4:4:2:1; 2:2:1:2; 4:4:1:2; and 2:2:2:1.
  • Using a substantially equal mass of each saccharide per dose is preferred.
  • composition may be prepared by reconstituting the serogroup A saccharide from a lyophilised form, using an aqueous composition that comprises one or more of the serogroup C, W135 and/or Y saccharides.
  • composition may be a modified saccharide in which one or more of the hydroxyl groups on the native saccharide has/have been replaced by a blocking group [196]. This modification improves resistance to hydrolysis. It is preferred that all or substantially all the monosaccharide units may have blocking group substitutions.
  • compositions of the invention may include one or more antigens from serogroup B.
  • the capsular saccharide of MenB is unsuitable for use as an immunogen in humans because of its similarity to self antigens.
  • a saccharide antigen is to be used for MenB, therefore, it is necessary to use a modified saccharide, such as one in which N-acetyl groups in the saccharide's sialic acid residues are replaced with N-acyl groups.
  • Suitable N-acyl groups are C 1 to C 8 acyl groups, such as N-propionyl [197].
  • composition may include one or more polypeptide antigens which induce(s) an immune response that protects against MenB infection. More generally, the composition can, after administration to a subject, induce an antibody response in the subject that is bactericidal against two or more (e.g. 2 or 3) of hypervirulent lineages A4, ET-5 and lineage 3 of N. meningitidis serogroup B.
  • compositions include one or more of the following five antigens [198]: (1) a ‘NadA’ protein, preferably in oligomeric form (e.g. in trimeric form); (2) a ‘741’ protein; (3) a ‘936’ protein; (4) a ‘953’ protein; and (5) a ‘287’ protein.
  • the serogroup B protein may comprise the amino acid sequence of one of these prototype sequences, or it may comprise an amino acid sequence which: (a) has 50% or more identity (e.g. 60%, 70%, 80%, 90%, 95%, 99% or more) to the prototype sequence; and/or (b) comprises a fragment of at least n consecutive amino acids of the prototype sequence, where n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more).
  • Preferred fragments for (b) lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or the N-terminus of the prototype sequence.
  • Other preferred fragments comprise an epitope from the sequence.
  • MenB antigens may be present in the composition as five separate proteins, but it is preferred that at least two of the antigens are expressed as a single polypeptide chain (a ‘hybrid’ protein [refs. 145-147]) i.e. such that the five antigens form fewer than five polypeptides.
  • Hybrid proteins offer two principal advantages: first, a protein that may be unstable or poorly expressed on its own can be assisted by adding a suitable hybrid partner that overcomes the problem; second, commercial manufacture is simplified as only one expression and purification need be employed in order to produce two separately-useful proteins.
  • a hybrid protein included in a composition of the invention may comprise two or more (i.e. 2, 3, 4 or 5) of the five basic antigens.
  • Hybrids consisting of two of the five antigens are preferred e.g. those comprising: NadA & 741; NadA & 936; NadA & 953; NadA & 287; 741 & 936; 741 & 953; 741 & 287; 936 & 953; 936 & 287; 953 & 287.
  • compositions of the invention Three preferred MenB antigens for combined inclusion in compositions of the invention are:
  • compositions of the invention that include MenB antigens can preferably induce a serum bactericidal antibody response that is effective against two or three of MenB hypervirulent lineages A4, ET-5 and lineage 3. They may additionally induce bactericidal antibody responses against one or more of hypervirulent lineages subgroup I, subgroup III, subgroup IV-1 or ET-37 complex, and against other lineages e.g. hyperinvasive lineages. These antibody responses are conveniently measured in mice and are a standard indicator of vaccine efficacy [e.g. see end-note 14 of reference 150].
  • the composition need not induce bactericidal antibodies against each and every MenB strain within these hypervirulent lineages; rather, for any given group of four of more strains of serogroup B meningococcus within a particular hypervirulent lineage, the antibodies induced by the composition are bactericidal against at least 50% (e.g. 60%, 70%, 80%, 90% or more) of the group.
  • Preferred groups of strains will include strains isolated in at least four of the following countries: GB, AU, CA, NO, IT, US, NZ, NL, BR, and CU.
  • the serum preferably has a bactericidal titre of at least 1024 (e.g.
  • the serum is able to kill at least 50% of test bacteria of a particular strain when diluted 1/1024, as described in reference 150.
  • compositions can induce bactericidal responses against the following strains of serogroup B meningococcus: (i) from cluster A4, strain 961-5945 (B:2b:P1.21,16) and/or strain G2136 (B:-); (ii) from ET-5 complex, strain MC58 (B:15:P1.7,16b) and/or slain 44/76 (B:15:P1.7,16); (iii) from lineage 3, strain 394/98 (B:4:P1.4) and/or strain BZ198 (B:NT:-). More preferred compositions can induce bactericidal responses against strains 961-5945, 44/76 and 394/98.
  • Strains 961-5945 and G2136 are both Neisseria MLST reference strains [ids 638 & 1002 in ref. 199].
  • Strain MC58 is widely available (e.g. ATCC BAA-335) and was the strain sequenced in reference 148.
  • Strain 44/76 has been widely used and characterised (e.g. ref. 200) and is one of the Neisseria MLST reference strains [id 237 in ref. 199; row 32 of Table 2 in ref. 201].
  • Strain 394/98 was originally isolated in New Zealand in 1998, and there have been several published studies using this strain (e.g. refs. 202 & 203).
  • Strain BZ198 is another MLST reference strain [id 409 in ref.
  • the composition may additionally induce a bactericidal response against serogroup W135 strain LNP17592 (W135:2a:P1.5,2), from ET-37 complex. This is a Haji strain isolated in France in 2000.
  • MenB polypeptide antigens which may be included in compositions of the invention include those comprising one of the following amino acid sequences: SEQ ID NO:650 from ref. 141; SEQ ID NO:878 from ref. 141; SEQ 1D NO:884 from ref. 141; SEQ ID NO:4 from ref. 142; SEQ ID NO:598 from ref. 143; SEQ ID NO:818 from ref. 143; SEQ ID NO:864 from ref. 143; SEQ ID NO:866 from ref. 143; SEQ ID NO:1196 from ref. 143; SEQ ID NO:1272 from ref. 143; SEQ ID NO:1274 from ref. 143; SEQ ID NO:1640 from ref.
  • polypeptide comprising an amino acid sequence which: (a) has 50% or more identity (e.g. 60%, 70%, 80%, 90%, 95%, 99% or more) to said sequences; and/or (b) comprises a fragment of at least n consecutive amino acids from said sequences, whereiri n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more).
  • Preferred fragments for (b) comprise an epitope from the relevant sequence. More than one (e.g. 2, 3, 4, 5, 6) of these polypeptides may be included.
  • composition includes a H. influenzae type B antigen
  • it will typically be a Hib capsular saccharide antigen. Saccharide antigens from H. influenzae b are well known.
  • the Hib saccharide is covalently conjugated to a carrier protein, in order to enhance its immunogenicity, especially in children.
  • a carrier protein in order to enhance its immunogenicity, especially in children.
  • the invention may use any suitable Hib conjugate.
  • Suitable carrier proteins are described above, and preferred carriers for Hib saccharides are CRM 197 (‘HbOC’), tetanus toxoid (‘PRP-T’) and the outer membrane complex of N. meningitidis (‘PRP-OMP’).
  • the saccharide moiety of the conjugate may be a polysaccharide (e.g. full-length polyribosylribitol phosphate (PRP)), but it is preferred to hydrolyse polysaccharides to form oligosaccharides (e.g. MW from ⁇ 1 to ⁇ 5 kDa).
  • polysaccharide e.g. full-length polyribosylribitol phosphate (PRP)
  • PRP polyribosylribitol phosphate
  • a preferred conjugate comprises a Hib oligosaccharide covalently linked to CRM 197 via an adipic acid linker [16,204]. Tetanus toxoid is also a preferred carrier.
  • Administration of the Hib antigen preferably results in an anti-PRP antibody concentration of ⁇ 0.15 ⁇ g/ml, and more preferably ⁇ 1 ⁇ g/ml.
  • compositions include a Hib saccharide antigen, it is preferred that it does not also include an aluminium hydroxide adjuvant. If the composition includes an aluminium phosphate adjuvant then the Hib antigen may be adsorbed to the adjuvant [205] or it may be non-adsorbed [206]. Prevention of adsorption can be achieved by selecting the correct pH during antigen/adjuvant mixing, an adjuvant with an appropriate point of zero charge, and an appropriate order of mixing for the various different antigens in a composition [207].
  • compositions of the invention may comprise more than one Hib antigen.
  • Hib antigens may be lyophilised e.g. for reconstitution by meningococcal compositions of the invention.
  • composition includes a S. pneumoniae antigen
  • a S. pneumoniae antigen it will typically be a capsular saccharide antigen which is preferably conjugated to a carrier protein [e.g. refs. 208 to 210]. It is preferred to include saccharides from more than one serotype of S. pneumoniae. For example, mixtures of polysaccharides from 23 different serotype are widely used, as are conjugate vaccines with polysaccharides from between 5 and 11 different serotypes [211].
  • PrevNarTM contains antigens from seven serotypes (4, 6B, 9V, 14, 18C, 19F, and 23F) with each saccharide individually conjugated to CRM 197 by reductive amination, with 2 ⁇ g of each saccharide per 0.5 ml dose (4 ⁇ g of serotype 6B), and with conjugates adsorbed on an aluminium phosphate adjuvant.
  • Compositions of the invention preferably include at least serotypes 6B, 14, 19F and 23F. Conjugates may be adsorbed onto an aluminium phosphate.
  • the composition may include one or more polypeptide antigens.
  • Genome sequences for several strains of pneumococcus are available [213,214] and can be subjected to reverse vaccinology [215,218] to identify suitable polypeptide antigens [219,220].
  • the composition may include one or more of the following antigens: PhtA, PhtD, PhtB, PhtE, SpsA, LytB, LytC, LytA, Sp125, Sp101, Sp128, Sp130 and Sp130, as defined in reference 221.
  • the composition may include more than one (e.g. 2, 3, 4, 5, 6, 7, 8, 9 10, 11, 12, 13 or 14) of these antigens.
  • the composition may include both saccharide and polypeptide antigens from pneumococcus. These may be used in simple admixture, or the pneumococcal saccharide antigen may be conjugated to a pneumococcal protein. Suitable carrier proteins for such embodiments include the antigens listed in the previous paragraph [221].
  • Pneumococcal antigens may be lyophilised e.g. together with Hib antigen.
  • the invention also provides a method for raising an antibody response in a mammal, comprising administering a pharmaceutical composition of the invention to the mammal.
  • the invention provides a method for raising an immune response in a mammal comprising the step of administering an effective amount of a composition of the invention.
  • the immune response is preferably protective and preferably involves antibodies.
  • the method may raise a booster response.
  • the mammal is preferably a human.
  • the human is preferably a child (e.g. a toddler or infant) or a teenager; where the vaccine is for therapeutic use, the human is preferably an adult.
  • a vaccine intended for children may also be administered to adults e.g. to assess safety, dosage, immunogenicity, etc.
  • the invention also provides a composition of the invention for use as a medicament.
  • the medicament is preferably able to raise an immune response in a mammal (i.e. it is an immunogenic composition) and is more preferably a vaccine.
  • the invention also provides the use of a modified serogroup W135 meningococcal capsular saccharide of the invention and/or a modified serogroup Y meningococcal capsular saccharide of the invention in the manufacture of a medicament for raising an immune response in a mammal.
  • the saccharides are preferably conjugated.
  • the medicament is preferably a vaccine.
  • These uses and methods are preferably for the prevention and/or treatment of a disease caused by a Neisseria (e.g. meningitis, septicaemia, bacteremia, gonorrhoea, etc.).
  • a Neisseria e.g. meningitis, septicaemia, bacteremia, gonorrhoea, etc.
  • the prevention and/or treatment of bacterial and/or meningococcal meningitis is preferred.
  • One way of checking efficacy of therapeutic treatment involves monitoring Neisserial infection after administration of the composition of the invention.
  • One way of checking efficacy of prophylactic treatment involves monitoring immune responses against the five basic antigens after administration of the composition. Immunogenicity of compositions of the invention can be determined by administering them to test subjects (e.g. children 12-16 months age, or animal models [222]) and then determining standard parameters including serum bactericidal activity (SBA) and ELISA titres (GMT) of total and high-avidity anti-capsule IgG. These immune responses will generally be determined around 4 weeks after administration of the composition, and compared to values determined before administration of the composition.
  • SBA measures bacterial killing mediated by complement, and can be assayed using human or baby rabbit complement. WHO standards require a vaccine to induce at least a 4-fold rise in SBA in more than 90% of recipients. A SBA increase of at least 4-fold or 8-fold is preferred. Where more than one dose of the composition is administered, more than one post-administration determination may be made
  • compositions of the invention can confer an antibody titre in a patient that is superior to the criterion for seroprotection for each antigenic component for an acceptable percentage of human subjects.
  • Antigens with an associated antibody titre above which a host is considered to be seroconverted against the antigen are well known, and such titres are published by organisations such as WHO.
  • Preferably more than 80% of a statistically significant sample of subjects is seroconverted, more preferably more than 90%, still more preferably more than 93% and most preferably 96-100%.
  • compositions of the invention will generally be administered directly to a patient
  • Direct delivery may be accomplished by parenteral injection (e.g. subcutaneously, intraperitoneally, intravenously, intramuscularly, or to the interstitial space of a tissue), or by rectal, oral, vaginal, topical, transdermal, intranasal, ocular, aural, pulmonary or other mucosal administration.
  • Intramuscular administration to the thigh or the upper arm is preferred.
  • Injection may be via a needle (e.g. a hypodermic needle), but needle-free injection may alternatively be used.
  • a typical intramuscular dose is 0.5 ml.
  • the invention may be used to elicit systemic and/or mucosal immunity.
  • Dosage treatment can be a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunisation schedule and/or in a booster immunisation schedule. A primary dose schedule may be followed by a booster dose schedule. Suitable timing between priming doses (e.g. between 4-16 weeks), and between priming and boosting, can be routinely determined.
  • compositions of the invention may be prepared in various forms.
  • the compositions may be prepared as injectables, either as liquid solutions or suspensions.
  • Solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection can also be prepared (e.g. a lyophilised composition).
  • the composition may be prepared for topical administration e.g. as an ointment, cream or powder.
  • the composition be prepared for oral administration e.g. as a tablet or capsule, or as a syrup (optionally flavoured).
  • the composition may be prepared for pulmonary administration e.g. as an inhaler, using a fine powder or a spray.
  • the composition may be prepared as a suppository or pessary.
  • the composition may be prepared for nasal, aural or ocular administration e.g., as spray, drops, gel or powder [e.g. refs 223 & 224].
  • Success with nasal administration of pneumococcal saccharides [225,226], pneumococcal polypeptides [227], Hib saccharides [228], MenC saccharides [229], and mixtures of Hib and MenC saccharide conjugates [230] has been reported.
  • composition “comprising” means “including” as well as “consisting” e.g. a composition “comprising” X may consist exclusively of X or may include something additional e.g. X+Y.
  • sugar rings can exist in open and closed form and that, whilst closed forms are shown in structural formulae herein, open forms are also encompassed by the invention.
  • Sialic acid is also known as neuraminic acid.
  • FIGS. 1 and 2 show annotated NMR spectra of hydrolysed MenW135 and MenY, respectively.
  • FIGS. 3 and 4 show the O-acetylation status of the sialic acid residues at the 7 and 9 positions during the preparation of MenW135-CRM 197 and MenY-CRM 197 conjugates, respectively.
  • FIGS. 5 and 6 show IgG titres obtained in mice against oligosaccharide antigens using MenW135 and MenY, respectively.
  • Capsular polysaccharides were purified from MenW135 and MenY as described in ref. 14.
  • the purified polysaccharides were hydrolysed in acetic 50 mM sodium acetate buffer, pH 4.7 for about 3 hours at 80° C. This resulted in oligosaccharides with an average DP of about 15 to 20 as determined by ratio between sialic acid (SA) and reduced terminal SA.
  • SA sialic acid
  • the hydrolysate was ultrafiltered through a 30 kDa cut-off membrane (12 to 20 diafiltration volumes of 5 mM acetate buffer/15-30 mM NaCl pH 6.5).
  • the retentate, containing the high MW species, was discarded while the permeate was loaded onto a Q-Sepharose Fast Flow column equilibrated in 5 mM acetate buffer/15 mM NaCl pH 6.5.
  • the column was then washed with 10 CV equilibrating buffer, in order to remove oligosaccharides with DP ⁇ 3-4 and eluted with 3 CV 5 mM acetate buffer/500 mM NaCl pH 6.5.
  • Ammonium chloride or ammonium acetate was added to the sized oligosaccharide solution to a final concentration of 300 g/L, then sodium-cyano-borohydride was added to 49 g/L or 73 g/L final concentration.
  • the mixture was incubated at 50° C. for 3 days to produce amino-oligosaccharides, which were then purified by tangential flow ultrafiltration with a 1 kDa or 3 kDa cut-off membrane using 13 diafiltration volumes of 0.5 M NaCl followed by 7 diafiltration volumes of 20 mM NaCl.
  • the purified oligosaccharides were then dried with rotary evaporator to remove water.
  • Dried amino-oligosaccharides were solubilised in distilled water at a 40 mM amino group concentration, then 9 volumes of DMSO were added followed by triethyl-amine at a final concentration of 200 mM.
  • adipic acid N-hydroxysuccinimido diester was added for a final concentration of 480 mM.
  • the reaction was maintained under stirring at room temperature for 2 hours, then the activated oligosaccharide was precipitated with acetone (80% v/v final concentration). The precipitate was collected by centrifugation and washed several times with acetone to remove unreacted adipic acid N-hydroxysuccinimido diester and by-products. Finally the activated oligosaccharide was dried under vacuum.
  • the amount of active ester groups introduced into the oligosaccharide structure was determined by a colorimetric method as described in ref. 231.
  • the dried activated oligosaccharide was added to a 45 mg/ml solution of CRM 197 in 0.01M phosphate buffer pH 7.2 for an active ester/protein (mole/mole) ratio of 12:1.
  • the reaction was maintained under stirring at room temperature overnight.
  • the conjugate was purified by diafiltration with a 30 kDa membrane (50 diafiltration volumes of 10 mM phosphate buffer, pH 7.2).
  • the purified conjugate was sterile filtered and stored at ⁇ 20° C. or ⁇ 60° C. until vaccine formulation.
  • O-acetylation status of the C7 and C9 positions of the sialic acid residues in the population of modified saccharides derived from MenW135 and Men Y was measured by NMR analysis.
  • the intermediate poly- and oligo-saccharides of the conjugation process were characterised using 1D and 2D proton NMR experiments.
  • 1 H NMR samples were prepared by dissolving lyophilized oligosaccharides in 0.75 mL of 99.9% deuterated 2 H 2 O (AldrichTM) to give 10-15 mM concentrated solutions. In all experiments, 5 mm Wilmad NMR tubes were used.
  • NMR spectra were recorded at 298 K on a Bruker NMR Spectrometer Avarice DRX 600 MHz equipped with a BGU unit and using standard Bruker pulse programs. A 5 mm TBI triple resonance probe with self shielded z-gradients was used. For processing data the Bruker XWLNNMR. 3.0 software was used.
  • Proton standard spectral acquisition conditions are to collect 32 k data points over a spectral window of 6000 Hz with 4 scans.
  • 1H NMR spectra were Fourier-transformed after applying a 0.1 Hz line broadening function and referenced relative to the mono-deuterated water (MO) at 4.72 ppm.
  • the overall percentage of sialic acid O-acetylation at the 7 position fell during preparation of the conjugate, from about 30% to about 6%.
  • the percentage of O-acetylation at the 9 position increased from about 25% to about 43% ( FIG. 3 ).
  • the dramatic change seen at the 9 position in the final step shows that conjugation preferentially selects those saccharides that are O-acetylated at the 9 position.
  • the percentage of sialic acid O-acetylation at the 7 position fell during preparation of the conjugate of the present invention from about 10% to about 2%, before finally rising to about 6% during the conjugation reaction.
  • the percentage of O-acetylation at the 9 position fell from about 28% to about 21%, before finally rising to about 45% during the conjugation reaction ( FIG. 4 ).
  • the dramatic change seen at the 9 position in the final step shows that conjugation preferentially selects those saccharides that are O-acetylated at the 9 position.
  • the frozen bulk conjugates were thawed. Each was diluted, under stirring, to a final concentration of 20 ⁇ g saccharide/ml, 5 mM phosphate, 9 mg/ml NaCl, aluminium phosphate (to give an Al 3+ concentration of 0.6 mg/ml), pH 7.2. The mixtures were then kept, without stirring, at 2-8° C. overnight and further diluted with saline to 4 ⁇ g saccharide/ml for mouse immunisation.
  • a second set of vaccines was prepared for both serogroups in the same way, but the addition of aluminium phosphate was replaced with same volume of water.
  • mice for each immunisation group were injected s.c. twice with 0.5 ml vaccine at weeks 0 and 4. Bleedings were performed before immunisation, the day before the second dose and 2 weeks after the second dose. Immunisations were performed with (a) the conjugate vaccine with or without alum, (b) saline control and (c) unconjugated polysaccharide control.
  • Specific anti-polysaccharide IgG antibodies were determined in the sera of immunised animals essentially as described in ref. 233. Each individual mouse serum was analysed in duplicate by a titration curve and GMT was calculated for each immunisation group. Titres were calculated in Mouse Elisa Units (MEU) using ‘Titerun’ software (FDA). Anti-polysaccharide titre specificity was determined by competitive ELISA with the relevant polysaccharide as competitor.
  • the MenW135 conjugate induced high antibody titres in animals.
  • the unconjugated polysaccharide was not immunogenic.
  • the conjugate formulation with an aluminium phosphate as adjuvant induced a higher level of antibodies compared to the titre obtained by the conjugate alone. Similar results were seen for MenY ( FIG. 6 ).
  • Post-II sera were tested for bactericidal activity using an in vitro assay to measure complement-mediated lysis of bacteria. Post-II sera were inactivated for 30 minutes at 56° C. before the use in the assay, and 25% baby rabbit complement was used as source of complement. Bactericidal titre was expressed as the reciprocal serum dilution yielding 50% killing of bacteria against the following strains: MenW135, 5554 (OAc+); MenY, 242975 (OAc+).
  • a capsular polysaccharide derived from MenW135 did not yield a GMT value and gave a bactericidal activity of only 4.
  • de-O-acetylated conjugates of the invention gave GMT values between 14 and 565, with bactericidal titres between 64 and 2048.
  • a capsular polysaccharide derived from MenY did not yield a GMT value and gave a bactericidal activity of only 256.
  • de-O-acetylated conjugates of the invention gave GMT values between 253 and 1618, with bactericidal titres between 256 and 16384.
  • Vaccine design the subunit and adjuvant approach (1995) Powell & Newman. ISBN 0-306-44867-X.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Communicable Diseases (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oncology (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Biotechnology (AREA)
  • Diabetes (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)
  • Saccharide Compounds (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Medicinal Preparation (AREA)
US10/574,437 2003-10-02 2004-10-04 Hypo- and Hyper- Acetylated Meningococcal Capsular Saccharides Abandoned US20100092509A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0323103.2A GB0323103D0 (en) 2003-10-02 2003-10-02 De-acetylated saccharides
GB0323103.2 2003-10-02
PCT/IB2004/003366 WO2005033148A1 (fr) 2003-10-02 2004-10-04 Saccharides capsulaires meningococciques hypo et hyperacetyles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2004/003366 A-371-Of-International WO2005033148A1 (fr) 2003-10-02 2004-10-04 Saccharides capsulaires meningococciques hypo et hyperacetyles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/267,248 Division US9827301B2 (en) 2003-10-02 2014-05-01 Hypo- and hyper-acetylated meningococcal capsular saccharides

Publications (1)

Publication Number Publication Date
US20100092509A1 true US20100092509A1 (en) 2010-04-15

Family

ID=29415385

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/574,437 Abandoned US20100092509A1 (en) 2003-10-02 2004-10-04 Hypo- and Hyper- Acetylated Meningococcal Capsular Saccharides
US14/267,248 Active 2025-04-27 US9827301B2 (en) 2003-10-02 2014-05-01 Hypo- and hyper-acetylated meningococcal capsular saccharides

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/267,248 Active 2025-04-27 US9827301B2 (en) 2003-10-02 2014-05-01 Hypo- and hyper-acetylated meningococcal capsular saccharides

Country Status (17)

Country Link
US (2) US20100092509A1 (fr)
EP (2) EP2267036A1 (fr)
JP (2) JP5590760B2 (fr)
CN (3) CN102977219A (fr)
AT (1) ATE545659T1 (fr)
AU (2) AU2004278170B2 (fr)
BR (1) BRPI0415048A (fr)
CA (1) CA2541020C (fr)
CY (3) CY1112763T1 (fr)
ES (1) ES2379792T3 (fr)
GB (1) GB0323103D0 (fr)
HK (1) HK1095154A1 (fr)
MX (1) MXPA06003729A (fr)
NZ (1) NZ546668A (fr)
PT (1) PT1678212E (fr)
RU (1) RU2362784C2 (fr)
WO (1) WO2005033148A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060171957A1 (en) * 2002-10-11 2006-08-03 Chiron Spa Polypeptide-vaccines for broad protetion against hypervirulent meningococcal lineages
US20060240045A1 (en) * 2002-08-02 2006-10-26 Francois-Xavier Berthet Neisserial vaccine compositions comprising a combination of antigens
US20090214586A1 (en) * 2005-03-17 2009-08-27 Mario Contorni Combination Vaccines With Whole Cell Pertussis Antigen

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1228217T3 (da) 1999-04-30 2013-02-25 Novartis Vaccines & Diagnostic Konserverede neisseria-antigener
CN102580072A (zh) 1999-05-19 2012-07-18 诺华疫苗和诊断有限公司 组合式奈瑟球菌组合物
DK1790660T3 (da) * 2000-02-28 2012-09-17 Novartis Vaccines & Diagnostic Heterolog ekspression af Neisseria-proteiner
MX339524B (es) 2001-10-11 2016-05-30 Wyeth Corp Composiciones inmunogenicas novedosas para la prevencion y tratamiento de enfermedad meningococica.
CN103405761A (zh) 2003-10-02 2013-11-27 诺华疫苗和诊断有限公司 多种脑膜炎球菌血清群的液体疫苗
GB0409745D0 (en) 2004-04-30 2004-06-09 Chiron Srl Compositions including unconjugated carrier proteins
GB0411387D0 (en) 2004-05-21 2004-06-23 Chiron Srl Analysis of saccharide length
GB0413868D0 (en) 2004-06-21 2004-07-21 Chiron Srl Dimensional anlaysis of saccharide conjugates
JP5135220B2 (ja) 2005-09-01 2013-02-06 ノバルティス ヴァクシンズ アンド ダイアグノスティクス ゲーエムベーハー アンド カンパニー カーゲー 血清群c髄膜炎菌を含む複数ワクチン接種
CN101378778B (zh) 2005-12-22 2013-02-06 葛兰素史密丝克莱恩生物有限公司 肺炎球菌多糖缀合物疫苗
PT2004225E (pt) 2006-03-22 2012-05-30 Novartis Ag Regimes para imunização com conjugados meningocócicos
GB0605757D0 (en) 2006-03-22 2006-05-03 Chiron Srl Separation of conjugated and unconjugated components
EP2476433A1 (fr) 2006-03-30 2012-07-18 GlaxoSmithKline Biologicals S.A. Composition immunogène
AR064642A1 (es) 2006-12-22 2009-04-15 Wyeth Corp Polinucleotido vector que lo comprende celula recombinante que comprende el vector polipeptido , anticuerpo , composicion que comprende el polinucleotido , vector , celula recombinante polipeptido o anticuerpo , uso de la composicion y metodo para preparar la composicion misma y preparar una composi
GB0700562D0 (en) * 2007-01-11 2007-02-21 Novartis Vaccines & Diagnostic Modified Saccharides
AU2008267208B2 (en) 2007-06-26 2012-01-19 Glaxosmithkline Biologicals S.A. Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
GB0713880D0 (en) 2007-07-17 2007-08-29 Novartis Ag Conjugate purification
EP2462949A3 (fr) 2007-10-19 2012-09-05 Novartis AG Formulations de vaccins contre les méningocoques
GB0822633D0 (en) 2008-12-11 2009-01-21 Novartis Ag Formulation
GB0822634D0 (en) 2008-12-11 2009-01-21 Novartis Ag Meningitis vaccines
AU2009329193A1 (en) 2008-12-17 2011-07-14 Novartis Ag Meningococcal vaccines including hemoglobin receptor
EP2411048B1 (fr) 2009-03-24 2020-05-06 GlaxoSmithKline Biologicals SA Protéine de liaison du facteur h méningococcique utilisée comme adjuvant
JP5668049B2 (ja) 2009-03-24 2015-02-12 ノバルティス アーゲー 髄膜炎菌h因子結合タンパク質および肺炎球菌糖結合体の組み合わせ
SI2445522T1 (sl) 2009-06-22 2017-10-30 Wyeth Llc Imunogeni sestavki antigenov Staphylococcusa aureusa
US9125951B2 (en) 2009-06-22 2015-09-08 Wyeth Llc Compositions and methods for preparing Staphylococcus aureus serotype 5 and 8 capsular polysaccharide conjugate immunogenic compositions
GB0913681D0 (en) 2009-08-05 2009-09-16 Glaxosmithkline Biolog Sa Immunogenic composition
GB0913680D0 (en) 2009-08-05 2009-09-16 Glaxosmithkline Biolog Sa Immunogenic composition
JP2013506651A (ja) 2009-09-30 2013-02-28 ノバルティス アーゲー Staphylococcus.aureus5型および8型莢膜多糖の結合体
PL2493498T3 (pl) 2009-10-30 2017-08-31 Glaxosmithkline Biologicals Sa Oczyszczanie sacharydów otoczkowych staphylococcus aureus typu 5 i typu 8
US20130071422A1 (en) 2010-03-18 2013-03-21 Michele Pallaoro Adjuvanted vaccines for serogroup b meningococcus
EP2585106A1 (fr) 2010-06-25 2013-05-01 Novartis AG Associations de protéines de liaison du facteur h méningococcique
HRP20210242T4 (hr) 2010-08-23 2024-05-10 Wyeth Llc Stabilne formulacije antigena iz bakterije neisseria meningitidis rlp2086
CN103096920B (zh) 2010-09-10 2016-03-23 惠氏有限责任公司 脑膜炎奈瑟球菌orf2086抗原的非脂质化变体
CA2819120C (fr) 2010-12-22 2016-07-05 Wyeth Llc Compositions immunogenes stables d'antigenes de staphylococcus aureus
JP6191082B2 (ja) 2011-03-02 2017-09-06 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム より低用量の抗原および/またはアジュバントを有する混合ワクチン
EP2729178A1 (fr) 2011-07-08 2014-05-14 Novartis AG Procédé de ligature de la tyrosine
CN104080479B (zh) 2011-11-07 2019-11-05 葛兰素史密丝克莱恩生物有限公司 包括spr0096和spr2021抗原的运载体分子
EP2797624A1 (fr) 2011-12-29 2014-11-05 Novartis AG Combinaisons avec adjuvant de protéines méningococciques liant le facteur h
EP2822584A1 (fr) 2012-03-08 2015-01-14 Novartis AG Vaccins combinés comprenant des agonistes du tlr4
BR122016004924A2 (pt) 2012-03-09 2019-07-30 Pfizer Inc. Polipeptídeo isolado e composições imunogênicas compreendendo os mesmos
SA115360586B1 (ar) 2012-03-09 2017-04-12 فايزر انك تركيبات لعلاج الالتهاب السحائي البكتيري وطرق لتحضيرها
MX363511B (es) 2012-08-16 2019-03-26 Pfizer Proceso de glucoconjugación y composiciones.
JP6324961B2 (ja) 2012-09-06 2018-05-16 ノバルティス アーゲー 血清群b髄膜炎菌とd/t/pとの組み合わせワクチン
CA2896552A1 (fr) 2012-10-03 2014-04-10 Novartis Ag Compositions immunogenes
WO2014095771A1 (fr) 2012-12-18 2014-06-26 Novartis Ag Conjugués de protection contre la diphtérie et/ou le tétanos
JP6446377B2 (ja) 2013-03-08 2018-12-26 ファイザー・インク 免疫原性融合ポリペプチド
GB201310008D0 (en) 2013-06-05 2013-07-17 Glaxosmithkline Biolog Sa Immunogenic composition for use in therapy
EA201690205A1 (ru) 2013-07-11 2016-12-30 Новартис Аг Сайт-специфические химико-ферментативные модификации белков
CA2923129C (fr) 2013-09-08 2020-06-09 Pfizer Inc. Compositions utilisables contre neisseria meningitidis et procedes associes
SI3096786T1 (sl) 2014-01-21 2021-09-30 Pfizer Inc. Kapsularni polisaharidi streptococcus pneumoniae in njihovi konjugati
JP6612260B2 (ja) 2014-01-21 2019-11-27 ファイザー・インク 肺炎連鎖球菌(Streptococcus pneumoniae)莢膜多糖およびそのコンジュゲート
EP3616716A3 (fr) 2014-01-21 2020-05-06 Pfizer Inc Compositions immunogènes comprenant des antigènes saccharidiques capsulaires conjugués et leurs utilisations
US11160855B2 (en) 2014-01-21 2021-11-02 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
US10668164B2 (en) 2014-02-14 2020-06-02 Pfizer Inc. Immunogenic glycoprotein conjugates
MX2017007652A (es) 2014-12-10 2017-10-11 Glaxosmithkline Biologicals Sa Metodo de tratamiento.
CN107427568B (zh) 2015-01-15 2021-12-14 辉瑞公司 用于肺炎球菌疫苗中的免疫原性组合物
AU2016221318B2 (en) 2015-02-19 2020-06-25 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
EP3292146A1 (fr) 2015-05-04 2018-03-14 Pfizer Inc Conjugués polysaccharide-protéine de streptococcus du groupe b, procédé de production de conjugués, compositions immunogènes comprenant les conjugués et leurs utilisations
PE20240927A1 (es) 2015-07-21 2024-04-30 Pfizer Composiciones inmunogenas que comprenden antigenos de sacarido capsular conjugados, kits que las comprenden y sus usos
CA3005524C (fr) 2015-11-20 2023-10-10 Pfizer Inc. Compositions immunogenes destinees a etre utilisees dans des vaccins pneumococciques
JP7031933B2 (ja) * 2016-01-28 2022-03-08 イントラヴァック ビー.ブイ. 改変されたテトラアシル化ナイセリアlps
AU2017213129B2 (en) * 2016-01-28 2021-05-27 Intravacc B.V. Modified hexa-acylated neisserial LPS
US20180064801A1 (en) 2016-09-02 2018-03-08 Glaxosmithkline Biologicals Sa Vaccines for neisseria gonorrhoeae
MX2019002489A (es) 2016-09-02 2019-10-21 Sanofi Pasteur Inc Vacuna contra neisseria meningitidis.
US10751402B2 (en) 2016-11-09 2020-08-25 Pfizer Inc. Immunogenic compositions and uses thereof
CA3048981A1 (fr) 2016-12-30 2018-07-05 Sutrovax, Inc. Conjugues polypeptide-antigene avec des acides amines non naturels
US11951165B2 (en) 2016-12-30 2024-04-09 Vaxcyte, Inc. Conjugated vaccine carrier proteins
ES2911490T3 (es) 2017-01-20 2022-05-19 Pfizer Composiciones inmunogénicas para su uso en vacunas antineumocócicas
AU2018215585B2 (en) 2017-01-31 2022-03-17 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
JP2018193446A (ja) * 2017-05-15 2018-12-06 国立大学法人 長崎大学 新規多糖類
JP2022512345A (ja) 2018-12-12 2022-02-03 ファイザー・インク 免疫原性多重ヘテロ抗原多糖-タンパク質コンジュゲートおよびその使用
US20220184199A1 (en) 2019-04-10 2022-06-16 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising the same and uses thereof
CA3192786A1 (fr) 2020-08-26 2022-03-03 Pfizer Inc. Conjugues polysaccharide-proteine de streptococcus du groupe b, procedes de production de conjugues, compositions immunogenes comprenant les conjugues et leurs utilisations
AU2021373358A1 (en) 2020-11-04 2023-06-01 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
WO2022234416A1 (fr) 2021-05-03 2022-11-10 Pfizer Inc. Vaccination contre des infections à pneumocoque et à covid-19
JP2024517780A (ja) 2021-05-03 2024-04-23 ファイザー・インク 細菌およびベータコロナウイルス感染症に対するワクチン接種
WO2024084397A1 (fr) 2022-10-19 2024-04-25 Pfizer Inc. Vaccination contre infections à pneumocoques et à covid-19

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050106181A1 (en) * 2001-06-20 2005-05-19 Chiron Spa Capsular polysaccharide solubilisation and combination vaccines

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057685A (en) 1972-02-02 1977-11-08 Abbott Laboratories Chemically modified endotoxin immunizing agent
US4356170A (en) 1981-05-27 1982-10-26 Canadian Patents & Development Ltd. Immunogenic polysaccharide-protein conjugates
US4673574A (en) 1981-08-31 1987-06-16 Anderson Porter W Immunogenic conjugates
SE8205892D0 (sv) 1982-10-18 1982-10-18 Bror Morein Immunogent membranproteinkomplex, sett for framstellning och anvendning derav som immunstimulerande medel och sasom vaccin
US4459286A (en) 1983-01-31 1984-07-10 Merck & Co., Inc. Coupled H. influenzae type B vaccine
US4663160A (en) 1983-03-14 1987-05-05 Miles Laboratories, Inc. Vaccines for gram-negative bacteria
US4761283A (en) 1983-07-05 1988-08-02 The University Of Rochester Immunogenic conjugates
US6090406A (en) 1984-04-12 2000-07-18 The Liposome Company, Inc. Potentiation of immune responses with liposomal adjuvants
US5916588A (en) 1984-04-12 1999-06-29 The Liposome Company, Inc. Peptide-containing liposomes, immunogenic liposomes and methods of preparation and use
US4882317A (en) 1984-05-10 1989-11-21 Merck & Co., Inc. Covalently-modified bacterial polysaccharides, stable covalent conjugates of such polysaccharides and immunogenic proteins with bigeneric spacers and methods of preparing such polysaccharides and conjugataes and of confirming covalency
US4695624A (en) 1984-05-10 1987-09-22 Merck & Co., Inc. Covalently-modified polyanionic bacterial polysaccharides, stable covalent conjugates of such polysaccharides and immunogenic proteins with bigeneric spacers, and methods of preparing such polysaccharides and conjugates and of confirming covalency
US4808700A (en) 1984-07-09 1989-02-28 Praxis Biologics, Inc. Immunogenic conjugates of non-toxic E. coli LT-B enterotoxin subunit and capsular polymers
IT1187753B (it) 1985-07-05 1987-12-23 Sclavo Spa Coniugati glicoproteici ad attivita' immunogenica trivalente
US5057540A (en) 1987-05-29 1991-10-15 Cambridge Biotech Corporation Saponin adjuvant
JPH01125328A (ja) 1987-07-30 1989-05-17 Centro Natl De Biopreparados 髄膜炎菌ワクチン
NL8802046A (nl) 1988-08-18 1990-03-16 Gen Electric Polymeermengsel met polyester en alkaansulfonaat, daaruit gevormde voorwerpen.
NZ241926A (en) 1988-08-25 1993-08-26 Liposome Co Inc Immunisation dosage form comprising a salt of an organic acid derivative of a sterol and an antigen
DE3841091A1 (de) 1988-12-07 1990-06-13 Behringwerke Ag Synthetische antigene, verfahren zu ihrer herstellung und ihre verwendung
ATE120093T1 (de) 1988-12-19 1995-04-15 Praxis Biolog Inc Meningococcales klasse i-aussenmembranprotein- vakzin.
DE68907045T2 (de) 1989-01-17 1993-12-02 Eniricerche Spa Synthetische Peptide und deren Verwendung als allgemeine Träger für die Herstellung von immunogenischen Konjugaten, die für die Entwicklung von synthetischen Impfstoffen geeignet sind.
JPH0832638B2 (ja) 1989-05-25 1996-03-29 カイロン コーポレイション サブミクロン油滴乳剤を含んで成るアジュバント製剤
CA2063271A1 (fr) 1989-07-14 1991-01-15 Subramonia Pillai Vecteurs de cytokine et d'hormones pour vaccins conjugues
IT1237764B (it) 1989-11-10 1993-06-17 Eniricerche Spa Peptidi sintetici utili come carriers universali per la preparazione di coniugati immunogenici e loro impiego per lo sviluppo di vaccini sintetici.
SE466259B (sv) 1990-05-31 1992-01-20 Arne Forsgren Protein d - ett igd-bindande protein fraan haemophilus influenzae, samt anvaendning av detta foer analys, vacciner och uppreningsaendamaal
DE69113564T2 (de) 1990-08-13 1996-05-30 American Cyanamid Co Faser-Hemagglutinin von Bordetella pertussis als Träger für konjugierten Impfstoff.
US5153312A (en) 1990-09-28 1992-10-06 American Cyanamid Company Oligosaccharide conjugate vaccines
IT1262896B (it) 1992-03-06 1996-07-22 Composti coniugati formati da proteine heat shock (hsp) e oligo-poli- saccaridi, loro uso per la produzione di vaccini.
JP3755890B2 (ja) 1992-06-25 2006-03-15 スミスクライン・ビーチャム・バイオロジカルス(ソシエテ・アノニム) アジュバント含有ワクチン組成物
IL102687A (en) 1992-07-30 1997-06-10 Yeda Res & Dev Conjugates of poorly immunogenic antigens and synthetic pepide carriers and vaccines comprising them
US5425946A (en) 1992-08-31 1995-06-20 North American Vaccine, Inc. Vaccines against group C Neisseria meningitidis
DK0658118T3 (da) 1992-08-31 2002-05-06 Baxter Healthcare Sa Vaccine mod Neisseria meningitidis, gruppe C
NL9201716A (nl) 1992-10-02 1994-05-02 Nederlanden Staat Buitenmembraanvesikel dat voorzien is van een groep polypeptiden welke ten minste de immuunwerking van aan membraan gebonden buitenmembraaneiwitten (OMP's) hebben, werkwijze ter bereiding ervan alsmede een vaccin dat een dergelijk buitenmembraanvesikel omvat.
EP0812593B8 (fr) 1993-03-23 2010-11-10 SmithKline Beecham Biologicals S.A. Compositions vaccinales renfermant de lipide A monophosphorylique 3-0-desacétylé
ATE254475T1 (de) 1993-09-22 2003-12-15 Jackson H M Found Military Med Verfahren zur aktivierung von löslichem kohlenhydraten durch verwendung von neuen cyanylierungsreagenzien, zur herstellung von immunogenischen konstrukten
GB9326174D0 (en) 1993-12-22 1994-02-23 Biocine Sclavo Mucosal adjuvant
GB9326253D0 (en) 1993-12-23 1994-02-23 Smithkline Beecham Biolog Vaccines
US6429199B1 (en) 1994-07-15 2002-08-06 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules for activating dendritic cells
US6239116B1 (en) 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
AUPM873294A0 (en) 1994-10-12 1994-11-03 Csl Limited Saponin preparations and use thereof in iscoms
IL117483A (en) 1995-03-17 2008-03-20 Bernard Brodeur MENINGITIDIS NEISSERIA shell protein is resistant to proteinase K.
CA2215933C (fr) 1995-03-22 2009-10-13 Andrew Lees Preparation de produits de recombinaison immunogenes au moyen d'hydrates de carbone solubles actives par l'intermediaire de reactifs organiques de cyanylation
UA56132C2 (uk) 1995-04-25 2003-05-15 Смітклайн Бічем Байолоджікалс С.А. Композиція вакцини (варіанти), спосіб стабілізації qs21 відносно гідролізу (варіанти), спосіб приготування композиції вакцини
US6180111B1 (en) 1995-05-18 2001-01-30 University Of Maryland Vaccine delivery system
FR2734484B1 (fr) 1995-05-24 1997-06-27 Pasteur Merieux Serums Vacc Composition vaccinale liquide et procede de fabrication
JP4233113B2 (ja) 1995-06-07 2009-03-04 グラクソスミスクライン・バイオロジカルス・ソシエテ・アノニム 多糖類抗原−キャリア蛋白接合体および遊離キャリア蛋白を有してなるワクチン
PL184872B1 (pl) 1995-06-23 2003-01-31 Smithkline Beecham Biolog Kombinowana szczepionkaĆ zestaw do przygotowania kombinowanej szczepionkiĆ sposób wytwarzania kombinowanej szczepionki i jej zastosowanie
GB9513261D0 (en) 1995-06-29 1995-09-06 Smithkline Beecham Biolog Vaccines
DE69708318T3 (de) 1996-08-27 2006-11-16 Novartis Vaccines and Diagnostics, Inc., Emeryville Neisseria meningitidis serogruppe b glykokonjugate und verfahren zu deren verwendung
US6558677B2 (en) 1996-10-15 2003-05-06 Wendell D. Zollinger Vaccine against gram negative bacteria
US5980898A (en) 1996-11-14 1999-11-09 The United States Of America As Represented By The U.S. Army Medical Research & Material Command Adjuvant for transcutaneous immunization
EP1005368B1 (fr) 1997-03-10 2009-09-02 Ottawa Hospital Research Institute Utilisation d'acides nucléiques contenat un dinucléotide CpG non-methylé combiné avec de l'aluminium en tant qu'adjuvants
US6818222B1 (en) 1997-03-21 2004-11-16 Chiron Corporation Detoxified mutants of bacterial ADP-ribosylating toxins as parenteral adjuvants
US6299881B1 (en) 1997-03-24 2001-10-09 Henry M. Jackson Foundation For The Advancement Of Military Medicine Uronium salts for activating hydroxyls, carboxyls, and polysaccharides, and conjugate vaccines, immunogens, and other useful immunological reagents produced using uronium salts
GB9711964D0 (en) 1997-06-09 1997-08-06 Medical Res Council Live attenuated vaccines
GB9712347D0 (en) 1997-06-14 1997-08-13 Smithkline Beecham Biolog Vaccine
GB9713156D0 (en) 1997-06-20 1997-08-27 Microbiological Res Authority Vaccines
JP4426091B2 (ja) 1997-09-05 2010-03-03 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム サポニンを含有する水中油型エマルション
CA2671261A1 (fr) 1997-11-06 1999-05-20 Novartis Vaccines And Diagnostics S.R.L. Antigenes de neisseria
GB9725084D0 (en) 1997-11-28 1998-01-28 Medeva Europ Ltd Vaccine compositions
ATE446368T1 (de) 1998-01-14 2009-11-15 Novartis Vaccines & Diagnostic Antigene aus neisseria meningitidis
US7018637B2 (en) 1998-02-23 2006-03-28 Aventis Pasteur, Inc Multi-oligosaccharide glycoconjugate bacterial meningitis vaccines
US6303114B1 (en) 1998-03-05 2001-10-16 The Medical College Of Ohio IL-12 enhancement of immune responses to T-independent antigens
KR20010042573A (ko) 1998-04-09 2001-05-25 장 스테판느 애쥬번트 조성물
EP2261355A3 (fr) 1998-05-01 2012-01-11 Novartis Vaccines and Diagnostics, Inc. Antigènes de Neisseria meningitidis et compositions
US6562798B1 (en) 1998-06-05 2003-05-13 Dynavax Technologies Corp. Immunostimulatory oligonucleotides with modified bases and methods of use thereof
GB9817052D0 (en) 1998-08-05 1998-09-30 Smithkline Beecham Biolog Vaccine
JP2004505885A (ja) 1998-08-19 2004-02-26 ノース アメリカン ワクチン, インコーポレイテッド N−アクリロイル化ポリサッカリドを用いて産生されたワクチンとして有用な免疫原性β−プロピオンアミド連結ポリサッカリド−タンパク質結合体
JP2004511201A (ja) 1998-10-09 2004-04-15 カイロン コーポレイション ナイセリアゲノム配列およびそれらの使用方法
GB9823978D0 (en) 1998-11-02 1998-12-30 Microbiological Res Authority Multicomponent meningococcal vaccine
US6146902A (en) 1998-12-29 2000-11-14 Aventis Pasteur, Inc. Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions
EP1034792A1 (fr) 1999-03-11 2000-09-13 Pasteur Merieux Serums Et Vaccins Administration par voie intranasale de vaccins à base de polyosides de Pneumococcus
JP4846906B2 (ja) 1999-03-19 2011-12-28 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム ワクチン
FR2791895B1 (fr) 1999-03-23 2001-06-15 Pasteur Merieux Serums Vacc Utilisation de trehalose pour stabiliser un vaccin liquide
CA2365914A1 (fr) 1999-04-09 2000-10-19 Techlab, Inc. Support proteique recombinant de la toxine a du clostridium recombinant pour vaccins conjugues polysaccharides
GB9918319D0 (en) 1999-08-03 1999-10-06 Smithkline Beecham Biolog Vaccine composition
WO2001021152A1 (fr) 1999-09-24 2001-03-29 Smithkline Beecham Biologicals S.A. Adjuvant comprenant un ether ou ester d'alkyle polyethylene et au moins un tensioactif non ionique
CN1391483A (zh) 1999-09-24 2003-01-15 史密丝克莱恩比彻姆生物有限公司 作为佐剂的聚氧乙烯脱水山梨醇酯和辛苯昔醇组合及其在疫苗中的应用
GB9925559D0 (en) 1999-10-28 1999-12-29 Smithkline Beecham Biolog Novel method
AU1917501A (en) 1999-11-12 2001-06-06 University Of Iowa Research Foundation, The Control of neisserial membrane synthesis
ES2507100T3 (es) 2000-01-17 2014-10-14 Novartis Vaccines And Diagnostics S.R.L. Vacuna OMV suplementada contra meningococo
CA2396871A1 (fr) 2000-01-20 2001-12-20 Ottawa Health Research Institute Acides nucleiques immunostimulateurs permettant d'induire une reponse immunitaire th2
DK1790660T3 (da) 2000-02-28 2012-09-17 Novartis Vaccines & Diagnostic Heterolog ekspression af Neisseria-proteiner
GB0007432D0 (en) 2000-03-27 2000-05-17 Microbiological Res Authority Proteins for use as carriers in conjugate vaccines
SK288007B6 (sk) 2000-06-29 2012-10-02 Glaxosmithkline Biologicals S. A. Multivalent vaccine composition, process for its producing, and its use
US6936261B2 (en) 2000-07-27 2005-08-30 Children's Hospital & Research Center At Oakland Vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis
GB0103170D0 (en) 2001-02-08 2001-03-28 Smithkline Beecham Biolog Vaccine composition
GB0022742D0 (en) 2000-09-15 2000-11-01 Smithkline Beecham Biolog Vaccine
WO2002026757A2 (fr) 2000-09-26 2002-04-04 Hybridon, Inc. Modulation de l'activite immunostimulatrice d'analogues oligonucleotidiques immunostimulateurs par des modifications chimiques de position
MXPA03006561A (es) 2001-01-23 2004-10-15 Aventis Pasteur Vacuna del conjugado proteina-polisacarido meningococico, multivalente.
GB0103171D0 (en) 2001-02-08 2001-03-28 Smithkline Beecham Biolog Vaccine composition
GB0103169D0 (en) 2001-02-08 2001-03-28 Smithkline Beecham Biolog Vaccine composition
AU2002309706A1 (en) 2001-05-11 2002-11-25 Aventis Pasteur, Inc. Novel meningitis conjugate vaccine
RU2323002C2 (ru) 2001-07-26 2008-04-27 Чирон Срл. Вакцины, содержащие алюминиевые адъюванты и гистидин
GB0121591D0 (en) 2001-09-06 2001-10-24 Chiron Spa Hybrid and tandem expression of neisserial proteins
US20030091593A1 (en) 2001-09-14 2003-05-15 Cytos Biotechnology Ag In vivo activation of antigen presenting cells for enhancement of immune responses induced by virus like particles
DE60234375D1 (de) 2001-09-14 2009-12-24 Cytos Biotechnology Ag VERPACKUNG VON IMMUNSTIMULIERENDEM CpG IN VIRUSÄHNLICHEN PARTIKELN: HERSTELLUNGSVERFAHREN UND VERWENDUNG
WO2003035836A2 (fr) 2001-10-24 2003-05-01 Hybridon Inc. Modulation des proprietes immunostimulantes de composes a base d'oligonucleotides par presentation optimale d'extremites 5'
GB0130123D0 (en) 2001-12-17 2002-02-06 Microbiological Res Agency Outer membrane vesicle vaccine and its preparation
DK1777236T3 (en) 2002-03-26 2017-02-27 Glaxosmithkline Biologicals Sa MODIFIED SUCCARIDES WHICH IMPROVED WATER STABILITY FOR USE AS A MEDICINE
GB0302218D0 (en) 2003-01-30 2003-03-05 Chiron Sri Vaccine formulation & Mucosal delivery
GB0220194D0 (en) 2002-08-30 2002-10-09 Chiron Spa Improved vesicles
JP4697706B2 (ja) 2002-10-11 2011-06-08 ノバルティス ヴァクシンズ アンド ダイアグノスティクス エスアールエル 高毒性髄膜炎菌系統に対する広範な防御のためのポリペプチド−ワクチン
EP2191844B1 (fr) 2003-01-30 2014-03-05 Novartis AG Vaccins injectables contre les multiples serogroupes du meningocoque
CA2519511A1 (fr) 2003-03-17 2004-09-30 Wyeth Holdings Corporation Holotoxine du cholera mutante en tant qu'adjuvant et proteine de support d'antigene
CA2530364C (fr) 2003-06-23 2014-03-18 Baxter International Inc. Vaccins contre neisseria meningitidis du groupe y et combinaisons meningococciques desdits vaccins

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050106181A1 (en) * 2001-06-20 2005-05-19 Chiron Spa Capsular polysaccharide solubilisation and combination vaccines
US20090117148A1 (en) * 2001-06-20 2009-05-07 Corporate Intellectual Property R338 Capsular Polysaccharides Solubilisation and Combination Vaccines
US20090130147A1 (en) * 2001-06-20 2009-05-21 Paolo Constantino Capsular polysaccharide solubilisation and combination vaccines
US20090182129A1 (en) * 2001-06-20 2009-07-16 Paolo Costantino Capsular Polysaccharide Solubilisation and Combination Vaccines

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060240045A1 (en) * 2002-08-02 2006-10-26 Francois-Xavier Berthet Neisserial vaccine compositions comprising a combination of antigens
US20060171957A1 (en) * 2002-10-11 2006-08-03 Chiron Spa Polypeptide-vaccines for broad protetion against hypervirulent meningococcal lineages
US8663656B2 (en) 2002-10-11 2014-03-04 Novartis Ag Polypeptide-vaccines for broad protection against hypervirulent meningococcal lineages
US20090214586A1 (en) * 2005-03-17 2009-08-27 Mario Contorni Combination Vaccines With Whole Cell Pertussis Antigen
US8883166B2 (en) * 2005-03-17 2014-11-11 Novartis Ag Combination vaccines with whole cell pertussis antigen

Also Published As

Publication number Publication date
ES2379792T3 (es) 2012-05-03
AU2004278170B2 (en) 2008-07-03
US20140234368A1 (en) 2014-08-21
GB0323103D0 (en) 2003-11-05
BRPI0415048A (pt) 2006-12-12
RU2362784C2 (ru) 2009-07-27
CA2541020A1 (fr) 2005-04-14
JP2007507578A (ja) 2007-03-29
EP2267036A1 (fr) 2010-12-29
CN1882612A (zh) 2006-12-20
MXPA06003729A (es) 2006-06-23
CN102977219A (zh) 2013-03-20
CY1112763T1 (el) 2015-08-05
PT1678212E (pt) 2012-04-03
AU2004278170A1 (en) 2005-04-14
JP2012097284A (ja) 2012-05-24
CY2012025I1 (el) 2015-08-05
US9827301B2 (en) 2017-11-28
WO2005033148A1 (fr) 2005-04-14
AU2008202708B2 (en) 2010-05-27
AU2008202708A1 (en) 2008-07-10
EP1678212A1 (fr) 2006-07-12
RU2006114695A (ru) 2007-11-10
JP5590760B2 (ja) 2014-09-17
NZ546668A (en) 2009-06-26
CA2541020C (fr) 2015-12-01
EP1678212B1 (fr) 2012-02-15
CY2012024I1 (el) 2015-08-05
ATE545659T1 (de) 2012-03-15
HK1095154A1 (en) 2007-04-27
CN102633893A (zh) 2012-08-15

Similar Documents

Publication Publication Date Title
US9827301B2 (en) Hypo- and hyper-acetylated meningococcal capsular saccharides
US9180204B2 (en) Liquid vaccines for multiple meningococcal serogroups
US10195264B2 (en) Immunising against meningococcal serogroup Y using proteins
MXPA06003764A (es) Compuestos de azufre para mejorar el aroma del cafe y productos resultantes que los contienen.
NZ574275A (en) Liquid vaccines for multiple meningococcal serogroups
AU2014265019B2 (en) Liquid vaccines for multiple meningococcal serogroups

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOVARTIS VACCINES AND DIAGNOSTICS SRL,ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COSTANTINO, PAOLO;BERTI, FRANCESCO;SIGNING DATES FROM 20070326 TO 20070327;REEL/FRAME:019220/0449

AS Assignment

Owner name: NOVARTIS AG,SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOVARTIS VACCINES AND DIAGNOSTICS SRL;REEL/FRAME:021615/0451

Effective date: 20080930

Owner name: NOVARTIS AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOVARTIS VACCINES AND DIAGNOSTICS SRL;REEL/FRAME:021615/0451

Effective date: 20080930

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION