US20040247464A1 - Fuel supply apparatus - Google Patents
Fuel supply apparatus Download PDFInfo
- Publication number
- US20040247464A1 US20040247464A1 US10/856,792 US85679204A US2004247464A1 US 20040247464 A1 US20040247464 A1 US 20040247464A1 US 85679204 A US85679204 A US 85679204A US 2004247464 A1 US2004247464 A1 US 2004247464A1
- Authority
- US
- United States
- Prior art keywords
- pump
- rotor
- fuel
- holes
- supply apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B23/00—Pumping installations or systems
- F04B23/04—Combinations of two or more pumps
- F04B23/08—Combinations of two or more pumps the pumps being of different types
- F04B23/10—Combinations of two or more pumps the pumps being of different types at least one pump being of the reciprocating positive-displacement type
- F04B23/103—Combinations of two or more pumps the pumps being of different types at least one pump being of the reciprocating positive-displacement type being a radial piston pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B23/00—Pumping installations or systems
- F04B23/04—Combinations of two or more pumps
- F04B23/08—Combinations of two or more pumps the pumps being of different types
- F04B23/12—Combinations of two or more pumps the pumps being of different types at least one pump being of the rotary-piston positive-displacement type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C11/00—Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
- F04C11/005—Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of dissimilar working principle
- F04C11/006—Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of dissimilar working principle having complementary function
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/0042—Systems for the equilibration of forces acting on the machines or pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/082—Details specially related to intermeshing engagement type machines or pumps
- F04C2/084—Toothed wheels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/10—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
- F04C2/102—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/30—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C2/34—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
- F04C2/344—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2230/00—Manufacture
- F04C2230/60—Assembly methods
- F04C2230/602—Gap; Clearance
Definitions
- This invention relates to a fuel supply apparatus for an internal combustion engine, more particularly to a rotary pump to be used for a fuel injection system for supplying fuel to a diesel engine.
- the feed pump comprises a pump element 110 to be driven by a cam shaft 100 of a main pump, a pump cover 120 for forming a rotor chamber and housing therein the pump element 110 , and a pump plate 130 for closing an opening side of the rotor chamber in a liquid-sealing manner in combination with the pump cover 120 , wherein the pump cover 120 is screwed to a side surface of a pump housing 140 .
- the pump element 110 is a trochoid type comprising an outer rotor 111 having inner cogs and an inner rotor 112 disposed inside of the outer rotor and having outer cogs, wherein the number of cogs of the outer rotor 111 is larger than that of the inner rotor 112 by one cog, and wherein a rotational center 0 a of the outer rotor 111 is eccentric from that 0 i of the inner rotor 112 .
- the outer rotor 111 is also rotated in conjunction with the inner rotor 112 , so that a volume of a working chamber formed by adjacent cogs will be gradually changed to draw fuel from a fuel tank and pumps out the fuel to the main pump.
- a side clearance between the pump cover 120 and the pump element 110 is made smaller to minimize amount of fuel leakage and to increase a fuel feed efficiency. If, however, the side clearance were made too small, there would occur a problem of an abnormal wear, seizure or the like, because variations of parts in manufacturing process may not be absorbed.
- the present invention is made in view of the above problems, and it is an object of the present invention to provide a fuel supply apparatus having a rotary pump which improves a pump performance by making much smaller the side clearance in an axial direction at both sides of the pump element without causing metal contact between the pump element and the counterpart.
- a fuel supply apparatus comprises a rotary pump having a pumping chamber, the volume of which varies in conjunction with a rotation of a rotor, pressurizing the fuel sucked into the pumping chamber and discharging the pressurized fuel.
- the rotary pump is characterized in that, multiple through-holes are formed in a rotor, wherein the through-holes pass through in the rotor in an axial direction, and side clearances formed at both sides of the rotor are communicated with each other by those through-holes.
- the multiple through-holes are formed at an equal distance in a circumferential direction of the rotor.
- the rotary pump is a trochoid type pump comprising an outer rotor having inner cogs and inner rotor disposed inside of the outer rotor and having outer cogs, wherein the through-holes are formed at top portions or bottom portions of the cogs.
- the inner rotor Because of the through-holes formed in the inner rotor, which is driven by a camshaft, the inner rotor can be floated. As a result, metal contacts between the inner rotor and other parts are suppressed during the rotation of the inner rotor, and thereby the problems of the abnormal wear, seizures and the like can be suppressed.
- the rotary pump is provided with the through-holes at every top portion or bottom portion of the cogs.
- the pressures in the thrust direction can be equalized at every top portion or bottom portion of the cogs of the inner rotor, the inner rotor can be much more surely floated to suppress the metal contacts between the inner rotor and the other parts.
- an outer rotor of the rotary pump is provided with multiple through-holes, which pass through in the axial direction, at top portions or bottom portions of the cogs, wherein the multiple through-holes are arranged at an equal distance in a circumferential direction of the outer rotor.
- the through-holes are formed in the outer rotor in addition to the through-holes in the inner rotor, thrust pressures to the outer rotor can be likewise equalized. As a result, the outer rotor can be positively floated together with the inner rotor.
- the rotary pump is used as a feed pump of a fuel injection pump for diesel engines, wherein the feed pump is formed with a circular rotor chamber and comprises a pump cover for housing the pump element of the inner and the outer rotors in the rotor chamber, and a pump plate for closing an open end of the rotor chamber in a liquid-sealing manner together with the pump cover.
- the pump plate is formed with fuel ports to be communicated to the rotor chamber, and the pump cover is screwed to a side surface of a housing of the fuel injection pump, so that the pump plate is pressed against the side surface.
- the side clearance between the pump element and the pump cover as well as the side clearance between the pump element and the pump plate can be made smaller to increase the fuel feed efficiency and thereby increase a pump performance as the feed pump.
- the rotary pump is a vane type pump comprising a rotor formed with vane grooves and vanes movably inserted into the vane grooves.
- the rotor having vanes is driven by a cam shaft and is rotated, the rotor can be floated by equalizing thrust pressures with multiple through-holes formed in the rotor. As a result, the metal contacts between the rotor and the other parts can be suppressed.
- FIG. 1 is a cross-sectional view of a feed pump according to a first embodiment of the present invention
- FIG. 2 is a front view of a pump element of the feed pump shown in FIG. 1;
- FIG. 3 is a cross-sectional view of a fuel injection pump to which the feed pump of the present invention is applied;
- FIG. 4 is a front view of a pump element according to a second embodiment of the present invention.
- FIG. 5 is a front view of a pump rotor according to a third embodiment of the present invention.
- FIG. 6 is a cross-sectional view of a prior art feed pump
- FIG. 7 is a front view of a pump element of the feed pump shown in FIG. 6.
- FIG. 1 is a cross-sectional view of a feed pump
- FIG. 2 is a front view of a pump element
- FIG. 3 is a cross-sectional view of a fuel injection pump.
- the fuel injection pump 1 is provided with a main pump 2 for pressurizing and pumping out fuel and a feed pump 3 (See FIG. 1) for drawing the fuel from a fuel tank (not shown) and feeding the fuel to the main pump 2 .
- the main pump 2 comprises a cam shaft 4 to be rotated being driven by a diesel engine (not shown), a pump housing 5 for rotationally supporting the cam shaft 4 , a plunger 7 being driven by the cam shaft 4 for reciprocally moving in a cylinder 6 , and so on.
- a cam 8 which has a circular cross-sectional configuration is fixed to the cam shaft 4 , wherein a rotational center thereof is eccentric to that of the cam shaft.
- a cam ring 10 is rotationally supported at an outer periphery of the cam 8 over a bush 9 .
- a pair of flat surfaces are formed in the cam ring 10 , wherein the flat surfaces are opposing to each other in a radial direction of the cam 8 .
- a pair of cylinder heads 11 is assembled to the pump housing 5 in a liquid-sealing manner, wherein the cylinder heads 11 are opposing to each other in the radial direction of the cam shaft 4 .
- the cylinder head 11 is formed with a cylinder 6 , into which the plunger 7 is inserted, a pump-out port 12 to be communicated with the cylinder 6 , and so on.
- a check valve 13 is assembled to the cylinder head at an opposite side of the cylinder 6 .
- a pipe joint 15 is screwed into the cylinder head at an outlet side of the pump-out port 12 for connecting to a fuel pipe 14 .
- the check valve 13 is disposed between a fuel passage (not shown) to be communicated with a feed pump and the cylinder 6 .
- the check valve 13 will be opened during a suction stroke at which the plunger 7 will be downwardly moved in the cylinder 6 (inwardly moved), to introduce fuel fed from the feed pump 3 into the inside of the cylinder 6 , whereas the check valve 13 will be closed during a pumping out stroke at which the plunger 7 will be upwardly moved in the cylinder 6 (outwardly moved) so that the fuel introduced into the cylinder 6 is prevented from flowing back to the feed pump 3 .
- the pump-out port 12 is formed with a small diameter port and a large diameter port.
- a seat surface of a circular conic is formed between the small and large diameter ports (See FIG. 3).
- a ball valve 17 is disposed in the pump-out port 12 and is urged by a spring 16 towards the seat surface, so that the small and large diameter ports are blocked by this ball valve 17 .
- the ball valve 17 will be lifted from the seat surface when a pressure of fuel, which is pressurized by the plunger 7 during the pumping out stroke, becomes higher than the urging force of the spring 16 , and thereby the small and large diameter ports are communicated with each other.
- the plunger 7 has a plunger head 7 a at its inner side end and the plunger head 7 a is urged by a spring 18 and pressed against an outer surface (flat surface) of the cam ring 10 .
- the cam ring 10 moves with an orbital motion along its orbit which is displaced from the rotational center of the cam shaft 4 by a certain distance, while the cam ring 10 is keeping its orientation (The cam ring 10 is not rotated on its axis and on an axis of the cam 8 ).
- the plunger 7 pressed against the flat surface of the cam ring 10 is reciprocally moved in the cylinder 6 .
- the feed pump 3 comprises a pump element PE, a pump cover 19 and a pump plate 20 , as explained below.
- the feed pump 3 is fixed to a side surface of the pump housing 5 by bolts 21 , as shown in FIG. 3.
- the pump element PE is a well known trochoid type pump, comprising an outer rotor 22 having inner cogs and an inner rotor 23 disposed inside of the outer rotor 22 and having outer cogs, wherein the inner rotor is connected to the cam shaft 4 via a key so that the inner rotor will be rotated by the cam shaft 4 .
- the outer rotor 22 has cogs, the number of which is larger than that of the inner rotor 23 by one cog, and the rotational center 0 a of the outer rotor 22 is eccentrically displaced from the rotational center 0 i of the inner rotor 23 (See FIG. 2). Accordingly, when the inner rotor 23 is rotated by the cam shaft 4 , the outer rotor 22 is rotated in conjunction with the inner rotor 23 , so that the volume of working chambers formed by the cogs will be changed to pump out the fuel drawn from the fuel tank to the main pump 2 .
- through-holes 22 a and 23 a which pass through the outer and inner rotors 22 and 23 in an axial direction, are respectively formed in the outer rotor 22 and the inner rotor 23 .
- the pump cover 19 is formed with a circular rotor chamber 19 a for housing therein the pump element PE, as shown in FIG. 1.
- An inner diameter of the rotor chamber 19 a is made slightly larger than an outer diameter of the pump element PE (namely, an outer diameter of the outer rotor 23 ), so that the outer rotor 23 may be rotated therein.
- a width of the rotor chamber 19 a is made slightly larger than a width of the pump element PE (a thickness in a longitudinal direction), so that side clearances of a certain distance between the pump element PE and inner surfaces of the pump chamber are kept.
- the pump plate 20 is assembled to the pump cover 19 in a liquid-sealing manner to close an opening of the rotor chamber 19 a .
- the pump plate 20 is formed with a center bore, through which the cam shaft 4 passes, and fuel ports 20 a (an inlet port and an outlet port) around the center bore (See FIG. 1).
- the fuel ports 20 a are communicated to the working chambers 24 formed between the outer rotor 22 and the inner rotor 23 .
- the multiple through-holes 22 a and 23 a are respectively formed in the outer and inner rotors 22 and 23 and furthermore those multiple through-holes 22 a and 23 a are arranged at equal distance in the circumferential direction of the rotors 22 and 23 . Since the side clearances formed on the both sides of the rotors 22 and 23 in the axial direction are communicated with each other through those multiple through-holes 22 a and 23 a , the pressures in the thrust direction at the both sides of the rotors 22 and 23 will be equalized. As a result, uniform side clearances can be obtained at both sides of the rotors 22 and 23 .
- the outer and inner rotors 22 and 23 can be floated without contacting with the pump cover 19 and the pump plate 20 .
- the through-holes 23 a are formed at every cog top portions of the inner rotor 23 , which correspond to an outer periphery of the inner rotor, an inclination of the inner rotor 23 can be effectively suppressed and thereby the uniform side clearances at both of the longitudinal sides along the peripheries of the inner rotor 23 can be obtained.
- the problems of the abnormal wear and seizures and the like can be suppressed by preventing the metal contacts between the pump element PE and the pump cover 19 and the pump plate 20 , to finally increase the performance of the feed pump 3 , even when the side clearances between the pump element PE and the pump cover 19 are made smaller to increase the fuel feed efficiency.
- the through-holes 22 a and 23 a are formed in the both outer and inner rotors 22 and 23 . It is, however, possible to obtain a sufficient effect (suppress of the abnormal wear and seizures, or the like), when the through-holes 23 a are formed only in the inner rotor 23 which is directly driven by the cam shaft 4 .
- FIG. 4 is a front view of pump element PE according to a second embodiment.
- the multiple through-holes 22 a and 23 a are formed in the outer and inner rotors 22 and 23 at equal distance in the circumferential direction. It is, however, not necessary to arrange the through-holes at equal distance. As shown in FIG. 4, the through-holes 23 a can be formed in the inner rotor 23 at non-equivalent distances in the circumferential direction. Although only the through-holes for the inner rotor 23 are shown in FIG. 4, the through-holes 22 a can be formed in the outer rotor 22 at non-equivalent distances in the circumferential direction, as in the same manner for the inner rotor 23 .
- FIG. 5 is a front view of a rotor 25 according to a third embodiment.
- the third embodiment is an embodiment in which the present invention of the rotary pump is applied to a vane type pump.
- the vane type pump has, as shown in FIG. 5, a rotor 25 formed with multiple vane grooves 25 a at its outer periphery at equal distance in the circumferential direction, and vanes 26 respectively and movably inserted into the vane grooves 25 a.
- the through-holes 25 b are formed at both sides to the respective vanes 26 and the circumferential distance of the through-holes 25 b between the respective vanes 26 is arranged to be equal to each other.
- the circumferential distance of the through-holes 25 b is not necessary to be equal but to be non-equivalent.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003159280 | 2003-06-04 | ||
JP2003-159280 | 2003-06-04 | ||
JP2004125490A JP2005016514A (ja) | 2003-06-04 | 2004-04-21 | 燃料供給装置 |
JP2004-125490 | 2004-04-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040247464A1 true US20040247464A1 (en) | 2004-12-09 |
Family
ID=33161584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/856,792 Abandoned US20040247464A1 (en) | 2003-06-04 | 2004-06-01 | Fuel supply apparatus |
Country Status (4)
Country | Link |
---|---|
US (1) | US20040247464A1 (fr) |
EP (1) | EP1484504B1 (fr) |
JP (1) | JP2005016514A (fr) |
CN (1) | CN100374723C (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9897056B1 (en) * | 2016-11-22 | 2018-02-20 | GM Global Technology Operations LLC | Protective cover assembly for a fuel pump |
CN108412650A (zh) * | 2018-05-12 | 2018-08-17 | 广东德力柴油机有限公司 | 一种单缸电控喷射柴油机的输油泵 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4832042B2 (ja) * | 2005-09-22 | 2011-12-07 | 住友電工焼結合金株式会社 | 内接歯車式ポンプ |
JP4832041B2 (ja) * | 2005-09-22 | 2011-12-07 | 住友電工焼結合金株式会社 | 内接歯車式ポンプ |
DE102008000700A1 (de) * | 2008-03-17 | 2009-09-24 | Robert Bosch Gmbh | Brennstoffpumpe |
KR101558617B1 (ko) | 2010-11-12 | 2015-10-07 | 현대자동차주식회사 | 차량 연료탱크의 개폐구조 |
JP5803171B2 (ja) * | 2011-03-15 | 2015-11-04 | 株式会社ジェイテクト | ポンプ |
CN102678541B (zh) * | 2012-05-25 | 2014-08-06 | 山东鑫亚工业股份有限公司 | 悬浮式摆线转子输油泵 |
CN103925209B (zh) * | 2014-04-26 | 2016-03-30 | 山东科润机械股份有限公司 | 柴油机用分体式高压共轨输油泵总成 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3320898A (en) * | 1963-12-05 | 1967-05-23 | Eickmann Karl | Power producing, power transforming, power transmitting and/or fluid machine |
US3416460A (en) * | 1963-12-05 | 1968-12-17 | Eickmann Karl | Fluid handling device including endwalls on a trochoid curved body |
US4219313A (en) * | 1978-07-28 | 1980-08-26 | Trw Inc. | Commutator valve construction |
US4357133A (en) * | 1978-05-26 | 1982-11-02 | White Hollis Newcomb Jun | Rotary gerotor hydraulic device with fluid control passageways through the rotor |
US4367714A (en) * | 1981-01-19 | 1983-01-11 | Ambac Industries Incorporated | Fuel injection pump |
US4411606A (en) * | 1980-12-15 | 1983-10-25 | Trw, Inc. | Gerotor gear set device with integral rotor and commutator |
US4872819A (en) * | 1978-05-26 | 1989-10-10 | White Hollis Newcomb Jun | Rotary gerotor hydraulic device with fluid control passageways through the rotor |
US6120273A (en) * | 1997-07-02 | 2000-09-19 | Mallen Research Corporation | Rotary-linear vane guidance in a rotary vane pumping machine |
US20010015200A1 (en) * | 2000-02-18 | 2001-08-23 | Katsumi Mori | Fuel injection pump |
US6460504B1 (en) * | 2001-03-26 | 2002-10-08 | Brunswick Corporation | Compact liquid lubrication circuit within an internal combustion engine |
US20030044288A1 (en) * | 2001-09-03 | 2003-03-06 | Denso Corporation | Fuel injection pump having throttled fuel path for fuel lubrication |
US20040052670A1 (en) * | 2002-09-13 | 2004-03-18 | Xingen Dong | Rotor with a hydraulic overbalancing recess |
US20060292024A1 (en) * | 2005-06-23 | 2006-12-28 | Hitomi Miyake | Internal gear pump in combustion engine |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR606708A (fr) * | 1924-11-21 | 1926-06-18 | Perfectionnements aux pompes centrifuges rotatives | |
DE3148664A1 (de) * | 1981-12-09 | 1983-06-23 | Alfred Teves Gmbh, 6000 Frankfurt | Anordnung zu axialen positionierung eines rotors einer hydraulischen verdraengungsmaschine |
DE8516658U1 (de) * | 1985-06-07 | 1986-11-27 | Mannesmann Rexroth GmbH, 8770 Lohr | Zahnradmaschine |
JPH07279790A (ja) * | 1994-04-08 | 1995-10-27 | Aisan Ind Co Ltd | トロコイドポンプ |
DE19630975A1 (de) * | 1995-07-31 | 1997-11-20 | Andreas Voulgaris | Hydraulische Maschine in Zahnring-Bauweise |
-
2004
- 2004-04-21 JP JP2004125490A patent/JP2005016514A/ja active Pending
- 2004-06-01 US US10/856,792 patent/US20040247464A1/en not_active Abandoned
- 2004-06-03 CN CNB200410046300XA patent/CN100374723C/zh not_active Expired - Fee Related
- 2004-06-03 EP EP04013169A patent/EP1484504B1/fr not_active Expired - Lifetime
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3320898A (en) * | 1963-12-05 | 1967-05-23 | Eickmann Karl | Power producing, power transforming, power transmitting and/or fluid machine |
US3416460A (en) * | 1963-12-05 | 1968-12-17 | Eickmann Karl | Fluid handling device including endwalls on a trochoid curved body |
US4872819A (en) * | 1978-05-26 | 1989-10-10 | White Hollis Newcomb Jun | Rotary gerotor hydraulic device with fluid control passageways through the rotor |
US4357133A (en) * | 1978-05-26 | 1982-11-02 | White Hollis Newcomb Jun | Rotary gerotor hydraulic device with fluid control passageways through the rotor |
US4219313A (en) * | 1978-07-28 | 1980-08-26 | Trw Inc. | Commutator valve construction |
US4411606A (en) * | 1980-12-15 | 1983-10-25 | Trw, Inc. | Gerotor gear set device with integral rotor and commutator |
US4367714A (en) * | 1981-01-19 | 1983-01-11 | Ambac Industries Incorporated | Fuel injection pump |
US6120273A (en) * | 1997-07-02 | 2000-09-19 | Mallen Research Corporation | Rotary-linear vane guidance in a rotary vane pumping machine |
US20010015200A1 (en) * | 2000-02-18 | 2001-08-23 | Katsumi Mori | Fuel injection pump |
US6460504B1 (en) * | 2001-03-26 | 2002-10-08 | Brunswick Corporation | Compact liquid lubrication circuit within an internal combustion engine |
US20030044288A1 (en) * | 2001-09-03 | 2003-03-06 | Denso Corporation | Fuel injection pump having throttled fuel path for fuel lubrication |
US20040052670A1 (en) * | 2002-09-13 | 2004-03-18 | Xingen Dong | Rotor with a hydraulic overbalancing recess |
US6783340B2 (en) * | 2002-09-13 | 2004-08-31 | Parker-Hannifin Corporation | Rotor with a hydraulic overbalancing recess |
US20060292024A1 (en) * | 2005-06-23 | 2006-12-28 | Hitomi Miyake | Internal gear pump in combustion engine |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9897056B1 (en) * | 2016-11-22 | 2018-02-20 | GM Global Technology Operations LLC | Protective cover assembly for a fuel pump |
CN108087170A (zh) * | 2016-11-22 | 2018-05-29 | 通用汽车环球科技运作有限责任公司 | 用于燃料泵的保护盖组件 |
CN108412650A (zh) * | 2018-05-12 | 2018-08-17 | 广东德力柴油机有限公司 | 一种单缸电控喷射柴油机的输油泵 |
Also Published As
Publication number | Publication date |
---|---|
JP2005016514A (ja) | 2005-01-20 |
EP1484504B1 (fr) | 2012-04-04 |
CN1573110A (zh) | 2005-02-02 |
EP1484504A1 (fr) | 2004-12-08 |
CN100374723C (zh) | 2008-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6289875B1 (en) | Fuel injection pump | |
US7152518B2 (en) | Structure of fuel injection pump for extending service life | |
EP1544462B1 (fr) | Pompe à carburant avec rainure de lubrification | |
JP4428327B2 (ja) | 高圧燃料供給ポンプ | |
JPH1172014A (ja) | 燃料加圧用ポンプ | |
JP5187254B2 (ja) | 高圧ポンプ | |
JP3852756B2 (ja) | 燃料噴射ポンプ | |
JP4422405B2 (ja) | 蓄圧式分配型燃料噴射ポンプ | |
JP4872684B2 (ja) | 燃料供給ポンプ | |
JP2003172231A (ja) | 燃料噴射ポンプ | |
US20040247464A1 (en) | Fuel supply apparatus | |
JP5533740B2 (ja) | 高圧燃料ポンプ | |
JP2002371941A (ja) | 燃料噴射ポンプ | |
JP4609687B2 (ja) | 逆止弁およびそれを備えた燃料噴射ポンプ | |
JP2002509224A (ja) | 燃料高圧供給のためのラジアルピストンポンプ | |
JP3861835B2 (ja) | 燃料噴射ポンプ | |
JP3978662B2 (ja) | 燃料噴射ポンプ | |
JP2002317730A (ja) | 燃料噴射装置 | |
JP2619727B2 (ja) | 低粘性燃料油用ラジアルピストンポンプ | |
JP4203708B2 (ja) | 燃料噴射ポンプ | |
JPH085342Y2 (ja) | 低粘性燃料油用ラジアルピストンポンプ | |
JP2002364479A (ja) | 燃料供給装置 | |
JP2000054927A (ja) | 内燃機関の燃料供給装置 | |
JPH08232852A (ja) | 燃料ポンプ | |
JP2003328890A (ja) | 燃料噴射ポンプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DENSO CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUZUKI, MASASHI;REEL/FRAME:015406/0738 Effective date: 20040520 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |