US20040049032A1 - Processes for preparing substituted pyrimidines - Google Patents

Processes for preparing substituted pyrimidines Download PDF

Info

Publication number
US20040049032A1
US20040049032A1 US10/464,430 US46443003A US2004049032A1 US 20040049032 A1 US20040049032 A1 US 20040049032A1 US 46443003 A US46443003 A US 46443003A US 2004049032 A1 US2004049032 A1 US 2004049032A1
Authority
US
United States
Prior art keywords
compound
independently selected
optionally substituted
formula
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/464,430
Other languages
English (en)
Inventor
Jean-Damien Charrier
Francesca Mazzei
David Kay
Andrew Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vertex Pharmaceuticals Inc
Original Assignee
Vertex Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vertex Pharmaceuticals Inc filed Critical Vertex Pharmaceuticals Inc
Priority to US10/464,430 priority Critical patent/US20040049032A1/en
Assigned to VERTEX PHARMACEUTICALS INCORPORATED reassignment VERTEX PHARMACEUTICALS INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHARRIER, JEAN-DAMIEN, MILLER, ANDREW, KAY, DAVID, MAZZEI, FRANCESCA
Publication of US20040049032A1 publication Critical patent/US20040049032A1/en
Priority to US11/500,981 priority patent/US7557106B2/en
Priority to US12/436,407 priority patent/US8268829B2/en
Priority to US13/585,861 priority patent/US8779127B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/34One oxygen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D453/00Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids
    • C07D453/02Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids containing not further condensed quinuclidine ring systems

