US20050133991A1 - Sheet conveying apparatus, sheet treating apparatus and image forming apparatus - Google Patents
Sheet conveying apparatus, sheet treating apparatus and image forming apparatus Download PDFInfo
- Publication number
- US20050133991A1 US20050133991A1 US10/990,494 US99049404A US2005133991A1 US 20050133991 A1 US20050133991 A1 US 20050133991A1 US 99049404 A US99049404 A US 99049404A US 2005133991 A1 US2005133991 A1 US 2005133991A1
- Authority
- US
- United States
- Prior art keywords
- roller
- sheet
- gear
- supporting member
- drive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000000694 effects Effects 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 8
- 239000011435 rock Substances 0.000 claims description 2
- 238000007599 discharging Methods 0.000 abstract description 112
- 238000010276 construction Methods 0.000 description 31
- 230000005540 biological transmission Effects 0.000 description 5
- 244000126211 Hericium coralloides Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H5/00—Feeding articles separated from piles; Feeding articles to machines
- B65H5/06—Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers
- B65H5/062—Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers between rollers or balls
Definitions
- the invention relates to a sheet conveying apparatus, a sheet treating apparatus and an image forming apparatus provided with the same, and particularly to a sheet treating apparatus which realizes sheet treatment of large capacity with a saved space and at a low cost and by saved electric power, and an image forming apparatus provided with the same.
- sheet treating apparatuses there are known ones of a type which are provided near the sheet discharging port of an image forming apparatus main body, align the sheets printed on the image forming apparatus main body side, and then successively supplied from the discharging port, and thereafter subject those sheets to a binding process and discharge them.
- the present invention has been made in view of such a situation, and has as its object to provide a sheet conveying apparatus and a sheet treating apparatus which realize the treatment of a large volume of paper with a saved space and at a low cost and by saved electric power, and an image forming apparatus provided with the same.
- the present invention is provided with a pair of conveying rollers having a first roller and a second roller disposed in opposed relationship with the first roller, a roller supporting member which rotatably supports the first roller, and is movable between a first position in which the first roller can cooperate with the second roller to convey a sheet and a second position in which the first roller is spaced apart from the second roller, a driving member which pivotally moves the roller supporting member, a drive transmitting portion which transmits drive to the driving member, and a drive source which transmits the drive to the drive transmitting portion, and is characterized in that the roller supporting member has a gear portion, and the driving member has a gear meshing with the gear portion of the roller supporting member, and effects the movement of the roller supporting member from the first position to the second position by the meshing engagement between the gear portion and the gear.
- the present invention is characterized in that the roller supporting member is provided with a cam stopper portion, and the driving member has a cam corresponding to the cam stopper portion of the roller supporting member, effects the holding of the roller supporting member in the first position by the engagement between the cam and the cam stopper portion, and effects the movement of the roller supporting member from the second position to the first position by the release of the engagement between the cam and the cam stopper portion.
- the present invention is characterized in that the movement of the roller supporting member from the first position to the second position and the movement thereof from the second position to the first position are effected by the driving of the drive source transmitted from the drive transmitting portion to the driving member in only one direction.
- a sheet conveying apparatus and a sheet treating apparatus which can achieve space saving and low costs and electric power saving, and an image forming apparatus provided with the same.
- the construction of the driving system of the sheet treating apparatus which can form an intermediate stacking portion capable of stapling a large volume of paper can be inexpensively realized by a compact and simple construction.
- torque used becomes smaller than in the conventional construction comprising only a cam, and electric power saving is realized and therefore, the electric power supply capacity of the apparatus can also be made small.
- the post-treatment of a large volume of paper in the sheet conveying apparatus, the sheet treating apparatus and a laser beam printer (image forming apparatus) provided with the same can be realized a construction of saved space, low cost and saved electric power.
- FIG. 1 is a schematic cross-sectional view showing the general construction of a laser beam printer which is an example of an image forming apparatus provided with a sheet treating apparatus according to a first embodiment of the present invention.
- FIG. 2 is a perspective view of a pair of discharging rollers provided in the sheet treating apparatus.
- FIG. 3A is a plan view of the essential portions of the sheet treating apparatus
- FIG. 3B is a side view of the essential portions of the sheet treating apparatus
- FIGS. 3C and 3D show stamp means as it is seen from a direction indicated by the arrow A of FIG. 3A .
- FIGS. 4A and 4B show a state in which a slide guide provided in the sheet treating apparatus is located at a home position and a bundle of sheets falls.
- FIGS. 5A and 5B illustrate the movement of each portion in the binding operation of the sheet treating apparatus.
- FIGS. 6A and 6B show a state in which sheets are aligned by the slide guide.
- FIG. 7 illustrates the drive transmitting portion of the sheet treating apparatus.
- FIGS. 8A and 8B illustrate the drive transmission during the spacing operation and the drive interrupting operation of the pair of discharging rollers of the sheet treating apparatus.
- FIG. 9 illustrates the mechanical construction of the discharging roller supporting member and spacing gear of the sheet treating apparatus.
- FIGS. 10A and 10B illustrates the cut-away gear shapes of the discharging roller supporting member and the spacing gear of the sheet treating apparatus.
- FIGS. 11A and 11B illustrate the spacing operation of the pair of discharging rollers.
- FIGS. 12A and 12B illustrate the drive transmission during the approaching operation of the pair of discharging rollers of the sheet treating apparatus.
- FIGS. 13A and 13B illustrate the drive transmission during the paddle rotating operation of the sheet treating apparatus.
- FIG. 14 is a side view of the drive transmitting portion of a sheet treating apparatus according to a second embodiment of the present invention.
- FIG. 15A is a plan view of the vicinity of the pair of discharging rollers of a sheet treating apparatus according to a third embodiment of the present invention
- FIG. 15B is a cross-sectional view taken along the line XVB-XVB of FIG. 15A .
- FIGS. 16A and 16B are cross-sectional views of the vicinity of the pair of discharging rollers of the sheet treating apparatus shown in FIG. 15A taken along line XVI-XVI.
- FIG. 1 is a cross-sectional view of an image forming process system constituted by an image forming apparatus provided with a sheet treating apparatus and an image reading apparatus according to the present invention.
- the reference numeral 100 designates a printer provided with an image reading portion 200 , and after an image is formed on a sheet supplied from a sheet supplying cassette 101 , two discharging routes are set. They are an A conveying path 105 which U-turn-conveys a sheet to the upper portion of a writing scanner 104 by fixed sheet discharging rollers 102 and a pair of runners 103 , and effects reversal conveyance, and a B conveying path 106 which effects direct conveyance.
- a sheet treating apparatus 300 is adapted to stack on a stacking portion 301 the sheets discharged out of the printer main body 100 , and thereafter effect the alignment of the sheets by aligning means 302 , bundle the sheets in each predetermined job and staple the sheets at one or more portions thereof and discharge and stack them on a second stacking portion 303 , or simple discharge and stack the sheets on a second stacking portion 303 in a face-down or face-up posture.
- the sheet treating apparatus 300 is provided with a discharging upper roller 330 a, a discharging lower roller 330 b, a resilient paddle 321 for moving the sheet in an aligning direction, and a reference wall 322 against which the trailing edge of the sheet is rammed.
- the pair of discharging rollers 330 is such that the roller main bodies 330 a 1 , 330 a 2 of the discharging upper roller 330 a as a first roller and the roller main bodies 330 b 1 , 330 b 2 of the discharging lower roller 330 b as a second roller are disposed in a so-called staggered fashion so as to come into between the respective roller main bodies.
- a so-called comb-tooth construction in which the discharging upper roller 330 a and the discharging lower roller 330 b do not contact with each other.
- the discharging upper roller 330 a and the discharging lower roller 330 b are adapted to overlap each other in the axial direction thereof.
- the roller main bodies 330 b 1 contacting with the opposite end portions of the discharging lower roller 330 b are formed so as to be larger in diameter toward the outer portions thereof, thereby raising the opposite end portions of the sheet (bundle).
- the sheet (bundle) is thus given rigidity to thereby lengthen the distance by which the sheet (bundle) is discharged straight, and raise the opposite end portions of the sheet (bundle), whereby even when the amount of curl and the discharging direction of the sheet discharged from the printer main body 100 differ greatly due to the difference in the kind of paper or a fixing mode or a printer mode, and irrespective of whether the stapling process has been carried out or not, the leading edge of a sheet (bundle), when it is discharged, can be prevented from contacting with an already discharged sheet (bundle), and the stackability of the sheet (bundle) can be improved.
- slide guides 302 a and 302 b which will be described later are driven by a jogger motor M, which in the present embodiment is a stepping motor.
- the paddle 321 as aligning means is formed of a flexible material such as rubber, and a plurality of such paddles are fixed to a paddle shaft 350 in a direction orthogonal to a sheet conveying direction.
- the paddles are rotated counter-clockwisely by the driving of the paddle shaft 350 , whereby the sheet S is moved in a direction opposite to the sheet conveying direction which is an aligning direction, and contacts with the reference wall 322 and is aligned.
- the slide guides 302 a and 302 b which will be described in detail later are provided as aligning members which effect the widthwise alignment of the sheet.
- the letter M designates a jogger motor as a drive source
- the letter H denotes a stapler as binding means for stapling the sheet bundle to thereby carry out a binding process to the sheet bundle, and this stapler H is fixedly disposed on the slide guide 302 a side to carry out stapling on the left upper corner portions of the image bearing surfaces of the sheets on which images are formed to thereby bind the sheets.
- this sheet treating apparatus 300 is designed to be capable of stacking, aligning and stapling the sheets on a first stacking portion 301 , discharging and stacking the sheets onto a second stacking portion 303 , and discharging and stacking the sheets onto the second stacking portion 303 simply in a face-down or face-up posture.
- the sheet S conveyed by a pair of inlet rollers 362 passes the front of the stapler H, and then is conveyed by the pair of discharging rollers 330 constituted by the discharging upper roller 330 a and the discharging lower roller 330 b, and falls toward a second sheet discharging portion 303 , as indicated by the arrow in FIG. 4B .
- the slide guides 302 a and 302 b wait at a waiting position in which they can place the sheets carried thereto and do not interfere with the side edge portions of the sheets.
- the waiting position of the slide guides 302 a and 302 b is set so that as shown in FIG. 3B , the gaps on the opposite sides may be of a predetermined amount “d”.
- the interval between the end surfaces of the bottom surfaces of the two slide guides 302 a and 302 b is smaller than the width of the sheet S.
- Design is made such that the two slide guides 302 a and 302 b are at such positions, whereby they can constitute the first stacking portion 301 for supporting the sheet S coming in, together with a sheet guide portion between the reference wall 322 and the pair of discharging rollers 330 .
- the sheet conveyed by the pair of inlet rollers 362 passes the front of the stapler H, and then is conveyed by the pair of discharging rollers 330 , and is further conveyed onto the guide surface of the first sheet stacking portion 301 constituted by the slide guides 302 a and 302 b.
- the discharging roller supporting member 331 is clockwisely pivotally moves as shown in FIG. 5A , whereby the discharging upper roller 330 a supported by the discharging roller supporting member 331 is upwardly retracted, and the pair of discharging rollers are spaced apart from each other.
- the drive connected to the pair of discharging rollers 330 is cut off to thereby stop the rotation of the discharging upper roller 330 a and the discharging lower roller 330 b.
- the paddles 321 make one bull rotation counter-clockwisely about the paddle shaft 350 while contacting with the upper surface of the sheet S. Thereby the sheet S is rammed against the reference wall 322 , thus completing the aligning operation in the conveying direction.
- the slide guide 302 b is driven by the jogger motor M and is moved to the right side in FIG. 4A , whereby the slide guide 302 b contacts with the left side edge of the sheet S and pushes the sheet S toward the slide guide 302 a side.
- the right side edge of the sheet S then strikes against the slide guide 302 a, whereby the widthwise alignment of the sheet is effected. Setting is done so that the sheet S may be moved to a stapling position set in the position wherein the sheet contacts with the slide guide 302 a and has been aligned. After the aligning operation, the slide guide 302 b is moved in a direction to widen more than the width of the sheet S so as to be capable of coping with the conveyance of the next sheet again at the waiting position.
- stamp means 380 as holding means of which the lever 380 b provided with a frictional member 380 a as shown in FIG. 3C is moved in a vertical direction and presses the aligned sheet to thereby hold it at a predetermined position.
- This stamp means 380 is provided with a lever 380 b pivotally movable in a vertical direction. After the aligning operation has been completed and before the sheet coming in next contacts with the aligned sheet, the lever 380 b upwardly pivotally moved as shown in FIG. 3D is downwardly pivotally moved by a solenoid (not shown), and presses the upper surface of the sheet as shown in FIG. 3C , whereby the sheet in its aligned state is moved by the coming-in of the next sheet so as to prevent the alignment from being disturbed.
- the second sheet is conveyed, but during the conveyance of the second and succeeding sheets, the pair of discharging rollers 330 are spaced apart from each other and therefore, after the trailing edge of the sheet S has completely passed through the pair of inlet rollers 362 and before the aligning operation is started, the stamp means is upwardly moved, thus terminating the holding operation.
- the aligning operation thereafter is entirely similar to that of the first sheet and therefore need not be described.
- Such an operation is then repetitively performed and the operation of aligning the last (nth) sheet (Sn) in one job is performed, and the left side edge portion of the sheet is rammed against the slide guide 302 b, and in the state of FIG. 6A in which the movement of the slide guide 302 b has been stopped, the right position of the trailing edge of the sheet bundle is stapled by the stapler H.
- the discharging roller supporting member 331 is counter-clockwisely rotated as shown in FIG. 5B , whereby the discharging upper roller 330 a supported by the discharging roller supporting member 331 is downwardly moved, and the pair of discharging rollers 330 are formed. Thereafter, the drive is connected to both of the rollers of the pair of discharging rollers 330 to thereby start the rotation of the discharging upper roller 330 a and the discharging lower roller 330 b.
- the jogger motor M is rotatively driven, whereby the slide guides 302 a and 302 b are moved from the state shown in FIGS. 6A and 6B in a direction in which the spacing therebetween widens.
- the spacing between the two slide guides 302 a and 302 b becomes approximate to or widen than the width of the sheet, the stapled sheet bundle supported by the slide guides 302 a and 302 b downwardly falls as shown in FIGS. 4B and 5B , and is stacked on the second stacking portion 303 .
- FIGS. 7 to 12 A and 12 B describe a construction for rotating the paddle shaft 350 and a construction for upwardly retracting the discharging roller 330 a supported by the discharging roller supporting member 331 .
- FIG. 7 shows a gear train for transmitting the drive to the discharging upper roller 330 a, and a gear train for transmitting the drive to the discharging lower roller 330 b.
- the reference numeral 505 designates a discharging upper roller gear fixed to the shaft 505 a of the discharging upper roller 330 a
- the reference numeral 506 denotes a discharging lower roller gear fixed to the discharging lower roller 330 b.
- the discharging upper roller gear 505 receives the drive from an idler gear 503 through a belt 504
- the discharging lower roller gear 506 receives the drive from a discharging lower roller idler gear 508 (disposed coaxially with the spacing gear 404 ) belt-driven from the idler gear 503
- the discharging roller supporting member 331 is designed to be biased by a spring P in a direction in which the rollers are moved toward each other, and strike against stopper means (not shown), and the position of the discharging upper roller 330 a is determined by this stopper means, and the amount of nip between the pair of discharging rollers 330 is prescribed.
- the present driving train includes the paddles 321 and a roller spacing drive system, besides a conveying drive system for driving the discharging upper roller 330 a and the discharging lower roller 330 b.
- the conveying drive system is for receiving rotation from a motor gear 501 fixed to the shaft of the driving motor M 1 , and driving two pairs of rollers, i.e., the pair of discharging rollers 330 and the pair of inlet rollers 362 mounted on a gear 513 to thereby convey the sheet.
- the paddle 321 and the roller spacing drive system are rotated by a driving force form a motor gear 401 driven by a driving motor M 2 which is a single forwardly and reversely rotatable drive source.
- a rocking holder 450 which is a rocking member which rotatably supports a changeover gear 403 for selectively transmitting the driving of the driving motor M 2 to the paddles 321 or the discharging roller supporting member 331 and a step gear 402 meshing with the motor gear 401 , and rocks with the center of rocking movement 450 a as a fulcrum is rocked.
- the changeover gear 403 is selectively connected to a spacing gear 404 having a cut-away tooth gear 404 a (which will be described later) and a cam gear 404 b (which will be described later) for spacing the pair of-discharging rollers 330 apart from each other by the driving of the driving motor M 2 , or a paddle idler gear 406 for transmitting the drive of the driving motor M 2 to the paddle 321 .
- a predetermined frictional force acts between the step gear 402 and the rocking holder 450 so that when the step gear 402 is rotated with the rotation of the motor gear 401 , the rocking holder 450 may be rocked by the rotation of this step gear 402 .
- design is made such that when the rocking holder 450 is counter-clockwisely rocked, the changeover gear 403 is connected to the spacing gear 404 , and when the rocking holder 450 is clockwisely rocked, the changeover gear 403 is connected to the paddle idler gear 406 , so as to transmit the drive.
- a drive releasing plate 550 supporting the drive transmitting gear 502 and rockable about the center of rocking movement 550 a is clockwisely biased by a spring 555 .
- a releasing lever portion 331 a presses the drive releasing plate 550 to thereby release the drive transmission from the drive transmitting gear 502 to the idler gear 503 disposed on the paddle shaft 350 , thereby releasing the drive to the pair of discharging rollers 330 .
- a drive transmitting portion 500 is constituted by the changeover gear 403 , the spacing gear 404 , the paddle idler gear 406 and the releasing lever portion 331 a provided on the discharging roller supporting member 331 .
- FIGS. 8A and 8B show a state in which the paddle gear 407 and the paddles 321 are not shown.
- FIG. 8A shows the drive transmission during the spacing operation of the discharging upper roller 330 a.
- the step gear 402 is rotated while counter-clockwisely rocking the rocking holder 450 .
- the changeover gear 403 comes into meshing engagement with the spacing gear 404 .
- the rocking holder 450 is not rocked any further. Also, when in this state, the changeover gear 403 is not in meshing engagement with the paddle idler gear 406 .
- FIG. 9 shows the construction of the spacing gear 404 and the construction of the discharging roller supporting member 331 .
- the spacing gear 404 as a driving member is comprised of the cut-away tooth gear. 404 a, the cam gear 404 b and a drive transmitting gear 404 c to which the drive is transmitted from the changeover gear 403 .
- the discharging roller supporting member 331 has a cut-away tooth gear portion 331 b and a cam stopper portion 331 c.
- the cut-away tooth gear portion 331 b of the discharging roller supporting member and the cut-away tooth gear 404 a of the spacing gear are such that as shown in FIGS. 10A and 10B , the second gears (indicated by black paint) as counted from the teeth 331 b 1 and 404 a 1 meshing with each other at first are blank.
- the second gears indicated by black paint
- the tooth 404 a 1 meshes with the tooth 331 b 2 to thereby prevent predetermined meshing engagement from deviating, and effect stable spacing.
- the cut-away tooth gear portion 331 b and the cut-away tooth gear 404 a can obtain a similar effect even if they are ordinary gears, but the precise control of the driving motor becomes necessary. To make complicated motor control unnecessary, one of the gears can be of a cut-away tooth gear construction, and by both gears being cut-away tooth gears, more reliable meshing engagement is realized.
- the cam gear 404 b follows the rotation of the cut-away tooth gear 404 a and is rotated, and abuts against the cam stopper portion 331 c of the discharging roller supporting member in a position in which the spacing gear 404 has been rotated by 104 degrees. At this time, the meshing engagement between the cur-away tooth gear 404 a of the spacing gear 404 and the cur-away tooth gear portion 331 b of the discharging roller supporting member is released.
- the driving for spacing is effected by the cut-away tooth gear, whereby reliable driving becomes possible by small torque and also, it becomes possible to cope with an increase in the spacing distance. Also, stable holding becomes possible by the cam.
- the aforedescribed rotational angle is an angle derived by the construction of the present embodiment, and of course, the rotational angle when the construction has been changed differs.
- the aligning operation is terminated and further, the driving motor M 2 is clockwisely rotated, whereupon as shown in FIG. 11B , the spacing gear 404 is further rotated counter-clockwisely, and the holding by the cam gear 404 c is released.
- the discharging upper roller 330 a is lowered together with the discharging roller supporting member 331 and approaches the discharging lower roller 330 b, thus bringing about a state shown in FIG. 12B .
- This discharging roller supporting member 331 is biased by the already described pressure spring P shown in FIG. 7 , and by this pressure spring P, the discharging upper roller 330 a is biased toward the discharging lower roller 330 b with predetermined pressure. Also, it is to be understood that at this time, the discharging roller supporting member 331 is rammed against and held by stopper means (not shown).
- the spacing gear 404 is counter-clockwisely rotated, whereby the drive releasing plate 550 is returned to a home position shown in FIG. 7 .
- FIGS. 13A and 13B show a state in which the idler gear 503 and the drive transmitting gear 502 are not shown.
- the paddle idler gear 406 is in meshing engagement with the paddle gear 407 fixed to the paddle shaft 350 , whereby the paddle shaft 350 is counter-clockwisely rotated and as a result, the paddle 321 is counter-clockwisely rotated.
- the sheet is moved to the side opposite to the sheet conveying direction and contacts with the reference wall 322 , and is aligned.
- the drive of the forwardly and reversely rotatable single driving motor M 2 is selectively transmitted to the paddle 321 and the discharging roller supporting member 331 by the drive transmitting portion 500 so that the aligning operation by the paddle 321 , the spacing operation of the pair of discharging rollers 330 and the drive control of the pair of discharging rollers 330 may be selected performed, and the spacing construction is effected by the use of the cut-away tooth gear and the cam gear in combination, whereby the construction of the driving system of a sheet treating apparatus which can form an intermediate stacking portion capable of stapling a large volume of paper can be inexpensively realized by a compact and simple construction.
- the torque used becomes smaller than in the conventional construction using only a cam, and electric power saving is realized and therefore, the power supply capacity of the apparatus can also be made small.
- the post-treatment of a large volume of paper in the sheet treating apparatus 300 and the laser beam printer (image forming apparatus) 100 provided with the same can be realized by a construction of saved space, low cost and saved electric power.
- FIG. 14 shows a second embodiment of the present invention, and the portions thereof overlapping those of the first embodiment need not be described.
- FIG. 14 represents a drive transmitting portion 600 in the second embodiment.
- a gear 401 mounted on the driving motor M 2 for effecting the spacing of the pair of discharging rollers 330 and the driving of the paddles 321 is in meshing engagement with a drive transmitting gear 601 which is in meshing engagement with both of the spacing gear 404 and the paddle idler gear 406 .
- the spacing gear 404 has incorporated therein a one-away clutch 602 for transmitting only counter-clockwise drive
- the paddle idler gear 406 has incorporated therein a one-way clutch 603 for transmitting only clockwise drive.
- the drive transmitting portion 600 effects the spacing and nearing of the pair of discharging rollers 330 when the motor is counter-clockwisely rotated, and effects the driving of the paddle 321 when the motor is clockwisely rotated.
- FIGS. 15A, 15B , 16 A and 16 B show a third embodiment of the present invention, and the portions thereof overlapping those of the first embodiment need not be described.
- FIG. 15A shows the construction of the vicinity of a pair of discharging rollers in a sheet treating apparatus according to the present embodiment.
- FIG. 15A is a plan view of the vicinity of the pair of discharging rollers
- FIG. 15B is a cross-sectional view taken along the line XVB-XVB of FIG. 15A .
- the same reference characters as those in FIG. 2 designate the same or corresponding portions.
- 15A and 15B show a stamp member 700 vertically pivotally movable with a shaft 700 b as a fulcrum, a pulley 702 provided on a paddle shaft 350 , a stamp cam 703 , and a belt 701 passed over the pulley 702 and the cam shaft 705 of the stamp cam 703 .
- the paddle shaft 350 is rotated by the construction shown in the already described first or second embodiment, the rotation of this paddle shaft 350 is transmitted to the cam shaft 705 through the belt 701 , whereby the stamp cam 703 is rotated.
- FIGS. 16A and 16B are cross-sectional views taken along the line XVI-XVI of FIG. 15A .
- FIG. 16A shows a state in which the stamp cam 703 is in a home position. When the stamp cam 703 is thus in the home position, the stamp member 700 presses the sheet by its underside.
- the stamp cam 703 is also rotated counter-clockwisely about the cam shaft 705 to thereby push up a contacting portion 700 a with the stamp member 700 by an amount corresponding to H, thus assuming the position of FIG. 16 B.
- the stamp member 700 being thus pushed up by the amount corresponding to H by the stamp cam 703 , the sheet holding operation by the stamp member 700 is released.
- the positions of the stamp cam 703 and the paddle 321 are set to such a positional relation that the paddles 321 contact with the sheet S when the stamp member 700 is releasing its pressing operation.
- the sheet holding operation by the stamp member 700 can be performed by the driving motor M 2 for performing the sheet aligning operation, etc. by the paddles 321 , even if a discrete actuator such as a solenoid is not provided, and downsizing and electric power saving can be realized more inexpensively.
- the construction of the driving system of the sheet treating apparatus which enables the intermediate stacking portion capable of stapling a large volume of paper to be retractable can be inexpensively realized by a compact and simple construction.
- the spacing drive using the cut-away tooth gear becomes smaller in the torque used than the conventional construction using only a cam, and can realize electric power saving and can therefore also make the power supply capacity of the apparatus small.
- the gear diameter being made large, a large space for spacing can be secured.
- the post treatment of a large volume of paper in the sheet treating apparatus 300 and the laser beam printer (image forming apparatus) 100 provided with the same can be realized by a construction of saved space, low cost and saved electric power.
- the rocking space can be curtailed, whereby a sheet treating apparatus more compact than that according to the first embodiment can be realized.
- the rocking time by the rocking gear is unnecessary and the spacing and paddle driving can be changed over by only the changeover of the rotating direction of the motor and therefore, still a higher speed can be coped with.
- the sheet holding operation by the stamp member can be performed by the driving motor for performing the sheet aligning operation, etc. by the paddles even if a discrete actuator such as a solenoid is not provided, and downsizing and electric power saving can be realized more inexpensively.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Delivering By Means Of Belts And Rollers (AREA)
- Folding Of Thin Sheet-Like Materials, Special Discharging Devices, And Others (AREA)
- Registering Or Overturning Sheets (AREA)
- Pile Receivers (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-405141 | 2003-12-03 | ||
JP2003405141 | 2003-12-03 | ||
JP2004-302244 | 2004-10-15 | ||
JP2004302244A JP4336638B2 (ja) | 2003-12-03 | 2004-10-15 | シート搬送装置、シート処理装置、及び画像形成装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050133991A1 true US20050133991A1 (en) | 2005-06-23 |
Family
ID=34680604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/990,494 Abandoned US20050133991A1 (en) | 2003-12-03 | 2004-11-18 | Sheet conveying apparatus, sheet treating apparatus and image forming apparatus |
Country Status (3)
Country | Link |
---|---|
US (1) | US20050133991A1 (enrdf_load_stackoverflow) |
JP (1) | JP4336638B2 (enrdf_load_stackoverflow) |
CN (1) | CN100356273C (enrdf_load_stackoverflow) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050017444A1 (en) * | 2003-07-16 | 2005-01-27 | Konica Minolta Business Technologies, Inc. | Sheet stack ejecting apparatus, image forming apparatus, and sheet stack processing apparatus |
US20050220521A1 (en) * | 2004-04-01 | 2005-10-06 | Canon Kabushiki Kaisha | Sheet processing apparatus and image forming apparatus |
US20060071423A1 (en) * | 2004-08-30 | 2006-04-06 | Canon Kabushiki Kaisha | Sheet processing apparatus |
US20070029725A1 (en) * | 2005-08-08 | 2007-02-08 | Marx Martin J | Nip pressure |
US20080042340A1 (en) * | 2006-08-17 | 2008-02-21 | Xerox Corporation | Adjustable force driving nip assemblies for sheet handling systems |
US10579004B2 (en) | 2016-07-14 | 2020-03-03 | Fuji Xerox Co., Ltd. | Binding apparatus and image processing apparatus |
