TWI761596B - Iii-v族化合物結晶的製造方法及半導體裝置的製造方法 - Google Patents

Iii-v族化合物結晶的製造方法及半導體裝置的製造方法 Download PDF

Info

Publication number
TWI761596B
TWI761596B TW107132871A TW107132871A TWI761596B TW I761596 B TWI761596 B TW I761596B TW 107132871 A TW107132871 A TW 107132871A TW 107132871 A TW107132871 A TW 107132871A TW I761596 B TWI761596 B TW I761596B
Authority
TW
Taiwan
Prior art keywords
iii
crystal
substrate
compound
group
Prior art date
Application number
TW107132871A
Other languages
English (en)
Other versions
TW201915232A (zh
Inventor
森勇介
吉村政志
今出完
今西正幸
森數洋司
田畑晋
諸徳寺匠
Original Assignee
日商迪思科股份有限公司
國立大學法人大阪大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商迪思科股份有限公司, 國立大學法人大阪大學 filed Critical 日商迪思科股份有限公司
Publication of TW201915232A publication Critical patent/TW201915232A/zh
Application granted granted Critical
Publication of TWI761596B publication Critical patent/TWI761596B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Laser Beam Processing (AREA)

Abstract

[課題]本發明提供一種容易將III-V族化合物結晶從基板分離(剝離)的III-V族化合物結晶的製造方法。[解決手段]一種III-V族化合物結晶的製造方法,包含:晶種形成基板提供步驟,提供在基板11上形成有III-V族化合物晶種12a的晶種形成基板;晶種部分分離步驟,使III-V族化合物晶種12a與基板11接觸的部分的一部分從基板11分離;及結晶成長步驟,在前述晶種部分分離步驟後,將III-V族化合物晶種12a作為核,使III族元素與V族元素進行反應,藉此使III-V族化合物結晶12生成並成長。

Description

III-V族化合物結晶的製造方法及半導體裝置的製造方法
本發明關於一種III-V族化合物結晶的製造方法及半導體裝置的製造方法。
氮化鎵(GaN)等的III-V族化合物半導體(亦稱為III-V族半導體或GaN系半導體等)被廣泛用作雷射二極體(LD)、發光二極體(LED)等的各種半導體元件的材料。
作為簡便地製造III-V族化合物半導體的方法,例如,可使用氣相磊晶成長法(有時亦僅稱為「氣相成長法」)(專利文獻1及2)。氣相磊晶成長法中,成長的結晶厚度原本有限,但由於近年來的改良,而可得到厚度較厚的III-V族化合物結晶。氣相成長法中具有氫化物氣相成長法(Hydride Vapor Phase Epitaxy、HVPE)、有機金屬氣相成長法(亦稱為MOCVD:Metalorganic Chemical Vapor Deposition或MOVPE:Metal-organic Vapor Phase Epitaxy)等。專利文獻1及2中,於藍寶石基板上形成緩衝層(應力緩和層),再以氣相成長法於其上形成氮化鎵層。
又,作為III-V族化合物結晶的製造方法,亦使用在液相中使結晶成長的液相成長法(LPE:Liquid Phase Epitaxy)。該液相成長法曾有需要高溫高壓的問題,但由於近年來的改良,開始可在較低溫低壓下進行,而成為亦適於量產的方法(專利文獻3等)。前述液相成長法(LPE)可為例如以MOCVD使成為晶種的III-V族化合物結晶層在基板上成膜之後,藉由液相成長法使前述III-V族化合物結晶進一步成長的方法(專利文獻3等)。
[習知技術文獻] [專利文獻] [專利文獻1] 日本特公平7-54806號公報 [專利文獻2] 日本特開2014-009156號公報 [專利文獻3] 日本專利第4920875號公報
[發明所欲解決的課題] 為了將製造的III-V族化合物結晶從基板分離(剝離),例如,可使用如下方法。亦即,首先,從基板側照射穿透性的雷射光而在緩衝層聚光,使剝離層形成。之後,施加外力使前述基板從III-V族化合物結晶剝離。
然而,該方法有如下問題。首先,例如,在爐內於800~1200℃等的高溫下使III-V族化合物結晶在基板上成長。之後,為了藉由照射雷射光來加工前述III-V族化合物結晶及前述基板,必須從爐內取出。此時,前述III-V族化合物結晶及前述基板,被冷卻至例如室溫。在其冷卻時,會有因前述III-V族化合物結晶與前述基板之間的熱膨脹係數的差,而導致前述III-V族化合物結晶及前述基板變形並彎曲的疑慮。例如,一般使用的藍寶石與氮化鎵之間,熱膨脹係數的差約為35%。此情況下,相較於氮化鎵,藍寶石的熱膨脹係數較小,因此,由於冷卻,藍寶石基板以氮化鎵側成為凸狀的方式彎曲。對於使雷射光照射在彎曲基板以形成加工層,則必須配合彎曲調整使雷射光聚光的位置(加工位置)。該調整存在困難,故難以藉由雷射光照射形成剝離層。又,彎曲的基板具備內部應力,故在形成剝離層期間,由於藍寶石基板與氮化鎵基板之間的應力發生變化,導致基板的彎曲形狀發生變化。因此,使雷射光聚光的加工位置發生變化,故前述加工位置的調整變得更加困難。
因此,本發明的目的在於提供一種容易將III-V族化合物結晶從基板分離(剝離)的III-V族化合物結晶的製造方法及半導體裝置的製造方法。
[解決課題的技術手段] 根據本發明的一方面,提供一種III-V族化合物結晶的製造方法,包含:晶種形成基板提供步驟,提供在基板上形成有III-V族化合物晶種的晶種形成基板;晶種部分分離步驟,使前述III-V族化合物晶種與前述基板接觸的部分的一部分從前述基板分離;以及結晶成長步驟,在前述晶種部分分離步驟後,將前述III-V族化合物晶種作為核,使III族元素與V族元素進行反應,藉此使III-V族化合物結晶生成並成長。
根據本發明的另一方面,提供一種包含前述III-V族化合物結晶的半導體裝置的製造方法,包含藉由前述本發明的III-V族化合物結晶的製造方法製造前述III-V族化合物結晶的步驟。
[發明功效] 根據本發明,可提供一種容易將III-V族化合物結晶從基板分離(剝離)的III-V族化合物結晶的製造方法及半導體裝置的製造方法。
以下,舉例說明本發明。然而,本發明不受以下說明所限定。
本發明的III-V族化合物結晶的製造方法(以下有時稱為「本發明的III-V族化合物結晶製造方法」),例如,可在前述晶種部分分離步驟中,藉由從前述晶種形成基板的前述基板側對前述III-V族化合物晶種照射雷射光,將前述III-V族化合物晶種與前述基板接觸的部分的一部分分離。此外,在本發明中,「分離」亦包含例如藉由分解、剝離、去除、物理變化、化學變化等進行分離。例如,在前述晶種部分分離步驟中,為了使前述III-V族化合物晶種與前述基板接觸的部分的一部分從前述基板分離,例如,可藉由分解、剝離、去除、物理變化、化學變化等將與前述基板接觸的部分的一部分從前述基板分離。
本發明的III-V族化合物結晶製造方法中,例如,可在前述晶種部分分離步驟後進一步包含接觸步驟,使前述III-V族化合物晶種中與前述基板相反側的表面接觸金屬熔化液,且在前述結晶成長步驟中,使前述III族元素與前述V族元素在前述金屬熔化液中進行反應。
本發明的III-V族化合物結晶製造方法中,例如,前述V族元素為氮,前述金屬熔化液為鹼金屬熔化液,前述III-V族化合物為III族氮化物,可在前述結晶成長步驟中,在包含氮的氛圍下使III族元素與前述氮在前述鹼金屬熔化液中進行反應,藉此將前述III-V族化合物晶種作為核,使III族氮化物結晶生成並成長。
本發明的III-V族化合物結晶製造方法中,例如,可在前述結晶成長步驟中,使前述III族元素與前述V族元素在氣相中進行反應。
本發明的III-V族化合物結晶製造方法中,例如,可在前述晶種部分分離步驟中,將前述III-V族化合物晶種與前述基板接觸的部分殘留成島狀。
本發明的III-V族化合物結晶製造方法中,例如,前述III-V族化合物晶種及前述III-V族化合物結晶可為氮化鎵(GaN)。
本發明的III-V族化合物結晶製造方法中,例如,可在前述結晶成長步驟後進一步包含基板分離步驟,將前述基板從前述III-V族化合物結晶分離。
本發明的III-V族化合物結晶製造方法中,例如,可在前述基板分離步驟中,藉由溫度變化所帶來的前述III-V族化合物結晶與前述基板之間的膨脹率或收縮率的差,將前述基板從前述III-V族化合物結晶分離。
本發明的III-V族化合物結晶製造方法中,例如,可在前述基板分離步驟中,將前述III-V族化合物結晶及前述基板冷卻。
本發明的III-V族化合物結晶製造方法中,例如,前述基板可為藍寶石基板。
<1.III-V族化合物結晶的製造方法> 本發明的III-V族化合物結晶的製造方法,例如,可用以下方式進行。
在圖1(a)~(g)的步驟剖面圖中示意性地表示本發明的III-V族化合物結晶的製造方法的一例。首先,如圖1(a)及(b)所示,提供在基板11上形成有III-V族化合物晶種層(III-V族化合物晶種)12a的晶種形成基板(晶種形成基板提供步驟)。接著,如圖1(c)及(d)所示,使III-V族化合物晶種12a與基板11接觸的部分的一部分從基板11分離(晶種部分分離步驟)。接著,如圖1(e)所示,在前述晶種部分分離步驟後,將III-V族化合物晶種12a作為核,使III族元素與V族元素進行反應,藉此使III-V族化合物結晶12生成並成長(結晶成長步驟)。再者,如圖1(f)及(g)所示,在前述結晶成長步驟後,將基板11從III-V族化合物結晶12分離(基板分離步驟)。
形成III-V族化合物晶種12a及III-V族化合物結晶12的方法並無特別限定,但例如可為氣相成長法。用於前述氣相成長法的裝置並無特別限定,例如,可與一般用於氣相成長法的氣相成長爐等相同。在圖2的剖面圖中表示用於本發明的III-V族化合物結晶製造方法的氣相成長爐的一例。如圖所示,該氣相成長爐1000於內部具有工作台1001與原料容納部1002。工作台1001上可載置基板11。原料容納部1002中可容納III-V族化合物結晶的原料。前述原料並無特別限定,但例如III-V族化合物結晶為氮化鎵(GaN)的情況下,可為金屬鎵。又,氣相成長爐1000進一步在其頂部具有氨氣(NH3 )導入管1003、氫氣(H2 )導入管1004、及氯化氫氣體(HCl)導入管1005,並在外側面具有加熱器1006,同時在底部具有排氣管1007。
以下,藉由圖1及2進一步具體說明III-V族化合物結晶的製造方法。
<1-1.晶種形成基板提供步驟> 首先,如圖1(a)所示,準備基板11。基板11並無特別限定,但可列舉例如藍寶石基板、碳化矽基板、氧化鎵(Ga2 O3 )基板、矽(Si)基板、氮化矽(亦稱為Si3 N4 、Silicon Nitride)基板、砷化鎵(GaAs)基板、鋁酸鋰(LiAlO2 )基板、ScAlMgO4 基板等。基板11的形狀及尺寸並無特別限定,但例如可因應欲製造的III-V族化合物結晶的形狀及尺寸等而適當設定。基板的形狀,例如,可為矩形,亦可為圓形、多角形、正方形、六角形、八角形等。基板11的尺寸,例如,長軸可為5~20cm等。基板11的厚度亦無特別限定,但例如可為0.01~2mm、0.05~1.5mm或0.1~1mm。
接著,如圖1(b)所示,在基板11上形成III-V族化合物晶種層(III-V族化合物晶種)12a。形成III-V族化合物晶種層12a的方法並無特別限定,例如可為氣相成長法。前述氣相成長法亦無特別限定,但例如可與一般的氣相成長法相同。又,例如,可與下述使III-V族化合物結晶12生成並成長的方法(結晶成長步驟)的具體例相同。此外,本發明中,作為III族(13族)元素,可列舉例如鋁(Al)、鎵(Ga)、銦(In),作為V族(15族)元素,可列舉例如氮(N)、磷(P)、砷(As)、銻(Sb)。III-V族化合物晶種12a,例如可為Alx Gay In1-x-y N或Alx Gay In1-x-y P(0≦x≦1、0≦y≦1、x+y≦1)所表示的III-V族化合物,較佳為III族氮化物。III-V族化合物層12,更具體而言,可列舉前述組成所表示的AlGaN、InGaN、InAlGaN、AlN、GaP、GaN等,特佳為GaN。又,III-V族化合物晶種12a的組成(化學式),例如,可與III-V族化合物結晶12相同亦可不同,但較佳為相同。
III-V族化合物晶種層12a的厚度亦無特別限定,但例如可為0.001~1000μm、0.01~100μm、或0.1~50μm。在下述晶種部分分離步驟中,從III-V族化合物晶種層12a的加工簡易性(容易使III-V族化合物晶種12a與基板11接觸的部分的一部分從基板11分離)的觀點來看,較佳為III-V族化合物晶種層12a的厚度不會太薄。另一方面,從抑制或防止下述基板分離步驟後的III-V族化合物結晶12及基板11的翹曲的觀點來看,較佳為III-V族化合物晶種層12a的厚度不會太厚。
可用以上方式提供在基板11上形成有III-V族化合物晶種層12a的晶種形成基板。此外,雖然圖1(a)及(b)中表示了在基板11上形成III-V族化合物晶種層12a的例子,但是作為替代方案,亦可取用預先準備的晶種形成基板。
<1-2.晶種部分分離步驟> 接著,如圖1(c)及(d)所示,使III-V族化合物晶種12a與基板11接觸的部分的一部分從基板11分離(晶種部分分離步驟)。
如上所述,在本發明中,為了使前述III-V族化合物晶種與前述基板接觸的部分的一部分從前述基板分離,例如,可藉由分解、剝離、去除、物理變化、化學變化等將與前述基板接觸的部分的一部分從前述基板分離。若藉由物理加工,可不使用光阻(蝕刻遮罩)及蝕刻液等,而簡便地使前述III-V族化合物晶種與前述基板接觸的部分的一部分從前述基板分離。前述物理加工並無特別限定,可列舉例如切削加工、或是藉由使粒子或波動撞擊前述III-V族化合物晶種的加工等。該等之中,較佳為藉由使粒子或波動撞擊前述III-V族化合物層的加工。作為藉由使粒子或波動撞擊前述III-V族化合物晶種的加工,可列舉例如雷射光照射、粒子(離子或電子)束照射、銑切加工、珠粒噴擊(Shot Blast)、磨料水射流(Abrasive Water Jet)、超音波加工等。該等之中,特佳為雷射光照射。因為若藉由雷射光照射,可更簡便地進行精密加工。具體而言,例如,只要對欲使前述III-V族化合物晶種從前述基板分離的位置照射雷射光即可。
圖1(c)及(d)中說明從基板11側對III-V族化合物晶種12a照射雷射光的方法。亦即,如圖1(c)所示,使雷射光13聚光並照射在欲使III-V族化合物晶種層12a從基板11分離的位置(加工位置)14。藉此,如圖1(d)所示,在已照射雷射光13的加工位置14上,III-V族化合物晶種層12a從基板11分離,而形成加工痕15。此時發生的現象(機制)雖不明朗,但可推測例如藉由對加工位置14照射雷射光13,分解(化學變化)該位置上的III-V族化合物晶種12a,藉此從基板11分離。在III-V族化合物晶種12a為GaN的情況下,可推測例如藉由照射雷射光13來變化成金屬鎵。金屬鎵的熔點約為30℃,故容易從基板11分離。然而,該等推測並未對於本發明有任何限定。
雷射光13的波長並無特別限定,但較佳為對基板11不造成影響而可加工III-V族化合物晶種12a的波長。因此,前述雷射光的波長較佳為可被III-V族化合物結晶層12a吸收、且會穿透基板11的波長。在此情況下,前述雷射光相對於III-V族化合物結晶層12a的吸收率,例如可為20%以上、50%以上、或80%以上,理想上為100%。又,雷射光13相對於基板11的穿透率,例如可為90%以上、95%以上、或98%以上,理想上為100%。此外,前述雷射光相對於III-V族化合物結晶層12a的吸收率及相對於基板11的穿透率的測量方法並無特別限定,但例如可使用一般的分光光度計進行測量。雷射光13的波長並無特別限定,但例如可為150~1300nm、193~1100nm、193~500nm、或193~400nm。雷射光13的波長,亦可考量基板11及III-V族化合物結晶層12a的材質等而適當設定。在基板11為藍寶石基板、且III-V族化合物結晶層12a為GaN的情況下,雷射光13的波長例如可為193~500nm、193~355nm、200~350nm、或230~300nm。更具體而言,例如可使用266nm或355nm等波長的雷射光。
雷射光13的輸出亦無特別限定,但例如可為0.01~100W、0.05~50W、或1~20W。雷射光13的點徑亦無特別限定,但例如可為1~400μm、5~150μm、或10~80μm。雷射光13的能量密度亦無特別限定,但例如可為0.001~20J/cm2 、0.002~10J/cm2 、或0.006~5J/cm2 。又,例如,可使雷射光13的光點移動,一邊使加工位置(雷射光13的照射位置)14變化一邊對III-V族化合物結晶層12a照射雷射光13而進行加工。雷射光13的光點的移動速度(進給速度)亦無特別限定,但例如可為1~1000mm/s、10~500mm/s、或50~300mm/s。又,照射雷射光13的方向亦無特別限定,例如,可從III-V族化合物結晶層12a側照射,亦可從基板11側照射,但較佳為如圖1(c)所示,從基板11側照射。如此的話,則可保留III-V族化合物結晶層12a未接觸於基板11的一側,僅選擇性地加工接觸於III-V族化合物結晶層12a的一側。
又,雷射光13的媒介及雷射振盪器亦無特別限定,但列舉例如:YAG雷射、YVO4 雷射、YLF雷射、盤形雷射、DPSS雷射、準分子雷射、光纖雷射等。又,前述雷射光可為脈衝雷射光線,亦可為CW(Continuous Wave,連續波)雷射光線。在脈衝雷射光線的情況下,其頻率並無特別限定,但例如可為10Hz~100MHz、1~1000kHz(1MHz)、或10~200kHz。前述脈衝雷射光線的脈寬亦無特別限定,但從抑制熱擴散的觀點來看,例如為0.2ps(0.2微微秒、或200fs[飛秒])~10ns、5~500ps(微微秒)或5~200ps。
在III-V族化合物晶種(III-V族化合物晶種層)12a與基板11接觸的一側上,未照射雷射光13的部分,亦即加工位置14以外的部分,III-V族化合物結晶層12a以接觸於基板11的狀態殘留。該殘留部分的形狀並無特別限定,可列舉條紋狀、島狀(點狀)等,但特佳為點狀。在點狀的情況下,其形狀並無特別限定,例如,可為圓形,亦可為橢圓形、多角形、正多角形、三角形、正三角形、四角形、正方形、矩形、五角形、正五角形、六角形、正六角形等。殘留III-V族化合物晶種12a的部分的大小及其間隔亦無特別限定。例如,前述大小及間隔只要適當設定成使基板11在下述基板分離步驟之前不會從III-V族化合物晶種12a剝離(分離)、且在下述基板分離步驟中容易從III-V族化合物晶種12a剝離(分離)即可。殘留III-V族化合物晶種12a的部分為條紋狀的情況下,其寬度例如可為100mm以下、10mm以下、1mm以下、或500μm以下;例如可為0.001μm以上、0.1μm以上、1μm以上、或10μm以上。殘留III-V族化合物晶種12a的部分為點狀的情況下,前述點的長徑(最長直徑,例如,矩形的情況下為長邊),例如可為100mm以下、10mm以下、1mm以下、或500μm以下;例如可為0.001μm以上、0.1μm以上、1μm以上、或10μm以上。前述點的短徑(最短直徑,例如,矩形的情況下為短邊),例如可為100mm以下、10mm以下、1mm以下、或500μm以下;例如可為0.001μm以上、0.1μm以上、1μm以上、或10μm以上。又,在殘留III-V族化合物晶種12a的部分中,互相鄰接的部分間的間隔,例如可為100mm以下、10mm以下、1mm以下、或500μm以下;例如可為0.001μm以上、0.1μm以上、1μm以上、或10μm以上。殘留III-V族化合物晶種12a的部分的配置亦無特別限定。例如,假設在基板11上無間隔地鋪滿互相重合的複數矩形(長方形),可將殘留III-V族化合物晶種12a的部分配置於前述矩形的各頂點。又,代替前述矩形的方案,例如可為正方形、菱形、梯形等,例如可為正三角形,亦可為正三角形以外的三角形。III-V族化合物晶種12a彼此的配置關係亦無特別限定,例如可為漩渦狀、同心圓狀、輻射線狀等任何配置。
又,加工位置14(使III-V族化合物晶種12a從基板11分離的部分)的面積並無特別限定,但相對於III-V族化合物晶種12a整體面積,例如,可為0.001%以上、0.01%以上、0.1%以上、1%以上、5%以上、10%以上、20%以上、30%以上、40%以上、或50%以上;可為99.9%以下、99%以下、90%以下、80%以下、70%以下、60%以下或50%以下。從加工的簡易性及下述III-V族化合物結晶12的缺陷較少的觀點來看,較佳為加工位置14相對於III-V族化合物晶種12a整體面積的面積比不會太大。另一方面,從下述III-V族化合物結晶12與基板11的分離(剝離)簡易性的觀點來看,較佳為加工位置14相對於III-V族化合物晶種12a整體面積的面積比不會太小。
照射雷射光13而使III-V族化合物晶種12a進行加工的雷射加工裝置亦無特別限定,例如,可使用習知的雷射加工裝置。在圖3的立體圖中表示前述雷射加工裝置的一例。如圖所示,該雷射加工裝置10包含靜止基台20、保持台機構30、雷射光照射單元支撐機構40、及雷射光照射單元50。保持台機構30設置於靜止基台20上,並在保持工件的同時,可在箭頭X所示的加工進給方向上移動。雷射光照射單元支撐機構40設置於靜止基台20上,並可在箭頭Y所示的分度進給方向上移動。如圖所示,箭頭Y與箭頭X所示的加工進給方向正交。雷射光照射單元50安裝於雷射光照射單元支撐機構40上,並可在箭頭Z所示的聚光點位置調整方向上移動。如圖所示,箭頭Z與箭頭X及Y正交。
上述保持台機構30包含導軌310、第1滑塊320、第2滑塊330、圓筒狀支撐筒體340、罩台350、及保持台360。導軌310有兩條(一對),該等導軌310沿著箭頭X所示的加工進給方向平行地配置於靜止基台20上。第1滑塊320配置於一對導軌310上,並可在箭頭X所示的加工進給方向上移動。第2滑塊330配置於第1滑塊320上,並可在箭頭Y所示的分度進給方向上移動。罩台350與作為工件保持手段的保持台360被圓筒狀支撐筒體340支撐於第2滑塊330上。
在第1滑塊320的下表面設有兩條(一對)被導引槽3210,其與一對導軌310嵌合。又,在第1滑塊320的上表面設有兩條(一對)導軌3220,其沿著箭頭Y所示的分度進給方向平行地形成。藉由一對被導引槽3210嵌合於一對導軌310,該第1滑塊320可沿著一對導軌310在箭頭X所示的加工進給方向上移動。又,圖示的保持台機構30具有加工進給手段370,用以使第1滑塊320沿著一對導軌310在箭頭X所示的加工進給方向上移動。加工進給手段370包含公螺桿3710。公螺桿3710以與導軌310平行的方式設置於一對導軌310與310之間。又,加工進給手段370進一步包含脈衝馬達3720等的驅動源,用以將公螺桿3710旋轉驅動。公螺桿3710其一端旋轉自如地支撐於固定在靜止基台20上的軸承座3730。又,公螺桿3710的另一端與上述脈衝馬達3720的輸出軸傳動連結。此外,公螺桿3710與在第1滑塊320的中央部下表面突出的母螺絲座(圖中未表示)的貫通母螺孔螺合(嵌合)。因此,公螺桿3710透過脈衝馬達3720正轉或逆轉驅動,藉此第1滑塊320可沿著一對導軌310在箭頭X所示的加工進給方向上移動。
在第2滑塊330的下表面設有一對被導引槽3310,其與設於第1滑塊320上表面的一對導軌3220嵌合。藉由使該一對被導引槽3310嵌合於一對導軌3220,第2滑塊330可在箭頭Y所示的分度進給方向上移動。又,圖示的保持台機構30包含第1分度進給手段380。第1分度進給手段380為用以使第2滑塊330沿著設於第1滑塊320的一對導軌3220在箭頭Y所示的分度進給方向上移動的手段。第1分度進給手段380包含公螺桿3810。公螺桿3810以與導軌3220平行的方式配置於一對導軌3220與3220之間。又,第1分度進給手段380進一步包含脈衝馬達3820等的驅動源,用以將公螺桿3810旋轉驅動。公螺桿3810的一端旋轉自如地支撐於固定在第1滑塊320的上表面的軸承座3830。公螺桿3810的另一端與脈衝馬達3820的輸出軸傳動連結。又,公螺桿3810與在第2滑塊330的中央部下表面突出的母螺絲座(圖中未表示)的貫通母螺孔螺合(嵌合)。因此,公螺桿3810透過脈衝馬達3820正轉或逆轉驅動,藉此第2滑塊330可沿著一對導軌3220在箭頭Y所示的分度進給方向上移動。
雷射光照射單元支撐機構40包含導軌410及可動支撐基台420。導軌410為兩條(一對),並沿著箭頭Y所示的分度進給方向平行地配置於靜止基台20上。可動支撐基台420以可在箭頭Y所示的方向移動的方式配置於一對導軌410上。該可動支撐基台420包含:移動支撐部4210,可移動地配置於一對導軌410上;以及裝設部4220,安裝於移動支撐部4210上。裝設部4220在一側面互相平行地設有一對導軌4230,其在箭頭Z所示的聚光點位置調整方向上延伸。圖示的雷射光照射單元支撐機構40包含第2分度進給手段430。第2分度進給手段430為用以使可動支撐基台420沿著一對導軌410在箭頭Y所示的分度進給方向上移動的手段。第2分度進給手段430包含公螺桿4310。公螺桿4310以與導軌410平行的方式配置於一對導軌410與410之間。又,第2分度進給手段430進一步包含脈衝馬達4320等的驅動源,用以將公螺桿4310旋轉驅動。公螺桿4310的一端旋轉自如地支撐於固定在靜止基台20上的軸承座(圖中未表示)。公螺桿4310的另一端與脈衝馬達4320的輸出軸傳動連結。又,公螺桿4310與在構成可動支撐基台420的移動支撐部4210其中央部下表面突出的母螺絲座(圖中未表示)的母螺孔螺合(嵌合)。因此,公螺桿4310透過脈衝馬達4320正轉或逆轉驅動,藉此可動支撐基台420可沿著一對導軌410在箭頭Y所示的分度進給方向上移動。
圖示的雷射光照射單元50包含單元保持座510、以及安裝於單元保持座510上的雷射光照射手段60。在單元保持座510上設有一對被導引槽5110,其可滑動地嵌合於設在裝設部4220的一對導軌4230。藉由嵌合於一對導軌4230,該一對被導引槽5110可移動地被支撐於箭頭Z所示的聚光點位置調整方向上。
圖示的雷射光照射單元50包含聚光點位置調整手段530。聚光點位置調整手段530為用以使單元保持座510沿著一對導軌4230在箭頭Z所示的聚光點位置調整方向上移動的手段。聚光點位置調整手段530包含:公螺桿(圖中未表示),其配置於一對導軌4230之間;以及脈衝馬達5320等的驅動源,用以將前述公螺桿旋轉驅動。前述公螺桿(圖中未表示)透過脈衝馬達5320正轉或逆轉驅動,藉此單元保持座510及雷射光照射手段60可沿著一對導軌4230在箭頭Z所示的聚光點位置調整方向上移動。此外,圖示的實施方式中,雷射光照射手段60可藉由脈衝馬達5320的正轉驅動移動至上方,且雷射光照射手段60可藉由脈衝馬達5320的逆轉驅動移動至下方。
圖示的雷射光照射手段60包含實質上水平配置的圓筒形狀殼體610。在殼體610內配置有雷射振盪器(雷射光振盪手段,圖中未表示)。該雷射振盪器可發出雷射光。前述雷射光可列舉例如脈衝雷射光線或CW雷射光線,較佳為脈衝雷射光線。前述雷射振盪器並無特別限定,例如,如上所述。前述雷射振盪器所發出的雷射光的波長、輸出、點徑、能量密度、移動速度(進給速度)、頻率、脈寬等的特性亦無特別限定,例如,如上所述。經由前述雷射振盪器振盪的雷射光,從位於殼體610前端的聚光器640照射至保持於保持台360的工件(例如,在基板上層積有III-V族化合物層的層積基板、或在基板上層積有III-V族化合物結晶的層積體)。又,殼體610的前端具有攝像手段90。該攝像手段90包含例如:一般攝像元件(CCD),藉由可見光線進行拍攝;紅外線照明手段,對工件照射紅外線;光學系統,可捕捉藉由前述紅外線照明手段照射的紅外線;以及攝像元件(紅外線CCD),輸出與被前述光學系統捕捉的紅外線對應的電訊號等。攝像手段90將拍攝的圖像訊號送至控制手段(圖中未表示)。
接著,說明利用圖3的雷射加工裝置10進行的雷射加工方法的例子。首先,如圖4所示,將由雙層構成的工件400(上層部200、下層部300)貼附於裝設在環狀框架F的黏著膠帶T(工件貼附步驟)。此時,工件400以表面200b朝上的方式將背面30b側貼附於黏著膠帶T。此外,黏著膠帶T例如可由聚氯乙烯(PVC)等的樹脂片形成。環狀框架F設置於圖3所示的保持台360上。工件400中,例如,上層部200可為圖1的基板11,下層部300可為圖1的III-V族化合物層12或III-V族化合物晶種12a。
接著,使圖3所示的保持台360移動至雷射光照射手段60的聚光器640所在的雷射光照射區域。藉此,如圖5的立體圖及圖6(a)的前視圖所示,工件400被配置於聚光器640的下方,而可對工件400照射雷射光。例如,首先,如圖6(a)所示,將工件400的末端230(在圖6(a)中為左端)配置於聚光器640的正下方。接著,如圖6(a)所示,將從聚光器640照射的雷射光的聚光點P對準工件400的表面200b(上表面)附近。或是如圖6(b)的剖面圖所示,將前述雷射光的焦點對準由上層部200與下層部300構成的雙層的前述工件400的界面30a。然後,從雷射光照射手段60的聚光器640照射雷射光,使加工進給手段370(圖3)運作,使保持台360(圖3)以既定的加工進給速度在圖6(a)中箭頭X1所示的方向上移動。此外,從聚光器640照射的雷射光為脈衝雷射光的情況下,其脈寬與加工進給手段370的移動速度較佳為同步。藉此,可高速地切換前述脈衝雷射光的ON和OFF,並高速地照射每1發前述脈衝雷射光。藉由以此方式對工件400的必要處照射雷射光,例如,在前述晶種部分分離步驟中,可將前述III-V族化合物晶種與前述基板接觸的部分的一部分分離。
<1-3.結晶成長步驟> 接著,如圖1(e)所示,在前述晶種部分分離步驟後,將III-V族化合物晶種12a作為核,使III族元素與V族元素進行反應,藉此使III-V族化合物結晶12生成並成長(結晶成長步驟)。該方法並無特別限定,如上所述,可為液相成長法亦可為氣相成長法,但圖1(e)中表示了氣相成長法的例子。如圖1(e)所示,可將晶種形成基板(形成有III-V族化合物晶種12a的基板11)載置於氣相成長爐1000內的工作台1001來進行該方法。氣相成長爐1000可使用如圖2所說明者。
以下,具體說明進行圖1(e)所示的結晶成長步驟的方法的例子。以下為說明使用圖2的氣相成長爐並藉由MOCVD(MOVPE)進行前述結晶成長步驟的方法。
首先,將在基板11上形成有III-V族化合物晶種層12a的晶種形成基板設置於氣相成長爐1000內的工作台1001上。
另一方面,如圖2所示,將III-V族化合物結晶的原料16容納(設置)於原料容納部1002。原料16並無特別限定,但例如為III族元素金屬。前述III族元素金屬可列舉例如鋁(Al)、鎵(Ga)、銦(In)、鉈(Tl)等,可僅使用1種,亦可併用2種以上。例如,作為前述III族元素金屬,可使用選自由鋁(Al)、鎵(Ga)、及銦(In)構成的群組的至少一種。此情況下,製造的III族元素氮化物結晶的組成是以Als Gat In{1- s+t } N(但是,0≦s≦1、0≦t≦1、s+t≦1)表示。如上所述,例如,III-V族化合物結晶為氮化鎵(GaN)的情況下,前述III族元素金屬為金屬鎵。又,例如,可使摻雜材料等與原料16共存並反應。前述摻雜物並無特別限定,但可列舉例如Si、S、Te、Mg、Fe、Ge、Sn、Se、Zn、Ru、O、C等。使該等摻雜物與原料16共存的情況下,例如,可在該等的單質元素、氧化物、鹵化物等的形態下使用。
接著,以加熱器1006加熱氣相成長爐1000。此時,原料16的溫度並無特別限定,但例如設為700~1500℃、800~1400℃、或900~1300℃。基板11的溫度並無特別限定,但例如設為700~1500℃、800~1400℃、或900~1300℃。此狀態下,分別從氨氣(NH3 )導入管1003導入氨氣,從氫氣(H2 )導入管1004導入氫氣,從氯化氫氣體(HCl)導入管1005導入氯化氫氣體。此時,氨氣(NH3 )相對於氣相成長爐1000內的氣體整體的濃度並無特別限定,但例如設為25~80mol%、40~70mol%、或50~60mol%。又,此時,氫氣(H2 )相對於氣相成長爐1000內的氣體整體的濃度並無特別限定,但例如設為0~75mol%或20~50mol%。氯化氫氣體(HCl)的流量並無特別限定,但例如設為20~100sccm、40~60sccm。
原料16為金屬鎵的情況下,例如,認為是藉由下述反應式(I)及(II),生成並成長目標的GaN(III-V族化合物)的結晶。從氫氣(H2 )導入管1004導入的氫氣作為分壓控制用氣體並發揮作用,用以控制氯化氫氣體及氨氣的分壓。又,反應後的剩餘氣體,可作為廢氣從排氣管1007排出。 Ga+HCl→GaCl+1/2H2 (I) GaCl+2NH3 →GaN+H2 +NH4 Cl (II)
結晶成長爐1000內的結晶成長步驟,例如可在加壓條件下實施,但亦可在例如減壓條件下實施,亦可在不進行加壓及減壓的條件下實施。具體而言,在前述結晶成長步驟中,結晶成長爐1000內的壓力並無特別限定,但例如可設為10Pa~1MPa、100Pa~500kPa、或1kPa~100kPa。
以此方式使III-V族化合物結晶12成長至目標厚度為止。III-V族化合物結晶12的厚度並無特別限定,但例如可設為0.001~1000mm、0.01~100mm、或0.1~10mm。
此外,亦可使用液相成長法代替氣相成長法來進行前述結晶成長步驟。此情況下,例如,可用以下方式進行。
首先,使晶種形成基板的III-V族化合物晶種12a中與基板11相反側的表面接觸金屬熔化液(接觸步驟)。再者,藉由使前述III族元素與前述V族元素在前述金屬熔化液中進行反應,將前述晶種作為核,使III-V族化合物結晶生成並成長(結晶成長步驟)。
前述接觸步驟及前述結晶成長步驟中的反應條件並無特別限定,但例如可參考日本專利第4920875號公報(專利文獻3)、日本專利第4422473號公報、日本專利第4588340號公報等記載的反應條件。又,例如,用於前述接觸步驟及前述結晶成長步驟的裝置並無特別限定,但可與一般用於液相成長法的裝置(LPE裝置)相同,亦可與日本專利第4920875號公報、日本專利第4422473號公報、日本專利第4588340號公報等記載的LPE裝置相同。
由III-V族化合物晶種12a生成並成長而成的III-V族化合物結晶12的組成並無特別限定,但例如可與前述氣相成長法的情況相同。前述III-V族結晶的組成,可藉由前述結晶成長步驟中的前述III族元素與前述V族元素的種類及使用量比等進行調整。例如,前述III-V族化合物結晶為III族氮化物結晶的情況下,在前述結晶成長步驟中進行反應的前述V族元素較佳為氮。又,此情況下,更佳前述金屬熔化液為鹼金屬熔化液,在前述結晶成長步驟中,在包含氮的氛圍下使III族元素與前述氮在前述鹼金屬熔化液中進行反應,藉此將III-V族化合物晶種12a作為核,使III-V族化合物結晶12生成並成長。
利用液相成長法進行的前述接觸步驟及前述結晶成長步驟,例如,可用以下方式進行。
在前述接觸步驟及前述結晶成長步驟中,例如,可使用鈉助熔法(Na Flux Method),為用於LED或功率元件的半導體基板的氮化鎵(GaN)的製造方法之一。例如,首先,將晶種(例如,形成於藍寶石基板上的GaN薄膜)設於坩堝內。又,連同前述晶種將鈉(Na)與鎵(Ga)以適當的比例預先容置於前述坩堝內。接著,在高溫(例如,800~1000℃)、高壓(例如,數十氣壓)的環境下,使前述坩堝內的鈉及鎵熔融,並使氮氣(N2 )溶入該熔化液內。藉此,可使前述坩堝內的GaN晶種成長,以製造目標的GaN結晶。本發明的III-V族化合物結晶的製造方法中的反應條件,例如,可用與前述一般的鈉助熔法相同的方法進行,或適當加以變更後進行。例如,可使Ga為其他任意的III族元素。又,如下所述,可使氮氣為其他含氮氣體。
在前述液相成長法中,在包含氮的氛圍下進行前述結晶成長步驟的情況下,前述「包含氮的氛圍下」中氮的形態並無特別限制,可列舉例如氣體、氮分子、氮化合物等。前述「包含氮的氛圍下」較佳為含氮氣體的氛圍下。因為前述含氮氣體溶於前述助熔劑而成為III-V族化合物結晶的生長原料。前述含氮氣體,亦可使用氨氣(NH3 )等的其他含氮氣體,加入上述氮氣(N2 )或取而代之。使用氮氣及氨氣的混合氣體的情況下,混合率可為任意。尤其是使用氨氣則可降低反應壓力,故為較佳。
前述鹼金屬熔化液(助熔劑),亦可使用鋰等的其他鹼金屬,加入鈉或取而代之。更具體而言,前述鹼金屬熔化液包含選自由鋰(Li)、鈉(Na)、鉀(K)、銣(Rb)、銫(Cs)及鍅(Fr)構成的群組的至少1種,例如,可為Na與Li的混合助熔劑等。前述鹼金屬熔化液特佳為鈉熔化液。又,前述鹼金屬熔化液可包含1種或多種鹼金屬以外的成分,亦可不包含。前述鹼金屬以外的成分並無特別限定,但可列舉例如鹼土金屬,作為前述鹼土金屬,例如有鈣(Ca)、鎂(Mg)、鍶(Sr)、鋇(Br)及鐳(Ra),其中,較佳為Ca及Mg,更佳為Ca。又,作為前述鹼金屬以外的成分,例如,可包含碳(碳單質或碳化合物),亦可不包含。較佳為會在前述熔化液中產生氰(CN)的碳單質及碳化合物。又,碳可為氣態的有機物。作為這種碳單質及碳化合物,可列舉例如氰化物、石墨、金剛石、富勒烯、奈米碳管、甲烷、乙烷、丙烷、丁烷、苯等。前述碳的含量並無特別限定,但以前述熔化液、前述III族元素及前述碳的合計為基準,例如為0.01~20原子(at.)%的範圍、0.05~15原子(at.)%的範圍、0.1~10原子(at.)%的範圍、0.1~5原子(at.)%的範圍、0.25~7.5原子(at.)%的範圍、0.25~5原子(at.)%的範圍、0.5~5原子(at.)%的範圍、0.5~2.5原子(at.)%的範圍、0.5~2原子(at.)%的範圍、0.5~1原子(at.)%的範圍、1~5原子(at.)%的範圍、或1~2原子(at.)%的範圍。其中,例如可為0.5~5原子(at.)%的範圍、0.5~2.5原子(at.)%的範圍、0.5~2原子(at.)%的範圍、0.5~1原子(at.)%的範圍、1~5原子(at.)%的範圍、或1~2原子(at.)%的範圍。
鹼金屬相對於III族元素的添加比例並無特別限定,但例如可為0.1~99.9mol%、1~99mol%、或5~98mol%。又,使用鹼金屬與鹼土金屬的混合助熔劑時的莫耳比,例如可為鹼金屬:鹼土金屬=99.99~0.01:0.01~99.99,亦可為99.9~0.05:0.1~99.95,亦可為99.5~1:0.5~99。前述熔化液較佳為高純度。例如,Na的純度可為99.95%以上的純度。高純度的助熔劑成分(例如,Na),可使用高純度的市售品,亦可使用購入市售品後藉由蒸餾等的方法提高純度者。
III族元素與含氮氣體的反應溫度及壓力亦不限定於前述數值,可適當設定。適當的反應溫度及壓力,可因應熔化液(助熔劑)的成分、氛圍氣體成分及其壓力而變化,例如可為溫度100~1500℃、壓力100Pa~20MPa,亦可為溫度300~1200℃、壓力0.01MPa~20MPa,亦可為溫度500~1100℃、壓力0.1MPa~10MPa,亦可為溫度700~1100℃、壓力0.1MPa~10MPa。又,反應時間、亦即結晶的成長(生長)時間並無特別限定,只要適當設定成使結晶成長至適當大小即可,例如可為1~1000hr、5~600hr或10~400hr。
在前述液相成長法中,視情況,會有前述晶種因前述助熔劑而在氮濃度上升前就溶解之虞。為了防止這種情況,至少在反應初期,可預先使氮化物存在於前述助熔劑中。作為前述氮化物,例如有Ca3 N2 、Li3 N、NaN3 、BN、Si3 N4 、InN等,該等可單獨使用,亦可併用2種以上。又,前述氮化物在前述助熔劑中的比例,例如可為0.0001mol%~99mol%、0.001mol%~50mol%、或0.005mol%~10mol%。
在前述液相成長法中,亦可使雜質存在於前述混合助熔劑中。如此,則可製造含雜質的GaN結晶。前述雜質例如有矽(Si)、氧化鋁(Al2 O3 )、銦(In)、鋁(Al)、氮化銦(InN)、氧化矽(SiO2 )、氧化銦(In2 O3 )、鋅(Zn)、鎂(Mg)、氧化鋅(ZnO)、氧化鎂(MgO)、鍺(Ge)等。
在前述液相成長法中,可進一步包含攪拌前述熔化液的攪拌步驟。進行前述攪拌步驟的階段並無特別限制,但例如可在前述結晶成長步驟之前、與前述結晶成長步驟同時、及前述結晶成長步驟之後的至少一個階段進行。更具體而言,例如,可在前述結晶成長步驟之前進行,亦可與前述結晶成長步驟同時進行,亦可在兩個階段皆進行。
<1-4.基板分離步驟> 再者,如圖1(f)及(g)所示,在前述結晶成長步驟後,將基板11從III-V族化合物結晶12分離(基板分離步驟)。
首先,在前述結晶成長步驟後,為了將III-V族化合物結晶12至基板11的部分從反應爐1000內取出,而冷卻至室溫。這樣一來,由於III-V族化合物結晶12與基板11之間的熱膨脹係數的差,III-V族化合物結晶12及基板11變形並彎曲。例如,III-V族化合物結晶12為氮化鎵(GaN)且基板11為藍寶石的情況下,如上所述,相較於氮化鎵,藍寶石的熱膨脹係數較小。因此,如圖1(f)所示,由於冷卻,藍寶石基板11以氮化鎵12側成為凸狀的方式彎曲。因此,在III-V族化合物結晶12及基板11上產生應力。然後,藉由前述晶種部分分離步驟,III-V族化合物晶種層12a的一部分與基板11分離,故容易將基板11從III-V族化合物晶種層12a及III-V族化合物結晶12剝離(分離)。因此,如圖1(g)所示,藉由前述應力,基板11從III-V族化合物晶種層12a及III-V族化合物結晶12剝離(分離)。然後,之後將已從基板11分離的III-V族化合物結晶12從結晶成長爐1000取出。可用以上方式製造出III-V族化合物結晶12。
在本實施例中,例如,如圖1(b)所示,在剛形成III-V族化合物晶種層12a時,III-V族化合物晶種層(緩衝層)12a的厚度較薄(薄膜)。因此,此狀態下,不會在基板11及III-V族化合物晶種層12a上發生翹曲(彎曲)。因此,容易調整使雷射光聚光的位置(加工位置),而容易進行如圖1(c)及(d)所示的前述晶種部分分離步驟。再者,如上所述,藉由前述晶種部分分離步驟,III-V族化合物晶種層12a的一部分與基板11分離,故容易將基板11從III-V族化合物晶種層12a及III-V族化合物結晶12剝離(分離)。因此,即使不從外部施加用以使基板11剝離的力,如上所述,僅以冷卻時在III-V族化合物結晶12及基板11上產生的應力,即可使基板11從III-V族化合物晶種層12a及III-V族化合物結晶12剝離(分離)。
一般的III-V族化合物結晶的製造方法中,在製造III-V族化合物結晶之後,必須從外部施力(外力)以將基板從III-V族化合物結晶分離。相對於此,根據本發明,例如,如上所述,即使不施加外力,僅以冷卻時的應力即可將基板從III-V族化合物結晶分離。亦即,本發明中,即使不另外(刻意地)進行前述基板分離步驟,亦可使III-V族化合物結晶製造步驟後的冷卻步驟中兼具前述基板分離步驟。然而,本發明並不限定於此,例如,亦可藉由另外從外部施力(外力)將基板從III-V族化合物結晶分離,來進行前述基板分離步驟。本發明中,藉由前述晶種部分分離步驟,III-V族化合物晶種的一部分與基板分離,故在III-V族化合物結晶成長步驟後,即使較小的力亦容易使基板分離。因此,不易發生製造的III-V族化合物結晶的損壞等。
由於近年來技術的進步,而可製造大尺寸的半導體結晶,藉此,半導體裝置設計的範圍變廣。例如,在矽半導體基板等之中,直徑6英吋(約15cm)、8英吋(約20cm)、12英吋(約30cm)、18英吋(約45cm)等的大尺寸結晶被實用化,或正在研究其實用化。然而,在GaN等的III-V族化合物結晶中,難以製造這樣的大尺寸結晶。作為其原因,如上所述,可列舉因與基板之間的熱膨脹率的差,而容易在III-V族化合物結晶上產生應變。又,特別在大尺寸結晶的情況下,若為了使其與基板分離而施力,則結晶容易損壞。然而,根據本發明,例如,如上所述,即使是較小力亦容易使基板分離,而不易發生製造的III-V族化合物結晶的損壞等。又,例如,如上所述,即使不另外(蓄意地)進行基板分離步驟,亦可使III-V族化合物結晶製造步驟後的冷卻步驟中兼具前述基板分離步驟。
<2.III-V族化合物結晶、半導體裝置、半導體裝置的製造方法> 藉由前述本發明的III-V族化合物結晶製造方法製造的III-V族化合物結晶並無特別限定,例如,如上所述。前述III-V族化合物結晶的差排密度並無特別限定,但較佳為低差排密度,例如為1×108 cm-2 以下、1×107 cm-2 以下、1×106 cm-2 以下、或1×105 cm-2 以下。前述差排密度的下限值並無特別限定,理想上為0或測量設備的測量界限值以下的值。此外,前述差排密度的值,例如可為結晶整體的平均值,但結晶中的最大值為前述值以下則更佳。又,在本發明的III族氮化物結晶中,以XRC(X射線搖擺曲線繞射法)測量的對稱反射成分(002)及非對稱反射成分(102)的半寬高並無特別限定,分別為例如100秒以下,較佳為30秒以下。前述XRC半高寬的測量值的下限值並無特別限定,但理想上為0或測量設備的測量界限值以下的值。
又,藉由本發明的III-V族化合物結晶製造方法製造的III族氮化物結晶的用途並無特別限定,例如,藉由具有作為半導體的性質,可用於半導體裝置。本發明的半導體裝置的製造方法,如上所述,其特徵為包含藉由前述本發明的III-V族化合物結晶的製造方法製造前述III-V族化合物結晶的步驟。除此以外,本發明的半導體裝置的製造方法並無特別限定,可包含任何步驟。
藉由本發明的III-V族化合物結晶製造方法製造的III族氮化物結晶,例如,由於大尺寸、翹曲(應變)等的缺陷少且為高品質,而可提供性能極高的半導體裝置。又,根據本發明,例如,如上所述,亦可提供現有技術無法提供的6英吋徑以上的III-V族化合物(例如GaN)結晶。藉此,例如,在以Si(矽)的大口徑化為基準的功率元件、LED等的半導體裝置中,藉由使用III-V族化合物代替Si,亦可進一步高性能化。藉此,本發明對半導體業界的影響極大。
又,藉由本發明的半導體裝置的製造方法製造的半導體裝置並無特別限定,可為任何使用半導體進行運作的物品。作為使用半導體進行運作的物品,可列舉例如半導體元件、反相器、及使用前述半導體元件、及前述反相器等的電力設備等。本發明的半導體裝置,例如可為行動電話、液晶電視、照明設備、功率元件、雷射二極體、太陽電池、高頻元件、顯示器等的各種電力設備,或亦可為用於該等設備的半導體元件、反相器等。前述半導體元件並無特別限定,可列舉例如雷射二極體(LD)、發光二極體(LED)等。例如,發出藍色光的雷射二極體(LD),可應用於高密度光碟、顯示器等,發出藍色光的發光二極體(LED),可應用於顯示器、照明等。又,紫外線LD被期待應用於生物技術等,紫外線LED則被期待用作代替汞燈的紫外線源。又,將本發明的III-V族化合物用作反相器用功率半導體的反相器,例如,亦可用於太陽電池等的發電。再者,如上所述,藉由本發明的III-V族化合物結晶製造方法製造的III-V族化合物結晶並不限定於此,可適用於其他任意的半導體裝置或其他廣泛的技術領域。 [實施例]
接著,說明本發明的實施例。然而,本發明並不受以下的實施例限定。
在以下的實施例及參考例中,藉由液相成長法進行結晶的製造(生長),全部使用圖7(a)及(b)的示意圖所示的結構的LPE裝置。如圖7(a)所示,該LPE裝置具備:原料氣體槽361,用以供給原料氣體(本實施例中為氮氣);壓力調整器362,用以調整生長氛圍的壓力;洩漏用閥363;不鏽鋼容器364,用以進行結晶生長;及電爐365。圖7(b)為將不鏽鋼容器364放大的圖,不鏽鋼容器364的內部設有坩堝366。本實施例中,坩堝全部使用氧化鋁(Al2 O3 )製坩堝。又,在本實施例中,Ga:Na表示所用的鎵與鈉的物質量比(莫耳比)。又,作為雷射光照射用裝置,全部使用迪思科股份有限公司製的DFL 7560(商品名)。
(實施例1) 首先,準備在厚度約1000μm的藍寶石基板(φ150mm)上層積有厚度約5μm的GaN層的晶種形成基板(POWDEC公司製、商品名GaN Epi-Wafer 150-5-1000)(晶種形成基板提供步驟)。接著,以下列表1記載的條件從該晶種形成基板的前述藍寶石基板側照射雷射光,使前述GaN層與前述藍寶石基板接觸的部分的一部分從前述藍寶石基板分離(晶種部分分離步驟)。此外,以下敘述前述GaN層上藉由前述雷射光照射進行加工而從前述藍寶石基板分離的部分、和未加工而殘留的部分的大小及形狀。 [表1] 光源 :YAG雷射 波長 :257.5nm 重複頻率 :50kHz-200kHz 平均輸出 :0.4W-1.0W 脈寬 :100ps 脈衝能 :8μJ-5μJ 點徑 :50μm 雷射照射手段移動速度 :50-100mm/s
接著,使用該晶種形成基板,在氮氣氛圍下,以下列表2的條件進行結晶成長(生長),以製造GaN結晶。此外,下述「C[mol%] 0.5」表示相對於鎵(Ga)及鈉(Na)及碳粉末的物質量的合計,添加0.5mol%的前述碳粉末。操作上,首先,將加入有鎵(Ga)、鈉(Na)、碳粉末(C)、及前述晶種形成基板的坩堝366放入不鏽鋼容器364之中,並將不鏽鋼容器364放入電爐(耐熱耐壓容器)365之中。接著,在從原料氣體槽361將氮氣導入不鏽鋼容器364內的同時,藉由加熱器(圖中未表示)將電爐(耐熱耐壓容器)365內加熱。然後,在如下列表2記載的高溫高壓條件下,使其反應72小時進行結晶成長(生長),以製造目標的GaN結晶。然後,若為了將製造的GaN結晶從電爐(耐熱耐壓容器)365之中取出而冷卻(放冷)至室溫,則前述藍寶石基板從製造的GaN結晶剝離。再者,以相同的條件製造數次的GaN結晶。 [表2] 溫度[℃] 870 壓力[MPa] 4.0 時間[h] 72 Ga:Na 27:73 C[mol%] 0.5 液位[cm] 0.8 坩堝 Al2 O3 晶種(GaN)膜厚[μm] 5
圖8中表示本實施例製造的GaN結晶、與本實施例中用於製造GaN結晶後的藍寶石基板的照片。圖8左側的照片為前述GaN結晶,右側的照片為前述藍寶石基板。如圖所示,製造的GaN結晶未損壞或殘留於藍寶石基板上,而從前述藍寶石基板分離。
本實施例中,如上所述,若為了將製造的GaN結晶從電爐(耐熱耐壓容器)365之中取出而冷卻(放冷)至室溫,則前述藍寶石基板從製造的GaN結晶剝離。如此,本實施例中,即使不對藍寶石基板及製造的GaN結晶施加外力,亦可使GaN結晶製造步驟後的冷卻步驟中兼具基板分離步驟。再者,如圖8的照片所示,製造的GaN結晶未損壞或殘留於藍寶石基板上,而可從前述藍寶石基板分離。
圖9(a)~(f)中表示本實施例使用的前述晶種形成基板(藉由雷射光進行加工後)的概要。
圖9(a)為示意性地表示前述晶種形成基板的結構的剖面圖。如圖所示,GaN晶種層12a之中,在與藍寶石基板11接觸的部分中經雷射光加工的部分形成有加工痕15,而從藍寶石基板11分離。此外,在加工痕15的部分,推測GaN藉由照射雷射光而變化成金屬鎵。
圖9(b)為前述晶種形成基板的平面照片。如圖所示,在GaN晶種層12a中,觀察到經雷射光加工的加工痕15的部分與未加工而殘留的部分明確地分離。
圖9(c)為從GaN晶種層12a側(與藍寶石基板11的相反側)的面上觀察前述晶種形成基板的SEM(Scanning Electron Microscope,掃描式電子顯微鏡)影像。如圖所示,可確認在與藍寶石基板11相反側的面上,GaN晶種層12a未變化而殘留。
圖9(d)為從藍寶石基板11側的面上觀察前述晶種形成基板的光學顯微鏡影像。如圖所示,在GaN晶種層12a中,可觀察到經雷射光加工的加工痕15的部分與未加工而殘留的部分明確地分離。
圖9(e)為示意性地表示在GaN晶種層12a中經雷射光加工的加工痕15的部分與未加工而殘留的部分的大小及形狀的俯視圖。如圖所示,未加工而殘留的部分,横120μm×縱110μm的矩形與横120μm×縱80μm的矩形各1個,在縱向上以30μm的間隔配置而形成單元。而且該單元多數以縱40μm及横150μm的間隔配置。
圖9(f)為示意性地表示在GaN晶種層12a中未進行雷射光加工而殘留的部分相對於整體的面積比的俯視圖。如圖所示,從經雷射光加工的加工痕15的部分與未加工而殘留的部分的縱横尺寸,可算出前述未加工而殘留的部分的面積約為整體的32.5%。
圖10(a)~(d)中表示圖9的晶種形成基板的PL(光致發光)測量結果。
圖10(a)為從GaN晶種層12a側(與藍寶石基板11的相反側)的面上觀察前述晶種形成基板的PL影像。圖10(b)為表示圖10(a)的PL影像的解析結果的曲線圖。在圖10(b)中,横軸表示波長[nm],縱軸表示相對強度[cnt]。如圖所示,確認到在與藍寶石基板11相反側的面上,GaN晶種層12a未變化而殘留。
又,圖10(c)為從藍寶石基板11側的面上觀察前述晶種形成基板的PL影像。圖10(d)為表示圖10(c)的PL影像的解析結果的曲線圖。在圖10(d)中,横軸表示波長[nm],縱軸表示相對強度[cnt]。如圖所示,觀察到在GaN晶種層12a中,經雷射光加工的加工痕15的部分與未加工而殘留的部分明確地分離。
圖11中表示本實施例製造的不同於圖8的GaN結晶與用於製造前述GaN結晶後的藍寶石基板的照片。圖11(a)為前述GaN結晶的正面(與接觸於藍寶石基板側的相反側的面)的照片。圖11(b)為前述GaN結晶的背面(接觸於藍寶石基板側的面)的照片。圖11(c)為前述藍寶石基板的照片。如圖所示,製造的GaN結晶未損壞或殘留於藍寶石基板上,而從前述藍寶石基板分離。又,如上所述,即使不對藍寶石基板及製造的GaN結晶施加外力,亦可使GaN結晶製造步驟後的冷卻步驟中兼具基板分離步驟。
(參考例) 除了不進行藉由雷射光照射對前述晶種形成基板加工(晶種部分分離步驟),而直接供給至前述結晶成長步驟以外,以與實施例相同的方式製造GaN結晶。
圖12中表示參考例(Ref.)及實施例(LAS圖案加工)的GaN結晶的照片。此外,在本實施例中,「LAS」為雷射輔助分離(Laser Assist Separation)的簡稱。又,亦一併表示各例的GaN結晶的產率(%)及膜厚(mm)。圖12的左側為參考例(Ref.),右側為實施例(LAS圖案加工)。分別上側的照片為前述GaN結晶正面(與藍寶石基板的相反側的面)的照片,下側的照片為前述GaN結晶背面(藍寶石基板側的面)的照片。此外,產率(%)為根據使用的金屬鎵的重量與製造的GaN結晶的重量算出。又,圖12右側的照片的GaN結晶與圖10的照片為相同的GaN結晶。
如圖12所示,參考例的GaN結晶,雖然產率稍高於實施例,但與實施例不同,即使在GaN結晶製造步驟後進行冷卻,藍寶石基板亦不會從GaN結晶剝離而有殘留。又,參考例中,在藍寶石基板上產生裂縫。
圖13的曲線圖為表示圖12所示的實施例及參考例的GaN結晶的XRC(X射線搖擺曲線繞射法)的ω掃描測量結果。圖13(a)為表示參考例(Ref.)的GaN結晶的XRC(X射線搖擺曲線繞射法)測量結果的曲線圖。圖13(b)為表示與實施例中的圖10及12相同的GaN結晶的XRC(X射線搖擺曲線繞射法)測量結果的曲線圖。在圖13(a)及(b)中,分別横軸表示測量角度ω(deg),縱軸表示相對強度。如圖所示,在各例的GaN結晶中,分別針對間隔2mm的5處進行相同的測量。其結果,如圖所示,參考例的GaN結晶在各測量處中的測量結果的偏差大。相對於此,實施例的GaN結晶在各測量處中的測量結果的偏差極小。又,由該等測量結果可確認,若計算各例的GaN結晶的曲率半徑,參考例的GaN結晶為a方向0.98m、m方向1.23m,相對於此,實施例的GaN結晶為a方向16.4m、m方向9.25m。亦即,可確認相較於參考例的GaN結晶,實施例的GaN結晶的曲率半徑極大,故翹曲(應變)大幅減少。
又,圖14中表示實施例製造的再另一GaN結晶的照片。圖14(a)是外徑為4英吋的GaN結晶的照片。圖14(b)是在冷卻後從圖14(a)的GaN結晶剝離的藍寶石基板的照片。圖14(c)是外徑為6英吋的GaN結晶的照片。圖14(d)為圖14(c)的GaN結晶在研磨後的照片。如圖所示,製造的GaN結晶未損壞或殘留於藍寶石基板上,而從前述藍寶石基板分離。又,如上所述,即使不對藍寶石基板及製造的GaN結晶施加外力,亦可使GaN結晶製造步驟後的冷卻步驟中兼具基板分離步驟。再者,根據本實施例,如圖14的照片所示,可製造直徑為4英吋或6英吋等大尺寸且高品質的GaN結晶。
如以上所說明,根據本發明,可提供一種容易將III-V族化合物結晶從基板分離(剝離)的III-V族化合物結晶的製造方法及半導體裝置的製造方法。藉由本發明的III-V族化合物結晶的製造方法及半導體裝置的製造方法製造的III-V族化合物結晶及半導體裝置,如上所述,可用於各種用途,再者,並不限定於此,可適用於任意的半導體裝置或其他廣泛的技術領域。
11‧‧‧基板12‧‧‧III-V族化合物結晶(III-V族化合物結晶層)12a‧‧‧III-V族化合物晶種(III-V族化合物晶種層)13‧‧‧雷射光14‧‧‧雷射光13的照射位置(加工位置)15‧‧‧加工痕16‧‧‧III-V族化合物結晶的原料1000‧‧‧氣相成長爐1001‧‧‧工作台1002‧‧‧原料容納部1003‧‧‧氨氣(NH3)導入管1004‧‧‧氫氣(H2)導入管1005‧‧‧氯化氫氣體(HCl)導入管1006‧‧‧加熱器1007‧‧‧排氣管361‧‧‧原料氣體槽362‧‧‧壓力調整器363‧‧‧洩漏用閥364‧‧‧不鏽鋼容器365‧‧‧電爐366‧‧‧坩堝10‧‧‧雷射加工裝置20‧‧‧靜止基台30‧‧‧保持台機構320‧‧‧第1滑塊330‧‧‧第2滑塊370‧‧‧加工進給手段380‧‧‧第1分度進給手段360‧‧‧保持台40‧‧‧雷射光照射單元支撐機構420‧‧‧可動支撐基台430‧‧‧第2分度進給手段50‧‧‧雷射光照射單元510‧‧‧單元保持座60‧‧‧雷射光照射手段640‧‧‧聚光器90‧‧‧攝像手段530‧‧‧聚光點位置調整手段400‧‧‧工件F‧‧‧環狀框架T‧‧‧黏著膠帶
圖1為示意性地表示本發明的III-V族化合物結晶製造方法其一例的步驟圖。 圖2為示意性地表示用於本發明的III-V族化合物結晶製造方法的氣相成長爐其一例的剖面圖。 圖3為表示用於本發明的III-V族化合物結晶製造方法的雷射加工裝置其一例的立體圖。 圖4為將圖3的雷射加工裝置中的工件固定於框架的狀態的立體圖。 圖5為表示使圖4的工件位於雷射光照射手段中的聚光器下方的狀態的立體圖。 圖6為表示使圖4的工件位於雷射光照射手段中的聚光器下方的狀態的圖。圖6(a)為前視圖,圖6(b)為剖面圖。 圖7為示意性地表示實施例中使用的LPE裝置的結構的圖。 圖8為實施例中製造的GaN結晶及從前述GaN結晶剝離的藍寶石基板的圖像。 圖9為表示實施例中使用的晶種形成基板的結構的圖。 圖10為表示圖9的晶種形成基板的PL(Photoluminescence,光致發光)測量結果的圖。 圖11為實施例中製造的另一GaN結晶及從前述GaN結晶剝離的藍寶石基板的照片。 圖12為將與圖11相同的GaN結晶照片和比較例的GaN結晶照片一併表示的照片。 圖13為表示圖12所示的實施例及比較例的GaN結晶其XRC(X射線搖擺曲線繞射法)測量結果的曲線圖。 圖14為實施例中製造的再另一GaN結晶的照片。
11‧‧‧基板
12‧‧‧III-V族化合物結晶(III-V族化合物結晶層)
12a‧‧‧III-V族化合物晶種(III-V族化合物晶種層)
13‧‧‧雷射光
14‧‧‧雷射光13的照射位置(加工位置)
15‧‧‧加工痕
1000‧‧‧氣相成長爐
1001‧‧‧工作台

Claims (10)

  1. 一種III-V族化合物結晶的製造方法,包含:晶種形成基板提供步驟,提供在基板上形成有III-V族化合物晶種的晶種形成基板;晶種部分分離步驟,使前述III-V族化合物晶種與前述基板接觸的部分的一部分從前述基板分離;接觸步驟,在前述晶種部分分離步驟後,使前述III-V族化合物晶種中與前述基板相反側的表面接觸金屬熔化液;以及結晶成長步驟,在前述晶種部分分離步驟後,將前述III-V族化合物晶種作為核,使III族元素與V族元素進行反應,藉此使III-V族化合物結晶生成並成長,在前述結晶成長步驟中,使選自於Ca3N2、Li3N、NaN3、BN、Si3N4、InN的至少其中一種氮化物存在,並使前述III族元素與前述V族元素在前述金屬熔化液中進行反應。
  2. 如申請專利範圍第1項所述之製造方法,其中,在前述晶種部分分離步驟中,藉由從前述晶種形成基板的前述基板側對前述III-V族化合物晶種照射雷射光,將前述III-V族化合物晶種與前述基板接觸的部分的一部分分離。
  3. 如申請專利範圍第1項所述之製造方法,其中,前述V族元素為氮,前述金屬熔化液為鹼金屬熔化液,前述III-V族化合物為III族氮化物,在前述結晶成長步驟中,在包含氮的氛圍下使III族元素與前述氮在前述鹼金屬熔化液中進行反應,藉此將前述III-V族化合物晶種作為核,使III族氮化物結晶生成並成長。
  4. 如申請專利範圍第1或2項所述之製造方法,其中,在前述晶種部分分離步驟中,將前述III-V族化合物晶種與前述基板接觸的部分殘留成島狀。
  5. 如申請專利範圍第1或2項所述之製造方法,其中, 前述III-V族化合物晶種及前述III-V族化合物結晶為氮化鎵(GaN)。
  6. 如申請專利範圍第1或2項所述之製造方法,其中,在前述結晶成長步驟後進一步包含基板分離步驟,將前述基板從前述III-V族化合物結晶分離。
  7. 如申請專利範圍第6項所述之製造方法,其中,在前述基板分離步驟中,藉由溫度變化所帶來的前述III-V族化合物結晶與前述基板之間的膨脹率或收縮率的差,將前述基板從前述III-V族化合物結晶分離。
  8. 如申請專利範圍第7項所述之製造方法,其中,在前述基板分離步驟中,將前述III-V族化合物結晶及前述基板冷卻。
  9. 如申請專利範圍第1或2項所述之製造方法,其中,前述基板為藍寶石基板。
  10. 一種包含III-V族化合物結晶的半導體裝置的製造方法,包含:晶種形成基板提供步驟,提供在基板上形成有III-V族化合物晶種的晶種形成基板;晶種部分分離步驟,使前述III-V族化合物晶種與前述基板接觸的部分的一部分從前述基板分離;接觸步驟,在前述晶種部分分離步驟後,使前述III-V族化合物晶種中與前述基板相反側的表面接觸金屬熔化液;以及結晶成長步驟,在前述晶種部分分離步驟後,將前述III-V族化合物晶種作為核,使III族元素與V族元素進行反應,藉此使III-V族化合物結晶生成並成長,在前述結晶成長步驟中,使選自於Ca3N2、Li3N、NaN3、BN、Si3N4、InN的至少其中一種氮化物存在,並使前述III族元素與前述V族元素在前述金屬熔化液中進行反應。
TW107132871A 2017-09-21 2018-09-18 Iii-v族化合物結晶的製造方法及半導體裝置的製造方法 TWI761596B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017181815A JP7117690B2 (ja) 2017-09-21 2017-09-21 Iii-v族化合物結晶の製造方法および半導体装置の製造方法
JP2017-181815 2017-09-21

Publications (2)

Publication Number Publication Date
TW201915232A TW201915232A (zh) 2019-04-16
TWI761596B true TWI761596B (zh) 2022-04-21

Family

ID=65526716

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107132871A TWI761596B (zh) 2017-09-21 2018-09-18 Iii-v族化合物結晶的製造方法及半導體裝置的製造方法

Country Status (6)

Country Link
US (1) US10910511B2 (zh)
JP (1) JP7117690B2 (zh)
KR (1) KR102499221B1 (zh)
CN (1) CN109537056A (zh)
DE (1) DE102018216146B4 (zh)
TW (1) TWI761596B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11056338B2 (en) * 2018-10-10 2021-07-06 The Johns Hopkins University Method for printing wide bandgap semiconductor materials
US11823900B2 (en) 2018-10-10 2023-11-21 The Johns Hopkins University Method for printing wide bandgap semiconductor materials
JP7262027B2 (ja) 2019-05-17 2023-04-21 パナソニックIpマネジメント株式会社 Iii族窒化物半導体の製造方法
JP2021158303A (ja) * 2020-03-30 2021-10-07 株式会社ディスコ レーザー加工装置
KR20220006880A (ko) * 2020-07-09 2022-01-18 주식회사루미지엔테크 단결정 기판의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017775A (zh) * 2006-12-19 2007-08-15 北京大学 降低氮化镓单晶膜与异质基底间应力的方法
CN103814160A (zh) * 2012-08-30 2014-05-21 日本碍子株式会社 复合基板、其制造方法、13族元素氮化物构成的功能层的制造方法以及功能元件
US20170145591A1 (en) * 2015-11-25 2017-05-25 Sciocs Company Limited Substrate for crystal glowth, nitride crystal substrate and manufacturing method of the same
CN107002284A (zh) * 2014-12-03 2017-08-01 日本碍子株式会社 13族元素氮化物层的分离方法及复合基板

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920875B1 (zh) 1970-03-09 1974-05-28
JPS4920875A (zh) 1972-06-20 1974-02-23
JPH0754806B2 (ja) 1987-01-20 1995-06-07 日本電信電話株式会社 化合物半導体単結晶膜の成長方法
JP3493691B2 (ja) 1993-08-19 2004-02-03 コベルコ建機株式会社 油圧作業機械のアクチュエータ制御装置
JP2003007616A (ja) 2001-03-23 2003-01-10 Matsushita Electric Ind Co Ltd 半導体膜の製造方法
US6498113B1 (en) * 2001-06-04 2002-12-24 Cbl Technologies, Inc. Free standing substrates by laser-induced decoherency and regrowth
JP4422473B2 (ja) 2003-01-20 2010-02-24 パナソニック株式会社 Iii族窒化物基板の製造方法
US7524691B2 (en) * 2003-01-20 2009-04-28 Panasonic Corporation Method of manufacturing group III nitride substrate
JP4588340B2 (ja) 2003-03-20 2010-12-01 パナソニック株式会社 Iii族窒化物基板の製造方法
JP4920875B2 (ja) 2003-05-29 2012-04-18 パナソニック株式会社 Iii族窒化物結晶の製造方法、およびiii族窒化物基板の製造方法
KR100616656B1 (ko) * 2005-01-03 2006-08-28 삼성전기주식회사 질화갈륨계 단결정 기판의 제조방법 및 제조장치
US9790616B2 (en) 2006-04-07 2017-10-17 Sixpoint Materials, Inc. Method of fabricating bulk group III nitride crystals in supercritical ammonia
JP5256198B2 (ja) 2007-07-13 2013-08-07 日本碍子株式会社 Iii族窒化物単結晶の製造方法
WO2009047894A1 (ja) 2007-10-09 2009-04-16 Panasonic Corporation Iii族窒化物結晶基板の製造方法、iii族窒化物結晶基板、iii族窒化物結晶基板を用いた半導体装置
KR20140053184A (ko) * 2011-07-13 2014-05-07 더 리전츠 오브 더 유니버시티 오브 캘리포니아 벌크 iii-족 질화물 결정들의 성장
JP6143148B2 (ja) 2012-02-26 2017-06-07 国立大学法人大阪大学 Iii族窒化物結晶の製造方法および半導体装置の製造方法
JP2014009156A (ja) 2012-06-29 2014-01-20 Samsung Corning Precision Materials Co Ltd 窒化ガリウム基板の製造方法および該方法により製造された窒化ガリウム基板
JP6384851B2 (ja) 2014-03-03 2018-09-05 国立大学法人大阪大学 Iii族窒化物結晶の製造方法、iii族窒化物結晶、半導体装置およびiii族窒化物結晶製造装置
CN107002278B (zh) 2014-12-02 2019-07-09 希波特公司 第iii族氮化物晶体、其制造方法和在超临界氨气中制造块状第iii族氮化物晶体的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017775A (zh) * 2006-12-19 2007-08-15 北京大学 降低氮化镓单晶膜与异质基底间应力的方法
CN103814160A (zh) * 2012-08-30 2014-05-21 日本碍子株式会社 复合基板、其制造方法、13族元素氮化物构成的功能层的制造方法以及功能元件
CN107002284A (zh) * 2014-12-03 2017-08-01 日本碍子株式会社 13族元素氮化物层的分离方法及复合基板
US20170145591A1 (en) * 2015-11-25 2017-05-25 Sciocs Company Limited Substrate for crystal glowth, nitride crystal substrate and manufacturing method of the same

Also Published As

Publication number Publication date
US10910511B2 (en) 2021-02-02
DE102018216146A1 (de) 2019-03-21
DE102018216146B4 (de) 2021-03-25
KR102499221B1 (ko) 2023-02-10
CN109537056A (zh) 2019-03-29
JP2019055901A (ja) 2019-04-11
US20190088816A1 (en) 2019-03-21
KR20190033424A (ko) 2019-03-29
JP7117690B2 (ja) 2022-08-15
TW201915232A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
TWI761596B (zh) Iii-v族化合物結晶的製造方法及半導體裝置的製造方法
JP5026271B2 (ja) 六方晶系窒化物単結晶の製造方法、六方晶系窒化物半導体結晶及び六方晶系窒化物単結晶ウエハの製造方法
EP3056592B1 (en) Method for producing group iii nitride crystal and apparatus for producing group iii nitride crystal
JP6144630B2 (ja) 複合基板の製造方法、13族元素窒化物からなる機能層の製造方法
JP6019542B2 (ja) Iii族窒化物結晶の製造方法およびiii族窒化物結晶製造装置
JP2007277055A (ja) 半導体結晶の製造方法および半導体基板
JP4981602B2 (ja) 窒化ガリウム基板の製造方法
JP2007277055A5 (zh)
JP2007227629A (ja) 化合物半導体の活性化方法及び装置
JP2014055091A (ja) Iii−v族化合物結晶製造方法、種結晶形成基板製造方法、iii−v族化合物結晶、半導体装置、iii−v族化合物結晶製造装置、種結晶形成基板製造装置
US11437233B2 (en) Base substrate, functional element, and method for manufacturing base substrate
US20180094361A1 (en) Method for producing group iii nitride crystal, semiconductor apparatus, and apparatus for producing group iii nitride crystal
JP2008285401A (ja) Iii族窒化物単結晶基板の製造方法、および該基板を積層した積層基板
JP4398762B2 (ja) Iii族元素窒化物単結晶の製造方法およびそれに用いる反応容器
US11245054B2 (en) Base substrate, functional element, and production method for base substrate
JP6596692B2 (ja) Iii族元素窒化物結晶製造方法、iii族元素窒化物結晶、半導体装置、半導体装置の製造方法およびiii族元素窒化物結晶製造装置
JP6714320B2 (ja) 13族窒化物結晶の製造方法及び13族窒化物結晶を有する積層体
JP2006182596A (ja) Iii族元素窒化物結晶の製造方法、それにより得られるiii族元素窒化物結晶、ならびにそれを含む半導体装置
JP4615327B2 (ja) Iii族窒化物の結晶製造方法
JP5672261B2 (ja) 窒化ガリウム結晶
JP2015117151A (ja) 窒化アルミニウム結晶の製造方法