JP7031933B2 - 改変されたテトラアシル化ナイセリアlps - Google Patents

改変されたテトラアシル化ナイセリアlps Download PDF

Info

Publication number
JP7031933B2
JP7031933B2 JP2018538629A JP2018538629A JP7031933B2 JP 7031933 B2 JP7031933 B2 JP 7031933B2 JP 2018538629 A JP2018538629 A JP 2018538629A JP 2018538629 A JP2018538629 A JP 2018538629A JP 7031933 B2 JP7031933 B2 JP 7031933B2
Authority
JP
Japan
Prior art keywords
lps
neisseria
lipid
bacterium
omv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018538629A
Other languages
English (en)
Other versions
JP2019503423A (ja
Inventor
アフシン ザリリ,
エスカローナ, エルダー プポ
ダー レイ, ピーター アンドレ ヴァン
Original Assignee
イントラヴァック ビー.ブイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イントラヴァック ビー.ブイ. filed Critical イントラヴァック ビー.ブイ.
Publication of JP2019503423A publication Critical patent/JP2019503423A/ja
Application granted granted Critical
Publication of JP7031933B2 publication Critical patent/JP7031933B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • C07H15/06Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical being a hydroxyalkyl group esterified by a fatty acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/095Neisseria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/739Lipopolysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/22Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Neisseriaceae (F)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/522Bacterial cells; Fungal cells; Protozoal cells avirulent or attenuated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、医療分野、特に免疫学、医学微生物学、及びワクチン学の分野に関する。本発明は、生物工学的に作出された髄膜炎菌LPS突然変異体から取得可能であり、また全細胞ワクチン、OMVワクチンの一部、又は精製済みのLPS若しくはリピドA分子として有用である改変されたLPS分子に関する。
リポ多糖(LPS)は、バクテリアエンドトキシンとしても知られており、グラム陰性バクテリアの外膜に豊富に存在する成分である。グラム陰性バクテリアに感染している期間中、LPS、より正確にはLPSのリピドA部分は、宿主の自然免疫系を活性化させる(1~3)。この活性化は、LPSとパターン認識受容体であるToll様受容体4/ミエロイド系分化因子2(TLR4/MD-2)複合体との結合を通じて生じ、この活性化により、感染症を除去するのに必要なサイトカイン産生を引き起こすシグナル伝達カスケードが開始する(3,4)。しかし、このシグナル伝達カスケードの過剰刺激、及び炎症性サイトカインの過剰生成は、宿主にとって有害であり、また敗血症性ショック等の生命を脅かす状態を引き起こすおそれがある(5、6)。
TLR4/MD-2複合体が完全に活性化するには、6つのアシル鎖及び2つのリン酸基を有するリピドA構造が重要である(7)。但し、多くのバクテリア種は、アシル鎖又はリン酸基の数を変化させることにより、そのリピドA構造を改変することが可能であり、テトラアシル化大腸菌(E.coli)リピドIVa構造において認められるように(7,9)、作動薬ではなく拮抗薬となるまでTLR4/MD-2複合体の活性化に変化をもたらす(8)酵素を有する。
TLR4/MD-2複合体は、MyD88並びにTRIF経路の両方を通じてシグナル伝達することができるので、TLR受容体ファミリーにおいて独特である。改変されたリピドA構造は、MyD88又はTRIFアダプター分子の優先的動員により、シグナル伝達の選択を誘発することができる。TRIF経路を経由する優先的シグナル伝達は、I型インターフェロン産生の契機となり、ワクチンアジュバントにおいて重要と考えられている(10,11)。モノホスホリルリピドA(MPLA)は、TRIFへとバイアスがかかったシグナル伝達を引き起こす契機となる改変型リピドAの例である(11)。MPLAは、化学的に無毒化されており、いくつかのワクチンにおいてアジュバントとしての使用が承認されているサルモネラ・ミネソタ(Salmonella minnesota)に由来する不均質のリピドA混合物である(12)。MPLAの主要成分は、ヘキサアシル化4’-モノホスホリルリピドAから構成される。MPLAの使用には、その製造において、バクテリアからのLPS単離に加えて化学的処理が必要とされ、またLPSのリピドA部分のみから構成され、水不溶性であるといった欠点が存在する。
髄膜炎菌(Neiseria meningitidis)は、リピドAの1及び4’の位置に付加したリン酸基及びホスホエタノールアミン基を有するヘキサアシル化LPSを一般的に産生する(13、14)。PagL等のLPS修飾酵素の異種発現、又はLpxL1及びLpxL2等のリピドA生合成酵素の欠損が、極めて活性な髄膜炎菌LPSを無毒化するのに使用されてきた(13、15)。LpxL1の欠損は、LPS関連の過剰の反応源性を低下させるのに界面活性剤を使用する必要がなく、髄膜炎菌外膜小胞ワクチンを製造する際に、髄膜炎菌LPSを無毒化するのに有利な方法であることが判明した(16)。しかし、この改変型LPSの活性は、任意のTLR4/MD-2複合体の活性化をヒト細胞においてほとんど誘発しなくなるほどまで低下しており、スタンドアローン型のワクチンアジュバントとしての適用性を減じさせている(17)。髄膜炎菌において、pagLが異種発現すると、その結果、なおもTLR4活性化を誘発する能力を有し、そしてヒト単核株化細胞においてTRIFへとバイアスがかかったサイトカイン産生を誘発する、弱毒化された異なるペンタアシル化LPS構造が生じる(13)。
Pupoら(2014年、J. Biol. Chem.、289巻:8668~8680頁)は、髄膜炎菌(Neisseria meningitidis)のΔlpxL1又はpagL単一突然変異体に由来するペンタアシル化突然変異体リピドAの構造解析及び改変された作動薬特性について記載する。
毒性副作用の制限、それと併行した十分量の免疫活性化の保持、その両者間の最適なバランスを有する、アジュバントとして有用な改変型LPS分子を提供することが本発明の目的である。本発明は、様々な予防上及び治療上の用途で有用である、TLR4/MD-2活性化能力を広範囲にわたり有する多様な一連の髄膜炎菌LPS構造を提供するために、リピドA生合成遺伝子の標的欠損と組み合わせてLPS改変酵素を異種発現させることによりこの問題に対処する。
第1の態様では、本発明は、テトラアシル化リピドA部分を有するナイセリアLPSに関し、テトラアシル化リピドA部分は、野生型ナイセリアLPSのリピドA部分と比較して、二次アシル鎖のうちの1つを欠いており、且つリピドA部分の還元末端に位置するグルコサミンの3位の一次アシル鎖を欠いている、という点において改変されている。テトラアシル化リピドA部分を除き、LPSは、髄膜炎菌、淋菌(Neisseria gonorrhoeae)、又はナイセリア・ラクタミカ(Neisseria actamica)のLPSの構造を有することが好ましく、髄膜炎菌、淋菌、又はナイセリア・ラクタミカが、lgtB及びgalEのうちの少なくとも1つであることがより好ましく、髄膜炎菌が、血清群B及び免疫型L3のうちの少なくとも1つであることが最も好ましい。
本発明による好ましいナイセリアLPSでは、テトラアシル化リピドA部分は、式(I)又は(II)の構造を有し(下記参照)、式中、R及びRは、独立に-P(O)(OH)、-[P(O)(OH)-O]-H、-[P(O)(OH)-O]-CHCHNH、-[P(O)(OH)-O]-CHCHNH、-[P(O)(OH)-O]-H、又は-P(O)(OH)-O-CHCHNHであり、並びに式中、R1及びR2は、独立に-P(O)(OH)、-[P(O)(OH)-O]-H、-[P(O)(OH)-O]-CHCHNH、又は-[P(O)(OH)-O]-CHCHNHであることが好ましい。
本発明による特に好ましいナイセリアLPSは、リピドA部分が、該リピドA部分の非還元末端にあるグルコサミンに連結した一次アシル鎖に結合した二次アシル鎖を欠いており、且つ該リピドA部分の還元末端にあるグルコサミンの3位において一次アシル鎖を欠いている、又は該リピドA部分が、式(I)の構造を有するLPSである。
第2の態様では、本発明は、ナイセリア属の遺伝的に改変されたバクテリアに関し、前記バクテリアは、a)内因性lpxL1遺伝子又は内因性lpxL2遺伝子によりコードされるリピドA生合成ラウロイルアシルトランスフェラーゼの活性を低下させる、又は取り除く遺伝的改変;及びb)前記バクテリアに、リピドA 3-O-デアシラーゼ活性を付与する遺伝的改変を含む。バクテリアは、遺伝的に改変された髄膜炎菌、淋菌(Neisseria gonorrhoeae)、又はナイセリア・ラクタミカ(Neisseria lactamica)であることが好ましい。遺伝的に改変されたバクテリアにおいて、内因性lpxL1遺伝子は、配列番号1~3のうちの少なくとも1つと、少なくとも90%の配列同一性を有するアミノ酸配列を有するLpxL1タンパク質をコードする遺伝子であり、又は内因性lpxL2遺伝子は、配列番号4~7のうちの少なくとも1つと、少なくとも90%の配列同一性を有するアミノ酸配列を有するLpxL2タンパク質をコードする遺伝子であり、そしてバクテリアに、リピドA 3-O-デアシラーゼ活性を付与する遺伝的改変は、配列番号8~17のうちの少なくとも1つと、少なくとも30%のアミノ酸配列同一性を有するPagLリピドA 3-O-デアシラーゼをコードするヌクレオチド配列を有する異種pagL遺伝子の発現を導入する遺伝的改変であることが好ましい。
本発明の遺伝的に改変されたバクテリアは、異種抗原を発現するように更に遺伝的に改変されることが更に好ましく、異種抗原が、バクテリアの細胞外外膜表面において発現することが好ましい。好ましい実施形態では、遺伝的に改変されたバクテリアは、内因性lgtB遺伝子及び内因性galE遺伝子のうちの少なくとも1つの発現を低下させる、又は取り除く遺伝的改変を有する。
本発明による遺伝的に改変されたバクテリアは、髄膜炎菌血清群B、免疫型L3であることが好ましい。バクテリアは、髄膜炎菌株H44/76又はその派生株であることがより好ましい。
第3の態様では、本発明は、本発明によるナイセリアLPSに関し、LPSは、本発明による遺伝的に改変されたバクテリアから取得可能である、又は取得される。
第4の態様では、本発明は、本発明のナイセリアLPSを含むOMVに関する。OMVは、本発明による遺伝的に改変されたバクテリアから取得可能である、又は取得されることが好ましい。
第5の態様では、本発明は、本発明のナイセリアLPS、本発明の遺伝的に改変されたバクテリア、及び本発明のOMVのうちの少なくとも1つを含む組成物に関する。組成物は、薬学的に許容される添加剤を更に含む医薬組成物であることが好ましい。好ましい組成物は、本発明のナイセリアLPS、又は本発明のOMVを含む無細胞ワクチンである。別の好ましい組成物は、本発明のバクテリアを含む全細胞ワクチンである。本発明の組成物は、少なくとも1つの非ナイセリア抗原を更に含むことが好ましい。
第6の態様では、本発明は、本発明によるナイセリアLPSの混合物を製造する方法に関する。方法は、a)本発明のバクテリアを培養するステップと、b)任意選択で、LPSを、抽出するステップ及び精製するステップのうちの少なくとも1つのステップとを含むことが好ましい。
第7の態様では、本発明は、本発明によるOMVを製造する方法に関する。方法は、a)本発明の遺伝的に改変されたバクテリアを培養するステップと、b)任意選択で、OMVを抽出するステップと、c)前記OMVを回収するステップであって、前記OMVからバクテリアを除去することを少なくとも含むステップとを含むことが好ましい。OMVを製造する好ましい方法は、界面活性剤フリー法である。
第8の態様では、本発明は、本発明の無細胞ワクチンを製造する方法に関する。方法は、a)i)好ましくは本明細書でこれまでに定義した方法において、本発明によるナイセリアLPS及びii)好ましくは本明細書でこれまでに定義した方法において、本発明によるOMVのうちの少なくとも1つを製造するステップと、b)前記ナイセリアLPS及び前記OMVのうちの少なくとも1つを、任意選択で更なるワクチン成分と共に、ワクチン製剤に製剤化するステップとを含むことが好ましい。
第9の態様では、本発明は、本発明の全細胞ワクチンを製造する方法に関し、方法は、i)本発明のバクテリアを培養するステップと、ii)任意選択で、前記バクテリアを不活性化するステップ及びワクチンに製剤化するステップのうちの少なくとも1つを含む。
第10の態様では、本発明は、医薬として使用される、本発明のナイセリアLPS、本発明のバクテリア、本発明のOMV、又は本発明の組成物に関する。
第11の態様では、本発明は、対象において、免疫応答を誘発又は刺激するステップを含む処置で使用される、本発明のナイセリアLPSに関する。ナイセリアLPSは、アジュバント用であることが好ましい。
好ましい実施形態では、ナイセリアLPSは、ナイセリアLPSと共に抗原を投与することを更に含む処置で使用され、前記処置は、前記抗原と関連した感染性疾患又は腫瘍を予防又は処置することに関する。
別の好ましい実施形態では、本発明のナイセリアLPSは、免疫療法において、Toll様受容体4(TLR4)作動薬として使用するためであり、前記免疫療法は、がん又は神経変性疾患の免疫療法であることが好ましい。代替的実施形態では、免疫療法は、多様な微生物感染症の伝播を予防及び/若しくは低減するため、並びに/又はバクテリアの増殖を抑制するための一般的免疫刺激を含む。
LPSの電荷デコンボリューション型ESI-FT質量分析スペクトルを示す図である。髄膜炎菌の12種類の異なる株から単離されたLPSの電荷デコンボリューション型ESI-FT質量分析スペクトルは、以下に示す通り:(A)親HB-1株、(B)ΔlpxL1、(C)ΔlpxL2、(D)pagL、(E)ΔlpxL1-pagL、(F)ΔlpxL2-pagL、(G)30℃で5時間培養したΔlpxL1-lpxP、又は(H)25℃でオーバーナイト培養したΔlpxL1-lpxP、(I)ΔlptA、(J)ΔlptA-ΔlpxL1、(K)ΔlptA-pagL、及び(L)ΔlptA-lpxE。3408.507uのイオンに割り振られたLPS構造の簡潔表現を質量スペクトル(A)に含める。3408.514uの質量における縦線は、この後者のLPS種について算出された分子質量に対応し、その他のイオンシグナルに割り振られたLPS組成物を示す基準として用いられる。詳細なLPS組成物候補については付録表1を参照すること。すべての注記は、中性分子のモノアイソトピック質量を表す。 LPSの電荷デコンボリューション型ESI-FT質量分析スペクトルを示す図である。髄膜炎菌の12種類の異なる株から単離されたLPSの電荷デコンボリューション型ESI-FT質量分析スペクトルは、以下に示す通り:(A)親HB-1株、(B)ΔlpxL1、(C)ΔlpxL2、(D)pagL、(E)ΔlpxL1-pagL、(F)ΔlpxL2-pagL、(G)30℃で5時間培養したΔlpxL1-lpxP、又は(H)25℃でオーバーナイト培養したΔlpxL1-lpxP、(I)ΔlptA、(J)ΔlptA-ΔlpxL1、(K)ΔlptA-pagL、及び(L)ΔlptA-lpxE。3408.507uのイオンに割り振られたLPS構造の簡潔表現を質量スペクトル(A)に含める。3408.514uの質量における縦線は、この後者のLPS種について算出された分子質量に対応し、その他のイオンシグナルに割り振られたLPS組成物を示す基準として用いられる。詳細なLPS組成物候補については付録表1を参照すること。すべての注記は、中性分子のモノアイソトピック質量を表す。 表示する髄膜炎菌株によるTLR4活性化を示す図である。HEK-blue hTLR4細胞を、連続5倍希釈した熱失活髄膜炎菌を用いて20時間刺激した。TLR4の活性化を、アルカリホスファターゼの分泌を検出することにより測定した。連続希釈の結果を折れ線グラフ(A)に表し、また0.0004の単一OD600nmについて棒グラフで表す(B)。データは、平均値、又は3回の独立した実験による平均±SDとして表す。統計的有意性を、HB-1との比較によるANOVA検定を用いて判断した。*、p<0.05;****、p<0.0001。データは、表4にも提示する。 精製済みのLPS構造によるTLR4活性化を示す図である。HEK-Blue hTLR4細胞を、連続10倍希釈した12種類の異なるLPS構造を用いて刺激した。TLR4の活性化をアルカリホスファターゼの分泌を検出することにより測定した。データは、3回の独立した実験に由来する代表的な結果であり、また三重測定の平均値として表す。 精製済みのLPS構造を用いて刺激したMM6細胞のサイトカインの放出を示す図である。MM6細胞を、連続10倍希釈した異なるLPS構造を用いて20時間インキュベートした。(A)IL-6、(B)IP-10、(C)IL-1β、(D)MCP-1の各生成をELISAにより測定した。IL-6及びIL-1βは、MyD88依存性サイトカインと考えられ、またIP-10及びMCP-1は、よりTRIF依存性である。5ng/mlのLPSで刺激したMM6細胞のサイトカインレベルも、HB-1株に対する割合(%)(E)、及び濃度(F)及び割合(%)(G)で表したサイトカイン比としても提示する。サイトカイン比(F+G)では、LPS刺激を与えないバックグラウンドを差し引いた。データは、2回の独立した実験の平均値として表す。統計的有意性を、HB-1との比較による2元配置ANOVA検定を用いて判断した。*、p<0.05。データは、表5及び6にも提示する。 精製済みのLPS構造を用いて刺激したMM6細胞のサイトカインの放出を示す図である。MM6細胞を、連続10倍希釈した異なるLPS構造を用いて20時間インキュベートした。(A)IL-6、(B)IP-10、(C)IL-1β、(D)MCP-1の各生成をELISAにより測定した。IL-6及びIL-1βは、MyD88依存性サイトカインと考えられ、またIP-10及びMCP-1は、よりTRIF依存性である。5ng/mlのLPSで刺激したMM6細胞のサイトカインレベルも、HB-1株に対する割合(%)(E)、及び濃度(F)及び割合(%)(G)で表したサイトカイン比としても提示する。サイトカイン比(F+G)では、LPS刺激を与えないバックグラウンドを差し引いた。データは、2回の独立した実験の平均値として表す。統計的有意性を、HB-1との比較による2元配置ANOVA検定を用いて判断した。*、p<0.05。データは、表5及び6にも提示する。 精製済みのLPS構造を用いて刺激したMM6細胞のサイトカインの放出を示す図である。MM6細胞を、連続10倍希釈した異なるLPS構造を用いて20時間インキュベートした。(A)IL-6、(B)IP-10、(C)IL-1β、(D)MCP-1の各生成をELISAにより測定した。IL-6及びIL-1βは、MyD88依存性サイトカインと考えられ、またIP-10及びMCP-1は、よりTRIF依存性である。5ng/mlのLPSで刺激したMM6細胞のサイトカインレベルも、HB-1株に対する割合(%)(E)、及び濃度(F)及び割合(%)(G)で表したサイトカイン比としても提示する。サイトカイン比(F+G)では、LPS刺激を与えないバックグラウンドを差し引いた。データは、2回の独立した実験の平均値として表す。統計的有意性を、HB-1との比較による2元配置ANOVA検定を用いて判断した。*、p<0.05。データは、表5及び6にも提示する。 精製済みのLPS構造を用いて刺激したMM6細胞のサイトカインの放出を示す図である。MM6細胞を、連続10倍希釈した異なるLPS構造を用いて20時間インキュベートした。(A)IL-6、(B)IP-10、(C)IL-1β、(D)MCP-1の各生成をELISAにより測定した。IL-6及びIL-1βは、MyD88依存性サイトカインと考えられ、またIP-10及びMCP-1は、よりTRIF依存性である。5ng/mlのLPSで刺激したMM6細胞のサイトカインレベルも、HB-1株に対する割合(%)(E)、及び濃度(F)及び割合(%)(G)で表したサイトカイン比としても提示する。サイトカイン比(F+G)では、LPS刺激を与えないバックグラウンドを差し引いた。データは、2回の独立した実験の平均値として表す。統計的有意性を、HB-1との比較による2元配置ANOVA検定を用いて判断した。*、p<0.05。データは、表5及び6にも提示する。 精製済みのLPS構造を用いて刺激したMM6細胞のサイトカインの放出を示す図である。MM6細胞を、連続10倍希釈した異なるLPS構造を用いて20時間インキュベートした。(A)IL-6、(B)IP-10、(C)IL-1β、(D)MCP-1の各生成をELISAにより測定した。IL-6及びIL-1βは、MyD88依存性サイトカインと考えられ、またIP-10及びMCP-1は、よりTRIF依存性である。5ng/mlのLPSで刺激したMM6細胞のサイトカインレベルも、HB-1株に対する割合(%)(E)、及び濃度(F)及び割合(%)(G)で表したサイトカイン比としても提示する。サイトカイン比(F+G)では、LPS刺激を与えないバックグラウンドを差し引いた。データは、2回の独立した実験の平均値として表す。統計的有意性を、HB-1との比較による2元配置ANOVA検定を用いて判断した。*、p<0.05。データは、表5及び6にも提示する。 精製済みのLPS構造を用いて刺激したMM6細胞のサイトカインの放出を示す図である。MM6細胞を、連続10倍希釈した異なるLPS構造を用いて20時間インキュベートした。(A)IL-6、(B)IP-10、(C)IL-1β、(D)MCP-1の各生成をELISAにより測定した。IL-6及びIL-1βは、MyD88依存性サイトカインと考えられ、またIP-10及びMCP-1は、よりTRIF依存性である。5ng/mlのLPSで刺激したMM6細胞のサイトカインレベルも、HB-1株に対する割合(%)(E)、及び濃度(F)及び割合(%)(G)で表したサイトカイン比としても提示する。サイトカイン比(F+G)では、LPS刺激を与えないバックグラウンドを差し引いた。データは、2回の独立した実験の平均値として表す。統計的有意性を、HB-1との比較による2元配置ANOVA検定を用いて判断した。*、p<0.05。データは、表5及び6にも提示する。 精製済みのLPS構造を用いて刺激したMM6細胞のサイトカインの放出を示す図である。MM6細胞を、連続10倍希釈した異なるLPS構造を用いて20時間インキュベートした。(A)IL-6、(B)IP-10、(C)IL-1β、(D)MCP-1の各生成をELISAにより測定した。IL-6及びIL-1βは、MyD88依存性サイトカインと考えられ、またIP-10及びMCP-1は、よりTRIF依存性である。5ng/mlのLPSで刺激したMM6細胞のサイトカインレベルも、HB-1株に対する割合(%)(E)、及び濃度(F)及び割合(%)(G)で表したサイトカイン比としても提示する。サイトカイン比(F+G)では、LPS刺激を与えないバックグラウンドを差し引いた。データは、2回の独立した実験の平均値として表す。統計的有意性を、HB-1との比較による2元配置ANOVA検定を用いて判断した。*、p<0.05。データは、表5及び6にも提示する。
[発明の説明]
定義
用語「相同性」、「配列同一性」等は、本明細書では交換可能に使用される。配列同一性は、本明細書では、2つ又はそれ超のアミノ酸(ポリペプチド又はタンパク質)配列、又は2つ若しくはそれ超の核酸(ポリヌクレオチド)配列の間において、配列を比較することにより求められる関連性として定義される。当技術分野において、「同一性」とは、アミノ酸又は核酸配列の間において、そのような配列の紐の間の一致により決定される配列関連性の程度も、場合に応じて意味する。2つのアミノ酸配列の間の「類似性」は、一方のポリペプチドのアミノ酸配列及びその保存されたアミノ酸の置換を第2のポリペプチドの配列と比較することにより決定される。「同一性」及び「類似性」は、公知の方法により容易に計算可能である。
「配列同一性」及び「配列類似性」は、2つの配列の長さに応じてグローバル又はローカルアライメントアルゴリズムを使用して、2つのペプチド配列又は2つのヌクレオチド配列をアライメントすることにより決定可能である。類似した長さの配列では、配列を全長にわたり最適にアライメントするグローバルアライメントアルゴリズム(例えば、Needleman Wunsch)を使用してアライメントすることが好ましい一方、長さが実質的に異なる配列では、ローカルアライメントアルゴリズム(例えば、Smith Waterman)を使用してアライメントすることが好ましい。配列は、配列が少なくともある最低割合(%)の配列同一性(下記で定義する通り)を共有するとき(例えば、デフォルトパラメーターを使用して、GAP又はBESTFITプログラムにより最適にアライメントされたとき)、「実質的に同一」又は「実質的に類似」と呼ぶことができる。GAPは、全長(完全長)にわたり、2つの配列をアライメントするのにNeedleman及びWunschのグローバルアライメントアルゴリズムを使用し、一致数を最大化し、ギャップ数を最低限に抑える。グローバルアライメントは、2つの配列が類似した長さを有するとき、配列同一性を決定するのに好適に使用される。一般的に、ギャップ構築ペナルティー=50(ヌクレオチド)/8(タンパク質)、及びギャップ延長ペナルティー=3(ヌクレオチド)/2(タンパク質)であるGAPデフォルトパラメーターが使用される。ヌクレオチドの場合、使用されるデフォルトスコアリングマトリックスは、nwsgapdnaであり、またタンパク質の場合、デフォルトスコアリングマトリックスは、Blosum62である(Henikoff&Henikoff、1992年、PNAS、89巻、915~919頁)。配列同一性の割合(%)に関する配列アラインメント及びスコアは、コンピュータープログラム、例えば米国、CA 92121-3752、San Diego、Scranton Road 9685のAccelrys Inc.社から入手可能なGCG Wisconsinパッケージ、バージョン10.3等を使用して、又は上記GAPの場合と同一のパラメーターを使用して、若しくはデフォルト設定(「needle」及び「water」の両方について、並びにタンパク質及びDNAアライメントの両方について、デフォルトのギャップ開始ペナルティーは10.0であり、またデフォルトギャップ延長ペナルティーは0.5である;デフォルトスコアリングマトリックスは、タンパク質についてBlossum62及びDNAについてDNAFullである)を使用して、オープンソースソフトウェア、例えばプログラム「needle」(グローバルNeedleman Wunschアルゴリズムを使用する)、又はEmbossWINバージョン2.10.0の「water」(ローカルSmith Watermanアルゴリズムを使用する)等を使用して決定され得る。配列が実質的に異なる全長を有するとき、ローカルアラインメント、例えばSmith Watermanアルゴリズムを使用するローカルアラインメント等が好ましい。
或いは、類似性又は同一性の割合(%)は、FASTA、BLAST等のアルゴリズムを使用して、公開データベースと対比させてサーチすることにより決定され得る。したがって、本発明の核酸及びタンパク質の配列は、公開データベースと対比させたサーチを実施して、例えばその他のファミリーメンバー又は関連配列を識別するために、「問い合わせ配列」として更に使用可能である。そのようなサーチは、Altschulら、(1990年)J.Mol.Biol.、215巻:403~10頁のBLASTn及びBLASTxプログラム(バージョン2.0)を用いて実施可能である。BLASTヌクレオチドサーチは、本発明の酸化還元酵素核酸分子と相同であるヌクレオチド配列を取得するために、NBLASTプログラム、スコア=100、ワード長=12を用いて実施可能である。BLASTタンパク質サーチは、本発明のタンパク質分子と相同であるアミノ酸配列を取得するために、BLASTxプログラム、スコア=50、ワード長=3を用いて実施可能である。比較目的でギャップ付きアライメントを取得するために、ギャップ付きBLASTが、Altschulらの(1997年)Nucleic Acids Res.、25巻(17号):3389~3402頁の記載に従い利用可能である。BLAST及びギャップ付きBLASTプログラムを利用する際には、各プログラム(例えば、BLASTx及びBLASTn)のデフォルトパラメーターが利用可能である。米国国立生物工学情報センターのホームページhttp://www.ncbi.nlm.nih.gov/を参照。
任意選択で、アミノ酸類似性の程度を決定する際には、当業者にとって明白なように、当業者は、いわゆる「保存的な」アミノ酸置換も考慮することができる。保存的なアミノ酸置換とは、類似した側鎖を有する残基の互換性を指す。例えば、脂肪族側鎖を有するアミノ酸の群は、グリシン、アラニン、バリン、ロイシン、及びイソロイシンである;脂肪族ヒドロキシル側鎖を有するアミノ酸の群は、セリン及びトレオニンである;アミド含有側鎖を有するアミノ酸の群は、アスパラギン及びグルタミンである;芳香族側鎖を有するアミノ酸の群は、フェニルアラニン、チロシン、及びトリプトファンである;塩基性側鎖を有するアミノ酸の群は、リジン、アルギニン、及びヒスチジンである;並びにイオウ含有側鎖を有するアミノ酸の群は、システイン及びメチオニンである。好ましい保存的なアミノ酸置換群は、バリン-ロイシン-イソロイシン、フェニルアラニン-チロシン、リジン-アルギニン、アラニン-バリン、及びアスパラギン-グルタミンである。本明細書で開示されるアミノ酸配列の置換バリアントは、開示された配列内の少なくとも1つの残基が除去されており、そして異なる残基がその場所に挿入されている置換バリアントである。アミノ酸の変化は保存的であることが好ましい。天然アミノ酸のそれぞれについて好ましい保存的な置換は以下の通りである:Alaからser;Argからlys;はAsnからgln又はhis;Aspからglu;Cysからser又はala;Glnからasn;Gluからasp;Glyからpro;Hisからasn又はgln;Ileからleu又はval;Leuからile又はval;Lysからarg、gln又はglu;Metからleu又はile;Pheからmet、leu又はtyr;Serからthr;Thrからser;Trpからtyr;Tyrからtrp又はphe;及び、Valからile又はleu。
本明細書で用いる場合、用語「選択的にハイブリダイズする(selectively hybridizing)」、「選択的にハイブリダイズする(hybridizes selectively)」、及び類似した用語は、ハイブリダイゼーション及び洗浄するための条件を記載するように意図され、その条件下では、相互に少なくとも66%、少なくとも70%、少なくとも75%、少なくとも80%、より好ましくは少なくとも85%、なおいっそうより好ましくは少なくとも90%、好ましくは少なくとも95%、より好ましくは少なくとも98%、又はより好ましくは少なくとも99%相同のヌクレオチド配列が、相互にハイブリダイズした状態に一般的に留まる。すなわち、そのようにハイブリダイズする配列は、少なくとも45%、少なくとも50%、少なくとも55%、少なくとも60%、少なくとも65、少なくとも70%、少なくとも75%、少なくとも80%、より好ましくは少なくとも85%、なおいっそうより好ましくは少なくとも90%、より好ましくは少なくとも95%、より好ましくは少なくとも98%、又はより好ましくは少なくとも99%の配列同一性を共有し得る。
そのようなハイブリダイゼーション条件の好ましい非限定的な例として、6×塩化ナトリウム/クエン酸ナトリウム(SSC)中、約45℃でのハイブリダイゼーション、それに続く1×SSC、0.1%SDS中、約50℃、好ましくは約55℃、好ましくは約60℃、及びなおいっそうより好ましくは約65℃での1回又は複数回の洗浄が挙げられる。
高度に厳密な条件には、例えば、5×SSC/5×デンハート液/1.0%SDS中、約68℃でのハイブリダイゼーション、及び0.2×SSC/0.1%SDS中、室温での洗浄が含まれる。或いは、洗浄は、42℃で実施され得る。
当業者は、どの条件が厳密なハイブリダイゼーション条件及び高度に厳密なハイブリダイゼーション条件に適用されるか知っている。そのような条件に関する追加のガイダンスは、当技術分野において、例えば、Sambrookら、1989年、Molecular Cloning、A Laboratory Manual、Cold Spring Harbor Press、N.Y.;及びAusubelら(編)、Sambrook and Russell(2001年)“Molecular Cloning: A Laboratory Manual(第3版)、Cold Spring Harbor Laboratory、Cold Spring Harbor Laboratory Press、New York 1995年、Current Protocols in Molecular Biology(John Wiley & Sons,N.Y.)において容易に入手可能である。
もちろん、ポリA配列(例えばmRNAの3’末端ポリ(A)トラクト等)、又はT(又はU)残基の相補的ストレッチにのみハイブリダイズするポリヌクレオチドは、ポリ(A)ストレッチを含有する任意の核酸分子、又はその相補体にハイブリダイズするので(例えば、実際的には任意の二本鎖cDNAクローン)、そのようなポリヌクレオチドは、本発明の核酸の一部分に特異的にハイブリダイズさせるのに使用される本発明のポリヌクレオチドには含まれない。
「核酸構築物」又は「核酸ベクター」は、組換えDNA技術の使用に起因する人工核酸分子を意味するものと本明細書では理解される。核酸構築物は、天然の核酸分子(の一部)を含み得るものの、用語「核酸構築物」には、したがって天然の核酸分子は含まれない。用語「発現ベクター」又は「発現構築物」とは、ヌクレオチド配列を指し、そのような配列と適合する宿主細胞又は宿主生物において遺伝子の発現を有効にする能力を有する。このような発現ベクターとして、少なくとも適する転写制御配列及び任意選択で3’転写終結シグナルが一般的に挙げられる。発現を有効にするのに必要な又は役立つ追加の因子、例えば発現エンハンサーエレメント等も存在し得る。発現ベクターは、適する宿主細胞に導入され、また宿主細胞のin vitro細胞培養においてコーディング配列の発現を有効にすることができる。発現ベクターは、本発明の宿主細胞又は生物における複製に適する。
本明細書で用いる場合、用語「プロモーター」又は「転写制御配列」とは、1つ又は複数のコーディング配列の転写を制御するように機能し、並びにコーディング配列の転写開始部位の転写方向に関して上流に位置し、並びにDNA依存性RNAポリメラーゼに対する結合部位、転写開始部位、及び転写因子結合部位、リプレッサー及びアクチベータータンパク質結合部位、及びプロモーターからの転写量を直接的又は間接的に制御するように作用する、当業者にとって公知のヌクレオチドの任意のその他の配列を含む、但しこれらに限定されない任意のその他のDNA配列の存在により構造的に識別される核酸断片を意味する。「構成的」プロモーターは、ほとんどの生理学的及び発生的条件下において、ほとんどの組織で活性なプロモーターである。「誘導可能な」プロモーターは、例えば化学的誘導物質の適用により、生理学的又は発生的に制御を受けるプロモーターである。
用語「選択マーカー」は、当業者にとってなじみ深い用語であり、また任意の遺伝的実体を記載するのに本明細書では使用され、発現した場合、選択マーカーを含有する1つの細胞又は複数の細胞を選択するのに利用可能である。用語「レポーター」は、目視可能なマーカー、例えば緑色蛍光タンパク質(GFP)等を指すのに主に使用されるものの、マーカーと交換可能に利用可能である。選択マーカーは、優性又は劣性又は双方向性であり得る。
本明細書で用いる場合、用語「作動可能に連結した」とは、機能的に関連性のあるポリヌクレオチドエレメントの連結を意味する。核酸は、別の核酸配列と機能的に関連した状態に置かれたとき、「作動可能に連結している」。例えば、転写制御配列は、コーディング配列の転写に影響を及ぼす場合にコーディング配列と作動可能に連結している。作動可能に連結しているとは、連結されるDNA配列が一般的に連続的であり、また2つのタンパク質コード領域を結合させる必要がある場合には、連続的であり、且つリーディングフレーム内にあることを意味する。
用語「ペプチド」は、本明細書で使用する場合、定義された配列を通常有するアミノ酸残基の鎖として定義される。本明細書で使用する場合、ペプチドという用語は、用語「ポリペプチド」及び「タンパク質」と交換可能である。本発明の文脈において、用語「ペプチド」は、改変型又は非改変型ペプチド結合により連結した少なくとも2つのアミノ酸を含む任意のペプチド又はタンパク質として定義される。用語「ペプチド」とは、オリゴペプチド若しくはオリゴマー等の短鎖分子、又はタンパク質等の長鎖分子を意味する。タンパク質/ペプチドは、直線状、分岐状、又は環状であり得る。ペプチドは、D-アミノ酸、L-アミノ酸、又はその組み合わせを含み得る。本発明によるペプチドは、改変されたアミノ酸を含み得る。したがって、本発明のペプチドは、転写後修飾等の天然のプロセスにより、又は化学的プロセスによっても改変可能である。このような改変のいくつかの例として、アセチル化、アシル化、ADP-リボシル化、アミド化、フラビンとの共有結合、ヘムとの共有結合、ヌクレオチド又はヌクレオチド誘導体との共有結合、改変型又は非改変型炭化水素部分への共有結合、脂質又は脂質誘導体との結合、ホスホチジルイノシトールとの共有結合、架橋化、環化、ジスルフィド結合形成、脱メチル化、システイン分子形成、ピログルタミン酸形成、ホルミル化、γ-カルボキシル化、ヒドロキシル化、ヨウ素化、メチル化、酸化、リン酸化、ラセミ化、ヒドロキシル化等が挙げられる。したがって、ペプチドの免疫原性を除去する効果を有さないペプチドのあらゆる改変は、本発明の範囲に含まれる。
用語「遺伝子」とは、適する制御領域(例えば、プロモーター)と作動可能に連結した、細胞内でRNA分子(例えば、mRNA)に転写される領域(転写領域)を含むDNA断片を意味する。遺伝子は、いくつかの作動可能に連結した断片、例えばプロモーター、5’リーダー配列、コード領域、及びポリアデニル化部位を含む3’非翻訳配列(3’末端)等を通常含む。「遺伝子の発現」とは、しかるべき制御領域、特にプロモーターと作動可能に連結しているDNA領域が、生物学的に活性である、すなわち生物学的に活性なタンパク質又はペプチドに翻訳される能力を有するRNAに転写されるプロセスを意味する。用語「相同的」とは、所与の(組換え)核酸又はポリペプチド分子及び所与の宿主生物又は宿主細胞の間の関係を示すのに使用される場合、本質的に、核酸又はポリペプチド分子が、同一種、好ましくは同一の品種又は株の宿主細胞又は生物により産生されることを意味すると理解される。宿主細胞と相同の場合、ポリペプチドをコードする核酸配列は、別の(異種)プロモーター配列と、また該当する場合には、その天然の環境には存在しない別の(異種の)分泌シグナル配列及び/又は転写終結配列と一般的に(必ずというわけではない)作動可能に連結している。制御配列、シグナル配列、転写終結配列等も、宿主細胞と相同である場合もあると理解される。
用語「異種」及び「外因性」とは、核酸(DNA若しくはRNA)又はタンパク質について使用される場合、核酸又はタンパク質が存在する生物、細胞、ゲノム又はDNA又はRNA配列の一部として自然に生じない核酸又はタンパク質を意味する、或いは核酸又はタンパク質が天然に見出される細胞、又はゲノム若しくはDNA若しくはRNA配列内の1つの場所若しくは複数の場所とは異なる細胞、又はゲノム若しくはDNA若しくはRNA配列内の1つの場所若しくは複数の場所に見出される核酸又はタンパク質を意味する。異種及び外因性の核酸又はタンパク質は、該核酸又はタンパク質が導入される細胞にとって内因性ではなく、別の細胞から取得された、又は合成若しくは組換えにより生成されたものである。必ずしもそうではないが、一般的に、そのような核酸は、DNAを転写又は発現する細胞により通常は産生されないタンパク質、すなわち外因性タンパク質をコードする。同様に、外因性のRNAは、外因性のRNAが存在する細胞内で通常は発現されないタンパク質をコードする。異種/外因性の核酸及びタンパク質は、外来の核酸又はタンパク質と呼ばれる場合もある。核酸又はタンパク質が発現している細胞にとって外来であると当業者が認識する任意の核酸又はタンパク質は、本明細書では、異種又は外因性の核酸又はタンパク質という用語に含まれる。異種及び外因性という用語は、核酸又はアミノ酸配列の非天然の組み合わせ、すなわち、組み合わされた配列のうちの少なくとも2つが相互に外来である組み合わせにも適用される。
用語「免疫応答」とは、本明細書で使用する場合、表面に抗原及び/又は抗原性のエピトープを有し、及び/又は発現若しくは提示する特別な抗原性の実体を標的とする、並びに/又はその分解及び/若しくは阻害に役立つ抗体及び/又は細胞(例えばTリンパ球等)の産生を意味する。慣用句「有効な免疫防御応答」、「免疫防御」等の用語は、本発明の目的に照らせば、ワクチン接種を受けた対象を病原体による感染から防御する、又はがんから防御するために、病原体、病原体に感染した細胞、又はがん細胞の1つ又は複数の抗原性のエピトープを標的とする免疫応答を意味する。本発明の目的に照らせば、病原体による感染に対する防御又はがんに対する防御には、感染又はがんの絶対的な予防に限らず、病原体による感染又はがんの程度又は頻度のあらゆる検出可能な低下、或いは、例えばワクチン接種を受けていない感染した対象と比較して、ワクチン接種を受けた対象において、疾患の重症度、又は病原体による感染若しくはがんに起因するあらゆる症状若しくは状態のあらゆる検出可能な低下も含まれる。がんの場合の有効な免疫防御応答には、がん細胞を除去し、これによりがんのサイズを低減すること、又はがんを阻害することさえも含まれる。これを実現するためのワクチン接種は、治療的ワクチン接種とも呼ばれる。或いは、有効な免疫防御応答は、これまでに病原体に感染したことのない、及び/又は病原体に感染していない、又はワクチン接種時にいまだがんに罹患していない対象において誘発され得るが、そのようなワクチン接種は、予防的ワクチン接種と呼ばれる場合がある。
本発明によれば、用語「抗原」の本明細書における一般的な使用は、抗体に特異的に結合するあらゆる分子を指す。該用語は、MHC分子が結合可能であり、またT細胞受容体に提示され得る任意の分子又は分子断片も指す。抗原は、例えば、タンパク質性の分子、すなわち、任意選択で非タンパク質の群、例えば炭化水素部分及び/若しくは脂質部分等を含むポリアミノ酸配列であり得る、又は、抗原は、例えば、タンパク質性でない分子、例えば炭化水素等であり得る。抗原は、例えば、特定の対象において抗原特異的免疫応答(体液性及び/又は細胞性免疫応答)を誘発することができるが、その免疫応答は、アッセイ又は方法により測定可能であることが好ましい、天然由来若しくは合成由来のタンパク質(ペプチド、部分的なタンパク質、完全長タンパク質)の任意の部分、細胞組成物(細胞全体、細胞ライセート、若しくは破壊された細胞)、生物(生物全体、ライセート、若しくは破壊された細胞)、又は炭化水素、又はその他の分子、又はその一部分であり得る。
用語「抗原」は、適応性免疫応答の受容体に対応する標的として機能する構造的な物質として本明細書では理解される。抗原は、したがってTCR(T細胞受容体)又はBCR(B細胞受容体)、又はBCRの分泌形態、すなわち抗体に対する標的として機能する。抗原は、したがってタンパク質、ペプチド、炭化水素、又は通常より大きな構造、例えば細胞若しくはビリオン等の一部であるその他のハプテンであり得る。抗原は、身体(「自己」)又は外部環境(「非自己」)に由来し得る。免疫系は、胸腺内のT細胞のネガティブ選択に起因して、正常状態では「自己」抗原に対して通常非反応性であり、また外界からの「非自己」侵入物、又は例えば、疾患状態下で身体中に存在する変化した/有害な物質を識別し、そしてそれのみを攻撃すると考えられている。細胞性免疫応答の標的である抗原構造は、抗原提示細胞(APC)により、処理された抗原性ペプチドの形態で、組織適合性分子を介して適応性免疫系のT細胞に対して提示される。提示された抗原及び組織適合性分子の種類に応じて、いくつかの種類のT細胞が活性化した状態となり得る。T細胞受容体(TCR)認識では、抗原は、細胞内部で小さいペプチド断片に処理され、そして主要組織適合複合体(MHC)によりT細胞受容体に対して提示される。
用語「免疫原」は、本明細書では、好ましくはしかるべきアジュバントと共に対象に投与されたときに、対象においてエピトープ及びエピトープを含む抗原に対する特異的体液性及び/又は細胞性免疫応答を誘発するように、抗原の少なくとも1つのエピトープを含む、又はそれをコードする実体を記載するのに使用される。免疫原は、抗原と同一であり得る、又は抗原の一部、例えば、抗原のエピトープを含む部分を少なくとも含む。したがって、特定の抗原に対して対象にワクチン接種することとは、1つの実施形態では、抗原の少なくとも1つのエピトープを含む免疫原を投与した結果として、免疫応答が抗原又はその免疫原性部分に対して誘発されることを意味する。ワクチン接種は、防御効果又は治療効果を引き起こすことが好ましく、その後、抗原(又は抗原供給源)に曝露されると、対象内の疾患又は状態を低下させる、又は予防する免疫応答が抗原(又は供給源)に対して誘発される。ワクチン接種の概念は、当技術分野において周知されている。本発明の予防的又は治療的組成物の投与により誘発される免疫応答は、ワクチン投与が存在しない場合と比較して、免疫状態(例えば、細胞性応答、体液性応答、サイトカイン産生)のいずれかの側面におけるあらゆる検出可能な変化であり得る。
「エピトープ」は、本明細書では、対象において免疫応答を誘発するのに十分である、所定の抗原内の単一の免疫原性部位として定義される。当業者は、T細胞エピトープはサイズ及び組成においてB細胞エピトープとは異なること、及びクラスI MHC経路を通じて提示されるT細胞エピトープは、クラスII MHC経路を通じて提示されるエピトープとは異なることを認識している。エピトープは、免疫応答の種類に応じて直線状配列又は高次構造エピトープ(保存された結合領域)であり得る。抗原は、単一のエピトープほどに小型であり、又はより大型であり得るが、また複数のエピトープを含み得る。したがって、抗原のサイズは、アミノ酸約5~12個(例えば、ペプチド)ほどに小型であり得、また多量体タンパク質、タンパク質複合体、ビリオン、粒子、細胞全体、微生物全体、又はその一部分(例えば、全細胞のライセート、又は微生物の抽出物)を含む完全長タンパク質ほどに大型であり得る。
アジュバントは、本明細書では、対象内の抗原に対する免疫応答が高まるように、抗原と組み合わせてヒト又は動物の対象に投与されると、免疫系を刺激し、これにより抗原に対する免疫応答を、好ましくはアジュバントそのものに対する特異的免疫応答を必然的に生成することなく惹起、増強、又は促進する実体であると理解される。好ましいアジュバントは、所与の抗原に対する免疫応答を、同一条件下であるがアジュバントが存在しない場合に抗原に対して生成される免疫応答と比較して、少なくとも1.5、2、2.5、5、10、又は20倍増強する。動物又はヒト対象の群においてアジュバントにより生み出される所与の抗原に対する免疫応答の統計的平均増強率を、対応する対照群に対して決定する試験が、当技術分野において利用可能である。アジュバントは、少なくとも2つの異なる抗原に対する免疫応答を増強する能力を有することが好ましい。
OMV(「bleb」とも呼ばれる)は、直径が20~250nm(時に10~500nm)の範囲の通常球状のグラム陰性バクテリアの外膜から採取された二分子膜構造である。OMV膜は、様々な位置において膜タンパク質と混合した内部リン脂質(PL)、及びリポ多糖類(LPS)、及び外部PLを含有し、それらが採取されるバクテリア外膜の構造を概ね反映する。OMVの管は、周辺質又は細胞質に由来する様々な化合物、例えばタンパク質、RNA/DNA、及びペプチドグリカン(PG)等を含み得るが、但しバクテリア細胞とは異なり、OMVは自己複製する能力を欠く。本発明の文脈において、3種類のOMVが、その製造方法に応じて区別され得る。sOMVは、すでに形成されたOMVから無傷細胞を分離することにより、培養上清から精製及び濃縮される自然発生的又は天然のOMVである。界面活性剤OMV、dOMVは、デオキシコール酸等の界面活性剤を用いて細胞から抽出され、反応原性(reactogenic)LPSの含有量も低下させる。界面活性剤抽出後、dOMVは、細胞及び細胞残屑から分離され、そして更に精製及び濃縮される。最後に、天然型nOMVという用語は、本明細書では、野生型自然発生的OMV及び界面活性剤抽出dOMVとは明確に区別することができるように、濃縮された死亡細胞から非界面活性剤細胞破壊技術を用いて生成した、又はその他の(非破壊的)界面活性剤を含まない方法を用いて細胞から抽出したOMVについて使用される。
公開の配列データベースにおいてアクセス可能なヌクレオチド又はアミノ酸配列について引用する場合、そのいずれも、本文書の申請日において利用可能な配列登録バージョンを本明細書では意味する。
[発明の詳細な説明]
本発明は、テトラアシル化リピドA部分を有する新規ナイセリアLPSに関し、免疫応答を生成及び/又は刺激する際に有用である。lpxL1、lpxL2、及びpagLの単一突然変異体ナイセリア株から得られたペンタアシル化LPS分子は、いずれも親株由来の対応するヘキサアシル化LPSと比較して、TLR4活性が低下している(13,15)。テトラアシル化LPSは、ペンタアシル化LPSよりも常に活性が低いと予想される。実際、大腸菌(E.coli)のテトラアシル化リピドIVaは、ヒトTLR4/MD-2複合体の拮抗薬としても知られている(7,9,28)。驚くべきことに、本発明者らは、髄膜炎菌テトラアシル化ΔlpxL1-pagL LPSは、ペンタアシル化ΔlpxL1 LPSよりも活性である一方、テトラアシル化ΔlpxL1-ΔlpxL2 LPSは、検出可能な活性を示さないことを見出した(データは示さない)。また、テトラアシル化LPSも有するΔlpxL2-pagLの全バクテリアで刺激すると、そのペンタアシル化ΔlpxL2親株と比較して、TLR4/MD-2活性はやはり増加した。このような所見を総合すると、二次アシル鎖の欠損と組み合わせて、PagLにより3’の位置からC12OHを除去すると、その結果、テトラアシル化リピドAは二次アシル鎖の一方、又は二次アシル鎖の両方を除去したものと比較して、それより高いTLR4活性を予想外にも引き起こすことを示唆する。
したがって、第1の態様では、本発明は、テトラアシル化リピドA部分を有するナイセリアLPS、又はテトラアシル化リピドA部分そのものに関係する。テトラアシル化リピドA部分は、野生型ナイセリアLPSのリピドA部分と比較して、二次アシル鎖のうちの1つを欠いており、且つリピドA部分の還元末端に位置するグルコサミンの3位の一次アシル鎖を欠いている、という点において改変されていることが好ましい。したがって、野生型ナイセリアLPSのヘキサアシル化リピドA部分と比較して、本発明のテトラアシル化リピドA部分は、該リピドA部分上のアシル鎖の合計数を6つから4つに低下させる、1)リピドA部分は、2つの二次アシル鎖のうちの1つ、すなわち、該リピドA部分の非還元末端にあるグルコサミンに連結した一次アシル鎖に結合した二次アシル鎖、又は該リピドA部分の還元末端にあるグルコサミンに連結した一次アシル鎖に結合した二次アシル鎖を欠く;及び2)リピドA部分は、該リピドA部分の還元末端にあるグルコサミンの3位の一次アシル鎖を欠く、という2つの改変を有する。ナイセリアLPS又はテトラ-アシル化リピドA部分が単離されることが好ましい。
本発明の好ましいナイセリアLPSでは、テトラアシル化リピドA部分は、式(I)又は(II)の構造:
Figure 0007031933000001

Figure 0007031933000002

を有し、式中、R及びRは、独立に-P(O)(OH)、-[P(O)(OH)-O]-H、-[P(O)(OH)-O]-CHCHNH、-[P(O)(OH)-O]-CHCHNH、-[P(O)(OH)-O]-H、又は-P(O)(OH)-O-CHCHNHであり、そしてR1及びR2は、独立に-P(O)(OH)、-[P(O)(OH)-O]-H、-[P(O)(OH)-O]-CHCHNH、又は-[P(O)(OH)-O]-CHCHNHであることが好ましい。
好ましい実施形態では、本発明のナイセリアLPSは、リピドA部分の非還元末端にあるグルコサミンに連結した一次アシル鎖に結合した二次アシル鎖を欠いているテトラアシル化リピドA部分を有する。好ましくは、本実施形態では、テトラアシル化リピドA部分は、上記式(I)の構造を有する。
上記テトラアシル化リピドA部分を除き、本発明のナイセリアLPSは、ナイセリア属のバクテリアから取得される、又は取得可能なリポ多糖の構造を有する。ナイセリアLPSは、それがO側鎖を欠いていることによりエンテロバクター科(Enterobacteriaceae)のLPSとは異なるという事実に起因して、リポオリゴ糖(LOS)とも時に呼ばれる。但し、本発明の文脈において、用語「LPS」及び「LOS」は交換可能である。一貫性を保つために、LPSと更に呼ぶこととする。本発明のLPSが取得される、又は取得可能なナイセリア属のバクテリアは、野生型ナイセリア、又は本明細書で以下に記載する遺伝的改変のうちの1つ若しくは複数を有するナイセリアであり得る。ナイセリア属のバクテリアは、髄膜炎菌、淋菌、及びナイセリア・ラクタミカから選択される種のバクテリアであることが好ましく、髄膜炎菌は、血清群B及び免疫型L3のうちの少なくとも1つであることがより好ましい。
したがって、テトラアシル化リピドA部分を除き、本発明のナイセリアLPSの残りの部分は、髄膜炎菌、淋菌、若しくはナイセリア・ラクタミカのLPSの構造を有する、又はこのような種の株は、本明細書で以下に記載するような遺伝的改変を有することが好ましい。テトラアシル化リピドA部分を除き、本発明のナイセリアLPSの残りの部分は、血清群B及び免疫型L3のうちの少なくとも1つである髄膜炎菌のLPSの構造を有する、又はこの血清群及び/又は免疫型の株は、本明細書で以下に記載するような遺伝的改変を有することがより好ましい。
好ましい実施形態では、本発明のナイセリアLPSは、自己免疫応答を誘発する疑いのある考え得るエピトープを除去するために、並びに/又は樹状細胞との結合及びアジュバント活性を増加させるために、改変されたオリゴ糖構造を有する。したがって、本発明のナイセリアLPSは、内因性lgtB遺伝子及び内因性galE遺伝子のうちの少なくとも1つの発現を低下させる、又は取り除く遺伝的改変を有するナイセリア属のバクテリアから取得される、又は取得可能であることが好ましい。ナイセリアlgtB遺伝子は、ラクト-N-ネオテトラオース生合成グリコシルトランスフェラーゼ活性を有する酵素をコードし、また例えば、Jenningsら(Mol Microbiol、1995年、18巻:729~740頁)により、及びArkinら(J Bacteriol、2001年、183巻:934~941頁)により記載されている。lgtBが破壊されたナイセリア株に由来するLPSは、樹状細胞(DC)上のDC-SIGNレクチン受容体を標的とし、これによりDCにより惹起されたT細胞応答がTヘルパー1型活性側に向くように歪められることが明らかにされている(Steeghsら、Cell Microbiol、2006年、8巻:316~25頁)。ナイセリアgalE遺伝子は、UDP-グルコース4-エピメラーゼ活性を有する酵素をコードし、またJenningsら(Mol Microbiol、1993年、10巻:361~369頁)により、及びLeeら(Infect Immun、1995年、63巻:2508~2515頁)により記載されている。
第2の態様では、本発明は、ナイセリア属の遺伝的に改変されたバクテリアに関する。バクテリアは、本発明の第1の態様に基づくテトラアシル化リピドA部分を有するナイセリアLPSを含むバクテリアであることが好ましい。バクテリアは、a)内因性lpxL1遺伝子又は内因性lpxL2遺伝子によりコードされるリピドA生合成ラウロイルアシルトランスフェラーゼの活性を低下させる、又は取り除く遺伝的改変と、b)前記バクテリアに、リピドA 3-O-デアシラーゼ活性を付与する遺伝的改変を含む、という点においてバクテリアは遺伝的に改変されていることが好ましい。ラウロイルアシルトランスフェラーゼの活性を低下させる、又は取り除く遺伝的改変は、例えば、Fransenら(2009年、PLoS Pathogens、5巻(4号):e1000396)に記載されているようなミスセンス突然変異であり得る。リピドA生合成ラウロイルアシルトランスフェラーゼの活性を低下させる、又は取り除く遺伝的改変は、内因性lpxL1遺伝子又は内因性lpxL2遺伝子の発現を低下させる、又は取り除く改変であることが好ましい。遺伝的に改変されたバクテリアは、髄膜炎菌、淋菌、及びナイセリア・ラクタミカから選択される種のバクテリアであることが好ましい。遺伝的に改変された髄膜炎菌は、血清群B及び免疫型L3のうちの少なくとも1つであることがより好ましく、遺伝的に改変された髄膜炎菌は、髄膜炎菌H44/76株又はその派生株であることが最も好ましい。
改変される内因性lpxL1遺伝子は、リピドA生合成ラウロイルアシルトランスフェラーゼをコードする遺伝子であることが好ましい。lpxL1遺伝子は、htrB1又はmsbB遺伝子とも呼ばれてきた。本発明のバクテリアにおいて、発現が低下している、又は取り除かれるlpxL1遺伝子は、配列番号1(髄膜炎菌H44/76のLpxL1)、配列番号2(淋菌のLpxL1、ジェンバンクWP_050158792)、及び配列番号3(ナイセリア・ラクタミカのLpxL1、ジェンバンクCBN86767)のうちの少なくとも1つと、少なくとも90、91、92、93、94、95、96、97、98、99、又は100%の配列同一性を有するアミノ酸配列を含むLpxL1(リピドA生合成ラウロイルアシルトランスフェラーゼ)をコードする遺伝子であることが好ましい。好ましい実施形態では、lpxL1遺伝子の発現は、例えば、当技術分野において公知の方法それ自体により、遺伝子を破壊又は欠損させて、遺伝子を不活性化することにより取り除かれる。
改変される内因性のlpxL2遺伝子は、リピドA生合成ラウロイルアシルトランスフェラーゼをコードする遺伝子であることが好ましい。lpxL2遺伝子は、htrB2遺伝子とも呼ばれてきた。好ましくは、発現を低下させる、又は取り除くべきlpxL2遺伝子は、配列番号4(髄膜炎菌H44/76のLpxL2、ジェンバンクWP_055391354)、配列番号5(淋菌のLpxL2、ジェンバンクWP_020996767)、及び配列番号6(ナイセリア・ラクタミカのLpxL2、ジェンバンクWP_042508043)のうちの少なくとも1つと、少なくとも90、91、92、93、94、95、96、97、98、99、又は100%の配列同一性を有するアミノ酸配列を含むLpxL2(リピドA生合成ラウロイルアシルトランスフェラーゼ)をコードする遺伝子であることが好ましい。好ましい実施形態では、lpxL2遺伝子の発現は、当技術分野においてそれ自体公知の方法により、例えば、遺伝子を破壊する又は欠損させ、遺伝子を不活性化することにより取り除かれる。
バクテリアに、リピドA 3-O-デアシラーゼ活性を付与する遺伝的改変は、PagLリピドA 3-O-デアシラーゼをコードするヌクレオチド配列を有する異種pagL遺伝子の発現を導入する遺伝的改変であることが好ましい。外膜PagL 3-O-デアシラーゼは、リピドAの3の位置のエステル結合を加水分解し、これにより一次の3-OHアシル部分を放出させ、この酵素は脂肪アシル鎖長特異性を欠く(Geurtsenら、前出)。様々なPagL同族体間の全体的な配列保存はかなり低く、例えば、ボルデテラ・ブロンキセプチカ(Bordetella bronchiseptica)と緑膿菌(Pseudomonas aeruginosa)のPagLアミノ酸配列間では、例えば、32%の配列同一性しか認められないことが判明した。外膜PagL 3-O-デアシラーゼは、サルモネラ・チフィムリウム(Salmonella typhimurium)、サルモネラ・エンテリカ(Salmonella enterica)、緑膿菌、シュードモナス・フルオレッセンス(Pseudomonas fluorescens)、シュードモナス・シリンゲ(Pseudomonas syringae)、シュードモナス・プチダ(Pseudomonas putida)、ラルストニア・メタリデュランス(Ralstonia metallidurans)、ラルストニア・ソラナセラム(Ralstonia solanacearum)、バークホルデリア・マレイ(Burkholderia mallei)、バークホルデリア・シュードマレイ(Burkholderia pseudomallei)、バークホルデリア・フンゴルム(Burkholderia fungorum)、アゾトバクター・ビネランジイ(Azotobacter vinelandii)、ボルデテラ・ブロンキセプチカ、ボルデテラ・パラパータシス(Bordetella parapertussis)及び百日咳菌(Bordetella pertussis)を含むいくつかのグラム陰性病原体で報告されている(Geurtsenら、2005年、J Biol Chem、280巻:8248~8259頁)。より最近では、PagL 3-O-デアシラーゼは、窒素固定内部共生体リゾビウム・エトリ(Rhizobium etli)において活性であることも明らかにされた(Brownら、2013年、J Biol Chem、288巻:12004~12013頁)。PagL リピドA 3-O-デアシラーゼ活性を発現させるためのヌクレオチド配列は、したがってこのようなバクテリアから取得可能なPagL リピドA 3-O-デアシラーゼをコードするヌクレオチド配列であり得る。
しかし、好ましくは、本発明の遺伝的に改変されたバクテリアにおいて、PagL リピドA 3-O-デアシラーゼ活性を発現させるためのヌクレオチド配列は、配列番号7(ボルデテラ・ブロンキセプチカ、ジェンバンクWP_003813842、B.パラパータシスのPagLと同一)、配列番号8(サルモネラ・エンテリカ(Salmonella enterica)亜種のネズミチフス菌(enterica serovar Typhimurium)、ジェンバンクAAL21147)、配列番号9(緑膿菌、ジェンバンクNP_253350)、配列番号10(シュードモナス・フルオレッセンス、ジェンバンクAFJ58359)、配列番号11(シュードモナス・プチダ、ジェンバンクBAN56395)、配列番号12(シュードモナス・シリンゲ、ジェンバンクKFE57666)、配列番号13(バークホルデリア種、ジェンバンクWP_028199068)、配列番号14(ラルストニア・ソラナセラム、ジェンバンクCEJ17533)、配列番号15(アゾトバクター・ビネランジイ、ジェンバンクACO76453)、及び配列番号16(リゾビウム・エトリ、ジェンバンクWP_039619975)のうちの少なくとも1つと、少なくとも30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、又は100%の配列同一性を有するアミノ酸配列を含むPagL リピドA 3-O-デアシラーゼをコードするヌクレオチド配列であることが好ましい。
1つの実施形態では、ヌクレオチド配列は、天然において生ずるような、例えば、野生型起源のバクテリアから単離可能なようなPagLリピドA 3-O-デアシラーゼ活性を有するポリペプチドをコードする。或いは、ヌクレオチド配列は、上記において定義されたPagLリピドA 3-O-デアシラーゼのいずれかについて、その工学的に作出された形態をコードすることができ、そしてそのような形態は、対応する天然のPagLリピドA 3-O-デアシラーゼと比較して、1つ若しくは複数のアミノ酸の置換、挿入、及び/又は欠損を含むが、しかし本明細書で定義するような同一性又は類似性の範囲内にある。
本発明の遺伝的に改変されたバクテリアにおいて、PagL リピドA 3-O-デアシラーゼ活性を発現させるためのヌクレオチド配列は、デフォルト設定を使用して配列アラインメントを行うClustalW(1.83)において、ボルデテラ・ブロンキセプチカPagLアミノ酸配列(配列番号8)内の位置154及び156にそれぞれ対応する位置に、活性部位残基であるHis-154及びSer-156(Ruttenら、2006年、PNAS、103巻:7071~7076頁)を少なくとも含むアミノ酸配列を含むPagLリピドA 3-O-デアシラーゼをコードするヌクレオチド配列であることが好ましい。PagLリピドA 3-O-デアシラーゼアミノ酸配列が、その他の不変の位置(Geurtsenら、2005年、J Biol Chem、280巻:8248~8259頁の図2の配列アラインメントにおいて「*」、すなわちアステリスクで示す位置)のそれぞれに、不変の位置に存在するアミノ酸を含むことが更に好ましい。また、PagL リピドA 3-O-デアシラーゼアミノ酸配列が、強く保存された位置(Geurtsenら、2005年、前出の図2では「:」、すなわち、コロンで示す位置)においても、強く保存された各位置に存在するアミノ酸のうちの1つを含むことが、より好ましい。アミノ酸配列は、弱く保存された位置(Geurtsenら、2005年、前出の図2では「.」、すなわちドットで表される位置)において、弱く保存された各位置に存在するアミノ酸のうちの1つもやはり更に含むことが最も好ましい。このような一定不変の位置及び保存された位置の外部にあるアミノ酸置換が、PagLリピドA 3-O-デアシラーゼ酵素活性に対するマイナス効果を有する可能性はより低い。
本発明の遺伝的に改変されたバクテリアは、(i)好ましくはLPSの内毒素性及び/又は反応原性を更に改変するために、LPS生合成経路を変化させる遺伝的改変;(ii)通常分泌される抗原の外膜保持を引き起こす遺伝的改変;(iii)外膜アンカータンパク質を除去することによりOMV産生量を増加させる遺伝的改変;(iv)望ましくない種類の免疫応答を引き起こす契機となる可能性がある免疫調節成分を取り除く遺伝的改変;並びに(v)異種抗原の発現を導入する遺伝的改変からなる群から選択される1つ又は複数の遺伝的改変を有することが更に好ましい。
内毒素性が低下するように改変されたLPSは、対応する野生型LPSの毒性よりも毒性が低くなるように改変されたLPSとして本明細書では理解される。改変されたLPSが有する毒性は、対応する野生型LPSの毒性の約90、80、60、40、20、10、5、2、1、0.5、又は0.2%未満であることが好ましい。野生型の毒性及び毒性が低下した様々な改変されたLPSの毒性は、当技術分野において公知の任意の適するアッセイ法で決定され得る。毒性、すなわちLPSの生物活性を決定する好ましいアッセイ法は、MM6マクロファージ株化細胞内でのIL-6誘発である(下記のpar.1.4を参照)。
LPS生合成経路を変化させる好ましい遺伝的改変は、a)lptA遺伝子、lpxK遺伝子、及びこのような遺伝子の相同体のうちの少なくとも1つの発現を低下させる、又は取り除く遺伝的改変;並びにb)lpxE遺伝子、lpxF遺伝子、及びこのような遺伝子の相同体のうちの少なくとも1つの発現を導入する、又は増加させる遺伝的改変からなる群から選択される遺伝的改変である。
OMV産生量を増加させる好ましい遺伝的改変は、小胞形成を増加させ、これによりOMV収量を増加させるために、外膜とペプチドグリカンの間のアンカータンパク質をコードする遺伝子の発現を低下させる、又は取り除く遺伝的改変である。これを目的とした好適な遺伝的改変は、例えば、グラム陰性バクテリアに一般的に見出されるOmpA相同体、例えば、ナイセリア中のRmpMタンパク質の発現を低下させる、又は取り除く(Steeghsら、2002年、Cell Microbiol、4巻:599~611頁; van de Waterbeemdら、2010年、Vaccine、28巻:4810~4816頁)。したがって、遺伝的に改変されたバクテリアは、rmpM遺伝子又はその相同体の発現を低下させる、又は取り除く遺伝的改変を有することが好ましい。
望ましくない種類の免疫応答を引き起こす契機となる可能性がある免疫調節成分を取り除く好ましい遺伝的改変は、上記のような内因性lgtB遺伝子及び内因性galE遺伝子のうちの少なくとも1つの発現を低下させる、又は取り除く遺伝的改変である。更に好ましい遺伝的改変は、cps、ctrA、ctrB、ctrC、ctrD、exbB、exbD、frpB、lpbB、nmb0033、opA、opC、phoP、pilC、pmrE、pmrF、porA、porB、siaA、siaB、siaC、siaD、synA、synB、synC、tbpA、tbpB、及び任意のこのような遺伝子の相同体からなる群から選択される少なくとも1つの遺伝子の発現を低下させる、又は取り除く。このような突然変異の多くは、国際公開第02/09746号でレビューされている。
更なる実施形態では、本発明の遺伝的に改変されたバクテリアは、異種抗原を発現するように更に遺伝的に改変されている。異種抗原は、バクテリアの細胞外外膜表面において発現していることが好ましい。異種抗原は、例えば、別のバクテリア由来、好ましくは別のグラム陰性バクテリア由来の外膜タンパク質であり得る。或いは、異種抗原は、バクテリアの細胞外外膜表面において発現しているタンパク質、例えば、当技術分野においてそれ自体周知されているナイセリアの外膜タンパク質に融合することができる。
本発明の遺伝的に改変されたバクテリアが発現する異種抗原は、エピトープを含む抗原に対する免疫応答を誘発及び/又は増強するために、そのようなエピトープを少なくとも1つ含むことが好ましい。B細胞、体液性又は抗体の応答は異種抗原内のエピトープにより誘発されることが好ましい。異種抗原内のエピトープは、防御的応答及び/又は中和性抗体応答を誘発することが好ましい。或いは及び/又は更に、異種抗原は、T細胞応答を誘発するエピトープを含む。免疫原性ペプチドにより誘発及び/又は増強された好ましいT細胞応答は、HLAクラスI拘束CTL応答、及びHLAクラスII拘束Th応答のうちの少なくとも1つを含む。T細胞応答は、HLAクラスI拘束CTL応答と同時にHLAクラスII拘束Th応答の両方から構成されることがより好ましく、また有利なことにはB細胞応答を伴い得る。
異種抗原は、病原体(感染因子)及び/又は腫瘍の広範な抗原に由来する1つ又は複数のエピトープを含み得る。例えば、異種抗原は、病原体及び感染因子、例えばウイルス、バクテリア、菌類、及びプロトゾア等を起源とする抗原に由来する1つ又は複数のエピトープを含み得る。抗原に由来するエピトープが起源とし得る感染症又は腫瘍を引き起こす病原性ウイルスのいくつかの例として、肝炎(A、B、又はC)、ヘルペスウイルス(例えば、VZV、HSV-I、HAV-6、HSV-II、及びCMV、エプスタイン・バーウイルス)、アデノウイルス、SV40ウイルス(中皮腫を引き起こす)、インフルエンザウイルス、フラビウイルス、エボラウイルス、エコーウイルス、ライノウイルス、コクサッキーウイルス、コロナウイルス、呼吸系発疹ウイルス(RSV)、流行性耳下腺炎ウイルス、ロタウイルス、はしかウイルス、風疹ウイルス、パルボウイルス、ワクシニアウイルス、HTLVウイルス、デング熱ウイルス、軟属腫ウイルス、ポリオウイルス、狂犬病ウイルス、JCウイルス、アルボウイルス脳炎ウイルス、及びヒト免疫不全ウイルス(HIVウイルス;例えば、I型及びII型)、ヒト乳頭腫ウイルス(HPV)が挙げられる。抗原に由来するエピトープが起源とし得る感染症を引き起こす病原性バクテリアのいくつかの例として、ボレリア属(Borrelia)、リステリア属(Listeria)、大腸菌属(Escherichia)、クラミジア属(Chlamydia)、コクシエラ属(Coxiella)、リケッチア性バクテリア(Rickettsial bacteria)、マイコバクテリア(Mycobacteria)、ブドウ球菌(staphylococci)、連鎖球菌(Streptococci)、肺炎球菌(Pneumococci)、髄膜炎菌(Meningococci)、淋菌(Gonococci)、クレブシエラ属(Klebsiella)、プロテウス属(Proteus)、セラシア属(Serratia)、シュードモナス属(Pseudomonas)、レジオネラ属(Legionella)、ジフテリア属(Diphtheria)、サルモネラ属(Salmonella)、桿菌(Bacilli)、ボルデテラ属(Bordetella)、コレラ、破傷風、ボツリヌス中毒症、炭疽病、ペスト、レプトスピラ症、百日ぜき、及びライム病を引き起こすバクテリアが挙げられる。抗原に由来するエピトープが起源とし得る感染症を引き起こす病原性真菌のいくつかの例として、カンジダ属(例えば、白色体、クルセイ(krusei)、グラブラタ(glabrata)、及びトロピカリス(tropicalis))、クリプトコッカス・ネオフォルマンス(Cryptococcus neoformans)、アスペルギルス属(Aspergillus)(例えば、フミガーツス(fumigatus)、ニガー(niger))、ケカビ(Mucorales)属の菌類(ムコール属(Mucor)、アブシジア属(Absidia)、及びリゾープス属(Rhizopus))、スポロスリックス・シェンキー(Sporothrix schenkii)、ブラストミセス・デルマチチジス(Blastomyces dermatitidis)、パラコクシジオイデス・ブラジリエンシス(Paracoccidioides brasiliensis)、コクシジオイデス・イミチス(Coccidioides immitis)、及びヒストプラズマ・カプスラーツム(Histoplasma capsulatum)が挙げられる。抗原に由来するエピトープが起源とする感染症を引き起こす病原性寄生体のいくつかの例として、赤痢アメーバ(Entamoeba histolytica)、大腸バランチジウム(Balantidium coli)、ネグレリア・フォーレリ(Naegleria Fowleri)、アカントアメーバ種(Acanthamoeba sp.)、ランブル鞭毛虫(Giardia lamblia)、クリプトスポリジウム種(Cryptosporidium sp.)、ニューモシスティス・カリニ(Pneumocystis carinii)、プラスモディウム・ビバックス(Plasmodium vivax)、バベシア・ミクロチ(Babesia microti)、トリパノソーマ・ブルーセイ(Trypanosoma brucei)、トリパノソーマ・クルージ(Trypanosoma cruzi)、ドノバンリーシュマニア(Leishmania donovani)、トキソプラズマ・ゴンディ(Toxoplasma gondii)、及びプラスモヂウム・ファルシパリス(Plasmodium falciparis)が挙げられる。
更に、C末端融合は、例えば、MAGE、BAGE、RAGE、GAGE、SSX-2、NY-ESO-1、CT-抗原、CEA、PSA、p53、XAGE、及びPRAMEに限らず、ヒト乳頭腫ウイルス(HPV)、カポジ肉腫ヘルペスウイルス(KSHV)を含むウイルスにより誘発された悪性腫瘍、エプスタイン・バーウイルス誘発性リンパ腫(EBV)も含む、広範な腫瘍抗原に由来する1つ又は複数のエピトープを含み得る。本発明で使用されるエピトープの由来となる腫瘍抗原のその他の例は、がん関連であることが公知である様々な普遍的に発現している自己抗原に由来し得るが、そのような抗原として、例えば、p53、MDM-2、HDM2、及びp53経路において役割を演ずるその他のタンパク質、生存性のテロメラーゼ、チトクロームP450アイソフォーム1B1、Her-2/neu、及びCD19、及びハウスホールドタンパク質と称されるあらゆるタンパク質等の分子が挙げられる。本発明に基づき処置され得るがんは、下記のリストより選択される:肺、結腸、食道、卵巣、膵臓、皮膚、胃、頭部・頸部、膀胱、肉腫、前立腺、肝細胞性、脳、副腎、乳房、子宮内膜、中皮腫、腎臓、甲状腺、血液学、カルチノイド、メラノーマ、副甲状腺、子宮頚部、神経芽細胞腫、ウィルムス、睾丸、脳下垂体、及びクローム親和細胞腫等のがん。1つの実施形態では、異種抗原は、感染因子又は腫瘍のタンパク質性抗原に由来する、1つ若しくは複数の表面露出エピトープを含む、又はそれから構成される。異種抗原は、例えば、感染因子又は腫瘍のタンパク質性抗原の細胞外及び/又は表面露出ドメインを含む、又はそれから構成され得る。
第3の態様では、本発明は、本明細書でこれまでに定義したナイセリアLPSに関し、該LPSは、本明細書でこれまでに定義した遺伝的に改変されたバクテリアから取得される、又は取得可能である。
第4の態様では、本発明は、本明細書でこれまでに定義したナイセリアLPSを含むOMVに関する。ワクチンで使用されるOMV(「bleb」としても知られている)は、界面活性剤抽出法(dOMV精製プロセス)により伝統的に調製されてきたが、デオキシコール酸のような界面活性剤が、LPSを取り除き、小胞の放出を増加させるのに使用される。髄膜炎菌等のほとんどのグラム陰性バクテリアのLPSは、極めて毒性であるものの、小胞構造を維持するため、及びアジュバント活性のためにOMVには残存量(約1%)が必要とされる。しかし、本発明のナイセリアLPSは、毒性低下と有用なアジュバント活性を併せ持ち、したがって好ましくは、毒性の野生型LPSよりもかなり大量にOMV中に存在したままである。界面活性剤抽出プロセスは、したがって本発明のナイセリアLPSを含むOMVを生成するにはそれほど適さない。本発明によるナイセリアLPSを含むOMVは、したがって界面活性剤抽出OMVではないことが好ましい。但し、界面活性剤抽出OMVではないOMVを調製する方法であっても、界面活性剤の使用を一切除外するものではないと理解される。本発明によるナイセリアLPSのほとんど、すなわち、例えば等しい量の同一培養から得られた自然発生的OMV又は上清OMV中に存在するナイセリアLPSの量と比較して、ナイセリアLPSの少なくとも5、10、20、50、60、70、80、90、95、又は99%が維持される限り、低濃度の界面活性剤の使用及び/又は低強度の界面活性剤の使用は除外されない。
本発明のナイセリアLPSを含む好ましいOMVは、上清OMV若しくは自然発生的OMV、すなわち本明細書でこれまでに定義したsOMV、又は天然型OMV、すなわち本明細書でこれまでに定義したnOMVである。nOMVの調製方法は、例えばSaundersら(1999年、Infect Immun、67巻、113~119頁)、van de Waterbeemdら(2012年、Vaccine、30巻:3683~3690頁)、及び国際公開第2013006055号に記載されており、またsOMVの調製方法は、例えばvan de Waterbeemdら(2013年、PLoS ONE、8巻(1号):e54314.doi:10.1371/journal.pone.0054314)、及びLeeら(2007、Proteomics、7巻:3143~3153頁)に記載されており、そのすべては参照として本明細書に組み込まれている。本発明のナイセリアLPSを含むOMVは、本明細書でこれまでに定義した遺伝的に改変されたナイセリアバクテリアから取得される、又は取得可能であることが好ましい。
第5の態様では、本発明は、本明細書でこれまでに定義したナイセリアLPS、遺伝的に改変されたバクテリア、及びOMVのうちの少なくとも1つを含む組成物に関する。
好ましい実施形態では、本明細書で定義する組成物は、少なくとも約0.01、0.05、0.10、1、5、10、20、30、40、50、100、又は500μg/mlのナイセリアLPS、遺伝的に改変されたバクテリア、又はOMVを含む。
組成物は、当技術分野において慣習的に知られているような薬学的に許容される添加剤、担体、媒体、又は送達ビヒクルを更に含む医薬組成物であることが好ましい(例えば、“Handbook of Pharmaceutical Excipients”、Roweら編、第7版、2012年、www.pharmpress.comを参照)。薬学的に許容される安定化剤、浸透圧剤、緩衝剤、分散剤等も、医薬組成物に組み込まれる場合もある。好ましい形態は、意図した投与様式及び治療用途に依存する。医薬担体は、患者に送達するのに適する任意の適合性を有する無毒性の物質であり得る。「本発明の有効成分」は、本明細書でこれまでに定義したようなナイセリアLPS、遺伝的に改変されたバクテリア、又はOMVのうちの1つ又は複数であると本明細書では理解される。
非経口送達用の薬学的に許容される担体の例として、任意選択で20%アルブミンが補充された無菌の緩衝化された0.9%NaCl又は5%グルコースが挙げられる。或いは、本発明の有効成分は、リン酸バッファー生理食塩水(PBS)に懸濁可能である。非経口投与用の調製物は、無菌でなければならない。本発明の有効成分を投与するための非経口経路は、公知の方法、例えば、静脈内、腹腔内、筋肉内、動脈内、又は病変内経路による注射又は輸液に基づく。筋肉内注射用の代表的な医薬組成物は、例えば、有効用量の本発明の有効成分を含むリン酸緩衝生理食塩水1~10mlを含むように作成される。非経口的に投与可能な組成物の調製方法は、当技術分野において周知されており、また例えば、“Remington:The Science and Practice of Pharmacy”(Allen,L.V.編、第22版、2012年、www.pharmpress.com)を含む様々な情報源においてより詳細に記載されている。
好ましい実施形態では、本発明の医薬組成物は、ワクチンである。ワクチンは、無細胞ワクチンであり得るが、本明細書でこれまでに定義したナイセリアLPS及びOMVのうちの少なくとも1つを含むことが好ましい。或いは、ワクチンは、本明細書でこれまでに定義したバクテリアを少なくとも含む全細胞ワクチンであり得るが、該バクテリアは、当技術分野においてそれ自体公知の手段を使用して不活性化又は死滅させることが好ましい。
第6の態様では、本発明は、本発明のナイセリアLPSを製造する方法に関する。方法は、a)本明細書でこれまでに定義した遺伝的に改変されたバクテリアを、好ましくはLPSの製造に役立つ条件下で培養するステップ;及びb)任意選択で、LPSを抽出するステップ及び精製するステップのうちの少なくとも1つのステップを含むことが好ましい。LPSの抽出方法は当技術分野において周知されている(例えば、19を参照)。LPSを精製する方法は、本明細書の実施例に記載されており、例えば、逆相カートリッジ上での固相抽出法(SPE)を含み得る。
第7の態様では、本発明は、本発明のOMVを製造する方法に関する。方法は、a)本明細書でこれまでに定義した遺伝的に改変されたバクテリアを、好ましくはOMVの製造に役立つ条件下で培養するステップと、b)任意選択で、OMVを抽出するステップと、前記OMVを回収するステップであって、前記OMVから前記バクテリアを除去することを少なくとも含むステップとを含むことが好ましい。OMVの調製方法は、界面活性剤フリーのOMVの調製方法であることが好ましく、本明細書でこれまでに記載されている。本発明のOMVを調製する好ましい方法は、したがって界面活性剤フリー法、例えばnOMV又はsOMVを調製する方法である。
第8の態様では、本発明は、本明細書でこれまでに定義した無細胞ワクチンを製造する方法に関する。該方法は、a)i)好ましくは本明細書でこれまでに定義したナイセリアLPSを製造する方法において、本明細書でこれまでに定義したナイセリアLPS、及びii)好ましくは本明細書でこれまでに定義したOMVを製造する方法において、本明細書でこれまでに定義したOMVのうちの少なくとも1つを製造するステップと、b)ナイセリアLPS及びOMVのうちの少なくとも1つを、任意選択で更なるワクチン成分と共に、ワクチン製剤に製剤化するステップとを含むことが好ましい。
第9の態様では、本発明は、本明細書でこれまでに定義した全細胞ワクチンを製造する方法に関する。方法は、i)本明細書で定義した遺伝的に改変されたバクテリアを培養するステップと、ii)任意選択で、バクテリアを不活性化するステップ、及びワクチンに製剤化するステップのうちの少なくとも1つのステップとを含むことが好ましい。
第10の態様では、本発明は、本発明のナイセリアLPS、本発明の遺伝的に改変されたバクテリア、本発明のOMV、及び本発明の医薬組成物のうちの少なくとも1つを医薬として使用することに関する。
第11の態様では、本発明は、対象において、免疫応答を誘発又は刺激するステップを含む処置で使用される、本発明のナイセリアLPSに関する。処置では、ナイセリアLPSがアジュバントとして用いられることが好ましい。本発明のナイセリアLPSは、例えば、アジュバントとしてワクチン組成物に、好ましくは抗原と共に含めることができ、その抗原に対して免疫応答を誘発又は刺激することが望ましい。したがって、本発明のナイセリアLPSは、対象において、免疫応答を誘発又は刺激するステップを含む処置で使用されることが好ましく、該処置は、ナイセリアLPSと共に抗原を投与することを更に含み、また該処置は、該抗原と関連した感染性疾患又は腫瘍を予防又は処置することに関し、該抗原は、本明細書でこれまでに定義した抗原であることが好ましい。
この態様では、したがって、本発明は、感染性疾患若しくは腫瘍に対するワクチン接種、又は感染性疾患若しくは腫瘍の予防若しくは治療、又は感染性疾患若しくは腫瘍に対する免疫応答の誘発若しくは刺激を目的とする方法に関する。該方法は、治療上若しくは予防上有効な量の本発明のナイセリアLPS、又は前記LPSを含む医薬組成物を、前記予防、治療、又は免疫応答を必要とする対象に投与するステップを少なくとも含むことが好ましい。該医薬組成物は、感染性疾患又は腫瘍と関連した抗原も含むことが好ましく、該抗原は、本明細書でこれまでに定義した抗原であることが好ましい。
第12の態様では、本発明は、Toll様受容体4(TLR4)作動薬として使用される本発明のナイセリアLPSに関する。ナイセリアLPSは、免疫療法においてTLR4作動薬として用いられることが好ましい。免疫療法は、がん(例えば、37を参照)、又は例えば、アルツハイマー病若しくはパーキンソン病を含む神経変性疾患(例えば、35を参照)の免疫療法であることが好ましい。或いは、ナイセリアLPSは、(多様な)微生物感染症の伝播を予防及び/若しくは低減する、並びに/又はバクテリア増殖を抑制するための一般的免疫刺激において、TLR4作動薬として用いられる(例えば、36を参照)。
本文書及びその特許請求の範囲では、動詞「含む」及びその活用形は、該単語の後の事項が含まれるが、但し特に記載されていない事項が除外されることでもないことを意味するように、その非限定的な意味合いで使用される。更に、不定冠詞「a」又は「an」によりある要素を指す場合、文脈より唯一無二の要素しか存在しないことが明確に必要とされない限り、2つ以上の要素が存在する可能性を除外しない。不定冠詞「a」又は「an」は、したがって「少なくとも1つ」を通常意味する。
本明細書で引用されたすべての特許及び引用文献は、本明細書により参考としてそのまま援用する。
下記の実施例は、説明目的に限定して提供され、またいかなる場合においても、本発明の範囲を限定するようには意図されない。
1.方法及び材料
1.1 バクテリア株及びプラスミド
プラスミドpMF121を使用して、髄膜炎菌H44/76株(HB-1)においてすべての突然変異体を作出し、その結果、galE遺伝子を含む莢膜生合成遺伝子座の欠損を引き起こした。髄膜炎菌株を、5%のCO2を含有する37℃の多湿雰囲気内、IsoVitaleXを補充したGC培地ベース(Difco社)プレート上で増殖させた。液体培養では、コニカルフラスコ内に36mg/mLのトリプシンダイズ肉汁培地(Difco社)を入れ、37℃、140RPMで振盪させた中で株を増殖させた。必要とされる抗生物質をプレート及び液体培養物に添加した(カナマイシン100μg/ml、クロラムフェニコール3μg/ml)。lpxL1及びlpxL2突然変異体を、van der Leyら(15)が記載するカナマイシン耐性カセットを含む遺伝子を有する直線化したPCRIIプラスミド(Invitrogen社)、又はクロラムフェニコール(CAM)カセットと置き換わった欠損セクションを有するlpxL1遺伝子を含むpGem T簡便プラスミド(Promega社)を用いた変換により取得した。lptA突然変異体では、遺伝子をH44/76株からPCRにより増幅し、pGem T簡便プラスミド(Promega社)にクローン化し、そしてカナマイシンカセットを、遺伝子内、MunI制限部位に配置した。プラスミドを、遺伝子外部において開裂させる制限酵素を用いた消化により直線化し、そして髄膜炎菌H44/76(HB-1)株に変換した。ボルデテラ・ブロンキセプチカ(Bordetella bronchiseptica)pagL遺伝子の発現について、これまでに記載されているpEN11プラスミドを使用して、遺伝子pagL、lpxP、及びlpxEを有する髄膜炎菌派生体を作出した(13、18)。lpxP及びlpxE派生体を取得するために、pEN11プラスミド内のpagL遺伝子を、PCRにより大腸菌及びB.ブロンキセプチカからそれぞれ増幅したlpxP又はlpxE遺伝子に置き換えた。1mMイソプロピル-β-D-チオガラクトピラノシド(IPTG)及びCAM(3μg/ml)を液体培養培地に添加することにより、pen11プラスミド上での遺伝子発現を誘発した。プライマーを表1に列挙する。
Figure 0007031933000003
1.2 LPSの単離
バクテリアの突然変異体から得たLPSを、熱フェノール-水で抽出し(19)、そして逆相カートリッジ上での固相抽出法(SPE)により更に精製した。手短に述べると、OD600nmが1.4のバクテリア培養物50mlに由来する細胞(又は30℃で増殖させたΔlpxL1-lpxP突然変異体100ml)を、20℃、2,739×gで1時間遠心分離して収集した。次に、バクテリアを水20mlに懸濁し、そして20℃、2,739×gで25分間遠心分離した。熱フェノール-水抽出では、バクテリアペレットを水4mlで懸濁し、70℃まで加熱し、同一温度のフェノール3.2mlと混合し、そして撹拌しながら70℃で10分間保った。20℃、2,739×gで15分間遠心分離することにより、水相をフェノール相から分離した。水相を新しいバイアルに移した後、70℃の水3mlを添加してフェノール相を再度抽出し、そして該抽出手順を繰り返した。連続2回の抽出から得た水相をプールし(約6.5ml)、そして0.356Mの酢酸トリエチルアンモニウム(TEAA)、pH7(溶媒A)を5ml、及び2-プロパノール:水:トリエチルアミン:酢酸(70:30:0.03:0.01、v/v)、pH8.7(溶媒B)を3.8ml添加して、SPE用に調製した。全体として、20ポジション吸引マニホールド(Waters社)を使用する逆相Sep-Pak C18カートリッジ(1mlシリンジバレル型Vacカートリッジ、50mgのC18樹脂、Waters社)上でSPEを実施することにより、異なるバクテリアの突然変異体にそれぞれ由来する10個のLPS抽出物を同時に精製することができた。減圧下で、1mlの2-プロパノール:水:トリエチルアミン:酢酸(85:15:0.015:0.005、v/v)、pH8.7(溶媒C)、0.07mMのTEAA、pH7(溶媒D)、及び溶媒Aを連続的に適用することにより、カートリッジをSPE用に条件調整した。次に、サンプルを等しい体積の2分量に分割し、そして各分量を異なるカートリッジに適用した。次に、カートリッジを、溶媒A、1mlで1回、及び溶媒Dに溶解した20%(v/v)溶媒B、1mlで2回洗浄した。溶媒C、0.6mlを適用することにより、LPSをカラムから溶出させた。同一サンプルに由来する溶出液を統合し(1サンプル当たり、合計1.2ml)、そして遠心減圧式濃縮装置(Concentrator plus、Eppendorf社)中、室温で乾燥した。単離したサンプル中のLPS濃度を、3-デオキシ-D-マンノ-オクト-2-ウロソン酸(Kdo)アッセイ法により決定した(20)。更に、精製済みのサンプルの純度及び完全性を、厚さ1mmの16%precast Novex(登録商標)ミニ-ゲル(Thermo Fisher Scientific Inc.社)を使用して、トリシン-SDS-PAGEにより判定し、LPSを銀染色し(21)、そしてタンパク質の可視化を、Imperial(商標)Protein Stain (Thermo Scientific社)を用いて行った。
1.3 質量分析
エレクトロスプレーイオン化フーリエ変換質量分析法(ESI-FT-MS)を、LTQ Orbitrap XL装置(Thermo Scientific社)上、陰イオンモードで実施した。LPSサンプルを、水、2-プロパノール、及びトリエチルアミン混合物(50:50:0.001の体積比)、pH8.5に溶解し、そしてスタティックナノ-ESIにより質量分析装置に注入した(22、23)。MS装置をPierce陰イオン校正溶液(Thermo Scientific社)で校正し、そして製造業者(Thermo Scientific社)が提供する標準手順に従い、タウロコール酸を用いて内部校正した。無処理LPSのフラグメンテーション分析を、インソース衝突誘起フラグメンテーション法(SID)により実施した。LPSのリピドA及びオリゴ糖部分にそれぞれ対応するY-及びB-型フラグメントイオンを、100Vの電位差でSIDにより生成した。フラグメントイオンを、Domon及びCostelloの命名法に基づき命名した(24)。質量分析スペクトルを、Thermo Xcalibur3.0ソフトウェアのXtractツール(Thermo Scientific社)を使用して電荷デコンボリューションした。得られたすべての質量値は、モノアイソトピック分子質量を指す。提案されたLPS組成物は、これまでに報告された髄膜炎菌由来のL3免疫型LPSの一般化学構造に基づく(25、26)。
1.4 細胞刺激
100ユニット/mlのペニシリン、100μg/mlのストレプトマイシン、292μg/mlのl-グルタミン(Invitrogen社)、及び10%ウシ胎仔血清(Invitrogen社)を補充したイスコフ改変ダルベッコ培地(IMDM)(Invitrogen社)、100μl中において、Mono Mac6細胞を、96ウェルマイクロタイタープレート内の1ウェル当たり細胞1×10個で播種した。100ユニット/mlのペニシリン、100μg/mlのストレプトマイシン、292μg/mlのl-グルタミン(Invitrogen社)、及び10%ウシ胎仔血清(Invitrogen社)を補充したDMEM(Invitrogen社)培地、100μl中に、Hek Blue-hTLR4細胞(Invivogen社)、ヒトTLR4、MD-2、及びCD14を安定的に発現するHEK293株化細胞を、96ウェルマイクロタイタープレート内の1ウェル当たり細胞3.5x10個で播種した。IMDM(MM6細胞)又はDMEM(HEK Blue-hTLR4細胞)中で連続10倍希釈したLPSを用いて、5%COを含有する多湿雰囲気内、37℃で18~20時間、細胞を刺激した。HEK-Blue-hTLR4細胞を、連続希釈した全バクテリア細胞も用いて刺激した。MM6細胞の上清中のサイトカイン濃度を、酵素結合免疫吸着測定法(ELISA)により決定した。製造業者の指示に従い、DUOset ELISA開発キット(R&D systems社)を使用して、すべてのサイトカイン(IL-6、IL-1β、IP-10、MCP-1)濃度を決定した。HEK-Blue-hTLR4細胞により分泌されたアルカリホスファターゼを定量化するために、各ウェルから得た上清20μlを、Quanti-Blue(Invivogen社)、200μlに添加し、そして37℃で2~3時間インキュベートした。分光光度計上、649nmにて読み取りを実施した。GraphPad Prism 6.04統計ソフトウェア(GraphPad Software,Inc.社)を使用して、一元(アルカリホスファターゼの分泌)又は二元配置(サイトカインの放出)ANOVA検定により統計的有意差を判定した。
2.結果
2.1 改変されたLPS構造の生物工学
髄膜炎菌のLPS突然変異体を、株H44/76のHB-1派生株において構築した。HB-1株は莢膜欠損性であり、またLPSオリゴ糖のトランケーションを引き起こすgalE欠損を有する。質量分光分析により、HB-1株は、ヘキサアシル化、トリホスフェート、ビス-ホスホエタノールアミンリピドA構造を発現することが実証された(下記参照)。株HB-1において多様な一連のLPS突然変異体を構築するために、LPS酵素LptA、LpxL1、及びLpxL2をコードする自己遺伝子を不活性化し、そしてlacプロモーター後方のpen11プラスミド上に遺伝子をクローニングすることにより、LpxE、LpxP、及びPagLの各LPS酵素を異種的に発現させた(表2を参照)。
Figure 0007031933000004
更に、自己遺伝子の欠損と異種酵素の発現との組み合わせを構築した。このアプローチから、表3に列挙する11種類のLPS突然変異株が得られた。
LpxE(タンパク質ID:CAE41138.1)の発現では、百日咳菌(Bordetella pertussis)由来のlpxE相同体を最初にクローン化した。但し、HB-1又はそのlptA突然変異派生株において遺伝子を発現させても、質量分析により確認されるようなLPSの構造的変化を一切引き起こさなかった。代替案として、百日咳菌内で偽遺伝子として存在するボルデテラ・ブロンキセプチカ由来のlpxE(ジェンバンク受け入れ番号:WP_003809405.1)相同体をクローン化し、そしてΔlptA突然変異株内で発現させた。これは、リピドA内のリン酸基喪失を引き起こし、本発明者らのLPS突然変異株のパネルに組み込まれた(図1L)。
LpxL1酵素は、同一位置において二次アシル鎖も付加するので、LpxP(ジェンバンク受け入れ番号:U49787.1)は、大腸菌において2’アシル鎖に二次の9-ヘキサデセン酸(C16:1)を付加することが公知の酵素であるが(27)、この酵素を髄膜炎菌ΔlpxL1突然変異株内で発現させた。2’の位置に、C12に代わり、より長いC16二次アシル鎖を有することによりオリジナルとは異なるヘキサアシル化リピドA構造を作出するために、この改変を実施した。LpxPをΔlpxL1突然変異株内、37℃で発現させると、ごくわずかなC16:1の付加を引き起こした。しかし、C16:1は、12℃のときに限り大腸菌LPSに付加し、このような理由により、バクテリアをより低い温度で増殖させた。25℃未満での髄膜炎菌の培養は、大腸菌とは異なり不可能であるが、25℃及び30℃であれば、追加のC16:1を有するLpxPヘキサアシル化リピドA構造の相対的存在量がかなり高めとなり、25℃の方が最高効率(少なくとも50%相対的存在量)を実現することをすでに見出した(図1H)。
Figure 0007031933000005
2.2 改変されたLPSの質量分析的特徴付け
構築後の髄膜炎菌突然変異体から単離された無処理LPSの電荷デコンボリューション型ESI-FT質量分析スペクトルを図1に示す。HB-1(galE)親株のLPSの質量スペクトル(図1A)は、3つのリン酸(P)基及び2つのホスホエタノールアミン(PEA)基を有する野生型ヘキサ-アシルリピドA、並びにグリシン(Gly)残基で置換され、及びgalE遺伝子の不活性化に起因して、そのα鎖の隣接するガラクトース(Gal)においてトランケーションされたL3免疫型オリゴ糖構造から構成されるLPSと一致する3408.507uのイオンシグナルを示した(Mcalc.=3408.514u、LPS組成物候補に関する付録表1を参照)。3351.488u、3285.501u、及び3228.480uの付随的なイオンピーク(図1A)は、Glyを欠く(Δmeas.=-57.019u)、リピドA内に1つ少ないPEA基を有する(Δmeas.=-123.006u)、又はその両方(Δmeas.=-180.027u)のLPS種にそれぞれ相当する。HB-1(galE-)株に由来するLPSのこの化学的不均一性は、リピドAのリン酸化における変動、及びグリシンによるオリゴ糖の非化学量論的置換により引き起こされた可能性がある。無処理LPSの質量分析スペクトルに基づく組成物候補は、未処理LPSの衝突誘起解離(SID)により生成したリピドA及びオリゴ糖部分に対応するLPSフラグメントイオンのFT-MS分析により更に裏付けられた。例えば、HB-1(galE)株に由来するLPSのSID FT質量分析スペクトルは、2つ及び3つのPEA基を有するヘキサ-アシルリピドA種(それぞれ、Mcalc.=1916.100u及び2039.109u)に対応する1916.098u及び2039.106uのフラグメントイオン、並びに上記オリゴ糖部分の脱水した誘導体(Mcalc.=1369.406u)に対応する1369.404uのフラグメントイオンを示した。本明細書に記載する髄膜炎菌のその他の株に由来するLPSのフラグメンテーション分析より、異なる種類のLPSは、同一のオリゴ糖部分(PEA・Hex・Hep・HexNAc・Kdo・Gly)を有するが、グリシンを欠いた、又は第2のヘキソース残基(Hex)を有するいくつかのLPS種の例外も存在することが判明した(付録表2)。したがって、LPS種間に認められたその他の差異、例えばPEA及びP基の数における差異は、リピドAの組成の変化に起因すると考えることができる(付録表2)。
ΔlpxL1突然変異体に由来する無処理LPSについて分析を行い、質量スペクトルの主要なイオンピーク(3046.315u、3103.336u、3169.324u、及び3226.342u、図1B)は、親HB-1(galE-)株に由来するLPSの4つの主要なイオンシグナルと比較して、-182.165uシフトしていることが明らかとなった(図1A)。これは、lpxl1遺伝子欠損後のリピドAにおけるドデカン酸(C12)の喪失(Dcalc.=-182.167u)と整合する。
ΔlpxL2突然変異体に由来するLPSの質量スペクトルを比較分析すると、3023.367u、2966.348u、3185.419u、及び3128.398uのイオンピークが認められたが(図1C)、C12脂肪アシル鎖に加え、リピドAに由来するPPEAの喪失と(Dcalc.=-385.142u)、それにGly(Dcalc.=57.021u)、又は第2のヘキソース(Dcalc.=162.053u)によるオリゴ糖の非化学量論的置換とが組み合わさったものと一致する。これは、lpxL2遺伝子の効率的な欠損と整合する。特記事項として、lpxL2遺伝子の欠損は、lpxL1遺伝子が欠損した際にこれまでに認められたのと同様に、C12脂肪アシル鎖の喪失を引き起こしただけでなく、リピドAに由来するP基及びPEA基の喪失も引き起こしたことが挙げられる。
pagL突然変異体に由来するLPSの質量スペクトルに認められたイオンピーク(3210.345u、3153.325u、3087.338u、及び3030.318u、図1D)は、親HB-1株に由来するLPSの4つの主要なイオンピークから-198.163uシフトしていることが判明した。これは、PagL酵素により、リピドAから3-ヒドロキシ-ドデカン酸(C12OH)が効率的に除去されたこと(Dcalc.=-198.162u)と整合する。それにもかかわらず、非改変型のヘキサアシルLPS種に対応する3408.505u及び3351.485uのマイナーなイオンピークが認められ(図1D)、PagL酵素のLPS 3-O-脱アシル化活性は、ヘキサ-アシルリピドA基質を完全に消費できなかったことを示唆した。
ΔlpxL1-pagL突然変異体に由来するLPSの質量スペクトルにおいて、HB-1株に由来するLPSの4つの主要なイオンシグナルから-380.328u異なる4つの主要なイオンシグナルが認められ(3028.180u、2971.160u、2905.173u、及び2848.152u、図1E)、その差異はΔlpxL1-pagL突然変異体のリピドAにおけるC12及びC12OHの喪失と整合する(Dcalc.=-380.329u)。2つのC12アシル鎖を有するLPSに対応するイオンシグナルが存在しないことから、lpxL1遺伝子が欠損した結果、リピドAから単一のC12が完全に除去されたことが示唆される(詳細なLPS組成物候補に関する付録表1を参照)。対照的に、ΔlpxL1-pagL突然変異体に由来するLPSの質量スペクトルに3226.339u及び3169.319uのマイナーなイオンシグナルが存在したが、それらは、2つのC12OHアシル鎖を有するペンタアシルLPS種に対応する。これは、低レベルのLPS分子が、PagL酵素により3-O-脱アシル化されなかったことを示唆する。
ΔlpxL2-pagL突然変異体に由来するLPSの質量スペクトルでは、親HB-1株に由来するLPSの質量スペクトルの3408.507uのイオンシグナル(図1A)から-583.301uシフトした2825.206uのイオンピークが認められた(図1F)。これは、リピドAからのC12OH、C12、及びPPEAの予想される喪失に符合する(Dcalc.=-583.304u)。2768.187u、2930.236u、及び2987.257uのその他のイオンシグナル(図1F)は、Gly又は第2のHexによるオリゴ糖の非化学量論的置換に一致する。
30℃で増殖させたΔlpxL1-lpxP突然変異体に由来するLPSの質量スペクトル(図1G)と、ΔlpxL1突然変異体に由来するLPSの質量スペクトル(図1B)との比較から、ΔlpxL1-lpxP突然変異体に由来するLPSは、ΔlpxL1突然変異体に由来するLPS内に存在した、C12を欠くペンタアシルLPSに対応する主要なLPS種(3046.315u、3103.333u、3169.322u、及び3226.340u、図1G)を含むだけでなく、スペクトル内で236.211uだけ質量値が高値シフトしたLPS種(3282.524u、3339.543u、3405.533u、及び3462.553u、図1G)も含むことが明らかになった。これは、9-ヘキサデセン酸(C16:1)がリピドAに組み込まれたことと整合する。したがって、この調製物は、C12を欠くペンタアシルLPS及びC12を欠き、且つC16:1を更に有するヘキサアシルLPSの混合物を含んだ。
25℃で培養したΔlpxL1-lpxP突然変異体に由来するLPSの質量スペクトル(図1H)は、C12を欠き、且つC16:1を更に有するヘキサアシルLPSに対応するイオンシグナル(3282.526、3339.546、3405.535、及び3462.554u、図1H)を示したが、それらは30℃で増殖させたΔlpxL1-lpxP突然変異体に由来するLPSのスペクトル内の同一のシグナルと比較して相対的存在量がより高いシグナルであった。更に、C16:1を有するヘキサアシルLPSに対応するその他のイオンピークが認められ、そのイオンピークは、第2のHexによるオリゴ糖の伸長(3624.608u)、又はGly置換の喪失が組み合わさった後者(3567.586u)、及びリピドAからのPEA基の喪失(3501.596u)に起因した(図1H)。
ΔlptA突然変異体に由来するLPSの質量スペクトルに認められる3162.489uのイオンピーク(図1I)は、親HB-1株に由来するLPSの質量スペクトルの3408.507uのイオンシグナル(図1A)とは-246.018u異なる。これは、リピドAからの2つのPEA基の喪失(Dcalc.=-246.017u)に該当する。その他のイオンシグナルは、リピドA内でのPEAの欠損に加えて、オリゴ糖内でGlyが欠損し(3105.471)、オリゴ糖内に第2のHexを含む(3324.541)LPS種、又は第2のHexを含み、且つオリゴ糖内でGlyが欠損した(3267.521u)LPS種に対応した(図1I)。
ΔlptA-ΔlpxL1突然変異体に由来するLPSの質量スペクトルは、2980.324u、2923.307u、3142.375u、及び3085.354uのイオンピークを示し、Gly又は第2のHexによるオリゴ糖の非化学量論的置換と組み合わさったリピドAからの2PEA及びC12の喪失(Dcalc.=-428.184u)を示唆した(図1J)。更に、LPSのインソース衝突誘起解離法により生成した主要なリピドAフラグメントイオンのMS/MSスペクトルは、リピドAの1及び4’の位置の両方においてP基が存在することと一致した(データは示さない)。したがって、LpxE酵素の活性は、リピドA中に存在する3つのP基のうちの1つを除去して、ジグルコサミン骨格の各側にP基を有するビスリン酸化リピドA種を生成することに依拠した。
ΔlptA-pagL突然変異体に由来するLPSの質量スペクトルの主要イオンシグナル(2964.328u及び2907.311u、図1K)は、Glyによるオリゴ糖の非化学量論的置換(Dcalc.=57.021u)を伴う、リピドAからの2PEA及びC12OHの喪失(Dcalc.=-444.179u)と一致した。リピドAから2PEAのみが失われたヘキサアシルLPS種に対応した3105.468u及び3162.488uのマイナーなイオンピークが認められ、PagL酵素による低レベルの不完全なLPS3-O-脱アシル化が示唆される。
最終的に、ΔlptA-lpxE突然変異体に由来するLPSの質量スペクトルは、Glyによるオリゴ糖の非化学量論的置換と組み合わさったリピドAからの2PEA及びPの喪失(Dcalc.=-325.983u)と一致する3082.525u及び3025.508uの2つの主要なイオンピークを示した(図1L)。
2.3 LPS突然変異株によるTLR4刺激
リピドA突然変異体構造の全セットからTLR4活性化の範囲を決定するために、初期のスクリーニングを、HEK-BlueヒトTLR4細胞を使用して実施した。このような細胞は、ヒトTLR4、MD-2、及びCD14を発現し、また核内因子である活性化B細胞のκ軽鎖エンハンサー(NF-κB)、及びアクチベータータンパク質1(AP-1)依存性分泌型胚性アルカリホスファターゼ(SEAP)レポーター遺伝子を含む。異なるLPS突然変異体の連続希釈物を用いて細胞を刺激すると、広範なTLR4活性を引き起こし(図2及び表4)、HB-1が最強のTLR4活性化を誘発し、またΔLpxL2バクテリアが最低レベルの活性化を引き起こした。他のLPS突然変異体は、中間的なTLR4刺激活性を示した(図2)。特に注目すべき結果は、ΔlptA株内にホスホエタノールアミンが存在しないと、その結果ヘキサアシル化野生型株及びペンタアシル化ΔlpxL1の両方におけるTLR4の活性化、並びにpagLのバックグラウンドが低下したことであった。ΔlptA株においてLpxEを誘発すると、HB-1野生型株よりも若干低めのΔlptA株と類似したTLR4活性化が認められた。これは、リピドA構造内で3つのリン酸が2つ減少し、ジグルコサミン骨格の各側にリン酸が1個となっても、TLR4シグナル伝達には影響を及ぼさなかったことを示唆する。
LpxL1の欠損と組み合わせて、25℃でLpxPを発現させると、その結果、野生型バクテリアと比較してTLR4活性化能力が若干低下している、不均質なヘキサ及びペンタアシル化構造のLPSを発現する株が生じた。この株を30℃で培養すると、その結果ヘキサアシル化リピドAの減少、及びTLR4活性のわずかな低下さえも引き起こした。
驚くべきことに、ΔlpxL1株をPagLの発現と組み合わせ、ペンタアシル化リピドA構造をテトラアシル化リピドA構造に低減したとき、TLR4活性の増加が実現した。大腸菌のリピドIVaにおいて報告されているように、テトラアシル化リピドA構造はTLR4拮抗薬として一般的に作用するので、これは予想外であった(7,9,28)。
2.4 精製済みの突然変異体LPSを使用したヒトTLR4刺激
すべての株に由来するLPSを精製し、全バクテリアを用いた本発明者らの初期の所見を確認するために、HEK-Blue TLR4細胞を刺激するのに、それを使用した。精製済みのLPSから、無処理のバクテリアについて得られた結果と類似した結果が一般的に得られたが、但し、精製済みのLPS、ΔlpxL1、ΔlptA-ΔlpxL1、ΔlpxL2、及びΔlpxL2-pagLは、TLR4活性の誘発をほとんど示さず、また相互の区別はほとんどできなかった一方(図3)、バクテリアのこのようなバリアントは、低いが区別可能なバックグラウンドを上回るTLR4活性を示した。更に、ヘキサアシル化LPS派生体のいずれよりも高濃度の精製済みペンタアシル化pagL LPSが、TLR4の活性化に必要とされたが、全バクテリア刺激では、TLR4活性を誘発するには、その他のヘキサアシル化突然変異株よりも低い吸収密度がpagL株において必要であった(図2+3)。しかし、最大アルカリホスファターゼ分泌量は、ヘキサアシル化突然変異株と比較してpagL突然変異株においてなおも低めであった。とりわけ、3つのLPS突然変異体ΔlpxL1-pagL、pagL、及びΔlptA-pagLでは、野生型LPSと比較したとき、活性化能力が実質的に低下していたが、刺激を受けなかった細胞のバックグラウンドレベルを上回る活性化をなおも誘発した(図3)。
2.5 精製済みの突然変異体LPSによるサイトカイン誘発
改変されたLPS構造のサイトカイン誘発プロファイルをヒト単核株化細胞であるMono Mac6(MM6)において調査した。分泌型MyD88依存性サイトカインのIL-6(図4A及び表5A)及びIL-1β(図4B及び表5B)、並びにTRIF依存性サイトカインのインターフェロンγ誘導型タンパク質10(IP-10)(図4C及び表5C)、及び単球走化性タンパク質-1(MCP-1)(図4D及び表5D)の濃度を、精製済みのLPSを用いて20時間刺激した後に測定した(図4E、F、及びG、並びに表6)。LPSサンプルによるHEK-hTLR2株化細胞の活性化は、試験したLPS濃度範囲において無視し得るので、LPSサンプルにおいて、微量タンパク質汚染が実測された応答に寄与した可能性は除外された(データは示さない)。
多種多様なサイトカインレベルを異なるLPS構造から決定したが、最高レベルは、HB-1野生型ヘキサアシル化LPSにより生成され、またその他すべてのLPSは、ΔlpxL2 LPSについて認められたように野生型の付近から事実上ゼロのサイトカイン誘発までの範囲であった。サイトカイン誘発における定量的な相違の他、特定のサイトカインのレベル低下を引き起こすものの、その他のサイトカイン生成能力をなおも有する質的な相違もLPS構造について認められた。MyD88依存性炎症促進性サイトカインであるIL-6及びIL-1βの産生を誘発する能力が低下しており、野生型LPSが誘発するレベルのそれぞれ10%及び25%しか誘発しなかったが、TRIF依存性IP-10(50%)及びMCP-1(90%)の分泌を誘発する能力については、そのほとんどを保持することが認められたいくつかの例として、pagL及びΔlptA-pagL LPSが挙げられる。興味深いことに、30℃及び25℃で増殖させたΔlpxL1-lpxPの間で相違が認められ、30℃で増殖させたΔlpxL1-lpxPは、30~40%のIL-6及びIL-1β、並びに25℃では60~85%の同サイトカインを産生した一方、IP-10及びMCP-1の誘発は類似した。このような結果から強調されることとして、LPSの生物工学は、サイトカイン放出量を微調整するために、いかに幅広い範囲の作動薬を提供することができるかという点が挙げられる。
3.考察
LPSは、アジュバントとして優れた能力を有するものの、副作用が懸念されている。アジュバント活性と最低毒性効果との間の最適なバランスを見つけるには、新規LPS誘導体の開発を必要とする。ここでは、広範囲のTLR4応答及び差次的サイトカインパターンを誘発する新規の髄膜炎菌LPS構造の収集について報告する。このような生物工学的に作出されたコンビナトリアルLPS突然変異体は、全細胞ワクチン、OMVワクチンの一部として、又は精製済みのLPS若しくはリピドA分子として利用可能である。髄膜炎菌のOMVは、有望なワクチンとして活発に調査されており、血清群B髄膜炎菌疾患に対するBexseroワクチンの成分として、ヒト用にすでに承認済みである(29,30)。弱毒化されたΔlpxL1 LPSは、髄膜炎菌OMVワクチンの構成成分として調査対象にあり、またOMVを無毒化する安全な方法である(16,31)。更に、免疫研究では、精製後のΔlpxL1 LPSは、野生型髄膜炎菌LPSと比較して類似した、但し毒性が低下したアジュバント活性を保持した(15)。
改変されたLPS分子であるLpxL1、LpxL2、及びPagLは、いずれも親株と比較してTLR4活性の低下を引き起こす(13,15)。LPS内のアシル鎖の数がヘキサからペンタに減少しているので、これは予想されたことである。驚くべきことに、テトラアシル化LPSは、ペンタアシル化LPSよりも常に活性が低いという予想は、本発明者らの結果と矛盾している。大腸菌のテトラアシル化リピドIVaは、ヒトTLR4/MD-2複合体の既知拮抗薬である(7、9、28)。なおも、本発明者らは、髄膜炎菌のテトラアシル化ΔlpxL1-pagL LPSは、ペンタアシル化ΔlpxL1 LPSよりも活性である一方、テトラアシル化ΔlpxL1-ΔlpxL2 LPSは検出可能な活性をもたらさなかったことを示す(データは示さず)。ΔlpxL2-pagLで刺激すると、ΔlpxL2-pagL及びΔlpxL2の両方に由来する精製後のLPSは不活化であったものの、テトラアシル化LPSも有する全バクテリアは、そのペンタアシル化ΔlpxL2親株と比較して、TLR4/MD-2活性をやはり増加させた。同時に、これらの所見から、二次アシル鎖の欠損と組み合わせて、PagLにより3’位置からC12OHを除去すると、その結果、テトラアシル化リピドAは、一方の二次アシル鎖又は両方の二次アシル鎖を除去した場合と比較して、より高いTLR4活性をもたらすことが示唆される。Needhamらにより、大腸菌において工学的に作出されたLPS構造(32)には、PagLの発現及びLpxMの欠損を通じて、PagLによる3’位置からのC12OHの除去、及びリピドAの還元末端にあるグルコサミンからの二次アシル鎖の欠損を引き起こすテトラアシル化LPSが含まれた。大腸菌中で産生されたこのテトラアシル化LPSは、したがってその親株に由来するペンタアシル化LPSよりも活性でありながら、本発明のΔlpxL1-pagL突然変異体リピドAのテトラアシル化構造とは異なったアシル鎖分布及び鎖長を有する。
興味深いことに、大腸菌由来のLpxPを髄膜炎菌に導入すると、温度感受性リピドAの改変が髄膜炎菌にもたらされた。温度感受性遺伝子発現シグナルが保存されるとは考えにくいので、酵素そのものがより低い温度で最も活性であることを意味する。ΔlpxL1-lpxP株を培養するために25℃又は30℃の温度を選択したが、その温度は、この突然変異体により産生されたペンタ及びヘキサアシル化LPSの混合物中に存在するヘキサアシル化LPS種の量に影響を及ぼし、温度が低いほど最高の置換度をもたらす。LpxP酵素の温度感受性は、したがって制御された方式でのペンタ及びヘキサアシル化LPS混合物の調製を可能にする。突然変異株を増殖させる時間及び/又は温度を選択することにより、ヘキサアシル化リピドA構造の量を増加又は減少させ、これによりTLR4活性及びサイトカインプロファイルの調整が実現可能となる。これは、髄膜炎菌OMVワクチンの免疫学的特性を微調整する新規アプローチを提供する。
更に、LpxE酵素の特異性について新たな見識が得られた。これまでに、大腸菌で発現するフランシセラ・ツラレンシス(Francisella tularensis)又はフランシセラ・ノビサイダ(Francisella novicida)由来のlpxE遺伝子は、1’の位置でのP基除去について特異的であることを明らかにした(32、33)。本発明者らは、B.ブロンキセプチカ由来のlpxE相同体は、髄膜炎菌のリピドA中に存在する合計3つのP基のうち1つのみを除去することを見出した。ΔlptA-lpxE突然変異体由来のリピドAのMS/MSスペクトルは、リピドAの1及び4’の位置の両方にP基が存在することに一致する。更に、P基の除去は、ΔlptA-lpxE二重突然変異体にのみ、したがってリピドAのPEA置換が存在しない場合にのみ認められた。したがって、PEAが存在すると、lpxEがP基を除去するのを妨害する可能性がある。新規に記載されているLpxE酵素は、2つのリン酸基間の加水分解のみを触媒するピロホスファターゼである可能性が極めて高い。lptA遺伝子の欠損を通じてリピドA内にPEAが存在しなくなると、その結果、TLR4/MD-2活性が低下した。これは、LptA欠損株により刺激した際に、THP-1細胞によるTNFα放出の有意な低下を示すJohnらによるこれまでの観察所見と一致する(34)。ここでは、ペンタアシル化ΔlptA-pagL LPS又は全バクテリアで刺激したとき、活性の低下はより一層明白であることを、本発明者らは明らかにした。
興味深いことに、本発明者らの結果は、LpxL2の欠損により2’のC12脂肪のアシル鎖が存在しない場合、それに伴って単一のP基及びPEA基が除去されていることを示唆する。これは、質量分光分析前に行われ、リピドAからのP基の喪失を引き起こす可能性がある酸加水分解法によるリピドAの単離に起因してこれまで認められなかった(15)。本試験では、質量分光分析にとって有害な化学修飾を一切含めることなく完全なLPS分子を使用したので、リピドAの新たなリン酸化の変化を観察することが可能であった。
構築された弱毒化LPS構造のいくつかは、TLR4刺激を誘発するのにより高い濃度を必要としなかっただけでなく、親株について認められた活性化レベルも達成できなかった。これは、pagL LPSについて最も明白であった。この現象に対する理由は不明であるが、細胞内では安定であるが細胞表面では不安定なLPS-TLR4-MD2受容体複合体の二量化、及び/又は特定のLPSの濃度が高まった時のそれほど安定ではない二量化に起因すると考えられた。更に、特定のLPS種は、活性化をまったく示さず、またおそらくは拮抗的特性を有する可能性があり、したがってTLR4遮断薬として機能し得る。実際、髄膜炎菌ΔlpxL1及びpagLペンタアシル化LPSは、ヘキサアシル化野生型髄膜炎菌LPSと共に投与すると、TLR4応答を遮断することができる(13)。
本試験では、多岐にわたるTLR4活性及びサイトカインプロファイルを有する一連のLPS種を生成するのに、髄膜炎菌においてコンビナトリアル生物工学を使用した。このような構造の応用は、アジュバントとしてのワクチンへの組み込みから、LPSについて記載又は示唆されている様々な形態の免疫療法、例えばがん療法、アルツハイマー病、又は多様な感染症を予防するための一般的免疫刺激等におけるその使用まで非常に多岐にわたり得る(3、35~37)。
Figure 0007031933000006
Figure 0007031933000007

Figure 0007031933000008
Figure 0007031933000009
Figure 0007031933000010

Figure 0007031933000011

Figure 0007031933000012

Figure 0007031933000013

Figure 0007031933000014

Figure 0007031933000015

Figure 0007031933000016

Figure 0007031933000017

Figure 0007031933000018

Figure 0007031933000019

Figure 0007031933000020
Figure 0007031933000021

Figure 0007031933000022

Figure 0007031933000023

Figure 0007031933000024

Figure 0007031933000025

Figure 0007031933000026

Figure 0007031933000027

Figure 0007031933000028

Figure 0007031933000029
(参考文献)
1.Aderem, A., and Ulevitch, R. J. (2000)Toll-like receptors in the induction of the innate immune response. Nature 406,782-787
2.Loppnow, H., Brade, H., Durrbaum, I.,Dinarello, C. A., Kusumoto, S., Rietschel, E. T., and Flad, H. D. (1989) IL-1induction-capacity of defined lipopolysaccharide partial structures. Journal ofimmunology 142, 3229-3238
3.Zariri, A., and van der Ley, P. (2015)Biosynthetically engineered lipopolysaccharide as vaccine adjuvant. Expertreview of vaccines 14, 861-876
4.Akira, S., and Takeda, K. (2004)Toll-like receptor signalling. Nature reviews. Immunology 4, 499-511
5.Raetz, C. R., and Whitfield, C. (2002)Lipopolysaccharide endotoxins. Annual review of biochemistry 71, 635-700
6.Salomao, R., Brunialti, M. K., Rapozo, M.M., Baggio-Zappia, G. L., Galanos, C., and Freudenberg, M. (2012) Bacterialsensing, cell signalling, and modulation of the immune response during sepsis.Shock 38, 227-242
7.Park, B. S., Song, D. H., Kim, H. M.,Choi, B. S., Lee, H., and Lee, J. O. (2009) The structural basis oflipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458, 1191-1195
8.Raetz, C. R., Reynolds, C. M., Trent, M.S., and Bishop, R. E. (2007) Lipid A modification systems in gram-negativebacteria. Annual review of biochemistry 76, 295-329
9.Ohto, U., Fukase, K., Miyake, K., andShimizu, T. (2012) Structural basis of species-specific endotoxin sensing byinnate immune receptor TLR4/MD-2. Proceedings of the National Academy ofSciences of the United States of America 109, 7421-7426
10.Gandhapudi, S. K., Chilton, P. M., andMitchell, T. C. (2013) TRIF is required for TLR4 mediated adjuvant effects on Tcell clonal expansion. PloS one 8, e56855
11.Mata-Haro, V., Cekic, C., Martin, M.,Chilton, P. M., Casella, C. R., and Mitchell, T. C. (2007) The vaccine adjuvantmonophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 316, 1628-1632
12.Casella, C. R., and Mitchell, T. C.(2008) Putting endotoxin to work for us: monophosphoryl lipid A as a safe andeffective vaccine adjuvant. Cellular and molecular life sciences : CMLS 65,3231-3240
13.Pupo, E., Hamstra, H. J., Meiring, H.,and van der Ley, P. (2014) Lipopolysaccharide engineering in Neisseriameningitidis: structural analysis of different pentaacyl lipid A mutants andcomparison of their modified agonist properties. The Journal of biologicalchemistry 289, 8668-8680
14.Zughaier, S. M., Lindner, B., Howe, J.,Garidel, P., Koch, M. H., Brandenburg, K., and Stephens, D. S. (2007)Physicochemical characterization and biological activity oflipooligosaccharides and lipid A from Neisseria meningitidis. Journal ofendotoxin research 13, 343-357
15.van der Ley, P., Steeghs, L., Hamstra,H. J., ten Hove, J., Zomer, B., and van Alphen, L. (2001) Modification of lipidA biosynthesis in Neisseria meningitidis lpxL mutants: influence onlipopolysaccharide structure, toxicity, and adjuvant activity. Infection andimmunity 69, 5981-5990
16.van de Waterbeemd, B., Streefland, M.,van der Ley, P., Zomer, B., van Dijken, H., Martens, D., Wijffels, R., and vander Pol, L. (2010) Improved OMV vaccine against Neisseria meningitidis usinggenetically engineered strains and a detergent-free purification process.Vaccine 28, 4810-4816
17.Steeghs, L., Keestra, A. M., van Mourik,A., Uronen-Hansson, H., van der Ley, P., Callard, R., Klein, N., and vanPutten, J. P. (2008) Differential activation of human and mouse Toll-likereceptor 4 by the adjuvant candidate LpxL1 of Neisseria meningitidis. Infectionand immunity 76, 3801-3807
18.Geurtsen, J., Steeghs, L., Hamstra, H.J., Ten Hove, J., de Haan, A., Kuipers, B., Tommassen, J., and van der Ley, P.(2006) Expression of the lipopolysaccharide-modifying enzymes PagP and PagLmodulates the endotoxic activity of Bordetella pertussis. Infection andimmunity 74, 5574-5585
19.Westphal, O., and Jann, K. (1965)Bacterial lipopolysaccharides. Extraction with phenol-water and furtherapplications of the procedure. in Methods in Carbohydrate Chemistry (Whistler,R. L., and Wolfan, M. L. eds.), Academic Press, Inc., New York. pp 83-91
20.Karkhanis, Y. D., Zeltner, J. Y.,Jackson, J. J., and Carlo, D. J. (1978) A new and improved microassay todetermine 2-keto-3-deoxyoctonate in lipopolysaccharide of Gram-negativebacteria. Analytical biochemistry 85, 595-601
21.Tsai, C. M., and Frasch, C. E. (1982) Asensitive silver stain for detecting lipopolysaccharides in polyacrylamidegels. Analytical biochemistry 119, 115-119
22.Kondakov, A., and Lindner, B. (2005)Structural characterization of complex bacterial glycolipids by Fouriertransform mass spectrometry. European journal of mass spectrometry 11, 535-546
23.Wilm, M. S., and Mann, M. (1994)Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last? IntJ Mass Spectrom Ion Proc 136, 167-180
24.Domon, B., and Costello, C. E. (1988) ASystematic Nomenclature for Carbohydrate Fragmentations in FAB-MS/MS Spectra ofGlycoconjugates. Glycoconjugate J 5, 397-409
25.Pavliak, V., Brisson, J. R., Michon, F.,Uhrin, D., and Jennings, H. J. (1993) Structure of the sialylated L3lipopolysaccharide of Neisseria meningitidis. The Journal of biologicalchemistry 268, 14146-14152
26.van der Ley, P., Kramer, M., Martin, A.,Richards, J. C., and Poolman, J. T. (1997) Analysis of the icsBA locus requiredfor biosynthesis of the inner core region from Neisseria meningitidislipopolysaccharide. FEMS microbiology letters 146, 247-253
27.Carty, S. M., Sreekumar, K. R., andRaetz, C. R. (1999) Effect of cold shock on lipid A biosynthesis in Escherichiacoli. Induction At 12 degrees C of an acyltransferase specific forpalmitoleoyl-acyl carrier protein. The Journal of biological chemistry 274,9677-9685
28.Golenbock, D. T., Hampton, R. Y.,Qureshi, N., Takayama, K., and Raetz, C. R. (1991) Lipid A-like molecules thatantagonize the effects of endotoxins on human monocytes. The Journal ofbiological chemistry 266, 19490-19498
29.Findlow, J., Borrow, R., Snape, M. D.,Dawson, T., Holland, A., John, T. M., Evans, A., Telford, K. L., Ypma, E.,Toneatto, D., Oster, P., Miller, E., and Pollard, A. J. (2010) Multicenter,open-label, randomized phase II controlled trial of an investigationalrecombinant Meningococcal serogroup B vaccine with and without outer membranevesicles, administered in infancy. Clinical infectious diseases : an officialpublication of the Infectious Diseases Society of America 51, 1127-1137
30.Snape, M. D., Dawson, T., Oster, P.,Evans, A., John, T. M., Ohene-Kena, B., Findlow, J., Yu, L. M., Borrow, R.,Ypma, E., Toneatto, D., and Pollard, A. J. (2010) Immunogenicity of twoinvestigational serogroup B meningococcal vaccines in the first year of life: arandomized comparative trial. The Pediatric infectious disease journal 29,e71-79
31.Keiser, P. B., Biggs-Cicatelli, S.,Moran, E. E., Schmiel, D. H., Pinto, V. B., Burden, R. E., Miller, L. B., Moon,J. E., Bowden, R. A., Cummings, J. F., and Zollinger, W. D. (2011) A phase 1study of a meningococcal native outer membrane vesicle vaccine made from agroup B strain with deleted lpxL1 and synX, over-expressed factor H bindingprotein, two PorAs and stabilized OpcA expression. Vaccine 29, 1413-1420
32.Needham, B. D., Carroll, S. M., Giles,D. K., Georgiou, G., Whiteley, M., and Trent, M. S. (2013) Modulating theinnate immune response by combinatorial engineering of endotoxin. Proceedingsof the National Academy of Sciences of the United States of America 110,1464-1469
33.Wang, X., Karbarz, M. J., McGrath, S.C., Cotter, R. J., and Raetz, C. R. (2004) MsbA transporter-dependent lipid A1-dephosphorylation on the periplasmic surface of the inner membrane:topography of francisella novicida LpxE expressed in Escherichia coli. TheJournal of biological chemistry 279, 49470-49478
34.John, C. M., Liu, M., Phillips, N. J.,Yang, Z., Funk, C. R., Zimmerman, L. I., Griffiss, J. M., Stein, D. C., andJarvis, G. A. (2012) Lack of lipid A pyrophosphorylation and functional lptAreduces inflammation by Neisseria commensals. Infection and immunity 80,4014-4026
35.Michaud, J. P., Halle, M., Lampron, A.,Theriault, P., Prefontaine, P., Filali, M., Tribout-Jover, P., Lanteigne, A.M., Jodoin, R., Cluff, C., Brichard, V., Palmantier, R., Pilorget, A.,Larocque, D., and Rivest, S. (2013) Toll-like receptor 4 stimulation with thedetoxified ligand monophosphoryl lipid A improves Alzheimer's disease-relatedpathology. Proceedings of the National Academy of Sciences of the United Statesof America 110, 1941-1946
36.Peri, F., and Piazza, M. (2012)Therapeutic targeting of innate immunity with Toll-like receptor 4 (TLR4)antagonists. Biotechnology advances 30, 251-260
37.Adams, S. (2009) Toll-like receptoragonists in cancer therapy. Immunotherapy 1, 949-964

Claims (34)

  1. テトラアシル化リピドA部分を有するナイセリアLPSであって、前記テトラアシル化リピドA部分が、野生型ナイセリアLPSのリピドA部分と比較して、二次アシル鎖のうちの1つを欠いており、且つリピドA部分の還元末端にあるグルコサミンの3位の一次アシル鎖を欠いている、という点において改変されているナイセリアLPS。
  2. 前記テトラアシル化リピドA部分を除き、LPSが、髄膜炎菌(Neisseria meningitidis)、淋菌(Neisseria gonorrhoeae)、又はナイセリア・ラクタミカ(Neisseria lactamica)のLPSの構造を有する、請求項1に記載のナイセリアLPS。
  3. 前記髄膜炎菌、淋菌、又はナイセリア・ラクタミカが、lgtB及びgalEのうちの少なくとも1つである、請求項2に記載のナイセリアLPS。
  4. 前記髄膜炎菌が、血清群B及び免疫型L3のうちの少なくとも1つである、請求項2又は3に記載のナイセリアLPS。
  5. 前記テトラアシル化リピドA部分が、式(I)又は(II):
    Figure 0007031933000030

    Figure 0007031933000031

    の構造を有し、
    式中、R及びRは、独立に-P(O)(OH)、-[P(O)(OH)-O]-H、-[P(O)(OH)-O]-CHCHNH、-[P(O)(OH)-O]-CHCHNH、-[P(O)(OH)-O]-H、又は-P(O)(OH)-O-CHCHNHである、請求項1~4のいずれか一項に記載のナイセリアLPS。
  6. 前記リピドA部分が、前記リピドA部分の非還元末端にあるグルコサミンに連結した一次アシル鎖に結合した二次アシル鎖を欠いている、又は前記リピドA部分が、式(I)の構造を有する、請求項1~5のいずれか一項に記載のナイセリアLPS。
  7. ナイセリア属の遺伝的に改変されたバクテリアであって、
    a)内因性lpxL1遺伝子又は内因性lpxL2遺伝子によりコードされるリピドA生合成ラウロイルアシルトランスフェラーゼの活性を取り除く遺伝的改変と、
    b)前記バクテリアに、リピドA 3-O-デアシラーゼ活性を付与する遺伝的改変と
    を含み
    前記バクテリアに、リピドA 3-O-デアシラーゼ活性を付与する遺伝的改変が、配列番号8~17のうちの少なくとも1つと、少なくとも90%のアミノ酸配列同一性を有するPagLリピドA 3-O-デアシラーゼをコードするヌクレオチド配列を有する異種pagL遺伝子の発現を導入する遺伝的改変である、遺伝的に改変されたバクテリア。
  8. 遺伝的に改変された髄膜炎菌、淋菌、又はナイセリア・ラクタミカである、請求項7に記載の遺伝的に改変されたバクテリア。
  9. 前記内因性lpxL1遺伝子が、配列番号1~3のうちの少なくとも1つと、少なくとも90%の配列同一性を有するアミノ酸配列を有するLpxL1タンパク質をコードする遺伝子である、又は前記内因性lpxL2遺伝子が、配列番号4~7のうちの少なくとも1つと、少なくとも90%の配列同一性を有するアミノ酸配列を有するLpxL2タンパク質をコードする遺伝子である、請求項7又は8に記載の遺伝的に改変されたバクテリア。
  10. 異種抗原を発現するように更に遺伝的に改変されている、請求項7~のいずれか一項に記載の遺伝的に改変されたバクテリア。
  11. 前記異種抗原が、前記バクテリアの細胞外外膜表面において発現している、請求項1に記載の遺伝的に改変されたバクテリア。
  12. 内因性lgtB遺伝子及び内因性galE遺伝子のうちの少なくとも1つの発現を低下させる、又は取り除く遺伝的改変を有する、請求項7~11のいずれか一項に記載の遺伝的に改変されたバクテリア。
  13. 髄膜炎菌の血清群B、免疫型L3である、請求項7~12のいずれか一項に記載の遺伝的に改変されたバクテリア。
  14. 髄膜炎菌株H44/76又はその派生株である、請求項7~13のいずれか一項に記載の遺伝的に改変されたバクテリア。
  15. LPSが、請求項7~14のいずれか一項に記載の遺伝的に改変されたバクテリアから取得可能である、請求項1~6のいずれか一項に記載のナイセリアLPS。
  16. 請求項1~6及び15のいずれか一項に記載のナイセリアLPSを含むOMV。
  17. 請求項7~14のいずれか一項に記載のバクテリアから取得可能である、請求項1に記載のOMV。
  18. 請求項1~17のいずれか一項に記載のナイセリアLPS、遺伝的に改変されたバクテリア、及びOMVのうちの少なくとも1つを含む組成物。
  19. 薬学的に許容される添加剤を更に含む医薬組成物である、請求項18に記載の組成物。
  20. 請求項1~6及び15のいずれか一項に記載のナイセリアLPS、又は請求項1若しくは1に記載のOMVを含む無細胞ワクチンである、請求項1又は19に記載の組成物。
  21. 請求項7~1のいずれか一項に記載のバクテリアを含む全細胞ワクチンである、請求項1又は19に記載の組成物。
  22. 少なくとも1つの非ナイセリア抗原を更に含む、請求項2又は2に記載の組成物。
  23. 請求項1~6及び1のいずれか一項に記載のナイセリアLPSを製造する方法であって、
    a)請求項7~1のいずれか一項に記載のバクテリアを培養するステップと、
    b)任意選択で、LPSを、抽出するステップ及び精製するステップのうちの少なくとも1つのステップと
    を含む方法。
  24. 請求項1又は1に記載のOMVを製造する方法であって、
    a)請求項7~1のいずれか一項に記載のバクテリアを培養するステップと、
    b)任意選択で、前記OMVを抽出するステップと、
    c)前記OMVを回収するステップであって、前記OMVから前記バクテリアを除去することを少なくとも含むステップと
    を含む方法。
  25. 界面活性剤フリー法である、請求項2に記載の方法。
  26. 請求項2に記載の無細胞ワクチンを製造する方法であって、
    a)
    i)請求項2に記載の方法において、請求項1~6及び1のいずれか一項に記載のナイセリアLPS、及び
    ii)請求項2又は2に記載の方法において、請求項1又は1に記載のOMV
    のうちの少なくとも1つを製造するステップと、
    b)前記ナイセリアLPS及び前記OMVのうちの少なくとも1つを、任意選択で更なるワクチン成分と共に、ワクチン製剤に製剤化するステップと
    を含む方法。
  27. 請求項2に記載の全細胞ワクチンを製造する方法であって、
    i)請求項7~1のいずれか一項に記載のバクテリアを培養するステップと、
    ii)任意選択で、前記バクテリアを不活性するステップ、及びワクチンに製剤化するステップのうちの少なくとも1つのステップと
    を含む方法。
  28. 医薬として使用されるための、請求項1~2のいずれか一項に記載の組成物。
  29. 対象において、免疫応答を誘発又は刺激するステップを含む処置で使用されるための、請求項1~6及び1のいずれか一項に記載のナイセリアLPSを含む組成物。
  30. ナイセリアLPSがアジュバントとして用いられる、請求項2に記載の組成物。
  31. 前記処置が、ナイセリアLPSと共に抗原を投与することを更に含み、及び前記処置が、前記抗原と関連した感染性疾患又は腫瘍を予防又は治療するためである、請求項29に記載の組成物。
  32. 免疫療法において、Toll様受容体4(TLR4)作動薬として使用するための、請求項1~6及び1のいずれか一項に記載のナイセリアLPSを含む組成物。
  33. 前記免疫療法が、がん又は神経変性疾患の免疫療法である、請求項3に記載の組成物。
  34. 前記免疫療法が、多様な微生物感染症の伝播を予防及び/若しくは低減するため、並びに/又はバクテリアの増殖を抑制するための一般的免疫刺激を含む、請求項3に記載の組成物。

JP2018538629A 2016-01-28 2017-01-27 改変されたテトラアシル化ナイセリアlps Active JP7031933B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL2016169 2016-01-28
NL2016169 2016-01-28
PCT/EP2017/051786 WO2017129752A1 (en) 2016-01-28 2017-01-27 Modified tetra-acylated neisserial lps

Publications (2)

Publication Number Publication Date
JP2019503423A JP2019503423A (ja) 2019-02-07
JP7031933B2 true JP7031933B2 (ja) 2022-03-08

Family

ID=56084311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018538629A Active JP7031933B2 (ja) 2016-01-28 2017-01-27 改変されたテトラアシル化ナイセリアlps

Country Status (9)

Country Link
US (1) US11389520B2 (ja)
EP (1) EP3408274A1 (ja)
JP (1) JP7031933B2 (ja)
KR (1) KR20180103167A (ja)
CN (1) CN109071586B (ja)
AU (1) AU2017211975B2 (ja)
BR (1) BR112018015240A2 (ja)
CA (1) CA3011282A1 (ja)
WO (1) WO2017129752A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202216169A (zh) * 2020-10-27 2022-05-01 星聚樊生物科技有限公司 低醯化脂多醣用於抗氧化及預防/治療疾病的用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013006055A1 (en) 2011-07-07 2013-01-10 De Staat Der Nederlanden, Vert. Door De Minister Van Vws A process for detergent-free production of outer membrane vesicles
WO2014196887A1 (ru) 2013-06-04 2014-12-11 Aparin Petr Gennadievich Модифицированный липополисахарид эндотоксичных бактерий (варианты), комбинация модифицированных липополисахаридов (варианты) и включающие их вакцина (варианты) и фармацевтическая композиция (варианты)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0323103D0 (en) * 2003-10-02 2003-11-05 Chiron Srl De-acetylated saccharides
CN101203605B (zh) * 2004-12-17 2016-01-27 由卫生福利和体育大臣代表的荷兰王国 革兰氏阴性菌的lps的脱酰基化

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013006055A1 (en) 2011-07-07 2013-01-10 De Staat Der Nederlanden, Vert. Door De Minister Van Vws A process for detergent-free production of outer membrane vesicles
WO2014196887A1 (ru) 2013-06-04 2014-12-11 Aparin Petr Gennadievich Модифицированный липополисахарид эндотоксичных бактерий (варианты), комбинация модифицированных липополисахаридов (варианты) и включающие их вакцина (варианты) и фармацевтическая композиция (варианты)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Li, Y. et al.,"Influence of lipid A acylation pattern on membrane permeability and innate immune stimulation",Mar. Drugs.,2013年,Vol. 11,pp. 3197-3208
Pupo, E. et al.,"Lipopolysaccharide engineering in Neisseria meningitidis: structural analysis of different pentaacyl lipid A mutants and comparison of their modified agonist properties",J. Biol. Chem.,2014年,Vol. 289,pp. 8668-8680

Also Published As

Publication number Publication date
AU2017211975B2 (en) 2021-03-25
KR20180103167A (ko) 2018-09-18
WO2017129752A1 (en) 2017-08-03
AU2017211975A1 (en) 2018-07-26
EP3408274A1 (en) 2018-12-05
CN109071586A (zh) 2018-12-21
JP2019503423A (ja) 2019-02-07
CA3011282A1 (en) 2017-08-03
CN109071586B (zh) 2022-10-28
US11389520B2 (en) 2022-07-19
BR112018015240A2 (pt) 2018-12-18
US20210308246A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US20220281907A1 (en) Modified hexa-acylated neisserial LPS
US11040010B2 (en) Surface display of antigens on Gram-negative outer membrane vesicles
Reintjens et al. Self-adjuvanting cancer vaccines from conjugation-ready lipid A analogues and synthetic long peptides
KR20160127104A (ko) 변형된 수막구균 fhbp 폴리펩티드
KR20170023191A (ko) 변형된 수막구균 fhbp 폴리펩티드
US20200085933A1 (en) Bordetella vaccines comprising LPS with reduced reactogenicity
KR20160034401A (ko) 비-천연적으로 발생하는 인자 h 결합 단백질(fhbp) 및 이의 사용 방법
JP7031933B2 (ja) 改変されたテトラアシル化ナイセリアlps
US11078257B2 (en) Recombinant gram negative bacteria and methods of generating and utilizing same
WO2023170095A1 (en) Immunogenic compositions

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190918

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20211201

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211221

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220217

R150 Certificate of patent or registration of utility model

Ref document number: 7031933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150