US11827043B2 (en) | 2018-05-11 | 2023-11-28 | Hewlett-Packard Development Company, L.P. | Knockdown for compiling recording media in finisher |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7954800B2 (en) | 2007-08-20 | 2011-06-07 | Ricoh Company, Limited | Openable sheet processing device |
CN101387841B (zh) * | 2007-08-31 | 2011-03-16 | 株式会社东芝 | 图像形成装置及其纸张搬送装置以及纸张搬送方法 |
JP5418255B2 (ja) * | 2010-01-29 | 2014-02-19 | セイコーエプソン株式会社 | シート材搬送装置及び記録装置 |
CN104417094B (zh) * | 2013-08-27 | 2017-04-12 | 精工爱普生株式会社 | 片材送出装置以及打印机 |
KR20180005083A (ko) * | 2016-07-05 | 2018-01-15 | 에스프린팅솔루션 주식회사 | 급지 장치, 이를 채용한 매체 처리 장치, 및 화상형성장치 |
CN108762015B (zh) * | 2018-08-17 | 2024-04-26 | 珠海天威飞马打印耗材有限公司 | 旋转力传递组件、辊和处理盒 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4164370A (en) * | 1976-10-21 | 1979-08-14 | Nippon Kogaku K.K. | Shutter device in a camera |
US5529407A (en) * | 1987-11-09 | 1996-06-25 | Canon Kabushiki Kaisha | Image recording apparatus |
US5765826A (en) * | 1994-11-07 | 1998-06-16 | Canon Kabushiki Kaisha | Sheet supplying apparatus with pivotal convey unit |
US20030185612A1 (en) * | 2002-03-26 | 2003-10-02 | Cannon Kabushiki Kaisha | Discharge sheet stacking apparatus and image forming apparatus provided with the same |
US6643480B2 (en) * | 2000-10-02 | 2003-11-04 | Canon Kabushiki Kaisha | Image forming apparatus with demountable sheet conveyor unit in main body for receiving sheets from optional sheet stack connectable thereto |
US20030222391A1 (en) * | 2002-05-28 | 2003-12-04 | Satoshi Iwama | Sheet post-processing device and image forming apparatus |
US6661995B2 (en) * | 2001-08-31 | 2003-12-09 | Canon Kabushiki Kaisha | Sheet processing apparatus and image forming apparatus provided with the same |
US20040022567A1 (en) * | 2002-07-31 | 2004-02-05 | Canon Kabushiki Kaisha | Sheet processing device with sheet lift preventing member and image forming apparatus having the same |
US20040080739A1 (en) * | 2002-10-28 | 2004-04-29 | Canon Kabushiki Kaisha | Sheet post-processing device and image forming apparatus having the device |
US20040104528A1 (en) * | 2002-07-31 | 2004-06-03 | Canon Kabushiki Kaisha | Sheet conveying apparatus, sheet post-processing apparatus, and image forming apparatus provided with sheet conveying apparatus and image forming apparatus |
US20040217543A1 (en) * | 2003-04-30 | 2004-11-04 | Canon Kabushiki Kaisha | Sheet treating apparatus and image forming apparatus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6040373A (ja) * | 1983-08-12 | 1985-03-02 | Fuji Xerox Co Ltd | 用紙搬送装置 |
JPS6077046A (ja) * | 1983-09-30 | 1985-05-01 | Toshiba Corp | 搬送装置 |
DE19532108C2 (de) * | 1995-08-31 | 1998-09-03 | Kodak Ag | Ablageeinheit einer Kopiervorrichtung |
KR100263064B1 (ko) * | 1997-11-27 | 2000-08-01 | 윤종용 | 양면인쇄기의용지이송장치 |
JPH11227979A (ja) * | 1998-02-18 | 1999-08-24 | Fuji Xerox Co Ltd | 用紙搬送装置 |
CN2507826Y (zh) * | 2001-11-26 | 2002-08-28 | 旭丽股份有限公司 | 进纸装置 |
-
2004
- 2004-10-15 JP JP2004302244A patent/JP4336638B2/ja not_active Expired - Fee Related
- 2004-11-18 US US10/990,494 patent/US20050133991A1/en not_active Abandoned
- 2004-12-02 CN CNB2004100979579A patent/CN100356273C/zh not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4164370A (en) * | 1976-10-21 | 1979-08-14 | Nippon Kogaku K.K. | Shutter device in a camera |
US5529407A (en) * | 1987-11-09 | 1996-06-25 | Canon Kabushiki Kaisha | Image recording apparatus |
US5765826A (en) * | 1994-11-07 | 1998-06-16 | Canon Kabushiki Kaisha | Sheet supplying apparatus with pivotal convey unit |
US6643480B2 (en) * | 2000-10-02 | 2003-11-04 | Canon Kabushiki Kaisha | Image forming apparatus with demountable sheet conveyor unit in main body for receiving sheets from optional sheet stack connectable thereto |
US6661995B2 (en) * | 2001-08-31 | 2003-12-09 | Canon Kabushiki Kaisha | Sheet processing apparatus and image forming apparatus provided with the same |
US20030185612A1 (en) * | 2002-03-26 | 2003-10-02 | Cannon Kabushiki Kaisha | Discharge sheet stacking apparatus and image forming apparatus provided with the same |
US20030222391A1 (en) * | 2002-05-28 | 2003-12-04 | Satoshi Iwama | Sheet post-processing device and image forming apparatus |
US20040022567A1 (en) * | 2002-07-31 | 2004-02-05 | Canon Kabushiki Kaisha | Sheet processing device with sheet lift preventing member and image forming apparatus having the same |
US20040104528A1 (en) * | 2002-07-31 | 2004-06-03 | Canon Kabushiki Kaisha | Sheet conveying apparatus, sheet post-processing apparatus, and image forming apparatus provided with sheet conveying apparatus and image forming apparatus |
US20040080739A1 (en) * | 2002-10-28 | 2004-04-29 | Canon Kabushiki Kaisha | Sheet post-processing device and image forming apparatus having the device |
US20040217543A1 (en) * | 2003-04-30 | 2004-11-04 | Canon Kabushiki Kaisha | Sheet treating apparatus and image forming apparatus |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7255340B2 (en) * | 2003-07-16 | 2007-08-14 | Konica Minolta Business Technologies, Inc. | Sheet stack ejecting apparatus, image forming apparatus, and sheet stack processing apparatus |
US20050017444A1 (en) * | 2003-07-16 | 2005-01-27 | Konica Minolta Business Technologies, Inc. | Sheet stack ejecting apparatus, image forming apparatus, and sheet stack processing apparatus |
US7630681B2 (en) | 2004-04-01 | 2009-12-08 | Canon Kabushiki Kaisha | Sheet processing apparatus and image forming apparatus |
US7386271B2 (en) | 2004-04-01 | 2008-06-10 | Canon Kabushiki Kaisha | Sheet processing apparatus and image forming apparatus |
US20050220521A1 (en) * | 2004-04-01 | 2005-10-06 | Canon Kabushiki Kaisha | Sheet processing apparatus and image forming apparatus |
US20060071423A1 (en) * | 2004-08-30 | 2006-04-06 | Canon Kabushiki Kaisha | Sheet processing apparatus |
US7637502B2 (en) | 2004-08-30 | 2009-12-29 | Canon Kabushiki Kaisha | Sheet processing apparatus with branching paths for post-processing |
US20070029725A1 (en) * | 2005-08-08 | 2007-02-08 | Marx Martin J | Nip pressure |
US7455295B2 (en) * | 2005-08-08 | 2008-11-25 | Hewlett-Packard Development Company, L.P. | Nip pressure |
US10585383B2 (en) | 2006-07-14 | 2020-03-10 | Fuji Xerox Co., Ltd. | Binding apparatus and image forming apparatus |
US20080042340A1 (en) * | 2006-08-17 | 2008-02-21 | Xerox Corporation | Adjustable force driving nip assemblies for sheet handling systems |
US7523933B2 (en) * | 2006-08-17 | 2009-04-28 | Xerox Corporation | Adjustable force driving nip assemblies for sheet handling systems |
US10579004B2 (en) | 2016-07-14 | 2020-03-03 | Fuji Xerox Co., Ltd. | Binding apparatus and image processing apparatus |
US10705470B2 (en) | 2016-07-14 | 2020-07-07 | Fuji Xerox Co., Ltd. | Binding apparatus and image processing apparatus |
US11827043B2 (en) | 2018-05-11 | 2023-11-28 | Hewlett-Packard Development Company, L.P. | Knockdown for compiling recording media in finisher |
Also Published As
Publication number | Publication date |
---|---|
JP2005187208A (ja) | 2005-07-14 |
JP4336638B2 (ja) | 2009-09-30 |
CN100356273C (zh) | 2007-12-19 |
CN1624595A (zh) | 2005-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8267399B2 (en) | Sheet processing apparatus and image forming apparatus including same | |
US8876107B2 (en) | Sheet stacking device, image forming system, and sheet stacking method | |
US20050133991A1 (en) | Sheet conveying apparatus, sheet treating apparatus and image forming apparatus | |
US8851468B2 (en) | Sheet stacking apparatus and image forming apparatus | |
JP2008063023A (ja) | シート整合装置及びこれを備えた後処理装置並びに画像形成装置 | |
JP2009292639A (ja) | シート後処理装置及びこれを備えた画像形成装置 | |
US6910688B2 (en) | Sheet discharging apparatus and image forming apparatus equipped with the same | |
JP2001031323A (ja) | 用紙後処理装置及び画像形成装置 | |
JP2014152012A (ja) | 用紙後処理装置及び画像形成装置 | |
JP4906540B2 (ja) | 用紙搬送装置及び画像形成システム | |
US20030016401A1 (en) | Sheet post-processing apparatus and image forming apparatus equipped with the same | |
US20060012098A1 (en) | Sheet folding and binding apparatus | |
CN1966377B (zh) | 纸张后处理装置和具有纸张后处理装置的图像形成装置 | |
JP4652089B2 (ja) | シート処理装置 | |
JP4056756B2 (ja) | 用紙後処理装置 | |
JP3997094B2 (ja) | シート処理装置及びこれを備えた画像形成装置 | |
JP4753559B2 (ja) | 用紙整合装置および画像形成装置 | |
JP4054627B2 (ja) | シート処理装置及び画像形成装置 | |
JP2002241033A (ja) | シート処理装置及びこれを備えた画像形成装置 | |
JP3619735B2 (ja) | 用紙搬送装置および画像形成装置 | |
JP5605201B2 (ja) | 用紙後処理装置および画像形成装置 | |
JP2009046290A (ja) | 後処理装置および画像形成装置 | |
JP5274898B2 (ja) | シート後処理装置及びこれを備えた画像形成装置 | |
JP3785077B2 (ja) | シート後処理装置及びシート後処理装置を具備する画像形成装置 | |
JP2009263031A (ja) | シート処理装置及びこれを備えた画像形成システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CANON KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ATA, HIRONOBU;KUWATA, TAKASHI;REEL/FRAME:016013/0027 Effective date: 20041111 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |