US20060112562A1 - Method of processing female spline of hub unit for supporting wheel - Google Patents

Method of processing female spline of hub unit for supporting wheel Download PDF

Info

Publication number
US20060112562A1
US20060112562A1 US10/539,264 US53926405A US2006112562A1 US 20060112562 A1 US20060112562 A1 US 20060112562A1 US 53926405 A US53926405 A US 53926405A US 2006112562 A1 US2006112562 A1 US 2006112562A1
Authority
US
United States
Prior art keywords
hub unit
work
female spline
broaching
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/539,264
Other languages
English (en)
Inventor
Masahiro Yasumura
Nobuyuki Hagiwara
Shoji Horike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Assigned to NSK LTD. reassignment NSK LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAGIWARA, NOBUYUKI, HORIKE, SHOJI, YASUMURA, MASAHIRO
Publication of US20060112562A1 publication Critical patent/US20060112562A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D37/00Broaching machines or broaching devices
    • B23D37/08Broaching machines with vertically-arranged working tools
    • B23D37/10Broaching machines with vertically-arranged working tools for broaching inner surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49696Mounting

Definitions

  • the present invention relates to a hub unit for supporting a wheel which is attached to an automobile, or the like, and particularly, to a method of processing a female spline which is formed on a shaft portion of this hub unit.
  • a jig 15 is abutted against an inner wall of a spline hole 3 a which is formed on a hub shaft portion 3 c of a work 103 for a hub unit to effect plastically deforming by caulking (or clinching) so that a material is prevented from being extruded (see, for example, Japanese Patent Application Laid-Open No. 2001-162338).
  • This arrangement is effective in increase of the axial force.
  • a reference numeral 16 denotes an outer race which is fitted on the hub shaft portion 3 c through bearings 18 ; and 17 an inner race element to be press-fitted on the hub shaft portion 3 c.
  • This arrangement is effective in suppressing deformation of the female spline portion caused by plastically deforming.
  • the female spline of the hub unit is processed by broaching (see, for example, Japanese Patent Application Laid-Open No. 2002-61661).
  • This arrangement is advantageous in regulating the surface roughness of the female spline.
  • a hub unit is different from that of the present invention since comprising a hub wheel and a constant velocity joint combined with each other, a female spline is in some case formed by machine work such as broaching, hardening processing, or polishing (see, for example, Japanese Patent Application Laid-Open No. 2002-301407).
  • the female spline of the hub unit is subjected to broaching after the shaft portion is plastically deformed caulking (or clinching) (see, for example, Japanese Patent Application Laid-Open Nos. 2002-283804 and 2002-89572).
  • the female spline of the hub unit is subjected to broaching after the shaft portion is plastically deformed by caulking (or clinching) so as to avoid the contraction of the diameter of the serration caused by the plastically deforming by caulking (or clinching).
  • a washing step after the treatment can not be omitted.
  • the broaching is not carried out by shielding chips, when the hub unit incorporates therein an encoder formed of multipolar magnet, there is a fear that the chips adhere to the encoder so as to deteriorate a rotation detecting function of a sensor which is used with the encoder to make a set.
  • An object of the present invention is to provide a method of processing a female spline of a hub unit for supporting a wheel which can solve the problems of the prior art described above, can process the female spline with precision, and can omit a washing step after the treatment.
  • the female spline is roughly processed by broaching on the shaft portion of the work for a hub, and then a bearing is fitted on the shaft portion and an outer end of an inner race of the bearing is fixed by plastically deforming by caulking (or clinching) at an end of the shaft portion in the axial direction. After that, the female spline is finished by semi-dry or dry broaching.
  • the rough broaching of the females spline is preferably performed in the following manner.
  • a ring is press-fitted on the shaft portion having a cylindrical hole of the hub unit or a part of the shaft portion is chucked, whereby this hole is made to have the form being narrower for an amount of contraction by plastically deforming by caulking (or clinching), or press-fitting of the inner race element at a portion nearer the portion plastically deformed by caulking (or clinching) of the shaft portion.
  • the broaching is carried out in this state.
  • the cost for finishing the female spline can be reduced, by conducting rough processing of the female spline beforehand.
  • FIG. 1 is a cross sectional view for showing a structure of a broaching work related to the present invention, when a work for a hub unit is turned up;
  • FIG. 2 is a cross sectional view for showing a structure of the broaching work related to the present invention, when a work for a hub unit is turned down;
  • FIG. 3A and FIG. 3B are for showing a cross section of the work for the hub unit prior to the broaching work, wherein FIG. 3A shows a shape of a hole for forming a spline before plastically deforming by caulking (or clinching), and FIG. 3B shows the shape after plastically deforming by caulking (or clinching);
  • FIG. 4A and FIG. 4B are respectively whole and partial cross sectional views for showing a seal attached to the work for the hub unit;
  • FIG. 5 is a lateral sectional view for showing a state in which the work for the hub unit is carried in during the broaching work related to the present invention
  • FIG. 6 is a lateral sectional view for showing a state in which a tool is inserted through the work for the hub unit in the broaching work;
  • FIG. 7 is a lateral sectional view for showing a state in which a spline processing is carried out by broaching
  • FIG. 8 is a lateral sectional view for showing a state before the hub unit is carried out after the broaching work
  • FIG. 9A and FIG. 9B are cross sectional views for showing a rough processing for forming the spline of the work for the hub for hub unit formation, wherein FIG. 9A shows a state before the broaching work, and FIG. 9B shows a state after the broaching work;
  • FIG. 10A is a partial cross sectional view of the hub unit in the axial direction
  • FIGS. 10B to 10 E are characteristic diagrams for respectively showing deformation data of a spline hole of the hub unit
  • FIG. 11 is a cross sectional view of a work for a hub unit for showing a conventional processing method of spline formation using a jig;
  • FIG. 12 is a partial cross sectional view of a work for a hub unit for showing a conventional method of forming and processing a spline by arranging a buffer portion between a spline portion and a portion plastically deforming by caulking (or clinching).
  • the work 103 comprises a hub 3 which integrally has a shaft portion 3 c and a flange 3 b for supporting a wheel, an inner race element 17 which is press-fitted on the hub shaft portion 3 c at a predetermined portion on the outer periphery thereof, an outer race 16 which is concentric to the hub shaft portion 3 c and the inner race element 17 and distant therefrom in the radial direction to be opposed thereto and has a flange 16 a to be connected and fixed to a knuckle of a suspension, and two rows of balls 18 which are interposed between the inner periphery of the outer race 16 and the outer peripheries of the shaft portion 3 c and the inner race element 17 and constitute a rolling bearing together with these members.
  • This work 103 has been assembled in advance as a hub unit work.
  • a central hole 3 a having a cylindrical form has been formed by grinding on the shaft portion 3 c , while the inner race element 17 , after press-fitted on the shaft portion 3 c , has been fixed by plastically deforming a portion 3 d by caulking (or clinching) to keep the position of the rolling bearing ( FIG. 3B ).
  • the hub unit work is disposed to be turned up if a portion corresponding to an inside of the car is positioned in an upper part and a portion corresponding to the outside of the car is in a lower part, while it is disposed to be turned down in the opposite case.
  • FIG. 1 is a view of a broaching work according to an embodiment of the present invention, when a work for a hub unit is turned up.
  • FIG. 2 is a view of a broaching work according to an embodiment of the present invention, when a work for a hub unit is turned down.
  • FIG. 3A and FIG. 3B are cross sectional views of the work for the hub unit prior to the broaching work, wherein FIG. 3A shows a shape of a hole for forming a spline before plastically deforming by caulking (or clinching), and FIG. 3B shows the shape of the hole for forming a spline after plastically deforming by caulking (or clinching).
  • FIG. 4B are respectively a whole cross sectional view and a partially enlarged cross sectional view of a seal attached to the work for the hub unit.
  • FIG. 5 is a lateral sectional view for showing a state in which the work for the hub unit is carried in during the broaching work.
  • FIG. 6 is a lateral sectional view for showing a state in which a tool is inserted through the work for the hub unit in the broaching.
  • FIG. 7 is a lateral sectional view for showing a state in which a spline processing is carried out in the broaching work.
  • FIG. 8 is a lateral sectional view for showing a state before the hub unit is carried out in the broaching work.
  • FIGS. 10A to 10 E are characteristic diagrams for showing deformation data of a spline hole of the hub work for the hub unit.
  • the hub unit work 103 which serves as a work before formation and processing of a female spline is disposed to turned up on a work stand 1 , and a straight guide portion 2 b of a tool 2 is inserted through a hole 3 a of the work 103 .
  • the work 103 is fixed to the work stand 1 on a lower surface of the flange 3 b which is a part separated from the portion 3 d plastically deformed by caulking (or clinching).
  • the tool 2 consists of a part having a cutting edge 2 a and the straight guide portion 2 b having no cutting edge 2 a , and is moved in a direction indicated by an arrow.
  • FIG. 2 A structure in which the hub unit work 103 (or the work 103 ) is disposed upside down is shown in FIG. 2 . Description of the respective components in FIG. 2 is the same as that in FIG. 1 and will be omitted.
  • the work 103 is, when the female spline is formed and processed, received by a flat surface portion 1 a for plastically deforming by caulking (or clinching) of the work stand 1 .
  • This flat surface portion 1 a has been processed in advance by cutting or coining.
  • the female spline with high degree of perpendicularity based on the flat surface portion 1 a for plastically deforming by caulking (or clinching) can be processed.
  • this processing method is effective for a work which is strict with abnormal sound from such an abutment surface.
  • the hub shaft portion 3 c of the work 103 has been formed by lathing in advance with the cylindrical hole 3 a through which the tool 2 is inserted.
  • This hole 3 a has such a form that the diameter thereof becomes larger at a portion nearer a portion 3 d to be plastically deformed by caulking (or clinching) (upward in the drawing), that is, the diameter becomes larger for an estimated amount of deformation thereof by plastically deforming by caulking (or clinching) or an estimated amount of contraction caused by deformation by plastically deforming by caulking (or clinching) or by insertion of the inner race element 17 at a portion closer to the portion 3 d to be plastically deformed by caulking (or clinching).
  • the inner diameter of the hole 3 a is contracted by plastically deforming by caulking (or clinching), as shown in FIG. 3B . If the inner diameter of the hole 3 a of the hub shaft portion 3 c is smaller than the outer diameter (the outer diameter of the straight guide portion 2 b ) of the tool 2 , the tip end of the tool 2 can not be inserted in the hole 3 a . To the contrary, when the inner diameter of the hole 3 a is excessively larger than the outer diameter of the tool 2 , the degree of concentricity of the tool 2 with respect to the hole 3 a becomes low.
  • a part which is not influenced by plastically deforming by caulking (or clinching) or by insertion of the inner race element 17 is processed by cutting to have a high degree of concentricity, while a part which is greatly influenced is processed to have a form that the inner diameter after plastically deforming by caulking (or clinching) is not smaller than the outer diameter of the tool 2 .
  • a seal 11 is attached to the outer race 16 of the work 103 , as shown in FIGS. 4A and 4B , in order to prevent chips from entering the bearing portion.
  • a lip 11 a of the seal 11 can be formed to be twofold by utilizing a step portion of the inner race element 17 . In this structure, chips are difficult to enter.
  • a detachable cap (not shown) may be provided.
  • the cap is attached to the work 103 before broaching and is removed after broaching. This cap is used repeatedly after the chips are taken off.
  • the cap is particularly effective for a work with an encoder formed of multipolar magnet or a work to which a seal can not be attached. Even for a work with a seal, the cap is used sometimes in order to prevent chips from being attached to the work itself.
  • the cutting edge 2 a of the tool 2 is given a brush 6 (cleaning means) so that the chips are absorbed by a vacuum tube 7 . That is, a processing called a cleaning is performed. This cleaning is required to be finished before the work 103 is placed on the work stand 1 . It is possible to employ a method that chips are to be detected by a sensor (not shown) and, when the sensor does not detect chips, cleaning is not carried out.
  • the upper chuck 4 which supports the tool 2 slowly descends.
  • the upper lid 5 is opened (unfolded) in a lateral direction (indicated by the arrow), and the upper chuck 4 further descends so that the straight guide portion 2 b of the tool 2 enters the hole 3 a of the hub shaft portion 3 c of the work 103 , as described above.
  • the lower chuck 8 thereupon ascends to come near a lower lid 9 which serves as the covering means, the lower lid 9 is opened in the lateral directions (indicated by the arrows).
  • the lower chuck 8 catches the lower end portion of the tool 2 .
  • the upper chuck 4 after confirming that the tool 2 is caught by the lower chuck 8 , releases the tool 2 .
  • oil 20 is sprayed on the tool 2 in the form of mist while the tool 2 slowly descends.
  • a nozzle 10 for spraying the mist onto the tool 2 is provided above the work 103 .
  • An amount of the oil in this case is 5 cc/h or less, in a state of semi-dry processed.
  • broaching work is conducted in a semi-dry or dry condition, there is little need of performing a washing step using a spraying of, for example, an air because of the oil used in the processing, unlike in a processing under a wet condition. Further, removal of chips is easier than that in the wet processing.
  • the subsequent operations are as follows. First, as shown in FIG. 7 , when the lower chuck 8 catches the lower end portion of the tool 2 and the upper chuck 4 releases the tool 2 , the lower chuck 8 descends at a predetermined speed. After releasing the tool 2 , the upper chuck 4 ascends, and the both ends of the upper lid 5 approach to each other in directions indicated by the arrows to close the upper lid 5 . when the lower chuck 8 brings the tool 2 down below the work 103 as indicated by the arrow, the lower lid 9 is closed.
  • a descending speed of the lower chuck 8 in this case, that is, a cutting speed in the broaching work is normally 3 m/min to 80 m/min.
  • a comparatively high speed of 40 m/min to 80 m/min is employed. The reason for this is related to that the chips absorb the heat so that the tool 2 is hardly damaged.
  • the lower lid 9 is opened in a direction opposite to that indicated by the arrows.
  • the upper chuck 4 also descends and the upper lid 5 is opened.
  • the tool 2 is pushed upward at a low to medium speed, so that the tool 2 is caused to ascend to reach the upper chuck 4 .
  • the lower chuck 8 releases the tool 2 .
  • the lower chuck 8 descends and the lower lid 9 is closed in directions indicated by the arrows.
  • the chuck 4 which catches the tool 2 ascends at a high speed, and the upper lid 4 is closed.
  • the cleaning of the tool 2 is started, meanwhile another work is conveyed in. After that, the operations shown in FIGS. 5 to 8 are repeated.
  • the cleaning of the tool 2 can be carried out when there is no work 103 and the broaching work after plastically deforming by caulking (or clinching) can be conducted without attaching chips onto the work 103 .
  • the broaching work may be conducted in a structure having an upper lid only and no lower lid, or in a structure having a lower lid only and no upper lid.
  • the broaching work is be in some cases conducted in a structure with no lid.
  • the upper chuck 4 is driven by an air cylinder and the lower chuck 9 by a mechanism having a servo motor and a ball screw combined with each other, respectively.
  • the driving method is not limited to this.
  • the upper chuck 4 or the lower chuck 9 may be driven by oil pressure.
  • the female spline is processed by pulling the tool 2 .
  • the female spline may be formed and processed by pushing the tool 2 .
  • the present embodiment employs the scheme that the tool 2 is moved downward.
  • a scheme that the tool 2 is moved upward may be employed.
  • the tool 2 for the broaching work shown in FIGS. 5 to 8 has the cutting edge 2 with a helical groove.
  • a tool having parallel grooves As a groove of the tool 2 , a helical groove can be processed continuously so that the female spline can be formed with precision with a helical groove.
  • a cut amount is 5 ⁇ m to 50 ⁇ m for one pitch from one cutting edge to another. In the present embodiment, a cutting amount for one pitch is set as 10 ⁇ m to 30 ⁇ m.
  • a material of the tool 2 is high-speed steel or ultra-hard metal. Such material may be coated in some cases.
  • the brush 6 is employed as the cleaning means for the tool 2 .
  • the cleaning means is not limited to this.
  • the cleaning may be conducted by spraying an air, using a washing liquid, or another means.
  • a rolling bearing comprising an outer race, rolling members and an inner race element is fitted and attached on a shaft portion 3 c ′ of a hub 3 ′, and before the inner race element is fixed by plastically deforming by caulking (or clinching), that is, before a work for a hub unit is assembled, a rough processing by broaching is conducted on the shaft portion 3 c ′ of the hub 3 ′, and then a finishing processing is conducted by broaching after the inner race element is fixed by plastically deforming by caulking (or clinching).
  • the finishing processing by broaching which is conducted after the inner race element is fixed by plastically deforming by caulking (or clinching) is carried out in the same manner as described above.
  • description will be made on a case in which the rough processing is performed by broaching prior to the plastically deforming by caulking (or clinching).
  • a hole 3 f ′ is formed by cutting on the shaft portion 3 c ′ of the hub work 3 ′ which serves as a work for hub formation.
  • This hole 3 f ′ is not identical to the hole 3 a which is shown in FIG. 3 , but has a cylindrical form with a uniform inner diameter.
  • This spline formation hole 3 g ′ has a form in which the inner diameter thereof is larger at a part nearer a portion 3 d ′ to be plastically deformed by caulking (or clinching) (that is, gradually larger from lower to upper in the drawing).
  • the hole 3 g ′ has a form which becomes larger at its part nearer the portion 3 d ′ to be plastically deformed by caulking (or clinching) for an estimated amount of contraction which may be caused by deformation by plastically deforming by caulking (or clinching) or press-fitting of the inner race element 17 .
  • the spline formation hole 3 g ′ is shaped to have such a form by rough processing, it is possible to reduce an interference for the finishing work by broaching after having effected plastically deforming by caulking (or clinching), and to prolong the life of the tool. Or, it is possible to omit the finishing work by broaching itself.
  • the form of the hole 3 f ′ is contracted by press-fitting of the ring 12 .
  • the form of the hole 3 f ′ may be contracted by partially chucking the outer diameter of the shaft portion 3 c ′.
  • a direction of moving the tool 2 in the rough processing is in some cases reversed to a direction of moving the tool 2 in the finishing work.
  • the rough processing is carried out in a wet condition, and the washing step is performed after the processing.
  • FIGS. 10A through 10E show results of measurement which is performed plural times on the form of the female spline of the shaft portion 3 c of the hub 3 by means of a cylinder gauge at four points a, b, c and d of the spline formation hole 3 g in the axial direction, wherein FIG. 10B shows a result of measurement performed after the rough processing by broaching (prior to the press-fitting of the inner race element); FIG. 10C shows a result of measurement after the press-fitting of the inner race element; and FIG. 10E shows a result of measurement after the finishing work by broaching, respectively.
  • FIGS. 10B shows a result of measurement performed after the rough processing by broaching (prior to the press-fitting of the inner race element)
  • FIG. 10C shows a result of measurement after the press-fitting of the inner race element;
  • FIG. 10E shows a result of measurement after the finishing work by broaching, respectively.
  • FIGS. 10A through 10E show results of measurement which is performed
  • the ordinate represents the axial direction of the shaft portion 3 c and the abscissa represents an amount of deformation. From FIGS. 10B through 10E , it is seen that, since a lower part of the spline formation hole 3 g is swollen and extruded by the press-fitting of the inner race element or by plastically deforming by caulking (or clinching) (particularly, by plastically deforming by caulking (or clinching)), an amount of deformation becomes greater at a lower part of the hub work 103 in the axial direction.
  • the axial force (the force for contracting the inner race element in the axial direction) of the hub unit hardly changes before and after the broaching work.
  • the axial force is reduced by several hundred kgf or around for the axial force of 5 to 10 tonf. Even under the worst of the circumstances estimated, it is calculated that the axial force is reduced by 5% at the maximum.
  • the encoder may be magnetized after a broaching work.
  • Japanese Patent Application Laid-Open Nos. 2001-287116 and 2001-269813 filed by a manufacturer of a broaching tool which is used in the experiments are referred.
  • a hole in a cylindrical form is provided on the shaft portion of a work for a hub unit by cutting, a rolling bearing is fitted and attached on the shaft portion, and, after an inner race thereof is fixed by plastically deforming by caulking (or clinching).
  • a female spline is formed on the hole by broaching, the female spline can be formed with precision without increasing the number of the processing steps or the manufacturing cost.
  • the female spline is roughly processed by broaching before the work for the hub unit is assembled, that is, before the rolling bearing is fitted and attached on the hub work and, after the rolling bearing is fitted and attached on the hub work and the inner race is fixed by plastically deforming by caulking (or clinching).
  • the female spline is finished by broaching, it is possible to reduce the processing cost for the finishing work and to prolong the life of the tool, in addition to form the female spline with precision.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
US10/539,264 2002-12-25 2003-12-24 Method of processing female spline of hub unit for supporting wheel Abandoned US20060112562A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-374875 2002-12-25
JP2002374875A JP4120394B2 (ja) 2002-12-25 2002-12-25 車輪支持用ハブユニットの雌スプライン加工方法
PCT/JP2003/016554 WO2004058440A1 (ja) 2002-12-25 2003-12-24 車輪支持用ハブユニットの雌スプライン加工方法

Publications (1)

Publication Number Publication Date
US20060112562A1 true US20060112562A1 (en) 2006-06-01

Family

ID=32677314

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/539,264 Abandoned US20060112562A1 (en) 2002-12-25 2003-12-24 Method of processing female spline of hub unit for supporting wheel

Country Status (4)

Country Link
US (1) US20060112562A1 (ja)
JP (1) JP4120394B2 (ja)
AU (1) AU2003292746A1 (ja)
WO (1) WO2004058440A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017205852A (ja) * 2016-05-16 2017-11-24 株式会社ジェイテクト ハブユニットの製造方法
EP4147817A1 (fr) * 2021-09-10 2023-03-15 Ntn-Snr Roulements Procede d'assemblage d'au moins une bague cooperant par frettage avec une portee de frettage d'une piece

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089572A (ja) * 2000-07-10 2002-03-27 Koyo Seiko Co Ltd 軸受装置
JP4704070B2 (ja) * 2005-03-01 2011-06-15 Ntn株式会社 ブローチ加工方法
JP2006273117A (ja) * 2005-03-29 2006-10-12 Ntn Corp 車輪軸受装置
JP5501595B2 (ja) * 2008-10-09 2014-05-21 Ntn株式会社 車輪用軸受装置
JP7049805B2 (ja) * 2017-10-26 2022-04-07 株式会社Fuji 工作機械

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1507771A (en) * 1922-06-08 1924-09-09 Oil Gear Company Broach cleaner
US5011302A (en) * 1990-06-25 1991-04-30 The Budd Company Motor vehicle hub and bearing with integrated anti-lock brake sensor mounting
US5197837A (en) * 1992-02-24 1993-03-30 General Electric Company Broach tool chip remover
US5249555A (en) * 1992-04-14 1993-10-05 K-Line Industries, Inc. Valve guide insert
US5489169A (en) * 1995-01-17 1996-02-06 Lovejoy, Inc. Vertical broaching machine
US6155760A (en) * 1999-05-03 2000-12-05 Cannelli, Jr.; Victor Workpiece receptacle for presses
US6672769B2 (en) * 2000-07-10 2004-01-06 Koyo Seiko Co., Ltd. Bearing apparatus and producing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126967A (ja) * 2000-10-20 2002-05-08 Enshu Ltd ドライ加工装置の切削屑収集システム
JP2002126941A (ja) * 2000-10-24 2002-05-08 Nachi Fujikoshi Corp ブローチ盤用流体噴出装置
JP3902415B2 (ja) * 2001-03-29 2007-04-04 Ntn株式会社 駆動車輪用軸受装置
JP2002347406A (ja) * 2001-05-29 2002-12-04 Nsk Ltd 車輪用軸受ユニットとその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1507771A (en) * 1922-06-08 1924-09-09 Oil Gear Company Broach cleaner
US5011302A (en) * 1990-06-25 1991-04-30 The Budd Company Motor vehicle hub and bearing with integrated anti-lock brake sensor mounting
US5197837A (en) * 1992-02-24 1993-03-30 General Electric Company Broach tool chip remover
US5249555A (en) * 1992-04-14 1993-10-05 K-Line Industries, Inc. Valve guide insert
US5489169A (en) * 1995-01-17 1996-02-06 Lovejoy, Inc. Vertical broaching machine
US6155760A (en) * 1999-05-03 2000-12-05 Cannelli, Jr.; Victor Workpiece receptacle for presses
US6672769B2 (en) * 2000-07-10 2004-01-06 Koyo Seiko Co., Ltd. Bearing apparatus and producing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017205852A (ja) * 2016-05-16 2017-11-24 株式会社ジェイテクト ハブユニットの製造方法
EP4147817A1 (fr) * 2021-09-10 2023-03-15 Ntn-Snr Roulements Procede d'assemblage d'au moins une bague cooperant par frettage avec une portee de frettage d'une piece
FR3126900A1 (fr) * 2021-09-10 2023-03-17 Ntn-Snr Roulements Procédé d’assemblage d’au moins une bague coopérant par frettage avec une portée de frettage d'une pièce

Also Published As

Publication number Publication date
JP2004203213A (ja) 2004-07-22
JP4120394B2 (ja) 2008-07-16
AU2003292746A1 (en) 2004-07-22
WO2004058440A1 (ja) 2004-07-15

Similar Documents

Publication Publication Date Title
JP5206848B2 (ja) 軸受装置およびこれの製造方法
CN109483180B (zh) 一种轮毂轴承花键加工工艺
JP2005180578A (ja) 蓋付きクロスローラ軸受及びその製造方法
US20060112562A1 (en) Method of processing female spline of hub unit for supporting wheel
KR101936650B1 (ko) 볼 스플라인을 갖는 동력 전달축의 제조 방법
US20050231025A1 (en) Wheel support rolling bearing unit and manufacturing method therefor
JP4543928B2 (ja) 車輪用軸受ユニットの製造方法
JP5701499B2 (ja) シール面の加工方法
WO2010024083A1 (ja) トリポード型等速自在継手およびその製造方法
JP2011226576A (ja) 密封シール付き転がり軸受ユニット
JP2008111469A (ja) 等速ジョイント用外輪部材の製造方法
JP4943019B2 (ja) 車輪用軸受装置の製造方法
JP4781716B2 (ja) 車輪用軸受装置の製造方法
JP2005036905A (ja) 車輪支持用ハブユニットの製造方法
JP2007247847A (ja) 動力伝達シャフト
CN108026963A (zh) 车轮用轴承装置的制造方法
JP4940529B2 (ja) 軸受装置およびこれの製造方法
JP2001124094A (ja) 軸受の外輪のランド仕上げ加工法及び軸受
JP2004122345A (ja) ユニット組立品及びそのブローチ加工方法
JP5150990B2 (ja) 車軸用軸受装置の製造方法
JP2007223364A (ja) 車輪用軸受装置の製造方法
WO2006090985A1 (en) Method of manufacturing pinion shaft and mold thereof
JP5322449B2 (ja) 等速ジョイントおよび等速ジョイント外輪の製造方法
JP3943985B2 (ja) 駆動車輪用軸受装置の製造方法
JP2003245749A (ja) 極小ころがり軸受の製造方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: NSK LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YASUMURA, MASAHIRO;HAGIWARA, NOBUYUKI;HORIKE, SHOJI;REEL/FRAME:017452/0105

Effective date: 20050601

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION