US20050010003A1 - Epoxy-capped polythioethers - Google Patents

Epoxy-capped polythioethers Download PDF

Info

Publication number
US20050010003A1
US20050010003A1 US10/617,582 US61758203A US2005010003A1 US 20050010003 A1 US20050010003 A1 US 20050010003A1 US 61758203 A US61758203 A US 61758203A US 2005010003 A1 US2005010003 A1 US 2005010003A1
Authority
US
United States
Prior art keywords
epoxy
capped polythioether
group
capped
polythioether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/617,582
Other languages
English (en)
Inventor
Suresh Sawant
Chandra Rao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PRC Desoto International Inc
Original Assignee
PRC Desoto International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PRC Desoto International Inc filed Critical PRC Desoto International Inc
Priority to US10/617,582 priority Critical patent/US20050010003A1/en
Assigned to PRC-DESOTO INTERNATIONAL, INC. reassignment PRC-DESOTO INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RAO, CHANDRA BHUSHAN, SAWANT, SURESH
Priority to AU2004262642A priority patent/AU2004262642B2/en
Priority to PCT/US2004/018926 priority patent/WO2005014564A1/en
Priority to ES04755235T priority patent/ES2288264T3/es
Priority to KR1020067000648A priority patent/KR100741201B1/ko
Priority to EP04755235A priority patent/EP1644348B1/en
Priority to BRPI0412385A priority patent/BRPI0412385B1/pt
Priority to RU2006103988/04A priority patent/RU2342372C2/ru
Priority to DK04755235T priority patent/DK1644348T3/da
Priority to AT04755235T priority patent/ATE365727T1/de
Priority to CA2531794A priority patent/CA2531794C/en
Priority to DE602004007272T priority patent/DE602004007272T2/de
Priority to JP2006518645A priority patent/JP4633053B2/ja
Priority to CNB2004800199306A priority patent/CN100408568C/zh
Priority to MXPA06000349A priority patent/MXPA06000349A/es
Publication of US20050010003A1 publication Critical patent/US20050010003A1/en
Priority to IL172949A priority patent/IL172949A/en
Priority to US11/369,490 priority patent/US7671145B2/en
Priority to US11/772,842 priority patent/US7622548B2/en
Priority to JP2009201129A priority patent/JP2009280617A/ja
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/302Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/22Ethers with hydroxy compounds containing no oxirane rings with monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • This invention generally relates to epoxy-capped polythioethers and curable compositions of epoxy-capped polythioethers.
  • sealants, coatings, and adhesives used in aviation and aerospace applications exhibit flexibility, fuel resistance, and high-temperature resistance. In general, these properties may be accomplished by incorporating polythioether linkages into the backbone of polymer resins.
  • the epoxy-capped polythioethers of the invention formed by the addition of thiol across the double bond of a monoepoxide comprising an olefinic group are flexible, fuel resistant and the high-conversion synthesis does not generate hydrolysable chlorine and avoids the use of epichlorohydrin.
  • the epoxy capped polythioethers of the invention exhibit a controlled and narrow epoxy-equivalent weight distribution.
  • epoxy-capped polythioethers and curable compositions of epoxy-capped polythioethers.
  • One aspect of the invention provides epoxy-capped polythioethers having the structure of Formula I: wherein
  • a second aspect of the invention provides epoxy-capped polythioethers formed by reacting n moles of a compound having the structure of Formula II wherein R 1 has the meaning described above: HS—R 1 —SH II with n+1 moles of a compound having the structure of Formula III wherein R 2 forms a divalent linking group:
  • a third aspect of the invention provides curable compositions of the epoxy-capped polythioethers of the invention.
  • one embodiment provides epoxy-capped polythioethers having the structure of Formula I: wherein
  • R 1 is typically derived from compounds, monomers, or polymers having at least two thiol groups.
  • polythiols include dithiols having the structure of Formula II: HS—R 1 —SH II where R 1 can be a C 2-6 n-alkylene group; a C 3-6 branched alkylene group having one or more pendent groups which can be, for example, hydroxyl groups, and alkyl groups such as methyl or ethyl groups; an alkyleneoxy group; a C 6-8 cycloalkylene group; a C 6-10 alkylcycloalkylene group; or a —[(—CHR 3 ) p —X—] q —CHR 3 ) r — group, p is an independently selected integer ranging from 2 to 6, q is an independently selected integer ranging from 1 to 5, and r is an independently selected integer ranging from 2 to 10, and R 3 is hydrogen or methyl.
  • dithiols may include one or more heteroatom substituents in the carbon backbone, that is, dithiols in which X includes a heteroatom such as O, S, or other bivalent heteroatom radical; a secondary or tertiary amine group, i.e., —NR 4 —, where R 4 may be hydrogen or methyl; or other substituted trivalent heteroatom.
  • X may be O or S, and thus R 1 is —[(—CHR 3 ) p —O—] q —(—CHR 3 ) r —, or —[(CHR 3 ) p —S—] q —(—CHR 3 ) r —.
  • p and r are equal. In certain embodiments, both p and r have the value of 2.
  • the dithiols may include both heteroatom substituents in the carbon backbone and pendent alkyl groups, such as pendent methyl groups.
  • dithiols having both heteroatom substituents in the carbon backbone and pendent alkyl groups include methyl-substituted DMDS such as HS—CH 2 CH(CH 3 )—S—CH 2 CH 2 —SH, and HS—CH(CH 3 )CH 2 —S—CH 2 CH 2 —SH, and dimethyl-substituted DMDS such as HS—CH 2 CH(CH 3 )S—CH(CH 3 )CH 2 —SH and HS—CH(CH 3 )CH 2 —S—CH 2 CH(CH 3 )—SH.
  • R 1 may be a C 2-6 n-alkylene group, for example, 1,2-ethylenedithiol, 1,3-propylenedithiol, 1,4-butylenedithiol, 1,5-pentylenedithiol, or 1,6-hexylenedithiol.
  • R 1 may be a C 3-6 branched alkylene group having one or more pendent groups, for example, 1,2-propylenedithiol, 1,3-butylenedithiol, 2,3-butylenedithiol, 1,3-pentylenedithiol, and 1,3-dithio-3-methylbutylene.
  • R 1 may be a C 6-8 cycloalkylene or C 6-10 alkylcycloalkylene group, for example, dipentylenedimercaptan, and ethylcyclohexylenedithiol (ECHDT).
  • Polythiols having the structure of Formula II may be prepared by reacting, for example, a divinyl ether or mixture of divinyl ethers with an excess of a dithiol or a mixture of dithiols.
  • n+1 moles of a polythiol having the structure of Formula II or a mixture of at least two polythiols having the structure of Formula II are reacted with n moles of a polyvinyl ether having the structure of Formula IV: CH 2 ⁇ CH—O—[R 5 —O—] m —CH ⁇ CH 2 IV
  • R 5 includes a C 2-6 n-alkylene group, a C 3-6 branched alkylene group, a C 6-8 cycloalkylene group, a C 6-10 alkylcycloalkylene group, and a —[—(CHR 3 ) p —X—] q —(CHR 3 ) r —, group where X, R 3 , p,
  • Polyvinyl ethers can comprise compounds having at least one alkyleneoxy group, and preferably from 1 to 4 alkyleneoxy groups, such as compounds in which m is an integer from 1 to 4. In other embodiments, m is an integer from 2 to 4. In certain embodiments, the polyvinyl ethers comprise polyvinyl ether mixtures. Such mixtures are characterized by a non-integral average value of the number of alkyleneoxy groups per molecule. Thus, m in Formula IV can also take on rational number values between 0 and 10.0, in other embodiments between 1.0 and 10.0, in still other embodiments between 1.0 and 4.0, and in still other embodiments between 2.0 and 4.0.
  • Polyvinyl ether monomers can comprise divinyl ether monomers, such as divinyl ether, ethylene glycol divinyl ether (EG-DVE), butanediol divinyl ether (BD-DVE), hexanediol divinyl ether (HD-DVE), diethylene glycol divinyl ether (DEG-DVE), triethylene glycol divinyl ether, tetraethylene glycol divinyl ether, and polytetrahydrofuryl divinyl ether; trivinyl ether monomers such as trimethylolpropane trivinyl ether; tetrafunctional vinyl ether monomers such as pentaerythritol tetravinyl ether; and mixtures thereof.
  • the polyvinyl ether monomer can further comprise one or more pendent groups selected from alkylene groups, hydroxyl groups, alkeneoxy groups, and amine groups.
  • Polythiols having the structure of Formula II may be prepared by reacting compounds having olefinic groups, such as vinylcyclohexene.
  • polyvinyl ethers in which R 5 is a C 2-6 branched alkylene can be prepared by reacting a polyhydroxy compound with acetylene.
  • the reaction between a dithiol and a polyvinyl ether to prepare a polythiol having the structure of Formula II may take place in the presence of a catalyst.
  • the catalyst may be a free-radical catalyst, an ionic catalyst, or ultraviolet radiation.
  • the catalyst does not comprise acidic or basic compounds, and does not produce acidic or basic compounds upon decomposition.
  • free-radical catalysts are an azo-type catalyst, including Vazo®-57 (Du Pont), Vazo®-64 (Du Pont), Vazo®-67 (Du Pont), V-70® (Wako Specialty Chemicals), and V-65B® (Wako Specialty Chemicals).
  • Examples of other free-radical catalysts are alkyl peroxides, such as t-butyl peroxide.
  • R is a divalent linking group.
  • R 2 may be derived from a monoepoxide having the structure of Formula III: in which R 2 includes groups that are reactive with sulfides such as, for example, olefinic groups.
  • the olefinic group may be an alkylene group or an oxyalkylene group having from 3 to 20 carbon atoms and preferably from 3 to 5 carbon atoms.
  • the monoepoxides having the structure of Formula III include allyl glycidyl ether, 1,2-epoxy-5-hexene, 1,2-epoxy-7-octene, 1,2-epoxy-9-decene, 4-vinyl-1-cyclohexene 1,2-epoxide, butadiene monoepoxide, isoprene monoepoxide, and limonene monoepoxide.
  • Another embodiment provides epoxy-capped polythioethers having the structure of Formula V: where R 1 and R 2 are as described above, B is a multivalent radical, and z is a number corresponding to the valence of B.
  • B is a z-valent group and is derived from a compound, B′, that represents a polyfunctionalizing agent.
  • a polyfunctionalizing agent refers to a compound having more than two moieties that are reactive with epoxy groups. In certain embodiments, the polyfunctionalizing agent comprises from 3 to 6 such reactive moieties.
  • B is denoted as a “z-valent” polyfunctionalizing agent, where z is the number of reactive moieties, and hence the number of separate branches comprising the polyfunctional epoxy-capped polythioether.
  • the functional groups of the polyfunctionalizing agent are selected from acid groups, amine groups, anhydride groups, and thiol groups.
  • Polyfunctionalizing agents having mixed functionality can also be used. Examples of polyfunctionalizing agents include tricarboxylic acids such as trimellitic acid and tricarballylic acid; polythiols such as described in U.S. Pat. No. 4,366,307, U.S. Pat. No. 4,609,762, and U.S. Pat. No. 5,225,472; and, triamines such as diethylene triamine and triethylene tetraamine.
  • polyfunctionalizing agents having a range of functionalities may also be used in the preparation of epoxy-capped polythioethers having the structure of Formula V.
  • the use of certain amounts of trifunctionalizing agents affords epoxy-capped polythioethers having average functionalities from 2.05 to 3.0.
  • Other average functionalities can be achieved by using tetrafunctional polyfunctionalizing agents, or polyfunctionalizing agents with higher valencies.
  • the average functionality of the resulting epoxy-capped polythioether will also be affected by factors such as stoichiometry, as is known to those skilled in the art.
  • the difunctional epoxy-capped polythioethers of the invention having the structure of Formula I can be formed by the reaction of n moles of a dithiol having the structure of Formula II with n+1 moles of a monoepoxide having the structure of Formula III.
  • the dithiol and monoepoxide may be reacted at a temperature of from about 40° C. to about 100° C., and typically from about 60° C. to 80° C.
  • the dithiol and monoepoxide may be reacted for from about 10 hours to about 36 hours, and typically from about 12 hours to 24 hours.
  • the dithiol may be any compound, polymer, or monomer having at least two thiol groups, and includes any of the exemplary polythiol compounds previously described.
  • the monoepoxide having the structure of Formula II comprises one epoxy group and one olefinic group.
  • the monoepoxide may be any of the exemplary monoepoxides previously described.
  • the reaction occurs in the presence of a catalyst.
  • a catalyst examples include free-radical catalysts, ionic catalysts, and ultraviolet light.
  • the catalyst does not comprise an acidic or basic compound, and does not produce acidic or basic compounds upon decomposition.
  • the catalyst may be a free-radical catalyst, such as those described above.
  • polyfunctional epoxy-capped polythioethers having the structure of Formula V can be formed by reacting at least one polythiol, at least one polyepoxide, and at least one polyfunctionalizing agent in appropriate stoichiometric amounts.
  • polythiols, polyepoxides, and polyfunctionalizing agents include those as described above.
  • the reaction occurs in the presence of a catalyst as described above.
  • curable compositions of the invention include from 0.2% to 10% by weight of at least one epoxy-capped polythioether as described above, at least one curing agent, and at least one resin where the weight percent is based on the total weight of the curable composition.
  • curing agent refers to a material that reacts with the epoxy group of the epoxy-capped polythioethers to form crosslinks.
  • curing agents include polyacid curing agents, polyamine curing agents, polyanhydride curing agents, and polythiol curing agents.
  • a polyacid curing agent refers to a compound having two or more acid groups per molecule which are reactive with the epoxy-capped polythioether to form a crosslinked composition.
  • the acid functionality can be a carboxylic acid, or a sulfonic acid.
  • the polyacid curing agent may be a carboxyl-terminated compound having at least two carboxyl groups per molecule.
  • polyacid curing agents include carboxylic acid group-containing polymers such as acrylic polymers, polyesters, and polyurethanes; and oligomers such as ester group-containing oligomers and monomers.
  • carboxylic acid-containing acrylic polymers are copolymers of (a) an ethylenically unsaturated monomer containing at least one carboxylic acid, and (b) a different ethylenically unsaturated monomer that is free from carboxylic acid groups.
  • the amounts of monomer (a) and monomer (b) are selected such that the acid number of the polyacid acrylic polymer is from 30 to 150, preferably from 60 to 120.
  • Examples of carboxylic acid-containing acrylic monomers are acrylic acid, methacrylic acid, maleic acid, and partial esters of maleic acid.
  • the other monomeric component (b) is characterized by the group, and may be styrene, an alpha-substituted lower alkyl styrene such as alpha-methylstyrene, an alkyl ester of acrylic and methacrylic acid, such as methyl methacrylate, methyl acrylate, and ethyl acrylate, and mixtures of these materials.
  • the polyacid curing agent may be a monomeric polycarboxylic acid having from 5 to 20 carbon atoms including open chain, cyclic, saturated, unsaturated, and aromatic acids.
  • suitable monomeric polycarboxylic acids include succinic acid, adipic acid, azelaic acid, sebacic acid, hexahydrophthalic acid, maleic acid, cyclohexene-1,2-dicarboxylic acid, and phthalic acid.
  • Polyamine curing agent including primary and secondary diamines or polyamines in which the radicals attached to the nitrogen atoms can be saturated or unsaturated, aliphatic, alicyclic, aromatic, aromatic-substituted aliphatic, aliphatic-substituted aromatic, or heterocyclic.
  • the polyamine curing agent may include mixed amines in which the radicals are different such as, for example, aromatic groups, aliphatic groups, and other non-reactive groups attached to the carbon atoms such as oxygen, sulfur, halogen, or nitro groups.
  • Suitable aliphatic and alicyclic diamines include 1,2-ethylene diamine, 1,2-propylene diamine, 1,8-p-menthane diamine, isophorone diamine, propane-2,2-cyclohexyl amine, and methane-bis-(4-cyclohexyl amine), and H 2 N—(—CH 2 —(CHCH 3 —O—) x —CH 2 —CHCH 3 —NH 2 where x is from 1 to 10.
  • the polyamine curing agent includes phenylene diamines and toluene diamines such as, for example, o-phenylene diamine and p-tolylene diamine, and N-alkyl and N-aryl derivatives thereof, such as, for example, N,N′-dimethyl-o-phenylene diamine, N,N′-di-p-tolyl-m-phenylene diamine, and p-amino-diphenylamine.
  • phenylene diamines and toluene diamines such as, for example, o-phenylene diamine and p-tolylene diamine
  • N-alkyl and N-aryl derivatives thereof such as, for example, N,N′-dimethyl-o-phenylene diamine, N,N′-di-p-tolyl-m-phenylene diamine, and p-amino-diphenylamine.
  • the polyamine curing agent may be a polynuclear aromatic diamine in which the aromatic rings are attached by means of a valence bond such as, for example, 4,4′-biphenyl diamine, methylene dianiline, and monochloromethylene dianiline.
  • Epoxy-capped polythioethers of the invention may be used in curable compositions, such as sealants, coatings, and adhesives, either alone or in combination with other resins.
  • curable compositions of the invention may include fillers and additives as appropriate for specific applications.
  • Fillers may be added to curable compositions of the invention to impart desirable physical properties such as, for example, to increase the impact strength, to control the viscosity, to modify the electrical properties, or to reduce the specific gravity.
  • Fillers useful in the curable compositions of the invention for aviation and aerospace applications include those commonly used in the art, such as carbon black, calcium carbonate, silica, and polymer powders.
  • Exemplary fillers include Sipernat® D-13 hydrophobic precipitated silica (Degussa), Winnofil® SPM precipitated calcium carbonate (Solvay Chemicals), TS-270 (Cabot Corporation), titanium dioxide (DuPont), aluminum hydroxide, and Orgasol® 1002 D Nat 1 ultrafine polyamide powder (Atofina Chemicals).
  • the filler comprises from 5% by weight to 60% by weight of the non-volatile components of the curable composition.
  • the curable compositions of the invention usually comprise at least one additive selected from the following: plasticizers, pigments, cure accelerators, adhesion promoters, thixotropic agents, fire retardants, masking agents, antioxidants, and surfactants.
  • the additive may be present in the curable composition in amounts of 0.1 to 40% by weight based on the total weight of the curable composition.
  • the plasticizer may include at least one of the following: phthalate esters, chlorinated paraffins, and hydrogenated terphenyls.
  • useful plasticizers include HB-40® modified polyphenyl (Solutia, Inc.) and tung oil (Campbell & Co.).
  • the plasticizer comprises from 1% by weight to 40% by weight of the total weight of the curable composition, more typically from 1% by weight to 8% by weight of the total weight of the curable composition.
  • the curable compositions of the invention may comprise at least one pigment.
  • pigment include at least one of the following: carbon black, metal oxides, and calcium carbonate.
  • Pigment grade carbon black generally is characterized by low structure and particle size such as Regal® 660R (Cabot Corporation).
  • Brilliant 1500 is an example of pigment grade, 99.995+%, calcium carbonate (Aldrich Chemical).
  • the pigment comprises from 0.1% by weight to 10% by weight of the total weight of the curable composition. In other embodiments, the pigment comprises from 0.1% by weight to 5% by weight of the total weight of the curable composition.
  • Curable compositions of the invention are cured according to recommended procedures and, in certain embodiments, at ambient temperature. “Curable” refers to the capability of undergoing one or more chemical reactions to form stable, covalent bonds among the constituent components.
  • the curable compositions are usually curable at a minimum temperature of 50° C. to 100° C. and more typically from 60° C. to 75° C.
  • DMDO dimercaptodioxaoctane
  • reaction mixture was then degassed at 70° C./4-5 mm Hg for 3 hr to provide a liquid epoxy-capped polythioether having a faint yellow color, a viscosity of 5.0 poise, and an epoxy equivalent value of 563.
  • the reaction yield was 508.7 g (100%).
  • DMDO 62.17 g (moles) of DMDO was added to a 250 ml 3-neck flask under a nitrogen atmosphere. While stirring, DMDO was heated to 60° C. and 44.88 g (mole) of DEG-DVE was added to the reaction mixture over a period of 50 minutes while the temperature of the reaction was maintained at 60° C.-70° C. The reaction mixture was heated at 70° C. for an additional 4 hr. Two portions of Vazo®67 (0.036 g each) were added to the reaction mixture at 1.5 hr intervals and heated at 70° C. for 1.5 hr. The mercaptan equivalent value of the reaction mixture was 890.
  • Vazo®67 (0.036 g) was added and the reaction mixture heated for another 1.5 hr.
  • AGE 13.21 g, 0.116 mole, 2% stoichiometric excess
  • Eight portions of Vazo®67 (0.035 g each) were added at 3 hr intervals at 70° C. and heating was continued for another 4 hr. At this stage, the mercaptan equivalent value of the reaction mixture was of 28,642.
  • Curable Composition 1 was prepared by combining 12.5 parts by weight of the epoxy-capped polythioether of Example 1, 37.5 parts by weight of Epon 828, 28 to 29 parts by weight of Epi-Cure 3155, and 0.5 parts by weight of DMP 30. Curable composition 1 was cured at a temperature of 68° F. for one week. A summary of the properties of cured Composition 1 is presented in Table 1. TABLE 1 Properties of Cured Composition 1. Property Composition 1 Physical state Clear amber Liquid Odor none Color 3 max Viscosity at 25° C.
  • curable Composition 1 When cured, curable Composition 1 exhibits excellent chemical resistance, including excellent resistance to aviation and aerospace fuels.
  • the viscosity of curable Composition 1 of 5 poise at a temperature of 25° C. is six times less than epoxy-terminated polysulfides produced using epichlorohydrin.
  • the low viscosity of the epoxy-capped polythioethers of the invention provide greater latitude in producing formulations than comparable compositions prepared with epoxy-terminated polysulfides produced using epichlorohydrin.
  • Other desirable attributes include a low specific gravity of 1.13, a low epoxy equivalent weight of from 530 to 650, and the epoxy-capped polythioethers are compatible with amines and other epoxy compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Epoxy Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
US10/617,582 2003-07-11 2003-07-11 Epoxy-capped polythioethers Abandoned US20050010003A1 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
US10/617,582 US20050010003A1 (en) 2003-07-11 2003-07-11 Epoxy-capped polythioethers
MXPA06000349A MXPA06000349A (es) 2003-07-11 2004-07-09 Politioeteres rematados con epoxi.
DK04755235T DK1644348T3 (da) 2003-07-11 2004-07-09 Epoxy-afsluttede polythioethere, Epoxy-afsluttede polythioethere
CA2531794A CA2531794C (en) 2003-07-11 2004-07-09 Epoxy-capped polythioethers
ES04755235T ES2288264T3 (es) 2003-07-11 2004-07-09 Politioeteres rematados en epoxido.
KR1020067000648A KR100741201B1 (ko) 2003-07-11 2004-07-09 에폭시-캡핑된 폴리싸이오에터
EP04755235A EP1644348B1 (en) 2003-07-11 2004-07-09 Epoxy-capped polythioethers
BRPI0412385A BRPI0412385B1 (pt) 2003-07-11 2004-07-09 politioéteres encapsulados por epóxi e composições curáveis contendo os mesmos
RU2006103988/04A RU2342372C2 (ru) 2003-07-11 2004-07-09 Политиоэфиры с концевой эпокси-группой
AU2004262642A AU2004262642B2 (en) 2003-07-11 2004-07-09 Epoxy-capped polythioethers
AT04755235T ATE365727T1 (de) 2003-07-11 2004-07-09 Epoxyendgruppen-enthaltende polythioether
PCT/US2004/018926 WO2005014564A1 (en) 2003-07-11 2004-07-09 Epoxy-capped polythioethers
DE602004007272T DE602004007272T2 (de) 2003-07-11 2004-07-09 Epoxyendgruppen-enthaltende polythioether
JP2006518645A JP4633053B2 (ja) 2003-07-11 2004-07-09 エポキシキャップ化ポリチオエーテル
CNB2004800199306A CN100408568C (zh) 2003-07-11 2004-07-09 环氧封端聚硫醚
IL172949A IL172949A (en) 2003-07-11 2006-01-02 Polyethylene sites protected by epoxy edges, their preparation and hardenable preparations that include them
US11/369,490 US7671145B2 (en) 2003-07-11 2006-03-07 Epoxy-capped polythioethers by reacting dithiol, diolefin and monoepoxy olefin
US11/772,842 US7622548B2 (en) 2003-07-11 2007-07-03 Epoxy- or amine/hydroxy-capped polythioethers
JP2009201129A JP2009280617A (ja) 2003-07-11 2009-08-31 エポキシキャップ化ポリチオエーテル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/617,582 US20050010003A1 (en) 2003-07-11 2003-07-11 Epoxy-capped polythioethers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/369,490 Continuation US7671145B2 (en) 2003-07-11 2006-03-07 Epoxy-capped polythioethers by reacting dithiol, diolefin and monoepoxy olefin

Publications (1)

Publication Number Publication Date
US20050010003A1 true US20050010003A1 (en) 2005-01-13

Family

ID=33565004

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/617,582 Abandoned US20050010003A1 (en) 2003-07-11 2003-07-11 Epoxy-capped polythioethers
US11/369,490 Active 2024-10-14 US7671145B2 (en) 2003-07-11 2006-03-07 Epoxy-capped polythioethers by reacting dithiol, diolefin and monoepoxy olefin

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/369,490 Active 2024-10-14 US7671145B2 (en) 2003-07-11 2006-03-07 Epoxy-capped polythioethers by reacting dithiol, diolefin and monoepoxy olefin

Country Status (16)

Country Link
US (2) US20050010003A1 (ja)
EP (1) EP1644348B1 (ja)
JP (2) JP4633053B2 (ja)
KR (1) KR100741201B1 (ja)
CN (1) CN100408568C (ja)
AT (1) ATE365727T1 (ja)
AU (1) AU2004262642B2 (ja)
BR (1) BRPI0412385B1 (ja)
CA (1) CA2531794C (ja)
DE (1) DE602004007272T2 (ja)
DK (1) DK1644348T3 (ja)
ES (1) ES2288264T3 (ja)
IL (1) IL172949A (ja)
MX (1) MXPA06000349A (ja)
RU (1) RU2342372C2 (ja)
WO (1) WO2005014564A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070054128A1 (en) * 2005-02-04 2007-03-08 Walker John A Multi-component epoxy-amine primer systems comprising a polythioether
US20070270549A1 (en) * 2006-05-05 2007-11-22 Szymanski Chester J Compositions comprising thioether-functional oligomeric polythiols
US20070287810A1 (en) * 2003-07-11 2007-12-13 Prc-Desoto International, Inc. Epoxy-capped polythioethers and hydroxy/amine-capped polythioethers
US20070299217A1 (en) * 2003-07-11 2007-12-27 Suresh Sawant Epoxy-capped polythioethers
US20090012244A1 (en) * 2007-05-01 2009-01-08 Prc-Desoto International, Inc. Compositions including a polythioether
WO2009131796A1 (en) * 2008-04-24 2009-10-29 Prc-Desoto International, Inc. Thioethers, methods for their preparation, and compositions including such thioethers
US20100184899A1 (en) * 2008-04-24 2010-07-22 Prc-Desoto International, Inc. Thioethers, methods for their preparation, and compositions including such thioethers
US20120088862A1 (en) * 2010-10-07 2012-04-12 Siamanto Abrami Diethylene Glycol Monomethyl Ether Resistant Coating
KR101223399B1 (ko) * 2007-07-03 2013-01-17 피피지 인더스트리즈 오하이오 인코포레이티드 폴리우레아/폴리티오우레아 코팅
US8513339B1 (en) 2012-06-21 2013-08-20 Prc-Desoto International, Inc. Copolymerizable sulfur-containing adhesion promoters and compositions thereof
WO2013192297A2 (en) 2012-06-21 2013-12-27 Prc-Desoto International, Inc. Polyfunctional sulfur-containing epoxies and compositions thereof
CN104262624A (zh) * 2014-09-03 2015-01-07 浙江大学 一种多环氧基聚合物的合成方法
WO2015065977A2 (en) 2013-10-29 2015-05-07 Prc-Desoto International, Inc. Adhesion promoting adducts containing metal ligands, compositions thereof, and uses thereof
WO2016033441A1 (en) * 2014-08-29 2016-03-03 Prc-Desoto International, Inc. Polythioether sealants with enhanced thermal resistance
US9303149B2 (en) 2012-06-21 2016-04-05 Prc-Desoto International, Inc. Adhesion promoting adducts containing metal ligands, compositions thereof, and uses thereof
US9422467B2 (en) 2011-03-18 2016-08-23 Prc-Desoto International, Inc. Flexible polyamines, flexible amine-terminated adducts, compositions thereof and methods of use
US9518197B2 (en) 2014-03-07 2016-12-13 Prc-Desoto International, Inc. Cure-on-demand moisture-curable urethane-containing fuel resistant prepolymers and compositions thereof
WO2017074911A1 (en) 2015-10-26 2017-05-04 Prc-Desoto International, Inc. Reactive antioxidants, antioxidant-containing prepolymers, and compositions thereof
US9650552B2 (en) 2013-03-15 2017-05-16 Prc-Desoto International, Inc. Energy curable sealants
WO2017184953A1 (en) 2016-04-22 2017-10-26 Prc-Desoto International, Inc. Ionic liquid catalyst in sulfur-containing polymer compositions
CN107312174A (zh) * 2017-07-19 2017-11-03 北京化工大学 一种聚硫醚的合成方法
WO2018005633A1 (en) 2016-06-28 2018-01-04 Prc-Desoto International, Inc. Urethane/urea-containing bis(alkenyl) ethers, prepolymers prepared using urethane/urea-containing bis(alkenyl) ethers, and uses thereof
US9902799B2 (en) 2015-11-11 2018-02-27 Prc-Desoto International, Inc. Urethane-modified prepolymers containing pendent alkyl groups, compositions and uses thereof
US9951252B2 (en) 2015-08-10 2018-04-24 Prc-Desoto International, Inc. Moisture-curable fuel-resistant sealant systems
US10011751B2 (en) 2014-03-07 2018-07-03 Prc-Desoto International, Inc. Phosphine-catalyzed, michael addition-curable sulfur-containing polymer compositions
WO2019077516A1 (en) 2017-10-17 2019-04-25 Prc-Desoto International, Inc. POLYMERIC PARTICLES CONTAINING SULFUR AND COMPOSITIONS
US10287466B2 (en) 2015-02-13 2019-05-14 3M Innovative Properties Company Cold-tolerant sealants and components thereof
WO2020072464A1 (en) 2018-10-02 2020-04-09 Prc-Desoto International, Inc. Delayed cure micro-encapsulated catalysts
US11098222B2 (en) 2018-07-03 2021-08-24 Prc-Desoto International, Inc. Sprayable polythioether coatings and sealants

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003748B2 (en) 2004-02-17 2011-08-23 Chevron Phillips Chemical Company, Lp Polythiourethane compositions and processes for making and using same
JP2007526939A (ja) 2004-02-17 2007-09-20 シェブロン フィリップス ケミカル カンパニー エルピー チオール・エステル組成物、ならびにそれを生成するプロセスおよびそれを使用する方法
CN101309992A (zh) * 2005-08-16 2008-11-19 切弗朗菲利浦化学公司 硫醇硬化的环氧聚合物组合物及其制备和使用方法
CN101287776B (zh) 2005-08-16 2012-09-05 切弗朗菲利浦化学公司 聚合物组分及其制备和使用方法
US20070096396A1 (en) * 2005-10-27 2007-05-03 Sawant Suresh G Dimercaptan terminated polythioether polymers and methods for making and using the same
US7569163B2 (en) * 2007-03-16 2009-08-04 Prc Desoto International, Inc. Polythioether amine resins and compositions comprising same
US9018322B2 (en) 2012-06-21 2015-04-28 FRC-DeSoto International, Inc. Controlled release amine-catalyzed, Michael addition-curable sulfur-containing polymer compositions
US8952124B2 (en) 2013-06-21 2015-02-10 Prc-Desoto International, Inc. Bis(sulfonyl)alkanol-containing polythioethers, methods of synthesis, and compositions thereof
US8871896B2 (en) 2012-06-21 2014-10-28 Prc Desoto International, Inc. Michael addition curing chemistries for sulfur-containing polymer compositions
US9056949B2 (en) 2013-06-21 2015-06-16 Prc-Desoto International, Inc. Michael addition curing chemistries for sulfur-containing polymer compositions employing bis(sulfonyl)alkanols
RU2670901C9 (ru) * 2012-10-24 2018-12-12 Прк-Десото Интернэшнл, Инк. Варианты использования уф-отверждаемых герметиков на основе простых политиоэфиров для герметизации крепежных устройств и для разравнивания поверхностей
US9006360B2 (en) 2012-10-24 2015-04-14 Prc-Desoto International, Inc. Controlled-release amine-catalyzed, sulfur-containing polymer and epdxy compositions
US9062162B2 (en) 2013-03-15 2015-06-23 Prc-Desoto International, Inc. Metal ligand-containing prepolymers, methods of synthesis, and compositions thereof
US9062139B2 (en) 2013-03-15 2015-06-23 Prc-Desoto International, Inc. Sulfone-containing polythioethers, compositions thereof, and methods of synthesis
CN104558584B (zh) * 2013-10-18 2017-02-01 锦西化工研究院有限公司 一种环氧端基聚硫代醚液体橡胶的合成方法
WO2015066135A2 (en) 2013-10-29 2015-05-07 Prc-Desoto International, Inc. Metal ligand-containing prepolymers, methods of synthesis, and compositions thereof
US9611359B2 (en) 2013-10-29 2017-04-04 Prc-Desoto International, Inc. Maleimide-terminated sulfur-containing polymers, compositions thereof, and uses thereof
US9328274B2 (en) 2014-03-07 2016-05-03 Prc-Desoto International, Inc. Michael acceptor-terminated urethane-containing fuel resistant prepolymers and compositions thereof
CN104448314B (zh) * 2014-12-08 2017-07-25 郑州中原思蓝德高科股份有限公司 一种环氧基封端的聚硫聚合物、其制备方法及用途、包含其的室温快固型环氧树脂胶粘剂
US9422451B2 (en) 2015-01-09 2016-08-23 Prc-Desoto International, Inc. Low density fuel resistant sulfur-containing polymer compositions and uses thereof
CN105837820B (zh) * 2015-01-16 2018-07-03 中国科学院宁波材料技术与工程研究所 一种潜伏型聚硫醚基聚硫醇、其合成方法与应用
US10053606B2 (en) 2015-10-26 2018-08-21 Prc-Desoto International, Inc. Non-chromate corrosion inhibiting polythioether sealants
US9988487B2 (en) 2015-12-10 2018-06-05 Prc-Desoto International, Inc. Blocked 1,8-diazabicyclo[5.4.0]undec-7-ene bicarbonate catalyst for aerospace sealants
US20210246266A1 (en) * 2018-06-08 2021-08-12 The Regents Of The University Of Colorado, A Body Corporate High dynamic range two-stage photopolymers
EP3628505A1 (en) 2018-09-25 2020-04-01 Sihl GmbH Inkjet printable film for packaging applications
US11015097B2 (en) * 2019-03-06 2021-05-25 Prc-Desoto International, Inc. Chemically resistant sealant compositions and uses thereof
CN109929091A (zh) * 2019-03-25 2019-06-25 烟台大学 一种柔性环氧树脂及其合成方法
CN109970951B (zh) * 2019-03-25 2021-09-17 烟台大学 一种多环氧基环氧树脂的合成方法
EP3738782A1 (en) 2019-05-16 2020-11-18 Sihl GmbH Inkjet printed film for decorative applications
US11437162B2 (en) 2019-12-31 2022-09-06 Industrial Technology Research Institute Conductive material composition and conductive material prepared therefrom
CN113913150B (zh) * 2021-11-18 2023-03-14 中国航发北京航空材料研究院 用于飞机钣金件的贴合面密封剂

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3454539A (en) * 1967-08-11 1969-07-08 Ciba Ltd Polyepoxides
US4046729A (en) * 1975-06-02 1977-09-06 Ppg Industries, Inc. Water-reduced urethane coating compositions
US4104283A (en) * 1969-01-08 1978-08-01 The Dow Chemical Company Polythioetheralkyleneoxide epoxides
US4366307A (en) * 1980-12-04 1982-12-28 Products Research & Chemical Corp. Liquid polythioethers
US4609762A (en) * 1984-01-30 1986-09-02 Products Research & Chemical Corp. Thioethers having a high sulfur content and method therefor
US4681811A (en) * 1985-08-19 1987-07-21 Ppg Industries, Inc. Color plus clear coatings employing polyepoxides and polyacid curing agents in the clear coat
US4931576A (en) * 1984-06-29 1990-06-05 Ciba-Geigy Corporation Process for producing glycidyl thioethers
US5225472A (en) * 1992-05-19 1993-07-06 Courtaulds Aerospace, Inc. Low viscosity polythiol and method therefor
US5912319A (en) * 1997-02-19 1999-06-15 Courtaulds Aerospace, Inc. Compositions and method for producing fuel resistant liquid polythioether polymers with good low temperature flexibility
US6372849B2 (en) * 1997-02-19 2002-04-16 Prc-Desoto International, Inc. Sealants and potting formulations including polymers produced by the reaction of a polythiol and polyvinyl ether monomer
US20030017341A1 (en) * 2001-03-07 2003-01-23 3M Innovative Properties Company Adhesives and adhesive compositions containing thioether groups

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374945A (en) * 1981-03-11 1983-02-22 Witco Chemical Corporation Thioglycolate and thiopropionate secondary stabilizers
DE3761048D1 (de) * 1986-03-13 1990-01-04 Ciba Geigy Ag Umsetzungsprodukte von bis-glycidylthioethern.
JPH02111950A (ja) * 1988-10-21 1990-04-24 Hitachi Chem Co Ltd 感光性樹脂組成物および感光性エレメント
JPH02175749A (ja) * 1988-12-28 1990-07-09 Nippon Steel Chem Co Ltd 封止用樹脂組成物
SU1743160A1 (ru) * 1990-09-04 1998-02-20 Институт физико-органической химии и углехимии АН УССР 1,2-бис-(1-глицидилбензимидазол-2-илтио)этан в качестве соотвердителя эпоксидных смол и 1,2-бис-(бензимидазол-2-илтио)этан как промежуточный продукт в синтезе 1,2-бис-(1-глицидилбензимидазол-2-илтио)этана в качестве соотвердителя эпоксидных смол
JP3403590B2 (ja) * 1996-10-15 2003-05-06 三井化学株式会社 含硫エポキシ化合物及び含硫エポキシ樹脂
JP2000309584A (ja) * 1999-02-24 2000-11-07 Mitsubishi Gas Chem Co Inc エピスルフィド化合物およびそれを用いた高屈折率樹脂の製造方法。
JP3405934B2 (ja) * 1999-03-10 2003-05-12 三井化学株式会社 新規な光学用樹脂
JP3563006B2 (ja) * 1999-12-10 2004-09-08 三井化学株式会社 (チオ)エポキシ系重合性組成物
US7097883B2 (en) * 2003-06-05 2006-08-29 Ppg Industries Ohio, Inc. Low temperature liquid polythioether polymers
US7622548B2 (en) * 2003-07-11 2009-11-24 Prc Desoto International, Inc. Epoxy- or amine/hydroxy-capped polythioethers
US20050010003A1 (en) * 2003-07-11 2005-01-13 Prc-Desoto International, Inc. Epoxy-capped polythioethers

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3454539A (en) * 1967-08-11 1969-07-08 Ciba Ltd Polyepoxides
US4104283A (en) * 1969-01-08 1978-08-01 The Dow Chemical Company Polythioetheralkyleneoxide epoxides
US4046729A (en) * 1975-06-02 1977-09-06 Ppg Industries, Inc. Water-reduced urethane coating compositions
US4366307A (en) * 1980-12-04 1982-12-28 Products Research & Chemical Corp. Liquid polythioethers
US4609762A (en) * 1984-01-30 1986-09-02 Products Research & Chemical Corp. Thioethers having a high sulfur content and method therefor
US4931576A (en) * 1984-06-29 1990-06-05 Ciba-Geigy Corporation Process for producing glycidyl thioethers
US4681811A (en) * 1985-08-19 1987-07-21 Ppg Industries, Inc. Color plus clear coatings employing polyepoxides and polyacid curing agents in the clear coat
US5225472A (en) * 1992-05-19 1993-07-06 Courtaulds Aerospace, Inc. Low viscosity polythiol and method therefor
US5912319A (en) * 1997-02-19 1999-06-15 Courtaulds Aerospace, Inc. Compositions and method for producing fuel resistant liquid polythioether polymers with good low temperature flexibility
US6172179B1 (en) * 1997-02-19 2001-01-09 Prc-Desoto International, Inc. Composition and method for producing fuel resistant liquid polythioether polymers with good low temperature flexibility
US6372849B2 (en) * 1997-02-19 2002-04-16 Prc-Desoto International, Inc. Sealants and potting formulations including polymers produced by the reaction of a polythiol and polyvinyl ether monomer
US20030017341A1 (en) * 2001-03-07 2003-01-23 3M Innovative Properties Company Adhesives and adhesive compositions containing thioether groups
US6800371B2 (en) * 2001-03-07 2004-10-05 3M Innovative Properties Company Adhesives and adhesive compositions containing thioether groups

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622548B2 (en) 2003-07-11 2009-11-24 Prc Desoto International, Inc. Epoxy- or amine/hydroxy-capped polythioethers
US20070287810A1 (en) * 2003-07-11 2007-12-13 Prc-Desoto International, Inc. Epoxy-capped polythioethers and hydroxy/amine-capped polythioethers
US20070299217A1 (en) * 2003-07-11 2007-12-27 Suresh Sawant Epoxy-capped polythioethers
US7671145B2 (en) * 2003-07-11 2010-03-02 Prc Desoto International, Inc. Epoxy-capped polythioethers by reacting dithiol, diolefin and monoepoxy olefin
US20070054128A1 (en) * 2005-02-04 2007-03-08 Walker John A Multi-component epoxy-amine primer systems comprising a polythioether
US7498384B2 (en) * 2005-02-04 2009-03-03 Ppg Industries Ohio, Inc. Multi-component epoxy-amine primer systems comprising a polythioether
US20070270549A1 (en) * 2006-05-05 2007-11-22 Szymanski Chester J Compositions comprising thioether-functional oligomeric polythiols
US8623989B1 (en) 2006-05-05 2014-01-07 PRC De Soto International, Inc. Polyurea/polythiourea coatings
US7888436B2 (en) 2006-05-05 2011-02-15 Prc Desoto International, Inc. Compositions comprising thioether-functional oligomeric polythiols
KR101129814B1 (ko) * 2007-05-01 2012-04-12 피알시-데소토 인터내쇼날, 인코포레이티드 폴리티오에테르를 포함하는 밀봉제 조성물
KR101106838B1 (ko) 2007-05-01 2012-01-19 피알시-데소토 인터내쇼날, 인코포레이티드 폴리티오에터를 포함하는 실란트 조성물
WO2008137199A1 (en) * 2007-05-01 2008-11-13 Prc-Desoto International, Inc. Sealant composition comprising polythioether
AU2008248096B2 (en) * 2007-05-01 2010-11-18 Prc-Desoto International, Inc. Sealant composition comprising polythioether
US7879955B2 (en) 2007-05-01 2011-02-01 Rao Chandra B Compositions including a polythioether
US20090012244A1 (en) * 2007-05-01 2009-01-08 Prc-Desoto International, Inc. Compositions including a polythioether
US8138273B2 (en) * 2007-05-01 2012-03-20 PRC DeSoto International, Inc Compositions including a polythioether
US20110092639A1 (en) * 2007-05-01 2011-04-21 Prc-Desoto International, Inc. Compositions Including a Polythioether
KR101223399B1 (ko) * 2007-07-03 2013-01-17 피피지 인더스트리즈 오하이오 인코포레이티드 폴리우레아/폴리티오우레아 코팅
AU2009238515B2 (en) * 2008-04-24 2012-03-29 Prc-Desoto International, Inc. Thioethers, methods for their preparation, and compositions including such thioethers
US20110077351A1 (en) * 2008-04-24 2011-03-31 Prc-Desoto International, Inc. Thioethers, methods for their preparation, and compositions including such thioethers
US20090270554A1 (en) * 2008-04-24 2009-10-29 Prc-Desoto International, Inc. Thioethers, methods for their preparation, and compositions including such thioethers
WO2009131796A1 (en) * 2008-04-24 2009-10-29 Prc-Desoto International, Inc. Thioethers, methods for their preparation, and compositions including such thioethers
US7875666B2 (en) 2008-04-24 2011-01-25 Prc-De Soto International, Inc. Thioethers, methods for their preparation, and compositions including such thioethers
US8466220B2 (en) 2008-04-24 2013-06-18 PRC DeSoto International, Inc Thioethers, methods for their preparation, and compositions including such thioethers
US8481627B2 (en) 2008-04-24 2013-07-09 Prc Desoto International, Inc. Thioethers, methods for their preparation, and compositions including such thioethers
EP3284772A1 (en) * 2008-04-24 2018-02-21 Prc-Desoto International, Inc. Thioethers, methods for their preparation, and compositions including such thioethers
US20100184899A1 (en) * 2008-04-24 2010-07-22 Prc-Desoto International, Inc. Thioethers, methods for their preparation, and compositions including such thioethers
US20120088862A1 (en) * 2010-10-07 2012-04-12 Siamanto Abrami Diethylene Glycol Monomethyl Ether Resistant Coating
US9080004B2 (en) * 2010-10-07 2015-07-14 Prc-Desoto International, Inc. Diethylene glycol monomethyl ether resistant coating
US9422467B2 (en) 2011-03-18 2016-08-23 Prc-Desoto International, Inc. Flexible polyamines, flexible amine-terminated adducts, compositions thereof and methods of use
KR20150023043A (ko) * 2012-06-21 2015-03-04 피알시-데소토 인터내쇼날, 인코포레이티드 다작용성 황-함유 에폭시 및 이의 조성물
WO2013192297A3 (en) * 2012-06-21 2014-06-19 Prc-Desoto International, Inc. Polyfunctional sulfur-containing epoxies and compositions thereof
US8513339B1 (en) 2012-06-21 2013-08-20 Prc-Desoto International, Inc. Copolymerizable sulfur-containing adhesion promoters and compositions thereof
US8710159B2 (en) * 2012-06-21 2014-04-29 Prc Desoto International, Inc. Polyfunctional sulfur-containing epoxies and compositions thereof
CN104507996A (zh) * 2012-06-21 2015-04-08 Prc-迪索托国际公司 多官能含硫环氧树脂及其组合物
EP3511356A1 (en) 2012-06-21 2019-07-17 PRC-Desoto International, Inc. Polyfunctional sulfur-containing epoxies and compositions thereof
WO2013192297A2 (en) 2012-06-21 2013-12-27 Prc-Desoto International, Inc. Polyfunctional sulfur-containing epoxies and compositions thereof
AU2013277195B2 (en) * 2012-06-21 2015-08-27 Prc-Desoto International, Inc. Polyfunctional sulfur-containing epoxies and compositions thereof
KR101685313B1 (ko) * 2012-06-21 2016-12-09 피알시-데소토 인터내쇼날, 인코포레이티드 다작용성 황-함유 에폭시 및 이의 조성물
US9303149B2 (en) 2012-06-21 2016-04-05 Prc-Desoto International, Inc. Adhesion promoting adducts containing metal ligands, compositions thereof, and uses thereof
WO2013192266A2 (en) 2012-06-21 2013-12-27 Prc-Desoto International, Inc. Copolymerizable sulfur-containing adhesion promoters and compositions thereof
US9650552B2 (en) 2013-03-15 2017-05-16 Prc-Desoto International, Inc. Energy curable sealants
WO2015065977A2 (en) 2013-10-29 2015-05-07 Prc-Desoto International, Inc. Adhesion promoting adducts containing metal ligands, compositions thereof, and uses thereof
US9518197B2 (en) 2014-03-07 2016-12-13 Prc-Desoto International, Inc. Cure-on-demand moisture-curable urethane-containing fuel resistant prepolymers and compositions thereof
US10011751B2 (en) 2014-03-07 2018-07-03 Prc-Desoto International, Inc. Phosphine-catalyzed, michael addition-curable sulfur-containing polymer compositions
US9382448B2 (en) 2014-08-29 2016-07-05 Prc-Desoto International, Inc. Polythioether sealants with enhanced thermal resistance
WO2016033441A1 (en) * 2014-08-29 2016-03-03 Prc-Desoto International, Inc. Polythioether sealants with enhanced thermal resistance
RU2673666C2 (ru) * 2014-08-29 2018-11-29 Прк-Десото Интернэшнл, Инк. Политиоэфирные герметики с повышенной термостойкостью
CN104262624A (zh) * 2014-09-03 2015-01-07 浙江大学 一种多环氧基聚合物的合成方法
US10287466B2 (en) 2015-02-13 2019-05-14 3M Innovative Properties Company Cold-tolerant sealants and components thereof
US10544339B2 (en) 2015-02-13 2020-01-28 3M Innovative Properties Company Cold-tolerant sealants and components thereof
US9951252B2 (en) 2015-08-10 2018-04-24 Prc-Desoto International, Inc. Moisture-curable fuel-resistant sealant systems
US9777139B2 (en) 2015-10-26 2017-10-03 Prc-Desoto International, Inc. Reactive antioxidants, antioxidant-containing prepolymers, and compositions thereof
WO2017074911A1 (en) 2015-10-26 2017-05-04 Prc-Desoto International, Inc. Reactive antioxidants, antioxidant-containing prepolymers, and compositions thereof
US9902799B2 (en) 2015-11-11 2018-02-27 Prc-Desoto International, Inc. Urethane-modified prepolymers containing pendent alkyl groups, compositions and uses thereof
US11091582B2 (en) 2015-11-11 2021-08-17 Prc-Desoto International, Inc. Urethane-modified prepolymers containing pendent alkyl groups, compositions and uses thereof
US10035926B2 (en) 2016-04-22 2018-07-31 PRC—DeSoto International, Inc. Ionic liquid catalysts in sulfur-containing polymer compositions
WO2017184953A1 (en) 2016-04-22 2017-10-26 Prc-Desoto International, Inc. Ionic liquid catalyst in sulfur-containing polymer compositions
WO2018005633A1 (en) 2016-06-28 2018-01-04 Prc-Desoto International, Inc. Urethane/urea-containing bis(alkenyl) ethers, prepolymers prepared using urethane/urea-containing bis(alkenyl) ethers, and uses thereof
US10370561B2 (en) 2016-06-28 2019-08-06 Prc-Desoto International, Inc. Urethane/urea-containing bis(alkenyl) ethers, prepolymers prepared using urethane/urea-containing bis(alkenyl) ethers, and uses thereof
CN107312174A (zh) * 2017-07-19 2017-11-03 北京化工大学 一种聚硫醚的合成方法
US10351674B2 (en) 2017-10-17 2019-07-16 Prc-Desoto International, Inc. Sulfur-containing polymeric particles and compositions
WO2019077516A1 (en) 2017-10-17 2019-04-25 Prc-Desoto International, Inc. POLYMERIC PARTICLES CONTAINING SULFUR AND COMPOSITIONS
US10836866B2 (en) 2017-10-17 2020-11-17 Prc-Desoto International, Inc. Sulfur-containing polymeric particles and compositions
US11098222B2 (en) 2018-07-03 2021-08-24 Prc-Desoto International, Inc. Sprayable polythioether coatings and sealants
WO2020072464A1 (en) 2018-10-02 2020-04-09 Prc-Desoto International, Inc. Delayed cure micro-encapsulated catalysts
US10843180B2 (en) 2018-10-02 2020-11-24 Prc-Desoto International, Inc. Delayed cure micro-encapsulated catalysts

Also Published As

Publication number Publication date
AU2004262642B2 (en) 2007-07-26
US20070299217A1 (en) 2007-12-27
BRPI0412385A (pt) 2006-09-19
DE602004007272D1 (de) 2007-08-09
RU2342372C2 (ru) 2008-12-27
CA2531794C (en) 2011-01-18
JP2009280617A (ja) 2009-12-03
JP4633053B2 (ja) 2011-02-16
DK1644348T3 (da) 2007-10-22
MXPA06000349A (es) 2006-03-28
ES2288264T3 (es) 2008-01-01
KR20060040673A (ko) 2006-05-10
RU2006103988A (ru) 2006-06-27
BRPI0412385B1 (pt) 2016-04-19
ATE365727T1 (de) 2007-07-15
CA2531794A1 (en) 2005-02-17
EP1644348A1 (en) 2006-04-12
AU2004262642A1 (en) 2005-02-17
IL172949A0 (en) 2006-06-11
US7671145B2 (en) 2010-03-02
JP2007520439A (ja) 2007-07-26
KR100741201B1 (ko) 2007-07-19
CN100408568C (zh) 2008-08-06
DE602004007272T2 (de) 2007-10-11
EP1644348B1 (en) 2007-06-27
CN1823050A (zh) 2006-08-23
WO2005014564A1 (en) 2005-02-17
IL172949A (en) 2012-07-31

Similar Documents

Publication Publication Date Title
US7671145B2 (en) Epoxy-capped polythioethers by reacting dithiol, diolefin and monoepoxy olefin
US7622548B2 (en) Epoxy- or amine/hydroxy-capped polythioethers
US7097883B2 (en) Low temperature liquid polythioether polymers
US7834105B2 (en) Thiol-, hydroxyl-, amine- or vinyl-terminated polythioethers
EP1274770A1 (en) High strength polymers and aerospace sealants therefrom
ES2362464T3 (es) Composición selladora que comprende politioéter.

Legal Events

Date Code Title Description
AS Assignment

Owner name: PRC-DESOTO INTERNATIONAL, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAWANT, SURESH;RAO, CHANDRA BHUSHAN;REEL/FRAME:014276/0052

Effective date: 20030708

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION