US20060293355A1 - Crystalline form of bis [(e)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino] pyrimidin-5-yl] (3r,5s)-3, 5-dihydroxyhept-6-enoicacid] calcium salt - Google Patents

Crystalline form of bis [(e)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino] pyrimidin-5-yl] (3r,5s)-3, 5-dihydroxyhept-6-enoicacid] calcium salt Download PDF

Info

Publication number
US20060293355A1
US20060293355A1 US10/571,254 US57125406A US2006293355A1 US 20060293355 A1 US20060293355 A1 US 20060293355A1 US 57125406 A US57125406 A US 57125406A US 2006293355 A1 US2006293355 A1 US 2006293355A1
Authority
US
United States
Prior art keywords
dihydroxyhept
methylsulfonyl
pyrimidin
fluorophenyl
isopropyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/571,254
Other languages
English (en)
Inventor
Rebecca Booth
Peter Cittern
Jeffrey Crabb
John Horbury
David Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AstraZeneca UK Ltd
Original Assignee
AstraZeneca UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34276833&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20060293355(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GB0321127A external-priority patent/GB0321127D0/en
Priority claimed from GB0404859A external-priority patent/GB0404859D0/en
Application filed by AstraZeneca UK Ltd filed Critical AstraZeneca UK Ltd
Assigned to ASTRAZENECA UK LIMITED reassignment ASTRAZENECA UK LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HORBURY, JOHN, CITTERN, PETER ANTHONY, CRABB, JEFFREY NORMAN, JONES, DAVID WYN CALVERT, BOOTH, REBECCA JANE
Publication of US20060293355A1 publication Critical patent/US20060293355A1/en
Priority to US12/615,935 priority Critical patent/US20100222373A1/en
Priority to US13/038,245 priority patent/US8436167B2/en
Priority to US13/858,553 priority patent/US20130225622A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to a novel crystalline chemical compound and more particularly to a novel crystalline form of bis[(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid]calcium salt, hereinafter referred to as “the Agent”, and illustrated in Formula (I) hereinafter, which compound is an inhibitor of the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG CoA reductase) and is useful as a pharmaceutical agent, for example in the treatment of hyperlipidemia, hypercholesterolemia and atherosclerosis, as well as other diseases or conditions in which HMG CoA reductase is implicated.
  • the invention also relates to processes for the manufacture of the crystalline form, pharmaceutical compositions comprising the crystalline form and the use of the crystalline form in medical treatment.
  • EPA 521471 discloses an amorphous (powder) form of the Agent, prepared by dissolving the corresponding sodium salt in water, adding calcium chloride and collecting the resultant precipitate by filtration.
  • the Agent can be prepared in a second crystalline form from water without the need for an organic co-solvent.
  • Form B obtained according to the present invention is substantially free from other crystal and non-crystal forms of the Agent.
  • the term “substantially free from other crystal and non-crystal forms” shall be understood to mean that the desired crystal form contains less than 50%, preferably less than 20%, more preferably less than 10%, more preferably less than 5% of any other forms of the Agent.
  • XRPD X-ray powder diffraction
  • the collimated x-ray source was passed through an automatic variable divergence slit set at V20 (20 mm path length) and the reflected radiation directed through a 2 mm antiscatter slit and a 0.2 mm detector slit.
  • the sample was exposed for 4 seconds per 0.02 degree 2-theta increment (continuous scan mode) over the range 2 degrees to 40 degrees 2-theta in theta-theta mode.
  • the running time was 2 hours 6 minutes and 40 seconds.
  • the instrument was equipped with a scintillation counter as detector. Control and data capture was by means of a DECpc LPv 433sx personal computer running with Diffrac AT (Socabim) software.
  • the X-ray powder diffraction spectra of a typical sample of Form B is shown in FIG. 1 hereinafter.
  • the 2-theta values of the X-ray powder diffraction pattern may vary slightly from one machine to another or from one sample of Form B to another, and so the values quoted are not to be construed as absolute. It will also be understood that the relative intensities of peaks may vary according to the orientation of the sample under test so that the intensities shown in the XRD trace included herein are illustrative and not intended to be used for absolute comparison.
  • Form B may also be characterised by its infra-red (IR) spectrum, such as that carried out by the DRIFT (Diffuse-Reflectance Infrared Fourier Transform Spectroscopy) technique.
  • IR infra-red
  • DRIFT Diffuse-Reflectance Infrared Fourier Transform Spectroscopy
  • a DRIFT spectrum of Form B is shown in Example 1 hereinafter. The spectrum was acquired using 2% w/w (in powdered KBr) over the 4,000-400 cm-1 spectral range on a Nicolet Magna 860 ESP FT-IR spectrometer. Spectral acquisition conditions were 2 cm-1 digital resolution, 64 background scans (KBr only) and 64 sample (2% sample mixed with KBr) scans.
  • DRIFT spectra may be influenced by the particle size of the sample being examined.
  • the spectrum for Form B shown hereinafter was obtained with a sample which had been crushed to a fine powder. Repeated samples, or those with an alternative sample preparation may give DRIFT spectra which vary in resolution, although the peak position frequency therein will be unchanged.
  • Form B may also be characterised by other analytical techniques known in the art.
  • Form B is obtained in a hydrated form with, for example, a water content of about 9-10% w/w, for example about 9% w/w.
  • Form B may be crystallised from a saturated solution of the Agent in aqueous [(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid]sodium salt (hereinafter referred to as ‘Sodium Salt’).
  • the amorphous form of the Agent is used as starting material and may be obtained, for example, as described in EPA 521471.
  • the sodium salt may be prepared as described in WO 00/49014 and in Example 1 hereinafter.
  • a process for the manufacture of a crystalline hydrated form of a compound of formula (I) which comprises forming crystals from a saturated solution of compound of formula (I) in aqueous bis[(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid]sodium salt.
  • a further aspect of the present invention provides a process for the manufacture of a crystalline hydrated form of a compound of formula (I) which comprises forming crystals from a saturated solution of the amorphous form of the compound of formula (I) in aqueous bis[(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid]sodium salt.
  • Saturation of the sodium salt solution with the Agent means addition of, for example the amorphous form to the sodium salt solution until the solution is saturated with respect to the amorphous form. Further amorphous form is added to maintain the saturation once crystallisation of Form B has started.
  • the process of the invention is conveniently carried out between 20 and 45° C., more conveniently between 30 and 45° C., even more conveniently between 37 and 43° C., and preferably at about40° C.
  • Form B may also be formed by seeding an aqueous solution or slurry of the amorphous form of the Agent, or by prolonged stirring of a solution of the amorphous form.
  • a further feature of the invention is a method of treating a disease condition wherein inhibition of HMG CoA reductase is beneficial which comprises administering to a warm-blooded mammal an effective amount of Form B of the Agent.
  • the invention also relates to the use of Form B in the manufacture of a medicament for use in a disease condition.
  • the compound of the invention may be administered to a warm-blooded animal, particularly a human, in need thereof for treatment of a disease in which HMG CoA reductase is implicated, in the form of a conventional pharmaceutical composition. Therefore in another aspect of the invention, there is provided a pharmaceutical composition comprising Form B in admixture with a pharmaceutically acceptable carrier.
  • compositions may be administered in standard manner for the disease condition that it is desired to treat, for example by oral, topical, parenteral, buccal, nasal, vaginal or rectal administration or by inhalation.
  • the Agent may be formulated by means known in the art into the form of, for example, tablets, capsules, aqueous or oily solutions, suspensions, emulsions, creams, ointments, gels, nasal sprays, suppositories, finely divided powders or aerosols for inhalation, and for parenteral use (including intravenous, intramuscular or infusion) sterile aqueous or oily solution or suspensions or sterile emulsions.
  • a preferred route of administration is oral.
  • the Agent will be administered to humans at a daily dose in, for example, the ranges set out in EPA 521471.
  • the daily doses may be given in divided doses as necessary, the precise amount of the Agent received and the route of administration depending on the weight, age and sex of the patient being treated and on the particular disease condition being treated according to principles known in the art.
  • a process for the manufacture of a pharmaceutical composition containing Form B as active ingredient which comprises admixing Form B together with a pharmaceutically acceptable carrier.
  • Form B has value as a processing aid for isolation of the amorphous form of the Agent.
  • a process for formation of amorphous bis[(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid]calcium salt comprising isolation of Form B as hereinbefore defined from a solution and subsequent conversion to the amorphous form.
  • a process for formation of amorphous bis[(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid]calcium salt comprising mixing a solution containing [(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid]calcium salt with a slurry of Form B in water, isolation of Form B and subsequent conversion of the isolated form B to the amorphous form, wherein Form B is as hereinbefore defined.
  • the process for isolation of form B is conveniently carried out between 20 and 45° C., more conveniently between 30 and 45° C., even more conveniently between 37 and 43° C., and preferably at about 40° C.
  • the solution containing [(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid]calcium salt is conveniently a waste solution such as a mother liquor solution from a process for formation and isolation of amorphous bis[(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid]calcium salt from the corresponding sodium salt and calcium chloride.
  • the Form B isolated from this process is of high purity, for example >90% on dry weight basis, preferably >95%, more preferably >99%.
  • the quantity of Agent in the slurry of form B is conveniently approximately 15 mol % of that contained in the waste solution.
  • the slurry and the waste solution are conveniently at a concentration of approximately 7 mg/ml.
  • Form B as hereinbefore defined
  • Form B as a processing aid for isolation of amorphous bis[(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid]calcium salt.
  • Form B as hereinbefore defined
  • Form B as hereinbefore defined as an intermediate in the a manufacture of amorphous bis[(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid]calcium salt.
  • Form B-1 An XRD trace of Form B-1 is shown in Example 2.
  • Form B-1 is produced by the removal of water from the crystal lattice of Form B. Upon dehydration, the long-range structure of Form B is retained in Form B-1, but Form B-1 has only limited short-range order.
  • Form B-1 may be formed by heating a sample of Form B to 60° C. or by storing a sample of Form B at 0% Relative Humidity (RH) using equipment such as a DVS (Dynamic Vapour Sorption) instrument, for example a Surface Measurement Systems DVS — 1, as described in Example 2.
  • Form B-1 may be converted back to Form B by appropriate exposure to water, for example by slurrying in water.
  • Form B-1 demonstrates a distinct XRD pattern in comparison to that of Form B.
  • the XRD pattern of Form B-1 may be determined by the method hereinbefore described for Form B.
  • a ‘dehydrated hydrate’ form of the Agent having an X-ray powder diffraction pattern with peaks at 2-theta (2 ⁇ ) 4.4, 7.7, 9.0 and 20.7 at 0% RH.
  • a ‘dehydrated hydrate’ of the Agent having an X-ray powder diffraction pattern with peaks at 2-theta (2 ⁇ ) 4.4, 9.0 and 20.7 at 0% RH.
  • Form B-1 Exposure of Form B-1 to humidities above 0% RH allows water to re-enter the crystal lattice to a level dictated by the RH of the environment.
  • water vapour does not easily reorder the structure to reproduce Form B, hence the material continues to lack short-range order and water is easily lost on lowering the relative humidity.
  • the absorption and desorption of water may lead to small shifts in the XRD peaks.
  • a DRIFT spectrum of Form B-1 is included in Example 2 hereinafter.
  • the experimental conditions were as described hereinbefore for Form B, except that the sample was gently crushed.
  • Aqueous sodium hydroxide (8% w/w, 27.2 ml) was added to a stirred mixture of [(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3R,5)-3,5-dihydroxyhept-6-enoic acid]methylamine salt (30 g) in purified water (234 ml) at 20° C. and the mixture was stirred for 15 min. The mixture may be filtered if necessary to remove insoluble material. The mixture was concentrated under reduced pressure at ⁇ 40° C. until 142 ml of distillate collected.
  • X-ray powder diffraction Peak Number 2 ⁇ d-Spacing Relative Intensity (>20%) 1 4.3 20.2 37.5 2 8.8 10.1 100 3 13.1 6.7 69.5 4 13.7 6.5 39.9 5 15.2 5.8 43.1 6 15.8 5.6 57.5 7 17.5 5.1 24.3 8 21.5 4.1 97.6 9 21.9 4.1 36.0 10 22.8 3.9 85.6 11 24.5 3.6 73.1 12 28.9 3.1 47.1
  • the Form B sample was crushed to a fine powder before being homogeneously mixed with KBr.
  • Other experimental conditioans have been described hereinbefore.
  • a sample of Form B (approximately 6 mg) was dispensed into a glass sample pan and suspended from the balance of an SMS Dynamic Vapour Sorption (DVS) instrument.
  • the DVS instrument was then used to hold at 0% RH, 30° C., overnight (after this time period the change in sample mass was ⁇ 0.002%/min over at least an hour).
  • the sample was then analysed immediately by XRD. The sample was exposed for 0.40 sec per 0.0357° 2 ⁇ over the range 3° to 30° 2 ⁇ in continuous scan, theta-theta mode.
  • the following trace is an example XRD trace of a sample of Form B-1 which has been stored at 0% RH. It will be appreciated that variations in the water content of the sample of Form B-1 will cause variations in the precise 2 ⁇ values described below, such variations in water content resulting for example by the conditions of storage of Form B-1. Peak Number 2 ⁇ d-Spacing Relative Intensity 1 4.4 20.0 100 2 7.7 11.4 26 3 9.0 9.9 58 4 20.7 4.3 22
  • FIG. 3 is a comparison of the XRD traces of Forms B and B-1:
  • the Form B may be converted to amorphous Agent as follows:
  • a suspension of crystalline Form B (17.32 g) in acetonitrile (148 ml) was treated with water (70 ml) to form a solution at 20° C.
  • Sodium chloride (18.8 g) was added to the solution and the pH is adjusted to 2.8-3.4 at 0° C. with aqueous hydrochloric acid and brine solution.
  • FIG. 4 shows the XRD pattern for Form A, as described in WO 00/42024.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pyridine Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
US10/571,254 2003-09-10 2004-09-08 Crystalline form of bis [(e)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino] pyrimidin-5-yl] (3r,5s)-3, 5-dihydroxyhept-6-enoicacid] calcium salt Abandoned US20060293355A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/615,935 US20100222373A1 (en) 2003-09-10 2009-11-10 Crystalline Form of Bis [(E)-7-[4-(4-fluoro-phenyl)-6-isopropyl-2-[methyl(methyl-sulfonyl)amino] pyrimidin-5-yl] (3R,5S)-3,5-dihydroxyhept-6-enoic acid] Calcium Salt
US13/038,245 US8436167B2 (en) 2003-09-10 2011-03-01 Chemical compounds
US13/858,553 US20130225622A1 (en) 2003-09-10 2013-04-08 Crystalline Form of Bis[(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid] Calcium Salt

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB0321127A GB0321127D0 (en) 2003-09-10 2003-09-10 Chemical compounds
GB0321127.3 2003-09-10
GB0404859.1 2004-03-04
GB0404859A GB0404859D0 (en) 2004-03-04 2004-03-04 Chemical compound
PCT/GB2004/003829 WO2005023779A1 (en) 2003-09-10 2004-09-08 Crystalline form of bis [(e)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3r,5s)-3,5-dihydroxyhept-6 -enoicacid] calcium salt

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2004/003829 A-371-Of-International WO2005023779A1 (en) 2003-09-10 2004-09-08 Crystalline form of bis [(e)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3r,5s)-3,5-dihydroxyhept-6 -enoicacid] calcium salt

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/615,935 Continuation US20100222373A1 (en) 2003-09-10 2009-11-10 Crystalline Form of Bis [(E)-7-[4-(4-fluoro-phenyl)-6-isopropyl-2-[methyl(methyl-sulfonyl)amino] pyrimidin-5-yl] (3R,5S)-3,5-dihydroxyhept-6-enoic acid] Calcium Salt

Publications (1)

Publication Number Publication Date
US20060293355A1 true US20060293355A1 (en) 2006-12-28

Family

ID=34276833

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/571,254 Abandoned US20060293355A1 (en) 2003-09-10 2004-09-08 Crystalline form of bis [(e)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino] pyrimidin-5-yl] (3r,5s)-3, 5-dihydroxyhept-6-enoicacid] calcium salt
US12/615,935 Abandoned US20100222373A1 (en) 2003-09-10 2009-11-10 Crystalline Form of Bis [(E)-7-[4-(4-fluoro-phenyl)-6-isopropyl-2-[methyl(methyl-sulfonyl)amino] pyrimidin-5-yl] (3R,5S)-3,5-dihydroxyhept-6-enoic acid] Calcium Salt
US13/038,245 Active US8436167B2 (en) 2003-09-10 2011-03-01 Chemical compounds
US13/858,553 Abandoned US20130225622A1 (en) 2003-09-10 2013-04-08 Crystalline Form of Bis[(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid] Calcium Salt

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/615,935 Abandoned US20100222373A1 (en) 2003-09-10 2009-11-10 Crystalline Form of Bis [(E)-7-[4-(4-fluoro-phenyl)-6-isopropyl-2-[methyl(methyl-sulfonyl)amino] pyrimidin-5-yl] (3R,5S)-3,5-dihydroxyhept-6-enoic acid] Calcium Salt
US13/038,245 Active US8436167B2 (en) 2003-09-10 2011-03-01 Chemical compounds
US13/858,553 Abandoned US20130225622A1 (en) 2003-09-10 2013-04-08 Crystalline Form of Bis[(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid] Calcium Salt

Country Status (32)

Country Link
US (4) US20060293355A1 (el)
EP (1) EP1663989B1 (el)
JP (1) JP2007505090A (el)
KR (1) KR20070019943A (el)
CN (1) CN1878760B (el)
AR (1) AR045628A1 (el)
AT (1) ATE428701T1 (el)
AU (1) AU2004270467B8 (el)
BR (1) BRPI0414236A (el)
CA (1) CA2537962C (el)
CO (1) CO5670355A2 (el)
CY (1) CY1109173T1 (el)
DE (1) DE602004020640D1 (el)
DK (1) DK1663989T3 (el)
ES (1) ES2324042T3 (el)
HK (1) HK1090361A1 (el)
HR (1) HRP20090335T1 (el)
IL (1) IL174073A (el)
IS (1) IS2689B (el)
MX (1) MXPA06002761A (el)
MY (1) MY142615A (el)
NO (1) NO336358B1 (el)
NZ (1) NZ545785A (el)
PL (1) PL1663989T3 (el)
PT (1) PT1663989E (el)
RU (1) RU2363697C2 (el)
SA (1) SA04250297B1 (el)
SI (1) SI1663989T1 (el)
TW (1) TWI370817B (el)
UA (1) UA85062C2 (el)
UY (1) UY28501A1 (el)
WO (1) WO2005023779A1 (el)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070255060A1 (en) * 2003-10-24 2007-11-01 Tetsuo Okada Process for the Manufacture of the Calcium Salt of Rosuvastatin (E)-7-'4-(4-Fluorophenyl)-6-Isopropyl-2-'Methyl (Methylsulfonyl) Amino ! Pyrmidin -5-Yl! (3R, 5S)-3,5-Dihydroxyhept-6-Enoic Acid and Crystalline Intermediates Thereof
US20080188657A1 (en) * 2006-12-01 2008-08-07 Astrazeneca Uk Limited Chemical process
US20080207903A1 (en) * 2004-12-24 2008-08-28 Michael Butters Chemical Process
US20080221323A1 (en) * 2003-06-05 2008-09-11 Jeffrey Norman Crabb Production of Rosuvastatin Calcium Salt
US20090286819A1 (en) * 2002-08-13 2009-11-19 Astrazeneca Ab Process for Preparing the Calcium Salt of Rosuvastatin
US20100136339A1 (en) * 2000-07-19 2010-06-03 Astrazeneca Uk Ltd. Process for the Preparation of 2-(6-Substituted-1,3-Dioxane-4-yl)Acetic Acid Derivatives
US20100209984A1 (en) * 2000-05-09 2010-08-19 Astrazeneca Uk Limited Process for the preparation of dihydroxy esters and derivatives thereof
US20100222373A1 (en) * 2003-09-10 2010-09-02 AstarZeneca UK Limited Crystalline Form of Bis [(E)-7-[4-(4-fluoro-phenyl)-6-isopropyl-2-[methyl(methyl-sulfonyl)amino] pyrimidin-5-yl] (3R,5S)-3,5-dihydroxyhept-6-enoic acid] Calcium Salt
US20100228028A1 (en) * 2005-07-08 2010-09-09 Michael Butters Processes for the manufacture of rosuvastatin and intermediates
US20110160455A1 (en) * 2001-07-13 2011-06-30 Astrazeneca Uk Ltd. Preparation of Aminopyrimidine Compounds
US9695130B2 (en) 2014-02-06 2017-07-04 Api Corporation Rosuvastatin calcium and process for producing intermediate thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0003305D0 (en) 2000-02-15 2000-04-05 Zeneca Ltd Pyrimidine derivatives
EP1323717A1 (en) 2001-12-27 2003-07-02 Dsm N.V. Process for the preparation of 2-(6-Substituted-1,3-Dioxane-4-yL) acetic acid derivatives
EP1375493A1 (en) 2002-06-17 2004-01-02 Dsm N.V. Process for the preparation of an dioxane acetic acid ester
KR101060215B1 (ko) 2002-12-16 2011-08-29 아스트라제네카 유케이 리미티드 피리미딘 화합물의 제조 방법
GB0322552D0 (en) 2003-09-26 2003-10-29 Astrazeneca Uk Ltd Therapeutic treatment
BRPI0706062A2 (pt) 2006-09-18 2011-03-22 Teva Pharma rosuvastatina cálcica cristalina
PL2387566T3 (pl) * 2009-01-14 2014-10-31 Krka Tovarna Zdravil D D Novo Mesto Sposób przygotowania rosuwastatyny
EA021942B1 (ru) * 2009-01-15 2015-10-30 Эгиш Дьёдьсердьяр Зрт. Способ изготовления солей розувастатина
HUP0900285A2 (en) 2009-05-07 2011-01-28 Egis Gyogyszergyar Nyilvanosan Mukoedoe Reszvenytarsasag Rosuvastatin salts and preparation thereof
WO2011074016A1 (en) 2009-12-17 2011-06-23 Matrix Laboratories Ltd Novel polymorphic forms of rosuvastatin calcium and process for preparation of the same
HU230737B1 (hu) 2010-11-16 2018-01-29 EGIS Gyógyszergyár Nyrt Eljárás rosuvastatin só előállítására
CA2818007A1 (en) 2010-11-22 2012-05-31 Basf Se Multicomponent system of rosuvastatin calcium salt and sorbitol
WO2012143308A1 (en) 2011-04-18 2012-10-26 Basf Se Multicomponent crystalline system of rosuvastatin calcium salt and vanillin
WO2014050874A1 (ja) * 2012-09-27 2014-04-03 東和薬品株式会社 ロスバスタチンカルシウムの新規結晶形態およびその製造方法
RO129060B1 (ro) 2013-04-25 2014-11-28 Antibiotice S.A. Compoziţie farmaceutică stabilă cu rosuvastatină calcică amorfă
US10626093B2 (en) 2016-04-18 2020-04-21 Morepen Loboratories Limited Polymorphic form of crystalline rosuvastatin calcium and novel processes for crystalline as well as amorphous rosuvastatin calcium
CN105837516B (zh) * 2016-05-16 2018-07-10 山东新时代药业有限公司 一种瑞舒伐他汀钙晶型及其制备方法
CN111050973B (zh) 2017-09-13 2021-11-30 杰富意钢铁株式会社 金属板的双面摩擦搅拌接合方法及双面摩擦搅拌接合装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026698A (en) * 1988-11-02 1991-06-25 Nissan Chemical Industries, Ltd. Thienopyridine type mevalonolactones
US6278001B1 (en) * 1995-11-28 2001-08-21 L'oréal Method for preparing (+) compactin and (+) mevinolin analog compounds having a β-hydroxy-δ-lactone grouping
US20030114685A1 (en) * 2001-08-16 2003-06-19 Valerie Niddam-Hildesheim Processes for preparing calcium salt forms of statins
US6784171B2 (en) * 1999-02-17 2004-08-31 Astrazeneca Process for the production of tert-butyl (E)-(6-[2-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl]vinyl](4R,6S)-2, 2-dimethyl[1, 3]dioxan-4-yl)acetate
US6870059B2 (en) * 2000-07-19 2005-03-22 Astrazeneca Uk Ltd. Process for the preparation of 2-(6-substituted-1,-3-dioxane-4-yl)acetic acid derivatives
US6875867B2 (en) * 2001-06-06 2005-04-05 Bristol-Myers Squibb Company Process for preparing chiral diol sulfones and dihydroxy acid HMG CoA reductase inhibitors
US20050124639A1 (en) * 2003-12-04 2005-06-09 Narendra Joshi Process for the preparation of pyrimidine derivatives
US20050209259A1 (en) * 2004-03-17 2005-09-22 Le Huang Novel anhydrous amorphous forms of rosuvastatin calcium, pitavastatin calcium and fluvastatin sodium

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645858A (en) * 1982-03-22 1987-02-24 G. D. Searle & Co. Pentanedioic acid derivatives
DE3741509A1 (de) * 1987-12-08 1989-06-22 Hoechst Ag Verfahren zur herstellung optisch aktiver 3-desmethylmevalonsaeurederivate sowie zwischenprodukte
AU3214689A (en) 1988-10-06 1990-05-01 Sandoz Ag Pyrimidinyl-substituted hydroxyacids, lactones and esters and pharmaceutical compositions containing them
JP2648897B2 (ja) * 1991-07-01 1997-09-03 塩野義製薬株式会社 ピリミジン誘導体
WO1993008823A1 (en) 1991-11-06 1993-05-13 Tanabe Seiyaku Co., Ltd. Guanidinyl and related cell adhesion modulation compounds
US5278313A (en) * 1992-03-27 1994-01-11 E. R. Squibb & Sons, Inc. Process for the preparation of 1,3-dioxane derivatives useful in the preparation of HMG-COA reductase inhibitors
DK0577040T3 (da) * 1992-07-02 1998-02-02 Hoechst Ag Fremgangsmåde til fremstilling af (3R,5S)6-hydroxy-3,,5-O-isopropyliden-3,5-dihydroxyhexansyre-tert.-butylester
CZ294740B6 (cs) 1995-07-17 2005-03-16 Warner-Lambert Company Krystalická forma IV atorvastatinu nebo jeho hydrátu, farmaceutický přípravek obsahující tuto krystalickou formu IV atorvastatinu a její použití v lékařství
FR2741620B1 (fr) 1995-11-28 1997-12-26 Oreal Procede de preparation de composes a groupement beta-hydroxy -delta-lactone analogues de la (+) compactine et de la (+) mevinoline
PT907639E (pt) 1996-06-24 2003-06-30 Novartis Ag Compostos polimorficos
SA99191255B1 (ar) 1998-11-30 2006-11-25 جي دي سيرل اند كو مركبات سيليكوكسيب celecoxib
EP1055671B1 (en) * 1998-12-10 2004-12-01 Kaneka Corporation A process for producing a simvastatin precursor
GB9900339D0 (en) * 1999-01-09 1999-02-24 Zeneca Ltd Chemical compounds
WO2001022962A1 (en) 1999-09-30 2001-04-05 Merck & Co., Inc. Anti-hypercholesterolemic drug combination
DE60044884D1 (de) 1999-11-17 2010-10-07 Teva Pharma Verfahren zur Herstellung einer polymorphen Form von Atorvastatin calcium
GB0001621D0 (en) 2000-01-26 2000-03-15 Astrazeneca Ab Pharmaceutical compositions
GB0003305D0 (en) * 2000-02-15 2000-04-05 Zeneca Ltd Pyrimidine derivatives
AU2000254249A1 (en) 2000-03-28 2001-10-08 Biocon India Limited Synthesis of (r-(r*,r*))-2-(4-fluorophenyl)-beta,delta-dihydroxy-5-(1-
GB0011120D0 (en) * 2000-05-09 2000-06-28 Avecia Ltd Process
GB0011163D0 (en) 2000-05-10 2000-06-28 Astrazeneca Ab Chemical compound
HUP0400913A2 (en) 2000-10-05 2006-11-28 Biogal Gyogyszergyar Pravastatin sodium substantially free of pravastatin lactone and epi-pravastatin, and compositions containing same
IL155890A0 (en) 2000-11-16 2003-12-23 Teva Pharma HYDROLYSIS OF [R(R*,R*)]-2-(4-FLUOROPHENYL)-beta,delta-DIHYDROXY-5-(1-METHYLETHYL)-3-PHENYL-4-[(PHENYLAMINO)CARBONYL]-1H-PYRROLE-1-HEPTANOIC ACID ESTERS WITH CALCIUM HYDROXIDE
IL156055A0 (en) 2000-11-30 2003-12-23 Teva Pharma Novel crystal forms of atorvastatin hemi calcium and processes for their preparation as well as novel processes for preparing other forms
NL1017548C2 (nl) 2001-03-09 2002-09-10 Synthon Bv Een lactonisatie proces.
IN190564B (el) 2001-04-11 2003-08-09 Cadila Heathcare Ltd
AR034772A1 (es) * 2001-07-13 2004-03-17 Astrazeneca Uk Ltd Preparacion de los compuestos de aminopirimidina
EP1425287A4 (en) 2001-08-16 2005-09-07 Teva Pharma PROCESSES FOR PREPARING CALCIUM SALT FORMS OF STATINES
US20050032875A1 (en) 2001-08-22 2005-02-10 Heinz Wolleb Process for the preparation of indole derivatives
JP2005512516A (ja) 2001-09-24 2005-05-12 メルク エンド カムパニー インコーポレーテッド スタチン薬物の組合せのスクリーニング方法および選択方法
AR033485A1 (es) 2001-09-25 2003-12-26 Otsuka Pharma Co Ltd Sustancia medicinal de aripiprazol de baja higroscopicidad y proceso para la preparacion de la misma
EP1323717A1 (en) 2001-12-27 2003-07-02 Dsm N.V. Process for the preparation of 2-(6-Substituted-1,3-Dioxane-4-yL) acetic acid derivatives
KR100511533B1 (ko) 2002-04-09 2005-08-31 임광민 키랄 중간체, 그의 제조방법 및 그를 이용한 HMG-CoA환원저해제의 제조방법
AU2003228010A1 (en) 2002-05-21 2003-12-02 Ranbaxy Laboratories Limited Process for the preparation of rosuvastatin
EP1375493A1 (en) 2002-06-17 2004-01-02 Dsm N.V. Process for the preparation of an dioxane acetic acid ester
DE10228103A1 (de) 2002-06-24 2004-01-15 Bayer Cropscience Ag Fungizide Wirkstoffkombinationen
GB0218781D0 (en) 2002-08-13 2002-09-18 Astrazeneca Ab Chemical process
KR101060215B1 (ko) * 2002-12-16 2011-08-29 아스트라제네카 유케이 리미티드 피리미딘 화합물의 제조 방법
GB0312896D0 (en) * 2003-06-05 2003-07-09 Astrazeneca Ab Chemical process
US7563748B2 (en) 2003-06-23 2009-07-21 Cognis Ip Management Gmbh Alcohol alkoxylate carriers for pesticide active ingredients
UY28501A1 (es) * 2003-09-10 2005-04-29 Astrazeneca Uk Ltd Compuestos químicos
GB0321827D0 (en) * 2003-09-18 2003-10-15 Astrazeneca Uk Ltd Chemical compounds
GB0324791D0 (en) * 2003-10-24 2003-11-26 Astrazeneca Ab Chemical process
DE10352659B4 (de) 2003-11-11 2007-09-13 Ratiopharm Gmbh Verfahren zur Herstellung von Statinen und Tetrahydropyranonderivate zur Verwendung in dem Verfahren
US7161004B2 (en) * 2004-06-21 2007-01-09 Dr. Reddy's Laboratories Limited Processes to produce intermediates for rosuvastatin
EP1769092A4 (en) 2004-06-29 2008-08-06 Europ Nickel Plc IMPROVED LIXIVIATION OF BASE METALS
GB0428328D0 (en) * 2004-12-24 2005-02-02 Astrazeneca Uk Ltd Chemical process
WO2007000020A1 (en) 2005-06-29 2007-01-04 Compumedics Limited Sensor assembly with conductive bridge
TW200831469A (en) * 2006-12-01 2008-08-01 Astrazeneca Uk Ltd Chemical process

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026698A (en) * 1988-11-02 1991-06-25 Nissan Chemical Industries, Ltd. Thienopyridine type mevalonolactones
US6278001B1 (en) * 1995-11-28 2001-08-21 L'oréal Method for preparing (+) compactin and (+) mevinolin analog compounds having a β-hydroxy-δ-lactone grouping
US6784171B2 (en) * 1999-02-17 2004-08-31 Astrazeneca Process for the production of tert-butyl (E)-(6-[2-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl]vinyl](4R,6S)-2, 2-dimethyl[1, 3]dioxan-4-yl)acetate
US6844437B1 (en) * 1999-02-17 2005-01-18 Astrazeneca Ab Process for the production of tert-butyl (E)-(6-[2-[4-(4-flurophenyl)-6-isopropyl-2-[methyl(methylsufonyl)amino]pyrimidin-5-yl]vinyl]4R,6S)-2,2-dimethyl[1,3]dioxan-4-yl)acetate
US6870059B2 (en) * 2000-07-19 2005-03-22 Astrazeneca Uk Ltd. Process for the preparation of 2-(6-substituted-1,-3-dioxane-4-yl)acetic acid derivatives
US6875867B2 (en) * 2001-06-06 2005-04-05 Bristol-Myers Squibb Company Process for preparing chiral diol sulfones and dihydroxy acid HMG CoA reductase inhibitors
US20030114685A1 (en) * 2001-08-16 2003-06-19 Valerie Niddam-Hildesheim Processes for preparing calcium salt forms of statins
US20050124639A1 (en) * 2003-12-04 2005-06-09 Narendra Joshi Process for the preparation of pyrimidine derivatives
US20050209259A1 (en) * 2004-03-17 2005-09-22 Le Huang Novel anhydrous amorphous forms of rosuvastatin calcium, pitavastatin calcium and fluvastatin sodium

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100209984A1 (en) * 2000-05-09 2010-08-19 Astrazeneca Uk Limited Process for the preparation of dihydroxy esters and derivatives thereof
US7888083B2 (en) 2000-05-09 2011-02-15 Astrazeneca Uk Limited Process for the preparation of dihydroxy esters and derivatives thereof
US20100136339A1 (en) * 2000-07-19 2010-06-03 Astrazeneca Uk Ltd. Process for the Preparation of 2-(6-Substituted-1,3-Dioxane-4-yl)Acetic Acid Derivatives
US7989643B2 (en) 2000-07-19 2011-08-02 Astrazeneca Uk Ltd. Process for the preparation of 2-(6-substituted-1,3-dioxane-4-yl)acetic acid derivatives
US8222412B2 (en) 2001-07-13 2012-07-17 Astrazeneca Uk Limited Preparation of aminopyrimidine compounds
US20110160455A1 (en) * 2001-07-13 2011-06-30 Astrazeneca Uk Ltd. Preparation of Aminopyrimidine Compounds
US8614320B2 (en) 2001-07-13 2013-12-24 Astrazeneca Uk Limited Preparation of aminopyrimidine compounds
US7842807B2 (en) * 2002-08-13 2010-11-30 Astrazeneca Uk Limited Process for preparing the calcium salt of rosuvastatin
US20090286819A1 (en) * 2002-08-13 2009-11-19 Astrazeneca Ab Process for Preparing the Calcium Salt of Rosuvastatin
US8063213B2 (en) 2003-06-05 2011-11-22 Astrazeneca Uk Limited Production of rosuvastatin calcium salt
US20080221323A1 (en) * 2003-06-05 2008-09-11 Jeffrey Norman Crabb Production of Rosuvastatin Calcium Salt
US20100222373A1 (en) * 2003-09-10 2010-09-02 AstarZeneca UK Limited Crystalline Form of Bis [(E)-7-[4-(4-fluoro-phenyl)-6-isopropyl-2-[methyl(methyl-sulfonyl)amino] pyrimidin-5-yl] (3R,5S)-3,5-dihydroxyhept-6-enoic acid] Calcium Salt
US8436167B2 (en) 2003-09-10 2013-05-07 Astrazeneca Uk Limited Chemical compounds
US20070255060A1 (en) * 2003-10-24 2007-11-01 Tetsuo Okada Process for the Manufacture of the Calcium Salt of Rosuvastatin (E)-7-'4-(4-Fluorophenyl)-6-Isopropyl-2-'Methyl (Methylsulfonyl) Amino ! Pyrmidin -5-Yl! (3R, 5S)-3,5-Dihydroxyhept-6-Enoic Acid and Crystalline Intermediates Thereof
US9371291B2 (en) 2003-10-24 2016-06-21 Astrazeneca Uk Limited Process for the manufacture of the calcium salt of rosuvastatin (E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]-pyrimidin-5-yl](3R,5S)-3,5-Dihydroxyhept-6-enoic acid and crystalline intermediates thereof
US8034932B2 (en) 2004-12-24 2011-10-11 Astrazeneca Uk Limited Chemical process
US20080207903A1 (en) * 2004-12-24 2008-08-28 Michael Butters Chemical Process
US20100228028A1 (en) * 2005-07-08 2010-09-09 Michael Butters Processes for the manufacture of rosuvastatin and intermediates
US20080188657A1 (en) * 2006-12-01 2008-08-07 Astrazeneca Uk Limited Chemical process
US9695130B2 (en) 2014-02-06 2017-07-04 Api Corporation Rosuvastatin calcium and process for producing intermediate thereof
US10377722B2 (en) 2014-02-06 2019-08-13 Api Corporation Rosuvastatin calcium and process for producing intermediate thereof

Also Published As

Publication number Publication date
BRPI0414236A (pt) 2006-10-31
ES2324042T3 (es) 2009-07-29
TW200526595A (en) 2005-08-16
MY142615A (en) 2010-12-15
TWI370817B (en) 2012-08-21
HRP20090335T1 (en) 2009-07-31
KR20070019943A (ko) 2007-02-16
IL174073A0 (en) 2006-08-01
UY28501A1 (es) 2005-04-29
MXPA06002761A (es) 2006-12-14
SI1663989T1 (sl) 2009-08-31
UA85062C2 (uk) 2008-12-25
CN1878760A (zh) 2006-12-13
RU2363697C2 (ru) 2009-08-10
US8436167B2 (en) 2013-05-07
ATE428701T1 (de) 2009-05-15
PL1663989T3 (pl) 2009-08-31
CA2537962C (en) 2012-10-23
CN1878760B (zh) 2011-11-09
DK1663989T3 (da) 2009-07-06
NZ545785A (en) 2010-03-26
PT1663989E (pt) 2009-06-09
US20100222373A1 (en) 2010-09-02
US20130225622A1 (en) 2013-08-29
HK1090361A1 (en) 2006-12-22
AR045628A1 (es) 2005-11-02
WO2005023779A1 (en) 2005-03-17
IL174073A (en) 2014-03-31
IS8385A (is) 2006-03-30
AU2004270467B2 (en) 2008-08-21
NO20061181L (no) 2006-03-29
EP1663989B1 (en) 2009-04-15
JP2007505090A (ja) 2007-03-08
CY1109173T1 (el) 2014-07-02
NO336358B1 (no) 2015-08-03
AU2004270467B8 (en) 2008-09-18
EP1663989A1 (en) 2006-06-07
SA04250297B1 (ar) 2008-11-18
DE602004020640D1 (de) 2009-05-28
US20120059022A1 (en) 2012-03-08
IS2689B (is) 2010-10-15
AU2004270467A1 (en) 2005-03-17
CA2537962A1 (en) 2005-03-17
RU2006111354A (ru) 2007-10-27
CO5670355A2 (es) 2006-08-31

Similar Documents

Publication Publication Date Title
US8436167B2 (en) Chemical compounds
CA2356212C (en) Crystalline bis[(e)-7- [ 4-(4- fluorophenyl)- 6-isopropyl-2- [methyl (methylsulfonyl) amino] pyrimidin -5-yl] (3r,5s)-3, 5-dihydroxyhept -6-enoic acid]calcium salt
US9371291B2 (en) Process for the manufacture of the calcium salt of rosuvastatin (E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]-pyrimidin-5-yl](3R,5S)-3,5-Dihydroxyhept-6-enoic acid and crystalline intermediates thereof
EP1873148B1 (en) Pharmaceutical compositions containing crystalline salts of 7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl]-(3R,5S)-3,5-dihydroxyhept-6-enoic acid
ZA200602263B (en) Polymorphic forms of a known antihyperlipemic agent
ZA200602009B (en) Crystallineformofbis[(E)-7-[4-(4-flourophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl](3R, 5S)-3,5-dihydroxyhept-6-enoicacid] calcium salt

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASTRAZENECA UK LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOOTH, REBECCA JANE;CITTERN, PETER ANTHONY;CRABB, JEFFREY NORMAN;AND OTHERS;REEL/FRAME:017697/0508;SIGNING DATES FROM 20060202 TO 20060204

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION