TWI754773B - 提升蓄電之系統及方法 - Google Patents

提升蓄電之系統及方法 Download PDF

Info

Publication number
TWI754773B
TWI754773B TW107131407A TW107131407A TWI754773B TW I754773 B TWI754773 B TW I754773B TW 107131407 A TW107131407 A TW 107131407A TW 107131407 A TW107131407 A TW 107131407A TW I754773 B TWI754773 B TW I754773B
Authority
TW
Taiwan
Prior art keywords
electrical energy
energy storage
storage device
electrode
magnets
Prior art date
Application number
TW107131407A
Other languages
English (en)
Other versions
TW201931398A (zh
Inventor
G 諾亞 紐馬克
史蒂芬 M 柯林斯
Original Assignee
美商清水控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商清水控股股份有限公司 filed Critical 美商清水控股股份有限公司
Publication of TW201931398A publication Critical patent/TW201931398A/zh
Application granted granted Critical
Publication of TWI754773B publication Critical patent/TWI754773B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/08Structural combinations, e.g. assembly or connection, of hybrid or EDL capacitors with other electric components, at least one hybrid or EDL capacitor being the main component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一種電能儲存裝置包括:一外殼,其具有一第一端、一第二端、一第一側及一第二側;一第一電極,其毗鄰該第一側安置於該外殼中;一第二電極,其毗鄰該第二側安置於該外殼中;及一電解質混合物,其安置於該第一電極與該第二電極之間,該電解質混合物含有複數個離子。在一實施方案中,安置於該外殼中之一通道准許離子毗鄰於該第一端流動且該外殼中之一障壁阻止離子毗鄰於該第二端流動。在另一實施方案中,該等離子中之某些離子係磁性的。在一額外實施方案中,該等離子中之某些離子具有比其他離子大之一密度。藉由將一磁場施加至該電能儲存裝置或使該裝置旋轉而提升該電能儲存裝置之充電。

Description

提升蓄電之系統及方法
本發明係關於電能儲存,更具體而言,本發明係關於連同旋轉或線性機器一起而且連同電磁馬達及產生器一起使用電能儲存裝置。
當前電能儲存裝置及方法具有限制其在各種應用中之效用之操作約束。該等限制可追溯至設計、製造程序及其他實體約束。需要新裝置及用於使用彼等裝置之方法,此可改良用於具有增加需求之應用(諸如電池及混合動力電動車輛、奈米型電網及微型電網以及大容量電力系統)之電能儲存之功能效用。
本發明針對於最小化此等約束且引入經擴展功能性,而且解決其他問題。
根據本發明之某些態樣,一種電能儲存裝置包括:一外殼,其具有一第一端部分、一第二相對端部分、一第一側部分及一第二相對側部分;一第一電極,其毗鄰於該第一側部分安置於該外殼中;一第二電極,其毗鄰於該第二相對側部分安置於該外殼中;一電解質混合物,其安置於該外殼中且大致位於該第一電極與該第二電極之間,該電解質混合物含有複數個離子;一通道,其大致界定於該第一電極與該第二電極之間,該通道經組態以准許該複數個離子之至少一部分自大致毗鄰於該第一電極的該通道之一第一部分流動穿過大致毗鄰於該外殼之該第一端部分的該通道之一第二部分且到達大致毗鄰於該第二電極的該通道之一第三部分;及一障壁,其大致安置於該第一電極與該第二電極之間,該障壁經組態以輔助阻止該複數個離子毗鄰於該外殼之該第二端部分流動。
根據本發明之某些態樣,一種電磁機器包括:一軸;一線圈總成,其耦合至該軸,該線圈總成包含一磁芯及纏繞在該磁芯上之一線圈;一第一組磁體,其耦合至該軸使得該第一組磁體毗鄰於該線圈總成定位;及至少一個電能儲存裝置,其毗鄰於該線圈安置,該至少一個電能儲存裝置包含:一外殼,其具有一第一端部分、一第二相對端部分、一第一側部分及一第二相對側部分;一第一電極,其毗鄰於該第一側部分安置於該外殼中;一第二電極,其毗鄰於該第二相對側部分安置於該外殼中;一電解質混合物,其安置於該外殼中且大致位於該第一電極與該第二電極之間,該電解質混合物含有複數個離子;一通道,其大致界定於該第一電極與該第二電極之間,該通道經組態以准許該複數個離子之至少一部分自大致毗鄰於該第一電極的該通道之一第一部分流動穿過大致毗鄰於該外殼之該第一端部分的該通道之一第二部分且到達大致毗鄰於該第二電極的該通道之一第三部分;及一障壁,其大致安置於該第一電極與該第二電極之間,該障壁經組態以輔助阻止該複數個離子毗鄰於該外殼之該第二端部分流動。
根據本發明之某些態樣,一種電能儲存裝置包括:一外殼,其具有一第一端部分、一第二相對端部分、一第一側部分及一第二相對側部分;一第一電極,其毗鄰於該第一側部分安置於該外殼中;一第二電極,其毗鄰於該第二相對側部分安置於該外殼中;及一電解質混合物,其安置於該外殼中且大致位於該第一電極與該第二電極之間,該電解質混合物含有複數個磁性離子及複數個非磁性離子。所有該等磁性離子一般具有相同電荷,且所有該等非磁性離子一般具有相同電荷。該等磁性離子之該電荷一般與該等非磁性離子之該電荷相反。
根據本發明之某些態樣,一種電磁機器包括:一軸;一線圈總成,其安裝於該軸上,該線圈總成包含一磁芯及纏繞在該磁芯上之一線圈;一組磁體,其毗鄰於該至少一個線圈總成;及一電能儲存裝置,其毗鄰該組磁體安置,該電能儲存裝置包含:一外殼,其具有一第一端部分、一第二相對端部分、一第一側部分及一第二相對側部分;一第一電極,其毗鄰於該第一側部分安置於該外殼中;一第二電極,其毗鄰於該第二相對側部分安置於該外殼中;及一電解質混合物,其安置於該外殼中且大致位於該第一電極與該第二電極之間,該電解質混合物含有複數個磁性離子及複數個非磁性離子。所有該等磁性離子一般具有相同電荷,且所有該等非磁性離子一般具有相同電荷。該等磁性離子之該電荷一般與該等非磁性離子之該電荷相反。
根據本發明之某些態樣,一種電能儲存裝置包括:一外殼,其具有一第一端部分、一第二相對端部分、一第一側部分及一第二相對側部分;一第一電極,其毗鄰於該第一側部分安置於該外殼中;一第二電極,其毗鄰於該第二相對側部分安置於該外殼中;一電解質混合物,其在該外殼中安置於該第一電極與該第二電極之間,該電解質混合物含有複數個離子,該複數個離子包含具有一第一密度之一第一類型之離子及具有不同於該第一密度之一第二密度之一第二類型之離子。具有該第一密度之所有該第一類型之離子一般具有相同電荷,且具有該第二密度之所有該第二類型之離子一般具有相同電荷。該第一類型之離子之該電荷一般與該第二類型之離子之該電荷相反。
根據本發明之某些態樣,一種電磁機器包括:一軸;一線圈總成,其安裝於該軸上,該線圈總成包含一磁芯及纏繞在該磁芯上之一線圈;一組磁體,其毗鄰於該至少一個線圈總成;及一電能儲存裝置,其毗鄰於該組磁體安置,該電能儲存裝置包含:一外殼,其具有一第一端部分、一第二相對端部分、一第一側部分及一第二相對側部分;一第一電極,其毗鄰於該第一側部分安置於該外殼中;一第二電極,其毗鄰於該第二相對側部分安置於該外殼中;及一電解質混合物,其在該外殼中安置於該第一電極與該第二電極之間,該電解質混合物含有複數個離子,該複數個離子包含具有一第一密度之一第一類型之離子及具有不同於該第一密度之一第二密度之一第二類型之離子。具有該第一密度之所有該第一類型之離子一般具有相同電荷,且具有該第二密度之所有該第二類型之離子一般具有相同電荷。該第一類型之離子之該電荷一般與該第二類型之離子之該電荷相反。
根據本發明之某些態樣,一種將一電能儲存裝置充電之方法包括:毗鄰於一電磁機器或在該電磁機器內定位該電能儲存裝置,該電磁機器包含至少一組磁體及至少一個線圈總成;致使該電磁機器旋轉使得(i)該至少一組磁體相對於該至少一個線圈總成旋轉,(ii)該至少一個線圈總成相對於該至少一組磁體旋轉,或(iii)發生(i)及(ii)兩種情況;及回應於該至少一組磁體或該至少一個線圈總成之該旋轉,在該電能儲存裝置內產生電能。在某些態樣中,該至少一組磁體或該至少一個線圈總成之旋轉產生一磁場,該磁場可致使在該電能儲存裝置內產生該電能。在某些態樣中,該至少一組磁體或該至少一個線圈總成之旋轉致使該電能儲存裝置旋轉,且該電能儲存裝置之該旋轉致使在該電能儲存裝置內產生該電能。
根據本發明之某些態樣,一種將一電能儲存裝置充電之方法包括:將一磁場施加至該電能儲存裝置;及回應於該將該磁場施加至該電能儲存裝置,將一定量之電能儲存於該電能儲存裝置中。在某些態樣中,該電能儲存裝置可在一電磁機器內或毗鄰於該電磁機器定位。在某些態樣中,該電磁機器之旋轉可致使該磁場施加至該電能儲存裝置。
熟習此項技術者鑒於對各種實施例及/或實施方案之詳細說明將明瞭本發明之前述及額外態樣及實施方案,參考圖式進行對各種實施例及/或實施方案之詳細說明,接下來提供對該等圖式之一簡要說明。
相關申請案之交叉參考
本申請案主張2017年9月8日提出申請之第62/556,001號美國臨時專利申請案之優先權及權益,該美國臨時專利申請案之全部內容據此以引用方式併入本文中。
現在參考圖1A,展示根據本發明之態樣之一旋轉電磁機器2之一實施方案之一分解圖。旋轉電磁機器2一般包含一外磁體總成4A、一內磁體總成4B及一定子總成6。外磁體總成4A及內磁體總成4B可各自包含經組態以圍繞軸線8旋轉之一或多個磁體。定子總成6可具有包含纏繞在一磁芯上之一線圈之一或多個線圈總成。纏繞在該磁芯上之該線圈可由一單個繞組構成,或可由電連接在一起之多個繞組構成。磁體與線圈總成之間的相對旋轉引發穿過線圈之磁通量,利用該磁通量作為旋轉電磁機器2之功能性之一部分。
圖1B展示圖1A之旋轉電磁機器之一摺疊視圖之一剖面。展示外磁體總成4A之兩個區段,該兩個區段各自含有磁體10A及10B,而內磁體總成4B之每一區段含有磁體12。在經組裝時,每一組磁體10A、10B及12大致環繞或包圍一線圈總成13。在某些實施方案中,外磁體總成4A及內磁體總成4B係機器之轉子,且因此磁體10A、10B及12經組態以圍繞軸線8相對於線圈總成13旋轉,線圈總成13保持大致固定。在此實施方案中,線圈總成13被視為係機器之定子。在其他實施方案中,線圈總成13係轉子,且因此經組態以圍繞軸線8相對於磁體10A、10B及12旋轉,磁體10A、10B及12保持固定。在此實施方案中,外磁體總成4A及內磁體總成4B被視為係機器之定子。旋轉電磁機器可具有圍繞旋轉軸線8安置之任何適合數目個線圈總成,且因此具有任何適合數目個伴隨磁體組。雖然展示三個磁體10A、10B及12,但圖1A及圖1B之電磁機器可具有任何適合數目個磁體。
現在參考圖2,展示一旋轉電磁機器16之另一實施方案之一剖面。旋轉電磁機器16包含安裝於一磁體外殼20中之磁體18A、18B及18C,及安裝於一線圈外殼22中之一線圈總成(未展示)。在操作中,磁體外殼20以及磁體18A、18B及18C可經組態以圍繞軸線21相對於線圈外殼22旋轉,而線圈外殼22固定地耦合至一主軸24。另一選擇係,線圈外殼22及線圈總成可圍繞軸線21相對於磁體18A、18B及18C旋轉,而磁體外殼20固定地耦合至主軸24。圖2中之旋轉電磁機器16之剖面展示圍繞旋轉軸線21安置之兩個線圈外殼22,且因此展示兩組磁體18A、18B及18C。然而,任何適合數目個線圈外殼及伴隨磁體可圍繞旋轉軸線21安置。
一般而言,如本文中所論述之旋轉電磁機器可係旋轉電磁產生器,該等旋轉電磁產生器將旋轉動能轉換成電能、磁能或兩者。另一選擇係,旋轉電磁機器可係一旋轉電磁馬達,該旋轉電磁馬達將電能、磁能或兩者轉換成旋轉動能。
根據本文中之本發明之態樣,亦可使用其他電磁機器。舉例而言,圖1A及圖1B之旋轉電磁機器可替代外磁體總成4A及內磁體總成4B而包含一單個磁體總成,該單個磁體總成包含作為機器之一部分而使用之磁體。該等磁體可組態為旋轉電磁機器之轉子,而線圈總成組態為旋轉電磁機器之定子。另一選擇係,該等磁體可組態為旋轉電磁機器之定子,而線圈總成組態為旋轉電磁機器之轉子。此外,旋轉電磁機器之轉子或定子中之一者或兩者可包括磁體與線圈總成之一組合。如本文中所論述而利用之任何旋轉電磁機器可具有在一磁體組中之任何適合數目個磁體,諸如一個、兩個、三個、四個、五個或更多個磁體,且可具有任何適合數目個磁體組。
此外,如本文中所論述之電磁機器可替代一旋轉電磁機器而係一線性電磁機器。一線性電磁產生器可利用一或多個磁體來將線性動能轉換成電能、磁能或兩者。一線性電磁馬達將電能、磁能或兩者轉換成線性動能。該等磁體可組態為線性電磁機器之轉子,而線圈總成組態為線性電磁機器之定子。另一選擇係,該等磁體可組態為線性電磁機器之定子,而線圈總成組態為線性電磁機器之轉子。此外,線性電磁機器之轉子或定子中之一者或兩者可包括磁體與線圈總成之一組合。如本文中所論述而利用之任何線性電磁機器可具有在一磁體組中之任何適合數目個磁體,諸如一個、兩個、三個、四個、五個或更多個磁體,且可具有任何適合數目個磁體組。根據本發明之態樣,亦可使用其他類型之電磁機器。一般而言,本文中所闡述之機器中之任一者之任一組件可經由一或多個軸承耦合至另一組件以允許組件之間的相對旋轉。舉例而言,任一電磁機器之定子(其可包含含有磁體之一磁體外殼或含有線圈及對應磁芯之一線圈外殼)可經由一或多個軸承耦合至一軸,而轉子(其可包含含有磁體之一磁體外殼或含有線圈及對應磁芯之一線圈外殼)固定地耦合至該軸。此允許軸及轉子相對於定子旋轉。在某些實施方案中,定子可固定地耦合至軸,而轉子經由一或多個軸承耦合至軸。
現在參考圖3,展示一電能儲存裝置30。所展示之電能儲存裝置30之類型一般稱為一電雙層電容器。電能儲存裝置30包含一外殼32、一第一電極34A及一第二電極34B。第一電極34A及第二電極34B彼此大致平行且安置於外殼32之對置側上。該等電極中之任一者可用作一陰極或一陽極。在一溶劑中含有陽離子36A及陰離子36B之一電解質混合物安置於外殼32中。電能儲存裝置30亦可包含安置於第一電極34A與第二電極34B之間的一離子可滲透分離器38。離子可滲透分離器38可用於將第一電極34A與第二電極34B機械地分開,同時允許陽離子36A及陰離子36B貫穿外殼32之內部流動。可經由一電源40將電力施加至電能儲存裝置30。電源40可係一電壓源、一電流源或任何其他適當源。施加來自電源40之電力致使電能儲存於電能儲存裝置30中。對根據本發明之態樣將電能儲存於蓄電裝置中之提及一般係指電荷在電能儲存裝置之電極上之積聚及儲存。此外,對將一電能儲存裝置充電之動作之提及一般係指致使電能儲存裝置以經累積電荷之形式儲存能量,無論藉由施加一外部電源還是藉由另一方法。
在一標準電容器中,隨著電荷在電容器之電極上之一累積而儲存電能。藉由不准許電流流動之一介電質將電極分開。當將來自一電源之電力施加至標準電容器時,正電荷在一個電極上累積,而負電荷在另一電極上累積,此形成跨越介電質之一電場。電容器之電容係已在電極上累積之電荷與跨越電極施加之電壓之一比率。一平行板電容器中之電容亦與電極之間的距離大致成比例。
在諸如電能儲存裝置30之一電雙層電容器中,施加來自電源40之電力致使正電荷42A在第一電極34A上累積,且負電荷42B在第二電極34B上累積。由於電解質混合物中之陽離子36A及陰離子36B貫穿外殼32自由流動(且並非固定的,如在一普通電容器之介電質中),因此第一電極34A上之正電荷42A將吸引帶負電陰離子36B。類似地,第二電極34B上之負電荷42B吸引帶正電陽離子36A。此吸引因此形成兩個電荷雙層44A及44B。雙層44A、44B中之每一電荷層一般由溶劑之小數目個分子分開。因此,雙層44A、44B中之電荷層分開非常小距離。每一雙層44A、44B用作具有分開一非常小距離之平行電極之一標準電容器,此跨越電極增加針對一給定電壓之電容。除經減小距離之效應之外,電能儲存裝置30之電極34A、34B亦可塗佈有一種多孔物質,諸如活化碳粉。此有效地增加電極之可用表面積,從而允許更多正電荷42A及負電荷42B儲存於其上,此亦使電能儲存裝置30之電容增加至高於一標準電容器之電容。
現在參考圖4A,展示電能儲存裝置50。電能儲存裝置50一般組態為一電雙層電容器,且因此具有包含一第一端部分58A、一第二相對端部分58B、一第一側部分55A及一第二相對側部分55B之一外殼52。電能儲存裝置50包含毗鄰於第一側部分55A安置於外殼中之一第一電極54A、毗鄰於第二相對側部分55B安置於外殼中之一第二電極54B及安置於外殼52中且大致位於第一電極54A與第二電極54B之間的含有複數個離子之一電解質混合物。該電解質混合物一般含有陽離子56A及陰離子56B。類似於電能儲存裝置30,第一電極54A與第二電極54B彼此大致平行。然而,電能儲存裝置50包含減少外殼52中之可用體積之一離子不可滲透障壁53,陽離子56A及陰離子56B可行進穿過離子不可滲透障壁53。障壁53可係外殼52之一組成部分,或可係一單獨組件。如所展示,障壁53大致安置於第一電極54A與第二電極54B之間且毗鄰於外殼52之第一端部分58A。障壁53經組態以輔助阻止陽離子56A及陰離子56B毗鄰於第一端部分58A在第一電極54A與第二電極54B之間流動。
外殼52進一步包含大致界定於第一電極54A與第二電極54B之間且毗鄰於第二端部分58B之一通道60。如所展示,通道60大致毗鄰外殼52之第二相對端部分58B而界定,且橫跨在第一電極54A與第二電極54B之間的外殼52之長度。通道60經組態以准許陽離子56A及陰離子56B自大致毗鄰於第一電極54A的通道60之一第一部分61A流動穿過大致毗鄰於外殼52之第二端部分58B的通道60之一第二部分61B且到達大致毗鄰於第二電極54B的通道60之一第三部分61C。通道60亦經組態以亦准許陽離子56A及陰離子56B以相反次序流動。通道60可至少部分地由障壁53界定。如圖4A中所展示,離子可滲透分離器38可安置於通道60內。
如圖4A中所展示,一磁場62可施加至電能儲存裝置50,此將一力賦予陽離子56A及陰離子56B。磁場62之方向可係進入或離開圖之平面。以此方式,磁場62垂直於連接第一電極54A與第二電極54B之一軸線。磁場62亦垂直於連接外殼52之第一端部分58A與外殼52之第二端部分58B之一軸線。當施加磁場62時,磁場62垂直於陽離子56A及陰離子56B在其於通道60內漂移時之速度而將一力賦予陽離子56A及陰離子56B。如圖4A中所展示,當磁場62之方向係進入頁面時,係正電荷之陽離子56A將經受一順時針方向力。當磁場62之方向係進入頁面時,係負電荷之陰離子56B將經受一逆時針方向力。因此,將磁場62施加至頁面中致使通道60內之陽離子56A朝向第一電極54A流動。類似地,致使通道60中之陰離子56B朝向第二電極54B流動。
當陽離子56A自第三部分61C及第二部分61B朝向第一電極54A行進時,歸因於磁場62之力致使陽離子56A沿著通道60之第一部分61A朝向外殼52之第一端部分58A向上流動(參考二維圖)。類似地,當陰離子56B自第一部分61A及第二部分61B朝向第二電極54B行進時,歸因於磁場62之力致使陰離子56B沿著通道60之第三部分61C朝向外殼52之第一端部分58A向上流動。
當陽離子56A沿著通道60之第一部分61A朝向第一端部分58A流動時,由於磁場62而產生的對陽離子56A之力致使陽離子56A遠離第一電極54A朝向第二電極54B移動。類似地,當陰離子56B沿著通道60之第三部分61C朝向第一端部分58A流動時,由於磁場62而產生的對陰離子56B之力致使陰離子56B遠離第二電極54B朝向第一電極54A移動。當發生此移動時,離子不可滲透障壁53阻止陽離子56A毗鄰於外殼52之第一端部分58A朝向第二電極54B行進,且阻止陰離子56B毗鄰於外殼52之第一端部分58A朝向第一電極54A行進。因此,障壁53阻止陽離子56A及陰離子56B在一完整圓圈中迴圈,陽離子56A及陰離子56B在所施加磁場62之影響下將以其他方式進行此操作。障壁53之存在替代地致使陽離子56A在第一電極54A附近累積,且致使陰離子56B在第二電極54B附近累積。
因此,通道60一般允許陽離子56A及陰離子56B毗鄰於外殼52之第二端部分58B在第一電極54A與第二電極54B之間流動。類似地,障壁53一般輔助阻止陽離子56A及陰離子56B毗鄰於外殼52之第一端部分58A在第一電極54A與第二電極54B之間流動。通道60因此可具有一大致U形剖面,一大致V形剖面,或允許離子毗鄰外殼52之第二端部分58B在第一電極54A與第二電極54B之間流動且毗鄰第一電極54A及第二電極54B在第一端部分58A與第二端部分58B之間流動的任何其他適合剖面。類似地,障壁53可具有阻止離子毗鄰外殼52之第一端部分58A在第一電極54A與第二電極54B之間流動且形成允許離子毗鄰外殼52之第二端部分58B在第一電極54A與第二電極54B之間流動之通道60的任何適合形狀。
類似於圖3中之電能儲存裝置30,施加來自電源64之電力致使正電荷66A在第二電極54B上積聚,且負電荷66B在第一電極54A上積聚。正電荷66A吸引電解質混合物中之陰離子56B,而負電荷66B吸引電解質混合物中之陽離子56A。因此,來自電源64之所施加電力及如圖4A中所展示之磁場62之施加共同致使陰離子56B朝向第二電極54B移動且陽離子56A朝向第一電極54A移動。在施加來自電源64之電力時施加磁場62因此致使更多離子經引導至電極,且致使離子更直接地朝向電極移動。與僅施加來自電源64之電力之電能儲存裝置30相比較,藉由施加來自電源64之電力而在電能儲存裝置50中形成之電雙層因此更大且更迅速地形成。
可以至少三種不同方式觀察電能儲存裝置50之電容之對應增加及相關聯時間常數之對應減小。一般而言,當藉由僅施加電力而將電能儲存裝置50充電時,電源64在一特定時間週期內將一定量之輸入電力施加至電能儲存裝置50,此致使對應量之電能儲存於電能儲存裝置50中。藉由同步地施加如上文所論述之磁場62,可觀察到經提升特性。一第一方法係在相同時間週期內施加來自電源64之輸入電力,使得自電源64汲取更大量之電能且將該電能儲存於電能儲存裝置50中。一第二方法係在一較短時間週期內施加來自電源64之輸入電力,使得自電源64汲取相等量之能量且將該能量儲存於電能儲存裝置50中。一第三方法係在一時間週期內施加來自電源64之輸入電力,使得儲存於電能儲存裝置50中之總能量大於在未同步地施加磁場62時可儲存於電能儲存裝置50中之最大總能量。因此,磁場之存在增加電能儲存裝置50之電容且減小電能儲存裝置50之時間常數,因此提升電能儲存裝置50之充電。
現在參考圖4B,展示耦合至電源51之電能儲存裝置50之一替代實施方案。在此替代實施方案中,障壁53可包含經組態以選擇性地打開及關閉之閘門59A及59B。閘門59A及59B之打開因此准許陽離子56A及陰離子56B之至少一部分大致毗鄰第一端部分58A流動穿過障壁。此允許陽離子56A及陰離子56B能夠流動遠離第一電極54A及第二電極54B,且可用於避免將電能儲存裝置50過充電。預期障壁53之其他組態,諸如能夠相對於外殼52移動以允許陽離子56A及陰離子56B在外殼52與障壁53之間流動之一障壁53。在另一組態中,障壁53由選擇性地離子可滲透之一材料構成,使得在一個狀態中障壁53阻擋離子流動,且在另一狀態中障壁53允許離子流動穿過障壁53。
現在參考圖5A,展示具有一整合式電能儲存裝置之一旋轉電磁機器之一剖面。圖5A中之電磁機器可係圖1A、圖1B或圖2之旋轉電磁機器,或任何其他適合旋轉電磁機器。在另一實施方案中,該旋轉電磁機器具有一個、兩個、四個、五個或任何適合數目個磁體。在再一實施方案中,該電能儲存裝置與具有任何適合數目個磁體之一線性電磁機器整合在一起。圖5A中之旋轉電磁機器可包含具有磁體72A、72B及72C之一磁體外殼70。磁體外殼70可係圖1A之旋轉電磁機器2之外磁體總成4A與內磁體總成4B之組合。磁體外殼70亦可係圖2之旋轉電磁機器16之外殼20。包含線圈74及一磁芯76之一線圈總成可經安置使得磁體72A、72B及72C大致環繞線圈74及磁芯76。磁芯76可由一層壓板堆疊構成。在某些實施方案中,磁體72A、72B、72C可經組態以旋轉(且因此係轉子之一部分),而線圈74及磁芯76保持固定(且因此係定子之一部分)。在其他實施方案中,線圈74及磁芯76旋轉(且因此係轉子之一部分),而磁體72A、72B、72C保持固定(且因此係定子之一部分)。
一電能儲存裝置78大致安置於電磁機器內。在圖5A之實施方案中,電能儲存裝置大致毗鄰於磁芯76或作為磁芯76之一部分而定位,使得其定位於線圈74內。在此組態中,電能儲存裝置78由線圈74以及磁體72A、72B及72C環繞。電能儲存裝置78可係圖4A及圖4B中所展示之電能儲存裝置中之一者,且因此將具有一第一電極、一第二電極、一第一端及一第二端。在圖5A之實施方案中,電能儲存裝置78連接至電源67。電源67可係電磁機器自身,或可係與電磁機器分開之一獨立電源。在一額外實施方案中,電能儲存裝置78未連接至一電源。若線圈74及磁芯76係轉子之一部分,則電能儲存裝置可經組態以在圖5A之機器之操作期間旋轉或線性移動。若線圈74及磁芯76係定子之一部分,則電能儲存裝置亦可經組態以在圖5A之機器之操作期間保持固定。
如所展示,磁體72A、72B及72C中之每一者係在磁體之對置側上具有一北極77A及一南極77B之一偶極磁體。每一磁體72A、72B及72C使磁體之相同極面對線圈74。如圖5A之實施方案中所展示,每一磁體72A、72B及72C之北極77A面對線圈74。在其他實施方案中,每一磁體72A、72B及72C之南極77B可面對線圈74。
在圖5A之旋轉電磁機器之操作期間,(i)磁體72A、72B及72C將相對於線圈總成及電能儲存裝置78旋轉,或(ii)線圈總成及電能儲存裝置78將相對於磁體72A、72B、72C旋轉。當磁體旋轉時,由磁體產生之磁場將橫穿線圈74之中心。如圖5A中所展示,電能儲存裝置78經定位使得由磁體72A、72B及72C產生之此磁場垂直於連接第一電極54A與第二電極54B之一軸線及連接電能儲存裝置78之第一端部分58A與第二端58B之一軸線兩者。因此,磁體72A、72B及72C之旋轉將致使進入或離開頁面之一磁場透過電能儲存裝置78來施加。圖5A之旋轉電磁機器亦可藉助一個、兩個、四個或五個磁體來操作,只要以與關於圖5A所闡述之方式相同之方式朝向電能儲存裝置78引導由磁性材料施加之場。如上文所論述,施加此磁場會提升電能儲存裝置78之充電。一般而言,當將電源67施加至電能儲存裝置78時,電源67之極性經選擇使得至電能儲存裝置78之電源及所施加磁場兩者皆使陽離子朝向電極中之一者移動,且兩者皆使陰離子朝向另一電極移動。
現在參考圖5B,展示圖5A之旋轉電磁機器之一實施方案之一剖面。此旋轉電磁機器具有包含磁體72A及磁體72B之一第一磁體組;包含磁體73A及磁體73B之一第二磁體組;及包含磁體75A及磁體75B之一第三磁體組。如剖面中所展示,面對線圈74之極針對每一磁體組而交替。磁體72A及72B使每一磁體之南極面對線圈74。磁體73A及73B使每一磁體之北極面對線圈74。磁體75A及75B使每一磁體之南極面對線圈74。如圖5B中可見,額外磁體組幫助在正確方向上引導由磁體產生之磁場垂直穿過線圈74及磁芯76之中心以便提升安置於線圈74內之電能儲存裝置之充電。一般而言,根據本發明之態樣而利用之一旋轉電磁機器將包含圍繞圖5B中所展示之內圈之一外圓周均勻地間隔開之複數個線圈。類似地,旋轉電磁機器將包含圍繞圖5B中所展示之外圈之一內圓周均勻地間隔開之複數個磁體組,使得其中安置有電能儲存裝置之任何一個線圈74不斷地經受垂直穿過線圈74之中心所施加之一磁場。
圖5A及圖5B之旋轉電磁機器連同電能儲存裝置78一起可用於提升電能儲存裝置之充電。為實現此,毗鄰磁體72A、72B及72C實體地安置之電能儲存裝置78電耦合至一獨立電源。該獨立電源然後將電力施加至電能儲存裝置78。由磁體72A、72B、72C產生之磁場穿過電能儲存裝置78,此提升電能儲存裝置78之充電。無論電磁機器旋轉還是不旋轉皆可發生此提升。如上文關於圖4A所論述,可以如下形式發生此提升:藉由在相同時間週期內施加輸入電力而儲存更多能量;藉由在一較短時間週期內施加輸入電力而儲存相同能量;或藉由在一時間週期內施加輸入電力,使得所儲存之能量大於在電能儲存裝置78未毗鄰於磁體72A、72B及72C實體地安置時可儲存於電能儲存裝置78中之最大總能量。
在另一實施方案中,電耦合至電能儲存裝置78之電源係旋轉電磁機器自身。由旋轉電磁機器產生之電能可儲存於電能儲存裝置78中。旋轉電磁機器之旋轉及/或配置再次提升電能儲存裝置78之充電,即使旋轉電磁機器充當電源。藉由捕獲此能量,有效地增加旋轉電磁機器之動態範圍。
在再一實施方案中,電能儲存裝置未電耦合至任何電源。當旋轉電磁機器旋轉且將磁場施加至電能儲存裝置78時,由磁場驅迫電解質混合物中之陽離子及陰離子在對應電極上形成一層。毗鄰於電極表面之此離子層引發一對應電荷層形成於電極自身中,以因此在電極中之每一者上形成電雙層。以此方式,藉由電磁機器之旋轉及/或配置有效地將電能儲存裝置「預充電」。此外,若適當地定位磁體72A、72B、72C,則不需要電磁機器之旋轉。若電荷先前已在機器處於運動中時累積於電極處,則電荷在機器已停下來之後將藉由磁場保持固持於適當位置中。
在又一實施方案中,電能儲存裝置78可安置在線圈74、磁芯76及磁體72A、72B、72C外部。在此實施方案中,電能儲存裝置78可安置於機器之一外部外殼(其可係磁體外殼70)內,且因此將定位於機器內。電能儲存裝置78亦可安置於機器之外部外殼外側,且因此將毗鄰於機器定位。若電能儲存裝置78定位於機器之外部外殼外側且因此毗鄰於機器定位,則機器之外部外殼必須不阻擋磁場到達電能儲存裝置78。不管電能儲存裝置78是定位於電磁機器內還是毗鄰於電磁機器定位,電能儲存裝置78皆經定向使得與電能儲存裝置78相互作用之任何磁場將垂直於連接第一電極54A與第二電極54B之一軸線及連接電能儲存裝置78之第一端部分58A與第二端58B之一軸線兩者,如在圖4A及圖5A中。
現在參考圖6,展示連同圖4A及圖4B之電能儲存裝置一起操作之一旋轉或線性電磁機器之一替代實施方案之一剖面。圖6中之電磁機器可係圖1A、圖1B或圖2之旋轉電磁機器,或任何其他適合旋轉電磁機器。在另一實施方案中,旋轉電磁機器具有一個、兩個、四個、五個或任何適合數目個磁體。在再一實施方案中,電能儲存裝置與具有任何適合數目個磁體之一線性電磁機器整合在一起。圖6之電磁機器之磁體或線圈總成可係轉子或定子。
在此實施方案中,電能儲存裝置79A、79B及79C定位於電磁機器內。然而,不是定位於線圈74內,而是電能儲存裝置79A、79B及79C各自定位於線圈74、磁芯76以及磁體72A、72B及72C外側。在此組態中,電能儲存裝置79A、79B及79C毗鄰於對應磁體72A、72B及72C,使得磁體72A、72B及72C安置於(i)電能儲存裝置79A、79B、79C與(ii)線圈74及磁芯76之間。電能儲存裝置79A、79B及79C可大致安置於線圈74、磁芯76以及磁體72A、72B及72C外側,但在圖6之電磁機器之一外部外殼內,使得電能儲存裝置79A、79B及79C安置於電磁機器內。
在另一實施方案中,電能儲存裝置79A、79B及79C定位於基本上相同組態中,惟電能儲存裝置79A、79B及79C替代在電磁機器內而定位於電磁機器外側且毗鄰於電磁機器定位除外。當電能儲存裝置79A、79B及79C安置於電磁機器之外部外殼外側且因此毗鄰於電磁機器時,外部外殼一般必須不阻擋來自磁體72A、72B及72C之磁場到達電能儲存裝置79A、79B及79C。
在任一實施方案中,由磁體72A、72B及72C產生之磁場經引導垂直於磁體之表面,且因此經引導朝向電能儲存裝置79A、79B及79C。電能儲存裝置79A、79B及79C中之每一者經定向使得來自對應磁體之磁場垂直於電極之間的一軸線且垂直於電能儲存裝置79A、79B及79C之第一端與第二端之間的一軸線。磁場因此垂直於陽離子及陰離子在電能儲存裝置79A、79B及79C中之每一者中之速度而將一力賦予陽離子及陰離子,如上文所論述。在圖6之實施方案中,不需要機器之旋轉或平移來增加電能儲存裝置79A、79B及79C之電容或充電速率。若機器處於運動中且然後停下來,則此等益處將具有一「殘餘」效應。圖6之旋轉電磁機器亦可藉助一個、兩個、四個或五個磁體來操作,只要以與關於圖6所闡述之方式相同之方式朝向電能儲存裝置引導由磁性材料施加之場。
在圖6之實施方案中,電能儲存裝置79A、79B及79C連接至電源81A、81B及81C。電源81A、81B及81C可係電磁機器自身,或可係與電磁機器分開之獨立電源。在一額外實施方案中,電能儲存裝置79A、79B及79C未連接至一電源。一般而言,當電源81A、81B及81C施加至電能儲存裝置79A、79B及79C時,電源81A、81B及81C之極性經選擇使得施加至電能儲存裝置79A、79B及79C之電力及所施加磁場兩者皆使陽離子朝向電極中之一者移動,且兩者皆使陰離子朝向另一電極移動。
若磁體72A、72B、72C係轉子之一部分,則電能儲存裝置79A、79B、79C可經組態以在圖6之機器之操作期間旋轉或線性移動。若磁體72A、72B、72C係定子之一部分,則電能儲存裝置79A、79B、79C亦可經組態以在圖5A之機器之操作期間保持固定。
現在參考圖7,展示利用磁性離子之連接至電源83之一電能儲存裝置80。電能儲存裝置80包含一外殼82、一第一電極84A及一第二電極84B。第一電極84A及第二電極84B彼此大致平行且安置於外殼82之對置側上。在一溶劑中含有陽離子86A及陰離子86B之一電解質混合物安置於外殼82中。如上文所論述,經由一電源將電力施加至電能儲存裝置80致使陽離子86A經吸引至第二電極84B上之負電荷88B且陰離子86B經吸引至第一電極84A上之正電荷88A。在圖7之實施方案中,陽離子86A或陰離子86B包括一磁性材料。磁性陽離子86A或磁性陰離子86B可包含反磁性離子、順磁性離子、鐵磁性離子、抗鐵磁性離子、次鐵磁性離子或其任何組合。藉由平行於連接第一電極84A與第二電極84B之一軸線施加一磁場90,將一力僅賦予磁性離子。電源之極性、磁場90之方向及係磁性之離子物種全部經選擇以確保磁場90藉由電荷在對應電極上之積聚而在離子將已經吸引至之方向上賦予一力。在圖7之所圖解說明實施方案中,陽離子86A經選擇以係磁性的。陽離子86A已經受朝向第二電極84B之一電吸引,且因此磁場90經選擇使得磁場90將亦經引導至第二電極84B之一力賦予陽離子86A。因此,磁場90之施加致使磁性離子中之更多磁性離子形成於雙層處,因此增加電能儲存裝置80之電容。類似於圖4A及圖4B中之電能儲存裝置之實施方案,因此提升電能儲存裝置之充電。
現在參考圖8,展示利用圖7之電能儲存裝置80之一旋轉或線性電磁機器之一剖面。圖8中之電磁機器可係圖1A、圖1B或圖2之旋轉電磁機器,或任何其他適合旋轉電磁機器。在另一實施方案中,旋轉電磁機器具有一個、兩個、四個、五個或任何適合數目個磁體。在再一實施方案中,電能儲存裝置與具有任何適合數目個磁體之一線性電磁機器整合在一起。圖8之電磁機器之磁體或線圈總成可係轉子或定子。因此,電磁機器一般包含含有磁體72A、72B及72C之一磁體外殼70。圖8之電磁機器具有各自毗鄰一各別磁體72A、72B、72C安置之三個電能儲存裝置80A、80B及80C。該等電能儲存裝置經定向使得每一電能儲存裝置之一個電極比每一電能儲存裝置之另一電極更接近於各別磁體。由磁體72A、72B及72C產生之磁場因此平行於電能儲存裝置80A、80B及80C中之每一者之第一電極與第二電極之間的一軸線。如上文所論述,此磁場之施加將一力賦予電能儲存裝置中之每一者之電解質混合物中之磁性離子,因此增加電能儲存裝置中之每一者之電容且減小電能儲存裝置中之每一者之時間常數。
可以與上文關於圖5A及圖5B之電磁機器所闡述之方式類似之一方式使用圖7之電能儲存裝置及圖8之電磁機器。電能儲存裝置可電耦合至一獨立電源。當磁場施加至電能儲存裝置時,提升由獨立電源對電能儲存裝置之充電。在另一實施方案中,電能儲存裝置可電耦合至電磁機器,使得電磁機器用作用於電能儲存裝置之電源。電磁機器之相對運動致使電能儲存裝置開始充電,此藉由由磁體施加磁場來提升。在再一實施方案中,電能儲存裝置不電耦合至一電源。當將磁場施加至電能儲存裝置時,由磁場驅迫電解質混合物中之陽離子及陰離子在對應電極上形成一層。毗鄰於電極表面之此離子層引發一對應電荷層形成於電極自身中,以因此在電極中之每一者上形成電雙層。以此方式,藉由磁場之施加有效地將電能儲存裝置「預充電」,且若電荷先前已在機器處於運動中時累積於電極處,則其將在機器停下來之後藉由磁場保持固持於適當位置中。圖8之旋轉電磁機器亦可藉助一個、兩個、四個或五個磁體來操作,只要以與關於圖8所闡述之方式相同之方式朝向電能儲存裝置引導由磁性材料施加之場。
在圖8之實施方案中,電能儲存裝置80A、80B及80C連接至電源85A、85B及85C。電源85A、85B及85C可係電磁機器自身,或可係與電磁機器分開之獨立電源。在一額外實施方案中,電能儲存裝置80A、80B及80C未連接至一電源。一般而言,當電源85A、85B及85C施加至電能儲存裝置80A、80B及80C時,電源85A、85B及85C之極性經選擇使得施加至電能儲存裝置80A、80B及80C之電力及所施加磁場兩者皆使陽離子朝向電極中之一者移動,且兩者皆使陰離子朝向另一電極移動。
若磁體72A、72B、72C係轉子之一部分,則電能儲存裝置80A、80B、80C可經組態以在圖8之機器之操作期間旋轉或線性移動。若磁體72A、72B、72C係定子之一部分,則電能儲存裝置79A、79B、79C亦可經組態以在圖5A之機器之操作期間保持固定。
現在參考圖9,展示利用電解質混合物中之離子之密度差的連接至電源101之一電能儲存裝置100。電能儲存裝置100包含一外殼102、一第一電極104A及一第二電極104B。第一電極104A及第二電極104B彼此大致平行且安置於外殼102之對置側上。在一溶劑中含有陽離子106A及陰離子106B之一電解質混合物安置於外殼102中。如上文所論述,將電力施加至電能儲存裝置100致使陽離子106A經吸引至第一電極104A上之負電荷108B,且致使陰離子106B經吸引至第二電極104B上之正電荷108A。
在圖9之實施方案中,離子物種中之一者具有比另一物種高之一密度。陽離子106A可比陰離子106B密集,或反之亦然。為了增加電能儲存裝置100之電容,使電能儲存裝置100沿著一旋轉軸線110旋轉。旋轉軸線110大致垂直於第一電極104A與第二電極104B之間的一軸線且自電能儲存裝置100偏移使得旋轉軸線不在電極之間通過。當旋轉軸線110自電能儲存裝置100之中心偏移時,陽離子106A及陰離子106B經由稱作密度梯度離心之一程序分開。當電能儲存裝置100旋轉時,將較高密度離子驅迫為比較低密度離子距旋轉軸線110更遠。電能儲存裝置之旋轉因此致使較高密度離子在距旋轉軸線110最遠的電能儲存裝置之電極上累積。電源之極性、旋轉軸線之位置及將係更密集離子之離子物種全部經選擇使得電能儲存裝置100之正常操作及電能儲存裝置100之旋轉兩者在相同方向上將一力賦予較密集離子。類似地,不太密集離子經選擇使得不太密集離子與在最接近旋轉軸線110之電極上積聚之電荷之間的吸引克服來自旋轉自身之力。
因此,在圖9之所圖解說明實施方案中,電源112之極性經選擇使得正電荷108A在第二電極104B上積聚。此等正電荷108A吸引電解質混合物中之帶負電陰離子106B。陰離子106B亦經選擇以便具有比帶正電陽離子106A高之一密度,且將旋轉軸線110放置於與第二電極104B對置的電能儲存裝置100之端處。因此,電能儲存裝置100圍繞旋轉軸線110之旋轉致使較高密度陰離子106B經受比較低密度陽離子106A大的遠離旋轉軸線110之一力。電能儲存裝置100之旋轉因此與來自電源112之電力之施加合作起作用以驅迫陰離子106B朝向第二電極104B。陽離子106A經選擇使得由於負電荷108B之積聚而產生的其所經受之朝向第一電極104A之電力大於由於電能儲存裝置100圍繞旋轉軸線110之旋轉而產生之相對力。在實例性實施方案中,較高密度離子之密度可係較低密度離子之密度之兩倍、四倍、六倍或八倍。預期其他實施方案,其中較高密度離子與較低密度離子之間的密度比係不同的。
現在參考圖10A,展示利用圖9之電能儲存裝置100之一旋轉電磁機器之一剖面。圖10A中之電磁機器可係圖1A、圖1B或圖2之旋轉電磁機器,或任何其他適合旋轉電磁機器。在另一實施方案中,旋轉電磁機器具有一個、兩個、四個、五個或任何適合數目個磁體。圖10A之電磁機器亦可係一線性電磁機器。
如所展示,旋轉電磁機器一般具有含有磁體72A、72B及72C之一磁體外殼70。類似於圖8之旋轉電磁機器,圖10A之旋轉電磁機器具有毗鄰各別磁體72A、72B及72C安置之電能儲存裝置103A、103B及103C至103I。在此實施方案中,電能儲存裝置103A至103I安置於磁體外殼70外側以便庇護電能儲存裝置以使其免遭不需要磁場。電能儲存裝置103A至103I經定向使得每一電能儲存裝置之第一電極與第二電極之間的一軸線大致垂直於旋轉電磁機器之一旋轉軸線110。如此,電能儲存裝置103A及103B經大致定向為與圖8之旋轉電磁機器之電能儲存裝置80A及80B相同。
然而,與圖8中之電能儲存裝置80C相比較,圖10A中之電能儲存裝置103C至103I旋轉90°。由於節省空間可係有益的,因此圖10A之旋轉電磁機器可利用並聯電連接之多個較短經旋轉電能儲存裝置103C至103I來形成可等效於電能儲存裝置103A及103B之一有效電能儲存裝置。減小電能儲存裝置之大小提供可在其上收集電荷之一較小表面區,因此減小電容。然而,藉由提供多個較短電能儲存裝置且將其並聯電耦合,最小化或抹除此減小。當旋轉電磁機器圍繞旋轉軸線110旋轉時,電能儲存裝置103A至103I旋轉。當發生此情況時,具有較大密度的電能儲存裝置中之每一者之電解質混合物內之離子經受比具有較小密度之離子大的朝向距旋轉軸線110最遠之電極之一力,因此增加電能儲存裝置中之每一者之電容且減小電能儲存裝置中之每一者之時間常數。
圖10A之旋轉電磁機器亦可藉助一個、兩個、四個、五個或任何適合數目個磁體來操作。此外,電能儲存裝置103A至103I適合於在任何旋轉機器(甚至不擁有磁體之旋轉機器)中使用。
在圖10A之實施方案中,電能儲存裝置103A連接至電源105A,電能儲存裝置103B連接至電源105B,且電能儲存裝置103A至103I連接至電源105C。電源105A、105B及105C可係電磁機器自身,或可係與電磁機器分開之獨立電源。在一額外實施方案中,電能儲存裝置103A至103I未連接至一電源。一般而言,當電源105A、105B及105C施加至電能儲存裝置103A至103I時,電源105A、105B及105C之極性經選擇使得施加至電能儲存裝置103A至103I之電力及電磁機器之旋轉兩者皆使陽離子朝向電極中之一者移動,且兩者皆使陰離子朝向另一電極移動。
可以與上文關於圖5A及圖5B之旋轉電磁機器或圖8之旋轉電磁機器所闡述之方式類似之一方式使用圖9之電能儲存裝置及圖10A之旋轉電磁機器。電能儲存裝置可電耦合至一獨立電源。當旋轉電磁機器使電能儲存裝置旋轉時,提升由獨立電源對電能儲存裝置之充電。在另一實施方案中,電能儲存裝置可電耦合至旋轉電磁機器,使得旋轉電磁機器用作用於電能儲存裝置之電源。旋轉電磁機器之旋轉直接產生電力,該電力之至少一部分可用於直接將電能儲存裝置充電。藉由電能儲存裝置之旋轉來提升此充電。
在再一實施方案中,電能儲存裝置未電耦合至一電源。當藉由旋轉電磁機器致使電能儲存裝置旋轉時,藉由旋轉電磁機器之旋轉(經由密度梯度離心)迫使電解質混合物中之陽離子及陰離子在對應電極上形成一層。毗鄰於電極表面之此離子層引發一對應電荷層形成於電極自身中,以因此在電極中之每一者上形成電雙層。以此方式,藉由磁場之施加有效地將電能儲存裝置「預充電」。
由於旋轉而非一磁場之施加提升電能儲存裝置103A至103I之功能性,因此電能儲存裝置103A至103I一般必須耦合至電磁機器之轉子。在圖10A中,磁體72A、72B、72C係轉子之一部分,且因此電能儲存裝置103A至103I耦合至磁體或磁體外殼70。雖然圖10A展示電能儲存裝置103A至103I經耦合或以其他方式安置於磁體外殼70外部,但電能儲存裝置103A至103I亦可經耦合或以其他方式安置於磁體外殼70內且仍經組態以與磁體一起旋轉。
圖10B圖解說明與圖10A之電磁機器類似之一電磁機器,惟線圈74及磁芯76經設計以旋轉且因此係機器之轉子之一部分除外。磁體72A、72B、72C經組態以在操作期間係固定的,且因此係定子之一部分。由於線圈74及磁芯76在操作期間旋轉,因此電能儲存裝置103A至103I大致安置於含有線圈74及磁芯76之一外殼內或耦合至該外殼。除電能儲存裝置103A至103I之定位以外,圖10B之機器亦類似於圖10A之機器而操作。電能儲存裝置103A至103I經定向使得每一電能儲存裝置之第一電極與第二電極之間的一軸線大致垂直於旋轉電磁機器之一旋轉軸線110。
電能儲存裝置之不同實施方案可經組合以提升電能儲存裝置之充電。舉例而言,具有障壁及通道之電能儲存裝置可連同離子一起使用,其中一個離子物種係磁性的,其中一個離子物種具有一較大密度,或兩者。類似地,不具有障壁及通道之電能儲存裝置可利用離子,其中一個離子物種係磁性的且其中一個離子物種具有比其他離子物種大之一密度。
如本文中所論述,各種不同電磁機器可與各種類型之電能儲存裝置一起使用。電磁機器可係一旋轉電磁機器、一線性電磁機器或任何其他類型之電磁機器。在某些實施方案中,機器甚至可係一非電磁機器。在某些實施方案中,可使用允許磁體中之某些或所有磁體及線圈總成中之某些或所有線圈總成兩者之移動(例如,旋轉移動或線性平移移動)的電磁機器。機器可具有任何適合數目個磁體組,且每一磁體組可具有任何適合數目個磁體。機器亦可具有任何適合數目個線圈及磁芯。因此,雖然本文中所闡述之剖面影像一般僅展示一單個磁體組及一單個線圈/磁芯組合,但電磁機器一般具有圍繞一旋轉軸線(用於一旋轉電磁機器)圓周地或圍繞一平移軸線(用於一線性電磁機器)線性地安置之多個磁體組及多個線圈/磁芯組合。此外,每一線圈可具有其自身之單獨磁芯,或線圈中之兩個或兩個以上線圈可共用一共同磁芯。電磁機器亦可僅僅具有一單個磁體組,該單個磁體組具有一單個線圈/磁芯組合。
因此,為了便於理解,在說明書及申請專利範圍中,電磁機器可經闡述為具有「一磁體」、「一磁體組」、「一磁芯」、「一線圈」、「一電能儲存裝置」、「一軸」、「一線圈總成」等。然而,應理解,冠詞「一」伴隨此等組件或其他組件中之任一者不將所闡述或所主張之實施方案中之任一者限定於僅一單個組件,而是涵蓋具有組件之一或多者之實施方案。
雖然已參考一或多個特定實施方案闡述本發明,但熟習此項技術者將認識到,可在不背離本發明之精神及範疇之情況下對其做出諸多改變。預期此等實施方案及其明顯變化形式中之每一者屬本發明之精神及範疇內。亦預期根據本發明之態樣之額外實施方案可組合來自本文中所闡述之實施方案中之任一者之任一數目個特徵。
2‧‧‧旋轉電磁機器 4A‧‧‧外磁體總成 4B‧‧‧內磁體總成 6‧‧‧定子總成 8‧‧‧軸線/旋轉軸線 10A‧‧‧磁體 10B‧‧‧磁體 12‧‧‧磁體 13‧‧‧線圈總成 16‧‧‧旋轉電磁機器 18A‧‧‧磁體 18B‧‧‧磁體 18C‧‧‧磁體 20‧‧‧磁體外殼/外殼 21‧‧‧軸線/旋轉軸線 22‧‧‧線圈外殼 24‧‧‧主軸 30‧‧‧電能儲存裝置 32‧‧‧外殼 34A‧‧‧第一電極/電極 34B‧‧‧第二電極/電極 36A‧‧‧陽離子/帶正電陽離子 36B‧‧‧陰離子/帶負電陰離子 38‧‧‧離子可滲透分離器 40‧‧‧電源 42A‧‧‧正電荷 42B‧‧‧負電荷 44A‧‧‧電荷雙層/雙層 44B‧‧‧電荷雙層/雙層 50‧‧‧電能儲存裝置 51‧‧‧電源 52‧‧‧外殼 53‧‧‧離子不可滲透障壁/障壁 54A‧‧‧第一電極 54B‧‧‧第二電極 55A‧‧‧第一側部分 55B‧‧‧第二相對側部分 56A‧‧‧陽離子 56B‧‧‧陰離子 58A‧‧‧第一端部分 58B‧‧‧第二相對端部分/第二端部分/第二端 59A‧‧‧閘門 59B‧‧‧閘門 60‧‧‧通道 61A‧‧‧第一部分 61B‧‧‧第二部分 61C‧‧‧第三部分 62‧‧‧磁場 64‧‧‧電源 66A‧‧‧正電荷 66B‧‧‧負電荷 67‧‧‧電源 70‧‧‧磁體外殼 72A‧‧‧磁體 72B‧‧‧磁體 72C‧‧‧磁體 73A‧‧‧磁體 73B‧‧‧磁體 74‧‧‧線圈 75A‧‧‧磁體 75B‧‧‧磁體 76‧‧‧磁芯 77A‧‧‧北極 77B‧‧‧南極 78‧‧‧電能儲存裝置 79A‧‧‧電能儲存裝置 79B‧‧‧電能儲存裝置 79C‧‧‧電能儲存裝置 80‧‧‧電能儲存裝置 80A‧‧‧電能儲存裝置 80B‧‧‧電能儲存裝置 80C‧‧‧電能儲存裝置 81A‧‧‧電源 81B‧‧‧電源 81C‧‧‧電源 82‧‧‧外殼 83‧‧‧電源 84A‧‧‧第一電極 84B‧‧‧第二電極 85A‧‧‧電源 85B‧‧‧電源 85C‧‧‧電源 86A‧‧‧陽離子/磁性陽離子 86B‧‧‧陰離子/磁性陰離子 88A‧‧‧正電荷 88B‧‧‧負電荷 90‧‧‧磁場 100‧‧‧電能儲存裝置 101‧‧‧電源 102‧‧‧外殼 103A‧‧‧電能儲存裝置 103B‧‧‧電能儲存裝置 103C‧‧‧電能儲存裝置 103D‧‧‧電能儲存裝置 103E‧‧‧電能儲存裝置 103F‧‧‧電能儲存裝置 103G‧‧‧電能儲存裝置 103H‧‧‧電能儲存裝置 103I‧‧‧電能儲存裝置 104A‧‧‧第一電極 104B‧‧‧第二電極 105A‧‧‧電源 105B‧‧‧電源 105C‧‧‧電源 106A‧‧‧陽離子/帶正電陽離子/較低密度陽離子 106B‧‧‧陰離子/帶負電陰離子/較高密度陰離子 108A‧‧‧正電荷 108B‧‧‧負電荷 110‧‧‧旋轉軸線
將在閱讀以下實施方式後且在參考圖式後明瞭本發明之前述及其他優點。
圖1A係根據本發明之態樣之一例示性電磁機器之一分解圖;
圖1B係根據本發明之態樣之圖1A之例示性電磁機器之一摺疊視圖之一剖面;
圖2係根據本發明之態樣之另一例示性電磁機器之一剖面;
圖3係根據本發明之態樣之一電能儲存裝置之一剖面;
圖4A係根據本發明之態樣之其中界定有一通道之一電能儲存裝置之一實施方案之一剖面;
圖4B係根據本發明之態樣之其中界定有一通道之一電能儲存裝置之另一實施方案之一剖面;
圖5A係根據本發明之態樣之與一電磁機器整合在一起之圖4A或圖4B之電能儲存裝置之一實施方案之一剖面;
圖5B係根據本發明之態樣之圖5A之電磁機器之一剖面;
圖6係根據本發明之態樣之與一電磁機器整合在一起之圖4A或圖4B之電能儲存裝置之另一實施方案之一剖面;
圖7係根據本發明之態樣之其中安置有磁性離子之一電能儲存裝置之一實施方案之一剖面;
圖8係根據本發明之態樣之與一電磁機器整合在一起之圖7之電能儲存裝置之一實施方案之一剖面;
圖9係根據本發明之態樣之具有一個離子物種(具有比另一離子物種大之一密度)之一電能儲存裝置之一實施方案之一剖面;
圖10A係根據本發明之態樣之與一電磁機器整合在一起之圖9之電能儲存裝置之一實施方案之一剖面;及
圖10B係根據本發明之態樣之與一電磁機器整合在一起之圖9之電能儲存裝置之另一實施方案之一剖面。
雖然本發明易於得出各種修改及替代形式,但已在圖式中以實例方式展示且將在本文中詳細闡述特定實施方案及實施例。然而,應理解,本發明並非意欲限於所揭示之特定形式。而是,本發明將涵蓋屬如由隨附申請專利範圍界定之本發明之精神及範疇內之所有修改、等效內容及替代形式。
2‧‧‧旋轉電磁機器
4A‧‧‧外磁體總成
4B‧‧‧內磁體總成
6‧‧‧定子總成
8‧‧‧軸線/旋轉軸線

Claims (26)

  1. 一種電能儲存裝置,其包括:一外殼(housing),其具有一第一端部分、相對於該第一端部分之一第二端部分、一第一側部分及相對於該第一側部分之一第二側部分;一第一電極,其毗鄰於(adjacent to)該第一側部分安置於該外殼中;一第二電極,其毗鄰於該第二側部分安置於該外殼中;一電解質混合物,其安置於該外殼中且大致位於該第一電極與該第二電極之間,該電解質混合物含有複數個離子;一通道,其大致界定於該第一電極與該第二電極之間,該通道經組態以准許該複數個離子之至少一部分自大致毗鄰於該第一電極的該通道之一第一部分流動穿過大致毗鄰於該外殼之該第一端部分的該通道之一第二部分且到達大致毗鄰於該第二電極的該通道之一第三部分;及一障壁(barrier),其大致安置於該第一電極與該第二電極之間,該障壁包括經組態以選擇性地打開及關閉之一或多個閘門,其中:當該一或多個閘門被關閉時,該障壁經組態以輔助阻止該複數個離子毗鄰於該外殼之該第二端部分流動,且當該一或多個閘門被打開時,該障壁經組態以輔助准許該複數個離子之至少一部分自大致毗鄰於該第二電極的該通道之該第三部分流動穿過大致毗鄰於該外殼之該第二端部分的該一或多個閘門且到達大致毗鄰於該第一電極的該通道之該第一部分。
  2. 如請求項1之電能儲存裝置,其進一步包括安置於該通道中之一離子 可滲透(ion-permeable)分離器,該離子可滲透分離器經組態以允許該電解質混合物之該等離子通過。
  3. 如請求項1之電能儲存裝置,其中該通道至少部分地由該障壁界定。
  4. 如請求項1之電能儲存裝置,其中該通道具有一大致U形剖面或一大致V型剖面。
  5. 如請求項1之電能儲存裝置,其中該一或多個閘門進一步准許該複數個離子之至少一部分自大致毗鄰於該第一電極的該通道之該第一部分流動穿過大致毗鄰於該外殼之該第二端部分的該一或多個閘門且到達大致毗鄰於該第二電極的該通道之該第三部分。
  6. 如請求項1之電能儲存裝置,其與一電磁機器相結合(in combination with),該電磁機器包括:一軸(axle);一線圈總成,其耦合至該軸,該線圈總成包含一磁芯及纏繞在該磁芯上之一線圈;一第一組磁體,其耦合至該軸使得該第一組磁體毗鄰於該線圈總成定位;其中該電能儲存裝置係毗鄰於該線圈安置。
  7. 如請求項6之電能儲存裝置,其中由該第一組磁體產生之一磁場垂直 於(i)該電能儲存裝置之該第一電極與該第二電極之間的一第一軸線,及(ii)該電能儲存裝置之第一端與第二端之間的一第二軸線。
  8. 如請求項6之電能儲存裝置,其中該複數個離子包括陰離子及陽離子,且其中由該第一組磁體產生之一磁場輔助將朝向該第一電極之一第一力賦予(imparting)該複數個離子之陰離子且將朝向該第二電極之一第二力賦予該複數個離子之陽離子。
  9. 如請求項6之電能儲存裝置,其中(i)該第一組磁體相對於該線圈總成或(ii)該線圈總成相對於該第一組磁體之旋轉產生電力,且其中該所產生電能之至少一部分儲存於該至少一個電能儲存裝置中。
  10. 如請求項1之電能儲存裝置,其中該複數個離子包括(i)磁性離子及非磁性離子(ii)具有一第一密度之一第一類型之離子及具有不同於該第一密度之一第二密度之一第二類型之離子,或(iii)(i)及(ii)二者。
  11. 一種電磁機器,其包括:一軸;一線圈總成,其耦合至該軸,該線圈總成包含一磁芯及纏繞在該磁芯上之一線圈;一第一組磁體,其耦合至該軸使得該第一組磁體毗鄰於該線圈總成定位,該第一組磁體產生一磁場;及至少一電能儲存裝置,其毗鄰於該第一組磁體安置,該至少一電能儲存裝置包含: 一外殼,其具有一第一端部分、相對於該第一端部分之一第二端部分、一第一側部分及相對於該第一側部分之一第二側部分;一第一電極,其毗鄰於該第一側部分安置於該外殼中;一第二電極,其毗鄰於該第二側部分安置於該外殼中;及一電解質混合物,其安置於該外殼中且大致位於該第一電極與該第二電極之間,該電解質混合物含有複數個磁性離子及複數個非磁性離子,其中由該第一組磁體產生之該磁場平行於延伸於(i)該至少一電能儲存裝置之該第一電極及(ii)該至少一電能儲存裝置之該第二電極之間之一軸線(axis)。
  12. 如請求項11之電磁機器,其中由該第一組磁體產生之該磁場將一力賦予該複數個磁性離子。
  13. 如請求項11之電磁機器,其中(i)該第一組磁體相對於該線圈總成或(ii)該線圈總成相對於該第一組磁體之旋轉產生電力,且其中該所產生電能之至少一部分儲存於該電能儲存裝置中。
  14. 如請求項11之電磁機器,其中該至少一電能儲存裝置定位於該線圈總成外側而使該第一組磁體被安置於該線圈總成及該至少一電能儲存裝置之間。
  15. 如請求項11之電磁機器,其中該線圈總成固定地耦合至該軸,且該第一組磁體可旋轉地(rotatably)耦合至該軸。
  16. 如請求項11之電磁機器,其中該線圈總成可旋轉地耦合至該軸,且該第一組磁體固定地耦合至該軸。
  17. 一種電磁機器,其包括:一軸;一線圈總成,其耦合至該軸,該線圈總成包含一磁芯及纏繞在該磁芯上之一線圈;一第一組磁體,其耦合至該軸使得該第一組磁體毗鄰於該線圈總成定位;及至少一電能儲存裝置,其毗鄰於該第一組磁體安置,該至少一電能儲存裝置包含:一外殼,其具有一第一端部分、相對於該第一端部分之一第二端部分、一第一側部分及相對於該第一側部分之一第二側部分;一第一電極,其毗鄰於該第一側部分安置於該外殼中;一第二電極,其毗鄰於該第二側部分安置於該外殼中;一電解質混合物,其在該外殼中安置於該第一電極與該第二電極之間,該電解質混合物含有複數個離子,該複數個離子包含具有一第一密度之一第一類型之離子及具有小於該第一密度之一第二密度之一第二類型之離子,其中該電磁機器經組態以圍繞一旋轉軸線旋轉,該旋轉軸線垂直於延伸於該第一電極與該第二電極之間的一軸線。
  18. 如請求項17之電磁機器,其中該至少一電能儲存裝置之該第一電極比該至少一電能儲存裝置之該第二電極距旋轉軸線更遠,且其中該至少一電能儲存裝置圍繞該旋轉軸線之旋轉將朝向該第一電極之一力賦予具有該一密度之該第一類型之離子。
  19. 如請求項17之電磁機器,其中(i)該第一組磁體相對於該線圈總成或(ii)該線圈總成相對於該第一組磁體之旋轉產生電力,且其中該所產生電能之至少一部分儲存於該至少一電能儲存裝置中。
  20. 如請求項17之電磁機器,進一步包括一磁體外殼經組態以安放(house)該第一組磁體,且其中該至少一電能儲存裝置安置於該磁體外殼外側,使得該至少一電能儲存裝置被庇護免遭(shielded from)由該第一組磁體產生之一或多個磁場。
  21. 如請求項17之電磁機器,其中該線圈總成固定地耦合至該軸,且該第一組磁體可旋轉地耦合至該軸。
  22. 如請求項17之電磁機器,其中該線圈總成可旋轉地耦合至該軸,且該第一組磁體固定地耦合至該軸。
  23. 一種電磁機器,其包括:一軸;一線圈總成,其耦合至該軸,該線圈總成包含一磁芯及纏繞在該磁 芯上之一線圈;一第一組磁體,其耦合至該軸使得該第一組磁體毗鄰於該線圈總成定位,該第一組磁體產生一磁場,及至少一電能儲存裝置,其毗鄰於該線圈安置,該至少一電能儲存裝置包含:一外殼,其具有一第一端部分、相對於該第一端部分之一第二端部分、一第一側部分及相對於該第一側部分之一第二側部分;一第一電極,其毗鄰於該第一側部分安置於該外殼中;一第二電極,其毗鄰於該第二側部分安置於該外殼中;一電解質混合物,其安置於該外殼中且大致位於該第一電極與該第二電極之間,該電解質混合物含有複數個離子;一通道,其大致界定於該第一電極與該第二電極之間,該通道經組態以准許該複數個離子之至少一部分自大致毗鄰於該第一電極的該通道之一第一部分流動穿過大致毗鄰於該外殼之該第一端部分的該通道之一第二部分且到達大致毗鄰於該第二電極的該通道之一第三部分;及一障壁,其大致安置於該第一電極與該第二電極之間,該障壁經組態以輔助阻止該複數個離子毗鄰於該外殼之該第二端部分流動,其中由該第一組磁體產生之該磁場垂直於(i)於該至少一個電能儲存裝置之該第一電極與該第二電極之間延伸的一第一軸線,及(ii)於該至少一個電能儲存裝置之第一端與第二端之間延伸的一第二軸線。
  24. 如請求項23之電磁機器,其中:該至少一電能儲存裝置在該線圈總成內定位;該至少一電能儲存裝置在該線圈總成外側定位使得該第一組磁體安置於該線圈總成及該至少一電能儲存裝置之間;或該至少一電能儲存裝置包括在該線圈總成內定位之一第一電能儲存裝置及在該線圈總成外側定位之一第二電能儲存裝置使得該第一組磁體安置於該線圈總成及該第二電能儲存裝置之間。
  25. 如請求項23之電磁機器,其中該線圈總成固定地耦合至該軸,且該第一組磁體可旋轉地耦合至該軸。
  26. 如請求項23之電磁機器,其中該線圈總成可旋轉地耦合至該軸,且該第一組磁體固定地耦合至該軸。
TW107131407A 2017-09-08 2018-09-07 提升蓄電之系統及方法 TWI754773B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762556001P 2017-09-08 2017-09-08
US62/556,001 2017-09-08

Publications (2)

Publication Number Publication Date
TW201931398A TW201931398A (zh) 2019-08-01
TWI754773B true TWI754773B (zh) 2022-02-11

Family

ID=65635333

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107131407A TWI754773B (zh) 2017-09-08 2018-09-07 提升蓄電之系統及方法

Country Status (7)

Country Link
US (2) US11189434B2 (zh)
EP (1) EP3669391A4 (zh)
JP (2) JP7052017B2 (zh)
CN (2) CN115188604A (zh)
MX (1) MX2020002079A (zh)
TW (1) TWI754773B (zh)
WO (1) WO2019050772A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019050772A1 (en) * 2017-09-08 2019-03-14 Clearwater Holdings, Ltd. SYSTEMS AND METHODS FOR ENHANCING ELECTRICITY STORAGE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030030969A1 (en) * 1999-08-18 2003-02-13 Maxwell Electronic Components Group, Inc. Multi-electrode double layer capacitor having hermetic electrolyte seal

Family Cites Families (215)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE675213A (zh) 1965-01-21 1966-05-16
US3597278A (en) * 1968-11-15 1971-08-03 Joe W Von Brimer Electrolytic cell comprising means for creating a magnetic field within the cell
JPS4934082A (zh) 1972-07-31 1974-03-29
US4185366A (en) 1973-12-06 1980-01-29 Wickman Machine Tool Sales Ltd. Spindle drives for multi spindle lathes
GB1511152A (en) * 1975-04-24 1978-05-17 Chloride Silent Power Ltd Alkali metal-sulphur cells
US4087698A (en) 1977-04-22 1978-05-02 Franklin W. Baumgartner Alternating current power generating system
JPS54141307A (en) 1978-04-27 1979-11-02 Toshiba Corp Control unit for induction melting furnace
FR2425751A1 (fr) 1978-05-11 1979-12-07 Valbrev Sarl Groupe moteur a courant continu sans collecteur
DE2822315A1 (de) 1978-05-22 1979-12-06 Papst Motoren Kg Kollektorloser gleichstrommotor
US4626751A (en) 1978-05-22 1986-12-02 Papst-Motoren Gmbh & Co Kg Direct-current motor without commutator
JPS55160964A (en) 1979-06-01 1980-12-15 Kenkichi Tsukamoto Dc motor
US4340830A (en) 1979-11-30 1982-07-20 Scm Corporation Electric motor assembly
JPS5725151A (en) 1980-07-22 1982-02-09 Matsushita Electric Ind Co Ltd Linear motor
DE3028836C2 (de) * 1980-07-30 1986-04-17 Brown, Boveri & Cie Ag, 6800 Mannheim Elektrochemische Speicherzelle
IT1142978B (it) 1980-10-29 1986-10-15 Pierburg Gmbh & Co Kg Regolatore rotativo in particolare per carburatori di motori a combustione interna
US4441043A (en) 1980-11-24 1984-04-03 Decesare Dominic Compound interaction/induction electric rotating machine
DE3142913A1 (de) 1981-10-29 1983-05-11 Herbert Prof. Dr.-Ing. 3300 Braunschweig Weh Elektrische maschine mit ringwicklungsanker und permanenterregten rotoren"
DE3342031B4 (de) 1982-11-23 2005-01-13 Papst Licensing Gmbh & Co. Kg Schaltungsanordnung zur Drehzahlsteuerung eines Elektromotors
IT1198556B (it) 1983-04-15 1988-12-21 Giampiero Tassinario Motore a corrente continua senza collettore a commutazione elettronica
US4521497A (en) 1984-05-18 1985-06-04 Lth Associates, Ltd. Electrochemical generators and method for the operation thereof
JPS61161952A (ja) 1985-01-09 1986-07-22 Yaskawa Electric Mfg Co Ltd 3相リニア誘導子形モ−タ
US4802690A (en) 1986-11-12 1989-02-07 Raidel John E Suspension assembly for steer axle with single air spring mounted directly over the axle
DE3705089A1 (de) 1987-02-13 1988-08-25 Weh Herbert Transversalflussmaschine in sammleranordnung
US4924156A (en) 1987-05-27 1990-05-08 Papst-Motoren Gmbh & Co. Kg Driver circuit for a D.C. motor without commutator
AT393180B (de) * 1987-12-17 1991-08-26 Philips Nv Elektrolytkondensator und verfahren zur herstellung eines elektrolytkondensators
KR910002245B1 (ko) 1988-07-29 1991-04-08 삼성전기 주식회사 브러쉬리스 코어리스 dc 모터
FR2636877B1 (fr) 1988-09-27 1994-07-01 Procedes Machines Speciales Machine pour l'usinage par abrasif de portees cylindriques sur des pieces, notamment pour l'usinage par toilage des tourillons et manetons sur des vilebrequins
US5130583A (en) 1989-11-13 1992-07-14 Ricoh Company, Ltd. Linear motor
US5280209A (en) 1989-11-14 1994-01-18 The United States Of America As Represented By The Secretary Of The Army Permanent magnet structure for use in electric machinery
SE463061B (sv) 1989-11-20 1990-10-01 Svante Gustav Adolf Von Zweygb Permanentmagnetiserad synkronmaskin utformad enligt transversalfloedesprincipen
FR2664105B1 (fr) 1990-07-02 1995-06-09 Radio Energie Moteur pas-a-pas rotatif a reluctance variable a flux transversal.
US5142181A (en) 1990-07-09 1992-08-25 Newell Stanley E Direct current dynamo
JPH04359656A (ja) 1990-07-31 1992-12-11 Sony Corp ロータヨーク
KR920704402A (ko) 1990-11-23 1992-12-19 볼프강 바이쨀 전동기
US5128570A (en) 1991-06-24 1992-07-07 Japan Servo Co., Ltd. Permanent magnet type stepping motor
JPH07503598A (ja) 1992-01-29 1995-04-13 ストリドスベルグ イノベイション アクチボラゲット ブラシ無しdcモータ/発電機
US6348752B1 (en) 1992-04-06 2002-02-19 General Electric Company Integral motor and control
JP3834068B2 (ja) 1992-06-18 2006-10-18 アキレス株式会社 静電気除去装置の製造方法
US5319518A (en) * 1992-07-27 1994-06-07 Jonathan Cole Solid/gas double layer capacitor and electrical storage device
US5474799A (en) 1992-10-13 1995-12-12 Reliance Electric Industrial Company Apparatus and method for coating an electromagnetic coil
DE19522382C1 (de) 1995-06-23 1996-12-19 Voith Gmbh J M Transversalflußmaschine zum Einsatz in einem Direktantrieb für Fahrzeuge, insbesondere Bahnantrieb
US5708310A (en) 1995-07-24 1998-01-13 Japan Servo Co., Ltd. Permanent magnet type stepping motor
GB2305021A (en) 1995-08-29 1997-03-26 Custom Dev Ltd Stator winding lay-out for an electric motor
US5942828A (en) 1995-12-16 1999-08-24 Hill; Wolfgang Transverse flux machine
JPH09231962A (ja) * 1995-12-22 1997-09-05 Canon Inc 二次電池及びその製造方法
EP0875091A1 (en) 1996-01-18 1998-11-04 Shibaura Engineering Works Company, Ltd. A motor mounted in a vehicle
US5907220A (en) 1996-03-13 1999-05-25 Applied Materials, Inc. Magnetron for low pressure full face erosion
US6143135A (en) 1996-05-14 2000-11-07 Kimberly-Clark Worldwide, Inc. Air press for dewatering a wet web
JPH09322518A (ja) 1996-05-28 1997-12-12 Mitsubishi Electric Corp 永久磁石使用同期形リニアモータ
US6043579A (en) 1996-07-03 2000-03-28 Hill; Wolfgang Permanently excited transverse flux machine
US5973436A (en) 1996-08-08 1999-10-26 Rolls-Royce Power Engineering Plc Electrical machine
US5894902A (en) 1996-09-05 1999-04-20 The United States Of America As Represented By The Secretary Of The Navy Self-propelled wheel for wheeled vehicles
RU2131637C1 (ru) 1998-02-04 1999-06-10 Караваев Виктор Терентьевич Электрическая машина
KR19990013313A (ko) 1998-02-11 1999-02-25 이이수 무변출력 무정류자 직류전동기
US5977684A (en) 1998-06-12 1999-11-02 Lin; Ted T. Rotating machine configurable as true DC generator or motor
JP2000134902A (ja) 1998-10-22 2000-05-12 Nkk Corp 同期型リニアモータ用励磁コイル
US6222287B1 (en) 1998-11-06 2001-04-24 Canon Kabushiki Kaisha Motor
DE29903907U1 (de) 1999-03-05 2000-07-13 Schiller Helmut Elektrische Gleichstrom-Maschine
GB0001121D0 (en) 2000-01-19 2000-03-08 Rolls Royce Plc Rotor disc
US6492758B1 (en) 2000-02-25 2002-12-10 Fisher & Paykel Limited Polyphase transverse flux motor
US6611078B1 (en) 2000-07-19 2003-08-26 Tri-Seven Research, Inc. Flux diode motor
DE10037787B4 (de) 2000-08-03 2005-04-14 Landert-Motoren-AG, Bülach Permanenterregte Synchronmaschine
DE10062073A1 (de) 2000-12-13 2002-06-20 Bosch Gmbh Robert Unipolar-Transversalflußmaschine
US6952068B2 (en) 2000-12-18 2005-10-04 Otis Elevator Company Fabricated components of transverse flux electric motors
JP2001211623A (ja) 2000-12-21 2001-08-03 Nitto Zoki Kk 扁平モータ
US6556424B2 (en) * 2001-02-06 2003-04-29 O'brien Robert N Supercapacitor with magnetized parts
GB2409936B (en) 2001-02-09 2005-09-14 Rolls Royce Plc Gas turbine with electrical machine
JP2002325421A (ja) 2001-02-23 2002-11-08 Canon Inc リニアモータ、およびこれを用いたステージ装置、露光装置ならびにデバイス製造方法
DE10109774A1 (de) 2001-03-01 2002-09-05 Deere & Co Transversalflussantrieb
US6879149B2 (en) 2001-03-13 2005-04-12 Ntn Corporation Wheel support bearing assembly
WO2002091547A1 (en) 2001-05-08 2002-11-14 Aalborg Universitet Transverse flux machine with stator made of e-shaped laminates
US6522035B1 (en) 2001-07-05 2003-02-18 Anorad Corporation Forcer and associated three phase linear motor system
JP3694659B2 (ja) 2001-07-16 2005-09-14 株式会社日立製作所 マグネット及びその磁場調整方法並びに磁気共鳴撮像装置
US6605886B2 (en) 2001-07-31 2003-08-12 General Electric Company High temperature superconductor synchronous rotor coil support insulator
US6664689B2 (en) 2001-08-06 2003-12-16 Mitchell Rose Ring-shaped motor core with toroidally-wound coils
DE10140303A1 (de) 2001-08-16 2003-02-27 Bosch Gmbh Robert Unipolar-Transversalflußmaschine
KR100440389B1 (ko) 2001-12-26 2004-07-14 한국전기연구원 2상 횡자속형 영구자석 여자 선형 전동기
EP1468483A4 (en) 2002-01-25 2008-02-27 California Linear Devices Inc SURFACE LAYER FOR MAGNETIC MOTOR
DE10215251A1 (de) 2002-04-06 2003-10-16 Bosch Gmbh Robert Elektrische Maschine, insbesondere Permanentmagnet erregte Motore
US6891306B1 (en) 2002-04-30 2005-05-10 Wavecrest Laboratories, Llc. Rotary electric motor having both radial and axial air gap flux paths between stator and rotor segments
AU2003246283A1 (en) 2002-06-26 2004-01-19 Amotech Co., Ltd. Brushless direct-current motor of radial core type having a structure of double rotors and method for making the same
JP2004129339A (ja) 2002-09-30 2004-04-22 Mitsubishi Electric Corp 直流モータおよびその製造方法
US6930457B2 (en) * 2002-10-03 2005-08-16 Visteon Global Technologies, Inc. DC motor brush filter circuit
WO2004047258A2 (en) 2002-11-18 2004-06-03 Seiko Epson Corporation Magnetic structure and motor employing said magnetic structure, and driver comprising said motor
GB0228642D0 (en) 2002-12-07 2003-01-15 Rolls Royce Plc An electrical machine
JP4194383B2 (ja) 2003-02-13 2008-12-10 キヤノン株式会社 リニアモータ
CN1536687A (zh) 2003-04-04 2004-10-13 南诺维兹有限公司 采用微电-机系统制造技术的射频元件及其制造方法
WO2004107530A1 (en) 2003-05-27 2004-12-09 Otis Elevator Company Modular transverse flux motor with integrated brake
US6924574B2 (en) 2003-05-30 2005-08-02 Wisconsin Alumni Research Foundation Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine
US20040251759A1 (en) 2003-06-12 2004-12-16 Hirzel Andrew D. Radial airgap, transverse flux motor
US20080246362A1 (en) 2003-06-12 2008-10-09 Hirzel Andrew D Radial airgap, transverse flux machine
JP2005150305A (ja) 2003-11-13 2005-06-09 Smc Corp 電磁アクチュエータ
JP2005151725A (ja) 2003-11-17 2005-06-09 Equos Research Co Ltd アキシャルギャップ回転電機
KR100844759B1 (ko) 2003-12-09 2008-07-07 도시바 기카이 가부시키가이샤 코어리스 리니어 모터
JP2005261135A (ja) 2004-03-12 2005-09-22 Seiko Epson Corp モータ及びその駆動制御システム
JP2005287103A (ja) 2004-03-26 2005-10-13 Ceremo:Kk 動力発生装置
GB2412501B (en) * 2004-03-26 2007-10-31 Univ Southampton An electromagnetic device for converting mechanical vibrational energy into electrical energy
GB0412085D0 (en) 2004-05-29 2004-06-30 Univ Durham Axial-flux, permanent magnet electrical machine
JP4112535B2 (ja) 2004-07-30 2008-07-02 株式会社一宮電機 ステータ及びブラシレスモータ
US7081696B2 (en) 2004-08-12 2006-07-25 Exro Technologies Inc. Polyphasic multi-coil generator
US7791242B2 (en) * 2004-08-20 2010-09-07 Clearwater Holdings, Ltd. DC induction electric motor-generator
US20060038456A1 (en) 2004-08-20 2006-02-23 Dumitru Bojiuc Monopole field electric motor generator
JP2006067650A (ja) 2004-08-25 2006-03-09 Fujitsu General Ltd アキシャルギャップ型電動機
US7633198B2 (en) 2005-03-16 2009-12-15 Robert Ernest Kirkman 50 DN alternator stator terminal insulator apparatus
JP2006280066A (ja) 2005-03-29 2006-10-12 Toyota Motor Corp ステータおよび回転電機
DE102005020952A1 (de) 2005-05-04 2006-11-16 Bosch Rexroth Aktiengesellschaft Phasenmodul für eine Transversalflussmaschine
CN1734881A (zh) 2005-06-29 2006-02-15 陆孝庭 无刷旋转电动机
AU2006264181B2 (en) 2005-06-29 2011-01-27 Eocycle Technologies Inc. Transverse flux electrical machine with segmented core stator
EP1892814A4 (en) 2005-07-20 2016-09-14 Panasonic Corp TWIN ROTOR TYPE ENGINE
US8159104B1 (en) 2005-08-22 2012-04-17 Clearwater Holdings, Ltd DC induction electric motor-generator with magnetic gap self commutating laminated ferromagnetic rotating core
US8074922B2 (en) 2005-08-22 2011-12-13 Dumitru Bojiuc Discoidal flying craft
DE102006012215A1 (de) 2006-03-16 2007-09-20 Mtu Aero Engines Gmbh Transversalflussmaschine und Turbomaschine mit derartiger Transversalflussmaschie
US7554241B2 (en) 2006-03-31 2009-06-30 Rao Dantam K Three-gapped motor with outer rotor and stationary shaft
KR100663641B1 (ko) 2006-04-06 2007-01-05 주식회사 아모텍 일체형 스테이터의 제조방법, 이를 이용한 레이디얼코어타입 더블 로터 방식의 비엘디씨 모터 및 그의제조방법
RU2310966C1 (ru) 2006-05-03 2007-11-20 Валентин Иванович Настюшин Модульный вентильный электромеханический преобразователь (мвэп)
DE102006022836A1 (de) 2006-05-16 2007-11-22 Minebea Co., Ltd. Statoranordnung und Rotoranordnung für eine Transversalflußmaschine
US7443642B2 (en) 2006-05-26 2008-10-28 Pratt & Whitney Canada Corp. Electric motor control
GB2438443A (en) 2006-05-27 2007-11-28 Converteam Ltd Rotor magnet retaining arrangement suitable for low-speed large-diameter electrical generators
US7625637B2 (en) 2006-05-31 2009-12-01 Cabot Corporation Production of metal nanoparticles from precursors having low reduction potentials
CA2654462A1 (en) 2006-06-08 2007-12-13 Exro Technologies Inc. Poly-phasic multi-coil generator
US20080122311A1 (en) 2006-06-13 2008-05-29 The Board Of Regents, The University Of Texas System Rotor assembly and method of assembling a rotor of a high speed electric machine
US7688036B2 (en) 2006-06-26 2010-03-30 Battelle Energy Alliance, Llc System and method for storing energy
US7719147B2 (en) 2006-07-26 2010-05-18 Millennial Research Corporation Electric motor
JP2008035604A (ja) 2006-07-27 2008-02-14 Sumitomo Heavy Ind Ltd Gm冷凍機、パルス管冷凍機、クライオポンプ、mri装置、超電導磁石装置、nmr装置および半導体冷却用冷凍機
US20080050266A1 (en) 2006-08-25 2008-02-28 Tai-Fu Chen Low-density alloy for golf club head
US7439713B2 (en) 2006-09-20 2008-10-21 Pratt & Whitney Canada Corp. Modulation control of power generation system
JP4887128B2 (ja) 2006-12-07 2012-02-29 日立オートモティブシステムズ株式会社 回転電機
KR100860606B1 (ko) 2006-12-28 2008-09-26 한국전기연구원 내전형 영구자석 여자 횡자속 전동기
DE102006062613A1 (de) 2006-12-29 2008-07-03 Thoms, Michael, Dr. Permanentmagnetmaschine
US20100101879A1 (en) * 2007-02-14 2010-04-29 Mcvickers Jack C Motor Battery Systems
US7492074B1 (en) 2007-03-30 2009-02-17 Norman Rittenhouse High-efficiency wheel-motor utilizing molded magnetic flux channels with transverse-flux stator
US20100058817A1 (en) 2007-04-11 2010-03-11 Panasonic Corporation Drum type washing machine
US7755244B2 (en) 2007-05-11 2010-07-13 Uqm Technologies, Inc. Stator for permanent magnet electric motor using soft magnetic composites
US8283813B2 (en) 2007-06-27 2012-10-09 Brooks Automation, Inc. Robot drive with magnetic spindle bearings
US8232695B2 (en) 2007-07-09 2012-07-31 Clearwater Holdings, Ltd Electromagnetic machine with independent removable coils, modular parts and self sustained passive magnetic bearing
US20090026869A1 (en) 2007-07-24 2009-01-29 Christian Kaehler Transverse flux reluctance machine and method for manufacturing same
WO2009018149A1 (en) 2007-07-27 2009-02-05 The Texas A & M University System Short-flux path motors / generators
WO2009023137A1 (en) 2007-08-11 2009-02-19 Clearwater Holdings, Ltd. Electrical commutator with segmented brushes
GB0717746D0 (en) 2007-09-12 2007-10-24 Univ Edinburgh Magnetic flux conducting unit
US7956504B2 (en) 2007-09-13 2011-06-07 Eric Stephane Quere Composite electromechanical machines with gear mechanism
JP5033552B2 (ja) 2007-09-14 2012-09-26 信越化学工業株式会社 アキシャルギャップ型コアレス回転機
US7880356B2 (en) 2007-10-02 2011-02-01 Seiko Epson Corporation Brushless electric machine
JP5117813B2 (ja) 2007-10-17 2013-01-16 アスモ株式会社 回転電機
WO2009055992A1 (en) 2007-11-02 2009-05-07 Acm Research (Shanghai) Inc. Plating apparatus for metallization on semiconductor workpiece
US8110961B2 (en) 2007-11-20 2012-02-07 Ut-Battelle, Llc Permanent-magnet-less machine having an enclosed air gap
US8264120B2 (en) 2007-11-20 2012-09-11 Ut-Battelle, Llc Permanent-magnet-less synchronous reluctance system
EP2063114A1 (en) 2007-11-26 2009-05-27 Siemens Aktiengesellschaft Wind turbine
EP2063116B1 (en) 2007-11-26 2016-12-28 Siemens Aktiengesellschaft Direct drive generator and wind turbine
JP2009136046A (ja) 2007-11-29 2009-06-18 Toyota Central R&D Labs Inc トロイダル巻式回転電機
US7772741B1 (en) 2007-11-30 2010-08-10 Rittenhouse Norman P Wind turbine generator
WO2009082808A1 (en) 2007-12-28 2009-07-09 Clean Current Power Systems Incorporated Hybrid electric power system with distributed segmented generator/motor
US7579742B1 (en) 2008-01-17 2009-08-25 Norman Rittenhouse High-efficiency parallel-pole molded-magnetic flux channels transverse wound motor-dynamo
EP2081276A1 (en) 2008-01-21 2009-07-22 Marco Cipriani Electro-magnetical device with reversible generator-motor operation
JP5221966B2 (ja) 2008-01-31 2013-06-26 本田技研工業株式会社 回転電機用コイルアッセンブリ、回転電機用ステータ、及び回転電機
KR100943701B1 (ko) 2008-02-05 2010-02-25 성삼경 전기모터
JP5161612B2 (ja) 2008-02-22 2013-03-13 株式会社東芝 永久磁石式回転電機、永久磁石式回転電機の組立方法及び永久磁石式回転電機の分解方法
JP4926107B2 (ja) 2008-03-28 2012-05-09 株式会社豊田中央研究所 回転電機
JP5539191B2 (ja) 2008-05-14 2014-07-02 三菱電機株式会社 磁気誘導子型回転機およびそれを用いた流体移送装置
JP4505524B2 (ja) 2008-07-22 2010-07-21 本田技研工業株式会社 動力装置
JP5105201B2 (ja) 2008-07-30 2012-12-26 Tdk株式会社 角度検出装置、及び角度検出方法
GB0814400D0 (en) 2008-08-08 2008-09-10 Rolls Royce Plc Magnetic gear arrangement
IT1392883B1 (it) 2008-09-03 2012-04-02 Lenzi Metodo per l'assemblaggio del rotore di una macchina elettrica rotante
IT1391500B1 (it) 2008-09-03 2011-12-30 Lenzi Macchina elettrica rotante
KR101024773B1 (ko) * 2008-09-08 2011-03-24 엘에스산전 주식회사 전자 선형 조작기
EP2164154A1 (en) 2008-09-15 2010-03-17 Siemens Aktiengesellschaft Stator arrangement, generator and wind turbine
JP5556000B2 (ja) 2008-10-15 2014-07-23 パナソニック株式会社 デュアルロータモータ
US7812500B1 (en) 2008-11-12 2010-10-12 Demetrius Calvin Ham Generator / electric motor
US8390168B2 (en) 2008-11-20 2013-03-05 Ut-Battelle, Llc Permanent-magnet-less machine having an enclosed air gap
US8188633B2 (en) 2009-01-05 2012-05-29 Eric Stephane Quere Integrated composite electromechanical machines
GB0900022D0 (en) 2009-01-05 2009-02-11 Rolls Royce Plc Management gear arrangement
CN101849101B (zh) 2009-01-14 2015-09-02 美国超导奥地利有限公司 发电机、舱体以及风能转换器舱体的安装方法
JP5515297B2 (ja) 2009-01-17 2014-06-11 日産自動車株式会社 回転電機
GB0904434D0 (en) 2009-03-13 2009-04-29 Switched Reluctance Drives Ltd An electrical machine with dual radial airgaps
US7791245B1 (en) 2009-03-24 2010-09-07 Gm Global Technology Operations, Inc. Optimized electric machine for smart actuators
CN101867071B (zh) 2009-04-16 2013-04-24 深圳富泰宏精密工业有限公司 充电装置
US8207644B2 (en) 2009-07-14 2012-06-26 Hamilton Sundstrand Corporation Hybrid cascading lubrication and cooling system
US9162638B2 (en) * 2009-07-24 2015-10-20 Mitsubishi Electric Corporation Automotive electric power supply system
WO2011025918A1 (en) * 2009-08-31 2011-03-03 New Core, Inc. Multiple induction electric motor and vehicle
US8373319B1 (en) 2009-09-25 2013-02-12 Jerry Barnes Method and apparatus for a pancake-type motor/generator
JP5507967B2 (ja) 2009-11-09 2014-05-28 株式会社日立製作所 回転電機
CN101741223A (zh) 2009-11-10 2010-06-16 王元昌 感生变磁交流发电机
US20120299430A1 (en) 2009-12-22 2012-11-29 Hoganas Ab (Publ) Rotor for modulated pole machine
ES2523975T3 (es) 2009-12-30 2014-12-03 Fundación Tecnalia Research & Innovation Generador síncrono superconductor de accionamiento directo para una turbina eólica
JP5146698B2 (ja) 2010-03-16 2013-02-20 株式会社安川電機 回転電機
US20110229743A1 (en) * 2010-03-18 2011-09-22 Yen-Wei Hsu Power assembly
US8847451B2 (en) 2010-03-23 2014-09-30 Calnetix Technologies, L.L.C. Combination radial/axial electromagnetic actuator with an improved axial frequency response
TWI388108B (zh) 2010-05-06 2013-03-01 Ind Tech Res Inst 具有可調軸向場磁通之薄型馬達結構
JPWO2012007984A1 (ja) 2010-07-12 2013-09-05 株式会社日立産機システム アモルファスコア、及びそれを用いた電磁部材と回転電機、並びにその製造方法
JP2012059592A (ja) 2010-09-10 2012-03-22 Toyota Motor Corp 燃料電池システム、モータ、空気圧縮機、ポンプ、モータの設計方法
US20130270955A1 (en) 2010-10-08 2013-10-17 Global Motors Invent Pty Ltd Electromagnetic machine
EP2495853A1 (en) * 2011-03-03 2012-09-05 Zacharias Johann Dr.-Ing. Neag Magneto-electric motor
US20120228977A1 (en) 2011-03-09 2012-09-13 Nova Torque, Inc. Rotor-stator structures with an outer rotor for electrodynamic machines
US20120262127A1 (en) * 2011-04-15 2012-10-18 Energ2 Technologies, Inc. Flow ultracapacitor
JP5709187B2 (ja) * 2011-05-12 2015-04-30 セイコーインスツル株式会社 電気化学セル
CN102801265B (zh) 2011-05-26 2016-12-14 德昌电机(深圳)有限公司 电机
US9218917B2 (en) * 2011-06-07 2015-12-22 FastCAP Sysems Corporation Energy storage media for ultracapacitors
CN202395533U (zh) 2011-06-16 2012-08-22 尤里·拉波波特 发电机
US8765287B2 (en) * 2011-08-09 2014-07-01 Samsung Sdi Co., Ltd. Battery module
US9685676B2 (en) * 2011-09-15 2017-06-20 The Regents Of The University Of Colorado Modular bioelectrochemical systems and methods
US10515768B2 (en) 2012-04-04 2019-12-24 Lyten, Inc. Apparatus and associated methods
US9343931B2 (en) * 2012-04-06 2016-05-17 David Deak Electrical generator with rotational gaussian surface magnet and stationary coil
US9728767B2 (en) 2012-11-13 2017-08-08 Research Foundation Of The City University Of New York Magnetic device for producing electrolyte flow in battery systems
FR3000851B1 (fr) 2013-01-09 2015-02-13 Eurocopter France Machine electrique a plusieurs entrefers et flux magnetique 3d
US10505412B2 (en) 2013-01-24 2019-12-10 Clearwater Holdings, Ltd. Flux machine
MX355575B (es) * 2013-04-05 2018-04-23 Carver Scient Inc Dispositivo de almacenamiento de energia.
US9633798B2 (en) * 2013-05-24 2017-04-25 Atlantis Technologies Atomic capacitor
US10573922B2 (en) * 2013-08-15 2020-02-25 Robert Bosch Gmbh Hybrid ionic electronic energy storage device
EP3053173A4 (en) * 2013-10-01 2017-06-07 E1023 Corporation Magnetically enhanced energy storage system and methods
WO2015120093A1 (en) 2014-02-07 2015-08-13 Nidec Motor Corporation Internal rotor sensor having adjustable sensor carrier
US11894739B2 (en) 2014-07-23 2024-02-06 Clearwater Holdings, Ltd. Flux machine
CN107533925B (zh) * 2014-10-09 2021-06-29 快帽系统公司 用于储能装置的纳米结构化电极
US20180151266A1 (en) 2015-05-01 2018-05-31 Yong-Jihn KIM New generation conductive polymers, manufacturing method thereof, and their applications including electric wires, tapes, and cables, hot surface igniters, electronics devices, 3d printing filaments, and lightweight materials for automobile and aerospace ship
DE102015211893A1 (de) * 2015-06-26 2016-12-29 Bayerische Motoren Werke Aktiengesellschaft Strömungsfeld einer Brennstoffzelle
JP6638315B2 (ja) * 2015-10-22 2020-01-29 株式会社ジェイテクト リチウムイオンキャパシタ
WO2019050772A1 (en) * 2017-09-08 2019-03-14 Clearwater Holdings, Ltd. SYSTEMS AND METHODS FOR ENHANCING ELECTRICITY STORAGE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030030969A1 (en) * 1999-08-18 2003-02-13 Maxwell Electronic Components Group, Inc. Multi-electrode double layer capacitor having hermetic electrolyte seal

Also Published As

Publication number Publication date
EP3669391A4 (en) 2021-05-26
WO2019050772A1 (en) 2019-03-14
JP7441879B2 (ja) 2024-03-01
EP3669391A1 (en) 2020-06-24
JP2022091915A (ja) 2022-06-21
US20210065995A1 (en) 2021-03-04
US11189434B2 (en) 2021-11-30
CN115188604A (zh) 2022-10-14
MX2020002079A (es) 2021-01-20
JP2020533795A (ja) 2020-11-19
US11948742B2 (en) 2024-04-02
CN111357069A (zh) 2020-06-30
CN111357069B (zh) 2022-08-09
JP7052017B2 (ja) 2022-04-11
US20220051856A1 (en) 2022-02-17
TW202219999A (zh) 2022-05-16
TW201931398A (zh) 2019-08-01

Similar Documents

Publication Publication Date Title
US11394256B2 (en) Slotless brushless DC motor / actuator
US20060061226A1 (en) Permanent magnet-type motor
EP2690754A2 (en) Electric motor
US20200014289A1 (en) Variable flux motor
JP7441879B2 (ja) 蓄電を改善するシステム及び方法
KR100548278B1 (ko) 하이브리드 인덕션 모터의 영구자석 및 그 착자방법
TWI838686B (zh) 提升蓄電之系統及方法
JP5409380B2 (ja) 電気機械
US11901773B2 (en) Rotating electric machine
KR101837441B1 (ko) 회전자 영구자석의 착자 장치
CN108365698B (zh) 一种双飞轮结构的飞轮电池
JP2018108007A (ja) 磁力抵抗を減少させた発電機
KR101884698B1 (ko) 슬릿을 갖는 착자 요크 및 그를 포함하는 착자 장치
JP2020533795A5 (zh)
JP6176072B2 (ja) 回転電機
KR102049514B1 (ko) 전기 발전기
RU2426217C1 (ru) Индуктивно-емкостная электромагнитная машина
US20140184005A1 (en) Rotor for drive motor
Youmssi et al. Equivalence between the method of magnetic images and the variable separation method in the study of some slotless surface permanent magnet synchronous machines
KR20230158437A (ko) 코깅리스 코어리스 bldc 모터
KR20190105495A (ko) 전기 발전기
JP2022002421A (ja) 回転子及びそれを用いた電動機
JP2013255408A (ja) コギング力を抑えた高効率の発電装置及び発電方法