Definitions

  • the present invention provides a facile process for the preparation of substituted pyrimidines.
  • the process is useful for preparing inhibitors of protein kinases, especially of FLT-3 and the Aurora-family kinases, serine/threonine protein kinases.
  • the present invention also relates to inhibitors of FLT-3, Aurora-1, Aurora-2, and Aurora-3 protein kinases, and compositions thereof.
  • Protein kinases mediate intracellular signal transduction. They do this by effecting a phosphoryl transfer from a nucleoside triphosphate to a protein acceptor that is involved in a signaling pathway. There are a number of kinases and pathways through which extracellular and other stimuli cause a variety of cellular responses to occur inside the cell.
  • Examples of such stimuli include environmental and chemical stress signals (e.g., osmotic shock, heat shock, ultraviolet radiation, bacterial endotoxin, and H 2 O 2 ), cytokines (e.g., interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF- ⁇ )), and growth factors (e.g., granulocyte macrophage-colony-stimulating factor (GM-CSF), and fibroblast growth factor (FGF)).
  • IL-1 interleukin-1
  • TNF- ⁇ tumor necrosis factor alpha
  • growth factors e.g., granulocyte macrophage-colony-stimulating factor (GM-CSF), and fibroblast growth factor (FGF)
  • An extracellular stimulus may affect one or more cellular responses related to cell growth, migration, differentiation, secretion of hormones, activation of transcription factors, muscle contraction, glucose metabolism, control of protein synthesis and regulation of cell cycle.
  • Aurora/Ipl1p kinase family regulators of chromosome segregation and cytokinesis
  • Giet, R. and Prigent, C. Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases
  • Nigg, E. A. Mitsubishi kinases as regulators of cell division and its checkpoints
  • Inhibitors of the Aurora kinase family therefore have the potential to block growth of all tumour types.
  • Aurora-A (“1”), B (“2”) and C (“3”)
  • Aurora-A (“1”), B (“2”) and C (“3”)
  • Aurora expression is low or undetectable in resting cells, with expression and activity peaking during the G2 and mitotic phases in cycling cells.
  • substrates for Aurora include histone H3, a protein involved in chromosome condensation, and CENP-A, myosin II regulatory light chain, protein phosphatase 1, TPX2, all of which are required for cell division.
  • Aurora kinases have been reported to be over-expressed in a wide range of human tumours. Elevated expression of Aurora-A has been detected in over 50% of colorectal (Bischoff, J. R., et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 17, 3052-3065 (1998)) (Takahashi, T., et al. Centrosomal kinases, HsAIRk1 and HsAIRK3, are overexpressed in primary colorectal cancers. Jpn. J. Cancer Res. 91, 1007-1014 (2000)). ovarian (Gritsko, T. M. et al.
  • centrosome kinase BTAK/Aurora-A Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer.
  • Clinical Cancer Research 9, 1420-1426 (2003) and gastric tumors (Sakakura, C. et al. Tumor-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation.
  • British Journal of Cancer 84, 824-831 (2001) and in 94% of invasive duct adenocarcinomas of the breast (Tanaka, T., et al. Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Research. 59, 2041-2044 (1999)).
  • Aurora-2 is highly expressed in multiple human tumor cell lines and levels increase as a function of Duke's stage in primary colorectal cancers [Katayama, H. et al. (Mitotic kinase expression and colorectal cancer progression) Journal of the National Cancer Institute 91, 1160-1162 (1999)]. Aurora-2 plays a role in controlling the accurate segregation of chromosomes during mitosis. Misregulation of the cell cycle can lead to cellular proliferation and other abnormalities. In human colon cancer tissue, the Aurora-2 protein has been found to be over expressed [Bischoff et al., EMBO J., 17, 3052-3065 (1998); Schumacher et al., J.
  • Aurora-2 is over-expressed in the majority of transformed cells. Bischoff et al found high levels of Aurora-2 in 96% of cell lines derived from lung, colon, renal, melanoma and breast tumors (Bischoff et al EMBO J. 1998 17, 3052-3065). Two extensive studies show elevated Aurora-2 in 54% and 68% (Bishoff et al EMBO J. 1998 17, 3052-3065)(Takahashi et al 2000 Jpn J Cancer Res. 91, 1007-1014) of colorectal tumours and in 94% of invasive duct adenocarcinomas of the breast (Tanaka et al 1999 59, 2041-2044).
  • Aurora-1 expression is elevated in cell lines derived from tumors of the colon, breast, lung, melanoma, kidney, ovary, pancreas, CNS, gastric tract and leukemias (Tatsuka et al 1998 58, 4811-4816).
  • the type III receptor tyrosine kinase, Flt3, plays an important role in the maintenance, growth and development of hematopoietic and non-hematopoietic cells.
  • FLT-3 regulates maintenance of stem cell/early progenitor pools as well the development of mature lymphoid and myeloid cells [Lyman, S, Jacobsen, S, Blood, 1998, 91, 1101-1134].
  • FLT-3 contains an intrinsic kinase domain that is activated upon ligand-mediated dimerization of the receptors.
  • the kinase domain Upon activation, the kinase domain induces autophosphorylation of the receptor as well as the phosphorylation of various cytoplasmic proteins that help propogate the activation signal leading to growth, differentiation and survival.
  • Some of the downstream regulators of FLT-3 receptor signaling include, PLC ⁇ , P13-kinase, Grb-2, SHIP and Src related kinases [Scheijen, B, Griffin J D, Oncogene, 2002, 21, 3314-3333].
  • FLT-3 kinase plays a role in a variety of hematopoietic and non-hematopoietic malignancies.
  • Tri- or tetra-substituted pyrimidine derivatives useful as kinase inhibitors are known in the art. Typically, these pyrimidine derivatives are 2,4,6- or 2,4,5,6-substituted, as shown below:
  • the present invention provides a process for preparing a compound of formula I:
  • Q and T are each independently selected from oxygen, sulfur or N(R);
  • each R is independently selected from hydrogen or an optionally substituted C 1-6 aliphatic group, wherein:
  • two R bound to the same nitrogen atom are optionally taken together with the nitrogen to form an optionally substituted 3-7 membered monocyclic or 8-10 membered bicyclic saturated, partially unsaturated, or fully unsaturated ring having 0-3 heteroatoms, in addition to the nitrogen bound thereto, independently selected from nitrogen, oxygen, or sulfur;
  • R x is U-R 5 ;
  • R 5 is selected from halogen, NO 2 , CN, R, or Ar;
  • each U is independently selected from a valence bond or a C 1-4 alkylidene chain, wherein:
  • up to two methylene units of U are optionally and independently replaced by —O—, —S—, —SO—, —SO 2 —, —N(R)SO 2 —, —SO 2 N(R)—, —N(R)—, —C(O)—, —CO 2 —, —N(R)C(O)—, —N(R)C(O)O—, —N(R)CON(R)—, —N(R)SO 2 N(R)—, —N(R)N(R)—, —C(O)N(R)—, —OC(O)N(R)—, —C(R) ⁇ NN(R)—, or —C(R) ⁇ N—O—;
  • each Ar is independently selected from an optionally substituted ring selected from a 3-7 membered monocyclic or an 8-10 membered bicyclic saturated, partially unsaturated, or fully unsaturated ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
  • R y is —N(R 1 ) 2 , —OR 1 , or —SR 1 ;
  • each R 1 is independently selected from R or a 3-8 membered monocyclic, an 8-10 membered bicyclic, or a 10-12 membered tricyclic saturated, partially unsaturated, or fully unsaturated ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, and wherein:
  • each R 1 is optionally and independently substituted by up to four substituents independently selected from R 2 ;
  • each R 2 is independently selected from —R 3 , —OR 3 , —SR 3 , —CN, —NO 2 , oxo, halogen, —N(R 3 ) 2 , —C(O)R 3 , —OC(O)R 3 , —CO 2 R 3 , —SO 2 R 3 , —SO 2 N(R 3 ) 2 , —N(R 3 )SO 2 R 3 , —C(O)NR(R 3 ), —C(O)N(R 3 ) 2 , —OC(O)NR(R 3 ), —OC(O)N(R 3 ) 2 , —NR 3 C(O)R 3 , —NR 3 C(O)N(R 3 ) 2 , or —NR 3 CO 2 (R 3 );
  • each R 3 is independently selected from R or Ar;
  • R z1 is selected from a C 1-6 aliphatic group or a 3-8 membered monocyclic, an 8-10 membered bicyclic, or a 10-12 membered tricyclic saturated, partially unsaturated, or fully unsaturated ring having 0-4 heteroatoms independently selected from oxygen, nitrogen or sulfur, wherein:
  • R z1 is substituted with 0-4 independently selected R 2 groups
  • R z2 is C 1-6 aliphatic group or a 3-8 membered monocyclic or an 8-10 membered bicyclic saturated, partially unsaturated, or fully unsaturated ring having 0-4 heteroatoms independently selected from nitrogen, oxygen or sulfur, wherein:
  • R z2 is substituted by 0-4 substituents independently selected from oxo or U-R 5 ;
  • said process comprising the step of combining a compound of formula II and a compound of formula R y —H in a suitable medium:
  • said suitable medium comprises:
  • L 3 is a suitable leaving group.
  • the present invention provides a process for preparing a compound of formula I:
  • Q and T are each independently selected from oxygen, sulfur or N(R);
  • each R is independently selected from hydrogen or an optionally substituted C 1-6 aliphatic group, wherein:
  • two R bound to the same nitrogen atom are optionally taken together with the nitrogen to form an optionally substituted 3-7 membered monocyclic or 8-10 membered bicyclic saturated, partially unsaturated, or fully unsaturated ring having 0-3 heteroatoms, in addition to the nitrogen bound thereto, independently selected from nitrogen, oxygen, or sulfur;
  • R x is U-R 5 ;
  • R 5 is selected from halogen, NO 2 , CN, R, or Ar;
  • each U is independently selected from a valence bond or a C 1-4 alkylidene chain, wherein:
  • up to two methylene units of U are optionally and independently replaced by —O—, —S—, —SO—, —SO 2 —, —N(R)SO 2 —, —SO 2 N(R)—, —N(R)—, —C(O)—, —CO 2 —, —N(R)C(O)—, —N(R)C(O)O—, —N(R)CON(R)—, —N(R)SO 2 N(R)—, —N(R)N(R)—, —C(O)N(R)—, —OC(O)N(R)—, —C(R) ⁇ NN(R)—, or —C(R) ⁇ N—O—;
  • each Ar is independently selected from an optionally substituted ring selected from a 3-7 membered monocyclic or an 8-10 membered bicyclic saturated, partially unsaturated, or fully unsaturated ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
  • R y is —N(R 1 ) 2 , —OR 1 , or —SR 1 ;
  • each R 1 is independently selected from R or a 3-8 membered monocyclic, an 8-10 membered bicyclic, or a 10-12 membered tricyclic saturated, partially unsaturated, or fully unsaturated ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, and wherein:
  • each R 1 is optionally and independently substituted by up to four substituents independently selected from R 2 ;
  • each R 2 is independently selected from —R, —OR 3 , —SR 3 , —CN, —NO 2 , oxo, halogen, —N(R 3 ) 2 , —C(O)R 3 , —OC(O)R 3 , —CO 2 R 3 , —SO 2 R 3 , —SO 2 N(R 3 ) 2 , —N(R 3 )SO 2 R 3 , —C(O)NR(R 3 ), —C(O)N(R 3 ) 2 , —OC(O)NR(R 3 ), —OC(O)N(R 3 ) 2 , —NR 3 C(O)R 3 , —NR 3 C(O)N(R 3 ) 2 , or —NR 3 CO 2 (R 3 );
  • each R 3 is independently selected from R or Ar;
  • R z1 is selected from a C 1-6 aliphatic group or a 3-8 membered monocyclic, an 8-10 membered bicyclic, or a 10-12 membered tricyclic saturated, partially unsaturated, or fully unsaturated ring having 0-4 heteroatoms independently selected from oxygen, nitrogen or sulfur, wherein:
  • R z1 is substituted with 0-4 independently selected R 2 groups
  • R z2 is C 1-6 aliphatic group or a 3-8 membered monocyclic or an 8-10 membered bicyclic saturated, partially unsaturated, or fully unsaturated ring having 0-4 heteroatoms independently selected from nitrogen, oxygen or sulfur, wherein:
  • R z2 is substituted by 0-4 substituents independently selected from oxo or U-R 5 ;
  • said process comprising the step of combining a compound of formula II and a compound of formula R y —H in a suitable medium:
  • said suitable medium comprises:
  • L is a suitable leaving group
  • a compound of formula II is prepared by combining a compound of formula III with a compound of formula R z1 -Q-H in a suitable medium:
  • said suitable medium comprises:
  • L is a suitable leaving group
  • a compound of formula III is prepared by combining a compound of formula IV with a compound of formula R z2 -T-H in a suitable medium:
  • said suitable medium comprises:
  • L 1 is a suitable leaving group.
  • a suitable solvent is a solvent or a solvent mixture that, in combination with the combined compounds, may facilitate the progress of the reaction therebetween.
  • the suitable solvent may solubilize one or more of the reaction components, or, alternatively, the suitable solvent may facilitate the agitation of a suspension of one or more of the reaction components.
  • suitable solvents useful in the present invention are a protic solvent, a halogenated hydrocarbon, an ether, an aromatic hydrocarbon, a polar or a non-polar aprotic solvent, or any mixtures thereof. These and other such suitable solvents are well known in the art, e.g., see, “Advanced Organic Chemistry”, Jerry March, 4 th edition, John Wiley and Sons, N.Y. (1992).
  • the suitable solvent is a C 1-7 straight or branched alkyl alcohol, ether, or a polar or non-polar aprotic solvent.
  • a more preferred suitable solvent is selected from ethanol, isopropanol, t-butanol, n-butanol or tetrahydrofuran.
  • a more preferred suitable solvent is selected from ethanol, isopropanol, t-butanol, n-butanol, N,N-dimethylformamide, dimethylsulfoxide, or tetrahydrofuran.
  • a more preferred suitable solvent is selected from N,N-dimethylformamide, dimethylsulfoxide, or tetrahydrofuran.
  • the suitable solvent is R y —H.
  • the reagent R y —H acts, in part, as a suitable solvent in combination with a compound of formula II, and also acts, in part, as a reagent and reacts with the compound of formula II to produce compound of formula I.
  • the suitable solvent is R z1 -Q-H.
  • the reagent R z1 -Q-H acts, in part, as a suitable solvent in combination with a compound of formula III, and also acts, in part, as a reagent and reacts with the compound of formula III to produce compound of formula II.
  • the suitable solvent is R z2 _T-H.
  • the reagent R z2 -T-H acts, in part, as a suitable solvent in combination with a compound of formula IV, and also acts, in part, as a reagent and reacts with the compound of formula IV to produce compound of formula III.
  • a suitable base is a chemical entity that has the ability to be a proton acceptor. Examples include organic amines, alkaline earth metal carbonates, alkaline earth metal hydrides, and alkaline earth metal hydroxides. These and other such suitable bases are well known in the art, e.g., see, “Advanced Organic Chemistry,” Jerry March, 4 th Ed., pp. 248-253, John Wiley and Sons, N.Y. (1992). Preferred suitable bases include trialkyl amines, sodium carbonate, potassium carbonate, sodium hydride, potassium hydride, sodium hydroxide, or potassium hydroxide. More preferably, the suitable base is diisopropylethylamine or triethylamine.
  • a suitable leaving group is a chemical group that is readily displaced by a desired incoming chemical moiety.
  • the choice of the specific suitable leaving group is predicated upon its ability to be readily displaced by the incoming chemical moiety R y in R y —H, R z1 -Q in R z1 -Q-H, or R z2 -T in R z2 -T-H.
  • Suitable leaving groups are well known in the art, e.g., see, “Advanced Organic Chemistry,” Jerry March, 4 th Ed., pp. 351-357, John Wiley and Sons, N.Y. (1992).
  • Such leaving groups include, but are not limited to, halogen, alkoxy, sulphonyloxy, optionally substituted alkylsulphonyl, optionally substituted alkenylsulfonyl, optionally substituted arylsulfonyl, and diazonium moieties.
  • suitable leaving groups include chloro, iodo, bromo, fluoro, methanesulfonyl (mesyl), tosyl, triflate, nitro-phenylsulfonyl (nosyl), and bromo-phenylsulfonyl (brosyl).
  • L 3 is displaced by incoming moiety R y of R y —H.
  • R y —H is e.g., a piperazine
  • L 3 is a leaving group that is readily displaced by the —NH— moiety in piperazine.
  • L 3 leaving groups are selected from halogen, optionally substituted arylsulfonyl, or optionally substituted alkylsulphonyl. More preferably, L 3 is chloro, iodo, or methanesulfonyl. Most preferably, L 3 is chloro.
  • L 2 is displaced by incoming moiety R z1 -Q of R z1 -Q-H.
  • R z1 -Q-H is, e.g., 3-aminopyrazole
  • L 2 is a leaving group that is readily displaced by the 3-aminopyrazole.
  • L 2 leaving groups are selected from halogen, optionally substituted arylsulfonyl, or optionally substituted alkylsulphonyl. More preferably, L 3 is chloro, iodo, or fluoro. Most preferably, L 3 is chloro.
  • L 1 is displaced by incoming moiety R z2-T of R z2 -T-H.
  • R z2 -T is e.g., an optionally substituted arylthiol
  • L 1 is a leaving group that is readily displaced by the thio group in the optionally substituted arylthiol.
  • L 1 leaving groups are selected from halogen, optionally substituted arylsulfonyl, or optionally substituted alkylsulphonyl. More preferably, L 3 is chloro, iodo, or methanesulfonyl. Most preferably, L 3 is methanesulfonyl.
  • the suitable leaving group may be generated in situ within the reaction medium.
  • L 3 in a compound of formula II may be generated in situ from a precursor of that compound of formula II wherein said precursor contains a group readily replaced by L 3 in situ.
  • said precursor of a compound of formula II contains a group (for example, a chloro group or hydroxyl group) which is replaced in situ by L 3 , such as an iodo group.
  • the source of the iodo group may be, e.g., sodium iodide.
  • L 2 and L 1 may also be formed in situ in an analogous manner.
  • an anion of any of R y in R y —H, R z1 -Q in R z1 -Q-H, or R z2 -T in R z2 -T-H may be formed prior to addition to the reaction medium.
  • the preparation of said anion is well known to one of skill in the art.
  • T is oxygen
  • the anion of R z2 -T-H is readily formed by treating R z2 -T-H with a base, such as sodium hydride. This oxygen anion may then be combined with the compound of formula IV to form a compound of formula III.
  • the reactions described herein are performed at a temperature less than or equal to the reflux temperature of the reaction medium.
  • said reaction medium has a temperature less than the boiling point of said suitable solvent or at a temperature attained by refluxing said suitable solvent in said reaction medium.
  • said reaction medium has a temperature between about 0° C. and about 190° C.
  • said reaction medium has a temperature between about 40° C. and about 120° C.
  • said reaction medium has a temperature between about 70° C. and about 115° C.
  • Aurora refers to any isoform of the Aurora family of protein kinases, including Aurora-1, Aurora-2, and Aurora-3.
  • Aurora also refers to isoforms of the Aurora family of protein kinases known as Aurora-A, Aurora-B, and Aurora-C.
  • aliphatic or “aliphatic group” as used herein means a straight-chain or branched C 1 -C 8 hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation, or a monocyclic C 3 -C 8 hydrocarbon or bicyclic C 8 -C 12 hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as “carbocycle” or “cycloalkyl”), that has a single point of attachment to the rest of the molecule wherein any individual ring in said bicyclic ring system has 3-7 members.
  • suitable aliphatic groups include, but are not limited to, linear or branched or alkyl, alkenyl, alkynyl groups and hybrids thereof such as (cycloalkyl)alkyl, (cycloalkenyl)alkyl or (cycloalkyl)alkenyl.
  • alkyl used alone or as part of a larger moiety include both straight and branched chains containing one to twelve carbon atoms.
  • alkenyl and “alkynyl” used alone or as part of a larger moiety shall include both straight and branched chains containing two to twelve carbon atoms.
  • heteroatom means nitrogen, oxygen, or sulfur and includes any oxidized form of nitrogen and sulfur, and the quaternized form of any basic nitrogen.
  • nitrogen includes a substitutable nitrogen of a heterocyclic ring.
  • the nitrogen in a saturated or partially unsaturated ring having 0-3 heteroatoms selected from oxygen, sulfur or nitrogen, the nitrogen may be N (as in 3,4-dihydro-2H-pyrrolyl), NH (as in pyrrolidinyl) or NR + (as in N-substituted pyrrolidinyl).
  • aryl refers to a monocyclic, bicyclic, or tricyclic ring systems having a total of five to fourteen ring carbon atoms, wherein at least one ring is aromatic and wherein each ring in the system contains three to seven ring members.
  • aryl may be used interchangeably with the term “aryl ring.” Examples include phenyl, indanyl, 1-naphthyl, 2-naphthyl, 1-anthracyl, 2-anthracyl and bicyclo [2.2.2]oct-3-yl.
  • aryl used alone or as part of a larger moiety as in “aralkyl”, “aralkoxy”, or “aryloxyalkyl”, refers to monocyclic, bicyclic and tricyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic and wherein each ring in the system contains 3 to 7 ring members.
  • aryl may be used interchangeably with the term “aryl ring”.
  • aryl also refers to heteroaryl ring systems as defined hereinbelow.
  • heterocycle means non-aromatic, monocyclic, bicyclic or tricyclic ring systems having five to fourteen ring members in which one or more ring members is a heteroatom, wherein each ring in the system contains 3 to 7 ring members.
  • heteroaryl used alone or as part of a larger moiety as in “heteroaralkyl” or “heteroarylalkoxy”, refers to monocyclic, bicyclic and tricyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic, at least one ring in the system contains one or more heteroatoms, and wherein each ring in the system contains 3 to 7 ring members.
  • heteroaryl may be used interchangeably with the term “heteroaryl ring” or the term “heteroaromatic”.
  • An aryl (including aralkyl, aralkoxy, aryloxyalkyl and the like) or heteroaryl (including heteroaralkyl and heteroarylalkoxy and the like) group may contain one or more substituents.
  • Suitable substituents on the unsaturated carbon atom of an aryl, heteroaryl, aralkyl, or heteroaralkyl group are selected from halogen, —R°, —OR°, —SR°, 1,2-methylene-dioxy, 1,2-ethylenedioxy, phenyl (Ph) optionally substituted with R°, —O(Ph) optionally substituted with R°, —CH 2 (Ph) optionally substituted with R°, —CH 2 CH 2 (Ph), optionally substituted with R°, —NO 2 , —CN, —N(R°) 2 , —NR°C(O)R°, —NR°C(O)N(R°) 2 , —NR°CO 2 R°, —NR° NR°C(O)R°, —NR°NR°C(O)N(R°) 2 , —NR°NR°CO 2 RO, —C(O)C(O)R°, —C(
  • Optional substituents on the aliphatic group of R° are selected from NH 2 , NH(C 1-4 aliphatic), N(C 1-4 aliphatic) 2 , halogen, C 1-4 aliphatic, OH, O(C 1-4 aliphatic), NO 2 , CN, CO 2 H, CO 2 (C 1-4 aliphatic), O(halo C 1-4 aliphatic), or halo C 1-4 aliphatic.
  • An aliphatic group or a non-aromatic heterocyclic ring may contain one or more substituents. Suitable substituents on the saturated carbon of an aliphatic group or of a non-aromatic heterocyclic ring are selected from those listed above for the unsaturated carbon of an aryl or heteroaryl group and the following: ⁇ O, ⁇ S, ⁇ NNHR, ⁇ NN(R*) 2 , ⁇ NNHC(O)R*, ⁇ NNHCO 2 (alkyl), ⁇ NNHSO 2 (alkyl), or ⁇ NR*, where each R* is independently selected from hydrogen or an optionally substituted C 1-6 aliphatic.
  • Optional substituents on the aliphatic group of R* are selected from NH 2 , NH(C 1-4 aliphatic), N(C 1-4 aliphatic) 2 , halogen, C 1-4 aliphatic, OH, O(C 1-4 aliphatic), NO 2 , CN, CO 2 H, CO 2 (C 1-4 aliphatic), O(halo C 1-4 aliphatic), or halo(C 1-4 aliphatic).
  • Optional substituents on the nitrogen of a non-aromatic heterocyclic ring are selected from —R + , —N(R + ) 2 , —C(O)R + , —CO 2 R + , —C(O)C(O)R + , —C(O)CH 2 C(O)R + , —SO 2 R + , —SO 2 N(R + ) 2 , —C( ⁇ S)N(R + ) 2 , —C( ⁇ NH)—N(R + ) 2 , or —NR + SO 2 R + ; wherein R + is hydrogen, an optionally substituted C 1-6 aliphatic, optionally substituted phenyl, optionally substituted —O(Ph), optionally substituted —CH 2 (Ph), optionally substituted —CH 2 CH 2 (Ph), or an unsubstituted 5-6 membered heteroaryl or heterocyclic ring.
  • Optional substituents on the aliphatic group or the phenyl ring of R+ are selected from NH 2 , NH(C 1-4 aliphatic), N(C 1-4 aliphatic) 2 , halogen, C 1-4 aliphatic, OH, O(C 1-4 aliphatic), NO 2 , CN, CO 2 H, CO 2 (C 1-4 aliphatic), O(halo C 1-4 aliphatic), or halo(C 1-4 aliphatic).
  • alkylidene chain refers to a straight or branched carbon chain that may be fully saturated or have one or more units of unsaturation and has two points of attachment to the rest of the molecule.
  • a combination of substituents or variables is permissible only if such a combination results in a stable or chemically feasible compound.
  • a stable compound or chemically feasible compound is one that is not substantially altered when kept at a temperature of 40° C. or less, in the absence of moisture or other chemically reactive conditions, for at least a week.
  • structures depicted herein are also meant to include all stereochemical forms of the structure; i.e., the R and S configurations for each asymmetric center. Therefore, single stereochemical isomers as well as enantiomeric and diastereomeric mixtures of the present compounds are within the scope of the invention.
  • structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by a 13 C- or 14 C-enriched carbon are within the scope of this invention. Such compounds are useful, for example, as analytical tools or probes in biological assays.
  • Q of formula I is NH, oxygen, or sulfur.
  • Q of formula I is NR. More preferably, Q of formula I is NH.
  • T of formula I is oxygen or sulfur. More preferably, T of formula I is sulfur.
  • T of formula I is oxygen and the anion of R z2 -T-H is formed prior to combing with a compound of formula IV to form a compound of formula III.
  • R x of formula I is U-R 5 , wherein U is a valence bond, —O—, or —NR—, and R 5 is R or Ar.
  • R x of formula I is selected from R, Ar, or —N(R) 2 . More preferably, R x of formula I is hydrogen.
  • R y of formula I is selected from —OR 1 or —N(R 1 ) 2 .
  • R y of formula I is selected from N(R 1 ) 2 wherein each R 1 is independently selected from R or a 3-7 membered monocyclic or an 8-10 membered bicyclic saturated, partially unsaturated, or fully unsaturated ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • Preferred substituents R 1 are selected from —OR 3 , —SR 3 , —CN, —NO 2 , oxo, halogen, —N(R 3 ) 2 , —C(O)R 3 , or a 3-6 membered aromatic or non-aromatic ring having zero to two heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • R 1 More preferred substituents on R 1 are 5-6 membered non-aromatic rings having 1-2 heteroatoms independently selected from nitrogen, oxygen, or sulfur. Most preferred substituents on the R 1 C 1-4 aliphatic group are NH(CH 3 ), NH 2 , OH, OCH 3 , morpholinyl, piperidinyl, piperazinyl, pyrrolidinyl, and thiomorpholinyl.
  • R y of formula I is selected from N(R 1 ) 2 wherein each R 1 is R such that the two R groups are taken together to form an optionally substituted 4-7 membered non-aromatic ring having up to two additional heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • Preferred substituents on said ring are selected from —R 3 , —OR 3 , —SR 3 , —CN, —NO 2 , oxo, halogen, —N(R 3 ) 2 , —C(O)R 3 , —CO 2 R 3 , —SO 2 R 3 , or a 3-6 membered aromatic or non-aromatic ring having zero to two heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • substituents said ring are selected from optionally substituted C 1-4 aliphatic, NH 2 , NH(C 1-4 aliphatic), N(C 1-4 aliphatic) 2 , optionally substituted phenyl, CO 2 (C 1-4 aliphatic), or SO 2 (C 1-4 aliphatic).
  • substituents on said ring are selected from methyl, ethyl, methylsulfonyl, (CH 2 ) 2 SO 2 CH 3 , cyclopropyl, CH 2 cyclopropyl, (CH 2 ) 2 OH, CO 2 t-butyl, CH 2 phenyl, phenyl, NH 2 , NH(CH 3 ), N(CH 3 ) 2 , (CH 2 ) 2 NH 2 , (CH 2 ) 2 morpholin-4-yl, (CH 2 ) 2 N(CH 3 ) 2 , isopropyl, propyl, t-butyl, (CH 2 ) 2 CN, or (CH 2 ) 2 C(O)morpholin-4-yl.
  • R y of formula I is pyrrolidin-1-yl, piperidinl-yl, morpholin-4-yl, thiomorpholin-4-yl, piperazin-1-yl, diazepanyl, or tetrahydroisoquinolinyl, wherein each ring is optionally substituted with one or two groups independently selected from methyl, ethyl, methylsulfonyl, (CH 2 ) 2 SO 2 CH 3 , cyclopropyl, CH 2 cyclopropyl, (CH 2 ) 2 OH, CO 2 t-butyl, CH 2 phenyl, phenyl, phenyl, NH 2 , NH(CH 3 ), N(CH 3 ) 2 , (CH 2 ) 2 NH 2 , (CH 2 ) 2 morpholin-4-yl, (CH 2 ) 2 N(CH 3 ) 2 , isopropyl, propyl, t-butyl, (CHCH
  • R z1 of formula I is a 3-7 membered monocyclic or an 8-10 membered bicyclic saturated, partially unsaturated, or fully unsaturated ring having 0-4 heteroatoms independently selected from oxygen, nitrogen or sulfur, wherein said ring is optionally and independently substituted by up to three substituents selected from —R 3 , —OR 3 , —SR 3 , —CN, —NO 2 , oxo, halogen, —N(R 3 ) 2 , —C(O)R 3 , —OC(O)R 3 , —CO 2 R 3 , —SO 2 R 3 , —SO 2 N(R 3 ) 2 , —N(R 3 )SO 2 R 3 , —C(O)NR(R 3 ), —C(O)N(R 3 ) 2 , —OC(O)NR(R 3 ), —OC(O)N(R 3 ) 2 , —NR
  • R z1 of formula I is a 5-6 membered monocyclic or an 8-10 membered bicyclic saturated, partially unsaturated, or fully unsaturated ring having 1-4 heteroatoms independently selected from oxygen, nitrogen or sulfur, wherein said ring is optionally and independently substituted by up to three substituents selected from —R 3 , —OR 3 , —SR 3 , —CN, —NO 2 , oxo, halogen, —N(R 3 ) 2 , —C(O)R 3 , —OC(O)R 3 , —CO 2 R 3 , —SO 2 R 3 , —SO 2 N(R 3 ) 2 , —N(R 3 )SO 2 R 3 , —C(O)NR(R 3 ), —C(O)N(R 3 ) 2 , —OC(O)NR(R 3 ), —OC(O)N(R 3 ) 2 , —NR
  • R z1 of formula I is a five or six membered fully unsaturated ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein said ring is optionally and independently substituted by up to three substituents selected from —R 3 , —OR 3 , —SR 3 , —CN, —NO 2 , oxo, halogen, —N(R 3 ) 2 , —C(O)R 3 , —OC(O)R 3 , —CO 2 R 3 —SO 2 R 3 , —SO 2 N(R 3 ) 2 , —N(R 3 )SO 2 R 3 , —C(O)NR(R 3 ), —C(O)N(R 3 ) 2 , —OC(O)NR(R 3 ), —OC(O)N(R 3 ) 2 , —NR 3 C(O)R 3 , —NR 3 C(O)N(R 3 )N
  • R z1 rings of formula I are optionally substituted rings selected from pyrazole or any one of the following 5-6 membered rings:
  • R z1 of formula I is a pyrazole ring having up to three substituents as defined above.
  • R z1 of formula I has up to two substituents, wherein said substituents are as set forth above. More preferably, R z1 of formula I has one substituent, wherein said substituent is as setsforth above.
  • Preferred substituents on the R z1 moiety of formula I are —N(R 3 ) 2 , —OR 3 , Ar, or an optionally substituted C 1 -C 4 a liphatic group, wherein Ar is an optionally substituted 5-6 membered saturated, partially unsaturated, or fully unsaturated ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • An even more preferred substituents on the R z1 moiety of formula I is a C 1 -C 4 aliphatic group.
  • Most preferred substituents on the R z1 moiety of formula I are selected from methyl, ethyl, propyl, isopropyl, t-butyl, cyclopropyl, or phenyl.
  • R z1 of formula I is a C 1-6 aliphatic group substituted with 0-4 R 2 groups.
  • R z1 is substituted with 0-3 R 2 groups, wherein each R 2 is independently selected from R 3 , oxo, halogen, N(R 3 ) 2 , CN, or CO 2 R 3 .
  • R z2 of formula I is a 5-6 membered monocyclic or an 8-10 membered bicyclic saturated, partially unsaturated, or fully unsaturated ring having 0-4 heteroatoms independently selected from nitrogen, oxygen or sulfur, wherein said ring is optionally substituted by up to three substituents independently selected from —R 3 , —OR 3 , —SR 3 , —CN, —NO 2 , oxo, halogen, —N(R 3 ) 2 , —C(O)R 3 , —OC(O)R 3 , —CO 2 R 3 , —SO 2 R 3 , —SO 2 N(R 3 ) 2 , —N(R 3 )SO 2 R 3 , —C(O)NR(R 3 ), —C(O)N(R 3 ) 2 , —OC(O)NR(R 3 ), —OC(O)N(R 3 ) 2 , —OC(O)N(R 3
  • R z2 of formula I is selected from an optionally substituted ring selected from a 5-6 membered monocyclic or an 9-10 membered bicyclic saturated, partially unsaturated, or fully unsaturated ring having 0-4 heteroatoms independently selected from nitrogen, oxygen or sulfur; wherein said ring is optionally substituted by up to three substituents independently selected as set forth above.
  • R z2 of formula I is selected from phenyl, imidazolyl, pyrazolyl, pyridyl, pyridazinyl, pyrazinyl, naphthyl, tetrahydronaphthyl, benzimidazolyl, benzthiazolyl, quinolinyl, quinazolinyl, benzodioxinyl, isobenzofuran, indanyl, indolyl, indolinyl, indazolyl, or isoquinolinyl, wherein the R z2 moiety of formula I is optionally and independently substituted with up to three substituents as set forth above.
  • R z2 of formula I when present, are independently selected from halogen, —CN, —NO 2 , —C(O)R 3 , —CO 2 R 3 , —C(O)NR(R 3 ), —NR 3 C(O)R 3 , —N(R 3 ) 2 , —N(R 3 )SO 2 R 3 , —NR 3 C(O)N(R 3 ) 2 , or —NR 3 CO 2 R 3 .
  • R z2 moiety of formula I are independently selected from —Cl, —Br, —F, 7 CN, —CF 3 , —COOH, —CONHMe, —CONHEt, —NH 2 , —NHAc, —NHSO 2 Me, —NHSO 2 Et, —NHSO 2 (n-propyl), —NHSO 2 (isopropyl), —NHCOEt, —NHCOCH 2 NHCH 3 , —NHCOCH 2 N(CO 2 t-Bu)CH 3 , —NHCOCH 2 N(CH 3 ) 2 , —NHCOCH 2 CH 2 N(CH 3 ) 2 , —NHCOCH 2 CH 2 CH 2 N(CH 3 ) 2 , —NHCOCH 2 CH 2 CH 2 N(CH 3 ) 2 , —NHCO(cyclopropyl), —NHCO(isopropyl), —NHCO(isobutyl), —NHCOCH 2 (morpholin
  • R z2 of formula I has up to two substituents, wherein said substituents are as set forth above. More preferably, R z2 of formula I has one substituent, wherein said substituent is as set forth above. Most preferably, R of formula I has one substituent selected from —NR 3 C(O)R 3 , wherein each R 3 is independently selected from R or Ar and wherein R is hydrogen or an optionally substituted C 1-4 aliphatic group.
  • R z2 of formula I is C 1-6 aliphatic group substituted with 0-3 groups independently selected from halogen, oxo, —CN, —NO 2 , —C(O)R 3 , —CO 2 R 3 , —C(O)NR(R 3 ), —NR 3 C(O)R 3 , —N(R 3 ) 2 , —N(R 3 )SO 2 R 3 , —NR 3 C(O)N(R 3 ) 2 , or —NR 3 CO 2 R 3 .
  • R of formula I is a C 1-4 aliphatic group substituted with 0-3 groups independently selected from halogen, —CN, —NO 2 , —C(O)R 3 , —CO 2 R 3 , —N(R 3 ) 2 , or —NR 3 CO 2 R 3 .
  • R x , T, Q, R z1 , and R z2 in formula II are as set forth for these moieties in formula I.
  • R y moiety of R y —H are as set forth for the R y group in formula I.
  • R x , L 3 , T, and R z2 in formula III are as set forth for these moieties in formula I.
  • R x , L 3 , L 2 and Q in formula IV are as set forth for these moieties in formula I.
  • R z2 and T in R z2 -T-H are as set forth for these moieties in formula I.
  • R x in the processes of the present invention is other than a suitable leaving group.
  • Preferred R 1 groups of formula I′ are independently selected from R, wherein R is hydrogen or an optionally substituted C 1-4 aliphatic group.
  • Preferred substituents on the C 1-4 aliphatic group of the R 1 moiety of formula I′ are selected from —OR 3 , —SR 3 , —CN, —NO 2 , oxo, halogen, —N(R 3 ) 2 , —C(O)R 3 , or a 3-6 membered aromatic or non-aromatic ring having zero to two heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • substituents on the C 1-4 aliphatic group of the R 1 moiety of formula I′ are 5-6 membered non-aromatic rings having 1-2 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • Most preferred substituents on the R 1 C 1-4 aliphatic group of the R 1 moiety of formula I′ are NH(CH 3 ), NH 2 , OH, OCH 3 , morpholinyl, piperidinyl, piperazinyl, pyrrolidinyl, and thiomorpholinyl.
  • each R 1 of formula I′ is R such that the two R groups are taken together to form an optionally substituted 4-7 membered non-aromatic ring having up to two additional heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • Preferred substituents on said ring are selected from —R 3 , —OR 3 , —SR 3 , —CN, —NO 2 , oxo, halogen, —N(R 3 ) 2 , —C(O)R 3 , —CO 2 R 3 , —SO 2 R 3 , or a 3-6 membered aromatic or non-aromatic ring having zero to two heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • substituents said ring are selected from optionally substituted C 1-4 aliphatic, NH 2 , NH(C 1-4 aliphatic), N(C 1-4 aliphatic) 2 , optionally substituted phenyl, CO 2 (C 1-4 aliphatic), or SO 2 (C 1-4 aliphatic).
  • substituents on said ring are selected from methyl, ethyl, methylsulfonyl, (CH 2 ) 2 SO 2 CH 3 , cyclopropyl, CH 2 cyclopropyl, (CH 2 ) 2 OH, CO 2 t-butyl, CH 2 phenyl, phenyl, NH 2 , NH(CH 3 ), N(CH 3 ) 2 , (CH 2 ) 2 NH 2 , (CH 2 ) 2 morpholin-4-yl, (CH 2 ) 2 N(CH 3 ) 2 , isopropyl, propyl, t-butyl, (CH 2 ) 2 CN, or (CH 2 ) 2 C(O)morpholin-4-yl.
  • the ring formed by N(R 1 ) 2 of formula I′ is pyrrolidinyl, piperidinyl, morpholin-4-yl, thiomorpholin-4-yl, piperazin-1-yl, diazepanyl, or tetrahydroisoquinolinyl, wherein each ring is optionally substituted with one or two groups independently selected from methyl, ethyl, methylsulfonyl, (CH 2 ) 2 SO 2 CH 3 , cyclopropyl, CH 2 cyclopropyl, (CH 2 ) 2 OH, CO 2 t-butyl, CH 2 phenyl, phenyl, NH 2 , NH(CH 3 ), N(CH 3 ) 2 , (CH 2 ) 2 NH 2 , (CH 2 ) 2 morpholin-4-yl, (CH 2 ) 2 N(CH 3 ) 2 , isopropyl, propyl, t-
  • R 5 is selected from hydrogen or C 1-4 aliphatic
  • R 6 is selected from C 1-3 aliphatic
  • R 7 is selected from C 1-4 aliphatic.
  • R 5 groups of formula V are selected from hydrogen, methyl, ethyl, t-butyl, propyl, cyclopropyl, cyclopropylmethyl, or isopropyl. More preferred R 5 groups of formula V are selected from hydrogen or methyl. Most preferably R 5 of formula V is methyl.
  • R 6 groups of formula V are selected from methyl, ethyl, or cyclopropyl. More preferred R 6 groups of formula V are methyl of cyclopropyl. Most preferably, R 6 of formula V is methyl.
  • R 7 groups of formula V are selected from methyl, ethyl, t-butyl, or cyclopropyl. More preferred R 7 groups of formula V are selected from ethyl or cyclopropyl. Most preferably, R 7 of formula V is cyclopropyl.
  • the present invention relates to a compound of formula V:
  • R 5 is selected from hydrogen or C 1-4 aliphatic
  • R 6 is selected from C 1-3 aliphatic
  • R 7 is selected from C 1-4 aliphatic; provided that said compound is other than N- ⁇ 4-[4-(4-methyl-piperazin-1-yl)-6-(5-methyl-2H-pyrazol-3-ylamino)-pyrimidin-2-ylsulfanyl]-phenyl ⁇ -propionamide.
  • R 5 groups of formula V are selected from hydrogen, methyl, ethyl, t-butyl, or isopropyl. More preferred R 5 groups of formula V are selected from hydrogen or methyl. Most preferably R 5 of formula V is methyl.
  • R 6 groups of formula V are selected from methyl, ethyl, or cyclopropyl. More preferred R groups of formula V are methyl of cyclopropyl. Most preferably, R 6 of formula V is methyl.
  • R 7 groups of formula V are selected from methyl, ethyl, t-butyl, or cyclopropyl. More preferred R groups of formula V are selected from ethyl or cyclopropyl. Most preferably, R 7 of formula V is cyclopropyl.
  • the processes of the present invention are used to prepare a compound selected from Tables 1 and 2. More preferably the processes of the present invention are used to prepare a compound selected from Table 1.
  • the present invention provides a compound of formula II, formula III, or formula IV:
  • the present invention provides an intermediate of formula II.
  • the present invention provides an intermediate of formula III.
  • the present invention provides an intermediate of formula IV.
  • the invention provides a composition comprising a compound of this invention or a pharmaceutically acceptable derivative thereof and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
  • the amount of compound in the compositions of this invention is such that is effective to detectably inhibit a protein kinase, particularly Aurora and/or FLT-3 kinase, in a biological sample or in a patient.
  • the composition of this invention is formulated for administration to a patient in need of such composition.
  • the composition of this invention is formulated for oral administration to a patient.
  • patient means an animal, preferably a mammal, and most preferably a human.
  • compositions of this invention refers to a non-toxic carrier, adjuvant, or vehicle that does not destroy the pharmacological activity of the compound with which it is formulated.
  • Pharmaceutically acceptable carriers, adjuvants or vehicles that may be used in the compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxyprop
  • detectably inhibit means a measurable change in protein kinase activity between a sample comprising said composition and protein kinase and an equivalent sample comprising protein kinase in the absence of said composition.
  • a “pharmaceutically acceptable derivative or salt” means any non-toxic salt, ester, salt of an ester or other derivative of a compound of this invention that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention or an inhibitorily active metabolite or residue thereof.
  • the term “inhibitorily active metabolite or residue thereof” means that a metabolite or residue thereof is also an inhibitor of Aurora and/or FLT-3 protein kinase.
  • the present invention provides processes for preparing a pharmaceutically acceptable salt of compound of formula I, I′, or V comprising the step of converting a compound of formula I, I′, or V prepared according to the processes of the present invention into the desired pharmaceutically acceptable salt.
  • Such conversions are well known in the art. See, generally, “Advanced Organic Chemistry,” Jerry March, 4 th Ed., John Wiley and Sons, N.Y. (1992).
  • Pharmaceutically acceptable salts of the compounds of this invention include those derived from pharmaceutically acceptable inorganic and organic acids and bases.
  • suitable acid salts include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptanoate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oxalate, palmoate
  • Salts derived from appropriate bases include alkali metal (e.g., sodium and potassium), alkaline earth metal (e.g., magnesium), ammonium and N + (C 1-4 alkyl) 4 salts.
  • alkali metal e.g., sodium and potassium
  • alkaline earth metal e.g., magnesium
  • ammonium and N + (C 1-4 alkyl) 4 salts This invention also envisions the quaternization of any basic nitrogen-containing groups of the compounds disclosed herein. Water or oil-soluble or dispersible products may be obtained by such quaternization.
  • Table 3 sets forth representative salts of compounds of Formula V of the present invention. TABLE 3 Representative Salts of Compounds of Formula V V-1 i V-1 ii V-1 iii V-1 iv V-1 v V-1 vi V-1 vii V-1 viii V-1 ix V-1 x V-1 xi V-20 i V-20 ii
  • compositions of the present invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir.
  • parenteral as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques.
  • the compositions are administered orally, intraperitoneally or intravenously.
  • Sterile injectable forms of the compositions of this invention may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3-butanediol.
  • a non-toxic parenterally-acceptable diluent or solvent for example as a solution in 1,3-butanediol.
  • acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil may be employed including synthetic mono- or di-glycerides.
  • Fatty acids such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
  • These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents that are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions.
  • Other commonly used surfactants such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.
  • compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions.
  • carriers commonly used include lactose and corn starch.
  • Lubricating agents such as magnesium stearate, are also typically added.
  • useful diluents include lactose and dried cornstarch.
  • aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added.
  • compositions of this invention may be administered in the form of suppositories for rectal administration.
  • suppositories for rectal administration.
  • suppositories can be prepared by mixing the agent with a suitable non-irritating excipient that is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug.
  • suitable non-irritating excipient include cocoa butter, beeswax and polyethylene glycols.
  • compositions of this invention may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.
  • Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches may also be used.
  • the pharmaceutically acceptable compositions may be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers.
  • Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water.
  • the pharmaceutically acceptable compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers.
  • Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
  • the pharmaceutically acceptable compositions may be formulated as micronized suspensions in isotonic, pH adjusted sterile saline, or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with or without a preservative such as benzylalkonium chloride.
  • the pharmaceutically acceptable compositions may be formulated in an ointment such as petrolatum.
  • compositions of this invention may also be administered by nasal aerosol or inhalation.
  • Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
  • compositions of this invention are formulated for oral administration.
  • compositions should be formulated so that a dosage of between 0.01-100 mg/kg body weight/day of the inhibitor can be administered to a patient receiving these compositions.
  • a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated.
  • the amount of a compound of the present invention in the composition will also depend upon the particular compound in the composition.
  • additional therapeutic agents which are normally administered to treat or prevent that condition, may also be present in the compositions of this invention.
  • additional therapeutic agents that are normally administered to treat or prevent a particular disease, or condition are known as “appropriate for the disease, or condition, being treated”.
  • chemotherapeutic agents or other anti-proliferative agents may be combined with the compounds of this invention to treat proliferative diseases and cancer.
  • known chemotherapeutic agents include, but are not limited to, GleevecTM, adriamycin, dexamethasone, vincristine, cyclophosphamide, fluorouracil, topotecan, taxol, interferons, and platinum derivatives.
  • agents the inhibitors of this invention may also be combined with include, without limitation: treatments for Alzheimer's Disease such as Aricept® and Excelono; treatments for Parkinson's Disease such as L-DOPA/carbidopa, entacapone, ropinrole, pramipexole, bromocriptine, pergolide, trihexephendyl, and amantadine; agents for treating Multiple Sclerosis (MS) such as beta interferon (e.g., Avonex® and Rebifo), Copaxone®, and mitoxantrone; treatments for asthma such as albuterol and Singulair agents for treating schizophrenia such as zyprexa, risperdal, seroquel, and haloperidol; anti-inflammatory agents such as corticosteroids, TNF blockers, IL-1 RA, azathioprine, cyclophosphamide, and sulfasalazine; immunomodulatory and immunosuppressive agents such as cyclosporin, tac, tac
  • chemotherapeutic agents or other anti-proliferative agents that may be combined with the compounds of the present invention to treat proliferative diseases and cancer include, but are not limited to,
  • other therapies or anticancer agents that may be used in combination with the inventive anticancer agents of the present invention include surgery, radiotherapy (in but a few examples, gamma-radiation, neutron beam radiotherapy, electron beam radiotherapy, proton therapy, brachytherapy, and systemic radioactive isotopes, to name a few), endocrine therapy, biologic response modifiers (interferons, interleukins, and tumor necrosis factor (TNF) to name a few), hyperthermia and cryotherapy, agents to attenuate any adverse effects (e.g., antiemetics), and other approved chemotherapeutic drugs, including, but not limited to, alkylating drugs (mechlorethamine, chlorambucil, Cyclophosphamide, Melphalan, Ifosfamide),
  • alkylating drugs
  • the amount of additional therapeutic agent present in the compositions of this invention will be no more than the amount that would normally be administered in a composition comprising that therapeutic agent as the only active agent.
  • the amount of additional therapeutic agent in the presently disclosed compositions will range from about 50% to 100% of the amount normally present in a composition comprising that agent as the only therapeutically active agent.
  • the invention relates to a method of inhibiting Aurora-1, Aurora-2, Aurora-3, and/or FLT-3 kinase activity in a biological sample comprising the step of contacting said biological sample with a compound of formula V, or a composition comprising said compound.
  • biological sample includes, without limitation, cell cultures or extracts thereof; biopsied material obtained from a mammal or extracts thereof; and blood, saliva, urine, feces, semen, tears, or other body fluids or extracts thereof.
  • Inhibition of Aurora-1, Aurora-2, Aurora-3, and/or FLT-3 kinase activity in a biological sample is useful for a variety of purposes that are known to one of skill in the art. Examples of such purposes include, but are not limited to, blood transfusion, organ-transplantation, biological specimen storage, and biological assays.
  • the invention relates to a method of inhibiting Aurora-1 kinase activity in a patient comprising the step of administering to sail patient a compound of formula V, or a composition comprising said compound.
  • the invention relates to a method of inhibiting Aurora-2 kinase activity in a patient comprising the step of administering to said patient a compound of formula V, or a composition comprising said compound.
  • the invention relates to a method of inhibiting Aurora-3 kinase activity in a patient comprising the step of administering to said patient a compound of formula V, or a composition comprising said compound.
  • the invention relates to a method of inhibiting FLT-3 kinase activity in a patient comprising the step of administering to said patient a compound of formula V, or a composition comprising said compound.
  • the invention relates to a method of inhibiting Aurora-1, Aurora-2, Aurora-3, and FLT-3 kinase activity in a patient comprising the step of administering to said patient a compound of formula V, or a composition comprising said compound.
  • the invention provides a method for treating or lessening the severity of an Aurora-mediated disease or condition in a patient comprising the step of administering to said patient a compound of formula V, or composition comprising said compound.
  • Aurora-mediated disease means any disease or other deleterious condition or disease in which an Aurora family protein kinase is known to play a role.
  • diseases or conditions include, without limitation, melanoma, leukemia, or a cancer selected from colon, breast, gastric, ovarian, cervical, melanoma, renal, prostate, lymphoma, neuroblastoma, pancreatic, leukemia and bladder.
  • the present invention relates to a method of treating cancer in a patient, comprising the step of administering to said patient a compound of formula V or composition thereof.
  • the present invention relates to a method of treating melanoma, lymphoma, neuroblastoma, leukemia, or a cancer selected from colon, breast, lung, kidney, ovary, pancreatic, renal, CNS, cervical, prostate, or cancer of the gastric tract in a patient, comprising the step of administering to said patient a compound of formula V or composition thereof.
  • the present invention relates to a method of treating acute-myelogenous leukemia (ANL), acute lymphocytic leukemia (ALL), mastocytosis or gastrointestinal stromal tumor (GIST) in a patient, comprising the step of administering to said patient a compound of formula V or composition thereof.
  • ANL acute-myelogenous leukemia
  • ALL acute lymphocytic leukemia
  • GIST gastrointestinal stromal tumor
  • Another aspect of the present invention relates to the disruption of mitosis of cancer cells in a patient, comprising the step of administering to said patient a compound of formula V or composition thereof.
  • the present invention relates to a method of treating or lessening the severity of a cancer in a patient comprising the step of disrupting mitosis of the cancer cells by inhibiting Aurora-1, Aurora-2, and/or Aurora-3 with a compound of formula V or composition thereof.
  • the methods of this invention that utilize compositions that do not contain an additional therapeutic agent comprise the additional step of separately administering to said patient an additional therapeutic agent.
  • additional therapeutic agents When these additional therapeutic agents are administered separately they may be administered to the patient prior to, sequentially with or following administration of the compositions of this invention.
  • 4,6-Dichloropyrimidine-2-methylsulfone (A) Prepared by methods substantially similar to those set forth in Koppell et al, JOC, 26, 1961, 792, in the following manner. To a stirred solution of 4,6-dichloro-2-(methylthio)pyrimidine (50 g, 0.26 mol) in dichloromethane (1 L) at 0° C. was added meta-chloroperoxybenzoic acid (143.6 g, 0.64 mol) over a period of 20 minutes. The solution was allowed to warm to room temperature and was stirred for 4 hours.
  • N- ⁇ 4-[4-(5-Methyl-2H-pyrazol-3-ylmethyl)-6-(4-propyl-piperazin-1-yl)-pyrimidin-2-ylsulfanyl]-phenyl ⁇ -propionamide (V-5): Ethane carboxylic acid ⁇ 4-[4-chloro-6-(5-methyl-2H-pyrazol-3-ylamino)-pyrimidin-2-ylsulphanyl]-phenyl ⁇ amide (119 mg, 0.306 mmol, prepared by methods analogous to those set forth in Examples 1, 2, and 3) in n-BuOH (5 mL) was treated with N-propylpiperazine dihydrobromide (887 mg, 3.06 mmol) followed by diisopropylethylamine (1.066 mL, 6.12 mmol).
  • N-[4-(4,6-Dichloro-pyrimidin-2-yloxy)-phenyl]-acetamide A solution of 4-acetamidophenol (666 mg, 4.40 mmol) in anhydrous THF (40 ml), stirring at ambient temperature, was treated with a 60% dispersion of sodium hydride in mineral oil (176 mg, 4.40 mmol). The reaction mixture was then allowed to stir for 30 minutes at ambient temperature before 4,6-dichloro-2-methanesulfonyl-pyrimidine (1.0 g, 4.40 mmol) was added. The reaction was then allowed to stir for a further 3 hours before the reaction was diluted with saturated aqueous NH 4 Cl and EtOAc.
  • the activity of the compounds of this invention as kinase inhibitors may be assayed in vitro, in vivo or in a cell line.
  • In vitro assays include assays that determine inhibition of either the kinase activity or ATPase activity of activated Aurora and/or FLT-3 enzyme.
  • Alternate in vitro assays quantitate the ability of the inhibitor to bind to Aurora and/or FLT-3 and may be measured either by radiolabelling the inhibitor prior to binding, isolating the inhibitor/Aurora and/or inhibitor/FLT-3 complex and determining the amount of radiolabel bound, or by running a competition experiment where new compounds are incubated with Aurora and/or FLT-3 bound to known radioligands.
  • One may use any type or isoform of Aurora, depending upon which Aurora type or isoform is to be inhibited. The details of the conditions used for the enzymatic assays are set forth in the Examples hereinbelow.
  • the resulting mixture was incubated at 30° C. for 10 minutes.
  • the reaction was initiated by the addition of 10 ⁇ L of Aurora stock solution to give a final concentration of 70 nM in the assay.
  • the rates of reaction were obtained by monitoring absorbance at 340 nm over a 5 minute read time at 30° C. using a BioRad Ultramark plate reader (Hercules, Calif.).
  • the K i values were determined from the rate data as a function of inhibitor concentration.
  • Solution 1 contains 100 mM HEPES (pH 7.5), 10 mM MgCl 2 , 25 mM NaCl, 1 mg/ml pE4Y and 180 ⁇ M ATP(containing 0.3 ⁇ Ci of [ ⁇ - 33 P]ATP for each reaction).
  • Solution 2 contains 100 mM HEPES (pH 7.5), 10 mM MgCl 2 , 25 mM NaCl, 2 mM DTT, 0.02% BSA and 3 nM FLT-3.
  • the assay was run on a 96 well plate by mixing 50 ⁇ l each of Solution 1 and 2.5 ml of the compounds of the present invention. The reaction was initiated with Solution 2.
  • reaction was stopped with 50 ⁇ l of 20% TCA containing 0.4 mM of ATP. All of the reaction volume was then transferred to a filter plate and washed with 5% TCA by a Harvester 9600 from TOMTEC (Hamden, Conn.). The amount of 33 P incorporation into pE4y was analyzed by a Packard Top Count Microplate Scintillation Counter (Meriden, Conn.). The data was fitted using Prism software to get an IC 50 or K i .
  • Compounds were also assayed for the inhibition of cell proliferation.
  • a complete media was prepared by adding 10% fetal bovine serum, L-glutamine and penicillin/streptomycin solution to RPMI 1640 medium (Sigma).
  • Colon cancer cells (COLO-205 cell line) were added to a 96 well plate at a seeding density of 1.25 ⁇ 104 cells/well/150 ⁇ L.
  • a solution of test compound was prepared in complete media by serial dilution, the test compound solution (50 ⁇ L) was added to each per well.
  • Each plate contained a series of wells in which only complete media (200 ⁇ L) was added to form a control group in order to measure maximal proliferation. A vehicle control group was also added to each plate. The plates were incubated at 37° C. for 2 days. A stock solution of 3 H-thymidine (1 mCi/mL, Amersham Phamacia UK) was diluted to 20 ⁇ Ci/mL in RPMI medium then 25 ⁇ L of this solution was added to each well. The plates were further incubated at 37° C. for 3 hours then harvested and analyzed for 3 H-thymidine uptake using a liquid scintillation counter.
  • the 3 H thymidine incorporation assay was chosen as a well characterized method of determining cell proliferation.
  • Cells from normal tissues and a wide variety of different tumour types were chosen for analysis. Many of the tumour cells were selected because they express high levels of Aurora proteins (e.g. MCF-7, PC3, A375, A549) (See section 5.3.5 and Bischoff et al EMBO J. 1998 17, 3052-3065) and/or are able to form tumours in nude mice or rats (e.g. HCT116, MCF-7 and MDA-MB-231).
  • Aurora proteins e.g. MCF-7, PC3, A375, A549
  • Table 5 below sets forth the cell lines utilized in the above described cell proliferation assay. For each cell line, the inhibition of cell proliferation and 3 H thymidine incorporation (96 hour time-point) was determined. TABLE 5 Cell Lines Origin Cell line Colorectal adenocarcinoma HCT-116 Colorectal adenocarcinoma LS174T Leukemia HL60 Mammary gland adenocarcinoma MDA-MB-231 Mammary gland adenocarcinoma ZR-75-1 Mammary gland adenocarcinoma MCF-7 Prostate adenocarcinoma PC3 Pancreatic MIA-Pa-Ca-2 Melanoma A375 Primary PHA-stimulated human lymphocytes PHA blasts

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Pulmonology (AREA)
  • Diabetes (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Hematology (AREA)
  • Psychiatry (AREA)
  • Rheumatology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Obesity (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Oncology (AREA)
  • Endocrinology (AREA)
  • Pain & Pain Management (AREA)
  • Hospice & Palliative Care (AREA)
  • Transplantation (AREA)
  • Urology & Nephrology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
US10/464,430 2002-06-20 2003-06-18 Processes for preparing substituted pyrimidines Abandoned US20040049032A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/464,430 US20040049032A1 (en) 2002-06-20 2003-06-18 Processes for preparing substituted pyrimidines
US11/500,981 US7557106B2 (en) 2002-06-20 2006-08-09 Substituted pyrimidines useful as protein kinase inhibitors
US12/436,407 US8268829B2 (en) 2002-06-20 2009-05-06 Substituted pyrimidines useful as protein kinase inhibitors
US13/585,861 US8779127B2 (en) 2002-06-20 2012-08-15 Processes for preparing substituted pyrimidines

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US39065802P 2002-06-20 2002-06-20
US41160902P 2002-09-18 2002-09-18
US10/464,430 US20040049032A1 (en) 2002-06-20 2003-06-18 Processes for preparing substituted pyrimidines

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/500,981 Continuation US7557106B2 (en) 2002-06-20 2006-08-09 Substituted pyrimidines useful as protein kinase inhibitors

Publications (1)

Publication Number Publication Date
US20040049032A1 true US20040049032A1 (en) 2004-03-11

Family

ID=30003168

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/464,430 Abandoned US20040049032A1 (en) 2002-06-20 2003-06-18 Processes for preparing substituted pyrimidines
US11/500,981 Expired - Fee Related US7557106B2 (en) 2002-06-20 2006-08-09 Substituted pyrimidines useful as protein kinase inhibitors
US12/436,407 Expired - Fee Related US8268829B2 (en) 2002-06-20 2009-05-06 Substituted pyrimidines useful as protein kinase inhibitors
US13/585,861 Expired - Fee Related US8779127B2 (en) 2002-06-20 2012-08-15 Processes for preparing substituted pyrimidines

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11/500,981 Expired - Fee Related US7557106B2 (en) 2002-06-20 2006-08-09 Substituted pyrimidines useful as protein kinase inhibitors
US12/436,407 Expired - Fee Related US8268829B2 (en) 2002-06-20 2009-05-06 Substituted pyrimidines useful as protein kinase inhibitors
US13/585,861 Expired - Fee Related US8779127B2 (en) 2002-06-20 2012-08-15 Processes for preparing substituted pyrimidines

Country Status (27)

Country Link
US (4) US20040049032A1 (ja)
EP (4) EP1746093B1 (ja)
JP (5) JP4237701B2 (ja)
KR (2) KR101141959B1 (ja)
CN (1) CN100484934C (ja)
AR (1) AR040286A1 (ja)
AT (2) ATE556068T1 (ja)
AU (1) AU2003245568B2 (ja)
BR (1) BR0312443A (ja)
CA (1) CA2489824C (ja)
CO (1) CO5680433A2 (ja)
DE (1) DE60336092D1 (ja)
EA (2) EA012869B1 (ja)
EC (1) ECSP055561A (ja)
ES (1) ES2386781T3 (ja)
HK (3) HK1077057A1 (ja)
HR (1) HRP20050064A2 (ja)
IL (1) IL165849A0 (ja)
IS (2) IS7606A (ja)
MX (1) MXPA05000068A (ja)
MY (1) MY141867A (ja)
NO (2) NO331925B1 (ja)
NZ (4) NZ537720A (ja)
PL (1) PL374953A1 (ja)
SG (1) SG170614A1 (ja)
TW (2) TWI297684B (ja)
WO (1) WO2004000833A1 (ja)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050153966A1 (en) * 2003-12-19 2005-07-14 Syrrx, Inc. Kinase inhibitors
US20050250829A1 (en) * 2004-04-23 2005-11-10 Takeda San Diego, Inc. Kinase inhibitors
US20060041137A1 (en) * 2004-08-18 2006-02-23 Takeda San Diego, Inc. Kinase inhibitors
US20060084650A1 (en) * 2004-10-15 2006-04-20 Qing Dong Kinase inhibitors
US20060281772A1 (en) * 2005-06-10 2006-12-14 Nand Baindur Alkylquinoline and alkylquinazoline kinase modulators
US20060281788A1 (en) * 2005-06-10 2006-12-14 Baumann Christian A Synergistic modulation of flt3 kinase using a flt3 inhibitor and a farnesyl transferase inhibitor
US20060281768A1 (en) * 2005-06-10 2006-12-14 Gaul Michael D Thienopyrimidine and thienopyridine kinase modulators
US20070021436A1 (en) * 2005-06-10 2007-01-25 Nand Baindur Intermediates useful in the synthesis of alkylquinoline and alkylquinazoline kinase modulators, and related methods of synthesis
US20070117816A1 (en) * 2005-10-07 2007-05-24 Brown Jason W Kinase inhibitors
US20070142368A1 (en) * 2005-09-30 2007-06-21 Xiao-Yi Xiao Substituted pyrazole compounds
US20070249680A1 (en) * 2006-04-20 2007-10-25 Illig Carl R Inhibitors of c-fms kinase
US20070270420A1 (en) * 2002-02-06 2007-11-22 Harbeson Scott L Heteroaryl compounds useful as inhibitors of gsk-3
US20080051402A1 (en) * 2006-04-20 2008-02-28 Illig Carl R Method of inhibiting c-kit kinase
EP1968950A1 (en) * 2005-12-19 2008-09-17 Genentech, Inc. Pyrimidine kinase inhibitors
US20090029992A1 (en) * 2007-06-11 2009-01-29 Agoston Gregory E Substituted pyrazole compounds
US20090062302A1 (en) * 2006-01-24 2009-03-05 Buser-Doepner Carolyn A Jak2 Tyrosine Kinase Inhibition
US20090105296A1 (en) * 2007-10-17 2009-04-23 Illig Carl R Inhibitors of c-fms kinase
US20090156557A1 (en) * 2007-04-18 2009-06-18 Takeda San Diego, Inc. Kinase inhibitors
US20090325968A1 (en) * 2003-02-06 2009-12-31 Vertex Pharmaceuticals Incorporated Compositions Useful as Inhibitors of Protein Kinases
US20100022507A1 (en) * 2006-12-19 2010-01-28 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as inhibitors of protein kinases
US20100022502A1 (en) * 2006-11-02 2010-01-28 Vertex Pharmaceuticals Incorporated Aminopyridines and aminopyrimidines useful as inhibitors of protein kinases
US20100081657A1 (en) * 2003-12-04 2010-04-01 Vertex Pharmaceuticals Incorporated Quinoxalines useful as inhibitors of protein kinases
US20100137305A1 (en) * 2007-03-20 2010-06-03 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
US20100185419A1 (en) * 2008-09-05 2010-07-22 Avila Therapeutics, Inc. Algorithm for designing irreversible inhibitors
US20100184980A1 (en) * 2007-07-31 2010-07-22 Juan-Miguel Jimenez Process for Preparing 5-Fluoro-1H-Pyrazolo [3,4-b] Pyridin-3-amine and Derivatives Thereof
US20100215772A1 (en) * 2007-05-02 2010-08-26 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
US7795279B2 (en) 2005-10-18 2010-09-14 Janssen Pharmaceutica Nv Method of inhibiting FLT3 kinase
US20100256170A1 (en) * 2000-09-15 2010-10-07 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
US20100310675A1 (en) * 2005-11-03 2010-12-09 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
US20110020376A1 (en) * 2007-03-09 2011-01-27 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as inhibitors of protein kinases
US20110021559A1 (en) * 2007-03-09 2011-01-27 Vertex Pharmaceuticals Incorporated Aminopyridines useful as inhibitors of protein kinases
US20110020377A1 (en) * 2007-03-09 2011-01-27 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as inhibitors of protein kinases
US20110046104A1 (en) * 2007-05-02 2011-02-24 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
US20110060013A1 (en) * 2007-05-24 2011-03-10 Vertex Pharmaceuticals Incorporated Thiazoles and pyrazoles useful as kinase inhibitors
US20110117073A1 (en) * 2009-09-16 2011-05-19 Avila Therapeutics, Inc. Protein Kinase Conjugates and Inhibitors
US20110195960A1 (en) * 2006-04-20 2011-08-11 Illig Carl R Inhibitors of c-fms kinase
US8153630B2 (en) 2004-11-17 2012-04-10 Miikana Therapeutics, Inc. Kinase inhibitors
US20120095014A1 (en) * 2007-04-13 2012-04-19 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
US8278450B2 (en) 2007-04-18 2012-10-02 Takeda Pharmaceutical Company Limited Kinase inhibitors
US8633210B2 (en) 2000-09-15 2014-01-21 Vertex Pharmaceuticals Incorporated Triazole compounds useful as protein kinase inhibitors
US8691813B2 (en) 2008-11-28 2014-04-08 Janssen Pharmaceuticals, Inc. Indole and benzoxazine derivatives as modulators of metabotropic glutamate receptors
US8691849B2 (en) 2008-09-02 2014-04-08 Janssen Pharmaceuticals, Inc. 3-azabicyclo[3.1.0]hexyl derivatives as modulators of metabotropic glutamate receptors
US8697689B2 (en) 2008-10-16 2014-04-15 Janssen Pharmaceuticals, Inc. Indole and benzomorpholine derivatives as modulators of metabotropic glutamate receptors
US8716480B2 (en) 2009-05-12 2014-05-06 Janssen Pharmaceuticals, Inc. 7-aryl-1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
WO2014071378A1 (en) * 2012-11-05 2014-05-08 Nant Holdings Ip, Llc Substituted indol-5-ol derivatives and their therapeutical applications
US8722894B2 (en) 2007-09-14 2014-05-13 Janssen Pharmaceuticals, Inc. 1,3-disubstituted-4-phenyl-1H-pyridin-2-ones
US8748621B2 (en) 2007-09-14 2014-06-10 Janssen Pharmaceuticals, Inc. 1,3-disubstituted 4-(aryl-X-phenyl)-1H-pyridin-2-ones
WO2014107209A2 (en) 2013-01-07 2014-07-10 Arog Pharmaceuticals, Llc Crenolanib for treating flt3 mutated proliferative disorders
US8785486B2 (en) 2007-11-14 2014-07-22 Janssen Pharmaceuticals, Inc. Imidazo[1,2-A]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US8785444B2 (en) 2007-05-02 2014-07-22 Vertex Pharmaceuticals Incorporated Thiazoles and pyrazoles useful as kinase inhibitors
WO2014145403A1 (en) * 2013-03-15 2014-09-18 Nantbio, Inc. Substituted indol-5-ol derivatives and their therapeutic applications
US8841323B2 (en) 2006-03-15 2014-09-23 Janssen Pharmaceuticals, Inc. 1, 4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of MGLUR2-receptors
US8906939B2 (en) 2007-03-07 2014-12-09 Janssen Pharmaceuticals, Inc. 3-cyano-4-(4-tetrahydropyran-phenyl)-pyridin-2-one derivatives
US8937060B2 (en) 2009-05-12 2015-01-20 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US8946205B2 (en) 2009-05-12 2015-02-03 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US8993591B2 (en) 2010-11-08 2015-03-31 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a] pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
US9012448B2 (en) 2010-11-08 2015-04-21 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
US9023880B2 (en) 2012-09-21 2015-05-05 Arog Pharmaceuticals, Llc Method of inhibiting constitutively active phosphorylated FLT3 kinase
US9029352B2 (en) 2012-08-07 2015-05-12 Janssen Pharmaceutica Nv Process for the preparation of C-FMS kinase inhibitors
US9067891B2 (en) 2007-03-07 2015-06-30 Janssen Pharmaceuticals, Inc. 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of mGluR2-receptors
US9114138B2 (en) 2007-09-14 2015-08-25 Janssen Pharmaceuticals, Inc. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′] bipyridinyl-2′-ones
US9271967B2 (en) 2010-11-08 2016-03-01 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9303046B2 (en) 2012-08-07 2016-04-05 Janssen Pharmaceutica Nv Process for the preparation of heterocyclic ester derivatives
US9708315B2 (en) 2013-09-06 2017-07-18 Janssen Pharmaceutica Nv 1,2,4-triazolo[4,3-a]pyridine compounds and their use as positive allosteric modulators of MGLUR2 receptors
US10106542B2 (en) 2013-06-04 2018-10-23 Janssen Pharmaceutica Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
US10463658B2 (en) 2013-10-25 2019-11-05 Videra Pharmaceuticals, Llc Method of inhibiting FLT3 kinase
US10537573B2 (en) 2014-01-21 2020-01-21 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
WO2020049208A1 (es) 2018-09-09 2020-03-12 Fundacio Privada Institut De Recerca De La Sida - Caixa Aurora cinasa como diana para tratar, prevenir o curar una infección por vih o sida
US11078541B2 (en) 2016-11-02 2021-08-03 Arog Pharmaceuticals, Inc. Crenolanib for treating FLT3 mutated proliferative disorders associated mutations
US11369606B2 (en) 2014-01-21 2022-06-28 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US11542492B2 (en) 2009-12-30 2023-01-03 Celgene Car Llc Ligand-directed covalent modification of protein
US11969420B2 (en) 2020-10-30 2024-04-30 Arog Pharmaceuticals, Inc. Combination therapy of crenolanib and apoptosis pathway agents for the treatment of proliferative disorders

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7473691B2 (en) * 2000-09-15 2009-01-06 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
KR100909665B1 (ko) * 2000-12-21 2009-07-29 버텍스 파마슈티칼스 인코포레이티드 단백질 키나제 억제제로서 유용한 피라졸 화합물 및 이를 포함하는 약제학적 조성물
WO2003078427A1 (en) 2002-03-15 2003-09-25 Vertex Pharmaceuticals, Inc. Azolylaminoazines as inhibitors of protein kinases
MY141867A (en) * 2002-06-20 2010-07-16 Vertex Pharma Substituted pyrimidines useful as protein kinase inhibitors
NZ538426A (en) 2002-08-02 2007-05-31 Vertex Pharma Pyrazole compositions useful as inhibitors of glycogen synthase kinase-3 (GSK-3)
EP1745034A1 (en) 2004-02-11 2007-01-24 Amgen Inc. Vanilloid receptor ligands and their use in treatments
US7456176B2 (en) 2004-04-08 2008-11-25 Targegen, Inc. Benzotriazine inhibitors of kinases
MX2007002208A (es) 2004-08-25 2007-05-08 Targegen Inc Compuestos hetrociclicos y metodos de uso.
US7285569B2 (en) 2004-09-24 2007-10-23 Hoff Hoffmann-La Roche Inc. Tricycles, their manufacture and use as pharmaceutical agents
AR050948A1 (es) 2004-09-24 2006-12-06 Hoffmann La Roche Derivados de ftalazinona; su obtencion y su utilizacion en la fabricacion de medicamentos para el tratamiento del cancer.
ATE519759T1 (de) 2004-12-30 2011-08-15 Exelixis Inc Pyrimidinderivate als kinasemodulatoren und anwendungsverfahren
WO2006108489A1 (en) 2005-04-14 2006-10-19 F. Hoffmann-La Roche Ag Aminopyrazole derivatives, their manufacture and use as pharmaceutical agents
CA2616517A1 (en) * 2005-07-26 2007-02-01 Vertex Pharmaceuticals Incorporated Abl kinase inhibition
AU2006279376B2 (en) * 2005-08-18 2011-04-14 Vertex Pharmaceuticals Incoporated Pyrazine kinase inhibitors
US8604042B2 (en) 2005-11-01 2013-12-10 Targegen, Inc. Bi-aryl meta-pyrimidine inhibitors of kinases
AU2013201630B2 (en) * 2005-11-03 2016-12-01 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
CN101360740A (zh) * 2005-11-16 2009-02-04 沃泰克斯药物股份有限公司 可用作激酶抑制剂的氨基嘧啶
KR101332975B1 (ko) 2006-01-23 2013-11-25 암젠 인크 오로라 키나제 조절제 및 사용 방법
US7560551B2 (en) 2006-01-23 2009-07-14 Amgen Inc. Aurora kinase modulators and method of use
US7868177B2 (en) 2006-02-24 2011-01-11 Amgen Inc. Multi-cyclic compounds and method of use
US7615627B2 (en) 2006-06-21 2009-11-10 Reliance Life Sciences Pvt. Ltd. RNA interference mediated inhibition of aurorakinase B and its combinations as anticancer therapy
EP2043651A2 (en) 2006-07-05 2009-04-08 Exelixis, Inc. Methods of using igf1r and abl kinase modulators
GB0619343D0 (en) * 2006-09-30 2006-11-08 Vernalis R&D Ltd New chemical compounds
WO2008044045A1 (en) 2006-10-12 2008-04-17 Astex Therapeutics Limited Pharmaceutical combinations
US8916552B2 (en) 2006-10-12 2014-12-23 Astex Therapeutics Limited Pharmaceutical combinations
US8236823B2 (en) 2006-10-27 2012-08-07 Amgen Inc. Multi-cyclic compounds and methods of use
US7776857B2 (en) 2007-04-05 2010-08-17 Amgen Inc. Aurora kinase modulators and method of use
CA2706075A1 (en) * 2007-11-20 2009-05-28 University Health Network Cancer diagnostic and therapeutic methods that target plk4/sak
WO2009073224A1 (en) * 2007-12-07 2009-06-11 Ambit Biosciences Corp. Methods of treating certain diseases using pyrimidine derivatives
WO2009086012A1 (en) * 2007-12-20 2009-07-09 Curis, Inc. Aurora inhibitors containing a zinc binding moiety
WO2009117157A1 (en) 2008-03-20 2009-09-24 Amgen Inc. Aurora kinase modulators and method of use
US9126935B2 (en) 2008-08-14 2015-09-08 Amgen Inc. Aurora kinase modulators and methods of use
EP2323622A1 (en) * 2008-09-03 2011-05-25 Vertex Pharmaceuticals Incorporated Co-crystals and pharmaceutical formulations comprising the same
TWI491605B (zh) 2008-11-24 2015-07-11 Boehringer Ingelheim Int 新穎化合物
ES2468391T3 (es) 2008-12-22 2014-06-16 Millennium Pharmaceuticals, Inc. Combinación de inhibidores de cinasas Aurora y anticuerpos anti-CD20
WO2012059932A1 (en) 2010-11-01 2012-05-10 Aurigene Discovery Technologies Limited 2, 4 -diaminopyrimidine derivatives as protein kinase inhibitors
WO2012060847A1 (en) 2010-11-07 2012-05-10 Targegen, Inc. Compositions and methods for treating myelofibrosis
US9382229B2 (en) * 2011-02-15 2016-07-05 The Johns Hopkins University Compounds and methods of use thereof for treating neurodegenerative disorders
CN104024246B (zh) * 2012-03-27 2016-03-02 广东东阳光药业有限公司 作为欧若拉激酶抑制剂的取代嘧啶衍生物
WO2013163190A1 (en) 2012-04-24 2013-10-31 Vertex Pharmaceutical Incorporated Dna-pk inhibitors
WO2013177367A2 (en) 2012-05-23 2013-11-28 The Johns Hopkins University Compounds and methods of use thereof for treating neurodegenerative disorders
AU2013271731A1 (en) * 2012-06-07 2014-12-18 Georgia State University Research Foundation, Inc. SecA inhibitors and methods of making and using thereof
CN103202843B (zh) * 2012-12-31 2015-04-29 刘强 一种嘧啶衍生物在制备预防和/或治疗和/或辅助治疗癌症的药物中的用途
US9440952B2 (en) 2013-03-04 2016-09-13 Merck Sharp & Dohme Corp. Compounds inhibiting leucine-rich repeat kinase enzyme activity
WO2014134774A1 (en) 2013-03-04 2014-09-12 Merck Sharp & Dohme Corp. Compounds inhibiting leucine-rich repeat kinase enzyme activity
WO2014134776A1 (en) 2013-03-04 2014-09-12 Merck Sharp & Dohme Corp. Compounds inhibiting leucine-rich repeat kinase enzyme activity
WO2014134772A1 (en) * 2013-03-04 2014-09-12 Merck Sharp & Dohme Corp. Compounds inhibiting leucine-rich repeat kinase enzyme activity
LT2970218T (lt) 2013-03-12 2019-03-12 Vertex Pharmaceuticals Incorporated Dna-pk inhibitoriai
SG11201602962PA (en) 2013-10-17 2016-05-30 Vertex Pharma Co-crystals of (s)-n-methyl-8-(1-((2'-methyl-[4,5'-bipyrimidin]-6-yl)amino)propan-2-yl)quinoline-4-carboxamide and deuterated derivatives thereof as dna-pk inhibitors
US10335494B2 (en) 2013-12-06 2019-07-02 Millennium Pharmaceuticals, Inc. Combination of aurora kinase inhibitors and anti-CD30 antibodies
JP6434530B2 (ja) * 2014-10-30 2018-12-05 富士フイルム株式会社 有機アミン塩及びその製造方法、並びに、アゾ色素の製造方法
EP3283482B1 (en) * 2015-04-17 2022-04-06 Ludwig Institute for Cancer Research Ltd Plk4 inhibitors
EP3324976A4 (en) 2015-07-21 2019-03-27 Millennium Pharmaceuticals, Inc. ADMINISTRATION OF KINASE AURORA INHIBITOR AND CHEMOTHERAPEUTIC AGENTS
AU2017275657B2 (en) 2016-06-02 2021-08-19 Novartis Ag Potassium channel modulators
KR20190062485A (ko) 2016-09-27 2019-06-05 버텍스 파마슈티칼스 인코포레이티드 Dna-손상제 및 dna-pk 저해제의 조합을 사용한 암 치료 방법
RS62899B1 (sr) 2017-01-23 2022-03-31 Cadent Therapeutics Inc Modulatori kalijumovih kanala
CN108250191B (zh) * 2018-03-15 2020-10-20 兰州大学 一种3,5-二取代的2-氨基-吡嗪化合物及其制备工艺与应用
WO2019195658A1 (en) 2018-04-05 2019-10-10 Dana-Farber Cancer Institute, Inc. Sting levels as a biomarker for cancer immunotherapy
CA3116339A1 (en) 2018-10-22 2020-04-30 Cadent Therapeutics, Inc. Crystalline forms of potassium channel modulators
US20220305048A1 (en) 2019-08-26 2022-09-29 Dana-Farber Cancer Institute, Inc. Use of heparin to promote type 1 interferon signaling
WO2023196959A1 (en) 2022-04-07 2023-10-12 Eli Lilly And Company Process for making a kras g12c inhibitor
WO2023196887A1 (en) 2022-04-08 2023-10-12 Eli Lilly And Company Method of treatment including kras g12c inhibitors and aurora a inhibitors
WO2024006424A1 (en) 2022-06-30 2024-01-04 Eli Lilly And Company Kras g12c inhibitor for treating cancer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540698A (en) * 1982-01-20 1985-09-10 Mitsui Toatsu Chemicals, Incorporated 5-Methylthiopyrimidine derivatives, their preparation process and fungicides containing same as active ingredients

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3133081A (en) 1964-05-12 J-aminoindazole derivatives
US3935183A (en) 1970-01-26 1976-01-27 Imperial Chemical Industries Limited Indazole-azo phenyl compounds
BE754242A (fr) 1970-07-15 1971-02-01 Geigy Ag J R Diamino-s-triazines et dinitro-s-triazines
US3939183A (en) * 1973-10-05 1976-02-17 Chevron Research Company Purification of maleic anhydride
US3998951A (en) 1974-03-13 1976-12-21 Fmc Corporation Substituted 2-arylquinazolines as fungicides
GB1446126A (en) 1974-05-16 1976-08-18 Res Inst For Medicine Chemistr Photolytic preparation of diol mononitrates
DE2458965C3 (de) 1974-12-13 1979-10-11 Bayer Ag, 5090 Leverkusen 3-Amino-indazol-N-carbonsäure-Derivate, Verfahren zu ihrer Herstellung sowie sie enthaltende Arzneimittel
MA18829A1 (fr) 1979-05-18 1980-12-31 Ciba Geigy Ag Derives de la pyrimidine,procedes pour leur preparation,compositions pharmaceutiques contenant ces composes et leur utilisation therapeutique
DE2922436A1 (de) 1979-06-01 1980-12-18 Sueddeutsche Kalkstickstoff Verfahren zur gewinnung von harnstoffkoernern mit verbesserten eigenschaften
DOP1981004033A (es) 1980-12-23 1990-12-29 Ciba Geigy Ag Procedimiento para proteger plantas de cultivo de la accion fitotoxica de herbicidas.
SE8102193L (sv) 1981-04-06 1982-10-07 Pharmacia Ab Terapeutiskt aktiv organisk forening och dess anvendning
SE8102194L (sv) 1981-04-06 1982-10-07 Pharmacia Ab Terapeutiskt aktiv organisk forening och farmaceutisk beredning innehallande denna
US4477450A (en) * 1983-03-03 1984-10-16 Riker Laboratories, Inc. Triazolo [4,3-c]pyrimidines substituted by nitrogen-containing heterocyclic rings
EP0136976A3 (de) 1983-08-23 1985-05-15 Ciba-Geigy Ag Verwendung von Phenylpyrimidinen als Pflanzenregulatoren
NO157836C (no) 1985-04-19 1988-05-25 Jacobsen As J Anordning ved asymmetrisk belysning.
DE3725638A1 (de) 1987-08-03 1989-02-16 Bayer Ag Neue aryloxy (bzw. thio)aminopyrimidine
US5710158A (en) 1991-05-10 1998-01-20 Rhone-Poulenc Rorer Pharmaceuticals Inc. Aryl and heteroaryl quinazoline compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
US5597920A (en) 1992-04-30 1997-01-28 Neurogen Corporation Gabaa receptor subtypes and methods for screening drug compounds using imidazoquinoxalines and pyrrolopyrimidines to bind to gabaa receptor subtypes
JPH0665237A (ja) 1992-05-07 1994-03-08 Nissan Chem Ind Ltd 置換ピラゾール誘導体および農園芸用殺菌剤
HU212308B (en) * 1992-06-09 1996-05-28 Richter Gedeon Vegyeszet Process for producing novel pregnane steroids and pharmaceutical compositions containing the same
DE69434721T2 (de) 1993-10-01 2006-11-09 Novartis Ag Pharmacologisch wirksame pyrimidinderivate und verfahren zu deren herstellung
ES2219670T3 (es) 1994-11-10 2004-12-01 Millennium Pharmaceuticals, Inc. Utilizacion de compuestos de pirazola para el tratamiento de la glomerulonefritis, cancer, ateroesclerosis o restenosis.
IL117659A (en) 1995-04-13 2000-12-06 Dainippon Pharmaceutical Co Substituted 2-phenyl pyrimidino amino acetamide derivative process for preparing the same and a pharmaceutical composition containing same
US5935966A (en) 1995-09-01 1999-08-10 Signal Pharmaceuticals, Inc. Pyrimidine carboxylates and related compounds and methods for treating inflammatory conditions
WO1997009325A1 (en) 1995-09-01 1997-03-13 Signal Pharmaceuticals, Inc. Pyrimidine carboxylates and related compounds and methods for treating inflammatory conditions
GB9523675D0 (en) 1995-11-20 1996-01-24 Celltech Therapeutics Ltd Chemical compounds
US6716575B2 (en) 1995-12-18 2004-04-06 Sugen, Inc. Diagnosis and treatment of AUR1 and/or AUR2 related disorders
DK0912559T3 (da) 1996-07-13 2003-03-10 Glaxo Group Ltd Kondenserede heterocykliske forbindelser som proteintyrosinkinaseinhibitorer
JPH10130150A (ja) 1996-09-05 1998-05-19 Dainippon Pharmaceut Co Ltd 酢酸アミド誘導体からなる医薬
GB9619284D0 (en) 1996-09-16 1996-10-30 Celltech Therapeutics Ltd Chemical compounds
WO1998014450A1 (en) 1996-10-02 1998-04-09 Novartis Ag Pyrimidine derivatives and processes for the preparation thereof
EP0932598A1 (en) 1996-10-11 1999-08-04 Warner-Lambert Company ASPARTATE ESTER INHIBITORS OF INTERLEUKIN-1$g(b) CONVERTING ENZYME
CA2306692C (en) 1997-10-10 2010-09-21 Cytovia, Inc. Dipeptide apoptosis inhibitors and the use thereof
US6267952B1 (en) 1998-01-09 2001-07-31 Geltex Pharmaceuticals, Inc. Lipase inhibiting polymers
JP2000026421A (ja) 1998-01-29 2000-01-25 Kumiai Chem Ind Co Ltd ジアリ―ルスルフィド誘導体及び有害生物防除剤
EA200000840A1 (ru) 1998-02-17 2001-02-26 Туларик, Инк. Антивирусные производные пиримидина
CA2323439A1 (en) 1998-03-16 1999-09-23 Cytovia, Inc. Dipeptide caspase inhibitors and the use thereof
BR9911612A (pt) 1998-06-02 2001-02-06 Osi Pharm Inc Composições de pirrolo[2,3d]pirimidina e seus usos
JP4533534B2 (ja) 1998-06-19 2010-09-01 ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド グリコーゲンシンターゼキナーゼ3のインヒビター
WO2000011003A1 (en) 1998-08-21 2000-03-02 Du Pont Pharmaceuticals Company ISOXAZOLO[4,5-d]PYRIMIDINES AS CRF ANTAGONISTS
US6184226B1 (en) 1998-08-28 2001-02-06 Scios Inc. Quinazoline derivatives as inhibitors of P-38 α
CN1161352C (zh) 1998-10-08 2004-08-11 阿斯特拉曾尼卡有限公司 喹唑啉衍生物
GB9828640D0 (en) 1998-12-23 1999-02-17 Smithkline Beecham Plc Novel method and compounds
GB9828511D0 (en) 1998-12-24 1999-02-17 Zeneca Ltd Chemical compounds
GB9914258D0 (en) 1999-06-18 1999-08-18 Celltech Therapeutics Ltd Chemical compounds
AU2735201A (en) * 1999-12-28 2001-07-09 Pharmacopeia, Inc. Pyrimidine and triazine kinase inhibitors
US20020065270A1 (en) 1999-12-28 2002-05-30 Moriarty Kevin Joseph N-heterocyclic inhibitors of TNF-alpha expression
NZ514583A (en) 2000-02-05 2004-05-28 Vertex Pharma Pyrazole compositions useful as inhibitors of ERK
HUP0301117A3 (en) 2000-02-17 2004-01-28 Amgen Inc Thousand Oaks Imidazole derivatives kinase inhibitors, their use, process for their preparation and pharmaceutical compositions containing them
GB0004887D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
KR100711042B1 (ko) * 2000-04-28 2007-04-24 다나베 세이야꾸 가부시키가이샤 환상 화합물
US6919338B2 (en) 2000-06-28 2005-07-19 Astrazeneca Ab Substituted quinazoline derivatives and their use as inhibitors of aurora-2 kinase
US7473691B2 (en) 2000-09-15 2009-01-06 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
US6613776B2 (en) 2000-09-15 2003-09-02 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
JP4105948B2 (ja) * 2000-09-15 2008-06-25 バーテックス ファーマシューティカルズ インコーポレイテッド プロテインキナーゼインヒビターとして有用なピラゾール化合物
US6610677B2 (en) 2000-09-15 2003-08-26 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
HUP0302991A3 (en) 2000-09-15 2009-10-28 Vertex Pharma Isoxazoles and their use as inhibitors of erk and pharmaceutical compositions containing the compounds
US6660731B2 (en) 2000-09-15 2003-12-09 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
US6641579B1 (en) 2000-09-29 2003-11-04 Spectrasonics Imaging, Inc. Apparatus and method for ablating cardiac tissue
DE10061863A1 (de) 2000-12-12 2002-06-13 Basf Ag Verfahren zur Herstellung von Triethylendiamin (TEDA)
US6716851B2 (en) 2000-12-12 2004-04-06 Cytovia, Inc. Substituted 2-aryl-4-arylaminopyrimidines and analogs as activators or caspases and inducers of apoptosis and the use thereof
KR100909665B1 (ko) * 2000-12-21 2009-07-29 버텍스 파마슈티칼스 인코포레이티드 단백질 키나제 억제제로서 유용한 피라졸 화합물 및 이를 포함하는 약제학적 조성물
MY130778A (en) 2001-02-09 2007-07-31 Vertex Pharma Heterocyclic inhibitiors of erk2 and uses thereof
JP4160401B2 (ja) 2001-03-29 2008-10-01 バーテックス ファーマシューティカルズ インコーポレイテッド C−junn末端キナーゼ(jnk)および他のタンパク質キナーゼのインヒビター
EP1389206B1 (en) 2001-04-13 2006-09-13 Vertex Pharmaceuticals Incorporated Inhibitors of c-jun n-terminal kinases (jnk) and other protein kinases
EP1383771A1 (en) 2001-04-20 2004-01-28 Vertex Pharmaceuticals Incorporated 9-deazaguanine derivatives as inhibitors of gsk-3
CA2446864C (en) 2001-05-16 2011-02-15 Vertex Pharmaceuticals Incorporated Inhibitors of src and other protein kinases
ATE432929T1 (de) 2001-06-15 2009-06-15 Vertex Pharma 5-(2-aminopyrimidin-4-yl)benzisoxazole als proteinkinasehemmer
ES2271283T3 (es) 2001-07-03 2007-04-16 Vertex Pharmaceuticals Incorporated Isoxazolil-pirimidinas como inhibidores de las proteinas quinasas src y lck.
US6569499B2 (en) 2001-10-02 2003-05-27 Xerox Corporation Apparatus and method for coating photoreceptor substrates
EP2198867A1 (en) 2001-12-07 2010-06-23 Vertex Pharmaceuticals, Inc. Pyrimidine-based compounds useful as GSK-3 inhibitors
WO2003077921A1 (en) 2002-03-15 2003-09-25 Vertex Pharmaceuticals, Inc. Azinylaminoazoles as inhibitors of protein kinases
AU2003225800A1 (en) 2002-03-15 2003-09-29 Hayley Binch Azolylaminoazine as inhibitors of protein kinases
WO2003078427A1 (en) 2002-03-15 2003-09-25 Vertex Pharmaceuticals, Inc. Azolylaminoazines as inhibitors of protein kinases
WO2003078423A1 (en) 2002-03-15 2003-09-25 Vertex Pharmaceuticals, Inc. Compositions useful as inhibitors of protein kinases
US20030207873A1 (en) 2002-04-10 2003-11-06 Edmund Harrington Inhibitors of Src and other protein kinases
US7304061B2 (en) 2002-04-26 2007-12-04 Vertex Pharmaceuticals Incorporated Heterocyclic inhibitors of ERK2 and uses thereof
MY141867A (en) * 2002-06-20 2010-07-16 Vertex Pharma Substituted pyrimidines useful as protein kinase inhibitors
EP1554269A1 (en) 2002-07-09 2005-07-20 Vertex Pharmaceuticals Incorporated Imidazoles, oxazoles and thiazoles with protein kinase inhibiting activities
NZ538426A (en) 2002-08-02 2007-05-31 Vertex Pharma Pyrazole compositions useful as inhibitors of glycogen synthase kinase-3 (GSK-3)
ES2535854T3 (es) 2005-09-30 2015-05-18 Miikana Therapeutics, Inc. Compuestos de pirazol sustituidos
JP2010513567A (ja) 2006-12-19 2010-04-30 バーテックス ファーマシューティカルズ インコーポレイテッド プロテインキナーゼの阻害剤として有用なアミノピリミジン

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540698A (en) * 1982-01-20 1985-09-10 Mitsui Toatsu Chemicals, Incorporated 5-Methylthiopyrimidine derivatives, their preparation process and fungicides containing same as active ingredients

Cited By (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100256170A1 (en) * 2000-09-15 2010-10-07 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
US8524720B2 (en) 2000-09-15 2013-09-03 Vertex Pharmaceuticals Incorporated Substituted N-(pyrazol-5-yl)-pyrrolo[3,2-D]pyrimidin-4-amine useful as protein kinase inhibitors
US8633210B2 (en) 2000-09-15 2014-01-21 Vertex Pharmaceuticals Incorporated Triazole compounds useful as protein kinase inhibitors
US20070270420A1 (en) * 2002-02-06 2007-11-22 Harbeson Scott L Heteroaryl compounds useful as inhibitors of gsk-3
US8653088B2 (en) 2003-02-06 2014-02-18 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of protein kinases
US20090325968A1 (en) * 2003-02-06 2009-12-31 Vertex Pharmaceuticals Incorporated Compositions Useful as Inhibitors of Protein Kinases
US20100081657A1 (en) * 2003-12-04 2010-04-01 Vertex Pharmaceuticals Incorporated Quinoxalines useful as inhibitors of protein kinases
US7572914B2 (en) 2003-12-19 2009-08-11 Takeda Pharmaceutical Company Limited Kinase inhibitors
US20050153966A1 (en) * 2003-12-19 2005-07-14 Syrrx, Inc. Kinase inhibitors
US20050250829A1 (en) * 2004-04-23 2005-11-10 Takeda San Diego, Inc. Kinase inhibitors
US7550598B2 (en) 2004-08-18 2009-06-23 Takeda Pharmaceutical Company Limited Kinase inhibitors
US20060041137A1 (en) * 2004-08-18 2006-02-23 Takeda San Diego, Inc. Kinase inhibitors
US7713973B2 (en) 2004-10-15 2010-05-11 Takeda Pharmaceutical Company Limited Kinase inhibitors
US20060084650A1 (en) * 2004-10-15 2006-04-20 Qing Dong Kinase inhibitors
US8288536B2 (en) 2004-10-15 2012-10-16 Takeda Pharmaceutical Company Limited Kinase inhibitors
US8153630B2 (en) 2004-11-17 2012-04-10 Miikana Therapeutics, Inc. Kinase inhibitors
US8557847B2 (en) 2005-06-10 2013-10-15 Janssen Pharmaceutica, N.V. Synergistic modulation of FLT3 kinase using a FLT3 inhibitor and a farnesyl transferase inhibitor
US20070021436A1 (en) * 2005-06-10 2007-01-25 Nand Baindur Intermediates useful in the synthesis of alkylquinoline and alkylquinazoline kinase modulators, and related methods of synthesis
US20060281772A1 (en) * 2005-06-10 2006-12-14 Nand Baindur Alkylquinoline and alkylquinazoline kinase modulators
US20060281788A1 (en) * 2005-06-10 2006-12-14 Baumann Christian A Synergistic modulation of flt3 kinase using a flt3 inhibitor and a farnesyl transferase inhibitor
US7825244B2 (en) 2005-06-10 2010-11-02 Janssen Pharmaceutica Nv Intermediates useful in the synthesis of alkylquinoline and alkylquinazoline kinase modulators, and related methods of synthesis
US20090197913A1 (en) * 2005-06-10 2009-08-06 Christian Andrew Baumann Synergistic modulation of flt3 kinase using a flt3 inhibitor and a farnesyl transferase inhibitor
US20060281768A1 (en) * 2005-06-10 2006-12-14 Gaul Michael D Thienopyrimidine and thienopyridine kinase modulators
US8071768B2 (en) 2005-06-10 2011-12-06 Janssen Pharmaceutica, N.V. Alkylquinoline and alkylquinazoline kinase modulators
US7563787B2 (en) 2005-09-30 2009-07-21 Miikana Therapeutics, Inc. Substituted pyrazole compounds
US8114870B2 (en) 2005-09-30 2012-02-14 Miikana Therapeutics, Inc. Method of treating disease states using substituted pyrazole compounds
US20090264422A1 (en) * 2005-09-30 2009-10-22 Xiao-Yi Xiao Method of treating disease states using substituted pyrazole compounds
US20070142368A1 (en) * 2005-09-30 2007-06-21 Xiao-Yi Xiao Substituted pyrazole compounds
US20070117816A1 (en) * 2005-10-07 2007-05-24 Brown Jason W Kinase inhibitors
US8119655B2 (en) 2005-10-07 2012-02-21 Takeda Pharmaceutical Company Limited Kinase inhibitors
US7795279B2 (en) 2005-10-18 2010-09-14 Janssen Pharmaceutica Nv Method of inhibiting FLT3 kinase
US8637511B2 (en) 2005-11-03 2014-01-28 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
US8557833B2 (en) 2005-11-03 2013-10-15 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
US20100310675A1 (en) * 2005-11-03 2010-12-09 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
US20110020469A1 (en) * 2005-11-03 2011-01-27 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
US20080318989A1 (en) * 2005-12-19 2008-12-25 Burdick Daniel J Pyrimidine Kinase Inhibitors
EP1968950A1 (en) * 2005-12-19 2008-09-17 Genentech, Inc. Pyrimidine kinase inhibitors
EP1968950A4 (en) * 2005-12-19 2010-04-28 Genentech Inc PYRIMIDINKINASEINHIBITOREN
US20100324063A1 (en) * 2006-01-24 2010-12-23 Buser-Doepner Carolyn A Jak2 tyrosine kinase inhibition
US20090062302A1 (en) * 2006-01-24 2009-03-05 Buser-Doepner Carolyn A Jak2 Tyrosine Kinase Inhibition
US9266834B2 (en) 2006-03-15 2016-02-23 Janssen Pharmaceuticals, Inc. 1, 4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of MGLUR2-receptors
US8841323B2 (en) 2006-03-15 2014-09-23 Janssen Pharmaceuticals, Inc. 1, 4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of MGLUR2-receptors
US9296726B2 (en) 2006-04-20 2016-03-29 Janssen Pharmaceutica Nv Inhibitors of c-fms kinase
US9403804B2 (en) 2006-04-20 2016-08-02 Janssen Pharmaceutica Nv Inhibitors of c-fms kinase
US8481564B2 (en) 2006-04-20 2013-07-09 Janssen Pharmaceutica, N.V. Inhibitors of c-fms kinase
US8759347B2 (en) 2006-04-20 2014-06-24 Janssen Pharmaceutica Nv Inhibitors of C-FMS kinase
US20110195960A1 (en) * 2006-04-20 2011-08-11 Illig Carl R Inhibitors of c-fms kinase
US8722718B2 (en) 2006-04-20 2014-05-13 Janssen Pharmaceutica Nv Inhibitors of C-FMS kinase
US9394289B2 (en) 2006-04-20 2016-07-19 Janssen Pharmaceutica Nv Inhibitors of c-fms kinase
US8815867B2 (en) 2006-04-20 2014-08-26 Janssen Pharmaceutica Nv Inhibitors of c-fms kinase
US8697716B2 (en) 2006-04-20 2014-04-15 Janssen Pharmaceutica Nv Method of inhibiting C-KIT kinase
US20070249680A1 (en) * 2006-04-20 2007-10-25 Illig Carl R Inhibitors of c-fms kinase
US9526731B2 (en) 2006-04-20 2016-12-27 Janssen Pharmaceutica Nv Method of inhibiting C-KIT kinase
US20080051402A1 (en) * 2006-04-20 2008-02-28 Illig Carl R Method of inhibiting c-kit kinase
US8859602B2 (en) 2006-04-20 2014-10-14 Janssen Pharmaceutica Nv Inhibitors of c-fms kinase
US8895584B2 (en) 2006-04-20 2014-11-25 Janssen Pharmaceutica Nv Inhibitors of c-fms kinase
US8933091B2 (en) 2006-04-20 2015-01-13 Janssen Pharmaceutica Nv Method of inhibiting C-KIT kinase
US9266866B2 (en) 2006-04-20 2016-02-23 Janssen Pharmaceutica Nv Inhibitors of C-FMS kinase
US20100022502A1 (en) * 2006-11-02 2010-01-28 Vertex Pharmaceuticals Incorporated Aminopyridines and aminopyrimidines useful as inhibitors of protein kinases
US8372850B2 (en) 2006-11-02 2013-02-12 Vertex Pharmaceuticals Incorporated Aminopyridines and aminopyrimidines useful as inhibitors of protein kinases
US8426425B2 (en) 2006-12-19 2013-04-23 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as inhibitors of protein kinases
US20100022507A1 (en) * 2006-12-19 2010-01-28 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as inhibitors of protein kinases
US8906939B2 (en) 2007-03-07 2014-12-09 Janssen Pharmaceuticals, Inc. 3-cyano-4-(4-tetrahydropyran-phenyl)-pyridin-2-one derivatives
US9067891B2 (en) 2007-03-07 2015-06-30 Janssen Pharmaceuticals, Inc. 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of mGluR2-receptors
US20110020377A1 (en) * 2007-03-09 2011-01-27 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as inhibitors of protein kinases
US8518953B2 (en) 2007-03-09 2013-08-27 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as inhibitors of protein kinases
US8410133B2 (en) 2007-03-09 2013-04-02 Vertex Pharmaceuticals Incorporated Aminopyridines useful as inhibitors of protein kinases
US20110020376A1 (en) * 2007-03-09 2011-01-27 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as inhibitors of protein kinases
US20110021559A1 (en) * 2007-03-09 2011-01-27 Vertex Pharmaceuticals Incorporated Aminopyridines useful as inhibitors of protein kinases
US8664219B2 (en) 2007-03-09 2014-03-04 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as inhibitors of protein kinases
US8735593B2 (en) 2007-03-09 2014-05-27 Vertex Pharmaceuticals Incorporated Aminopyridines useful as inhibitors of protein kinases
US20100137305A1 (en) * 2007-03-20 2010-06-03 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
US8455507B2 (en) * 2007-04-13 2013-06-04 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
US20120095014A1 (en) * 2007-04-13 2012-04-19 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
US20090156557A1 (en) * 2007-04-18 2009-06-18 Takeda San Diego, Inc. Kinase inhibitors
US8278450B2 (en) 2007-04-18 2012-10-02 Takeda Pharmaceutical Company Limited Kinase inhibitors
US20100215772A1 (en) * 2007-05-02 2010-08-26 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
US8383633B2 (en) 2007-05-02 2013-02-26 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
US20110046104A1 (en) * 2007-05-02 2011-02-24 Vertex Pharmaceuticals Incorporated Aminopyrimidines useful as kinase inhibitors
US8785444B2 (en) 2007-05-02 2014-07-22 Vertex Pharmaceuticals Incorporated Thiazoles and pyrazoles useful as kinase inhibitors
US20110060013A1 (en) * 2007-05-24 2011-03-10 Vertex Pharmaceuticals Incorporated Thiazoles and pyrazoles useful as kinase inhibitors
US20090029992A1 (en) * 2007-06-11 2009-01-29 Agoston Gregory E Substituted pyrazole compounds
US20100184980A1 (en) * 2007-07-31 2010-07-22 Juan-Miguel Jimenez Process for Preparing 5-Fluoro-1H-Pyrazolo [3,4-b] Pyridin-3-amine and Derivatives Thereof
US8242272B2 (en) 2007-07-31 2012-08-14 Vertex Pharmaceuticals Inc. Process for preparing 5-fluoro-1H-pyrazolo [3,4-B] pyridin-3-amine and derivatives thereof
US8598361B2 (en) 2007-07-31 2013-12-03 Vertex Pharmaceuticals Incorporated Process for preparing 5-fluoro-1H-pyrazolo [3,4-B] pyridin-3-amine and derivatives therof
US11071729B2 (en) 2007-09-14 2021-07-27 Addex Pharmaceuticals S.A. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′]bipyridinyl-2′-ones
US8748621B2 (en) 2007-09-14 2014-06-10 Janssen Pharmaceuticals, Inc. 1,3-disubstituted 4-(aryl-X-phenyl)-1H-pyridin-2-ones
US8722894B2 (en) 2007-09-14 2014-05-13 Janssen Pharmaceuticals, Inc. 1,3-disubstituted-4-phenyl-1H-pyridin-2-ones
US9132122B2 (en) 2007-09-14 2015-09-15 Janssen Pharmaceuticals, Inc. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′]bipyridinyl-2′-ones
US9114138B2 (en) 2007-09-14 2015-08-25 Janssen Pharmaceuticals, Inc. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′] bipyridinyl-2′-ones
US8497376B2 (en) 2007-10-17 2013-07-30 Janssen Pharmaceutica N.V. Inhibitors of c-fms kinase
US20090105296A1 (en) * 2007-10-17 2009-04-23 Illig Carl R Inhibitors of c-fms kinase
US8785486B2 (en) 2007-11-14 2014-07-22 Janssen Pharmaceuticals, Inc. Imidazo[1,2-A]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US8691849B2 (en) 2008-09-02 2014-04-08 Janssen Pharmaceuticals, Inc. 3-azabicyclo[3.1.0]hexyl derivatives as modulators of metabotropic glutamate receptors
US20100185419A1 (en) * 2008-09-05 2010-07-22 Avila Therapeutics, Inc. Algorithm for designing irreversible inhibitors
US8697689B2 (en) 2008-10-16 2014-04-15 Janssen Pharmaceuticals, Inc. Indole and benzomorpholine derivatives as modulators of metabotropic glutamate receptors
US8691813B2 (en) 2008-11-28 2014-04-08 Janssen Pharmaceuticals, Inc. Indole and benzoxazine derivatives as modulators of metabotropic glutamate receptors
US9226930B2 (en) 2009-05-12 2016-01-05 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-a] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US8716480B2 (en) 2009-05-12 2014-05-06 Janssen Pharmaceuticals, Inc. 7-aryl-1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9085577B2 (en) 2009-05-12 2015-07-21 Janssen Pharmaceuticals, Inc. 7-aryl-1,2,4-triazolo[4,3-A]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US10071095B2 (en) 2009-05-12 2018-09-11 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of neurological and psychiatric disorders
US8937060B2 (en) 2009-05-12 2015-01-20 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US8946205B2 (en) 2009-05-12 2015-02-03 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9737533B2 (en) 2009-05-12 2017-08-22 Janssen Pharmaceuticals. Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US10662195B2 (en) 2009-09-16 2020-05-26 Celgene Car Llc Protein kinase conjugates and inhibitors
US20110117073A1 (en) * 2009-09-16 2011-05-19 Avila Therapeutics, Inc. Protein Kinase Conjugates and Inhibitors
US9556426B2 (en) 2009-09-16 2017-01-31 Celgene Avilomics Research, Inc. Protein kinase conjugates and inhibitors
US11542492B2 (en) 2009-12-30 2023-01-03 Celgene Car Llc Ligand-directed covalent modification of protein
US8993591B2 (en) 2010-11-08 2015-03-31 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a] pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
US9271967B2 (en) 2010-11-08 2016-03-01 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9012448B2 (en) 2010-11-08 2015-04-21 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
US9303046B2 (en) 2012-08-07 2016-04-05 Janssen Pharmaceutica Nv Process for the preparation of heterocyclic ester derivatives
US9029352B2 (en) 2012-08-07 2015-05-12 Janssen Pharmaceutica Nv Process for the preparation of C-FMS kinase inhibitors
US9801869B2 (en) 2012-09-21 2017-10-31 Arog Pharmaceuticals, Inc. Method of inhibiting constitutively active phosphorylated FLT3 kinase
US9023880B2 (en) 2012-09-21 2015-05-05 Arog Pharmaceuticals, Llc Method of inhibiting constitutively active phosphorylated FLT3 kinase
US10780086B2 (en) 2012-09-21 2020-09-22 Arog Pharmaceuticals, Inc. Method of inhibiting constitutively active phosphorylated FLT3 kinase
US11738017B2 (en) 2012-09-21 2023-08-29 Arog Pharmaceuticals, Inc. Method of inhibiting constitutively active phosphorylated FLT3 kinase
WO2014071378A1 (en) * 2012-11-05 2014-05-08 Nant Holdings Ip, Llc Substituted indol-5-ol derivatives and their therapeutical applications
US9458137B2 (en) 2012-11-05 2016-10-04 Nantbioscience, Inc. Substituted indol-5-ol derivatives and their therapeutical applications
RU2674249C2 (ru) * 2012-11-05 2018-12-06 НэнтБайо, Инк. Замещенные производные индол-5-ола и их терапевтическое применение
US10160749B2 (en) 2012-11-05 2018-12-25 Nantbio, Inc. Substituted indol-5-ol derivatives and their therapeutical applications
WO2014107209A2 (en) 2013-01-07 2014-07-10 Arog Pharmaceuticals, Llc Crenolanib for treating flt3 mutated proliferative disorders
US11458131B2 (en) 2013-01-07 2022-10-04 Arog Pharmaceuticals, Inc. Crenolanib for treating FLT3 mutated proliferative disorders
US9801870B2 (en) 2013-01-07 2017-10-31 Arog Pharmaceuticals, Inc. Crenolanib for treating FLT3 mutated proliferative disorders
US11007188B2 (en) 2013-01-07 2021-05-18 Arog Pharmaceuticals, Inc. Crenolanib for treating FLT3 mutated proliferative disorders
US9101624B2 (en) 2013-01-07 2015-08-11 Arog Pharmaceuticals, Inc. Crenolanib for treating FLT3 mutated proliferative disorders
US9393240B2 (en) 2013-01-07 2016-07-19 Arog Pharmaceuticals, Inc. Crenolanib for treating FLT3 mutated proliferative disorders
US10213423B2 (en) 2013-01-07 2019-02-26 Arog Pharmaceuticals, Inc. Crenolanib for treating FLT3 mutated proliferative disorders
CN105377261A (zh) * 2013-03-15 2016-03-02 南特生物科学公司 取代的吲哚-5-酚衍生物和它们的治疗应用
WO2014145403A1 (en) * 2013-03-15 2014-09-18 Nantbio, Inc. Substituted indol-5-ol derivatives and their therapeutic applications
KR20150140688A (ko) * 2013-03-15 2015-12-16 난트바이오사이언스 인코포레이티드 치환된 인돌-5-올 유도체와 그들의 치료적 용도
US9550760B2 (en) 2013-03-15 2017-01-24 Nantbioscience, Inc. Substituted indol-5-ol derivatives and their therapeutic applications
KR101871561B1 (ko) * 2013-03-15 2018-06-27 난트바이오사이언스 인코포레이티드 치환된 인돌-5-올 유도체와 그들의 치료적 용도
US10245261B2 (en) 2013-03-15 2019-04-02 Nantbio, Inc. Substituted indol-5-ol derivatives and their therapeutic applications
US10106542B2 (en) 2013-06-04 2018-10-23 Janssen Pharmaceutica Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
US10584129B2 (en) 2013-06-04 2020-03-10 Janssen Pharmaceuticals Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
US9708315B2 (en) 2013-09-06 2017-07-18 Janssen Pharmaceutica Nv 1,2,4-triazolo[4,3-a]pyridine compounds and their use as positive allosteric modulators of MGLUR2 receptors
US10463658B2 (en) 2013-10-25 2019-11-05 Videra Pharmaceuticals, Llc Method of inhibiting FLT3 kinase
US11103506B2 (en) 2014-01-21 2021-08-31 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US11369606B2 (en) 2014-01-21 2022-06-28 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US10537573B2 (en) 2014-01-21 2020-01-21 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US12048696B2 (en) 2014-01-21 2024-07-30 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US11078541B2 (en) 2016-11-02 2021-08-03 Arog Pharmaceuticals, Inc. Crenolanib for treating FLT3 mutated proliferative disorders associated mutations
WO2020049208A1 (es) 2018-09-09 2020-03-12 Fundacio Privada Institut De Recerca De La Sida - Caixa Aurora cinasa como diana para tratar, prevenir o curar una infección por vih o sida
US11969420B2 (en) 2020-10-30 2024-04-30 Arog Pharmaceuticals, Inc. Combination therapy of crenolanib and apoptosis pathway agents for the treatment of proliferative disorders

Also Published As

Publication number Publication date
ECSP055561A (es) 2005-03-10
MXPA05000068A (es) 2005-04-11
JP2014111662A (ja) 2014-06-19
KR101067254B1 (ko) 2011-09-27
US8268829B2 (en) 2012-09-18
CN100484934C (zh) 2009-05-06
EA200801372A1 (ru) 2008-08-29
EA015990B1 (ru) 2012-01-30
PL374953A1 (en) 2005-11-14
IS7661A (is) 2005-01-21
MY141867A (en) 2010-07-16
KR101141959B1 (ko) 2012-05-04
EP2292614A1 (en) 2011-03-09
NO20110523L (no) 2005-03-21
SG170614A1 (en) 2011-05-30
EA012869B1 (ru) 2009-12-30
IS7606A (is) 2004-12-20
WO2004000833A1 (en) 2003-12-31
NO20050144D0 (no) 2005-01-11
US20060270660A1 (en) 2006-11-30
NZ537720A (en) 2007-01-26
DE60336092D1 (de) 2011-03-31
NZ549142A (en) 2008-04-30
HK1081178A1 (en) 2006-05-12
BR0312443A (pt) 2005-05-10
JP2006501176A (ja) 2006-01-12
TW200406210A (en) 2004-05-01
US20090221602A1 (en) 2009-09-03
EA200500053A1 (ru) 2005-08-25
EP1517905B1 (en) 2012-05-02
US7557106B2 (en) 2009-07-07
ATE498621T1 (de) 2011-03-15
JP4237701B2 (ja) 2009-03-11
CN1675199A (zh) 2005-09-28
EP1746093B1 (en) 2011-02-16
KR20110010794A (ko) 2011-02-07
HK1100081A1 (en) 2007-09-07
CA2489824A1 (en) 2003-12-31
CO5680433A2 (es) 2006-09-29
NZ576752A (en) 2010-11-26
NO20050144L (no) 2005-03-21
HK1077057A1 (en) 2006-02-03
EP2277876A1 (en) 2011-01-26
AU2003245568A1 (en) 2004-01-06
ATE556068T1 (de) 2012-05-15
JP2010235626A (ja) 2010-10-21
EP1517905A1 (en) 2005-03-30
NZ562953A (en) 2009-06-26
ES2386781T3 (es) 2012-08-30
NO331925B1 (no) 2012-05-07
JP2010202673A (ja) 2010-09-16
AU2003245568B2 (en) 2009-12-17
JP2005320351A (ja) 2005-11-17
US20130066069A1 (en) 2013-03-14
EP1746093A1 (en) 2007-01-24
TWI297684B (en) 2008-06-11
US8779127B2 (en) 2014-07-15
IL165849A0 (en) 2006-01-15
HRP20050064A2 (en) 2006-07-31
TWI354554B (en) 2011-12-21
TW200736231A (en) 2007-10-01
JP4662823B2 (ja) 2011-03-30
AR040286A1 (es) 2005-03-23
KR20050009756A (ko) 2005-01-25
CA2489824C (en) 2011-05-03

Similar Documents

Publication Publication Date Title
US8779127B2 (en) Processes for preparing substituted pyrimidines
US10858336B2 (en) 2-(2,4,5-substituted-anilino)pyrimidine compounds
US12098141B2 (en) Bicyclic indazole glucocorticoid receptor antagonists
ES2361335T3 (es) Procedimiento para preparar pirimidinas sustituidas.

Legal Events

Date Code Title Description
AS Assignment

Owner name: VERTEX PHARMACEUTICALS INCORPORATED, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHARRIER, JEAN-DAMIEN;MAZZEI, FRANCESCA;KAY, DAVID;AND OTHERS;REEL/FRAME:013888/0852;SIGNING DATES FROM 20030812 TO 20030813

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION