US20070191506A1 - Curable compositions for optical articles - Google Patents

Curable compositions for optical articles Download PDF

Info

Publication number
US20070191506A1
US20070191506A1 US11/276,068 US27606806A US2007191506A1 US 20070191506 A1 US20070191506 A1 US 20070191506A1 US 27606806 A US27606806 A US 27606806A US 2007191506 A1 US2007191506 A1 US 2007191506A1
Authority
US
United States
Prior art keywords
composition
weight
parts
meth
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/276,068
Other languages
English (en)
Inventor
Ying-Yuh Lu
Jianhui Xia
Peter Olofson
Ming Cheng
Mark Ellis
Babu Gaddam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US11/276,068 priority Critical patent/US20070191506A1/en
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XIA, JIANHUI, CHENG, MING, ELLIS, MARK F., GADDAM, BABU N., LU, YING-YUH, OLOFSON, PETER M.
Priority to JP2008554263A priority patent/JP5378805B2/ja
Priority to US12/279,236 priority patent/US7767728B2/en
Priority to KR1020087019719A priority patent/KR101411153B1/ko
Priority to PCT/US2007/002397 priority patent/WO2007094953A2/en
Priority to EP07717108A priority patent/EP2013004B1/en
Priority to CN2007800053420A priority patent/CN101495519B/zh
Priority to AT07717108T priority patent/ATE537194T1/de
Publication of US20070191506A1 publication Critical patent/US20070191506A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/061Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/003Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition

Definitions

  • the present invention provides curable compositions containing (meth)acryloyl oligomers that are readily polymerized to produce optical articles and coatings.
  • Optical materials and optical products are useful to control the flow and intensity of light.
  • useful optical products include optical lenses such as Fresnel lenses, prisms, optical light fibers, light pipes, optical films including totally internal reflecting films, retroreflective sheeting, and microreplicated products such as brightness enhancement films and security products. Examples of some of these products are described in U.S. Pat. Nos. 4,542,449, 5,175,030, 5,591,527, 5,394,255, among others.
  • Polymeric materials have found a variety of uses in optical articles and are widely used in place of such articles made from ground glass because the former are light in weight and inexpensive to produce.
  • Polycarbonates for example, are characterized by excellent clarity, resistance to discoloration, high strength, and high impact resistance.
  • thermal polymerization of monomers to form polymers is generally accompanied by high shrinkage during cure (e.g., from 11 to 20%) and extended curing time (e.g., from 5 to 16 hours or more).
  • the high shrinkage levels create difficulties in the production of precision optics (such as lenses or prisms) from this material, particularly in the production of articles having larger thicknesses or large differences in thickness between the center and edges of the article.
  • the extended cure times tie up production facilities and lead to inefficient utilization of the dies in which the articles are molded.
  • the thermal cure cycle used to polymerize the monomer consumes large amounts of energy and undesirably thermally stresses the dies.
  • Optical products can be prepared from high index of refraction materials, including monomers such as high index of refraction (meth)acrylate monomers, halogenated monomers, etc., and other such high index of refraction monomers that are known in the optical product art. See, e.g., U.S. Pat. Nos. 4,568,445, 4,721,377, 4,812,032, and 5,424,339. Some of these polymers may be advantageously injection molded, but such molding operations lead to high birefringence in the resulting article, and a subsequent annealing step may be required. Further, poly(methyl methacrylate) polymers tend to be moisture sensitive, and will swell on exposure to moisture or humidity, further leading to birefringence.
  • monomers such as high index of refraction (meth)acrylate monomers, halogenated monomers, etc.
  • other such high index of refraction monomers that are known in the optical product art. See, e.g., U.S. Pat.
  • optical coatings which are generally less than two mils (50.8 micrometers) thick. They fail to describe if those compositions would have a desired balance of useful properties such as low polymerization shrinkage, low viscosity, absence of coloration, high hardness, resistance to stress cracking, moisture or humidity sensitivity and low birefringence necessary in the production of precision optical components such as lenses, including Fresnel lenses, and prisms. Additionally, they fail to teach how to obtain resins providing the desired balance of properties that are useful for providing cast precision optical articles. Moreover, many of the polymeric compositions generally have too high a viscosity to be useful for optical casting purposes.
  • the present invention includes a curable composition
  • a curable composition comprising a (meth)acryloyl oligomer having a plurality of pendent, ethylenically unsaturated, free-radically polymerizable functional groups, and having a T g ⁇ 20° C. (preferably having a T g ⁇ 50° C.); a free-radically polymerizable crosslinking agent and/or a diluent monomer; and a photoinitiator.
  • the composition when cured, is non-yellowing, exhibits low shrinkage and low birefringence and low sensitivity to moisture, making it suitable for many optical applications including, but not limited to optical lenses, optical fibers, prisms, diffractive lenses, microlenses, microlens arrays, Fresnel lenses, light guides, and optical films and coatings.
  • the composition is low viscosity so that it may be used as an optical adhesive and in conventional molding operations, and build molecular weight by a chain-growth addition process. Further, articles may be prepared by cast and cured processes and thereby avoids birefringence induced by injection molding processes.
  • curable systems containing a significant amount of solvent, monomers and reactive diluents can give rise to a significant increase in density when transformed from the uncured to the cured state causing a net shrinkage in volume.
  • shrinkage can cause unpredictable registration in precise molding operations such as those required in manufacture of optical elements such as lenses.
  • Shrinkage can also create residual stress in such optical articles, which can subsequently lead to optical defects, including high birefringence.
  • the present invention also provides shaped articles, including optical articles, and a method for preparing the same comprising, in one embodiment, the steps of:
  • the present invention addresses the needs of the industry by providing a rapid cure, solvent free, curable composition, to produce thick precision optics such as optical lenses, light guides, prisms, etc., with low birefringence for applications in electronic displays, cameras, binoculars, fax machines, bar code scanners, and optical communication devices.
  • the present invention is especially useful in preparing prisms such as those used in polarizing beam splitters (PBS's) used in optical imager systems and optical reader systems.
  • PBS's polarizing beam splitters
  • optical imager system as used herein is meant to include a wide variety of optical systems that produce an image for a viewer to view.
  • Optical imager systems of the present invention may be used, for example, in front and rear projection systems, projection displays, head-mounted displays, virtual viewers, heads-up displays, optical computing systems, optical correlation systems, and other optical viewing and display systems.
  • a PBS is an optical component that splits incident light rays into a first polarization component and a second polarization component.
  • Traditional PBS's function based on the plane of incidence of the light, that is, a plane defined by the incident light ray and a normal to the polarizing surface.
  • the plane of incidence also is referred to as the reflection plane, defined by the reflected light ray and a normal to the reflecting surface.
  • light has been described as having two polarization components, a p- and an s-component.
  • the p-component corresponds to light polarized in the plane of incidence.
  • the s-component corresponds to light polarized perpendicular to the plane of incidence.
  • a low f/# system is desirable (see, F. E. Doany et al., Projection display throughput; Efficiency of optical transmission and light-source collection, IBM J. Res. Develop. V42, May/July 1998, pp. 387-398).
  • the f /# (or F ) measures the size of the cone of light that may be used to illuminate an optical element. The lower the f/#, the faster the lens and the larger the cone of light that may be used with that optical element.
  • a larger cone of light generally translates to higher light throughput. Accordingly, a faster (lower f/#) illumination system requires a PBS able to accept light rays having a wider range of incident angles.
  • the transmitted beam portion becomes preferentially (but not completely) polarized in the plane parallel to the plane of incidence.
  • a MacNeille polarizer is constructed from multiple layers of thin films of materials meeting the Brewster angle condition for the desired angle. The film thicknesses are chosen such that the film layer pairs form a quarter wave stack.
  • MacNeille PBS's are contained in glass cubes, wherein a PBS thin-film stack is applied along a diagonal plane of the cube.
  • the PBS may be constructed so that light incident normal to the face of the cube is incident at the Brewster angle of the PBS.
  • the use of cubes gives rise to certain disadvantages, principally associated with the generation of thermal stress-induced birefringence that degrades the polarization performance of the component. Even expensive pre-annealed cubes may suffer from this difficulty. Also cubes add significant weight to a compact system.
  • MacNeille-type PBS's reportedly have been developed capable of discrimination between s- and p-polarized light at f/#'s as low as f/2.5, while providing extinction levels in excess of 100:1 between incident beams of pure s- or pure p- polarization.
  • the contrast is degraded due to depolarization of rays of light having a reflection plane rotated relative to the reflection plane of the principal ray.
  • depolarization is meant to describe the deviation of the polarization state of a light ray from that of the principal light ray.
  • Actinic radiation means photochemically active radiation and particle beams. Actinic radiation includes, but is not limited to, accelerated particles, for example, electron beams; and electromagnetic radiation; for example, microwaves, infrared radiation, visible light, ultraviolet light, X-rays, and gamma-rays. The radiation can be monochromatic or polychromatic, coherent or incoherent, and should be sufficiently intense to generate substantial numbers of free radicals in the actinic radiation curable compositions.
  • (Meth)acryloyl groups means both acryloyl and methacryloyl groups, and includes acrylate, methacrylate, acrylamide and methacrylamide groups.
  • Ethylenically unsaturated groups include, but are not limited to, vinyl, vinyloxy, (meth)acryloyl and the like.
  • Melt processible is used to refer to oligomer compositions that possess or achieve a suitable low viscosity for coating or molding at temperatures less than or equal to 100° C., using conventional molding or coating equipment.
  • Photocuring and “photopolymerization” are used interchangeably in this application to indicate an actinic radiation induced chemical reaction in which relatively simple molecules combine to form a chain or net-like macromolecule.
  • 100% solids means a composition free of unreactive species, such as solvents.
  • Transmittance of radiant energy refers to the passage of radiant energy through a material.
  • Transparency may be considered as a degree of regular transmission, and thus the property of a material by which objects may be seen through a sheet thereof.
  • a transparent material transmits light without significant diffusion or scattering.
  • FIGS. 1 and 2 are schematics of a process of the invention.
  • the present invention provides curable materials comprising one or more (meth)acryloyl oligomers having a plurality of pendent, free-radically polymerizable functional groups, and having a T g ⁇ 20° C. (preferably a T g ⁇ 50° C.); a free-radically polymerizable crosslinking agent and/or a diluent monomer, and a photoinitiator.
  • the present invention provides curable materials with low shrinkage, residual stress and birefringence that is optically clear and non-yellowing for applications in precision optics and electronic displays.
  • the composition of the present invention minimizes shrinkage and birefringence due to optimum molecular weight of the (meth)acryloyl oligomer and loading of the crosslinker and/or reactive diluent.
  • the low shrinkage compositions of this invention are particularly useful in molding applications or in any applications where accurate molding and/or registration is required.
  • the present invention provides new compositions that may be formulated as 100% solids, cured by free-radical means and that exhibit properties that meet or exceed those of the art.
  • the present invention provides compositions that exhibit less than 5% shrinkage, and preferably less than 3%.
  • the compositions are low in viscosity and suitable for molding processes, including precision molding processes.
  • compositions generally have a viscosity less than 20,000 centipoise, less than 15,000 centipoise, or less than 10,000 centipoise at application temperatures of 100° C. or less.
  • compositions generally have a viscosity of at least 100 centipoise, or at least 500 centipoise at temperatures of 100° C. or less.
  • the articles of the invention may have a thickness greater than about 0.5 millimeters, generally a birefringence (absolute) of less than 1 ⁇ 10 ⁇ 6 , light transmission greater than about 85%, preferably greater than 90%, and a CIELAB b* less than about 1.5 units, preferably less than about 1.0 unit for samples with thickness of 4.8 millimeters.
  • composition generally comprises:
  • 0.001 to 5 parts be weight, preferably 0. 001 to 1, most preferably 0.01 to 0.1 parts of a photoinitiator, based on 100 parts by weight of oligomer and crosslinking agent and/or reactive diluent monomer.
  • the crosslinking agent comprises 1 to 40 parts by weight, preferably 1 to 30 parts by weight, and most preferably 1 to 20 parts by weight. In some embodiments, the reactive diluent comprises less than 25 parts by weight, preferably less than 15 parts by weight and most preferably less than 10 parts by weight.
  • the oligomer generally comprises polymerized monomer units comprising:
  • the first component oligomer comprises one or more high T g monomers, which if homopolymerized, yield a polymer having a T g >20° C., preferably >50° C.
  • Preferred high T g monomers are monofunctional (meth)acrylate esters of mono- and bicyclic aliphatic alcohols having at least 6 carbon atoms, and of aromatic alcohols. Both the cycloaliphatic and aromatic groups may be substituted, for example, by C 1-6 alkyl, halogen, sulfur, cyano, and the like.
  • high T g monomers include 3,5-dimethyladamantyl(meth)acrylate; isobornyl(meth)acrylate; 4-biphenyl(meth)acrylate; phenyl(meth)acrylate; benzyl methacrylate; and 2-naphthyl(meth)acrylate; dicyclopentadienyl (meth)acrylate.
  • Mixtures of high T g monomers may also be used.
  • Providing the monomer can be polymerized with the rest of the monomers that comprise the (meth)acrylate monomers, any high T g monomer including styrene, vinylesters and the like, can be used.
  • the high T g monomer is typically an acrylate or methacrylate ester.
  • Other high T g monomers include C 1 -C 20 alkyl(meth)acrylates such as methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl(meth)acrylate, stearyl methacrylate, cyclohexyl methacrylate, 3,3,5-trimethylcyclohexyl methacrylate, tetrahydrofurfuryl methacrylate, allyl methacrylate, bromoethyl methacrylate; styrene; vinyl toluene; vinyl esters such as vinyl propionate, vinyl acetate, vinyl pivalate, and vinyl neononanoate; acrylamides such as N,N-dimethyl acrylamide, N,N-diethyl acrylamide, N-isopropyl acrylamide, N-octyl acrylamide, and N
  • Most preferred high T g monomers are selected from linear, branched, cyclo, and bridged cycloaliphatic(meth)acrylates, such as isobornyl(meth)acrylate, cyclohexyl methacrylate, 3,3,5-trimethylcyclohexyl methacrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl(meth)acrylate, stearyl methacrylate, and mixtures thereof, for their environmental (heat and light) stability.
  • cycloaliphatic(meth)acrylates such as isobornyl(meth)acrylate, cyclohexyl methacrylate, 3,3,5-trimethylcyclohexyl methacrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-but
  • the first component oligomer of the composition comprises one or more pendent groups that include free-radically polymerizable unsaturation.
  • Preferred pendent unsaturated groups include (meth)acryloyl, including (meth)acryloxy, and (meth)acrylamido.
  • Such pendent groups can be incorporated into the polymer in at least two ways. The most direct method is to include among the monomer units of ethylene di(meth)acrylate, 1,6-hexanediol diacrylate (HDDA), or bisphenol-A di(meth)acrylate.
  • Useful polyunsaturated monomers include allyl, propargyl, and crotyl(meth)acrylates, trimethylolpropane triacrylate, pentaerythritol triacrylate, and allyl 2-acrylamido-2,2-dimethylacetate.
  • useful functional monomers include those unsaturated aliphatic, cycloaliphatic, and aromatic compounds having up to about 36 carbon atoms that include a functional group capable of free radical addition such as those groups containing a carbon-carbon double bond including vinyl, vinyloxy, (meth)acrylate, (meth)acrylamido, and acetylenic functional groups.
  • polyethylenically unsaturated monomers examples include, but are not limited to, polyacrylic-functional monomers such as ethylene glycol diacrylate, propylene glycol dimethacrylate, trimethylolpropane triacrylate, 1,6-hexamethylenedioldiacrylate, pentaerythritol di-, tri-, and tetraacrylate, and 1,12-dodecanedioldiacrylate; olefinic-acrylic-functional monomers such as allyl methacrylate, 2-allyloxycarbonylamidoethyl methacrylate, and 2-allylaminoethyl acrylate; allyl 2-acrylamido-2,2-dimethylacetate; divinylbenzene; vinyloxy group-substituted functional monomers such as 2-(ethenyloxy)ethyl(meth)acrylate, 3-(ethynyloxy)-1-propene, 4-(ethynyloxy)
  • Preferred polyunsaturated monomers are those where the unsaturated groups are of unequal reactivity.
  • the particular moieties attached to the unsaturated groups affect the relative reactivities of those unsaturated groups.
  • a polyunsaturated monomer having unsaturated groups of equal reactivity e.g., HDDA
  • premature gellation of the composition must be guarded against by, for example, the presence of oxygen, which acts as a radical scavenger.
  • the more reactive group such as (meth)acrylate as (meth)acrylamido
  • the less reactive unsaturated group such as vinyl, allyl, vinyloxy, or acetylenic
  • An indirect, but preferred, method of incorporating pendent groups that comprise polymerizable unsaturation into the first polymer is to include among the monomer units of the polymer some that comprise a reactive functional group.
  • Useful reactive functional groups include, but are not limited to, hydroxyl, amino (especially secondary amino), oxazolonyl, oxazolinyl, acetoacetyl, carboxyl, isocyanato, epoxy, aziridinyl, acyl halide, and cyclic anhydride groups. Preferred among these are carboxyl, hydroxyl and aziridinyl groups.
  • These pendent reactive functional groups are reacted with unsaturated compounds that comprise functional groups that are co-reactive with the reactive pendent functional group. When the two functional groups react, an oligomer with pendent unsaturation results.
  • useful reactive functional groups include hydroxyl, secondary amino, oxazolinyl, oxazolonyl, acetyl, acetonyl, carboxyl, isocyanato, epoxy, aziridinyl, acyl halide, vinyloxy, and cyclic anhydride groups.
  • the pendent reactive functional group is an isocyanato functional group
  • the co-reactive functional group preferably comprises a secondary amino or hydroxyl group.
  • the co-reactive functional group preferably comprises a carboxyl, isocyanato, epoxy, anhydride, or oxazolinyl group.
  • the co-reactive functional group preferably comprises a hydroxyl, amino, epoxy, isocyanate, or oxazolinyl group.
  • the reaction is between nucleophilic and electrophilic functional groups that react by a displacement or condensation mechanism.
  • useful co-reactive compounds include hydroxyalkyl(meth)acrylates such as 2-hydroxyethyl(meth)acrylate, 4-hydroxybutyl(meth)acrylate, and 2-(2-hydroxyethoxy)ethyl(meth)acrylate; aminoalkyl(meth)acrylates such as 3-aminopropyl(meth)acrylate and 4-aminostyrene; oxazolinyl compounds such as 2-ethenyl-1,3-oxazolin-5-one and 2-propenyl-4,4-dimethyl-1,3-oxazolin-5-one; carboxy-substituted compounds such as (meth)acrylic acid and 4-carboxybenzyl(meth)acrylate; isocyanato-substituted compounds such as isocyanatoethyl(meth)acrylate and 4-isocyanatocyclohexyl(meth)acrylate; epoxy-substituted compounds such as glycidyl
  • Preferred functional monomers have the general formula wherein R 1 is hydrogen, a C 1 to C 4 alkyl group, or a phenyl group, preferably hydrogen or a methyl group; R 2 is a single bond or a divalent linking group that joins an ethylenically unsaturated group to polymerizable or reactive functional group A and preferably contains up to 34, preferably up to 18, more preferably up to 10, carbon and, optionally, oxygen and nitrogen atoms and, when R 2 is not a single bond, is preferably selected from wherein R 3 is an alkylene group having 1 to 6 carbon atoms, a 5- or 6-membered cycloalkylene group having 5 to 10 carbon atoms, or an alkylene-oxyalkylene in which each alkylene includes 1 to 6 carbon atoms or is a divalent aromatic group having 6 to 16 carbon atoms; and A is a functional group, capable of free-radical addition to carbon-carbon double bonds, or a reactive functional group capable of reacting with a co
  • the ethylenically-unsaturated monomer possessing a free-radically polymerizable group is chosen such that it is free-radically polymerizable with the crosslinking agent and reactive diluent.
  • the reactions between functional groups provide a crosslink by forming a covalent bond by free-radical addition reactions of ethylenically-unsaturated groups between components.
  • the pendent functional groups react by an addition reaction in which no by-product molecules are created, and the exemplified reaction partners react by this preferred mode.
  • the curable composition is to be processed using high temperatures and the direct method of including pendent unsaturation has been used, care must be taken not to activate those pendent groups and cause premature gelation.
  • hot-melt processing temperatures can be kept relatively low and polymerization inhibitors can be added to the mixture. Accordingly, where heat is to be used to process the composition, the above-described indirect method is the preferred way of incorporating the pendent unsaturated groups.
  • the oligomer may optionally further comprise lower T g alkyl(meth)acrylate esters or amides that may be homopolymerized to polymers having a T g of less than 20° C.
  • Alkyl(meth)acrylate ester monomers useful in the invention include straight-chain, cyclic, and branched-chain isomers of alkyl esters containing C 1 -C 20 alkyl groups. Due to T g and side chain crystallinity considerations, preferred lower T g alkyl(meth)acrylate esters are those having from C 1 -C 8 alkyl groups.
  • alkyl(meth)acrylate esters include: methyl acrylate, ethyl acrylate, n-propyl acrylate, butyl acrylate, iso-amyl(meth)acrylate, n-hexyl(meth)acrylate, n-heptyl(meth)acrylate, n-octyl(meth)acrylate, iso-octyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, iso-nonyl(meth)acrylate, and decyl(meth)acrylate.
  • Most preferred (meth)acrylate esters include methyl acrylate, ethyl acrylate, butyl acrylate, isooctyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, cyclohexyl acrylate.
  • the lower T g alkyl(meth)acrylate esters are added in such an amount such that the resulting oligomer has a T g of 20° C. or greater.
  • such low T g monomers are used in amounts of 40 parts by weight or less, preferably 30 parts by weight or less, most preferable 20 parts by weight or less.
  • the Fox equation may be used for a system with more than two components.
  • the oligomer may be prepared using radical polymerization techniques by combining an initiator and monomers in the presence of a chain transfer agent. In this reaction, a chain transfer agent transfers the active site on one growing chain to another molecule that can then start a new chain so the degree of polymerization may be controlled.
  • the degree of polymerization of the resulting oligomer may be 10 to 300, preferably 15 to 200, more preferably 20 to 200. It has been found if the degree of polymerization is too high, the composition is too high in viscosity, and not easily melt processible. Conversely, if the degree of polymerization is too low, the shrinkage of the cured composition is excessive and leads to high birefringence in the cured composition.
  • Chain transfer agents may be used when polymerizing the monomers described herein to control the molecular weight of the resulting oligomer.
  • Suitable chain transfer agents include halogenated hydrocarbons (e.g., carbon tetrabromide) and sulfur compounds (e.g., lauryl mercaptan, butyl mercaptan, ethanethiol, and 2-mercaptoethyl ether, isooctyl thioglycolate, t-dodecylmercaptan, 3-mercapto-1,2-propanediol).
  • the amount of chain transfer agent that is useful depends upon the desired molecular weight of the oligomer and the type of chain transfer agent.
  • the chain transfer agent is typically used in amounts from about 0.1 parts to about 10 parts; preferably 0.1 to about 8 parts; and more preferably from about 0.5 parts to about 6 parts based on total weight of the monomers.
  • Suitable initiators for this oligomerization reaction include, for example, thermal and photo initiators.
  • Useful thermal initiators include azo compounds and peroxides. Examples of useful azo compounds include 2,2′-azobis(2,4-dimethylpentanenitrile), (Vazo 52, commercially available from E. I. duPont de Nemours & Co.); 2,2′-azobis(isobutyronitrile), (Vazo 64, commercially available from E. I. duPont de Nemours & Co.); 2,2′-azobis(2-methylbutyronitrile), (Vazo 67, commercially available from E. I.
  • duPont de Nemours & Co. 1,1′-azobis(cyanocyclohexane), (Vazo 88, commercially available from E. I. duPont de Nemours & Co.); 1,1′-azobis(1-cyclohexane-1-carbonitrile), (V-40, commercially available from Wako Pure Chemical Industries, Ltd.); and dimethyl 2,2′-azobis(isobutyrate), (V-601, commercially available from Wako Pure Chemical Industries, Ltd.).
  • useful peroxides include benzoyl peroxide; di-t-amyl peroxide, t-butyl peroxy benzoate, 2,5-dimethyl-2,5 Di-(t-butylperoxy)hexane, 2,5-dimethyl-2,5-Di-(t-butylperoxy)hexyne-3, lauroyl peroxide, and t-butyl peroxy pivalate.
  • Useful organic hydroperoxides include but are not limited to compounds such as t-amyl hydroperoxide and t-butyl hydroperoxide.
  • Useful photoinitiators include benzoin ethers such as benzoin methyl ether and benzoin butyl ether; acetophenone derivatives such as 2,2-dimethoxy-2-phenyl-acetophenone and 2,2-diethoxy acetophenone; and acylphosphine oxide derivatives and acylphosphonate derivatives such as diphenyl-2,4,6-trimethylbenzoylphosphine oxide, isopropoxy(phenyl)-2,4,6-trimethylbenzoylphosphine oxide, and dimethyl pivaloylphosphonate. Of these, 2,2-dimethoxy-2-phenyl-acetophenone is preferred.
  • the initiator is typically used at a level of 0.001 to 5 parts by weight per 100 parts by weight monomer(s).
  • the composition further comprises a crosslinking agent having a plurality of pendent, ethylenically unsaturated, free-radically polymerizable functional groups.
  • Useful crosslinking agents have an average functionality (average number of ethylenically unsaturated, free-radically polymerizable functional groups per molecule) of greater than one, and preferably greater than or equal to two.
  • the functional groups are chosen to be copolymerizable with the pendent ethylenically unsaturated, free-radically polymerizable functional groups on the first component oligomer.
  • Useful functional groups include those described for the first component oligomer and include, but are not limited to vinyl, vinyloxy, (meth)acryloyl and acetylenic functional groups.
  • Useful crosslinking agents have the general formula: R-(Z) n
  • n is greater than 1 and R is an organic radical having a valency of n.
  • R is an aliphatic alkyl radical of valency n which may be linear or branched.
  • crosslinking agents examples include: C 2 -C 18 alkylenediol di(meth)acrylates, C 3 -C 18 alkylenetriol tri(meth)acrylates, such as 1,6-hexanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, propoxylated trimethylolpropane triacrylate such as CD501 from Sratomer Co., Exton, Pa., triethyleneglycol di(meth)acrylate, pentaeritritol tri(meth)acrylate, and tripropyleneglycol di(meth)acrylate, and di-trimethylolpropane tetraacrylate, polyalkyleneglycol dimethacrylate such as BisomerTM EP 100DMA from Cognis Co.
  • the preferred crosslinking agent is not a solid material at application temperatures.
  • the composition according to the invention may comprise at least one reactive diluent.
  • the reactive diluents can be used to adjust the viscosity of the composition.
  • the reactive diluents can each be a low viscosity monomer containing at least one functional group capable of polymerization when exposed to actinic radiation.
  • vinyl reactive diluents and (meth)acrylate monomer diluents may be used.
  • the functional group present on the reactive diluents may be the same as that used in the curable (meth)acrylate oligomer.
  • the radiation-curable functional group present in the reactive diluent is capable of copolymerizing with the radiation-curable functional group present on the radiation-curable oligomer.
  • the reactive diluents generally have a molecular weight of not more than about 550 or a viscosity at room temperature of less than about 500 mPascal.sec (measured as 100% diluent).
  • the reactive diluent may comprise monomers having a (meth)acryloyl or vinyl functionality and a C 1 -C 20 alkyl moiety.
  • reactive diluents are ethyl(meth)acrylate, isopropyl(meth)acrylate, t-butyl(meth)acrylate, n-butyl(meth)acrylate, cyclohexyl(meth)acrylate, isobornyl(meth)acrylate, isooctyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, stearyl(meth)acrylate, phenoxyethyl(meth)acrylate, benzyl(meth)acrylate and the like.
  • Low volatile alkyl (meth)acrylates such as isobornyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, cyclohexyl(meth)acrylate, isooctyl(meth)acrylate, stearyl(meth)acrylate, phenoxyethyl(meth)acrylate, benzyl(meth)acrylate are preferred reactive diluents.
  • the reactive diluent is preferably added in such an amount that the shrinkage of the cured compositions does not exceed around 5%, preferably not above around 3%, as measured by the test method described herein.
  • Suitable amounts of the reactive diluents have been found to be less than about 25 parts by weight, preferably about 0 to about 15 parts by weight, and more preferably about 0 to about 10 parts by weight.
  • the sum of the amounts of the reactive diluent and the crosslinking agent is less than 40 parts by weight.
  • the components of the composition may be combined and cured with a photoinitiator.
  • the photoinitiator improves the rate of cure and percent conversion of the curable compositions, but the depth of cure (of thicker coatings or shaped articles) may be deleteriously affected as the photoinitiator may attenuate the transmitted light that penetrates the thickness of the sample.
  • the photoinitiator is used in an amount of less than 1.0 weight %, preferably less than 0.1 weight %, most preferably less than 0.05 weight %.
  • photoinitiators can be used. Examples include benzophenones, acetophenone derivatives, such as a-hydroxyalkylphenylketones, benzoin alkyl ethers and benzil ketals, monoacylphosphine oxides, and bis-acylphosphine oxides.
  • Preferred photoinitiators are ethyl 2,4,6-trimethylbenzoylphenyl phosphinate (LucirinTM TPO-L) available from BASF, Mt.
  • Suitable photoinitiators include mercaptobenzothiazoles, mercaptobenzooxazoles and hexaryl bisimidazole. Often, mixtures of photoinitiators provide a suitable balance of properties.
  • compositions can then be applied to the desired substrate or added to a mold and exposed to actinic radiation such as UV light.
  • actinic radiation such as UV light.
  • the composition may be exposed to any form of actinic radiation, such as visible light or UV radiation, but is preferably exposed to UVA (320 to 390 nm) or UVB (395 to 445 nm) radiation.
  • the amount of actinic radiation should be sufficient to form a non-tacky, dimensionally stable solid mass.
  • the amount of energy required for curing the compositions of the invention ranges from about 0.2 to 20.0 J/cm 2 .
  • the photopolymerization may be effected by any suitable light source including carbon arc lights, low, medium, or high pressure mercury vapor lamps, swirl-flow plasma arc lamps, xenon flash lamps, ultraviolet light emitting diodes, and ultraviolet light emitting lasers
  • any suitable light source including carbon arc lights, low, medium, or high pressure mercury vapor lamps, swirl-flow plasma arc lamps, xenon flash lamps, ultraviolet light emitting diodes, and ultraviolet light emitting lasers
  • an LED light source or array may effect a faster cure and provide less heat to the composition during cure.
  • One suitable LED source is the Norlux large area array, series 808 (available from Norlux, Carol Stream, Ill.).
  • a preferred method of making the oligomer is through an adiabatic polymerization method (see for example, U.S. Pat. No. 5,986,011 (Ellis) or U.S. Pat. No. 5,753,768 (Ellis), incorporated herein by reference).
  • the polymerization initiator(s) may be used at a low level, to reduce color due to the initiator fragments incorporated into the polymer.
  • conditions can be selected such that the initiator is essentially completely consumed during the polymerization or at the end of the polymerization.
  • thermal polymerization initiator consumed advantageously prevents or reduces unwanted polymerization and crosslinking during the functionalization step of the oligomer using the “indirect method” of incorporating the pendent, free-radically polymerizable functional groups (described herein). Further, having no significant traces of thermal initiator present beneficially improve the stability of the functionalized oligomer during storage and transport, prior to molding and further curing.
  • the adiabatic polymerization process comprises the steps of:
  • the conversion to polymer can be advantageously controlled to be sufficiently high so as to provide curable materials with low shrinkage, residual stress and birefringence. Further, in some instances, the functionalization and addition of reactive diluents can then be performed while in the same reaction equipment minimizing contamination and oxidation of the final curable formulation.
  • composition and process for making optical products of the present invention are applicable to a variety of applications needing optical elements including, for example, optical lenses such as Fresnel lenses, prisms, optical films, such as high index of refraction films, non-warping and low birefringence film e.g., microreplicated films such as totally internal reflecting films, or brightness enhancing films, flat films, multilayer films, retroreflective sheeting, optical light fibers or tubes, and others.
  • optical products are useful in optical assemblies, optical projection systems, such as projection televisions, as well as displays and other devices containing the optical assemblies.
  • the optical products of this invention include articles that are currently prepared from ground glass, or injection molded plastic.
  • Such articles may have a thickness of about 0.5 mm or greater, and can be prepared from a curable composition of this invention which is made by mixing in a suitable vessel, in any convenient order, the oligomer, crosslinking agent and/or reactive diluent, and a photoinitiator. Mixing is continued until the components of the composition are in a single phase. Thicknesses of 25 mm articles have been achieved using the composition and curing process of this invention.
  • the composition is preferably degassed using a vacuum of less than about 25 Torr or by flowing the composition in a thin film past a suitable boundary.
  • the degassed composition is introduced, optionally using a pressure of about 2 to 400 Kg/cm 2 , into a mold corresponding to the shape of the article that is desired to be prepared.
  • Such molds are generally made of plastic, glass or metal, or combinations thereof.
  • the curable composition may be applied to the surface of the mold having the requisite shape or to mold elements corresponding to the desired optical article, such as a lens.
  • the volume of curable composition that enters the mold or mold elements can be controlled by sliding a squeegee across the surface of the mold.
  • the amount of curable composition can also be applied by other known coating techniques, such as by the use of a roller. If desired, heating may be used to reduce the viscosity of the composition and provide more efficient molding.
  • many embodiments of the invention are melt-processible, i.e. possess or achieve a suitable low viscosity for coating or molding at temperatures less than or equal to 100° C.
  • the mold elements may be completely filled or may be partially filled. If the photopolymerizable composition is a 100% solids, non-shrinking, curable material, then the shape of the cured composition will remain the same as that of the mold elements. However, if the photopolymerizable composition shrinks as it hardens, then the liquid will contract, creating unreliable registration, and introducing optical defects.
  • the photopolymerizable composition includes materials that shrink by less than about 5% by volume, and preferably less than about 3%, during curing.
  • the molds are filled, placed under a source of actinic radiation such as a high-energy ultraviolet source having a duration and intensity of such exposure to provide for essentially complete (greater than 80%) polymerization of the composition contained in the molds.
  • a source of actinic radiation such as a high-energy ultraviolet source having a duration and intensity of such exposure to provide for essentially complete (greater than 80%) polymerization of the composition contained in the molds.
  • filters may be employed to exclude wavelengths that may deleteriously affect the reactive components or the photopolymerization.
  • Photopolymerization may be effected via an exposed surface of the curable composition, or “through-mold” by appropriate selection of a mold material having the requisite transmission at the wavelengths necessary to effect polymerization.
  • Photoinitiation energy sources emit actinic radiation, i.e., radiation having a wavelength of 700 nanometers or less which is capable of producing, either directly or indirectly, free radicals capable of initiating addition polymerization and chain-growth polymerization of the optical casting resins of this invention.
  • Preferred photoinitiation energy sources emit ultraviolet radiation, i.e., radiation having a wavelength between about 180 and 460 nanometers, including photoinitiation energy sources such as carbon arc lights, low, medium, or high pressure mercury vapor lamps, swirl-flow plasma arc lamps, xenon flash lamps, ultraviolet light emitting diodes, and ultraviolet light emitting lasers.
  • Particularly preferred ultraviolet light sources are xenon flash lamps available from Xenon Corp, Wilburn, Mass., such as models RC-600, RC-700 and RC-747 pulsed UV-Vis curing systems and LED sources such as Norlux Series 808 large area array, (available from Norlux, Carol Stream, Ill.).
  • the curable composition may also use convention thermal initiators, previously described.
  • the optical product can contain one or more features, such as flat or curved surfaces (including convex and concave surfaces), or replicated or microreplicated surfaces (such as Fresnel lenses), either of which can be derived from the composition of the invention and a suitable mold.
  • Structure-bearing articles can be constructed in a variety of forms, including those including plurality of linear prismatic structures having a series of alternating tips and grooves.
  • An example of such a film is BEF, having regular repeating pattern of symmetrical tips and grooves.
  • Other examples include patterns in which the tips and grooves are not symmetrical and in which the size, orientation, or distance between the tips and grooves is not uniform.
  • a structure-bearing optical product can be prepared by a method including the steps of (a) preparing a polymerizable composition; (b) depositing the polymerizable composition onto a master negative microstructured molding surface in an amount barely sufficient to fill the cavities of the master; (c) filling the cavities by moving a bead of the polymerizable composition between a preformed base and the master, at least one of which is flexible; and (d) curing the composition.
  • the master can be metallic, such as nickel, nickel-plated copper or brass, or can be a thermoplastic material that is stable under the polymerization conditions, and that preferably has a surface energy that allows clean removal of the polymerized material from the master.
  • the optical article comprises a polarizing beam splitter, wherein incident light is split into first and second substantially polarized beam states that may be used in an image display system.
  • the beam splitter comprises a first prism ( 60 a ), a second prism ( 60 b ) and a polarizing layer having a pass axis disposed therebetween ( 20 ).
  • At least one prism comprises the instant cured composition.
  • Each of the prisms has a first surface coincident with the polarizing layer, and two or more outer surfaces.
  • the term “prism” refers to an optical element that controls the angular transmission of incident light through the polarizing layer, and the angular character of light exiting the article.
  • the prisms may be regular polygons, such as triangular prisms, or may have one or more features that confer optical power to the article, such as curved faces, or microreplicated features, such as microlenses (and arrays thereof) or Fresnel lenses. Further, the prisms may further comprise mirrored elements, such as a vapor deposited metal coating on or more surfaces.
  • the prisms may be any suitable shape disposed on one or both sides of the polarizing layer to achieve the desired purpose of the PBS.
  • one or more of the outer surfaces of the first and second prisms i.e. one of the surfaces not adjacent the polarizing layer, may be curved, either convex or concave, or may comprise a structured surface, such as a Fresnel lens surface.
  • Such curved surfaces provide optical power to the polarizing beam splitter; i.e., they converge or diverge light passing therethrough.
  • the degree to which a lens or mirror converges or diverges light usually is equal to the reciprocal of the focal length of the device.
  • first surfaces i.e. the surface adjacent to the polarizing layer
  • first prism may have a convex first surface
  • second prism may have a mating concave first surface, with a polarizing layer disposed therebetween.
  • one or more of the outer surfaces of the first and second prisms, may be fully or partially reflective; i.e. comprises a vapor-deposited metal coating.
  • Reflective polarizing layers in exemplary PBS's constructed according to the present disclosure include linear reflective polarizers having a pass axis.
  • the polarizing layer may be a wire grid polarizer, such as those described in Schnabel et al., “Study on Polarizing Visible Light by Subwavelength-Period Metal-Stripe Gratings”, Optical Engineering 38(2), pp. 220-226, February 1999, relevant portions of which are hereby included by reference.
  • a wire grid polarizer consists of an array of very fine parallel lines or ribbons of metal coated on glass or other transparent substrates. The wire array efficiently polarizes the incident light when the width and spacing are small compared to the incident wavelength(s). Common metals for the wire grid array include gold, silver, and aluminum among others known in the art.
  • the polarizing beam splitter may comprise a first prism having a first surface and at least two outer surfaces, a second prism having a first surface and least two outer surfaces, and a wire grid polarizer disposed between the first surfaces of the first and second prisms.
  • a wire grid polarizer comprising a substrate, such as glass, is bonded to the first surfaces by means of an optical adhesive.
  • the wire grid is deposited, such as by vapor deposition techniques, on one of said first surfaces, and the second prism bonded thereto.
  • Wire-grid polarizers absorb small portions of the received light. This generates heat in the substrates and is therefore not preferred. For example, 5-10% of the light is absorbed by aluminum stripes in the same manner as an aluminum mirror surface. Since the performance of the wire-grid polarizer is sensitive to the geometric stability of the metal stripes, a small change in the substrates due to thermal expansion can degrade the polarizer's performance.
  • the polarizing layer may comprise alternating repeating layers of a pair of inorganic thin film materials deposited on the first surface of one or both prisms.
  • the pair of thin film materials comprises one low refractive index material and one high refractive index material.
  • the indices called a MacNeille pair, are chosen such that, for a given angle of incidence of a light beam, the reflection coefficient for p-polarized light (rd is essentially zero at each thin film interface.
  • the angle at which r p is zero is called the Brewster angle, and the formula relating the Brewster angle to the numerical values of the indices is called the MacNeille condition.
  • the reflection coefficient for s-polarized light (r s ) is non-zero at each thin film interface.
  • the repeating layers of a pair of inorganic thin film materials is deposited on the first surface of a prism and the bonded to the first surface of a second prism, such as with an optical adhesive to form a polarizing beam splitter.
  • the polarizing beam splitter comprises at least one set of pairs of alternating layers of materials having low and high indices of refraction compared to each other.
  • the thicknesses of the layers are chosen such that the quarterwave criterion is met for the wavelength of the incident collimated light beam by each of layers of low and high refractive index material.
  • the optical properties of the prism material, and the properties of the composite optical stack all combine to divide the incident light beam into two polarization components.
  • Suitable materials for the thin films include any materials that are transparent (exhibit low absorption) in the spectrum of interest.
  • thermal and electron beam evaporation can be used to deposit the composite optical stack on the prisms, including thermal and electron beam evaporation, and ion beam sputtering and magnetron sputtering.
  • thermal and electron beam evaporation should provide good thin film qualities and sufficiently high deposition rates for acceptable manufacturing rates.
  • low index films such as magnesium fluoride and cryolite can be deposited by this method.
  • Electron beam deposition is regularly used in the coatings industry for high index materials such as titanium dioxide, zirconium oxide, hafnium oxide, and aluminum nitride.
  • the polarizing layer may be a multilayer optical film.
  • reflective polarizing films suitable for use as polarizing film in the embodiments of the present disclosure include reflective polarizers including a birefringent material, manufactured by 3M Corporation, St. Paul, Minn., such as those described in U.S. Pat. No. 5,882,774, (Jonza et al.); U.S. Pat. No. 6,609,795(Weber et al.); and U.S. Pat. No. 6,719,426 (Magarill et al.), the disclosures of which are hereby incorporated by reference herein.
  • Suitable reflective polarizing films for polarizing film 22 also include polymeric reflective polarizing films that include multiple layers of different polymeric materials.
  • polarizing film may include a first layer and a second layer, where the polymeric materials of the first and second layer are different and at least one of the first and second layers is birefringent.
  • the polarizing film may include a multi-layer stack of first and second alternating layers of different polymer materials, as disclosed in U.S. Pat. No. 6,609,795 (Weber et al.).
  • Other materials suitable for making multilayer reflective polarizers are listed, for example in Jonza et al., U.S. Pat. No. 5,882,774; Weber et al., U.S. Pat. No. 6,609,795.
  • multiple reflective polarizing films may be used.
  • Suitable reflective polarizing films are typically characterized by a large refractive index difference between first and second polymeric materials along a first direction in the plane of the film and a small refractive index difference between first and second polymeric materials along a second direction in the plane of the film, orthogonal to the first direction.
  • reflective polarizing films are also characterized by a small refractive index difference between the first and second polymeric materials along the thickness direction of the film (e.g., between the first and second layers of different polymeric materials). Examples of suitable refractive index differences between the first and second polymeric materials in the stretched direction (i.e., x-direction) range from about 0.15 to about 0.20.
  • the refractive indices in the non-stretched directions are desirably within about 5% of one another for a given material or layer, and within about 5% of the corresponding non-stretched directions of a different material or an adjacent layer.
  • the polymeric materials selected for the layers of an exemplary multilayer polarizing film may include materials that exhibit low levels of light absorption.
  • PET polyethylene terephthalate
  • the calculated absorption is about 0.000023%, which is about 1/200,000 of an absorption of a comparable wire-grid polarizer.
  • the present invention provides a multilayer article comprising a multilayer optical film and a cured optical coating on one or both major surfaces of the optical film. Providing such a coating protects the multilayer optical film from environmental stresses and adds strength and rigidity thereto.
  • the multilayer article may be prepared by providing a multilayer optical film, coating at least one major surface of the multilayer optical film with the curable composition, and curing. In another embodiment, separately prepared films comprising the cured composition may be adhered to one or both major surfaces of the multilayer optical film by means of an optical adhesive, described further herein.
  • the present invention provides a method of making a polarizing beam splitter.
  • the method comprises introducing the curable composition into a suitable mold, and curing the composition to form a prism.
  • the mold may be of any suitable configuration, one or more surfaces of which may be curved.
  • the polarizing layer may then be bonded, adhered, or otherwise affixed to the resulting prism(s) by any optical adhesive, such as known in the art.
  • a first prism may be bonded to a first surface of the polarizing layer, the second prism bonded sequentially to the exposed surface of the polarizing layer.
  • the first and second prisms are concurrently bonded to opposite surfaces of the polarizing layer.
  • Useful optical adhesives are substantially free of UV-absorbing chromophores such as extended aromatic structures or conjugated double bonds.
  • Useful adhesives include, for example: NOA61, a UV cured thiol-ene based adhesive available from the Norland Company (Cranbury, N.J.); Loctite series (e.g., 3492, 3175) UV cured acrylic adhesives available from Henkel Loctite Corp., 1001 Trout Brook Crossing, Rocky Hill, Conn. 06067 (www.loctite.com).
  • OP series e.g., 21, 4-20632, 54, 44
  • Dymax Corporation Torrington, Conn.
  • One useful adhesive include those compositions described in U.S. Published Appln. No. 20040202879 (Xia et al.), incorporated herein by reference, which comprise at least one polymer with either an acid or base functionality that forms a pressure sensitive adhesive, a high T g polymer with an weight average molecular weight greater than 100,000 with an acid or base functionality, and a crosslinker, wherein the functionality on the pressure sensitive adhesive and the high T g polymer cause an acid-base interaction that forms a compatibilized blend.
  • the adhesive mixture After accelerated aging of the adhesive composition at 80° C. and 90% relative humidity for approximately 500 hours in an oven, the adhesive mixture is translucent or optically clear.
  • microstructured adhesive which comprise a continuous layer of a pressure-sensitive adhesive having a microstructured surface, wherein the microstructured surface comprises a series of features and wherein the lateral aspect ratio of the features range from about 0.1 to about 10, wherein the spacing aspect ratio of the features range from about 1 to about 1.9, and wherein each feature has a height of about 2.5 to about 375 micrometers.
  • microstructured adhesive comprise a continuous layer of a pressure-sensitive adhesive having a microstructured surface, wherein the microstructured surface comprises a series of features and wherein the lateral aspect ratio of the features range from about 0.1 to about 10, wherein the spacing aspect ratio of the features range from about 1 to about 1.9, and wherein each feature has a height of about 2.5 to about 375 micrometers.
  • SokenTM 1885 PSA commercially available from Soken Chemical & Engineering Co., Ltd, Japan
  • NEA PSA as described in the Example 1 of published U.S. 20040202879 (Lu et al.)
  • Lens BondTM Type C59 a thermally cured styrene based adhesive available from Summers Optical, Hatfield, Pa., a division of EMS Acquisition Corp.
  • NOA61TM a UV cured thiol-ene based adhesive, available from Norland Company, Cranbury, N.J.
  • the polarizer may be prepared as shown schematically in FIG. 1 .
  • a prism mold 10 a having an open first surface or face, and optional tabs 11 a and b, is combined with a polarizing layer 20 and rigid side plate 30 .
  • the angles between the mold faces may be varied as desired, and either or both outer faces 12 a/b may be curved or have any desired pattern imparted thereto, such as a diffracting pattern, including a Fresnel lens may be integrally molded.
  • the respective first surfaces (those coincident with the polarizing layer 20 ) of the first and second prisms may also be curved, or have an integral replicated pattern.
  • the curved first surfaces of the first and second prisms may configured so they may be mated, such as with a concave and convex surface, with the polarizing layer 20 disposed therebetween.
  • the parts 10 a, 20 and 30 may be secured via clamps on tabs 11 a/b, or by other suitable means.
  • a tensioning means (not shown) may be used to maintain the polarizing layer 20 flat.
  • the assembled mold may rest on a smooth, rigid surface 15 , such as glass, or an integral bottom (not shown) may be provided to the mold 10 a.
  • This assembly defines a prism shaped cavity 40 a, into which the curable composition may be introduced, and cured by application of UV energy.
  • a second rigid surface (not shown) may cover the top of the mold to protect it from atmospheric oxygen.
  • either rigid surface 15 or second rigid surface is made of glass or other suitable material which is transparent to the incident light source used for curing.
  • the mold assembly may be blanketed with an inert glass to exclude oxygen.
  • the rigid side plate 30 may be removed, and a second prism mold 10 b secured thereto, forming a second chamber 40 b, with the polarizing layer 20 forming the common faces between molds 10 a and 10 b, so that the first surfaces of the first and second prisms will each be adjacent the polarizing layer.
  • the polarizing layer is now integral to the first surface of the first prism-shaped cured composition.
  • the second mold may also have curved outer faces or other desired molded shapes (not shown).
  • This second chamber 40 b may be filled with the curable composition, cured, the mold assembly removed to provide a polarizing beam splitter 60 a having two prisms, and an integral polarizing layer disposed therebetween, on the respective first surfaces of the prisms.
  • the respective prisms may be provided, by a suitably configured mold, with integral interlocking tabs for securing the first and second prisms together, or for securing the beam splitter into a mount in a display device.
  • the first and second prisms may be providing with alignment means, such as tabs or indicators, for aligning the first and second prisms with respect to each other, the polarizing layer, or in a mount in a display device.
  • the alignment means may comprise corresponding male and female portions that interconnect.
  • the polarizing beams splitter may comprise a first prism and second prism, where first prism includes male portion, and second prism that includes female portion.
  • Male portion may be a rectangular surface that encompasses a portion of the surface of first prism adjacent to the reflective polarizing film, and which projects therefrom.
  • female portion may be a rectangular depression that is disposed within the majority of the surface of second prism adjacent to the reflective polarizing film.
  • the male members and female portions may be substituted with other engagement mechanisms such that one prism includes at least one male member that is configured to engage with a respective female portion located in the opposing prism.
  • one prism includes at least one male member that is configured to engage with a respective female portion located in the opposing prism.
  • Those of ordinary skill in the art will also readily appreciate that different numbers of the male members and the female portions than those exemplified herein may be used in accordance with the present disclosure.
  • an exemplary PBS may include three or more male members received within three or more female portions.
  • the male members and the female portions discussed above may be molded with the respective first and second prisms.
  • the first and second prisms may then be secured together with the assistance of the male portions and the female portions to form polarizing beam splitters.
  • This technique may involve placing the reflective polarizing film between the first prism and the second prism.
  • the first prism may then be oriented relative to the second prism such that the male portion(s) are aligned with the corresponding female portion(s). This alignment is beneficial for ensuring that the first prism is accurately positioned relative to the second prism.
  • the first prism may then engage second prism by concurrently inserting male portions into the corresponding female portions.
  • the male portion(s) may be secured to the corresponding female portions with an adhesive.
  • the first prism may be secured to the second prism by fitting and/or welding the male members to the corresponding female portions (e.g., ultrasonic, infrared, heat staking, snap fits, press fits, and chemical welding).
  • FIG. 2 An alternate process is shown schematically in FIG. 2 .
  • two prism molds having open faces, 110 a and 110 b (corresponding to the first surfaces of the resultant prisms) are secured together via optional tabs 111 a and b(or any suitable means), with the polarizing layer 120 disposed between on the common first faces of molds 110 a and b.
  • tensioning means may be used to maintain the polarizing layer 120 flat.
  • the molds may be of any suitable shape and size, and the exterior faces may be curved.
  • Size exclusion chromatography for molecular weight and molecular weight distribution was performed using a Waters 717Plus autosampler, 1515 HPLC pump, 2410 differential detector, and the following Waters columns: Styragel HR 5E, Styragel HR 1. All samples were run in THF at 35° C. with a flow rate of 1.0 mL/min. Linear polystyrene standards were used for calibration.
  • DMA for T g and modulus determination of cured compositions was performed using a LC-ARES Test Station (Rheometric Scientific, Piscataway, N.J.) in a torsion mode.
  • the sample size was approximately 25 millimeters by 10 millimeters by Imillimeter.
  • the length of the sample was measured by the test station and the width and thickness of the sample were measured with a caliper.
  • the test was performed by ramping the temperature from 25° C. to 180° C. at 5° C. per minute. The frequency used was 1 Hertz.
  • % T The % Transmittance (% T) at a wavelength of 420 nanometers of 3.2 centimeter (1.25 inches) diameter by 0.5 centimeter (0.19 inch) thick cured samples was measured before and after 7 days aging in a 120° C. oven. The % T was measured using a TCS Plus Spectrophotometer (BYK-Gardner USA, Silver Spring, Mo.). Generally, samples with % T at 420 nanometers of less than 85% display a yellow color. A sample is considered to have good yellowing resistance if the % T at 420 nanometers after aging is greater than 85%.
  • a weighed 3.2 centimeter (1.25 inches) diameter by 0.5 centimeter (0.19 inch) thick cured disk sample is placed in water at 23° C. for 14 days.
  • % water absorption 100 ⁇ (sample weight after 14 days in water ⁇ sample weight before water soaking)/sample weight before water soaking.
  • TSE Transmission Spectral Ellipsometry
  • Birefringence of the sample was determined by dividing the retardance by sample thickness.
  • the sample is a round disc, 3.2 centimeter (1.25 inches) diameter by 0.5 centimeter (0.19 inch) thick.
  • thermal initiators Vazo 52 and 88 according to Table 1, were added to a four neck flask equipped with a reflux condenser, thermometer, mechanical stirrer, and nitrogen gas inlet. The mixture was stirred and heated to 60° C. under nitrogen. The temperature of the reaction mixture peaked at around 150° C. during the polymerization. After the reaction peak, the batch was further polymerized at 140° C. for 30 minutes with the addition of the 2 nd initiator, Vazo 88, to reduce residual monomers and eliminate initiator. A sample was taken at the end of this reaction period for oligomer molecular weight determination by SEC.
  • the batch was cooled to 100° C.
  • the HDDMA reactive diluent was added to the reactor to reduce viscosity of the batch.
  • a solution of the DBDL catalyst in IEM was then added to the batch to react with the hydroxyls on the IBOA/HEA polymer chains, incorporating methacrylate functional groups to the polymer. The reaction was complete in 2 hours.
  • the reactive oligomer syrups of Table 1 were formulated with 0.02 weight % TPOL photoinitiator and cured by a xenon flash lamp according to the procedures described in the section Preparation of Test Samples.
  • the cured samples were tested for % volume shrinkage, birefringence, Tg, water absorption, % transmittance, and aging stability, using the methods described in the above Test Method section.
  • HDDMA reactive diluent according to Table 2, was added to samples of the reactive oligomer syrup prepared in Example 7.
  • the reactive oligomer syrups were formulated with 0.02 weight% TPOL photoinitiator and cured by a xenon flash lamp at 80° C. for 5 minutes.
  • the cured samples were tested for % volume shrinkage, birefringence, Tg, water absorption, % transmittance, and aging stability, using the methods described in the above Test Method section.
  • Example 8 9 C1 Oligomer/HDDMA Ratio 80/20 70/30 60/40
  • Example 7 (grams) 20.0 20.0 20.0 HDDMA (grams) 2.50 5.71 10.0 Lucirin TPOL (grams) 0.0045 0.0051 0.0060
  • Example 10 11 IBOA (g) 190 160 MMA (g) 0 26 HEA (g) 10 10 HEMA (g) 0 4 IOTG (g) 4 8 Vazo 52/(g) 0.025/ 0.025/ Vazo 88 (g) 0.025 0.025 Vazo 88 (g) 0.050 0.050 MAnh (g) 14.12 19.16 HDDMA (g) 50 35.3
  • Curable compositions with photoinitiator and other additives were prepared by preheating the oligomer syrups described in the Examples and Comparative Examples with a desired photoinitiator and other additives (if used) at 80° C. and mixing in a white disposable cup by a DAC-100 mixer (both cup and mixer are available from Flack Tek Inc, Landrum, New Jersey). The compositions were degassed in a vacuum chamber and then allowed to cool to room temperature before use.
  • Curing of the above curable materials was carried out by the following steps: 1) Onto a Pyrex glass plate approximately 15 centimeters (6 inches) by 15 centimeters (6 inches) by 0.5 centimeter (0.19 inch) was placed an approximately 15 centimeters (6 inches) by 15 centimeters (6 inches) piece of 51 micrometers (2 mils) A31 release liner, 2) on top of the release liner was placed an approximate same size glass or silicone rubber mold with a 3 centimeter (1.25 inches) diameter opening at the center, 3) then the mold was filled with the curable compositions taking care to avoid bubbles, 4) then a second piece of approximately 15 centimeters (6 inches) by 15 centimeters (6 inches) of 51 micrometers (2 mils) A3 1 release liner was placed on top of the filled mold, 5) another Pyrex glass plate approximately 15 centimeters (6 inches) by 15 centimeters (6 inches) by 0.5 centimeter (0.19 inch) was placed on top of the release liner, and 6) finally, the filled mold
  • the curable compositions were cured by a Xenon flash lamp (Model #4.2 Lamp Hsg, pulse rate of 8 Hz) with RC-747 Pulsed UV Visible System (Xenon Corporation, Woburn, Mass.) for 5 minutes.
  • a Xenon flash lamp Model #4.2 Lamp Hsg, pulse rate of 8 Hz
  • RC-747 Pulsed UV Visible System Xenon Corporation, Woburn, Mass.
  • Example 12 IBOA, HEA, chain transfer agent IOTG, and the 1 st charge of thermal initiators Vazo 52 and 88, according to Table 7, were added to a four neck flask equipped with a reflux condenser, thermometer, mechanical stirrer, and nitrogen gas inlet. The mixture was stirred and heated to 60° C. under nitrogen. The temperature of the reaction mixture peaked at around 180° C. during the polymerization. After the reaction peak, the batch was further polymerized at 140° C. for 30 minutes with the addition of the 2 nd initiator, Vazo 88, to reduce residual monomers and eliminate initiator. After that, the batch was cooled to 120° C.
  • the reactive oligomer syrups of Table 7 were formulated with 0.02 weight % Lucirin TPOL photoinitiator to make the curable material composition to prepare plastic prisms and PBS prisms.
  • Example 13 the prism mold described in FIG. 1 was used.
  • Component 10 a was made of stainless steel with component 15 being a glass plate, component 20 was not used and component 30 was a glass microscope slide.
  • the volume 40 a was filled with the formulated reactive oligomer syrup prepared in Example 12 and another glass plate was placed on top of filled volume 40 a.
  • the assembly was cured with a Xenon flash lamp at room temperature for 5 minutes.
  • Example 14 the prism mold described in FIG. 1 was used.
  • Component 10 a was made of stainless steel with component 15 being a glass plate, component 20 was PBS Film and component 30 was a glass microscope slide.
  • the volume 40 a was filled with the formulated reactive oligomer syrup prepared in Example 12 and another glass plate was placed on top of filled volume 40 a.
  • the assembly was cured with a Xenon flash lamp at room temperature for 5 minutes.
  • the glass slide was removed and a plastic prism such as prepared in Example 13 was attached to the PBS Film surface with an Optical Adhesive to generate a PBS prism.
  • Example 15 the prism molds described in FIG. 1 were used.
  • Component 10 a was made of stainless steel with component 15 being a glass plate, component 20 was PBS film and component 30 was a glass microscope slide.
  • the volume 40 a was filled with the formulated reactive oligomer syrup prepared in Example 12 and another glass plate was placed on top of filled volume 40 a.
  • the assembly was cured with a Xenon flash lamp at room temperature for 5 minutes.
  • the component 30 was then removed and a second mold 10 b was placed adjacent to the PBS Film surface of the cured mold.
  • the volume 40 b was filled with the formulated reactive oligomer syrup prepared in Example 12 and a glass plate was placed on top of filled volume 40 b.
  • the assembly was cured with a Xenon flash lamp at room temperature for 5 minutes.
  • Example 16 the prism molds described in FIG. 2 were used.
  • Components 110 a and 110 b were made of stainless steel with component 115 being a glass plate, component 120 was PBS Film film.
  • the volumes on either side of 120 , 140 a and 140 b, were filled with the formulated reactive oligomer syrup prepared in Example 12 and another glass plate was placed on top of the filled volumes.
  • the assembly was cured with a Xenon flash lamp at room temperature for 5 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
US11/276,068 2006-02-13 2006-02-13 Curable compositions for optical articles Abandoned US20070191506A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US11/276,068 US20070191506A1 (en) 2006-02-13 2006-02-13 Curable compositions for optical articles
JP2008554263A JP5378805B2 (ja) 2006-02-13 2007-01-29 光学物品用硬化性組成物
US12/279,236 US7767728B2 (en) 2006-02-13 2007-01-29 Curable compositions for optical articles
KR1020087019719A KR101411153B1 (ko) 2006-02-13 2007-01-29 광학 용품용 경화성 조성물
PCT/US2007/002397 WO2007094953A2 (en) 2006-02-13 2007-01-29 Curable compositions for optical articles
EP07717108A EP2013004B1 (en) 2006-02-13 2007-01-29 Curable compositions for optical articles
CN2007800053420A CN101495519B (zh) 2006-02-13 2007-01-29 适用于光学制品的可固化组合物
AT07717108T ATE537194T1 (de) 2006-02-13 2007-01-29 Härtbare zusammensetzungen für optische artikel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/276,068 US20070191506A1 (en) 2006-02-13 2006-02-13 Curable compositions for optical articles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/279,236 Continuation US7767728B2 (en) 2006-02-13 2007-01-29 Curable compositions for optical articles

Publications (1)

Publication Number Publication Date
US20070191506A1 true US20070191506A1 (en) 2007-08-16

Family

ID=38369529

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/276,068 Abandoned US20070191506A1 (en) 2006-02-13 2006-02-13 Curable compositions for optical articles
US12/279,236 Expired - Fee Related US7767728B2 (en) 2006-02-13 2007-01-29 Curable compositions for optical articles

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/279,236 Expired - Fee Related US7767728B2 (en) 2006-02-13 2007-01-29 Curable compositions for optical articles

Country Status (7)

Country Link
US (2) US20070191506A1 (pt)
EP (1) EP2013004B1 (pt)
JP (1) JP5378805B2 (pt)
KR (1) KR101411153B1 (pt)
CN (1) CN101495519B (pt)
AT (1) ATE537194T1 (pt)
WO (1) WO2007094953A2 (pt)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080037271A1 (en) * 2006-07-31 2008-02-14 3M Innovative Properties Company Integrating light source module
US20080036972A1 (en) * 2006-07-31 2008-02-14 3M Innovative Properties Company Led mosaic
US20080048553A1 (en) * 2006-07-31 2008-02-28 3M Innovative Company Led source with hollow collection lens
US20080051135A1 (en) * 2006-07-31 2008-02-28 3M Innovative Properties Company Combination camera/projector system
US20080049190A1 (en) * 2006-07-31 2008-02-28 3M Innovative Properties Company Optical projection subsystem
US20080085381A1 (en) * 2006-10-06 2008-04-10 3M Innovative Properties Company Optical element with a polarizer and a support layer
US20090116214A1 (en) * 2006-07-31 2009-05-07 3M Innovative Properties Company Led illumination system with polarization recycling
US20090316083A1 (en) * 2008-06-18 2009-12-24 Atsushi Kishioka Liquid Crystal Display Device and Manufacturing Method for Same
EP2226371A2 (en) * 2008-01-11 2010-09-08 LG Chem, Ltd. Adhesive composition, and an adhesive polarising plate and liquid crystal display device comprising the same
US20110085106A1 (en) * 2009-10-09 2011-04-14 Sony Corporation Alignment film and method of manufacturing the same, phase difference device and method of manufacturing the same, and display unit
US20110227239A1 (en) * 2008-12-01 2011-09-22 Showa Denko K.K. Method of molding
CN102292317A (zh) * 2008-12-02 2011-12-21 3M创新有限公司 氮丙啶官能化光活性交联化合物
EP2556532A1 (en) * 2010-04-07 2013-02-13 FUJIFILM Corporation Curable composition for imprints and producing method of polymerizable monomer for imprints
US8541942B2 (en) 1998-11-02 2013-09-24 3M Innovative Properties Company Transparent conductive articles and methods of making same
WO2013181030A1 (en) * 2012-05-29 2013-12-05 3M Innovative Properties Company Liquid optical adhesive compositions
WO2014078115A1 (en) * 2012-11-16 2014-05-22 3M Innovative Properties Company Adhesive including pendant (meth) acryloyl groups, article, and method
WO2014088936A1 (en) * 2012-12-06 2014-06-12 3M Innovative Properties Company Precision coating of viscous liquids and use in forming laminates
WO2014093014A1 (en) * 2012-12-10 2014-06-19 3M Innovative Properties Company Liquid optical adhesive compositions
WO2015077114A1 (en) * 2013-11-21 2015-05-28 3M Innovative Properties Company Liquid optical adhesive compositions
WO2015077161A1 (en) * 2013-11-21 2015-05-28 3M Innovative Properties Company Liquid optical adhesive compositions
EP2471849A4 (en) * 2009-08-25 2015-08-19 Lg Hausys Ltd PROCESS FOR PREPARING AN ACRYLIC FILM AND ACRYLIC FILM
US20150298366A1 (en) * 2012-12-14 2015-10-22 3M Innovative Properties Company Method of making precision-molded articles by polymerizing ethylenically-unsaturated materials in a mold using ionizing radiation
US9285531B2 (en) 2008-08-08 2016-03-15 3M Innovative Properties Company Lightguide having a viscoelastic layer for managing light
US9817257B2 (en) 2012-12-06 2017-11-14 3M Innovative Properties Company Discrete coating of liquid on a liquid-coated substrate and use in forming laminates
US20180298248A1 (en) * 2016-03-22 2018-10-18 Saiden Chemical Industry Co., Ltd. Method for measuring birefringence temperature dependence of adhesive, method for designing and manufacturing adhesive, adhesive, display, and optical film
US10197724B2 (en) * 2014-09-26 2019-02-05 Sumitomo Electric Industries, Ltd. Optical fiber core and optical fiber ribbon core
US10228507B2 (en) 2008-07-10 2019-03-12 3M Innovative Properties Company Light source and optical article including viscoelastic lightguide disposed on a substrate
JP2019178283A (ja) * 2018-03-30 2019-10-17 株式会社巴川製紙所 導光板用封止部材及びそれを用いた導光板の製造方法
US20190352471A1 (en) * 2018-05-16 2019-11-21 Solenis Technologies, L.P. Adiabatic gel polymerization process for the production of water-soluble polyelectrolytes

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8899547B2 (en) 2004-11-18 2014-12-02 Qspex Technologies, Inc. Molds and method of using the same for optical lenses
KR20100118855A (ko) 2009-04-29 2010-11-08 삼성전자주식회사 광경화성 코팅 조성물
WO2011150058A2 (en) * 2010-05-25 2011-12-01 Mossey Creek Solar, LLC Method of producing a semiconductor
KR20130130698A (ko) * 2010-08-18 2013-12-02 쓰리엠 이노베이티브 프로퍼티즈 컴파니 응력 제거 광학 접착제를 포함하는 광학 조립체 및 그의 제조 방법
EP2652057A4 (en) 2010-12-16 2016-06-08 3M Innovative Properties Co PROCESSES FOR PREPARING OPTICALLY TRANSPARENT ADHESIVES AND COATINGS
US9042019B2 (en) 2011-04-15 2015-05-26 Qspex Technologies, Inc. Anti-reflective lenses and methods for manufacturing the same
US9335443B2 (en) 2011-04-15 2016-05-10 Qspex Technologies, Inc. Anti-reflective lenses and methods for manufacturing the same
US9170416B2 (en) 2011-04-22 2015-10-27 Ic Optix Scrolling thin film magnifier device
KR101334917B1 (ko) * 2011-05-19 2013-11-29 한국기계연구원 경화성 수지 수축률 제어 방법, 수축률 제어 가능한 경화성 수지 조성물, 이를 포함하는 수축률 제어 가능한 경화성 수지 및 이의 제조 방법
CN103875037A (zh) * 2011-10-12 2014-06-18 拜耳知识产权有限责任公司 在聚氨酯基光聚合物组合物中的链转移试剂
EP2766902A1 (de) * 2011-10-12 2014-08-20 Bayer Intellectual Property GmbH Schwefelhaltige kettenübertragungsreagenzien in polyurethan-basierten photopolymer-formulierungen
US9162191B2 (en) 2012-11-15 2015-10-20 Board Of Trustees Of The University Of Alabama Imidazole-containing polymer membranes and methods of use
KR20150117274A (ko) 2013-02-12 2015-10-19 카본3디, 인크. 3차원 제작을 위한 방법 및 장치
WO2014126837A2 (en) 2013-02-12 2014-08-21 Eipi Systems, Inc. Continuous liquid interphase printing
CN103744140A (zh) * 2013-12-12 2014-04-23 中国科学院上海光学精密机械研究所 用于193nm波长的由两种材料构成的沃拉斯顿棱镜
US9519096B2 (en) 2013-12-23 2016-12-13 3M Innovative Properties Company Pressure sensitive adhesive light guides
KR101771774B1 (ko) * 2014-03-21 2017-08-28 주식회사 엘지화학 점착 필름용 광경화성 수지 조성물 및 점착 필름
WO2015142546A1 (en) 2014-03-21 2015-09-24 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication with gas injection through carrier
EP3134250B1 (en) 2014-04-25 2023-11-15 Carbon, Inc. Continuous three dimensional fabrication from immiscible liquids
US10661501B2 (en) 2014-06-20 2020-05-26 Carbon, Inc. Three-dimensional printing method using increased light intensity and apparatus therefor
JP6611801B2 (ja) 2014-06-20 2019-11-27 カーボン,インコーポレイテッド 重合性液体の往復運動供給による三次元印刷
US10569465B2 (en) 2014-06-20 2020-02-25 Carbon, Inc. Three-dimensional printing using tiled light engines
WO2015200189A1 (en) 2014-06-23 2015-12-30 Carbon3D, Inc. Three-dimensional objects produced from materials having multiple mechanisms of hardening
US11390062B2 (en) 2014-08-12 2022-07-19 Carbon, Inc. Three-dimensional printing with supported build plates
KR20160049953A (ko) * 2014-10-28 2016-05-10 삼성에스디아이 주식회사 광경화 조성물, 이를 포함하는 유기보호층, 및 이를 포함하는 장치
EP3240671B1 (en) 2014-12-31 2020-12-16 Carbon, Inc. Three-dimensional printing of objects with breathing orifices
WO2016112084A1 (en) 2015-01-06 2016-07-14 Carbon3D, Inc. Build plate for three dimensional printing having a rough or patterned surface
WO2016112090A1 (en) 2015-01-07 2016-07-14 Carbon3D, Inc. Microfluidic devices and methods of making the same
EP3245044B1 (en) 2015-01-13 2021-05-05 Carbon, Inc. Three-dimensional printing with build plates having surface topologies for increasing permeability and related methods
US11020898B2 (en) 2015-01-30 2021-06-01 Carbon, Inc. Build plates for continuous liquid interface printing having permeable base and adhesive for increasing permeability and related methods, systems and devices
WO2016123506A1 (en) 2015-01-30 2016-08-04 Carbon3D, Inc. Build plates for continuous liquid interface printing having permeable sheets and related methods, systems and devices
EP3253558B1 (en) 2015-02-05 2020-04-08 Carbon, Inc. Method of additive manufacturing by fabrication through multiple zones
WO2016133759A1 (en) 2015-02-20 2016-08-25 Carbon3D, Inc. Methods and apparatus for continuous liquid interface printing with electrochemically supported dead zone
WO2016140888A1 (en) 2015-03-05 2016-09-09 Carbon3D, Inc. Fabrication of three dimensional objects with variable slice thickness
WO2016140891A1 (en) 2015-03-05 2016-09-09 Carbon3D, Inc. Continuous liquid interface production with sequential patterned exposure
US10391711B2 (en) 2015-03-05 2019-08-27 Carbon, Inc. Fabrication of three dimensional objects with multiple operating modes
WO2016145050A1 (en) 2015-03-10 2016-09-15 Carbon3D, Inc. Microfluidic devices having flexible features and methods of making the same
WO2016145182A1 (en) 2015-03-12 2016-09-15 Carbon3D, Inc. Additive manufacturing using polymerization initiators or inhibitors having controlled migration
US10792856B2 (en) 2015-03-13 2020-10-06 Carbon, Inc. Three-dimensional printing with flexible build plates
WO2016149097A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with reduced pressure build plate unit
WO2016149151A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with concurrent delivery of different polymerizable liquids
WO2017048710A1 (en) 2015-09-14 2017-03-23 Carbon, Inc. Light-curable article of manufacture with portions of differing solubility
JP6889155B2 (ja) 2015-09-25 2021-06-18 カーボン,インコーポレイテッド ライティングパネルを有する継続的液体相間印刷用のビルドプレートアセンブリー、及び関連した方法、システム並びにデバイス
WO2017059082A1 (en) 2015-09-30 2017-04-06 Carbon, Inc. Method and apparatus for producing three-dimensional objects
US10647873B2 (en) 2015-10-30 2020-05-12 Carbon, Inc. Dual cure article of manufacture with portions of differing solubility
WO2017112521A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Production of flexible products by additive manufacturing with dual cure resins
US10647054B2 (en) 2015-12-22 2020-05-12 Carbon, Inc. Accelerants for additive manufacturing with dual cure resins
EP3341792A1 (en) 2015-12-22 2018-07-04 Carbon, Inc. Dual precursor resin systems for additive manufacturing with dual cure resins
WO2017112682A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Fabrication of compound products from multiple intermediates by additive manufacturing with dual cure resins
US10538031B2 (en) 2015-12-22 2020-01-21 Carbon, Inc. Dual cure additive manufacturing of rigid intermediates that generate semi-rigid, flexible, or elastic final products
US11123920B2 (en) 2016-01-13 2021-09-21 Fujian Institute Of Research On The Structure Of Matter, Chinese Academy Of Science 3D printing apparatus and method
CA3024147A1 (en) 2016-05-31 2017-12-07 Northwestern University Method for the fabrication of three-dimensional objects and apparatus for same
JP7026058B2 (ja) 2016-07-01 2022-02-25 カーボン,インコーポレイテッド ビルドプレート経由での脱ガスによって気泡を低減する三次元印刷法および装置
EP3500546B1 (en) 2016-08-22 2021-02-24 3M Innovative Properties Company Propenylamines and methods of making and using same
CN110023056B (zh) 2016-11-21 2021-08-24 卡本有限公司 通过递送反应性组分用于后续固化来制造三维物体的方法
CA3044541A1 (en) * 2016-12-05 2018-06-14 Arkema Inc. Initiator blends and photocurable compositions containing such initiator blends useful for 3d printing
US10239255B2 (en) 2017-04-11 2019-03-26 Molecule Corp Fabrication of solid materials or films from a polymerizable liquid
US11135766B2 (en) 2017-06-29 2021-10-05 Carbon, Inc. Products containing nylon 6 produced by stereolithography and methods of making the same
US11616302B2 (en) 2018-01-15 2023-03-28 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11174326B2 (en) 2018-02-20 2021-11-16 The Regents Of The University Of Michigan Polymerization photoinhibitor
CN109206648A (zh) * 2018-04-20 2019-01-15 苏州科技大学 一种反射型炫彩膜
EP3841131A1 (en) 2018-08-22 2021-06-30 3M Innovative Properties Company Curable compositions for pressure-sensitive adhesives
US11552390B2 (en) 2018-09-11 2023-01-10 Rogers Corporation Dielectric resonator antenna system
TWI820237B (zh) 2018-10-18 2023-11-01 美商羅傑斯公司 聚合物結構、其立體光刻製造方法以及包含該聚合物結構之電子裝置
KR20210095632A (ko) 2018-12-04 2021-08-02 로저스코포레이션 유전체 전자기 구조 및 이의 제조방법
NL2022372B1 (en) 2018-12-17 2020-07-03 What The Future Venture Capital Wtfvc B V Process for producing a cured 3d product
WO2020210520A1 (en) 2019-04-09 2020-10-15 Cdj Technologies, Inc Methodologies to rapidly cure and coat parts produced by additive manufacturing
KR20220016812A (ko) 2019-05-30 2022-02-10 로저스코포레이션 스테레오리소그래피용 광경화성 조성물, 조성물을 사용한 스테레오리소그래피 방법, 스테레오리소그래피 방법에 의해 형성된 폴리머 성분, 및 폴리머 성분을 포함하는 장치
US11822117B2 (en) * 2019-10-08 2023-11-21 Corning Incorporated Primary coating compositions with improved microbending performance
CN110642985A (zh) * 2019-11-07 2020-01-03 同光(江苏)新材料科技有限公司 一种uv固化光学透明膜及其制备方法
WO2021118525A1 (en) * 2019-12-09 2021-06-17 Ares Materials Inc. Optically clear resin composition, flexible optical film and image display device
US11482790B2 (en) 2020-04-08 2022-10-25 Rogers Corporation Dielectric lens and electromagnetic device with same
WO2023081747A1 (en) 2021-11-04 2023-05-11 The Procter & Gamble Company Web material structuring belt, method for making and method for using
WO2023081745A1 (en) 2021-11-04 2023-05-11 The Procter & Gamble Company Web material structuring belt, method for making structured web material and structured web material made by the method
CA3181019A1 (en) 2021-11-04 2023-05-04 The Procter & Gamble Company Web material structuring belt, method for making and method for using
WO2023081744A1 (en) 2021-11-04 2023-05-11 The Procter & Gamble Company Web material structuring belt, method for making structured web material and structured web material made by the method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274063A (en) * 1990-12-26 1993-12-28 Kyoeisha Chemical Co., Ltd. Vinyl polymer having (meth)acryloyl groups on the side chains and method for preparing same
US5741543A (en) * 1995-02-10 1998-04-21 Minnesota Mining And Manufacturing Company Process for the production of an article coated with a crosslinked pressure sensitive adhesive
US6733700B2 (en) * 2000-06-13 2004-05-11 Zms, Llc Morphology trapping and materials suitable for use therewith
US6749779B2 (en) * 1999-03-16 2004-06-15 Zms, Llc Precision integral articles
US6874885B2 (en) * 1998-09-22 2005-04-05 Zms, Llc Near-net-shape polymerization process and materials suitable for use therewith
US20070021521A1 (en) * 2005-07-22 2007-01-25 3M Innovative Properties Company Curable thiol-ene compositions for optical articles
US20070188864A1 (en) * 2006-02-13 2007-08-16 3M Innovative Properties Company Optical articles from curable compositions
US20080058381A1 (en) * 2000-10-04 2008-03-06 Aventis Pharma S.A. Combination of a cb1 receptor antagonist and of sibutramine, the pharmaceutical compositions comprising them and their use in the treatment of obesity

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2611066C2 (de) 1976-03-16 1977-09-01 Siemens AG, 1000 Berlin und 8000 München Fernsprechteilnehmer-Anschlußeinrichtung mit Frequenz- oder Zeitmultiplex-Übertragungsabschnitt
US4542449A (en) 1983-08-29 1985-09-17 Canadian Patents & Development Limited Lighting panel with opposed 45° corrugations
US4812032A (en) 1984-09-19 1989-03-14 Toray Industries, Inc. Highly-refractive plastic lens
EP0176874A3 (en) 1984-09-19 1988-02-10 Toray Industries, Inc. A highly-refractive plastic lens
US4568445A (en) 1984-12-21 1986-02-04 Honeywell Inc. Electrode system for an electro-chemical sensor for measuring vapor concentrations
DE3607331A1 (de) 1986-03-06 1987-09-10 Espe Pharm Praep (meth)acrylsaeureester und ihre verwendung zur herstellung von dentalmassen
JPS6381301A (ja) * 1986-09-26 1988-04-12 Asahi Chem Ind Co Ltd 光学用感光性樹脂組成物
US5183597A (en) 1989-02-10 1993-02-02 Minnesota Mining And Manufacturing Company Method of molding microstructure bearing composite plastic articles
US5175030A (en) 1989-02-10 1992-12-29 Minnesota Mining And Manufacturing Company Microstructure-bearing composite plastic articles and method of making
US5394255A (en) 1992-01-27 1995-02-28 Sekisui Kagaku Kogyo Kabushiki Kaisha Liquid crystal display using a plurality of light adjusting sheets angled at 5 degrees or more
JP3155327B2 (ja) 1992-03-27 2001-04-09 三菱化学株式会社 高屈折率光学材料およびその製造法
JP3130165B2 (ja) * 1993-03-01 2001-01-31 三菱レイヨン株式会社 透明樹脂組成物
US6440880B2 (en) 1993-10-29 2002-08-27 3M Innovative Properties Company Pressure-sensitive adhesives having microstructured surfaces
DE69422057T2 (de) 1993-10-29 2000-07-13 Minnesota Mining & Mfg Haftklebstoffe die eine mikrostrukturierte oberfläche aufweisen
US5882774A (en) 1993-12-21 1999-03-16 Minnesota Mining And Manufacturing Company Optical film
US5591527A (en) 1994-11-02 1997-01-07 Minnesota Mining And Manufacturing Company Optical security articles and methods for making same
US5637646A (en) 1995-12-14 1997-06-10 Minnesota Mining And Manufacturing Company Bulk radical polymerization using a batch reactor
JPH107755A (ja) * 1996-06-25 1998-01-13 Daicel Chem Ind Ltd 脂環式骨格を有する光硬化性樹脂及びその製造方法
JPH1017787A (ja) * 1996-07-03 1998-01-20 Toagosei Co Ltd 紫外線硬化型オーバープリントワニス組成物
EP1016133B1 (en) * 1997-04-30 2009-10-07 Minnesota Mining And Manufacturing Company Method of planarizing the upper surface of a semiconductor wafer
JP3357013B2 (ja) * 1999-07-23 2002-12-16 大日本印刷株式会社 光硬化性樹脂組成物及び凹凸パターンの形成方法
CN1286908C (zh) * 2000-02-14 2006-11-29 积水化学工业株式会社 可光固化组合物,可光固化压敏粘合片及其粘合方法
US6448301B1 (en) * 2000-09-08 2002-09-10 3M Innovative Properties Company Crosslinkable polymeric compositions and use thereof
JP2002293851A (ja) * 2001-03-29 2002-10-09 Kansai Paint Co Ltd 光硬化性樹脂組成物
US6609795B2 (en) 2001-06-11 2003-08-26 3M Innovative Properties Company Polarizing beam splitter
JP2003131380A (ja) * 2001-10-24 2003-05-09 Toppan Printing Co Ltd 感光性樹脂組成物
JP2005519326A (ja) 2002-02-28 2005-06-30 スリーエム イノベイティブ プロパティズ カンパニー 複合偏光ビームスプリッタ
EP1375617A1 (en) * 2002-06-19 2004-01-02 3M Innovative Properties Company Radiation-curable, solvent-free and printable precursor of a pressure-sensitive adhesive
US7927703B2 (en) 2003-04-11 2011-04-19 3M Innovative Properties Company Adhesive blends, articles, and methods
JP2004325596A (ja) * 2003-04-22 2004-11-18 Fuji Photo Film Co Ltd ドライフィルムフォトレジスト
JP4415797B2 (ja) * 2004-08-31 2010-02-17 日立化成工業株式会社 光硬化性樹脂組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274063A (en) * 1990-12-26 1993-12-28 Kyoeisha Chemical Co., Ltd. Vinyl polymer having (meth)acryloyl groups on the side chains and method for preparing same
US5741543A (en) * 1995-02-10 1998-04-21 Minnesota Mining And Manufacturing Company Process for the production of an article coated with a crosslinked pressure sensitive adhesive
US6874885B2 (en) * 1998-09-22 2005-04-05 Zms, Llc Near-net-shape polymerization process and materials suitable for use therewith
US6749779B2 (en) * 1999-03-16 2004-06-15 Zms, Llc Precision integral articles
US6733700B2 (en) * 2000-06-13 2004-05-11 Zms, Llc Morphology trapping and materials suitable for use therewith
US20080058381A1 (en) * 2000-10-04 2008-03-06 Aventis Pharma S.A. Combination of a cb1 receptor antagonist and of sibutramine, the pharmaceutical compositions comprising them and their use in the treatment of obesity
US20070021521A1 (en) * 2005-07-22 2007-01-25 3M Innovative Properties Company Curable thiol-ene compositions for optical articles
US20070188864A1 (en) * 2006-02-13 2007-08-16 3M Innovative Properties Company Optical articles from curable compositions

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541942B2 (en) 1998-11-02 2013-09-24 3M Innovative Properties Company Transparent conductive articles and methods of making same
US20090116214A1 (en) * 2006-07-31 2009-05-07 3M Innovative Properties Company Led illumination system with polarization recycling
US20080048553A1 (en) * 2006-07-31 2008-02-28 3M Innovative Company Led source with hollow collection lens
US20080051135A1 (en) * 2006-07-31 2008-02-28 3M Innovative Properties Company Combination camera/projector system
US20080049190A1 (en) * 2006-07-31 2008-02-28 3M Innovative Properties Company Optical projection subsystem
US20080036972A1 (en) * 2006-07-31 2008-02-14 3M Innovative Properties Company Led mosaic
US8075140B2 (en) 2006-07-31 2011-12-13 3M Innovative Properties Company LED illumination system with polarization recycling
US8459800B2 (en) 2006-07-31 2013-06-11 3M Innovative Properties Company Optical projection subsystem
US7717599B2 (en) 2006-07-31 2010-05-18 3M Innovative Properties Company Integrating light source module
US20080037271A1 (en) * 2006-07-31 2008-02-14 3M Innovative Properties Company Integrating light source module
US7901083B2 (en) 2006-07-31 2011-03-08 3M Innovative Properties Company Optical projection subsystem
US8274220B2 (en) 2006-07-31 2012-09-25 3M Innovative Properties Company LED source with hollow collection lens
US8115384B2 (en) 2006-07-31 2012-02-14 3M Innovative Properties Company LED source with hollow collection lens
US8070295B2 (en) 2006-07-31 2011-12-06 3M Innovative Properties Company Optical projection subsystem
US20080085381A1 (en) * 2006-10-06 2008-04-10 3M Innovative Properties Company Optical element with a polarizer and a support layer
EP2226371A4 (en) * 2008-01-11 2011-12-14 Lg Chemical Ltd ADHESIVE COMPOSITION, ADHESIVE POLARISATOR PLATE AND LIQUID CRYSTAL DISPLAY DEVICE THEREWITH
EP2226371A2 (en) * 2008-01-11 2010-09-08 LG Chem, Ltd. Adhesive composition, and an adhesive polarising plate and liquid crystal display device comprising the same
US20090316083A1 (en) * 2008-06-18 2009-12-24 Atsushi Kishioka Liquid Crystal Display Device and Manufacturing Method for Same
US10228507B2 (en) 2008-07-10 2019-03-12 3M Innovative Properties Company Light source and optical article including viscoelastic lightguide disposed on a substrate
EP3026471A1 (en) 2008-08-08 2016-06-01 3M Innovative Properties Company Lightguide having a viscoelastic layer for managing light
US9285531B2 (en) 2008-08-08 2016-03-15 3M Innovative Properties Company Lightguide having a viscoelastic layer for managing light
US20110227239A1 (en) * 2008-12-01 2011-09-22 Showa Denko K.K. Method of molding
US8840830B2 (en) * 2008-12-01 2014-09-23 Aji Co., Ltd. Method of molding
CN102292317B (zh) * 2008-12-02 2015-01-28 3M创新有限公司 氮丙啶官能化光活性交联化合物
CN102292317A (zh) * 2008-12-02 2011-12-21 3M创新有限公司 氮丙啶官能化光活性交联化合物
EP2471849A4 (en) * 2009-08-25 2015-08-19 Lg Hausys Ltd PROCESS FOR PREPARING AN ACRYLIC FILM AND ACRYLIC FILM
US20110085106A1 (en) * 2009-10-09 2011-04-14 Sony Corporation Alignment film and method of manufacturing the same, phase difference device and method of manufacturing the same, and display unit
US8383212B2 (en) * 2009-10-09 2013-02-26 Sony Corporation Alignment film and method of manufacturing the same, phase difference device and method of manufacturing the same, and display unit
EP2556532A4 (en) * 2010-04-07 2014-08-13 Fujifilm Corp CURABLE PRINTING COMPOSITION AND METHOD FOR MANUFACTURING POLYMERIZABLE MONOMER FOR PRINTING
EP2556532A1 (en) * 2010-04-07 2013-02-13 FUJIFILM Corporation Curable composition for imprints and producing method of polymerizable monomer for imprints
US9309443B2 (en) * 2012-05-29 2016-04-12 3M Innovative Properties Company Liquid optical adhesive compositions
US20150184031A1 (en) * 2012-05-29 2015-07-02 3M Innovative Properties Company Liquid optical adhesive compositions
KR20150011012A (ko) * 2012-05-29 2015-01-29 쓰리엠 이노베이티브 프로퍼티즈 컴파니 액체 광학 접착제 조성물
KR101642635B1 (ko) 2012-05-29 2016-07-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 액체 광학 접착제 조성물
WO2013181030A1 (en) * 2012-05-29 2013-12-05 3M Innovative Properties Company Liquid optical adhesive compositions
KR102162853B1 (ko) 2012-11-16 2020-10-07 쓰리엠 이노베이티브 프로퍼티즈 컴파니 펜던트 (메트)아크릴로일 기를 포함하는 접착제, 용품 및 방법
WO2014078115A1 (en) * 2012-11-16 2014-05-22 3M Innovative Properties Company Adhesive including pendant (meth) acryloyl groups, article, and method
KR20150087278A (ko) * 2012-11-16 2015-07-29 쓰리엠 이노베이티브 프로퍼티즈 컴파니 펜던트 (메트)아크릴로일 기를 포함하는 접착제, 용품 및 방법
US10287463B2 (en) 2012-11-16 2019-05-14 3M Innovative Properties Company Adhesive including pendant (meth)acryloyl groups, article, and method
WO2014088936A1 (en) * 2012-12-06 2014-06-12 3M Innovative Properties Company Precision coating of viscous liquids and use in forming laminates
US9738816B2 (en) 2012-12-06 2017-08-22 3M Innovative Properties Company Precision coating of viscous liquids and use in forming laminates
US9817257B2 (en) 2012-12-06 2017-11-14 3M Innovative Properties Company Discrete coating of liquid on a liquid-coated substrate and use in forming laminates
WO2014093014A1 (en) * 2012-12-10 2014-06-19 3M Innovative Properties Company Liquid optical adhesive compositions
US20150284601A1 (en) * 2012-12-10 2015-10-08 3M Innovative Properties Company Liquid optical adhesive compositions
US9890304B2 (en) * 2012-12-10 2018-02-13 3M Innovative Properties Liquid optical adhesive compositions
US20150298366A1 (en) * 2012-12-14 2015-10-22 3M Innovative Properties Company Method of making precision-molded articles by polymerizing ethylenically-unsaturated materials in a mold using ionizing radiation
WO2015077161A1 (en) * 2013-11-21 2015-05-28 3M Innovative Properties Company Liquid optical adhesive compositions
US10035328B2 (en) 2013-11-21 2018-07-31 3M Innovative Properties Company Liquid optical adhesive compositions
US10035334B2 (en) 2013-11-21 2018-07-31 3M Innovative Properties Company Liquid optical adhesive compositions
KR101728652B1 (ko) 2013-11-21 2017-04-19 쓰리엠 이노베이티브 프로퍼티즈 컴파니 액체 광학 접착제 조성물
WO2015077114A1 (en) * 2013-11-21 2015-05-28 3M Innovative Properties Company Liquid optical adhesive compositions
US10197724B2 (en) * 2014-09-26 2019-02-05 Sumitomo Electric Industries, Ltd. Optical fiber core and optical fiber ribbon core
US20180298248A1 (en) * 2016-03-22 2018-10-18 Saiden Chemical Industry Co., Ltd. Method for measuring birefringence temperature dependence of adhesive, method for designing and manufacturing adhesive, adhesive, display, and optical film
JP2019178283A (ja) * 2018-03-30 2019-10-17 株式会社巴川製紙所 導光板用封止部材及びそれを用いた導光板の製造方法
US20190352471A1 (en) * 2018-05-16 2019-11-21 Solenis Technologies, L.P. Adiabatic gel polymerization process for the production of water-soluble polyelectrolytes
US10647823B2 (en) * 2018-05-16 2020-05-12 Solenis Technologies, L.P. Adiabatic gel polymerization process for the production of water-soluble polyelectrolytes

Also Published As

Publication number Publication date
EP2013004B1 (en) 2011-12-14
ATE537194T1 (de) 2011-12-15
WO2007094953A3 (en) 2009-04-09
EP2013004A4 (en) 2009-12-30
EP2013004A2 (en) 2009-01-14
KR101411153B1 (ko) 2014-06-23
US7767728B2 (en) 2010-08-03
JP2009526877A (ja) 2009-07-23
CN101495519A (zh) 2009-07-29
US20090156747A1 (en) 2009-06-18
JP5378805B2 (ja) 2013-12-25
KR20080092951A (ko) 2008-10-16
CN101495519B (zh) 2012-07-04
WO2007094953A2 (en) 2007-08-23

Similar Documents

Publication Publication Date Title
US7767728B2 (en) Curable compositions for optical articles
US7463417B2 (en) Optical articles from curable compositions
US20080085381A1 (en) Optical element with a polarizer and a support layer
US8853291B2 (en) Curable resin composition, cured article thereof, and optical material
KR20070042167A (ko) 광학 적층체
JP2010533317A (ja) 薄い微細構造化光学フィルム
JP2015038220A (ja) 重合性紫外線吸収剤を含むマイクロ構造光学フィルム
JP2013137485A (ja) フィルム
KR20150134398A (ko) 경화성 수지 조성물, 경화물 및 광학 물품
JP2013019957A (ja) 偏光透過光学部品及び光学投影装置
US20060027321A1 (en) Adhesive composition
WO2012014641A1 (ja) 硬化性樹脂組成物および成形体
JPWO2019131258A1 (ja) 色収差補正用光学樹脂材料
JP2004018710A (ja) 非複屈折性光学用樹脂組成物及びこれを用いた光学用素子
KR100773213B1 (ko) 광학 부품
KR20100118855A (ko) 광경화성 코팅 조성물
JP2008216792A (ja) 光学素子
JPH02230104A (ja) フレネルレンズの製造方法
JP2008216793A (ja) 光学素子
JPH07216022A (ja) 重合性組成物およびその利用

Legal Events

Date Code Title Description
AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LU, YING-YUH;XIA, JIANHUI;OLOFSON, PETER M.;AND OTHERS;REEL/FRAME:017160/0732;SIGNING DATES FROM 20060207 TO 20060208

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION