US20040241208A1 - Fondant-based pharmaceutical composition - Google Patents

Fondant-based pharmaceutical composition Download PDF

Info

Publication number
US20040241208A1
US20040241208A1 US10484485 US48448504A US2004241208A1 US 20040241208 A1 US20040241208 A1 US 20040241208A1 US 10484485 US10484485 US 10484485 US 48448504 A US48448504 A US 48448504A US 2004241208 A1 US2004241208 A1 US 2004241208A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
composition
tablet
carbohydrate
fondant
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10484485
Inventor
Harry Sowden
Frank Bunick
Gus LaBella
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Consumer Inc
Original Assignee
Johnson and Johnson Consumer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; THEIR TREATMENT, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/02Apparatus specially adapted for manufacture or treatment of sweetmeats or confectionery; Accessories therefor
    • A23G3/04Sugar-cookers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; THEIR TREATMENT, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G1/00Cocoa; Cocoa products, e.g. chocolate; Substitutes therefor
    • A23G1/30Cocoa products, e.g. chocolate; Substitutes therefor
    • A23G1/50Cocoa products, e.g. chocolate; Substitutes therefor characterised by shape, structure or physical form, e.g. products with an inedible support
    • A23G1/54Composite products, e.g. layered laminated, coated, filled
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; THEIR TREATMENT, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/0002Processes of manufacture not relating to composition and compounding ingredients
    • A23G3/0004Processes specially adapted for manufacture or treatment of sweetmeats or confectionery
    • A23G3/0019Shaping of liquid, paste, powder; Manufacture of moulded articles, e.g. modelling, moulding, calendering
    • A23G3/0025Processes in which the material is shaped at least partially in a mould in the hollows of a surface, a drum, an endless band, or by a drop-by-drop casting or dispensing of the material on a surface, e.g. injection moulding, transfer moulding
    • A23G3/0029Moulding processes for hollow products, e.g. opened shell
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; THEIR TREATMENT, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • A23G3/36Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds
    • A23G3/364Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins
    • A23G3/368Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins containing vitamins, antibiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; THEIR TREATMENT, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • A23G3/50Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by shape, structure or physical form, e.g. products with supported structure
    • A23G3/54Composite products, e.g. layered, coated, filled
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; THEIR TREATMENT, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A23B - A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/005Coating of tablets or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/06Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of pills, lozenges or dragees
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/10Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of compressed tablets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0004Osmotic delivery systems; Sustained release driven by osmosis, thermal energy or gas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • A61K9/2081Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets with microcapsules or coated microparticles according to A61K9/50
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2086Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat
    • A61K9/209Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat containing drug in at least two layers or in the core and in at least one outer layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/282Organic compounds, e.g. fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/282Organic compounds, e.g. fats
    • A61K9/2826Sugars or sugar alcohols, e.g. sucrose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/2833Organic macromolecular compounds
    • A61K9/284Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/2833Organic macromolecular compounds
    • A61K9/286Polysaccharides, e.g. gums; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/2833Organic macromolecular compounds
    • A61K9/2873Proteins, e.g. gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2886Dragees; Coated pills or tablets, e.g. with film or compression coating having two or more different drug-free coatings; Tablets of the type inert core-drug layer-inactive layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2893Tablet coating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/08Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space co-operating with moulds carried by a turntable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/34Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses for coating articles, e.g. tablets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/30Feeding material to presses
    • B30B15/302Feeding material in particulate or plastic state to moulding presses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2068Compounds of unknown constitution, e.g. material from plants or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5084Mixtures of one or more drugs in different galenical forms, at least one of which being granules, microcapsules or (coated) microparticles according to A61K9/16 or A61K9/50, e.g. for obtaining a specific release pattern or for combining different drugs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Abstract

Fondant-based pharmaceutical compositions comprising active ingredients and dosage forms made therefrom are provided.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a fondant-based pharmaceutical composition and dosage forms made therefrom. [0002]
  • 2. Description of the Prior Art [0003]
  • Pharmaceuticals intended for oral administration are typically provided in solid form as tablets, capsules, pills, lozenges, or granules. Tablets are swallowed whole, chewed in the mouth, or dissolved sublingually. Soft tablets that either are chewed or dissolved in the mouth are often employed in the administration of pharmaceuticals where it is impractical to provide a tablet for swallowing whole. Soft tablets are advantageous where it is desirable to make an active ingredient available topically in the mouth or throat for both local effects or systemic absorption. Soft tablets are also utilized to improve drug administration in pediatric and geriatric patients. Soft tablets designed to disintegrate in the mouth prior to swallowing are particularly useful for improving compliance of pediatric patients. [0004]
  • Generally, soft tablets are made by direct compaction of a mixture of tabulating compounds including an active ingredient, flavoring, binders, etc. The mixture is fed into a die cavity of a tablet press and a tablet is formed by applying pressure. Hardness of the resulting tablet is a direct function of the compaction pressure employed and the compactibility of the ingredients in the formulation. A softer tablet, having an easier bite-through, may be prepared by employing reduced compaction pressures. The resulting tablet is softer, but also more fragile, brittle, and easily chipped. [0005]
  • Soft tablets designed to disintegrate in the mouth without chewing are disclosed by Cousin et al., in U.S. Pat. No. 5,464,632, and Wehling et al., in U.S. Pat. Nos. 5,223,264 and 5,178,878. While these soft tablets for oral administration advantageously disintegrate completely in the mouth prior to swallowing, they have the disadvantage of being highly friable, requiring costly specialized handling and packaging in order to prevent breakage. [0006]
  • It is known to apply outer coatings to a chewable tablet in order to protect the soft core. Typically, such outer coatings contain cellulose derivatives as major ingredients, which have relatively high melting points, i.e., greater than 135° C. For example, PCT Application No. WO 93/13758 discloses the application of a thin layer of coating material such as a disaccharide, polysaccharide, or cellulose derivative onto a compressed tablet. U.S. Pat. No. 4,828,845 relates to the coating of a comestible with a coating solution comprising xylitol, a film-forming agent such as methyl cellulose, a binder, optionally a filler, and optionally a plasticizer such as polyethylene glycol, the balance of the solution being water. The plasticizer makes up only about 3 to 7 weight percent of the coating solution disclosed in the '845 patent. U.S. Pat. No. 4,327,076 discloses a compressed, soft, chewable tablet containing an antacid or other active ingredient that may be coated with a sealant or a spray coat of chocolate. [0007]
  • Alternatively, as disclosed in U.S. Pat. No. 4,684,534, moisture-free soft tablets have been produced by compressing a combination of an active ingredient with a carbohydrate and a binder such that the open pore structure of the combination is destroyed only at the tablet surface. Because of their relatively hard exterior, these tablets are resistant to moisture absorption; however, these tablets quickly liquefy and melt when chewed due to their open pore interior structure. [0008]
  • Food products having soft or liquid centers, layers or other areas are formulated by arranging two fat-containing components contiguous with one another. A fat in the first component migrates into the second, forming a mixture having a lower solids content than the second fat, while the structural integrity of the first component is maintained. The process is especially adapted to the formation of soft- and liquid-centered confections. One preferred embodiment employs fats bearing long, saturated C[0009] 16 to C22 fatty acid residues and a mixture of short C2 to C4 acid residues, preferably containing acetic acid residues, as the migrating fat in a confectionery coating, and hydrogenated coconut or palm kernel oil as the fat in the confectionery center. An especially preferred embodiment employs, as the migrating fat, triglycerides bearing long, saturated substituents containing at least about 75% stearic acid residues and short residues derived from acetic acid, a mixture of acetic and propionic acid, or a mixture of acetic and butyric acid. Since sucrose and invertase are not essential elements of the center, artificial sweeteners can be used to replace all or part of the sucrose, resulting in reduced calorie confections. Caloric reduction is further enhanced because preferred migrating fats are low in calories. Yet another method for preparing soft centers in food products is disclosed in U.S. Pat. No. 5,362,508, wherein a center composition comprising a mixture of sucrose, invertase, and a fat component is coated with a second fat component. Upon incubation, short chain fatty acid residues from the second fat component migrated into the center fat component to yield a soft fat mixture in the center having a lower fat solids content.
  • It has now been discovered that active ingredients such as pharmaceuticals or nutritional products may be added to a novel, quick-melting fondant-based pharmaceutical composition that imparts a silky smooth texture during ingestion. This composition not only effectively masks the taste and texture of the active ingredient, particularly large particle sized active ingredients, but it conveniently may be consumed anywhere without the need for water. The fondant-based pharmaceutical composition may be compressed then coated with one or more outer coatings made of conventional coating materials, such as saccharides, cellulose derivatives, fats and waxes, and the like. Application of a protective coating according to the invention not only stabilizes the friability of the dosage form, but also effectively provides a water-resistant barrier that prevents the dosage form from drying out thereby allowing for the gradual softening of the fondant core. [0010]
  • SUMMARY OF THE INVENTION
  • The invention provides a fondant-based pharmaceutical composition comprising an active ingredient and a carbohydrate, at least a portion of which carbohydrate is crystallized and has an average particle size of about 2 to about 35 microns, said composition having a moisture content in the range of about 10 to about 13 percent. [0011]
  • The invention also provides a dosage form comprising: a) a fondant-based pharmaceutical composition comprising an active ingredient and a carbohydrate, at least a portion of which carbohydrate is crystallized and has an average particle size of about 2 to about 35 microns, said composition having a moisture content in the range of about 10 to about 13 percent; and b) at least one coating overlying said composition. [0012]
  • Finally, the invention further provides a method for making a soft tablet comprising: (a) forming a tablet containing an active ingredient and a hydrolyzable carbohydrate to a hardness of about 2 to about 10 kp/cm2; (b) adding water to the tablet before, during or after step (a); and (c) adding a hydrolase, e.g. a glycosidase to the tablet before, during or after step (a).[0013]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Fondants as known in the confectionery industry are sugar confectionery products that contain mixed sugars held in two phases. Sugar crystals, typically having a particle size in the range of about 2 to 35 microns, constitute the solid phase of these products. They are evenly dispersed in a high sugar solids syrup or liquid phase, which is saturated with respect to the crystallized sugars. The liquid phase typically constitutes 35 to 50 % by weight of the fondant. [0014]
  • The present fondant-based pharmaceutical composition comprises one or more active ingredients and one or more carbohydrates, at least a portion of which carbohydrate(s) are crystallized and have an average particle size of about 2 to about 35 microns. The composition has a moisture content in the range of about 5 to about 15 percent, e.g. about 10 to about 13 percent. [0015]
  • As used herein, the term “dosage form” applies to any solid object, semi-solid, or liquid composition designed to contain a specific pre-determined amount (i.e. dose) of a certain ingredient, for example an active ingredient as defined below. Suitable dosage forms may be pharmaceutical drug delivery systems, including those for oral administration, buccal administration, rectal administration, topical or mucosal delivery, or subcutaneous implants, or other implanted drug delivery systems; or compositions for delivering minerals, vitamins and other nutriceuticals, oral care agents, flavorants, and the like. Preferably the dosage forms of the present invention are considered to be solid, however they may contain liquid or semi-solid components. In a particularly preferred embodiment, the dosage form is an orally administered system for delivering a pharmaceutical active ingredient to the gastro-intestinal tract of a human. [0016]
  • The term “active ingredient” is used herein in a broad sense and encompasses any material that can be carried by or entrained in a dosage form. Suitable active ingredients for use in this invention include for example pharmaceuticals, minerals, vitamins and other nutriceuticals, oral care agents, flavorants and mixtures thereof. Suitable pharmaceuticals include analgesics, anti-inflammatory agents, antiarthritics, anesthetics, antihistamines, antitussives, antibiotics, anti-infective agents, antivirals, anticoagulants, antidepressants, antidiabetic agents, antiemetics, antiflatulents, antifungals, antispasmodics, appetite suppressants, bronchodilators, cardiovascular agents, central nervous system agents, central nervous system stimulants, decongestants, diuretics, expectorants, gastrointestinal agents, migraine preparations, motion sickness—products, mucolytics, muscle relaxants, osteoporosis preparations, oral contraceptives, polydimethylsiloxanes, respiratory agents, sleep-aids, urinary tract agents and mixtures thereof. [0017]
  • Preferred pharmaceuticals for use as the active ingredient include acetaminophen, ibuprofen, flurbiprofen, ketoprofen, naproxen, diclofenac, aspirin, pseudoephedrine, phenylpropanolamine, chlorpheniramine maleate, dextromethorphan, diphenhydramine, famotidine, loperamide, ranitidine, cimetidine, astemizole, terfenadine, fexofenadine, cetirizine, antacids, mixtures thereof and pharmaceutically acceptable salts thereof. More preferably, the active ingredient is selected from the group consisting of acetaminophen, ibuprofen, pseudoephedrine, dextromethorphan, diphenhydramine, chlorpheniramine, calcium carbonate, magnesium hydroxide, magnesium carbonate, magnesium oxide, aluminum hydroxide, mixtures thereof, and pharmaceutically acceptable salts thereof. Active ingredients may further include but are not limited to food acids; insoluble metal and mineral hydroxides, carbonates, oxides, polycarbophils, and salts thereof; adsorbates of active drugs on a magnesium trisilicate base and on a magnesium aluminum silicate base. [0018]
  • Suitable oral care agents include breath fresheners, tooth whiteners, antimicrobial agents, tooth mineralizers, tooth decay inhibitors, topical anesthetics, mucoprotectants, and the like. [0019]
  • Suitable flavorants include menthol, peppermint, mint flavors, fruit flavors, chocolate, vanilla, bubblegum flavors, coffee flavors, liqueur flavors and combinations and the like. [0020]
  • In one embodiment of the invention, the active ingredient may be selected from bisacodyl, famotadine, ranitidine, cimetidine, prucalopride, diphenoxylate, loperamide, lactase, mesalamine, bismuth, antacids, and pharmaceutically acceptable salts, esters, isomers, and mixtures thereof. [0021]
  • In another embodiment, the active ingredient is selected from analgesics, anti-inflammatories, and antipyretics, e.g. non-steroidal anti-inflammatory drugs (NSAIDs), including propionic acid derivatives, e.g. ibuprofen, naproxen, ketoprofen and the like; acetic acid derivatives, e.g. indomethacin, diclofenac, sulindac, tolmetin, and the like; fenamic acid derivatives, e.g. mefanamic acid, meclofenamic acid, flufenamic acid, and the like; biphenylcarboxylic acid derivatives, e.g. diflunisal, flufenisal, and the like; and oxicams, e.g. piroxicam, sudoxicam, isoxicam, meloxicam, and the like. In a particularly preferred embodiment, the active ingredient is selected from propionic acid derivative NSAIDs, e.g. ibuprofen, naproxen, flurbiprofen, fenbufen, fenoprofen, indoprofen, ketoprofen, fluprofen, pirprofen, carprofen, oxaprozin, pranoprofen, suprofen, and pharmaceutically acceptable salts, derivatives, and combinations thereof. In a particular embodiment of the invention, the active ingredient may be selected from acetaminophen, acetyl salicylic acid, ibuprofen, naproxen, ketoprofen, flurbiprofen, diclofenac, cyclobenzaprine, meloxicam, rofecoxib, celecoxib, and pharmaceutically acceptable salts, esters, isomers, and mixtures thereof. [0022]
  • In another embodiment of the invention, the active ingredient may be selected from pseudoephedrine, phenylpropanolamine, chlorpheniramine, dextromethorphan, diphenhydramine, doxylamine, astemizole, terfenadine, fexofenadine, loratadine, cetirizine, mixtures thereof and pharmaceutically acceptable salts, esters, isomers, and mixtures thereof. [0023]
  • Examples of suitable gastrointestinal agents include antacids such as calcium carbonate, magnesium hydroxide, magnesium oxide, magnesium carbonate, aluminum hydroxide, sodium bicarbonate, dihydroxyaluminum sodium carbonate; stimulant laxatives, such as bisacodyl, cascara sagrada, danthron, senna, phenolphthalein, aloe, castor oil, ricinoleic acid, and dehydrocholic acid, and mixtures thereof; H2 receptor antagonists, such as famotadine, ranitidine, cimetadine, nizatidine; proton pump inhibitors such as omeprazole or lansoprazole; gastrointestinal cytoprotectives, such as sucraflate and misoprostol; gastrointestinal prokinetics, such as prucalopride, antibiotics for H. pylori, such as clarithromycin, amoxicillin, tetracycline, and metronidazole; antidiarrheals, such as diphenoxylate and loperamide; glycopyrrolate; antiemetics, such as ondansetron, analgesics, such as mesalamine. [0024]
  • Examples of suitable polydimethylsiloxanes, which include, but are not limited to dimethicone and simethicone, are those disclosed in U.S. Pat. Nos. 4,906,478, 5,275,822, and 6,103,260, the contents of which are expressly incorporated herein by reference. As used herein, the term “simethicone” refers to the broader class of polydimethylsiloxanes, including but not limited to simethicone and dimethicone. [0025]
  • The active ingredient is dispersed or dissolved in the fondant-based pharmaceutical composition. In one embodiment of the invention, the active ingredient is present in the form of particles. The average particle size of the active ingredient may be small, i.e., up to about 200 microns, or relatively large, i.e., about 200 to about 1200 microns, preferably about 250 to about 350 microns. It has been found that the fondant-based pharmaceutical composition is particularly useful for masking the texture of large particles of active ingredient. [0026]
  • The active ingredient(s) are present in the fondant-based pharmaceutical composition in a therapeutically effective amount, which is an amount that produces the desired therapeutic response upon oral administration and can be readily determined by one skilled in the art. When determining this amount, the particular compound being administered, the bioavailability characteristics of the active ingredient, the dose regime, the age and weight of the patient, and other factors must be considered. Typically, the active ingredient is present in the fondant-based pharmaceutical composition in an amount of about 1 to about 50 weight percent, e.g. from about 5 to about 30 weight percent, or from about 2 to about 15 weight percent, or from about 15 to about 40 percent by weight based on the total weight of fondant-based pharmaceutical composition. In embodiments in which the fondant-based pharmaceutical composition is further surrounded by one or more coatings in a pharmaceutical dosage form, the active ingredient is typically present in the dosage form in an amount of about 0.5 to about 50 weight percent of the dosage form, e.g. about 0.5 to about 30 weight percent of the dosage form. [0027]
  • Suitable carbohydrates include, but are not limited to crystallizable carbohydrates. Suitable crystallizable carbohydrates include the monosaccharides and the oligosaccharides. Of the monosaccharides, the aldohexoses e.g., the D and L isomers of allose, altrose, glucose, mannose, gulose, idose, galactose, tagatose, talose, and the ketohexoses e.g., the D and L isomers of fructose and sorbose along with their hydrogenated analogs: e.g., glucitol (sorbitol), and mannitol are preferred. Of the oligosaccharides, the 1,2-disaccharides sucrose, trehalose, and turanose, the 1,4-disaccharides maltose, lactose, and cellobiose, and the 1,6-disaccharides gentiobiose and melibiose, as well as the trisaccharide raffinose are preferred along with the isomerized form of sucrose known as isomaltulose and its hydrogenated analog isomalt. Other hydrogenated forms of reducing disaccharides (such as maltose and lactose), for example, maltitol and lactitol are also preferred. Additionally, the hydrogenated forms of the aldopentoses: e.g., D and L ribose, arabinose, xylose, and lyxose and the hydrogenated forms of the aldotetroses: e.g., D and L erythrose and threose are preferred and are exemplified by xylitol and erythritol, respectively. Preferred crystallizable carbohydrates for making the fondant-based pharmaceutical composition of the invention include sugars and polyhedric alcohols. Preferred sugars include sucrose, dextrose, dextrose monohydrate, fructose, maltose, xylose, lactose, and mixtures thereof. Preferred polyhedric alcohols include mannitol, sorbitol, maltitol, xylitol, erythritol, isomalt and mixtures thereof. Sucrose is particularly preferred. [0028]
  • At least a portion of the carbohydrate is crystallized and has an average particle size of about 2 to about 35 microns, preferably about 5 to about 20 microns, more preferably about 12 to about 17 microns. [0029]
  • In one embodiment of the invention, the fondant-based pharmaceutical composition is substantially free of fats, e.g. the fondant-based pharmaceutical composition comprises less than 0.5 percent of fats, or less than 0.1 percent of fats, or is totally free of fats. [0030]
  • In another embodiment of the invention, the fondant-based pharmaceutical composition is soft and deformable at room temperature. For example, the fondant-based pharmaceutical composition has a yield stress of about 100 to about 100,000 Pascals. Preferably, the yield stress of the composition is in the range of about 1000 to about 80,000 Pascals, more preferably about 5000 to about 50,000 Pascals. Yield stress of the composition may be measured for example using the TA texture analyzer, model TA-XT2i, available from Texture Technologies Corp., Hamilton, Mass., or the universal test systems available from Instron Corporation, Canton, Mass. These instruments measure the force per unit area required to move or deform a material. Alternatively, the penetrometer method for measuring yield stress on materials of high consistency may be used, as set forth in Uhlherr, P. H. T., J. Guo, T.-N. Fang, C. Tiu, “Static measurement of yield stress using a cylindrical penetrometer,” [0031] Korea-Australia Rheology: Journal, Vol. 14, No.1, March 2002 pp. 17-23.
  • In one embodiment of the invention, the fondant-based pharmaceutical composition comprises at least one hydrolase. The hydrolase is capable of hydrolyzing the carbohydrate contained within the composition upon activation by water. Suitable hydrolases include, but are not limited to glycosidases, such as invertase (sucrase), galactosidase, lactase (beta-galactosidase), maltase (alpha-galactosidase), xylase, and beta amylase, and mixtures thereof. Hydrolysis of the carbohydrate causes the fondant-based pharmaceutical composition to become softer and more viscous. [0032]
  • The amount of hydrolase present in the composition is that sufficient to hydrolyze at least a portion of the carbohydrate. The precise amount depends on both the nature of the carbohydrate and the nature of the hydrolase. In one embodiment of the invention wherein the composition comprises a hydrolase and the carbohydrate is sucrose, the hydrolase is invertase. Invertase is typically available as a liquid preparation in various strengths, e.g. single strength (2400 SU per ml), double strength (4000 SU per ml), and triple strength (10,000 SU per ml). One SU (Summer unit) is the amount of enzyme which produces 1 mg of invert sugar from 6 ml of a 5.4% sucrose solution at 20° C. and pH 4.5 in 5 minutes. In one particular embodiment wherein the carbohydrate is sucrose and the hydrolase is invertase, the ratio of invertase to sucrose is typically from about 4,000 to about 13,000 SU of invertase per kilogram of sucrose. [0033]
  • The fondant-based pharmaceutical composition may be coated with one or more coatings to make a dosage form for administration of the active ingredient contained therein. In certain embodiments in which the fondant-based pharmaceutical composition is contained in a dosage form, the dosage form may comprise a core comprising the fondant-based pharmaceutical composition; and a first coating surrounding at least a portion of the core; and optionally an outer shell, surrounding at least a portion of the core and first coating. [0034]
  • In one embodiment of the invention, at least one coating comprises a water impermeable material. For example, the first coating may be substantially water impermeable, and may preferably comprise an insoluble edible material. In such embodiments, the first coating is particularly beneficial for protecting the fondant-based pharmaceutical composition in the core from moisture, enabling further coating without erosion of the core by the typically water-based coating solution. [0035]
  • In another embodiment, at least one coating is in the form of a hard shell. For example, one such hard shell may preferably comprise a crystallizable carbohydrate. Such carbohydrate based crunchy coatings are particularly beneficial for imparting a sweet taste, impact resistance, and elegant aesthetics to the dosage form, thus protecting the soft composition in the core. When a hard shell coating is employed it is preferred that an additional coating of water impermeable material underlie the hard shell. [0036]
  • In these embodiments the fondant-based core is preferably between about 12 and about 30 mm, e.g. from about 8 to about 20 mm, in length, width, diameter, or thickness. [0037]
  • Suitable insoluble edible materials for use in the coating include water-insoluble polymers, and low-melting hydrophobic materials. Preferred insoluble edible materials are selected from fats, waxes and chocolates. Examples of suitable water-insoluble polymers include ethylcellulose, polyvinyl alcohols, polyvinyl acetate, polycaprolactones, cellulose acetate and its derivatives, acrylates, methacrylates, acrylic acid copolymers; and the like and derivatives, copolymers, and combinations thereof. Suitable low-melting hydrophobic materials include fats, fatty acid esters, phospholipids, and waxes. Examples of suitable fats include cocoa butter, hydrogenated vegetable oils such as for example hydrogenated palm kernel oil, hydrogenated cottonseed oil, hydrogenated sunflower oil, and hydrogenated soybean oil; and free fatty acids and their salts. Examples of suitable fatty acid esters include sucrose fatty acid esters, mono, di, and triglycerides, glyceryl behenate, glyceryl palmitostearate, glyceryl monostearate, glyceryl tristearate, glyceryl trilaurylate, glyceryl myristate, GlycoWax-932, lauroyl macrogol-32 glycerides, and stearoyl macrogol-32 glycerides. Examples of suitable phospholipids include phosphotidyl choline, phosphotidyl serene, phosphotidyl enositol, and phosphotidic acid. Examples of suitable waxes include carnauba wax, spermaceti wax, beeswax, candelilla wax, shellac wax, microcrystalline wax, and paraffin wax; fat-containing mixtures such as chocolate; and the like. [0038]
  • Suitable crystallizable carbohydrates for use in the coating include the monosaccharides and the oligosaccharides. Of the monosaccharides, the aldohexoses e.g., the D and L isomers of allose, altrose, glucose, mannose, gulose, idose, galactose, tagatose, talose, and the ketohexoses e.g., the D and L isomers of fructose and sorbose along with their hydrogenated analogs: e.g., glucitol (sorbitol), and mannitol are preferred. Of the oligosaccharides, the 1,2-disaccharides sucrose, trehalose, and turanose, the 1,4-disaccharides maltose, lactose, and cellobiose, and the 1,6-disaccharides gentiobiose and melibiose, as well as the trisaccharide raffinose are preferred along with the isomerized form of sucrose known as isomaltulose and its hydrogenated analog isomalt. Other hydrogenated forms of reducing disaccharides (such as maltose and lactose), for example, maltitol and lactitol are also preferred. Additionally, the hydrogenated forms of the aldopentoses: e.g., D and L ribose, arabinose, xylose, and lyxose and the hydrogenated forms of the aldotetroses: e.g., D and L erythrose and threose are preferred and are exemplified by xylitol and erythritol, respectively. Preferred crystallizable carbohydrates for use in hard shell coatings are preferably selected from the sugars and polyhedric alcohols. Preferred sugars include sucrose, dextrose, dextrose monohydrate, fructose, matlose, xylose, lactose, and mixtures thereof. Other suitable hard shell coatings include isomalt, cellulose derivatives, shellacs, and the like. [0039]
  • The fondant-based pharmaceutical composition of the present invention may be prepared using methods known in the confectionery arts. For example, fondant may be prepared by cooking a syrup consisting of sugar, corn syrup, and water in the appropriate ratio to a temperature of about 117° C. to achieve a solids concentration of about 88%. Any commercial candy cooker may be used for this purpose such as is manufactured by APV Baker Perkins of the UK. Subsequent cooling and agitation of this concentrated syrup brings about a rapid crystallization of the sugar to yield a mass of very fine crystals (predominantly less than 20 microns) separated by thin films of a heavy syrup phase. Machines designed to cool and agitate the cooked sugar syrup are also available commercially from Otto Hansel of West Germany and APV Baker Perkins. In the APV Baker Perkins equipment, the cooked syrup is cooled by dropping it as a continuous stream onto a slowly rotating metal drum cooled internally by water. Once cooled to about 38° C., the supersaturated syrup is scraped from the drum and charged into a beater device. The beater device consists of a water cooled jacketed casing fitted inside with stationary pegs and rotating spindles that provide a high degree of agitation to the supersaturated syrup. The agitation induces nucleation in the syrup followed by a rapid crystallization of the sugar component into a mass of fine crystals. Temperature control by the water jacket removes the heat of crystallization and fondant flows from the beater at less than 43° C. Fondant machines of this kind may be operated in batch or continuous mode with outputs of about 500 kg per hour. [0040]
  • Alternately, the fondant-based pharmaceutical composition of the present invention may be prepared by mixing fondant grade sugar and water at room temperature. [0041]
  • The fondant-based pharmaceutical composition can be advantageously made into a tablet, core, substrate, or the like (referred to below as a tablet) employing any process, for example compressing, molding, depositing, casting, or extruding. For example the fondant-based pharmaceutical composition may be deposited into a mold, cooled to a temperature at which the composition becomes solid, and removed from the mold as a core. [0042]
  • In certain embodiments of the invention, the fondant-based pharmaceutical composition of the invention may advantageously be made into a soft tablet by first compressing a relatively hard tablet containing a hydrolyzable carbohydrate and an effective amount of a hydrolase, which then becomes soft upon hydrolysis of the carbohydrate by the hydrolase in the presence of water. [0043]
  • In particular, a soft tablet may be made by a method comprising: (a) forming a tablet containing an active ingredient and a hydrolyzable carbohydrate to a hardness of about 2 to about 10 kp/cm2, preferably about 4 to about 10 kp/cm2; (b) adding water to the tablet before, during or after step (a); and (c) adding a hydrolase to the tablet before, during of after step (a). [0044]
  • In one embodiment of this method, the tablet is formed in step (a) by compression, for example using rotary compression or compacting roller technology such as a chilsonator or drop roller. Preferably, the tablet is made by compaction using a rotary tablet press. Preferably the compressed tablet has an initial hardness after compression of about 2 to about 10 kp/cm2, e.g. from about 5 to about 10 kp/cm2; and an initial friability after compression of less than about 2%, e.g. less than about 1%. These tablets, or cores, advantageously may be produced on conventional pharmaceutical equipment, and handled and further processed without breaking or chipping. [0045]
  • Before, during or after the tablet has been formed in step (a), water and a hydrolase are added to the active ingredient and the carbohydrate. For example, the water may be added by: a) applying water to the tablet surface after it has been formed, b) permitting water to be absorbed by the tablet during post-formation soft pan coating; c) exposing the tablet to a humid environment; d) adding water to the tablet via vacuum assistance; e) directly injecting water into the tablet; or combinations thereof. [0046]
  • Alternatively, water may be incorporated into the mix prior to tablet formation via high moisture granulation processing. [0047]
  • In an alternative embodiment, the hydrolase alone, or the hydrolase with water, may be added to the active ingredient and carbohydrate before or after tablet formation via any of the methods set forth above. [0048]
  • The amount of water used typically ranges from about 8 to about 15 weight percent of the tablet. [0049]
  • Upon contact of the carbohydrate, hydrolase, and water, the carbohydrate is hydrolyzed and the tablet softens. It is preferred that the tablet be allowed to stand for a period of time, preferably at least about 24 hours, e.g. from about 1 to about 30 days, in order for softening to take place. Heat may optionally be applied to the tablet during this time. The hardness of the finished (cured) tablet is preferably in the range of 0 to about 4 kp/cm[0050] 2, e.g. from about 0.5 to about 3.0 kp/cm2.
  • In another embodiment of the invention, the tablet (with or without a hyrolase) is formed by molding, for example injection molding, thermal cycle molding as described in copending U.S. application Ser. No. 09/966,497 at pages 27-51, the disclosure of which is incorporated herein by reference, or thermal setting molding as described in copending U.S. application Ser. No. 09/966,450 at pages 57-63, the disclosure of which is also incorporated herein by reference. Preferably thermal cycle molding or thermal setting molding is employed. [0051]
  • In the thermal setting molding method, the active ingredient, dispersed in a flowable material comprising the hydrolyzable carbohydrate and any other desired ingredients are injected in flowable form into a molding chamber. The flowable material may optionally comprise a solvent such as for example water, or organic solvents, or combinations thereof. The flowable material may optionally comprise up to about 10% of a thermal setting material as a processing aid. In embodiments in which a thermal setting material is employed, the flowable material is molded at a temperature sufficient for the thermal setting material to flow under an applied force but below the decomposition temperature of the active ingredient. The use of thermal setting materials may advantageously enable the fondant-based pharmaceutical composition to harden at a higher temperature. The flowable material is cooled and hardens in the molding chamber into a core (i.e., having the shape of the mold). In one embodiment the flowable material is substantially free of a thermal setting material. In a particularly preferred embodiment, the flowable material comprises or consists essentially of the active ingredient and confectionery fondant, which is a dispersion of carbohydrate crystals in a saturated carbohydrate solution. [0052]
  • According to this method, the starting material must be in flowable form. The starting material may be in the form of a suspension, or semi-solid paste. For example the flowable starting material may comprise solid carbohydrate crystals suspended in a saturated solution of carbohydrate in water. [0053]
  • Suitable thermal setting materials are any edible materials or mixtures of materials that are flowable at a temperature between about 37 and about 250° C., and harden or solidify at a temperature between about −10 and about 35° C. Preferred thermal setting materials include thermoplastic water swellable cellulose derivatives, thermoplastic water insoluble cellulose derivatrives, thermoplastic vinyl polymers, thermoplastic starches, thermplastic polyalkalene glycols, thermoplastic polyalkalene oxides, and amorphous sugar-glass, insoluble edible materials and the like, and derivatives, copolymers, and combinations thereof. [0054]
  • Examples of suitable thermoplastic water swellable cellulose derivatives include hydroxypropyl cellulose (HPC), hydroxypropylmethyl cellulose (HPMC), methyl cellulose (MC). Examples of suitable thermoplastic water insoluble cellulose derivatrives include cellulose acetate (CA), ethyl cellulose (EC), cellulose acetate butyrate (CAB), cellulose propionate. Examples of suitable thermoplastic vinyl polymers include polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP). Examples of suitable thermoplastic starches are disclosed for example in U.S. Pat. No. 5,427,614, which is incorporated herein by reference. Examples of suitable thermoplastic polyalkalene glycols include polyethylene glycol. Examples of suitable thermoplastic polyalkalene oxides include polyethylene oxide having a molecular weight from about 100,000 to about 900,000 Daltons. Other suitable thermoplastic materials include sugar in the form on an amorphous glass such as that used to make hard candy forms. [0055]
  • Suitable insoluble edible materials for use as thermal setting materials include water-insoluble polymers, and low-melting hydrophobic materials. Examples of suitable water-insoluble polymers include ethylcellulose, polyvinyl alcohols, polyvinyl acetate, polycaprolactones, cellulose acetate and its derivatives, acrylates, methacrylates, acrylic acid copolymers; and the like and derivatives, copolymers, and combinations thereof. Suitable low-melting hydrophobic materials include fats, fatty acid esters, phospholipids, and waxes. Examples of suitable fats include cocoa butter, hydrogenated vegetable oils such as for example hydrogenated palm kernel oil, hydrogenated cottonseed oil, hydrogenated sunflower oil, and hydrogenated soybean oil; and free fatty acids and their salts. Examples of suitable fatty acid esters include sucrose fatty acid esters, mono, di, and triglycerides, glyceryl behenate, glyceryl palmitostearate, glyceryl monostearate, glyceryl tristearate, glyceryl trilaurylate, glyceryl myristate, GlycoWax-932, lauroyl macrogol-32 glycerides, and stearoyl macrogol-32 glycerides. Examples of suitable phospholipids include phosphotidyl choline, phosphotidyl serene, phosphotidyl enositol, and phosphotidic acid. Examples of suitable waxes include carnauba wax, spermaceti wax, beeswax, candelilla wax, shellac wax, microcrystalline wax, and paraffin wax; fat-containing mixtures such as chocolate; and the like. [0056]
  • In the thermal cycle molding method, a thermal cycle molding module having the general configuration shown in FIG. 3 of U.S. application Ser. No. 09/966,497 is employed. The thermal cycle molding module [0057] 200 comprises a rotor 202 around which a plurality of mold units 204 are disposed. The thermal cycle molding module includes a reservoir 206 (see FIG. 4) for holding the fondant-based pharmaceutical composition to make the tablet. In addition, the thermal cycle molding module is provided with a temperature control system for rapidly heating and cooling the mold units. FIGS. 55 and 56 of the '497 application depict such a temperature control system 600.
  • In this embodiment, the mold units preferably comprise center mold assemblies [0058] 212 and upper mold assemblies 214 as shown in FIG. 26C of the '497 application, which mate to form mold cavities having the desired shape of the tablet. As rotor 202 rotates, the opposing center and upper mold assemblies close. Fondant-based pharmaceutical composition, which is heated to a flowable state in reservoir 206, is injected into the resulting mold cavities. The temperature of the composition is then decreased, hardening the composition into tablets. The mold assemblies open and eject the tablets.
  • The tablet formed by molding in step (a) has a hardness in the range of about 2 to about 10, preferably about 2 to about 5, kp/cm[0059] 2. In this particular embodiment, the tablet need not be as robust. The particular apparatus and method used in this embodiment enables the processing of such soft friable materials without breaking.
  • Tablet hardness is used to describe the diametral breaking strength as measured by conventional pharmaceutical hardness testing equipment, such as a Schleuniger Hardness Tester. In order to compare values across different size tablets, or cores, the breaking strength must be normalized for the area of the break. This normalized value, expressed in kp/cm[0060] 2, is sometimes referred in the art as tablet tensile strength. A general discussion of tablet hardness testing is found in Leiberman et al., Pharmaceutical Dosage Forms—Tablets, Volume 2, 2nd ed., Marcel Dekker Inc., 1990, pp. 213-217, 327-329.
  • Tablets may be coated with one or more coatings by any suitable method, for example dipping, enrobing, spraying, ladeling, roller coating, or molding as known in the art. In one embodiment, for example, cooled tablets may be placed on a sheet of coating material, and enrobed with a first coating by pouring a melted flowable composition over the exposed surface of the tablet, and allowing the first coating composition to harden by cooling. [0061]
  • The so-coated tablets may, in turn, be further coated with an outer shell employing known methods, for example hard panning by spraying or ladeling a carbohydrate based solution onto the coated tablets in a conventional coating pan. [0062]
  • In one embodiment of the invention the coatings are applied by spraying in a coating pan, as known in the art. [0063]
  • In another embodiment of the invention the coatings are each applied by thermal cycle molding as described in copending U.S. application Ser. No. 09/966,497. In this embodiment, the coatings are applied using a thermal cycle molding module having the general configuration shown in FIG. 3 therein. The thermal cycle molding module [0064] 200 comprises a rotor 202 around which a plurality of mold units 204 are disposed. The thermal cycle molding module includes reservoirs 206 (see FIG. 4 therein) for holding flowable material used to make the coatings. In addition, the thermal cycle molding module is provided with a temperature control system for rapidly heating and cooling the mold units. FIGS. 55 and 56 of the '497 application depict the temperature control system 600.
  • The thermal cycle molding module is preferably of the type shown in FIG. 28A of copending U.S. application Ser. No. 09/966,497, comprising a series of mold units [0065] 204. The mold units 204 in turn comprise upper mold assemblies 214, rotatable center mold assemblies 212 and lower mold assemblies 210 as shown in FIG. 28C. Tablets comprising fondant-based pharmaceutical composition are continuously transferred to the mold assemblies, which then close over the tablets. The flowable material, which is heated to a flowable state in reservoir 206, is injected into the mold cavities created by the closed mold assemblies. The temperature of the flowable material is then decreased, hardening it. The mold assemblies open and eject the coated tablets. Coating is performed in two steps, each half of the tablets being coated separately as shown in the flow diagram of FIG. 28B of the '497 application via rotation of the center mold assembly.
  • The coatings may comprise other components, such as natural or artificial sweeteners, colorants, flavors, plasticizers as known in the art. [0066]
  • In addition, the fondant-based pharmaceutical composition, the coating, or the overall dosage form may contain other conventional pharmaceutical additives, such as conventional dry binders like cellulose, cellulosic derivatives, polyvinyl pyrrolidone, starch, modified starch, and mixtures thereof, in particular microcrystalline cellulose; sweeteners like aspartame, acesulfame potassium, sucralose and saccharin; and lubricants, such as magnesium stearate, stearic acid, talc, and waxes, preservatives, flavors, antioxidants, surfactants, and coloring agents, and the like as known in the art. [0067]
  • The fondant-based pharmaceutical composition effectively taste masks and texture masks the active ingredient contained therein by providing the user with a silky smooth texture and little to no bitterness from the active ingredient. As a result, the composition is suitable for use in chewable or orally disintegrable dosage forms. In addition, tablets made from the composition may conveniently be consumed without water. Moreover, in contrast with known chewable dosage forms, the fondant-based pharmaceutical composition may accommodate relatively high doses of active ingredients, e.g. about 20 to about 50 weight percent while retaining a smooth, creamy mouthfeel. [0068]
  • Specific embodiments of the present invention are illustrated by way of the following examples. This invention is not confined to the specific limitations set forth in these examples, but rather to the scope of the appended claims. Unless otherwise stated, the percentages and ratios given below are by weight. [0069]
  • EXAMPLE 1
  • A batch of cores comprising fondant-based pharmaceutical composition according to the invention was made using the formulation set forth in Table 1 below: [0070]
    TABLE 1
    Trade mg/tab
    Ingredient Name Supplier Theory
    Fondant [90% solids]
    Fondant Sugar Amerfond Domino 355.01
    Purified Water USP NA NA 39.45
    Bob Syrup [Cooked
    to 87% solids]
    Sucrose NF Extra Fine Domino 989.85
    Granular
    Corn Syrup NF Roquette 91.65
    [42 DE/43]
    Purified Water USP NA NA 140.54
    Coated NA McNeil 638.57
    Acetaminophen ♯
    Purified Water USP NA NA 81.75
    N&A Mint Flavor NA Firmenich 8.50
    Invertase Sucrovert Crompton & 3.19
    Double Knowels (CHR Hansen)
    Strength
    Sucralose Splenda McNeil-PPC, Inc. 1.49
    TOTAL 2,350.0
  • Dry fondant sugar was placed in a planetary mixer bowl and slowly blended using a leaf blade until smooth and uniform as 10% w/w purified water was added. Invertase, Sucralose®, and flavor were added and the fondant mixture was uniformly blended. Bob syrup was prepared by cooking a mixture of granulated sucrose, 42 DE corn syrup, and purified water (approximately 75:7:18% w/w) to 87% solids (approximately 115° C.). The fondant mixture was then heated and maintained at 89-95° C. The Bob syrup was then added to the fondant mixture in the planetary mixer. Coated acetaminophen and purified water were added and the mixture was uniformly blended. While maintaining this mixture at 90-95° C., it was deposited into rubber molds. [0071]
  • As the warm, fluid, acetaminophen-containing, fondant-based pharmaceutical composition filled the mold cavities, the supersaturated sugar solution was shock crystallized and set as a firm solid mass containing suspended acetaminophen particles. Once set, the mold assemblies were opened and the molded cores were ejected from the mold. [0072]
  • EXAMPLE 2
  • A batch of cores as prepared in Example 1 were coated with a fat-containing coating to prepare dosage forms according to the invention as follows. Table 2 below sets forth the ingredients used: [0073]
    TABLE 2
    mg/tab
    Ingredient Trade Name Supplier Theory
    Fondant Centers, Example 1 NA NA 2,350.0
    Partially Hydrogenated CLSP870 Loders Croaklan 250.0
    Vegetable Oil (Asher)
    TOTAL 2600.0
  • The cores according to Example 1 were first cooled in a conventional refrigerator to below room temperature. An excess of Partially Hydrogenated Vegetable Oil was melted with a stirring hot plate and maintained at 37-43° C. The cooled cores were placed in a Keith 16″ conventional coating pan with 8 baffles. A Vortex Tube (model 3215) with the following settings 40 psi, 40C insert, exit temp 14-16° C. was used to provide cool air to the tablet bed. The molten Partially Hydrogenated Vegetable Oil was applied to the moving tablet bed. During each application, enough Partially Hydrogenated Vegetable Oil was applied to completely wet the bed. The Partially Hydrogenated Vegetable Oil was allowed to completely solidify before the next application. Approximately 250 mg of Partially Hydrogenated Vegetable Oil per core was applied. [0074]
  • EXAMPLE 3
  • A hard sugar shell was applied to the fat-coated cores of Example 2 to prepare further dosage forms according to the invention using the coating formulation set forth in Table 3 below: [0075]
    TABLE 3
    Trade Mg/tab
    Ingredient Name Supplier Theory
    Fat-coated Fondant Based Center, NA NA 2600.00
    Example 2
    67% Sucrose Solution
    Sucrose Extra Fine Domino 432.00
    Granular
    Purified Water USP NA NA 212.78
    Corn Syrup NF [42 DE/43] Roquette 6.58 (5.26)
    Opalux AS-11550 Opalux Colorcon 6.58 (3.68)
    N&A Mint Flavor NA Firmenich 0.33
    Carnauba Wax NF [120 mesh Ross 1.00
    powder]
    TOTAL 3042.27
  • Sucrose was mixed with purified water at a ratio of 67:33. The mixture was heated to 60° C. After all of the sucrose was in solution, it was allowed to cool to less than 30° C. The final concentration was checked with a refractometer and adjusted to 67% solids. Colorant (Opalux® AS 11550), Flavor, and Corn Syrup 42 DE were added to the sucrose solution and mixed until uniform. [0076]
  • This coating solution was applied to the tumbling fat coated cores of Example 2 in a conventional coating pan in successive applications. Each application entailed an addition stage, a spreading stage, and a drying stage. In the addition stage, the solution was added to a bed of tumbling cores. Next, the solution was allowed to spread on the surface of the fat coated cores. Next, the drying stage employed blowing room temperature air over the bed to force the crystallization of the sucrose solution. The applications were repeated until the desired shell thickness was obtained. The sugar shell comprised approximately 25% of the final dosage form. Once the target weight was applied, the shell was polished in the coating pan with Carnauba Wax by applying the powder to the tumbling tablet bed. [0077]
  • EXAMPLE 4
  • Dosage forms according to the invention comprising acetaminophen were prepared on a commercial scale as follows. Table 5 lists the ingredients used. [0078]
    TABLE 5
    mg/tab
    Ingredient Trade Name  Supplier Theory
    Core
    Fondant Sugar Amerfond Domino 1436.5
    Coated Acetaminophen NA McNeil 555.0
    (90% Assay)
    Invertase Novo-Nordisk 0.5
    Magnesium Stearate Malinkrodt 8.0
    NF
    Ice Plug
    Purified Water USP NA NA 2.0
    Coating
    Partially Hydrogenated CLSP870 Loders Croaklan 250.0
    Vegetable Oil (Asher)
    TOTAL 2300.0
  • Cores are prepared by the compression methods and apparatus described in copending U.S. application Ser. No. 09/966,509, pages 16-27, the disclosure of which is incorporated herein by reference. Specifically, the cores are made using a rotary compression module comprising a fill zone, insertion zone, compression zone, ejection zone, and purge zone in a single apparatus having a double row die construction as shown in FIG. 6 of U.S. application Ser. No. 09/966,509. The dies of the compression module are preferably filled using the assistance of a vacuum, with filters located in or near each die. The purge zone of the compression module includes an optional powder recovery system to recover excess powder from the filters and return it to the dies. [0079]
  • The ingredients listed in Table 5 are first blended together to form a uniform powder mixture. The powder mixture is fed to the dies of the compression module. Ice plugs, made separately, are then inserted into powder mixture within each die. The powder mixture is compressed around the ice plugs, embedding the ice plugs within the cores. [0080]
  • The cores are received by a transfer device having the structure shown as [0081] 300 in FIG. 3 of copending U.S. application Ser. No. 09/966,939. The transfer device comprises a plurality of transfer units 304 attached in cantilever fashion to a belt 312 as shown in FIGS. 68 and 69 of copending U.S. application Ser. No. 09/966,939. The transfer device rotates and operates in sync with the compression module and the thermal cycle molding module, described below, to which it is coupled. Transfer units 304 comprise retainers 330 for holding the cores as they travel around the transfer device.
  • The transfer device transfers the cores to a thermal cycle molding module, which applies the coating, partially hydrogenated vegetable oil, to the cores. The thermal cycle molding module is of the type shown in FIG. 28A of copending U.S. application Ser. No. 09/966,939. The mold units [0082] 204 of the thermal cycle molding module comprise upper mold assemblies 214, rotatable center mold assemblies 212 and lower mold assemblies 210 as shown in FIG. 28C. Cores are continuously transferred to the mold assemblies, which then close over the cores. Heated, flowable partially hydrogenated vegetable oil fills the mold assemblies which are then rapidly cooled, hardening the oil into a coating. The mold assemblies open and eject the finished dosage forms. Coating is performed in two steps, each half of the cores being coated separately as shown in the flow diagram of FIG. 28B of copending U.S. application Ser. No. 09/966,939 via rotation of the center mold assembly.
  • EXAMPLE 5
  • A taste test was performed to compare the dosage form of Example 3 with a conventional soft chewable dosage form containing the same level of acetaminophen active. A panel of 19, evaluating the fondant and dry chewable product, preferred the fondant based tablet overall by a margin of 15 to 4 and rated the attributes of mouthfeel, flavor, bitterness, and aftertaste as better than the conventional chewable form. [0083]

Claims (19)

    We claim:
  1. 1. A fondant-based pharmaceutical composition comprising an active ingredient and a carbohydrate, at least a portion of which carbohydrate is crystallized and has an average particle size of about 2 to about 35 microns, said composition having a moisture content in the range of about 10 to about 13 percent.
  2. 2. The composition of claim 1, wherein said active ingredient is in the form of particles having an average particle size of about 200 to about 1200 microns.
  3. 3. The composition of claim 2, wherein said active ingredient is in the form of particles having an average particle size of about 250 to about 350 microns.
  4. 4. The composition of claim 1 substantially free of fats.
  5. 5. The composition of claim 1 having a yield stress of about 100 to about 100,000 Pascals.
  6. 6. The composition of claim 1 further comprising at least one hydrolase in an amount sufficient to cause hydrolysis of at least a portion of the carbohydrate.
  7. 7. The composition of claim 6, wherein the hydrolase is a glycosidase selected from the group consisting of invertase, galactosidase, lactase, maltase, xylase, and beta amylase, and mixtures thereof.
  8. 8. A dosage form comprising: a) a fondant-based pharmaceutical composition comprising an active ingredient and a carbohydrate, at least a portion of which carbohydrate is crystallized and has an average particle size of about 2 to about 35 microns, said composition having a moisture content in the range of about 10 to about 13 percent; and b) at least one coating overlying said composition.
  9. 9. The dosage form of claim 8, wherein at least one coating comprises a water impermeable material.
  10. 10. The dosage form of claim 9, wherein the water impermeable material is selected from the group consisting of fats, waxes, and chocolate.
  11. 11. The dosage form of claim 8, wherein at least one coating is in the form of a hard shell.
  12. 12. The dosage form of claim 11, wherein the hard shell comprises a material selected from the group consisting of sugars and polyhedric alcohols.
  13. 13. The dosage form of claim 8 further comprising at least one hydrolase in an amount sufficient to cause hydrolysis of at least a portion of the carbohydrate.
  14. 14. The dosage form of claim 13, wherein the hydrolase is a glycosidase selected from the group consisting of invertase, galactosidase, lactase, maltase, xylase, and beta amylase, and mixtures thereof.
  15. 15. A method for making a soft tablet comprising:
    a. forming a tablet containing an active ingredient and a hydrolyzable carbohydrate to a hardness of about 3 to about 10 kp/cm2;
    b. adding water to the tablet before, during or after step (a); and
    c. adding a hydrolase to the tablet before, during of after step (a).
  16. 16. The method of claim 15, wherein the tablet is made by compression.
  17. 17. The method of claim 15, wherein the tablet is made by molding.
  18. 18. The method of claim 15 further comprising applying at least one coating to the tablet.
  19. 19. A dosage form comprising:
    a) a core comprising the fondant based pharmaceutical composition of claim 1;
    b) a first coating surrounding at least a portion of the core, wherein the first coating comprises an insoluble edible material; and
    c) an outer shell surrounding at least a portion of the core and the first coating, wherein the outer shell comprises a crystallizable carbohydrate.
US10484485 2001-09-28 2002-09-28 Fondant-based pharmaceutical composition Abandoned US20040241208A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US09967414 US6742646B2 (en) 2001-09-28 2001-09-28 Systems, methods and apparatuses for manufacturing dosage forms
US09966497 US7122143B2 (en) 2001-09-28 2001-09-28 Methods for manufacturing dosage forms
US09966939 US6837696B2 (en) 2001-09-28 2001-09-28 Apparatus for manufacturing dosage forms
US09966509 US6767200B2 (en) 2001-09-28 2001-09-28 Systems, methods and apparatuses for manufacturing dosage forms
US09966450 US6982094B2 (en) 2001-09-28 2001-09-28 Systems, methods and apparatuses for manufacturing dosage forms
PCT/US2002/031067 WO2003026613A1 (en) 2001-09-28 2002-09-28 Fondant-based pharmaceutical composition
US10484485 US20040241208A1 (en) 2001-09-28 2002-09-28 Fondant-based pharmaceutical composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10484485 US20040241208A1 (en) 2001-09-28 2002-09-28 Fondant-based pharmaceutical composition

Related Parent Applications (5)

Application Number Title Priority Date Filing Date
US09966497 Continuation-In-Part US7122143B2 (en) 2001-09-28 2001-09-28 Methods for manufacturing dosage forms
US09966939 Continuation-In-Part US6837696B2 (en) 2001-09-28 2001-09-28 Apparatus for manufacturing dosage forms
US09966509 Continuation-In-Part US6767200B2 (en) 2001-09-28 2001-09-28 Systems, methods and apparatuses for manufacturing dosage forms
US09966450 Continuation-In-Part US6982094B2 (en) 2001-09-28 2001-09-28 Systems, methods and apparatuses for manufacturing dosage forms
US09967414 Continuation-In-Part US6742646B2 (en) 2001-09-28 2001-09-28 Systems, methods and apparatuses for manufacturing dosage forms

Publications (1)

Publication Number Publication Date
US20040241208A1 true true US20040241208A1 (en) 2004-12-02

Family

ID=27542311

Family Applications (15)

Application Number Title Priority Date Filing Date
US10476529 Abandoned US20050019407A1 (en) 2001-09-28 2002-09-28 Composite dosage forms
US10476238 Abandoned US20040241236A1 (en) 2001-09-28 2002-09-28 Modified release dosage forms
US10477334 Active 2024-07-06 US7968120B2 (en) 2001-09-28 2002-09-28 Modified release dosage forms
US10476504 Abandoned US20040213848A1 (en) 2001-09-28 2002-09-28 Modified release dosage forms
US10476530 Active 2026-09-13 US8545887B2 (en) 2001-09-28 2002-09-28 Modified release dosage forms
US10432488 Abandoned US20040062804A1 (en) 2001-09-28 2002-09-28 Modified release dosage forms
US10476514 Abandoned US20040170750A1 (en) 2001-09-28 2002-09-28 Edible composition and dosage form comprising an edible shell
US10484485 Abandoned US20040241208A1 (en) 2001-09-28 2002-09-28 Fondant-based pharmaceutical composition
US10393752 Active 2025-05-06 US7635490B2 (en) 2001-09-28 2003-03-21 Modified release dosage form
US10393871 Active 2023-06-06 US7416738B2 (en) 2001-09-28 2003-03-21 Modified release dosage form
US10393610 Abandoned US20030219484A1 (en) 2001-09-28 2003-03-21 Immediate release dosage form comprising shell having openings therein
US10393638 Abandoned US20030232082A1 (en) 2001-09-28 2003-03-21 Modified release dosage forms
US10393765 Abandoned US20040018327A1 (en) 2001-09-28 2003-03-21 Delayed release dosage forms
US12049628 Abandoned US20080305150A1 (en) 2001-09-28 2008-03-17 Polymer Composition And Dosage Forms Comprising The Same
US12391475 Active US7972624B2 (en) 2001-09-28 2009-02-24 Method of manufacturing modified release dosage forms

Family Applications Before (7)

Application Number Title Priority Date Filing Date
US10476529 Abandoned US20050019407A1 (en) 2001-09-28 2002-09-28 Composite dosage forms
US10476238 Abandoned US20040241236A1 (en) 2001-09-28 2002-09-28 Modified release dosage forms
US10477334 Active 2024-07-06 US7968120B2 (en) 2001-09-28 2002-09-28 Modified release dosage forms
US10476504 Abandoned US20040213848A1 (en) 2001-09-28 2002-09-28 Modified release dosage forms
US10476530 Active 2026-09-13 US8545887B2 (en) 2001-09-28 2002-09-28 Modified release dosage forms
US10432488 Abandoned US20040062804A1 (en) 2001-09-28 2002-09-28 Modified release dosage forms
US10476514 Abandoned US20040170750A1 (en) 2001-09-28 2002-09-28 Edible composition and dosage form comprising an edible shell

Family Applications After (7)

Application Number Title Priority Date Filing Date
US10393752 Active 2025-05-06 US7635490B2 (en) 2001-09-28 2003-03-21 Modified release dosage form
US10393871 Active 2023-06-06 US7416738B2 (en) 2001-09-28 2003-03-21 Modified release dosage form
US10393610 Abandoned US20030219484A1 (en) 2001-09-28 2003-03-21 Immediate release dosage form comprising shell having openings therein
US10393638 Abandoned US20030232082A1 (en) 2001-09-28 2003-03-21 Modified release dosage forms
US10393765 Abandoned US20040018327A1 (en) 2001-09-28 2003-03-21 Delayed release dosage forms
US12049628 Abandoned US20080305150A1 (en) 2001-09-28 2008-03-17 Polymer Composition And Dosage Forms Comprising The Same
US12391475 Active US7972624B2 (en) 2001-09-28 2009-02-24 Method of manufacturing modified release dosage forms

Country Status (9)

Country Link
US (15) US20050019407A1 (en)
EP (12) EP1429724B1 (en)
JP (11) JP2005535558A (en)
KR (11) KR20040037207A (en)
CN (10) CN1596101A (en)
CA (12) CA2461656A1 (en)
DE (4) DE60223269T2 (en)
ES (3) ES2311073T3 (en)
WO (12) WO2003026628A3 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080090276A1 (en) * 2006-10-12 2008-04-17 Van Dyck Stefaan M O Heat-stable enzyme compositions
US7767248B2 (en) 2007-02-02 2010-08-03 Overly Iii Harry J Soft chew confectionary with high fiber and sugar content and method for making same
US20110165290A1 (en) * 2008-05-14 2011-07-07 Cadbury Adams Usa Llc Confectionery with enzymatically manipulated texture
DE102013004263A1 (en) 2013-03-13 2014-09-18 Martin Lipsdorf Fast-dissolving oral dosage form and method for manufacturing the same
US10117831B2 (en) 2015-12-19 2018-11-06 First Time Us Generics Llc Soft chew pharmaceutical formulations

Families Citing this family (226)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071128B2 (en) 1996-06-14 2011-12-06 Kyowa Hakko Kirin Co., Ltd. Intrabuccally rapidly disintegrating tablet and a production method of the tablets
US6607751B1 (en) * 1997-10-10 2003-08-19 Intellipharamaceutics Corp. Controlled release delivery device for pharmaceutical agents incorporating microbial polysaccharide gum
US20090149479A1 (en) * 1998-11-02 2009-06-11 Elan Pharma International Limited Dosing regimen
DE10026698A1 (en) 2000-05-30 2001-12-06 Basf Ag Self-emulsifying drug formulation and use of this formulation
EP1429744A1 (en) 2001-09-21 2004-06-23 Egalet A/S Morphine polymer release system
US20040234602A1 (en) 2001-09-21 2004-11-25 Gina Fischer Polymer release system
EP1429724B1 (en) 2001-09-28 2013-11-06 McNeil-PPC, Inc. Dosage form containing a confectionery composition
US9358214B2 (en) 2001-10-04 2016-06-07 Adare Pharmaceuticals, Inc. Timed, sustained release systems for propranolol
GB0203296D0 (en) 2002-02-12 2002-03-27 Glaxo Group Ltd Novel composition
US8323692B2 (en) 2002-02-21 2012-12-04 Valeant International Bermuda Controlled release dosage forms
US7169450B2 (en) 2002-05-15 2007-01-30 Mcneil-Ppc, Inc. Enrobed core
US20040161474A1 (en) * 2002-05-24 2004-08-19 Moerck Rudi E. Rare earth metal compounds methods of making, and methods of using the same
US20060083791A1 (en) 2002-05-24 2006-04-20 Moerck Rudi E Rare earth metal compounds methods of making, and methods of using the same
US7776314B2 (en) 2002-06-17 2010-08-17 Grunenthal Gmbh Abuse-proofed dosage system
US8637512B2 (en) 2002-07-29 2014-01-28 Glaxo Group Limited Formulations and method of treatment
US20060159758A1 (en) * 2002-12-11 2006-07-20 Rajesh Gandhi Coating composition for taste masking coating and methods for their application and use
GB0229258D0 (en) * 2002-12-16 2003-01-22 Boots Healthcare Int Ltd Medicinal compositions
US8367111B2 (en) 2002-12-31 2013-02-05 Aptalis Pharmatech, Inc. Extended release dosage forms of propranolol hydrochloride
US20050220870A1 (en) * 2003-02-20 2005-10-06 Bonnie Hepburn Novel formulation, omeprazole antacid complex-immediate release for rapid and sustained suppression of gastric acid
EP2301526B1 (en) 2003-03-26 2016-03-23 Egalet Ltd. Morphine controlled release system
EP1615626B1 (en) * 2003-04-24 2009-10-14 Jagotec Ag Tablet with coloured core
JP4790597B2 (en) 2003-04-24 2011-10-12 ヤゴテック アーゲー Delayed release tablets with a defined core geometry
EP1633328A4 (en) * 2003-05-29 2008-07-09 Glykon Technologies Group Llc Method and composition for stable and controlled delivery of (-)-hydroxycitric acid
EP2112920B1 (en) * 2003-06-26 2018-07-25 Intellipharmaceutics Corp. Proton pump-inhibitor-containing capsules which comprise subunits differently structured for a delayed release of the active ingredient
US8993599B2 (en) 2003-07-18 2015-03-31 Santarus, Inc. Pharmaceutical formulations useful for inhibiting acid secretion and methods for making and using them
US8075872B2 (en) 2003-08-06 2011-12-13 Gruenenthal Gmbh Abuse-proofed dosage form
DE10336400A1 (en) 2003-08-06 2005-03-24 Grünenthal GmbH Abuse-proofed dosage form
US20070048228A1 (en) 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
WO2005016278A3 (en) * 2003-08-12 2005-05-19 Advancis Pharmaceuticals Corp Antibiotic product, use and formulation thereof
US8025899B2 (en) 2003-08-28 2011-09-27 Abbott Laboratories Solid pharmaceutical dosage form
US8377952B2 (en) 2003-08-28 2013-02-19 Abbott Laboratories Solid pharmaceutical dosage formulation
GB0320854D0 (en) 2003-09-05 2003-10-08 Arrow No 7 Ltd Buccal drug delivery
EP1944008A3 (en) * 2004-09-24 2008-07-23 BioProgress Technology Limited Additional improvements in powder compaction and enrobing
KR20070057977A (en) * 2004-09-24 2007-06-07 바이오프로그레스 테크놀로지 리미티드 Additional improvement in powder compaction and enrobing
US8627828B2 (en) 2003-11-07 2014-01-14 U.S. Smokeless Tobacco Company Llc Tobacco compositions
US8067029B2 (en) 2004-01-13 2011-11-29 Mcneil-Ppc, Inc. Rapidly disintegrating gelatinous coated tablets
US7879354B2 (en) * 2004-01-13 2011-02-01 Mcneil-Ppc, Inc. Rapidly disintegrating gelatinous coated tablets
US20050196447A1 (en) * 2004-03-05 2005-09-08 Huang Hai Y. Polymeric compositions and dosage forms comprising the same
US20050196442A1 (en) * 2004-03-05 2005-09-08 Huang Hai Y. Polymeric compositions and dosage forms comprising the same
US20050196446A1 (en) * 2004-03-05 2005-09-08 Huang Hai Y. Polymeric compositions and dosage forms comprising the same
US20050196448A1 (en) * 2004-03-05 2005-09-08 Hai Yong Huang Polymeric compositions and dosage forms comprising the same
EP1731151A4 (en) * 2004-03-10 2013-05-01 Taisho Pharma Co Ltd Solid pharmaceutical preparation containing sparingly water-soluble drug
US8545881B2 (en) * 2004-04-19 2013-10-01 Eurand Pharmaceuticals, Ltd. Orally disintegrating tablets and methods of manufacture
DK1758557T3 (en) * 2004-05-11 2011-10-24 Egalet Ltd Swellable dosage form comprising gellan gum
US7622137B2 (en) * 2004-05-21 2009-11-24 Accu-Break Technologies, Inc. Dosage forms contained within a capsule or sachet
US8815916B2 (en) 2004-05-25 2014-08-26 Santarus, Inc. Pharmaceutical formulations useful for inhibiting acid secretion and methods for making and using them
US8906940B2 (en) 2004-05-25 2014-12-09 Santarus, Inc. Pharmaceutical formulations useful for inhibiting acid secretion and methods for making and using them
US20060002986A1 (en) * 2004-06-09 2006-01-05 Smithkline Beecham Corporation Pharmaceutical product
US20050281876A1 (en) * 2004-06-18 2005-12-22 Shun-Por Li Solid dosage form for acid-labile active ingredient
US8394409B2 (en) 2004-07-01 2013-03-12 Intellipharmaceutics Corp. Controlled extended drug release technology
DE102004032051A1 (en) 2004-07-01 2006-01-19 Grünenthal GmbH A process for preparing a secured against misuse, solid dosage form
US8609198B2 (en) * 2004-07-21 2013-12-17 Hewlett-Packard Development Company, L.P. Pharmaceutical dose form with a patterned coating and method of making the same
US20060153918A1 (en) * 2004-07-26 2006-07-13 Lerner E I Dosage forms with an enterically coated core tablet
US20060024361A1 (en) * 2004-07-28 2006-02-02 Isa Odidi Disintegrant assisted controlled release technology
US7621734B2 (en) 2004-07-28 2009-11-24 Mars, Incorporated Apparatus and process for preparing confectionery having an inclusion therein using forming rolls and a forming pin
US20060024368A1 (en) * 2004-07-30 2006-02-02 Reza Fassihi Compressed composite delivery system for release-rate modulation of bioactives
EP1639899A1 (en) * 2004-08-23 2006-03-29 Friesland Brands B.V. Powdered, cold-water soluble/dispersible, foamable composition
US20060039976A1 (en) * 2004-08-23 2006-02-23 Isa Odidi Controlled release composition using transition coating, and method of preparing same
US9884014B2 (en) 2004-10-12 2018-02-06 Adare Pharmaceuticals, Inc. Taste-masked pharmaceutical compositions
EP1809305A4 (en) * 2004-10-15 2009-12-30 Altairnano Inc Phosphate binder with reduced pill burden
US20060088593A1 (en) * 2004-10-27 2006-04-27 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US8383159B2 (en) 2004-10-27 2013-02-26 Mcneil-Ppc, Inc. Dosage forms having a microreliefed surface and methods and apparatus for their production
US20060088586A1 (en) * 2004-10-27 2006-04-27 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20060087051A1 (en) * 2004-10-27 2006-04-27 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20070190133A1 (en) * 2004-10-27 2007-08-16 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20070281022A1 (en) * 2004-10-27 2007-12-06 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
US20060088587A1 (en) * 2004-10-27 2006-04-27 Bunick Frank J Dosage forms having a microreliefed surface and methods and apparatus for their production
GB0423964D0 (en) * 2004-10-28 2004-12-01 Jagotec Ag Dosage form
US20060093560A1 (en) * 2004-10-29 2006-05-04 Jen-Chi Chen Immediate release film coating
ES2401434T3 (en) 2004-11-19 2013-04-19 Glaxosmithkline Llc Method for dispensing products individually variable drug combination dosage for the individualization of therapy
US7404708B2 (en) * 2004-12-07 2008-07-29 Mcneil-Ppc, Inc. System and process for providing at least one opening in dosage forms
US7530804B2 (en) * 2004-12-07 2009-05-12 Mcneil-Ppc, Inc. System and process for providing at least one opening in dosage forms
US20070129402A1 (en) * 2004-12-27 2007-06-07 Eisai Research Institute Sustained release formulations
EP1838287B1 (en) * 2005-01-07 2012-05-23 Sandoz Ag Process for preparing granulates comprising amoxicillin
DE102005005446A1 (en) 2005-02-04 2006-08-10 Grünenthal GmbH Unbreakable dosage forms with delayed release
US20080187581A1 (en) * 2005-03-16 2008-08-07 Subhash Pandurang Gore Delivery System For Mulitple Drugs
CA2605185A1 (en) * 2005-04-06 2006-10-12 Mallinckrodt Inc. Matrix-based pulse release pharmaceutical formulation
CA2602268A1 (en) * 2005-04-12 2006-10-19 Elan Pharma International Limited Controlled release compositions comprising a cephalosporin for the treatment of a bacterial infection
US8673352B2 (en) * 2005-04-15 2014-03-18 Mcneil-Ppc, Inc. Modified release dosage form
US20060233882A1 (en) * 2005-04-15 2006-10-19 Sowden Harry S Osmotic dosage form
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US9161918B2 (en) 2005-05-02 2015-10-20 Adare Pharmaceuticals, Inc. Timed, pulsatile release systems
US20090123637A1 (en) * 2005-05-18 2009-05-14 Laboratoires Goemar Novel Food Ingredient and Products Containing the Same
CN101188999B (en) * 2005-06-03 2012-07-18 尹格莱特股份有限公司 A pharmaceutical delivery system for delivering active component dispersed in dispersion medium
US7884136B2 (en) 2005-06-27 2011-02-08 Biovail Laboratories International S.R.L. Modified-release formulations of a bupropion salt
US20070009573A1 (en) * 2005-07-07 2007-01-11 L N K International Method of forming immediate release dosage form
DE102005034043A8 (en) * 2005-07-18 2007-07-12 Südzucker AG Mannheim/Ochsenfurt Isomaltulose and carnitine
US20070015834A1 (en) * 2005-07-18 2007-01-18 Moshe Flashner-Barak Formulations of fenofibrate containing PEG/Poloxamer
CA2619643A1 (en) * 2005-08-17 2007-02-22 Altairnano, Inc. Treatment of chronic renal failure and other conditions in domestic animals: compositions and methods
KR20080075113A (en) * 2005-10-14 2008-08-14 하. 룬트벡 아크티에 셀스카브 Stable pharmaceutical formulations containing escitalopram and bupropion
US8357394B2 (en) 2005-12-08 2013-01-22 Shionogi Inc. Compositions and methods for improved efficacy of penicillin-type antibiotics
US10064828B1 (en) 2005-12-23 2018-09-04 Intellipharmaceutics Corp. Pulsed extended-pulsed and extended-pulsed pulsed drug delivery systems
WO2007086846A1 (en) * 2006-01-24 2007-08-02 Santarus, Inc. Pharmaceutical formulations useful for inhibiting acid secretion and methods for making and using them
JP2007224012A (en) * 2006-01-30 2007-09-06 Fujifilm Corp Enzymatically crosslinked protein nanoparticle
US20070184111A1 (en) * 2006-02-03 2007-08-09 Pharmavite Llc Hybrid tablet
US20070190131A1 (en) * 2006-02-10 2007-08-16 Perry Ronald L Press-fit rapid release medicament and method and apparatus of manufacturing
US20070224258A1 (en) * 2006-03-22 2007-09-27 Bunick Frank J Dosage forms having a randomized coating
KR20090009214A (en) * 2006-03-28 2009-01-22 맥네일-피피씨, 인코포레이티드 Non-homogenous dosage form coatings
EP2010162A4 (en) * 2006-04-03 2013-01-09 Isa Odidi Drug delivery composition
US9561188B2 (en) 2006-04-03 2017-02-07 Intellipharmaceutics Corporation Controlled release delivery device comprising an organosol coat
US20140010860A1 (en) * 2006-05-12 2014-01-09 Isa Odidi Abuse and alcohol resistant drug composition
US20070293587A1 (en) * 2006-05-23 2007-12-20 Haley Jeffrey T Combating sinus, throat, and blood infections with xylitol delivered in the mouth
US8865133B2 (en) * 2006-05-23 2014-10-21 Orahealth Corporation Bi-Layer Pressed Powders Oral Adhering Tablet with Acacia gum adhesive
KR101430089B1 (en) 2006-08-03 2014-08-13 호라이즌 파르마 에이쥐 Delayed-release glucocorticoid treatment of rheumatoid disease
EP1916006A1 (en) * 2006-10-19 2008-04-30 Albert Schömig Implant coated with a wax or a resin
US8580855B2 (en) * 2006-10-20 2013-11-12 Mcneil-Ppc, Inc. Acetaminophen / ibuprofen combinations and method for their use
US20080113021A1 (en) * 2006-10-25 2008-05-15 Robert Shen Ibuprofen composition
US8778924B2 (en) 2006-12-04 2014-07-15 Shionogi Inc. Modified release amoxicillin products
CA2674536C (en) * 2007-01-16 2016-07-26 Egalet A/S Use of i) a polyglycol and ii) an active drug substance for the preparation of a pharmaceutical composition for i) mitigating the risk of alcohol induced dose dumping and/or ii) reducing the risk of drug abuse
GB0702974D0 (en) * 2007-02-15 2007-03-28 Jagotec Ag Method and apparatus for producing a tablet
CA2677076C (en) * 2007-03-02 2017-09-12 Meda Pharmaceuticals Inc. Compositions comprising carisoprodol and methods of use thereof
JP5224790B2 (en) * 2007-03-02 2013-07-03 株式会社明治 Solid food and a method of manufacturing the same
DE102007011485A1 (en) 2007-03-07 2008-09-11 Grünenthal GmbH Dosage form with impeded abuse
US20080292692A1 (en) * 2007-05-21 2008-11-27 Shira Pilch Impermeable Capsules
US20080300322A1 (en) * 2007-06-01 2008-12-04 Atlantic Pharmaceuticals, Inc. Delivery vehicles containing rosin resins
WO2008153882A1 (en) * 2007-06-11 2008-12-18 Appleton Papers Inc. Benefit agent containing delivery particle
US20080317677A1 (en) * 2007-06-22 2008-12-25 Szymczak Christopher E Laser Marked Dosage Forms
US20080317678A1 (en) * 2007-06-22 2008-12-25 Szymczak Christopher E Laser Marked Dosage Forms
US20090004248A1 (en) * 2007-06-29 2009-01-01 Frank Bunick Dual portion dosage lozenge form
JP5965583B2 (en) * 2007-08-13 2016-08-10 インスピリオン デリバリー テクノロジーズ エルエルシー Abuse-resistant pharmaceutical composition, its use and a manufacturing method
US20090060983A1 (en) * 2007-08-30 2009-03-05 Bunick Frank J Method And Composition For Making An Orally Disintegrating Dosage Form
EP2197448A4 (en) * 2007-09-12 2010-11-17 Elan Pharma Int Ltd Dosing regimen
US8741329B2 (en) * 2007-09-21 2014-06-03 Merck Sharp & Dohme B.V. Drug delivery system
FR2921835B1 (en) * 2007-10-05 2012-05-04 Seppic Sa coating composition comprising polydextrose, process for its preparation and use for coating solid forms unmanageable
US8303573B2 (en) 2007-10-17 2012-11-06 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US8789536B2 (en) 2007-10-17 2014-07-29 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US20090105561A1 (en) * 2007-10-17 2009-04-23 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Medical or veterinary digestive tract utilization systems and methods
US8808276B2 (en) * 2007-10-23 2014-08-19 The Invention Science Fund I, Llc Adaptive dispensation in a digestive tract
US8808271B2 (en) * 2007-10-31 2014-08-19 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US20090163894A1 (en) * 2007-10-31 2009-06-25 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Medical or veterinary digestive tract utilization systems and methods
ES2633449T3 (en) * 2007-10-31 2017-09-21 Johnson & Johnson Consumer Inc. Orally disintegrable dosage form
US8707964B2 (en) * 2007-10-31 2014-04-29 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US8333754B2 (en) * 2007-10-31 2012-12-18 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US8109920B2 (en) * 2007-10-31 2012-02-07 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US20090137866A1 (en) * 2007-11-28 2009-05-28 Searete Llc, A Limited Liability Corporation Of The State Delaware Medical or veterinary digestive tract utilization systems and methods
US8771643B2 (en) 2008-01-04 2014-07-08 Schabar Research Associates Llc Use of analgesic potentiating compounds to potentiate the analgesic properties of an analgesic compound
WO2009154810A3 (en) * 2008-02-25 2010-03-11 Dr. Reddy's Laboratories Ltd. Delivery systems for multiple active agents
WO2009114648A1 (en) 2008-03-11 2009-09-17 Depomed Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
US8372432B2 (en) 2008-03-11 2013-02-12 Depomed, Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
WO2009137648A8 (en) * 2008-05-09 2010-05-27 Aptapharma, Inc. Multilayer proton pump inhibitor tablets
CA2723438C (en) 2008-05-09 2016-10-11 Gruenenthal Gmbh Process for the preparation of an intermediate powder formulation and a final solid dosage form under usage of a spray congealing step
WO2009146537A1 (en) * 2008-06-02 2009-12-10 Pharmascience Inc. Multilayer control-release drug delivery system
KR200452140Y1 (en) * 2008-06-20 2011-02-08 주식회사 부성시스템 Control device for nonwoven open/closed device of vinyl house
WO2010007623A1 (en) * 2008-07-14 2010-01-21 Polypid Ltd. Sustained-release drug carrier composition
KR200450450Y1 (en) * 2008-07-16 2010-10-04 이봉석 The case of position limit switch
JP2011530529A (en) * 2008-08-07 2011-12-22 アバントール パフォーマンス マテリアルズ, インコーポレイテッドJ T Baker Incorporated Sustained-release composition containing a rubber and sugar alcohols
US8038424B2 (en) 2008-09-22 2011-10-18 Xerox Corporation System and method for manufacturing sold ink sticks with an injection molding process
FR2936952A1 (en) * 2008-10-09 2010-04-16 Monique Bellec Product, useful as nutritional supplements, comprises a composition in powder/anhydrous liquid form, having active ingredient and gelling agent e.g. lecithin and alginic acid, where composition is enclosed in edible water-soluble envelope
WO2010067478A1 (en) * 2008-12-12 2010-06-17 株式会社ミツヤコーポレーション Food and method for processing the same
EP2391369A1 (en) * 2009-01-26 2011-12-07 Nitec Pharma AG Delayed-release glucocorticoid treatment of asthma
CA2751627A1 (en) 2009-02-06 2010-08-12 Egalet Ltd. Pharmaceutical compositions resistant to abuse
US8524278B2 (en) * 2009-02-13 2013-09-03 Romark Laboratories L.C. Controlled release pharmaceutical formulations of nitazoxanide
WO2010133961A1 (en) 2009-05-22 2010-11-25 Inventia Healthcare Private Limited Extended release compositions of cyclobenzaprine
CN105126179B (en) 2009-07-14 2018-09-25 波利皮得有限公司 Sustained release pharmaceutical carrier composition
CA2767888C (en) 2009-07-22 2017-09-12 Gruenenthal Gmbh Tamper-resistant dosage form for oxidation-sensitive opioids
JP5592371B2 (en) * 2009-07-24 2014-09-17 モンデリーズ・ジャパン株式会社 Multiple regions confectionery and a method of manufacturing the same
EP2461811B1 (en) 2009-08-05 2016-04-20 Idenix Pharmaceuticals LLC. Macrocyclic serine protease inhibitors useful against viral infections, particularly hcv
US20120141584A1 (en) * 2009-08-26 2012-06-07 Aptapharma, Inc. Multilayer Minitablets
KR101654122B1 (en) 2009-09-01 2016-09-05 로디아 오퍼레이션스 Polymer compositions
US8784781B2 (en) * 2009-09-24 2014-07-22 Mcneil-Ppc, Inc. Manufacture of chewing gum product with radiofrequency
US20110070286A1 (en) * 2009-09-24 2011-03-24 Andreas Hugerth Process for the manufacture of nicotine-comprising chewing gum and nicotine-comprising chewing gum manufactured according to said process
US8313768B2 (en) * 2009-09-24 2012-11-20 Mcneil-Ppc, Inc. Manufacture of tablet having immediate release region and sustained release region
EP2316432A1 (en) * 2009-10-30 2011-05-04 ratiopharm GmbH Compound containing fesoterodine and roughage
WO2011056764A1 (en) 2009-11-05 2011-05-12 Ambit Biosciences Corp. Isotopically enriched or fluorinated imidazo[2,1-b][1,3]benzothiazoles
EP2506836B1 (en) 2009-12-02 2018-02-14 Adare Pharmaceuticals S.R.L. Fexofenadine microcapsules and compositions containing them
CN102639122A (en) * 2009-12-07 2012-08-15 麦克内尔-Ppc股份有限公司 Partial dip coating of dosage forms for modified release
CN102822175A (en) 2009-12-18 2012-12-12 埃迪尼克斯医药公司 5,5-fused arylene or heteroarylene hepatitis C virus inhibitors
WO2011078993A1 (en) * 2009-12-21 2011-06-30 Aptapharma, Inc. Functionally-coated multilayer tablets
JP5860409B2 (en) 2010-01-19 2016-02-16 ポリピッド リミテッド Sustained-release nucleic acid matrix composition
WO2011094890A1 (en) 2010-02-02 2011-08-11 Argusina Inc. Phenylalanine derivatives and their use as non-peptide glp-1 receptor modulators
CN102821757B (en) 2010-02-03 2016-01-20 格吕伦塔尔有限公司 Preparation of a powdered pharmaceutical composition by an extruder
GB201003734D0 (en) * 2010-03-05 2010-04-21 Univ Strathclyde Delayed prolonged drug delivery
GB201003766D0 (en) 2010-03-05 2010-04-21 Univ Strathclyde Pulsatile drug release
GB201003731D0 (en) * 2010-03-05 2010-04-21 Univ Strathclyde Immediate/delayed drug delivery
US20130059062A1 (en) * 2010-03-11 2013-03-07 Ramakant Kashinath Gundu Device For The Manufacture Of A Dosage Form With A Hole And Method Of Manufacture
WO2011112689A9 (en) 2010-03-11 2011-12-22 Ambit Biosciences Corp. Salts of an indazolylpyrrolotriazine
US8486013B2 (en) * 2010-03-18 2013-07-16 Biotronik Ag Balloon catheter having coating
US9743688B2 (en) * 2010-03-26 2017-08-29 Philip Morris Usa Inc. Emulsion/colloid mediated flavor encapsulation and delivery with tobacco-derived lipids
KR20170122284A (en) 2010-05-12 2017-11-03 스펙트럼 파마슈티컬즈 인크 Lanthanum carbonate hydroxide, lanthanum oxycarbonate and methods of their manufacture and use
US20110280936A1 (en) * 2010-05-17 2011-11-17 Aptapharma, Inc. Self Breaking Tablets
WO2011161666A3 (en) * 2010-06-21 2012-03-29 White Innovation Ltd. Enclosed liquid capsules
US20110318411A1 (en) 2010-06-24 2011-12-29 Luber Joseph R Multi-layered orally disintegrating tablet and the manufacture thereof
JP5932794B2 (en) 2010-09-01 2016-06-08 アムビト ビオスシエンセス コルポラチオン Pyrazolyl quinazoline and pharmaceutical compositions thereof and methods of using an optically active
JP5933553B2 (en) 2010-09-02 2016-06-15 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Abuse-resistant dosage form comprising an anionic polymer
US20120141569A1 (en) * 2010-12-07 2012-06-07 Kimberly-Clark Worldwide, Inc. Wipe Coated with a Botanical Composition having Antimicrobial Properties
WO2012080833A3 (en) 2010-12-13 2012-09-07 Purdue Pharma L.P. Controlled release dosage forms
WO2012080050A1 (en) 2010-12-14 2012-06-21 F. Hoffmann-La Roche Ag Solid forms of a phenoxybenzenesulfonyl compound
CN103338753A (en) 2011-01-31 2013-10-02 细胞基因公司 Pharmaceutical compositions of cytidine analogs and methods of use thereof
WO2012109398A1 (en) 2011-02-10 2012-08-16 Idenix Pharmaceuticals, Inc. Macrocyclic serine protease inhibitors, pharmaceutical compositions thereof, and their use for treating hcv infections
US20120252721A1 (en) 2011-03-31 2012-10-04 Idenix Pharmaceuticals, Inc. Methods for treating drug-resistant hepatitis c virus infection with a 5,5-fused arylene or heteroarylene hepatitis c virus inhibitor
WO2012170578A1 (en) 2011-06-06 2012-12-13 Oak Crest Institute Of Science Drug delivery device employing wicking release window
US9474303B2 (en) 2011-09-22 2016-10-25 R.J. Reynolds Tobacco Company Translucent smokeless tobacco product
US9629392B2 (en) 2011-09-22 2017-04-25 R.J. Reynolds Tobacco Company Translucent smokeless tobacco product
US9084439B2 (en) * 2011-09-22 2015-07-21 R.J. Reynolds Tobacco Company Translucent smokeless tobacco product
KR101384055B1 (en) * 2012-02-02 2014-04-14 한국원자력연구원 Burst type lagged-release controlled composition and preparation method thereof
US20130225697A1 (en) 2012-02-28 2013-08-29 Grunenthal Gmbh Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
US20130261372A1 (en) * 2012-03-30 2013-10-03 Elwha LLC, a limited liability company of the State of Delaware Device, System, and Method for Delivery of Sugar Glass Stabilized Compositions
WO2013165961A4 (en) * 2012-04-30 2013-12-27 Carnegie Mellon University A water-activated, ingestible battery
US9511028B2 (en) 2012-05-01 2016-12-06 Johnson & Johnson Consumer Inc. Orally disintegrating tablet
US9445971B2 (en) * 2012-05-01 2016-09-20 Johnson & Johnson Consumer Inc. Method of manufacturing solid dosage form
US9233491B2 (en) 2012-05-01 2016-01-12 Johnson & Johnson Consumer Inc. Machine for production of solid dosage forms
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
JP6289367B2 (en) * 2012-06-05 2018-03-07 武田薬品工業株式会社 A dry-coated tablet
CN102824640A (en) * 2012-08-06 2012-12-19 济南圣泉唐和唐生物科技有限公司 Capsule shell and preparation method thereof
US20140193546A1 (en) * 2013-01-09 2014-07-10 Alexander Vigneri Coated chocolate confection with improved dye acceptance
CA2906945A1 (en) * 2013-03-15 2014-09-18 Incube Labs, Llc Multi-stage biodegradable drug delivery platform
US9470489B2 (en) * 2013-05-14 2016-10-18 Kerry Thaddeus Bowden Airsoft marking round
CA2913209A1 (en) 2013-05-29 2014-12-04 Grunenthal Gmbh Tamper resistant dosage form with bimodal release profile
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
WO2015042375A1 (en) 2013-09-20 2015-03-26 Idenix Pharmaceuticals, Inc. Hepatitis c virus inhibitors
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US10137092B2 (en) * 2013-12-23 2018-11-27 Xiaoguang WEN Double-layer tablet and preparation method thereof
WO2015105992A1 (en) 2014-01-10 2015-07-16 Mcneil-Ppc, Inc. Process for making tablet using radiofrequency and lossy coated particles
US9375033B2 (en) 2014-02-14 2016-06-28 R.J. Reynolds Tobacco Company Tobacco-containing gel composition
WO2015134560A1 (en) 2014-03-05 2015-09-11 Idenix Pharmaceuticals, Inc. Solid forms of a flaviviridae virus inhibitor compound and salts thereof
EP3119784A1 (en) 2014-03-20 2017-01-25 Capella Therapeutics, Inc. Benzimidazole derivatives as erbb tyrosine kinase inhibitors for the treatment of cancer
JP2017518980A (en) 2014-05-12 2017-07-13 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Containing tapentadol, modified prevent immediate release capsule formulation
DE202016008309U1 (en) * 2015-01-22 2017-08-24 Pfeifer & Langen GmbH & Co. KG Cellobiosehaltige sugar mass
US20160222328A1 (en) * 2015-01-30 2016-08-04 Follmann Gmbh & Co. Kg Thermally opening stable core/shell microcapsules
USD765828S1 (en) 2015-02-19 2016-09-06 Crossford International, Llc Chemical tablet
US9839212B2 (en) 2015-04-16 2017-12-12 Bio-Lab, Inc. Multicomponent and multilayer compacted tablets
KR20170139158A (en) 2015-04-24 2017-12-18 그뤼넨탈 게엠베하 Immediately released and prevent the tamper-resistant dosage form extraction solvent
WO2017159653A1 (en) * 2016-03-15 2017-09-21 アステラス製薬株式会社 Tablet
CN106945323B (en) * 2017-03-14 2018-11-02 常熟市双月机械有限公司 An efficient hydraulic metal powder
DE102017107845A1 (en) * 2017-04-11 2018-10-11 Gelita Ag Gelatin product having a core component and process for its preparation

Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US582438A (en) * 1897-05-11 John scheidler
US599865A (en) * 1898-03-01 Emanuel l
US1505827A (en) * 1923-04-25 1924-08-19 Villasenor Eduardo Tablet-making machine
US2307371A (en) * 1941-08-13 1943-01-05 Ray O Vac Co Molding process
US2996431A (en) * 1953-12-16 1961-08-15 Barry Richard Henry Friable tablet and process for manufacturing same
US3085942A (en) * 1960-12-28 1963-04-16 Hoffmann La Roche Antitussive compositions and preparation
US3146169A (en) * 1960-01-21 1964-08-25 Burroughs Wellcome Co Pharmaceutical formulations and their manufacture
US3328840A (en) * 1965-04-23 1967-07-04 Pentronix Inc Powder compacting press
US3640654A (en) * 1970-06-25 1972-02-08 Wolverine Pentronix Die and punch assembly for compacting powder and method of assembly
US3726622A (en) * 1971-08-20 1973-04-10 Wolverine Pentronix Compacting apparatus
US3804570A (en) * 1971-11-19 1974-04-16 Werner & Pfleiderer Block press
US3832525A (en) * 1973-03-26 1974-08-27 Raymond Lee Organization Inc Automatic heating device to prevent freezing of water supply lines
US3988403A (en) * 1974-07-09 1976-10-26 Union Carbide Corporation Process for producing molded structural foam article having a surface that reproducibly and faithfully replicates the surface of the mold
US4076819A (en) * 1975-05-30 1978-02-28 Parcor Thieno-pyridine derivatives and therapeutic composition containing same
US4097606A (en) * 1975-10-08 1978-06-27 Bristol-Myers Company APAP Tablet containing an alkali metal carboxymethylated starch and processes for manufacturing same
US4139589A (en) * 1975-02-26 1979-02-13 Monique Beringer Process for the manufacture of a multi-zone tablet and tablet manufactured by this process
US4230693A (en) * 1975-04-21 1980-10-28 Armour-Dial, Inc. Antacid tablets and processes for their preparation
US4271206A (en) * 1979-10-26 1981-06-02 General Foods Corporation Gasified candy having a predetermined shape
US4271142A (en) * 1979-06-18 1981-06-02 Life Savers, Inc. Portable liquid antacids
US4273793A (en) * 1979-10-26 1981-06-16 General Foods Corporation Apparatus and process for the preparation of gasified confectionaries by pressurized injection molding
US4292017A (en) * 1980-07-09 1981-09-29 Doepel Wallace A Apparatus for compressing tablets
US4327076A (en) * 1980-11-17 1982-04-27 Life Savers, Inc. Compressed chewable antacid tablet and method for forming same
US4371516A (en) * 1976-10-06 1983-02-01 John Wyeth & Brother Limited Articles for carrying chemicals
US4372942A (en) * 1981-08-13 1983-02-08 Beecham Inc. Candy base and liquid center hard candy made therefrom
US4392493A (en) * 1979-09-06 1983-07-12 Dawsonville Corp., N.V. Tattooing apparatus
US4425332A (en) * 1978-09-21 1984-01-10 Beecham Group Limited Antacid composition
US4473526A (en) * 1980-01-23 1984-09-25 Eugen Buhler Method of manufacturing dry-pressed molded articles
US4518335A (en) * 1984-03-14 1985-05-21 Allied Corporation Dilatant mold and dilatant molding apparatus
US4528335A (en) * 1984-05-18 1985-07-09 Phillips Petroleum Company Polymer blends
US4544345A (en) * 1981-11-10 1985-10-01 Eugen Buhler Device for the production of molded articles from a pourable substance
US4569650A (en) * 1984-02-07 1986-02-11 Kilian & Co., Gmbh Tablet press
US4661521A (en) * 1984-04-30 1987-04-28 Mallinckrodt, Inc. Direct tableting acetaminophen compositions
US4684534A (en) * 1985-02-19 1987-08-04 Dynagram Corporation Of America Quick-liquifying, chewable tablet
US4686212A (en) * 1985-08-13 1987-08-11 Pharmacontrol Corp. Stable sodium aspirin tablet compositions
US4724150A (en) * 1985-06-28 1988-02-09 Warner-Lambert Company Moist chewing gum composition
US4749575A (en) * 1983-10-03 1988-06-07 Bio-Dar Ltd. Microencapsulated medicament in sweet matrix
US4757090A (en) * 1986-07-14 1988-07-12 Mallinckrodt, Inc. Direct tableting acetaminophen compositions
US4762719A (en) * 1986-08-07 1988-08-09 Mark Forester Powder filled cough product
US4813818A (en) * 1987-08-25 1989-03-21 Michael Sanzone Apparatus and method for feeding powdered materials
US4820524A (en) * 1987-02-20 1989-04-11 Mcneilab, Inc. Gelatin coated caplets and process for making same
US4828845A (en) * 1986-12-16 1989-05-09 Warner-Lambert Company Xylitol coated comestible and method of preparation
US4851226A (en) * 1987-11-16 1989-07-25 Mcneil Consumer Products Company Chewable medicament tablet containing means for taste masking
US4894236A (en) * 1988-01-12 1990-01-16 Choong-Gook Jang Direct compression tablet binders for acetaminophen
US4906478A (en) * 1988-12-12 1990-03-06 Valentine Enterprises, Inc. Simethicone/calcium silicate composition
US4929446A (en) * 1988-04-19 1990-05-29 American Cyanamid Company Unit dosage form
US4965027A (en) * 1984-04-12 1990-10-23 Mitsubishi Corporation Method for the freeze-pressure molding of inorganic powders
US5002970A (en) * 1981-07-31 1991-03-26 Eby Iii George A Flavor masked ionizable zinc compositions for oral absorption
US5059112A (en) * 1986-11-07 1991-10-22 Marianne Wieser Mold and die operation
US5089270A (en) * 1990-05-15 1992-02-18 L. Perrigo Company Capsule-shaped tablet
US5145868A (en) * 1989-09-19 1992-09-08 Ciba-Geigy Corporation Alkanophenones useful for treating allergies
US5146730A (en) * 1989-09-20 1992-09-15 Banner Gelatin Products Corp. Film-enrobed unitary-core medicament and the like
US5178878A (en) * 1989-10-02 1993-01-12 Cima Labs, Inc. Effervescent dosage form with microparticles
US5188840A (en) * 1985-09-26 1993-02-23 Chugai Seiyaku Kabushiki Kaisha Slow-release pharmaceutical agent
US5200191A (en) * 1991-09-11 1993-04-06 Banner Gelatin Products Corp. Softgel manufacturing process
US5213808A (en) * 1989-09-22 1993-05-25 Buhk Meditec A/A Controlled release article with pulsatile release
US5213738A (en) * 1990-05-15 1993-05-25 L. Perrigo Company Method for making a capsule-shaped tablet
US5223264A (en) * 1989-10-02 1993-06-29 Cima Labs, Inc. Pediatric effervescent dosage form
US5228916A (en) * 1990-11-05 1993-07-20 Mcneil-Ppc, Inc. Apparatus for creating a gelatin coating
US5229164A (en) * 1985-12-19 1993-07-20 Capsoid Pharma Gmbh Process for producing individually dosed administration forms
US5275822A (en) * 1989-10-19 1994-01-04 Valentine Enterprises, Inc. Defoaming composition
US5391378A (en) * 1993-02-22 1995-02-21 Elizabeth-Hata International, Inc. Two-part medicinal tablet and method of manufacture
US5405642A (en) * 1991-02-27 1995-04-11 Janssen Pharmaceutica N.V. Method of highlighting intagliations in tablets
US5415868A (en) * 1993-06-09 1995-05-16 L. Perrigo Company Caplets with gelatin cover and process for making same
US5427614A (en) * 1992-02-14 1995-06-27 Warner-Lambert Company Starch based formulations
US5436026A (en) * 1990-11-05 1995-07-25 Mcneil-Ppc, Inc. Discharge and transfer system for apparatus for gelatin coating tablets
US5453920A (en) * 1994-03-08 1995-09-26 Eubanks; William W. Trouble light having a shroud with see-through opening
US5489436A (en) * 1991-06-14 1996-02-06 Mcneil-Ppc, Inc. Taste mask coatings for preparation of chewable pharmaceutical tablets
US5511361A (en) * 1992-08-07 1996-04-30 Warner-Lambert Company Encapsulation method
US5538125A (en) * 1990-11-05 1996-07-23 Mcneil-Ppc, Inc. Indexing and feeding systems for apparatus for gelatin coating tablets
US5550002A (en) * 1994-04-07 1996-08-27 Konica Corporation Method of producing a printing plate
US5614207A (en) * 1995-06-30 1997-03-25 Mcneil-Ppc, Inc. Dry mouth lozenge
US5626896A (en) * 1994-12-09 1997-05-06 A.E. Staley Manufacturing Co. Method for making liquid-centered jelly candies
US5679406A (en) * 1990-11-05 1997-10-21 Mcneil-Ppc, Inc. Tablet dipping systems for apparatus for gelatin coating tablets
US5681584A (en) * 1993-04-23 1997-10-28 Ciba-Geigy Corporation Controlled release drug delivery device
US5711961A (en) * 1994-07-26 1998-01-27 Apr Applied Pharma Research S.A. Pharmaceutical compositions based on chewing gum and a method for the preparation thereof
US5788979A (en) * 1994-07-22 1998-08-04 Inflow Dynamics Inc. Biodegradable coating with inhibitory properties for application to biocompatible materials
US5807579A (en) * 1995-11-16 1998-09-15 F.H. Faulding & Co. Limited Pseudoephedrine combination pharmaceutical compositions
US5871781A (en) * 1993-09-10 1999-02-16 Fuisz Technologies Ltd. Apparatus for making rapidly-dissolving dosage units
US5879728A (en) * 1996-01-29 1999-03-09 Warner-Lambert Company Chewable confectionary composition and method of preparing same
US5942034A (en) * 1997-07-24 1999-08-24 Bayer Corporation Apparatus for the gelatin coating of medicaments
US6020002A (en) * 1994-06-14 2000-02-01 Fuisz Technologies Ltd. Delivery of controlled-release system(s)
US6103260A (en) * 1997-07-17 2000-08-15 Mcneil-Ppc, Inc. Simethicone/anhydrous calcium phosphate compositions
US6103257A (en) * 1998-07-17 2000-08-15 Num-Pop, Inc. System for delivering pharmaceuticals to the buccal mucosa
US6106267A (en) * 1998-06-05 2000-08-22 Aylward; John T. Apparatus for forming a compression-molded product
US6117479A (en) * 1995-05-09 2000-09-12 Phoqus Limited Electrostatic coating
US6200590B1 (en) * 1998-08-10 2001-03-13 Naphcare, Inc. Controlled, phased-release suppository and its method of production
US20010001280A1 (en) * 1998-09-09 2001-05-17 Liang-Chang Dong Dosage form comprising liquid formulation
US6248760B1 (en) * 1999-04-14 2001-06-19 Paul C Wilhelmsen Tablet giving rapid release of nicotine for transmucosal administration
US6350398B1 (en) * 1998-09-03 2002-02-26 Basf Aktiengesellschaft Process for producing coated solid dosage forms
US20020028240A1 (en) * 2000-04-17 2002-03-07 Toyohiro Sawada Timed-release compression-coated solid composition for oral administration
US6365185B1 (en) * 1998-03-26 2002-04-02 University Of Cincinnati Self-destructing, controlled release peroral drug delivery system
US20020082299A1 (en) * 1997-06-25 2002-06-27 Hans Meyer Method for reducing body weight
US20030068367A1 (en) * 2001-09-28 2003-04-10 Sowden Harry S. Systems, methods and apparatuses for manufacturing dosage forms
US20030072799A1 (en) * 2001-09-28 2003-04-17 Sowden Harry S. Systems, methods and apparatuses for manufacturing dosage forms
US6558722B2 (en) * 2001-07-18 2003-05-06 Wm. Wrigley Jr. Company Use of powdered gum in making a coating for a confection
US20030086973A1 (en) * 2001-09-28 2003-05-08 Sowden Harry S Systems, methods and apparatuses for manufacturing dosage forms
US20030124183A1 (en) * 2001-09-28 2003-07-03 Sowden Harry S. Systems, methods and apparatuses for manufacturing dosage forms

Family Cites Families (310)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US231163A (en) * 1880-08-17 hamlin
US3371136A (en) 1968-02-27 United States Borax Chem Detergent tablet forming machine
US542614A (en) * 1895-07-09 Office
US231117A (en) * 1880-08-10 Folding boat
US231024A (en) * 1880-08-10 Machine for lining sheets of straw-board
US231129A (en) * 1880-08-10 wiesebrook
US231062A (en) * 1880-08-10 Felt hat
US966450A (en) * 1909-06-18 1910-08-09 John W S Jones Couch or bed.
US966509A (en) * 1909-06-25 1910-08-09 Charles A Wulf Flushing-valve.
US967414A (en) * 1910-02-11 1910-08-16 William W Hallam Railway-rail.
US966939A (en) * 1910-05-02 1910-08-09 James V Mitchell Sash-lock.
US996497A (en) * 1911-03-30 1911-06-27 Kokomo Sanitary Mfg Co Tank-cover fastener.
US1036647A (en) 1911-06-19 1912-08-27 St Louis Briquette Machine Company Briquet-machine.
US1437816A (en) 1922-07-26 1922-12-05 Howard S Paine Process for preparing fondant or chocolate soft cream centers
US1900012A (en) 1925-09-04 1933-03-07 Western Cartridge Co Process of and apparatus for making wads
US2415997A (en) 1946-01-12 1947-02-18 John W Eldred Article handling apparatus
US2823789A (en) 1952-05-06 1958-02-18 Gilman Engineering & Mfg Corp Parts feeder ribbon
US2849965A (en) 1954-04-15 1958-09-02 John Holroyd & Company Ltd Machines for use in the production of coated tablets and the like
GB759081A (en) 1954-04-15 1956-10-10 John Holroyd And Company Ltd Improvements relating to machines for the production of coated tablets and the like
US2966431A (en) 1956-03-24 1960-12-27 Basf Ag Separation of filter material from carbon black
US2946298A (en) 1957-11-13 1960-07-26 Arthur Colton Company Compression coating tablet press
US2931276A (en) 1958-02-10 1960-04-05 Jagenberg Werke Ag Methods of and means for producing, processing, and for treating articles
GB866681A (en) 1958-05-22 1961-04-26 May & Baker Ltd N-substituted piperidines
GB936386A (en) 1959-01-16 1963-09-11 Wellcome Found Pellets for supplying biologically active substances to ruminants
US2963993A (en) 1959-01-20 1960-12-13 John Holroyd & Company Ltd Machines for making coated tablets by compression
US3096248A (en) 1959-04-06 1963-07-02 Rexall Drug & Chemical Company Method of making an encapsulated tablet
US3029752A (en) 1959-07-20 1962-04-17 Stokes F J Corp Tablet making machine
GB888038A (en) * 1959-12-16 1962-01-24 William Warren Triggs C B E Medicinal tablet
GB990784A (en) 1960-05-23 1965-05-05 Dunlop Rubber Co Improvements in or relating to balls
US3173876A (en) * 1960-05-27 1965-03-16 John C Zobrist Cleaning methods and compositions
GB994742A (en) * 1960-09-09 1965-06-10 Wellcome Found Pharmaceutical tablets containing anthelmintics, and the manufacture thereof
US3108046A (en) 1960-11-25 1963-10-22 Smith Kline French Lab Method of preparing high dosage sustained release tablet and product of this method
NL271831A (en) * 1960-11-29
US3430535A (en) 1961-08-25 1969-03-04 Independent Lock Co Key cutter
BE636865A (en) 1962-08-31
US3185626A (en) * 1963-03-06 1965-05-25 Sterling Drug Inc Tablet coating method
US3279995A (en) 1963-05-31 1966-10-18 Allen F Reid Shaped pellets
US3276586A (en) * 1963-08-30 1966-10-04 Rosaen Filter Co Indicating means for fluid filters
US3300063A (en) 1965-01-25 1967-01-24 Mayer & Co Inc O Vacuum gripping apparatus
FR1603314A (en) * 1965-02-23 1971-04-05 Pharmaceutical tablets - having a core and a matrix material
US3279360A (en) 1965-09-13 1966-10-18 Miehle Goss Dexter Inc Machine for printing on cylindrical articles
US3330400A (en) 1966-03-08 1967-07-11 Miehle Goss Dexter Inc Mechanism for transferring cylindrical articles
GB1212535A (en) 1966-10-12 1970-11-18 Shionogi & Co Method and apparatus for producing molded article
US3458968A (en) 1966-11-16 1969-08-05 Lester Gregory Jr Dispensing and feed mechanism
GB1144915A (en) 1966-11-24 1969-03-12 Armour Pharma Improvements in or relating to pastille formulations
US3546142A (en) * 1967-01-19 1970-12-08 Amicon Corp Polyelectrolyte structures
US3656518A (en) 1967-03-27 1972-04-18 Perry Ind Inc Method and apparatus for measuring and dispensing predetermined equal amounts of powdered material
US3563170A (en) 1968-04-16 1971-02-16 Reynolds Metals Co Machine for marking the exterior cylindrical surfaces of cans in a continous nonidexing manner
US3605479A (en) 1968-05-08 1971-09-20 Textron Inc Forming press
US3584114A (en) 1968-05-22 1971-06-08 Hoffmann La Roche Free-flowing powders
NL6808619A (en) 1968-06-19 1969-12-23
US3541006A (en) * 1968-07-03 1970-11-17 Amicon Corp Ultrafiltration process
FR1581088A (en) 1968-07-17 1969-09-12
US3567043A (en) 1968-08-05 1971-03-02 Sun Chemical Corp Transfer assembly for use with container printing machines
US3627583A (en) * 1969-04-29 1971-12-14 Sucrest Corp Direct compression vehicles
US3604417A (en) * 1970-03-31 1971-09-14 Wayne Henry Linkenheimer Osmotic fluid reservoir for osmotically activated long-term continuous injector device
US3832252A (en) 1970-09-29 1974-08-27 T Higuchi Method of making a drug-delivery device
DE2063409B2 (en) 1970-12-23 1975-07-10 C.H. Boehringer Sohn, 6507 Ingelheim
US3811552A (en) 1971-01-11 1974-05-21 Lilly Co Eli Capsule inspection apparatus and method
US3760804A (en) 1971-01-13 1973-09-25 Alza Corp Improved osmotic dispenser employing magnesium sulphate and magnesium chloride
US3995631A (en) * 1971-01-13 1976-12-07 Alza Corporation Osmotic dispenser with means for dispensing active agent responsive to osmotic gradient
GB1371244A (en) * 1971-12-09 1974-10-23 Howorth Air Conditioning Ltd Machines acting on continuously running textile yarns
BE794951A (en) * 1972-02-03 1973-05-29 Parke Davis & Co Packaging soluble in water
US3851751A (en) 1972-04-26 1974-12-03 Jones & Co Inc R A Method and apparatus for forming, filling and sealing packages
US3975888A (en) 1972-04-26 1976-08-24 R. A. Jones & Company, Inc. Method and apparatus for forming, filling and sealing packages
US3845770A (en) * 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US3912441A (en) 1972-12-13 1975-10-14 Yasuo Shimada Compressing roll in rotary power compression molding machine
US3851638A (en) 1973-02-02 1974-12-03 Kam Act Enterprises Inc Force multiplying type archery bow
DE2309202A1 (en) * 1973-02-21 1974-08-29 Schering Ag Dosage forms including microencapsulated drug-drug
US3916899A (en) * 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
US3884143A (en) 1973-09-04 1975-05-20 Hartnett Co R W Conveyor link for tablet printing apparatus
DE2401419A1 (en) 1974-01-12 1975-07-17 Bosch Gmbh Robert Vehicle with a hydrostatic and mechanical drive-
US3891375A (en) 1974-01-21 1975-06-24 Vector Corp Tablet press
GB1497044A (en) * 1974-03-07 1978-01-05 Prodotti Antibiotici Spa Salts of phenyl-alkanoic acids
US4077407A (en) * 1975-11-24 1978-03-07 Alza Corporation Osmotic devices having composite walls
US4111202A (en) 1976-11-22 1978-09-05 Alza Corporation Osmotic system for the controlled and delivery of agent over time
US4218433A (en) * 1977-03-03 1980-08-19 Nippon Kayaku Kabushiki Kaisha Constant-rate eluting tablet and method of producing same
US4139627A (en) * 1977-10-06 1979-02-13 Beecham Inc. Anesthetic lozenges
DE2752971C2 (en) 1977-11-28 1982-08-19 Lev Nikolaevic Moskva Su Koskin
DE2849494A1 (en) 1978-11-15 1980-05-29 Voss Gunter M A process for the production of pharmaceutical-blanks
US4173626A (en) * 1978-12-11 1979-11-06 Merck & Co., Inc. Sustained release indomethacin
US4198390A (en) 1979-01-31 1980-04-15 Rider Joseph A Simethicone antacid tablet
US4304232A (en) * 1979-03-14 1981-12-08 Alza Corporation Unit system having multiplicity of means for dispensing useful agent
US4286497A (en) * 1979-06-18 1981-09-01 Shamah Alfred A Ratchet-securable toggle retainer
JPS5827162B2 (en) 1979-08-24 1983-06-08 Yakuruto Honsha Kk
DE2936040C2 (en) * 1979-09-06 1982-05-19 Meggle Milchindustrie Gmbh & Co Kg, 8094 Reitmehring, De
US4683256A (en) * 1980-11-06 1987-07-28 Colorcon, Inc. Dry edible film coating composition, method and coating form
US4543370A (en) 1979-11-29 1985-09-24 Colorcon, Inc. Dry edible film coating composition, method and coating form
US4318746A (en) * 1980-01-08 1982-03-09 Ipco Corporation Highly stable gel, its use and manufacture
US4362757A (en) 1980-10-22 1982-12-07 Amstar Corporation Crystallized, readily water dispersible sugar product containing heat sensitive, acidic or high invert sugar substances
FR2492661B1 (en) * 1980-10-28 1983-07-18 Synthelabo
US4327725A (en) * 1980-11-25 1982-05-04 Alza Corporation Osmotic device with hydrogel driving member
US4340054A (en) * 1980-12-29 1982-07-20 Alza Corporation Dispenser for delivering fluids and solids
JPS58152813A (en) * 1982-03-08 1983-09-10 Sumitomo Chem Co Ltd Tablet having clear carved seal and its preparation
US4449983A (en) * 1982-03-22 1984-05-22 Alza Corporation Simultaneous delivery of two drugs from unit delivery device
DK151608C (en) * 1982-08-13 1988-06-20 Benzon As Alfred A process for preparing a pharmaceutical oral controlled release multiple-
US4517205A (en) * 1983-01-03 1985-05-14 Nabisco Brands, Inc. Co-deposited two-component hard candy
US4576604A (en) 1983-03-04 1986-03-18 Alza Corporation Osmotic system with instant drug availability
US4882167A (en) * 1983-05-31 1989-11-21 Jang Choong Gook Dry direct compression compositions for controlled release dosage forms
US4533345A (en) * 1983-06-14 1985-08-06 Fertility & Genetics Associates Uterine catheter
FR2548675B1 (en) * 1983-07-06 1987-01-09 Seppic Sa film-forming compositions for coating solid forms of pharmaceutical or food products obtained and bearing said compositions
US4781714A (en) 1983-11-02 1988-11-01 Alza Corporation Dispenser for delivering thermo-responsive composition
NL194820C (en) 1983-11-02 2003-04-03 Alza Corp A composition for the delivery of a thermo-responsive composition.
US4564525A (en) * 1984-03-30 1986-01-14 Mitchell Cheryl R Confection products
US4666212A (en) * 1984-06-15 1987-05-19 Crucible S.A. Metal value recovery
US4610884A (en) * 1984-06-29 1986-09-09 The Procter & Gamble Company Confectionery cremes
US4643894A (en) 1984-07-24 1987-02-17 Colorcon, Inc. Maltodextrin coating
US4828841A (en) 1984-07-24 1989-05-09 Colorcon, Inc. Maltodextrin coating
US4894234A (en) 1984-10-05 1990-01-16 Sharma Shri C Novel drug delivery system for antiarrhythmics
JPH0456007B2 (en) * 1984-10-23 1992-09-07 Shinetsu Chem Ind Co
US4874614A (en) * 1985-03-25 1989-10-17 Abbott Laboratories Pharmaceutical tableting method
US4627971A (en) * 1985-04-22 1986-12-09 Alza Corporation Osmotic device with self-sealing passageway
GB8517073D0 (en) 1985-07-05 1985-08-14 Hepworth Iron Co Ltd Pipe pipe couplings &c
GB8518301D0 (en) * 1985-07-19 1985-08-29 Fujisawa Pharmaceutical Co Hydrodynamically explosive systems
US4665116A (en) 1985-08-28 1987-05-12 Turtle Wax, Inc. Clear cleaner/polish composition
US4663147A (en) * 1985-09-03 1987-05-05 International Minerals & Chemical Corp. Disc-like sustained release formulation
US4898733A (en) 1985-11-04 1990-02-06 International Minerals & Chemical Corp. Layered, compression molded device for the sustained release of a beneficial agent
US4853249A (en) 1985-11-15 1989-08-01 Taisho Pharmaceutical Co., Ltd. Method of preparing sustained-release pharmaceutical/preparation
JPS62230600A (en) 1986-03-31 1987-10-09 Toyo Tire & Rubber Co Forklift with expansible fork
DE3610878A1 (en) 1986-04-01 1987-10-08 Boehringer Ingelheim Kg Moldings of pellets
US4873231A (en) 1986-04-08 1989-10-10 Smith Walton J Decreasing the toxicity of an ibuprofen salt
US4857330A (en) 1986-04-17 1989-08-15 Alza Corporation Chlorpheniramine therapy
GB2189698A (en) 1986-04-30 1987-11-04 Haessle Ab Coated omeprazole tablets
US4960416A (en) * 1986-04-30 1990-10-02 Alza Corporation Dosage form with improved delivery capability
GB2189699A (en) * 1986-04-30 1987-11-04 Haessle Ab Coated acid-labile medicaments
US5200196A (en) * 1986-05-09 1993-04-06 Alza Corporation Improvement in pulsed drug therapy
US4802924A (en) 1986-06-19 1989-02-07 Colorcon, Inc. Coatings based on polydextrose for aqueous film coating of pharmaceutical food and confectionary products
US4816262A (en) 1986-08-28 1989-03-28 Universite De Montreal Controlled release tablet
DE3629994A1 (en) 1986-09-03 1988-03-17 Weissenbacher Ernst Rainer Pro Device for administration of medicaments in body cavities or on body surfaces
US4803076A (en) 1986-09-04 1989-02-07 Pfizer Inc. Controlled release device for an active substance
DE3640574C2 (en) 1986-11-27 1988-09-15 Katjes Fassin Gmbh + Co. Kg, 4240 Emmerich, De
US4801461A (en) 1987-01-28 1989-01-31 Alza Corporation Pseudoephedrine dosage form
US5200193A (en) 1987-04-22 1993-04-06 Mcneilab, Inc. Pharmaceutical sustained release matrix and process
US4808413B1 (en) 1987-04-28 1991-09-10 Squibb & Sons Inc
US4792448A (en) 1987-06-11 1988-12-20 Pfizer Inc. Generic zero order controlled drug delivery system
US4978483A (en) 1987-09-28 1990-12-18 Redding Bruce K Apparatus and method for making microcapsules
US4996061A (en) * 1987-10-07 1991-02-26 Merrell Dow Pharmaceuticals Inc. Pharmaceutical composition for piperidinoalkanol-decongestant combination
CA1330886C (en) 1988-01-22 1994-07-26 Bend Research Inc. Osmotic system for delivery of dilute solutions
US5279660A (en) * 1988-05-24 1994-01-18 Berol Nobel Stenungsund Ab Use of viscosity-adjusting agent to counteract viscosity decrease upon temperature increase of a water-based system
US4999226A (en) 1988-06-01 1991-03-12 Merrell Dow Pharmaceuticals Inc. Pharmaceutical compositions for piperidinoalkanol-ibuprofen combination
DE3822095A1 (en) * 1988-06-30 1990-01-04 Klinge Co Chem Pharm Fab New drug formulation and process for their preparation
GB8820353D0 (en) * 1988-08-26 1988-09-28 Staniforth J N Controlled release tablet
WO1990002546A1 (en) 1988-09-09 1990-03-22 The Ronald T. Dodge Company Pharmaceuticals microencapsulated by vapor deposited polymers and method
US5194464A (en) * 1988-09-27 1993-03-16 Takeda Chemical Industries, Ltd. Enteric film and preparatoin thereof
JPH0816051B2 (en) 1988-12-07 1996-02-21 エスエス製薬株式会社 Sustained-release suppositories
US4984240A (en) * 1988-12-22 1991-01-08 Codex Corporation Distributed switching architecture for communication module redundancy
US5610214A (en) 1988-12-29 1997-03-11 Deknatel Technology Corporation, Inc. Method for increasing the rate of absorption of polycaprolactone
US5030452A (en) * 1989-01-12 1991-07-09 Pfizer Inc. Dispensing devices powered by lyotropic liquid crystals
US5032406A (en) * 1989-02-21 1991-07-16 Norwich Eaton Pharmaceuticals, Inc. Dual-action tablet
US5006297A (en) * 1989-02-22 1991-04-09 Acushnet Company Method of molding polyurethane covered golf balls
US4956182A (en) 1989-03-16 1990-09-11 Bristol-Myers Company Direct compression cholestyramine tablet and solvent-free coating therefor
US4931286A (en) * 1989-04-19 1990-06-05 Aqualon Company High gloss cellulose tablet coating
US4990535A (en) * 1989-05-03 1991-02-05 Schering Corporation Pharmaceutical composition comprising loratadine, ibuprofen and pseudoephedrine
US4960169A (en) * 1989-06-20 1990-10-02 Modien Manufacturing Co. Baffle for tubular heat exchanger header
US4992277A (en) * 1989-08-25 1991-02-12 Schering Corporation Immediate release diltiazem formulation
JPH03139496A (en) * 1989-10-25 1991-06-13 Sanshin Ind Co Ltd Ship propulsion machinery
US5169645A (en) * 1989-10-31 1992-12-08 Duquesne University Of The Holy Ghost Directly compressible granules having improved flow properties
FR2655266B1 (en) * 1989-12-05 1992-04-03 Smith Kline French Lab Pharmaceutical compositions based cimetidine.
US5223266A (en) * 1990-01-24 1993-06-29 Alza Corporation Long-term delivery device with early startup
US5100676A (en) * 1990-02-02 1992-03-31 Biosurface Technology, Inc. Cool storage of cultured epithelial sheets
US5158777A (en) * 1990-02-16 1992-10-27 E. R. Squibb & Sons, Inc. Captopril formulation providing increased duration of activity
US4980169A (en) 1990-05-03 1990-12-25 Warner-Lambert Company Flavor enhancing and increasing efficacy of cough drops
US4983394A (en) * 1990-05-03 1991-01-08 Warner-Lambert Company Flavor enhancing and medicinal taste masking agent
US5075114A (en) 1990-05-23 1991-12-24 Mcneil-Ppc, Inc. Taste masking and sustained release coatings for pharmaceuticals
US5464631A (en) 1990-06-27 1995-11-07 Warner-Lambert Company Encapsulated dosage forms
US5133892A (en) 1990-10-17 1992-07-28 Lever Brothers Company, Division Of Conopco, Inc. Machine dishwashing detergent tablets
US5683719A (en) 1990-11-22 1997-11-04 British Technology Group Limited Controlled release compositions
US5098715A (en) * 1990-12-20 1992-03-24 Burroughs Wellcome Co. Flavored film-coated tablet
US5232706A (en) * 1990-12-31 1993-08-03 Esteve Quimica, S.A. Oral pharmaceutical preparation containing omeprazol
DE4101873C2 (en) * 1991-01-23 1993-12-09 Isis Pharma Gmbh Orally administrable dosage form for the treatment of central dopamine deficiency
US5378475A (en) 1991-02-21 1995-01-03 University Of Kentucky Research Foundation Sustained release drug delivery devices
CA2061520C (en) * 1991-03-27 2003-04-22 Bayer Corporation Delivery system for enhanced onset and increased potency
US5286497A (en) * 1991-05-20 1994-02-15 Carderm Capital L.P. Diltiazem formulation
WO1993014158A1 (en) * 1992-01-17 1993-07-22 Berwind Pharmaceutical Services, Inc. Film coatings and film coating compositions based on cellulosic polymers and lactose
US5252338A (en) * 1991-06-27 1993-10-12 Alza Corporation Therapy delayed
US5314696A (en) * 1991-06-27 1994-05-24 Paulos Manley A Methods for making and administering a blinded oral dosage form and blinded oral dosage form therefor
US5190927A (en) * 1991-07-09 1993-03-02 Merck & Co., Inc. High-glyceryl, low-acetyl gellan gum for non-brittle gels
US5326570A (en) * 1991-07-23 1994-07-05 Pharmavene, Inc. Advanced drug delivery system and method of treating psychiatric, neurological and other disorders with carbamazepine
US5405617A (en) * 1991-11-07 1995-04-11 Mcneil-Ppc, Inc. Aliphatic or fatty acid esters as a solventless carrier for pharmaceuticals
US5407686A (en) * 1991-11-27 1995-04-18 Sidmak Laboratories, Inc. Sustained release composition for oral administration of active ingredient
US5200195A (en) * 1991-12-06 1993-04-06 Alza Corporation Process for improving dosage form delivery kinetics
DK171536B1 (en) 1991-12-06 1996-12-23 Rasmussen Kann Ind As Window frame of extruded profile members
US5200194A (en) * 1991-12-18 1993-04-06 Alza Corporation Oral osmotic device
US5209746A (en) * 1992-02-18 1993-05-11 Alza Corporation Osmotically driven delivery devices with pulsatile effect
US5221278A (en) * 1992-03-12 1993-06-22 Alza Corporation Osmotically driven delivery device with expandable orifice for pulsatile delivery effect
US5656296A (en) * 1992-04-29 1997-08-12 Warner-Lambert Company Dual control sustained release drug delivery systems and methods for preparing same
US5260068A (en) * 1992-05-04 1993-11-09 Anda Sr Pharmaceuticals Inc. Multiparticulate pulsatile drug delivery system
EP0572731A1 (en) * 1992-06-01 1993-12-08 THE PROCTER & GAMBLE COMPANY Chewable preparation containing a decongestant
CA2142982A1 (en) 1992-09-30 1994-04-14 Julian Belknap Lo Articles for sustained release of medications
DE69332801D1 (en) * 1992-11-30 2003-04-30 Kv Pharm Co A taste masked pharmaceutical substances
US5375963A (en) 1993-01-19 1994-12-27 Wohlwend; Clayton E. Multipurpose lifting apparatus
JP2524955B2 (en) 1993-04-22 1996-08-14 トーワ株式会社 Resin encapsulation molding method and apparatus for electronic components
JP3054989B2 (en) * 1993-06-19 2000-06-19 八幡 貞男 Adiabatic expression container
CA2164344C (en) 1993-08-30 2004-06-29 Stanley Lech Tablet coating based on a melt-spun mixture of a saccharide and a polymer
US5518551A (en) * 1993-09-10 1996-05-21 Fuisz Technologies Ltd. Spheroidal crystal sugar and method of making
US5397574A (en) * 1993-10-04 1995-03-14 Andrx Pharmaceuticals, Inc. Controlled release potassium dosage form
US5433951A (en) * 1993-10-13 1995-07-18 Bristol-Myers Squibb Company Sustained release formulation containing captopril and method
US5500227A (en) * 1993-11-23 1996-03-19 Euro-Celtique, S.A. Immediate release tablet cores of insoluble drugs having sustained-release coating
GB2284760B (en) * 1993-11-23 1998-06-24 Euro Celtique Sa A method of preparing pharmaceutical compositions by melt pelletisation
DE4341442C2 (en) * 1993-12-04 1998-11-05 Lohmann Therapie Syst Lts Device for the controlled release of active ingredients and their use
US5458887A (en) * 1994-03-02 1995-10-17 Andrx Pharmaceuticals, Inc. Controlled release tablet formulation
US6060639A (en) * 1994-03-04 2000-05-09 Mentor Corporation Testicular prosthesis and method of manufacturing and filling
US5559110A (en) 1994-03-09 1996-09-24 The Dupont Merck Pharmaceutical Company Pharmaceutical formulations of cyclic urea type compounds
US5464633A (en) * 1994-05-24 1995-11-07 Jagotec Ag Pharmaceutical tablets releasing the active substance after a definite period of time
CA2170647C (en) 1994-07-08 2001-03-13 Pontus John Arvid Bergstrand Multiple unit tableted dosage form i
US5849327A (en) 1994-07-29 1998-12-15 Advanced Polymer Systems, Inc. Delivery of drugs to the lower gastrointestinal tract
US6177125B1 (en) * 1994-08-03 2001-01-23 Gunter M. Voss Method of producing coated tablets
DE9414065U1 (en) * 1994-08-31 1994-12-15 Roehm Gmbh Thermoplastic material for intestinal juice-soluble pharmaceutical enclosures
DE4431653C2 (en) * 1994-09-06 2000-01-20 Lohmann Therapie Syst Lts The coated tablet for controlled release of active substances, a process for their preparation and their use
US5733575A (en) * 1994-10-07 1998-03-31 Bpsi Holdings, Inc. Enteric film coating compositions, method of coating therewith, and coated forms
US5614578A (en) 1994-10-28 1997-03-25 Alza Corporation Injection-molded dosage form
US5738875A (en) * 1994-10-28 1998-04-14 R.P. Scherer Corporation Process for preparing solid pharmaceutical dosage forms
US5593696A (en) * 1994-11-21 1997-01-14 Mcneil-Ppc, Inc. Stabilized composition of famotidine and sucralfate for treatment of gastrointestinal disorders
US5756123A (en) * 1994-12-01 1998-05-26 Japan Elanco Co., Ltd. Capsule shell
US5582838A (en) * 1994-12-22 1996-12-10 Merck & Co., Inc. Controlled release drug suspension delivery device
DE4446468A1 (en) * 1994-12-23 1996-06-27 Basf Ag A process for the preparation of coated tablets
US6471994B1 (en) * 1995-01-09 2002-10-29 Edward Mendell Co., Inc. Pharmaceutical excipient having improved compressibility
ES2094694B1 (en) 1995-02-01 1997-12-16 Esteve Quimica Sa New pharmaceutically stable of a benzimidazole compound formulation and production process.
ES2124956T3 (en) * 1995-02-07 1999-02-16 Hermann Kronseder Transport star for containers.
US5558879A (en) * 1995-04-28 1996-09-24 Andrx Pharmaceuticals, Inc. Controlled release formulation for water soluble drugs in which a passageway is formed in situ
US5736159A (en) * 1995-04-28 1998-04-07 Andrx Pharmaceuticals, Inc. Controlled release formulation for water insoluble drugs in which a passageway is formed in situ
US5827874A (en) 1995-05-05 1998-10-27 Meyer; Hans Methods of treating pain and inflammation with proline
DE59601245D1 (en) * 1995-05-13 1999-03-18 Hermann Kronseder Transport star for vessels
US5627971A (en) 1995-06-01 1997-05-06 Northern Telecom Limited Machine method for determining the eligibility of links in a network
US5578336A (en) * 1995-06-07 1996-11-26 Monte; Woodrow C. Confection carrier for vitamins, enzymes, phytochemicals and ailmentary vegetable compositions and method of making
US5654005A (en) * 1995-06-07 1997-08-05 Andrx Pharmaceuticals, Inc. Controlled release formulation having a preformed passageway
CN1191480A (en) * 1995-06-09 1998-08-26 R·P·谢勒公司 Soft gelatin capsules contg. particulate material
GB9517031D0 (en) 1995-08-19 1995-10-25 Procter & Gamble Confection compositions
ES2220989T3 (en) * 1995-09-21 2004-12-16 Pharma Pass Ii Llc New composition containing acid labile and procedure for preparing benzimidazole.
DE19539361A1 (en) 1995-10-23 1997-04-24 Basf Ag A process for producing multilayer, solid drug forms for oral or rectal administration
US5733578A (en) * 1995-11-15 1998-03-31 Edward Mendell Co., Inc. Directly compressible high load acetaminophen formulations
JP3220373B2 (en) 1995-11-28 2001-10-22 バイエル薬品株式会社 Sustainability Nifuejipin formulation
US6489346B1 (en) 1996-01-04 2002-12-03 The Curators Of The University Of Missouri Substituted benzimidazole dosage forms and method of using same
US6245351B1 (en) * 1996-03-07 2001-06-12 Takeda Chemical Industries, Ltd. Controlled-release composition
US5711691A (en) * 1996-05-13 1998-01-27 Air Packaging Technologies, Inc. Self-closing and self-sealing valve device for use with inflatable structures
US5827535A (en) 1996-06-21 1998-10-27 Banner Pharmacaps, Inc. Graphically impressed softgel and method for making same
US5797898A (en) 1996-07-02 1998-08-25 Massachusetts Institute Of Technology Microchip drug delivery devices
US5824338A (en) * 1996-08-19 1998-10-20 L. Perrigo Company Caplet and gelatin covering therefor
US5916881A (en) * 1996-10-07 1999-06-29 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo High trehalose content syrup
US5807580A (en) 1996-10-30 1998-09-15 Mcneil-Ppc, Inc. Film coated tablet compositions having enhanced disintegration characteristics
US6077539A (en) * 1996-11-12 2000-06-20 Pozen, Inc. Treatment of migraine headache
GB9624110D0 (en) * 1996-11-20 1997-01-08 Molins Plc Transferring rod like articles
US5830801A (en) * 1997-01-02 1998-11-03 Motorola, Inc. Resistless methods of gate formation in MOS devices
DE19710213A1 (en) 1997-03-12 1998-09-17 Basf Ag A process for producing solid combination drug forms
US5837301A (en) 1997-04-28 1998-11-17 Husky Injection Molding Systems Ltd. Injection molding machine having a high speed turret
US6210710B1 (en) * 1997-04-28 2001-04-03 Hercules Incorporated Sustained release polymer blend for pharmaceutical applications
US6149939A (en) * 1997-05-09 2000-11-21 Strumor; Mathew A. Healthful dissolvable oral tablets, and mini-bars
WO1998050019A1 (en) * 1997-05-09 1998-11-12 Sage Pharmaceuticals, Inc. Stable oral pharmaceutical dosage forms
WO1999001121A1 (en) * 1997-07-01 1999-01-14 Pfizer Inc. Sertraline salts and sustained-release dosage forms of sertraline
ES2235337T3 (en) 1997-07-09 2005-07-01 Swiss Caps Rechte Und Lizenzen Ag Method and device for producing a multilayer pharmaceutical form, physiologically tolerable.
US6110499A (en) 1997-07-24 2000-08-29 Alza Corporation Phenytoin therapy
DE19733505A1 (en) * 1997-08-01 1999-02-04 Knoll Ag Rapid-acting analgesic
US6096340A (en) * 1997-11-14 2000-08-01 Andrx Pharmaceuticals, Inc. Omeprazole formulation
US6602522B1 (en) 1997-11-14 2003-08-05 Andrx Pharmaceuticals L.L.C. Pharmaceutical formulation for acid-labile compounds
DK1035834T3 (en) * 1997-12-05 2002-07-08 Alza Corp Osmotic dosage form comprising a first and second coating
US6485748B1 (en) * 1997-12-12 2002-11-26 Andrx Pharmaceuticals, Inc. Once daily pharmaceutical tablet having a unitary core
US6022554A (en) * 1997-12-15 2000-02-08 American Home Products Corporation Polymeric microporous film coated subcutaneous implant
US6432442B1 (en) * 1998-02-23 2002-08-13 Mcneil-Ppc, Inc. Chewable product
US6110500A (en) 1998-03-25 2000-08-29 Temple University Coated tablet with long term parabolic and zero-order release kinetics
US6372254B1 (en) * 1998-04-02 2002-04-16 Impax Pharmaceuticals Inc. Press coated, pulsatile drug delivery system suitable for oral administration
US6394094B1 (en) * 1998-05-01 2002-05-28 Enhance Pharmaceuticals, Inc. Method for injection molding manufacture of controlled release devices
US6365183B1 (en) * 1998-05-07 2002-04-02 Alza Corporation Method of fabricating a banded prolonged release active agent dosage form
EP1077065B1 (en) 1998-05-15 2004-08-04 Chugai Seiyaku Kabushiki Kaisha Controlled release formulations
US6099865A (en) * 1998-07-08 2000-08-08 Fmc Corporation Croscarmellose taste masking
EP1098635B1 (en) 1998-07-17 2004-06-02 Bristol-Myers Squibb Company Enteric coated pharmaceutical tablet containing didanosine
FR2781152B1 (en) * 1998-07-20 2001-07-06 Permatec Tech Ag Use of an acrylic type polymer as a disintegrant
DE19834180A1 (en) * 1998-07-29 2000-02-03 Benckiser Nv A composition for use in a dishwasher
US6174548B1 (en) 1998-08-28 2001-01-16 Andrx Pharmaceuticals, Inc. Omeprazole formulation
US5997905A (en) 1998-09-04 1999-12-07 Mcneil-Ppc Preparation of pharmaceutically active particles
US6602521B1 (en) 1998-09-29 2003-08-05 Impax Pharmaceuticals, Inc. Multiplex drug delivery system suitable for oral administration
US20010055613A1 (en) 1998-10-21 2001-12-27 Beth A. Burnside Oral pulsed dose drug delivery system
JP3449253B2 (en) * 1998-10-29 2003-09-22 シオノギクオリカプス株式会社 Method for producing a rigid capsule
US6165512A (en) 1998-10-30 2000-12-26 Fuisz Technologies Ltd. Dosage forms containing taste masked active agents
US6270805B1 (en) 1998-11-06 2001-08-07 Andrx Pharmaceuticals, Inc. Two pellet controlled release formulation for water soluble drugs which contains an alkaline metal stearate
US6183681B1 (en) * 1998-12-07 2001-02-06 Centurion International, Inc. Multi-stage insert molding method
US6727200B2 (en) * 2000-08-31 2004-04-27 Mra Laboratories, Inc. High dielectric constant very low fired X7R ceramic capacitor, and powder for making
EP1029892B1 (en) 1999-02-10 2002-06-05 Dr. Suwelack Skin & Health Care AG Freeze-dried product containing beta-1,3-glucan from Euglena, its preparation and use
US6248361B1 (en) 1999-02-26 2001-06-19 Integ, Ltd. Water-soluble folic acid compositions
DE19913692A1 (en) * 1999-03-25 2000-09-28 Basf Ag Mechanically stable pharmaceutical dosage forms containing liquid or semisolid surface-active substances
US6090401A (en) 1999-03-31 2000-07-18 Mcneil-Ppc, Inc. Stable foam composition
JP3716901B2 (en) * 1999-04-14 2005-11-16 シオノギクオリカプス株式会社 Cellulose ether film
DE19925710C2 (en) * 1999-06-07 2002-10-10 Byk Gulden Lomberg Chem Fab New formulation and dosage form comprising an acid-labile proton pump inhibitor
US6375963B1 (en) 1999-06-16 2002-04-23 Michael A. Repka Bioadhesive hot-melt extruded film for topical and mucosal adhesion applications and drug delivery and process for preparation thereof
US6555139B2 (en) * 1999-06-28 2003-04-29 Wockhardt Europe Limited Preparation of micron-size pharmaceutical particles by microfluidization
US20020102309A1 (en) * 1999-09-14 2002-08-01 Jane C. I. Hirsh Controlled release formulation for administration of an anti-inflammatory naphthalene derivative
DE19954420A1 (en) * 1999-11-12 2001-05-31 Lohmann Therapie Syst Lts Preparation, consisting of a film, foil-like or wafer-like administration form with a two-layer structure and integrated marking
DE19960494A1 (en) * 1999-12-15 2001-06-21 Knoll Ag Apparatus and method for producing solid forms containing active substance
DE19963569B4 (en) 1999-12-29 2006-11-16 Reckitt Benckiser N.V. A composition for use in a dishwasher
US6599532B2 (en) * 2000-01-13 2003-07-29 Osmotica Corp. Osmotic device containing alprazolam and an antipsychotic agent
US6274162B1 (en) 2000-01-14 2001-08-14 Bpsi Holdings, Inc. Elegant film coating system
US6627223B2 (en) 2000-02-11 2003-09-30 Eurand Pharmaceuticals Ltd. Timed pulsatile drug delivery systems
FR2807034B1 (en) 2000-03-29 2002-06-14 Roquette Freres Mannitol used pneumatic and process for its manufacture
US6372252B1 (en) * 2000-04-28 2002-04-16 Adams Laboratories, Inc. Guaifenesin sustained release formulation and tablets
GB2362350A (en) 2000-05-11 2001-11-21 Reckitt Benekiser N V Process and press for the production of tablets
US20030086972A1 (en) 2000-08-09 2003-05-08 Appel Leah E. Hydrogel-driven drug dosage form
US20020064550A1 (en) * 2000-09-07 2002-05-30 Akpharma, Inc. Edible candy compositions and methods of using same
GB0027471D0 (en) * 2000-11-08 2000-12-27 Smithkline Beecham Plc Processes
US6649187B2 (en) 2001-02-16 2003-11-18 Bristol-Myers Squibb Pharma Company Use of polyalkylamine polymers in controlled release devices
US20030070584A1 (en) * 2001-05-15 2003-04-17 Cynthia Gulian Dip coating compositions containing cellulose ethers
GB0120835D0 (en) 2001-08-28 2001-10-17 Smithkline Beecham Plc Process
US20030059466A1 (en) * 2001-09-14 2003-03-27 Pawan Seth Delayed release tablet of venlafaxin
EP1429724B1 (en) 2001-09-28 2013-11-06 McNeil-PPC, Inc. Dosage form containing a confectionery composition
US20030066068A1 (en) 2001-09-28 2003-04-03 Koninklijke Philips Electronics N.V. Individual recommender database using profiles of others
US7323192B2 (en) 2001-09-28 2008-01-29 Mcneil-Ppc, Inc. Immediate release tablet
US6742646B2 (en) * 2001-09-28 2004-06-01 Mcneil-Ppc, Inc. Systems, methods and apparatuses for manufacturing dosage forms
WO2003063840A3 (en) 2002-01-25 2003-09-04 Warren Hall Transmucosal delivery of proton pump inhibitors
ES2327034T3 (en) 2002-03-26 2009-10-23 Euro-Celtique S.A. Gel compositions coated with sustained release.
EP1372040B1 (en) 2002-06-11 2008-03-05 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050008695A1 (en) * 2003-05-21 2005-01-13 Control Delivery Systems, Inc. Compositions and methods for delivering a biologically active agent
US20050074514A1 (en) * 2003-10-02 2005-04-07 Anderson Oliver B. Zero cycle molding systems, methods and apparatuses for manufacturing dosage forms

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US582438A (en) * 1897-05-11 John scheidler
US599865A (en) * 1898-03-01 Emanuel l
US1505827A (en) * 1923-04-25 1924-08-19 Villasenor Eduardo Tablet-making machine
US2307371A (en) * 1941-08-13 1943-01-05 Ray O Vac Co Molding process
US2996431A (en) * 1953-12-16 1961-08-15 Barry Richard Henry Friable tablet and process for manufacturing same
US3146169A (en) * 1960-01-21 1964-08-25 Burroughs Wellcome Co Pharmaceutical formulations and their manufacture
US3085942A (en) * 1960-12-28 1963-04-16 Hoffmann La Roche Antitussive compositions and preparation
US3328840A (en) * 1965-04-23 1967-07-04 Pentronix Inc Powder compacting press
US3640654A (en) * 1970-06-25 1972-02-08 Wolverine Pentronix Die and punch assembly for compacting powder and method of assembly
US3726622A (en) * 1971-08-20 1973-04-10 Wolverine Pentronix Compacting apparatus
US3804570A (en) * 1971-11-19 1974-04-16 Werner & Pfleiderer Block press
US3832525A (en) * 1973-03-26 1974-08-27 Raymond Lee Organization Inc Automatic heating device to prevent freezing of water supply lines
US3988403A (en) * 1974-07-09 1976-10-26 Union Carbide Corporation Process for producing molded structural foam article having a surface that reproducibly and faithfully replicates the surface of the mold
US4139589A (en) * 1975-02-26 1979-02-13 Monique Beringer Process for the manufacture of a multi-zone tablet and tablet manufactured by this process
US4230693A (en) * 1975-04-21 1980-10-28 Armour-Dial, Inc. Antacid tablets and processes for their preparation
US4076819A (en) * 1975-05-30 1978-02-28 Parcor Thieno-pyridine derivatives and therapeutic composition containing same
US4097606A (en) * 1975-10-08 1978-06-27 Bristol-Myers Company APAP Tablet containing an alkali metal carboxymethylated starch and processes for manufacturing same
US4371516A (en) * 1976-10-06 1983-02-01 John Wyeth & Brother Limited Articles for carrying chemicals
US4425332A (en) * 1978-09-21 1984-01-10 Beecham Group Limited Antacid composition
US4271142A (en) * 1979-06-18 1981-06-02 Life Savers, Inc. Portable liquid antacids
US4392493A (en) * 1979-09-06 1983-07-12 Dawsonville Corp., N.V. Tattooing apparatus
US4271206A (en) * 1979-10-26 1981-06-02 General Foods Corporation Gasified candy having a predetermined shape
US4273793A (en) * 1979-10-26 1981-06-16 General Foods Corporation Apparatus and process for the preparation of gasified confectionaries by pressurized injection molding
US4473526A (en) * 1980-01-23 1984-09-25 Eugen Buhler Method of manufacturing dry-pressed molded articles
US4292017A (en) * 1980-07-09 1981-09-29 Doepel Wallace A Apparatus for compressing tablets
US4327076A (en) * 1980-11-17 1982-04-27 Life Savers, Inc. Compressed chewable antacid tablet and method for forming same
US5002970A (en) * 1981-07-31 1991-03-26 Eby Iii George A Flavor masked ionizable zinc compositions for oral absorption
US4372942A (en) * 1981-08-13 1983-02-08 Beecham Inc. Candy base and liquid center hard candy made therefrom
US4544345A (en) * 1981-11-10 1985-10-01 Eugen Buhler Device for the production of molded articles from a pourable substance
US4749575A (en) * 1983-10-03 1988-06-07 Bio-Dar Ltd. Microencapsulated medicament in sweet matrix
US4569650A (en) * 1984-02-07 1986-02-11 Kilian & Co., Gmbh Tablet press
US4518335A (en) * 1984-03-14 1985-05-21 Allied Corporation Dilatant mold and dilatant molding apparatus
US4965027A (en) * 1984-04-12 1990-10-23 Mitsubishi Corporation Method for the freeze-pressure molding of inorganic powders
US4661521A (en) * 1984-04-30 1987-04-28 Mallinckrodt, Inc. Direct tableting acetaminophen compositions
US4528335A (en) * 1984-05-18 1985-07-09 Phillips Petroleum Company Polymer blends
US4684534A (en) * 1985-02-19 1987-08-04 Dynagram Corporation Of America Quick-liquifying, chewable tablet
US4724150A (en) * 1985-06-28 1988-02-09 Warner-Lambert Company Moist chewing gum composition
US4686212A (en) * 1985-08-13 1987-08-11 Pharmacontrol Corp. Stable sodium aspirin tablet compositions
US5188840A (en) * 1985-09-26 1993-02-23 Chugai Seiyaku Kabushiki Kaisha Slow-release pharmaceutical agent
US5229164A (en) * 1985-12-19 1993-07-20 Capsoid Pharma Gmbh Process for producing individually dosed administration forms
US4757090A (en) * 1986-07-14 1988-07-12 Mallinckrodt, Inc. Direct tableting acetaminophen compositions
US4762719A (en) * 1986-08-07 1988-08-09 Mark Forester Powder filled cough product
US5059112A (en) * 1986-11-07 1991-10-22 Marianne Wieser Mold and die operation
US4828845A (en) * 1986-12-16 1989-05-09 Warner-Lambert Company Xylitol coated comestible and method of preparation
US4820524A (en) * 1987-02-20 1989-04-11 Mcneilab, Inc. Gelatin coated caplets and process for making same
US4813818A (en) * 1987-08-25 1989-03-21 Michael Sanzone Apparatus and method for feeding powdered materials
US4851226A (en) * 1987-11-16 1989-07-25 Mcneil Consumer Products Company Chewable medicament tablet containing means for taste masking
US4894236A (en) * 1988-01-12 1990-01-16 Choong-Gook Jang Direct compression tablet binders for acetaminophen
US4929446A (en) * 1988-04-19 1990-05-29 American Cyanamid Company Unit dosage form
US4906478A (en) * 1988-12-12 1990-03-06 Valentine Enterprises, Inc. Simethicone/calcium silicate composition
US5145868A (en) * 1989-09-19 1992-09-08 Ciba-Geigy Corporation Alkanophenones useful for treating allergies
US5146730A (en) * 1989-09-20 1992-09-15 Banner Gelatin Products Corp. Film-enrobed unitary-core medicament and the like
US5459983A (en) * 1989-09-20 1995-10-24 Banner Gelatin Products Corp. Tablet enrobing apparatus
US5213808A (en) * 1989-09-22 1993-05-25 Buhk Meditec A/A Controlled release article with pulsatile release
US5223264A (en) * 1989-10-02 1993-06-29 Cima Labs, Inc. Pediatric effervescent dosage form
US5178878A (en) * 1989-10-02 1993-01-12 Cima Labs, Inc. Effervescent dosage form with microparticles
US5275822A (en) * 1989-10-19 1994-01-04 Valentine Enterprises, Inc. Defoaming composition
US5213738A (en) * 1990-05-15 1993-05-25 L. Perrigo Company Method for making a capsule-shaped tablet
US5089270A (en) * 1990-05-15 1992-02-18 L. Perrigo Company Capsule-shaped tablet
US5228916A (en) * 1990-11-05 1993-07-20 Mcneil-Ppc, Inc. Apparatus for creating a gelatin coating
US5538125A (en) * 1990-11-05 1996-07-23 Mcneil-Ppc, Inc. Indexing and feeding systems for apparatus for gelatin coating tablets
US5679406A (en) * 1990-11-05 1997-10-21 Mcneil-Ppc, Inc. Tablet dipping systems for apparatus for gelatin coating tablets
US5436026A (en) * 1990-11-05 1995-07-25 Mcneil-Ppc, Inc. Discharge and transfer system for apparatus for gelatin coating tablets
US5405642A (en) * 1991-02-27 1995-04-11 Janssen Pharmaceutica N.V. Method of highlighting intagliations in tablets
US5489436A (en) * 1991-06-14 1996-02-06 Mcneil-Ppc, Inc. Taste mask coatings for preparation of chewable pharmaceutical tablets
US5200191A (en) * 1991-09-11 1993-04-06 Banner Gelatin Products Corp. Softgel manufacturing process
US5427614A (en) * 1992-02-14 1995-06-27 Warner-Lambert Company Starch based formulations
US5609010A (en) * 1992-08-07 1997-03-11 Warner-Lambert Company Encapsulation method
US5511361A (en) * 1992-08-07 1996-04-30 Warner-Lambert Company Encapsulation method
US5391378A (en) * 1993-02-22 1995-02-21 Elizabeth-Hata International, Inc. Two-part medicinal tablet and method of manufacture
US5681584A (en) * 1993-04-23 1997-10-28 Ciba-Geigy Corporation Controlled release drug delivery device
US5415868A (en) * 1993-06-09 1995-05-16 L. Perrigo Company Caplets with gelatin cover and process for making same
US5871781A (en) * 1993-09-10 1999-02-16 Fuisz Technologies Ltd. Apparatus for making rapidly-dissolving dosage units
US5453920A (en) * 1994-03-08 1995-09-26 Eubanks; William W. Trouble light having a shroud with see-through opening
US5550002A (en) * 1994-04-07 1996-08-27 Konica Corporation Method of producing a printing plate
US6020002A (en) * 1994-06-14 2000-02-01 Fuisz Technologies Ltd. Delivery of controlled-release system(s)
US5788979A (en) * 1994-07-22 1998-08-04 Inflow Dynamics Inc. Biodegradable coating with inhibitory properties for application to biocompatible materials
US5711961A (en) * 1994-07-26 1998-01-27 Apr Applied Pharma Research S.A. Pharmaceutical compositions based on chewing gum and a method for the preparation thereof
US5626896A (en) * 1994-12-09 1997-05-06 A.E. Staley Manufacturing Co. Method for making liquid-centered jelly candies
US6117479A (en) * 1995-05-09 2000-09-12 Phoqus Limited Electrostatic coating
US5614207A (en) * 1995-06-30 1997-03-25 Mcneil-Ppc, Inc. Dry mouth lozenge
US5807579A (en) * 1995-11-16 1998-09-15 F.H. Faulding & Co. Limited Pseudoephedrine combination pharmaceutical compositions
US5879728A (en) * 1996-01-29 1999-03-09 Warner-Lambert Company Chewable confectionary composition and method of preparing same
US20020082299A1 (en) * 1997-06-25 2002-06-27 Hans Meyer Method for reducing body weight
US6103260A (en) * 1997-07-17 2000-08-15 Mcneil-Ppc, Inc. Simethicone/anhydrous calcium phosphate compositions
US5942034A (en) * 1997-07-24 1999-08-24 Bayer Corporation Apparatus for the gelatin coating of medicaments
US6365185B1 (en) * 1998-03-26 2002-04-02 University Of Cincinnati Self-destructing, controlled release peroral drug delivery system
US6106267A (en) * 1998-06-05 2000-08-22 Aylward; John T. Apparatus for forming a compression-molded product
US6103257A (en) * 1998-07-17 2000-08-15 Num-Pop, Inc. System for delivering pharmaceuticals to the buccal mucosa
US6200590B1 (en) * 1998-08-10 2001-03-13 Naphcare, Inc. Controlled, phased-release suppository and its method of production
US6350398B1 (en) * 1998-09-03 2002-02-26 Basf Aktiengesellschaft Process for producing coated solid dosage forms
US20010001280A1 (en) * 1998-09-09 2001-05-17 Liang-Chang Dong Dosage form comprising liquid formulation
US6248760B1 (en) * 1999-04-14 2001-06-19 Paul C Wilhelmsen Tablet giving rapid release of nicotine for transmucosal administration
US20020028240A1 (en) * 2000-04-17 2002-03-07 Toyohiro Sawada Timed-release compression-coated solid composition for oral administration
US6558722B2 (en) * 2001-07-18 2003-05-06 Wm. Wrigley Jr. Company Use of powdered gum in making a coating for a confection
US20030068367A1 (en) * 2001-09-28 2003-04-10 Sowden Harry S. Systems, methods and apparatuses for manufacturing dosage forms
US20030072799A1 (en) * 2001-09-28 2003-04-17 Sowden Harry S. Systems, methods and apparatuses for manufacturing dosage forms
US20030086973A1 (en) * 2001-09-28 2003-05-08 Sowden Harry S Systems, methods and apparatuses for manufacturing dosage forms
US20030124183A1 (en) * 2001-09-28 2003-07-03 Sowden Harry S. Systems, methods and apparatuses for manufacturing dosage forms

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080090276A1 (en) * 2006-10-12 2008-04-17 Van Dyck Stefaan M O Heat-stable enzyme compositions
US8399230B2 (en) * 2006-10-12 2013-03-19 Kemin Industries, Inc. Heat-stable enzyme compositions
US7767248B2 (en) 2007-02-02 2010-08-03 Overly Iii Harry J Soft chew confectionary with high fiber and sugar content and method for making same
US20110165290A1 (en) * 2008-05-14 2011-07-07 Cadbury Adams Usa Llc Confectionery with enzymatically manipulated texture
DE102013004263A1 (en) 2013-03-13 2014-09-18 Martin Lipsdorf Fast-dissolving oral dosage form and method for manufacturing the same
US10117831B2 (en) 2015-12-19 2018-11-06 First Time Us Generics Llc Soft chew pharmaceutical formulations

Also Published As

Publication number Publication date Type
EP1438028A1 (en) 2004-07-21 application
US20030232082A1 (en) 2003-12-18 application
ES2444549T3 (en) 2014-02-25 grant
JP2005508330A (en) 2005-03-31 application
CA2461354A1 (en) 2003-04-03 application
DE60239945D1 (en) 2011-06-16 grant
WO2003026625A1 (en) 2003-04-03 application
EP1429745A2 (en) 2004-06-23 application
DE60223269T2 (en) 2008-08-21 grant
KR20040045030A (en) 2004-05-31 application
WO2003026624A9 (en) 2004-05-06 application
US7968120B2 (en) 2011-06-28 grant
CN1638740A (en) 2005-07-13 application
US20080305150A1 (en) 2008-12-11 application
ES2295427T3 (en) 2008-04-16 grant
CN1592612A (en) 2005-03-09 application
KR20040066094A (en) 2004-07-23 application
WO2003026629A3 (en) 2004-03-04 application
CA2447984A1 (en) 2003-04-03 application
KR20040037208A (en) 2004-05-04 application
CA2446760A1 (en) 2003-04-03 application
KR20040045032A (en) 2004-05-31 application
US20030235616A1 (en) 2003-12-25 application
EP1429743A1 (en) 2004-06-23 application
JP2005508326A (en) 2005-03-31 application
CN1592610A (en) 2005-03-09 application
WO2003026614A9 (en) 2004-02-26 application
CN1596104A (en) 2005-03-16 application
WO2003026612A3 (en) 2003-06-26 application
CN1592611A (en) 2005-03-09 application
KR20040045026A (en) 2004-05-31 application
JP2005508329A (en) 2005-03-31 application
CA2461870A1 (en) 2003-04-03 application
EP1429746A2 (en) 2004-06-23 application
US8545887B2 (en) 2013-10-01 grant
US20040213848A1 (en) 2004-10-28 application
EP1432404A1 (en) 2004-06-30 application
JP2005509604A (en) 2005-04-14 application
CN1596100A (en) 2005-03-16 application
JP2005535558A (en) 2005-11-24 application
WO2003026616A1 (en) 2003-04-03 application
WO2003026629A2 (en) 2003-04-03 application
JP2005508325A (en) 2005-03-31 application
WO2003026627A1 (en) 2003-04-03 application
US20030232083A1 (en) 2003-12-18 application
WO2003026624A1 (en) 2003-04-03 application
WO2003026628A3 (en) 2003-05-01 application
CN100408029C (en) 2008-08-06 grant
CA2461659A1 (en) 2003-04-03 application
EP1429738B1 (en) 2007-10-31 grant
CA2461354C (en) 2010-04-27 grant
WO2003026626A3 (en) 2003-10-16 application
CN1607945A (en) 2005-04-20 application
JP2005529059A (en) 2005-09-29 application
ES2311073T3 (en) 2009-02-01 grant
WO2003026613A1 (en) 2003-04-03 application
CA2461865A1 (en) 2003-04-03 application
EP1438018B1 (en) 2010-08-11 grant
WO2003026625A9 (en) 2004-05-06 application
JP2005508327A (en) 2005-03-31 application
KR20040037207A (en) 2004-05-04 application
KR20040037203A (en) 2004-05-04 application
EP1429724B1 (en) 2013-11-06 grant
US7635490B2 (en) 2009-12-22 grant
WO2003026612A2 (en) 2003-04-03 application
CA2461682A1 (en) 2003-04-03 application
KR20040037206A (en) 2004-05-04 application
EP1463489A1 (en) 2004-10-06 application
CN1592613A (en) 2005-03-09 application
WO2003026615A3 (en) 2003-07-31 application
CA2446759A1 (en) 2003-04-03 application
US20040170750A1 (en) 2004-09-02 application
EP1429737A1 (en) 2004-06-23 application
KR20040045034A (en) 2004-05-31 application
US20050266084A1 (en) 2005-12-01 application
CA2461659C (en) 2010-12-07 grant
WO2003026614A1 (en) 2003-04-03 application
CA2461653A1 (en) 2003-04-03 application
WO2003026626A2 (en) 2003-04-03 application
DE60228281D1 (en) 2008-09-25 grant
WO2003026630A1 (en) 2003-04-03 application
EP1438030A2 (en) 2004-07-21 application
CN100364515C (en) 2008-01-30 grant
JP2005511515A (en) 2005-04-28 application
EP1438018A1 (en) 2004-07-21 application
EP1429742B1 (en) 2011-05-04 grant
JP2005509605A (en) 2005-04-14 application
US20030219484A1 (en) 2003-11-27 application
CA2461684A1 (en) 2003-04-03 application
JP2005508328A (en) 2005-03-31 application
US20040241236A1 (en) 2004-12-02 application
US7416738B2 (en) 2008-08-26 grant
US20090155372A1 (en) 2009-06-18 application
DE60237294D1 (en) 2010-09-23 grant
US20040213849A1 (en) 2004-10-28 application
KR20040045033A (en) 2004-05-31 application
US20040018327A1 (en) 2004-01-29 application
US7972624B2 (en) 2011-07-05 grant
US20050019407A1 (en) 2005-01-27 application
WO2003026628A2 (en) 2003-04-03 application
DE60223269D1 (en) 2007-12-13 grant
CA2461656A1 (en) 2003-04-03 application
WO2003026615A2 (en) 2003-04-03 application
EP1429724A1 (en) 2004-06-23 application
CN1596102A (en) 2005-03-16 application
EP1429746B1 (en) 2008-08-13 grant
CA2461616A1 (en) 2003-04-03 application
EP1429742A2 (en) 2004-06-23 application
CN1596101A (en) 2005-03-16 application
EP1429738A2 (en) 2004-06-23 application
KR20040045031A (en) 2004-05-31 application
US20040062804A1 (en) 2004-04-01 application

Similar Documents

Publication Publication Date Title
US5204115A (en) Directly compressible xylitol and method
US6613346B2 (en) Chewable product including active ingredient
US20100010101A1 (en) Rapid-Melt Compositions and Methods of Making Same
US6165512A (en) Dosage forms containing taste masked active agents
US20040137057A1 (en) Systems, methods and apparatuses for manufacturing dosage forms
US6258381B1 (en) Tablet and process for making the same
US5965162A (en) Process for forming chewable quickly dispersing multi-vitamin preparation and product therefrom
US5869098A (en) Fast-dissolving comestible units formed under high-speed/high-pressure conditions
US5733577A (en) Delivery of controlled-release system (s)
EP0922464A1 (en) Quickly disintegrable compression-molded materials and process for producing the same
US20040265372A1 (en) Soft tablet containing high molecular weight cellulosics
WO2003028620A1 (en) Method for making an insert
US20090110716A1 (en) Orally disintegrative dosage form
US20080311201A1 (en) Modified release solid or semi-solid dosage forms
US20030229158A1 (en) Polymer composition and dosage forms comprising the same
US20090060983A1 (en) Method And Composition For Making An Orally Disintegrating Dosage Form
US20030068373A1 (en) Immediate release tablet
US6020002A (en) Delivery of controlled-release system(s)
US20040253312A1 (en) Immediate release dosage form comprising shell having openings therein
US20040129174A1 (en) Burst-release polymer composition and dosage forms comprising the same
US20040213848A1 (en) Modified release dosage forms
US20050281876A1 (en) Solid dosage form for acid-labile active ingredient
US20080008742A1 (en) Chewy products and methods for making the same
US20040156902A1 (en) Composite dosage forms having an inlaid portion
US20030228368A1 (en) Edible solid composition and dosage form

Legal Events

Date Code Title Description
AS Assignment

Owner name: MCNEIL-PPC, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOWDEN, HARRY S.;BUNICK, FRANK J.;LABELLA, GUS B.;REEL/FRAME:015564/0873;SIGNING DATES FROM 20040616 TO 20040708