TWI660771B - Gas separation membrane - Google Patents

Gas separation membrane Download PDF

Info

Publication number
TWI660771B
TWI660771B TW106126517A TW106126517A TWI660771B TW I660771 B TWI660771 B TW I660771B TW 106126517 A TW106126517 A TW 106126517A TW 106126517 A TW106126517 A TW 106126517A TW I660771 B TWI660771 B TW I660771B
Authority
TW
Taiwan
Prior art keywords
gas
separation membrane
less
separation
active layer
Prior art date
Application number
TW106126517A
Other languages
English (en)
Other versions
TW201815459A (zh
Inventor
山中梓
栗下泰孝
美河正人
村上公也
川島政彦
Original Assignee
日商旭化成股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商旭化成股份有限公司 filed Critical 日商旭化成股份有限公司
Publication of TW201815459A publication Critical patent/TW201815459A/zh
Application granted granted Critical
Publication of TWI660771B publication Critical patent/TWI660771B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/38Liquid-membrane separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • B01D2323/21811Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • B01D2323/21817Salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/16Membrane materials having positively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/60Polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本發明提供一種氣體分離膜,其用以對包含凝聚性氣體之混合原料氣體進行精製,分離能力優異,且可將凝聚性氣體氛圍下之氣體透過速度長時間保持為較高之狀態。 上述氣體分離膜之特徵在於:其係用以對包含凝聚性氣體之混合原料氣體進行精製者,且該氣體分離膜係於多孔性基材膜上具有分離活性層,該多孔性基材膜沿該氣體分離膜之膜厚方向剖面中之該多孔性基材膜與該分離活性層之邊界線不具有緻密層,或具有該厚度未達1 μm且平均孔徑未達0.01 μm之緻密層,而且,於將該多孔性基材膜之距離該分離活性層側2 μm深度為止之平均孔徑設為A,將距離10 μm深度為止之平均孔徑設為B時,A為0.05 μm以上且0.5 μm以下,且比A/B超過0且為0.9以下。

Description

氣體分離膜
本發明係關於一種用以對包含凝聚性氣體之混合原料氣體進行精製之氣體分離膜。
利用氣體分離膜進行之氣體之分離濃縮係與蒸餾法、高壓吸附法等相比能量效率優異且安全性較高之方法。作為其先驅性之實用例,例如可列舉氨製造製程中之氫氣分離等。如以下之專利文獻1、2、3中所記載,最近亦盛行對使用氣體分離膜將作為溫室效應氣體之二氧化碳自合成氣體、天然氣體等去除回收之方法進行研究。 氣體分離膜之通常之形態為於基材膜之表面上形成有分離活性層(分離層)者。該形態對於對膜賦予一定程度之強度並且使氣體之透過量較多較為有效。所謂該情形時之分離層,係指僅由氣體分離性高分子所構成之層。 氣體分離膜之性能係以透過速度及分離係數為指標而表示。透過速度係由下述式所表示: 透過速度=(氣體分離性高分子之透過係數)/(分離層之厚度)。 由上述式可知,為了獲得透過速度較大之膜,必須儘可能地使分離層之厚度變薄。分離係數係由欲進行分離之2種氣體之透過速度之比所表示,且係取決於氣體分離性高分子之素材之值。 由於基材膜之孔為對於氣體而言足夠大之孔,故而通常認為基材膜本身不具有將氣體分離之能力,而作為支持分離活性層之支持體發揮功能。 烯烴分離膜係自2種以上之混合氣體將乙烯、丙烯、1-丁烯、2-丁烯、異丁烯、丁二烯等烯烴成分分離之膜。該混合氣體除烯烴以外主要包含乙烷、丙烷、丁烷、異丁烷等烷烴。混合氣體中之烯烴及烷烴由於分子尺寸接近,故而通常,溶解擴散分離機構中之分離係數變小。另一方面,已知烯烴與銀離子、銅離子等具有親和性,會進行錯合,故而藉由利用其錯合之促進輸送透過機構,可使烯烴自混合氣體分離。 所謂促進輸送透過機構,係指利用目標氣體與膜之親和性之分離機構。膜本身可具有與氣體之親和性,亦可於膜中摻雜有具有與氣體之親和性之成分。 促進輸送透過機構通常可獲得高於溶解擴散分離機構之分離係數。用於烯烴分離之促進透過機構中,為了獲得與烯烴較高之親和性,金屬種必須為離子。因此,分離活性層中必須包含水、離子液體等,因此,通常,分離活性層具有凝膠膜之形態。 已知與烯烴分離膜類似之利用促進輸送透過機構將二氧化碳分離之技術(二氧化碳分離膜)。二氧化碳通常與胺基具有親和性,故而為利用其親和性之分離技術。於該二氧化碳分離膜中,於膜中包含水、離子液體等而分離活性層呈凝膠膜之形態之情形亦較多。 通常,促進輸送透過機構中,若分離活性層中之水分變少,則無法維持與烯烴、二氧化碳等目標氣體成分之親和性,從而目標氣體成分之透過性顯著降低。因此,維持包含水分之狀態於維持分離活性層之性能方面較重要。 [先前技術文獻] [專利文獻] [專利文獻1]國際公開第2014/157069號 [專利文獻2]日本專利特開2011-161387號公報 [專利文獻3]日本專利特開平9-898號公報 [專利文獻4]日本專利第5507079號公報 [專利文獻5]日本專利第5019502號公報 [專利文獻6]日本專利特開2014-208327號公報
[發明所欲解決之問題] 於對原料氣體中包含凝聚性氣體之混合原料氣體進行精製之情形時,有成為透過分離活性層之凝聚性氣體於基材膜中凝聚而堵塞基材膜之孔的液封狀態之情形。成為液封狀態之孔對氣體成為透過阻力,而使氣體透過速度顯著降低。 尤其利用促進輸送透過機構將氣體成分分離之氣體分離膜為了維持與氣體成分之親和性,必須於高濕度氛圍下使用,成為容易液封之條件。 於該情況下,本發明所欲解決之問題在於提供一種氣體分離膜,其用以對包含凝聚性氣體之混合氣體進行精製,分離能力優異,且可將凝聚性氣體氛圍下之氣體透過速度長時間保持為較高之狀態。 [解決問題之技術手段] 本發明者等人為了解決上述問題而進行銳意研究並反覆進行實驗,結果發現:藉由對構成分離膜之基材膜之孔徑進行控制,可解決上述問題;從而完成本發明。 即,本發明為如下所述者。 [1]一種氣體分離膜,其特徵在於:其係用以對包含凝聚性氣體之混合原料氣體進行精製者,且該氣體分離膜係於多孔性基材膜上具有分離活性層,該多孔性基材膜沿該氣體分離膜之膜厚方向剖面中之該多孔性基材膜與該分離活性層之邊界線不具有緻密層,或具有該厚度未達1 μm且平均孔徑未達0.01 μm之緻密層,而且,於將該多孔性基材膜之距離該分離活性層側2 μm深度為止之平均孔徑設為A,將距離10 μm深度為止之平均孔徑設為B時,A為0.05 μm以上且0.5 μm以下,且比A/B超過0且為0.9以下。 [2]如上述[1]所記載之氣體分離膜,其中上述分離活性層為包含液體之層。 [3]如上述[1]或[2]所記載之氣體分離膜,其中上述平均孔徑A為0.1 μm以上且0.5 μm以下。 [4]如上述[3]所記載之氣體分離膜,其中上述平均孔徑A為0.25 μm以上且0.5 μm以下。 [5]如上述[4]所記載之氣體分離膜,其中上述平均孔徑A為0.3 μm以上且0.5 μm以下。 [6]如上述[1]至[5]中任一項所記載之氣體分離膜,其中上述平均孔徑B為0.06 μm以上且5 μm以下。 [7]如上述[6]所記載之氣體分離膜,其中上述平均孔徑B為0.1 μm以上且3 μm以下。 [8]如上述[7]所記載之氣體分離膜,其中上述平均孔徑B為0.5 μm以上且1 μm以下。 [9]如上述[1]至[8]中任一項所記載之氣體分離膜,其中上述比A/B超過0且為0.6以下。 [10]如上述[9]所記載之氣體分離膜,其中上述比A/B超過0且為0.4以下。 [11]如上述[1]至[10]中任一項所記載之氣體分離膜,其中上述平均孔徑A與B之和(A+B)為0.2 μm以上且5.5 μm以下。 [12]如上述[11]所記載之氣體分離膜,其中上述平均孔徑A與B之和(A+B)為0.4 μm以上且5.5 μm以下。 [13]如上述[12]所記載之氣體分離膜,其中上述平均孔徑A與B之和(A+B)為0.6 μm以上且5.5 μm以下。 [14]如上述[1]至[13]中任一項所記載之氣體分離膜,其中一部分上述分離活性層滲入上述多孔性基材膜中,所滲入之分離活性層之厚度超過0且為50 μm以下。 [15]如上述[1]至[14]中任一項所記載之氣體分離膜,其中上述分離活性層包含含有選自由胺基、吡啶基、咪唑基、吲哚基、羥基、苯酚基(phenolyl)、醚基、羧基、酯基、醯胺基、羰基、硫醇基、硫醚基、磺基、磺醯基、及下述式: [化1]{式中,R為碳數2~5之伸烷基}所表示之基所組成之群中之1種以上之官能基的聚合物。 [16]如上述[15]所記載之氣體分離膜,其中上述聚合物為聚胺。 [17]如上述[16]所記載之氣體分離膜,其中上述聚胺為聚葡萄胺糖。 [18]如上述[1]至[17]中任一項所記載之氣體分離膜,其中上述分離活性層含有選自由Ag+ 及Cu+ 所組成之群中之金屬離子之金屬鹽。 [19]如上述[1]至[18]中任一項所記載之氣體分離膜,其中上述多孔性基材膜包含氟系樹脂。 [20]如上述[19]所記載之氣體分離膜,其中上述氟系樹脂為聚偏二氟乙烯。 [21]如請求項[1]至[20]中任一項所記載之氣體分離膜,其中使用包含丙烷40質量%及丙烯60質量%之混合原料氣體作為供給側氣體,於加濕氛圍下,將供給側氣體流量設為190 mL/min,將透過側氣體流量設為50 mL/min,於加濕氛圍下以等壓式於30℃下所測得之丙烯之透過速度Q為15 GPU以上且2,500 GPU以下,且丙烯/丙烷之分離係數α為50以上且2,000以下。 [22]一種烯烴分離方法,其係使用如上述[1]至[21]中任一項所記載之氣體分離膜。 [23]一種分離膜模組單元,其具備:分離膜模組,其利用接著部固定有如上述[1]至[22]中任一項所記載之氣體分離膜;殼體,其收容該分離膜模組;加濕器件,其用以對供給至該氣體分離膜之原料氣體進行加濕;以及脫水器件,其用以對經該氣體分離膜精製之精製氣體進行脫水。 [24]如上述[23]所記載之分離膜模組單元,其中上述精製氣體為純度99.9%以上之烯烴氣體。 [25]如上述[23]或[24]所記載之分離膜模組單元,其進而具備氣體純度檢測系統。 [26]一種純度99.9%以上之烯烴氣體之製造方法,其係使用如上述[23]至[25]中任一項所記載之分離膜模組單元。 [27]如上述[26]所記載之方法,其中上述烯烴氣體為CVD供給用之丙烯。 [28]一種連續氣體供給系統,其特徵在於:其係具備上述原料氣體接收口、包含如上述[23]至[25]中任一項所記載之膜模組單元之原料氣體精製部、及上述精製氣體之出口的氣體流動式之連續氣體供給系統,且該精製氣體之純度為99.5%以上。 [29]如上述[28]所記載之連續氣體供給系統,其中上述精製氣體之主成分為烴氣。 [30]如上述[29]所記載之連續氣體供給系統,其中上述精製氣體中含有合計5000 ppm以下之非烴氣。 [31]如上述[30]所記載之連續氣體供給系統,其中上述非烴氣係選自由氧氣、氮氣、水、一氧化碳、二氧化碳及氫氣所組成之群中之1種以上之氣體。 [32]如上述[31]所記載之連續氣體供給系統,其中上述非烴氣為水。 [33]如上述[28]至[32]中任一項所記載之連續氣體供給系統,其中上述烴氣為烯烴氣體。 [34]如上述[33]所記載之連續氣體供給系統,其中上述烯烴氣體為碳數1~4之脂肪族烴。 [35]如上述[34]所記載之連續氣體供給系統,其中上述烯烴氣體為乙烯或丙烯。 [36]如上述[28]至[35]中任一項所記載之連續氣體供給系統,其中使用包含丙烷40質量%及丙烯60質量%之混合氣體作為原料氣體,於加濕氛圍下,將每2 cm2 膜面積之供給側氣體流量設為190 mL/min,將透過側氣體流量設為50 mL/min,於加濕氛圍下以等壓式於30℃下所測得之丙烯/丙烷之分離係數α為50以上且100,000以下。 [發明之效果] 本發明之氣體分離膜由於構成分離膜之基材膜之孔徑得到控制,故而,用以對包含凝聚性氣體之混合氣體進行精製之分離能力優異,且可將凝聚性氣體氛圍下之氣體透過速度長時間保持為較高之狀態。
以下,詳細地對本發明之較佳之形態(以下亦稱作「本實施形態」)進行說明。 本實施形態中之氣體分離膜之特徵在於:其係用以對包含凝聚性氣體之混合原料氣體進行精製者,且該氣體分離膜係於多孔性基材膜上具有分離活性層,該多孔性基材膜沿該氣體分離膜之膜厚方向剖面中之該多孔性基材膜與該分離活性層之邊界線不具有緻密層,或具有該厚度未達1 μm且平均孔徑未達0.01 μm之緻密層,而且,於將該多孔性基材膜之距離該分離活性層側2 μm深度為止之平均孔徑設為A,將距離10 μm深度為止之平均孔徑設為B時,A為0.05 μm以上且0.5 μm以下,且比A/B超過0且為0.9以下。 圖1中表示本實施形態之氣體分離膜之膜厚方向剖面之模式圖。 圖1之氣體分離膜1係於具有大量孔4之基材膜2上配置有分離活性層3。圖1之氣體分離膜1不具有緻密層。 關於圖1之氣體分離膜1中基材膜2所具有之孔4之孔徑分佈,於將距離分離活性層3側2 μm深度為止之深度範圍11內之平均孔徑設為A,將距離10 μm深度為止之深度範圍12內之平均孔徑設為B時,A為0.05 μm以上且0.5 μm以下,且比A/B超過0且為0.9以下。 <原料氣體> 所謂本實施形態中之混合原料氣體係指包含分離目標氣體成分在內之2種以上之氣體成分之混合氣體。作為分離目標氣體成分,可列舉:甲烷、乙烷、乙烯、丙烷、丙烯、丁烷、1-丁烯、2-丁烯、異丁烷、異丁烯、丁二烯、甲矽烷、胂、膦、二硼烷、鍺烷、二氯矽烷、硒化氫、四氯化矽、二矽烷、三氟化硼、三氯化硼、氯化氫、氨、三氟化氮、四氟化矽、氟氯碳化物-218、溴化氫、氯氣、三氟化氯、氟氯碳化物-14、氟氯碳化物-23、氟氯碳化物-116、氟氯碳化物-32、一氧化二氮、三氯矽烷、四氯化鈦、氟化氫、三氟化磷、五氟化磷、六氟化鎢、氟氯碳化物-22、氟氯碳化物-123、氧氣、氮氣、水、一氧化碳、二氧化碳、氫氣等。混合原料氣體較佳為包含50%以上之分離目標氣體成分,更佳為包含90%以上、進而較佳為95%以上、進而更佳為98%以上、最佳為99.5%以上。 所謂混合原料氣體中所包含之凝聚性氣體,係指於使用環境下變化為液體之氣體,水或二氧化碳、碳數4以上之烴氣尤其符合。 <精製氣體> 所謂本實施形態中之精製氣體,係指分離目標氣體成分之濃度較佳為99.5%以上、更佳為99.9%以上、進而較佳為99.99%以上、最佳為99.999%以上之氣體。關於分離目標氣體成分,作為烴氣,例如可列舉:甲烷、乙烷、丙烷、丁烷、異丁烷等烷烴氣體等;乙烯、丙烯、1-丁烯、2-丁烯、異丁烯、丁二烯等烯烴氣體等。此處所謂烴氣係指於分子內具有碳原子與氫原子兩者之氣體。此處所謂烷烴氣體係指於分子內不具有C-C不飽和鍵之氣體。此處所謂烯烴氣體係指於分子內具有C-C不飽和鍵之氣體。作為非烴氣,例如可列舉:甲矽烷、甲矽烷、胂、膦、二硼烷、鍺烷、二氯矽烷、硒化氫、四氯化矽、二矽烷、三氟化硼、三氯化硼、氯化氫、氨、三氟化氮、四氟化矽、氟氯碳化物-218、溴化氫、氯氣、三氟化氯、氟氯碳化物-14、氟氯碳化物-23、氟氯碳化物-116、氟氯碳化物-32、一氧化二氮、三氯矽烷、四氯化鈦、氟化氫、三氟化磷、五氟化磷、六氟化鎢、氟氯碳化物-22、氟氯碳化物-123、氧氣、氮氣、水、一氧化碳、二氧化碳、氫氣等。此處所謂非烴氣係指於分子內不具有碳原子與氫原子之任一者或兩者之氣體。 精製氣體中之分離目標以外之氣體成分濃度較佳為5000 ppm以下,更佳為1000 ppm以下,進而較佳為100 ppm以下,最佳為10 ppm以下。就提高使用精製氣體之製程之良率之觀點而言,分離目標以外之氣體成分濃度越低越佳,但實質上設為零就安全性之觀點等而言欠佳。 例如,由於包含烯烴氣體之烴氣為可燃性氣體,故而潛在引火爆炸之擔憂。為了降低引火爆炸之危險性、提高安全性,必須去除可燃物、助燃物、或著火源之任一者。因此,例如藉由除作為分離目標氣體之烴氣以外還含有水,而期待具有可抑制成為著火源之靜電產生之效果。 分離目標以外之氣體只要為實質上與分離目標氣體不同之氣體即可。 <氣體分離膜> [基材膜] 於對混合原料氣體中包含凝聚性氣體之混合氣體進行精製之情形時,有成為透過分離活性層之凝聚性氣體於基材膜中凝聚而堵塞基材膜之孔的液封狀態之情形。成為液封狀態之孔對氣體成為透過阻力,而使氣體透過速度顯著降低。 尤其利用促進輸送透過機構將氣體成分分離之氣體分離膜為了維持與氣體成分之親和性,必須於高濕度氛圍下使用,成為容易液封之條件。基材膜之孔越小,越會於短時間內成為液封狀態,氣體透過性容易降低。 因此,本實施形態之氣體分離膜中之基材膜在與分離活性層之邊界面不存在孔徑較小之緻密層,或者,於存在孔徑較小之緻密層之情形時,該緻密層較佳為與上述邊界面大致平行且設為平均孔徑未達0.01 μm且厚度未達1 μm。 藉由使基材膜之具有分離活性層之側之面不存在緻密層,或者於存在之情形時使緻密層之厚度較薄,可將被液封之層之厚度抑制為較薄,從而維持較高之氣體透過速度。 緻密層除了存在於基材膜與分離活性層之邊界面以外,亦有存在於基材膜內部或與分離活性層相反之表面之情形。無論何種情形,緻密層之厚度均較佳為未達1 μm。 緻密層之厚度例如可藉由將穿透式電子顯微鏡(TEM)或氣體團簇離子槍搭載X射線光電子光譜分析(GCIB-XPS)與掃描式電子顯微鏡(SEM,Scanning Electron Microscope)組合而確定。具體而言,例如可利用以下方法。 (i)測定分離活性層之膜厚。 [使用TEM之情形] 於使用TEM之情形時,例如於以下條件下評價分離活性層之膜厚。 (預處理) 將使氣體分離膜例如冷凍破碎而成者設為測定試樣,於該試樣之外表面實施Pt塗覆後包埋於環氧樹脂。繼而,藉由利用超薄切片機(例如LEICA公司製造之型式「UC-6」)之切削而製作超薄切片後,進行磷鎢酸染色,將其設為鏡檢用試樣。 (測定) 測定例如可使用日立製造之TEM、型式「S-5500」以加速電壓:30 kV進行。 [使用GCIB-XPS之情形] 於使用GCIB-XPS之情形時,可自所獲得之相對元素濃度之分佈曲線知悉分離活性層之膜厚。 GCIB-XPS例如可使用ULVAC-PHI公司製造之型式「VersaProbeII」於以下條件下進行。 (GCIB條件) 加速電壓:15 kV 團簇尺寸:Ar2500 團簇範圍:3 mm×3 mm 蝕刻中之試樣旋轉:有 蝕刻間隔:3分鐘/級 試樣電流:23 nA 總蝕刻時間:69分鐘 (XPS條件) X射線:15 kV、25 W 射束尺寸:100 μm (ii)評價緻密層之厚度。 可根據藉由上述(i)所確定之分離活性層之膜厚及SEM圖像評價緻密層之厚度。SEM例如於以下條件下進行評價。 (預處理) 將使氣體分離膜於與基材膜與分離活性層之邊界面大致垂直之面冷凍破碎而成者設為測定試樣,於該試樣之剖面實施鉑塗覆而製成鏡檢用試樣。 (測定) 測定例如使用JEOL公司製造之SEM、「Carry Scope(JCM-5100)」以加速電壓20 kV進行。 於倍率10,000倍之觀察畫面中,對藉由(i)所確定之分離活性層以外之孔徑進行觀察,確定包含未達0.01 μm之孔之層之厚度。 於本實施形態中,進而,於將在垂直方向上距離基材膜與分離活性層之邊界面2 μm深度為止之基材膜之平均孔徑設為A,將距離10 μm深度為止之平均孔徑設為B時,A為0.05 μm以上且0.5 μm以下,比A/B大於0且為0.9以下。 為了抑制液封狀態,基材膜之孔徑越大越佳,但若孔徑過大,則難以使分離活性層無缺陷地形成。藉由將平均孔徑A設為0.05 μm以上,可抑制液封狀態,可維持較高之氣體透過性。就抑制液封之觀點而言,平均孔徑A較佳為設為0.1 μm以上,更佳為設為0.25 μm以上,最佳為設為0.3 μm以上。另一方面,藉由將平均孔徑A設為0.5 μm以下,可無缺陷地形成分離活性層。 與平均孔徑A之情況同樣地,就為了兼顧液封狀態之抑制與無缺陷之分離活性層之形成之觀點而言,平均孔徑B較佳為0.06 μm以上且5 μm以下,更佳為0.1 μm以上且3 μm以下,進而較佳為0.5 μm以上且1 μm以下。 又,藉由將平均孔徑之比A/B設為0.9以下,可兼顧液封抑制與分離活性層之無缺陷塗佈性。為了兼顧液封抑制與分離活性層之無缺陷塗佈性,獲得較高之氣體透過速度與透過選擇性,A/B較佳為設為0.6以下,更佳為設為0.4以下。 進而,為了充分地發揮抑制液封之效果,較佳為將平均孔徑之和A+B設為0.2 μm以上且5.5 μm以下。該平均孔徑之和表示:於平均孔徑A較小之情形時,平均孔徑B較佳為較大,於平均孔徑A足夠大之情形時,即便平均孔徑B於A/B滿足0.9以下之範圍內孔徑較小,亦可充分地獲得液封抑制效果。就上述觀點而言,A+B更佳為0.4 μm以上,最佳為0.6 μm以上。 平均孔徑A及B例如可藉由以下方法而確定。 (i)與上述緻密層之測定同樣地,將與基材膜與分離活性層之邊界面大致垂直之剖面(膜厚方向剖面)設為測定試樣,以SEM之加速電壓20 kV、倍率10,000倍對基材膜與分離活性層之邊界部分進行測定。 (ii)算出基材膜之距離基材膜與分離活性層之邊界面2 μm深度為止之深度範圍(圖1之符號11)內之平均孔徑A。於距邊界面2 μm深度之範圍內,以與縱橫方向正交之方式以大致均等之間隔各劃5條線,測定該等線橫穿照片中之孔之長度。繼而,求出該等測定值之算術平均值,將其設為平均孔徑。為了提高孔徑測定之精度,縱橫共計10條線橫穿之孔徑之數量較佳為設為20個以上。於一部分分離活性層滲入基材膜中之情形時,將分離活性層未滲入之支持體部與滲入有分離活性層之支持體部之邊界面作為基準而測定平均孔徑。 (iii)算出基材膜之距離基材膜與分離活性層之邊界面10 μm深度為止之深度範圍(圖1之符號12)內之平均孔徑B。該平均孔徑B之算出除了將測定範圍進行變更以外,可藉由與上述(ii)相同之方法進行。 基材膜之材質只要具有對原料氣體之充分之耐蝕性與操作溫度及操作壓力下之充分之耐久性,則無特別限定,較佳為使用有機材料。作為構成基材膜之有機材料,例如較佳為聚醚碸(PES)、聚碸(PS)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚醯亞胺、聚苯并㗁唑、聚苯并咪唑等均聚物、或該等之共聚物等,可較佳地使用該等中之單獨任一者、或包含該等之混合物者。尤其,氟系樹脂於烴氣氛中之耐久性較高,所獲得之基材膜之加工性良好。就該等觀點而言,最佳為PVDF。 基材膜之形狀可為平板膜狀,亦可為中空纖維狀。 於基材膜為中空纖維之情形時,其內徑係根據原料氣體之處理量而適當地選擇,中空纖維之內徑通常於0.1 mm以上且20 mm以下之間進行選擇。為了進一步提高與原料氣體中所包含之目標氣體成分之接觸性,中空纖維之內徑較佳為0.2 mm~15 mm。中空纖維之外徑並無特別限定,就確保可耐受中空纖維內外之壓力差之厚度之觀點而言,可考慮中空纖維之內徑而適當地進行選擇。 [分離活性層] 分離活性層之膜厚較佳為較薄,通常於0.01 μm~100 μm之間進行選擇。為了提高原料氣體中所包含之目標氣體成分之透過速度,分離活性層之膜厚較佳為0.01 μm~10 μm。 分離活性層亦可滲入至基材膜之一部分。藉由分離活性層適度地滲入基材膜中,而基材膜與分離活性層之密接性提高。所滲入之分離活性層之厚度較佳為超過0且為50 μm以下,為了確保氣體成分之透過速度,更佳為30 μm以下,進而較佳為20 μm以下。 就確保與目標氣體成分之親和性之觀點而言,分離活性層較佳為包含液體之層。此處,作為液體,可較佳地使用水或離子液體等。 分離活性層中較佳為包含含有選自由胺基、吡啶基、咪唑基、吲哚基、羥基、苯酚基(phenolyl)、醚基、羧基、酯基、醯胺基、羰基、硫醇基、硫醚基、磺基、磺醯基、及下述式: [化2]{式中,R為碳數2~5之伸烷基}所表示之基所組成之群中之基作為官能基的聚合物。 藉由將包含上述官能基之聚合物設為分離活性層,可使該分離活性層中任意地含有之金屬鹽以高濃度分散。 分離活性層較佳為凝膠性高分子。此處,所謂凝膠性高分子,意指藉由水而膨潤之高分子。 作為包含上述官能基之凝膠性高分子,例如可列舉:聚胺、聚乙烯醇、聚丙烯酸、聚丙烯酸1-羥基-2-丙酯、聚烯丙基磺酸、聚乙烯基磺酸、聚丙烯醯胺甲基丙烷磺酸、聚乙亞胺、明膠、聚離胺酸、聚麩胺酸、聚精胺酸等。尤其,聚胺可使分離活性層中任意地含有之金屬鹽以高濃度分散,故而較佳。作為聚胺,例如可列舉聚烯丙胺衍生物、聚乙亞胺衍生物、聚醯胺胺樹枝狀聚合物衍生物等。 進而,聚胺較佳為晶質高分子。藉此,所獲得之氣體分離膜中之分離活性層之耐久性提高。 作為本實施形態中較佳地使用之聚胺,例如可列舉聚葡萄胺糖。此處,所謂聚葡萄胺糖,係指至少包含β-1,4-N-葡萄糖胺作為重複單元且全部重複單元中之β-1,4-N-葡萄糖胺之比率為70莫耳%以上者。聚葡萄胺糖亦可包含β-1,4-N-乙醯葡萄糖胺作為重複單元。聚葡萄胺糖之重複單元中之β-1,4-N-乙醯葡萄糖胺之比率之上限值較佳為30莫耳%以下。 聚胺亦可利用官能基進行化學修飾。作為該官能基,例如較佳為選自由咪唑基、異丁基、及甘油基所組成之群中之至少1種基。 就使氣體分離性能與透過性之平衡良好之觀點而言,聚胺之數量平均分子量較佳為10萬以上且300萬以下,進而較佳為30萬以上且150萬以下。該數量平均分子量係將支鏈澱粉作為標準物質,藉由尺寸排除層析法進行測定而獲得之值。 為了提高與氣體成分之親和性,分離活性層中較佳為含有金屬鹽。該金屬鹽較佳為分散於分離活性層中而含有。作為金屬鹽,可列舉選自由1價銀離子(Ag+ )及1價銅離子(Cu+ )所組成之群中之1種以上之金屬離子之金屬鹽。更具體而言,作為上述金屬鹽,較佳為包含選自由Ag+ 、Cu+ 及該等之錯離子所組成之群中之陽離子、及選自由F- 、Cl- 、Br- 、I- 、CN- 、NO3 - 、SCN- 、ClO4 - 、CF3 SO3 - 、BF4 - 、及PF6 - 以及該等之混合物所組成之群中之陰離子之鹽。該等中,就獲取之容易性及製品成本之觀點而言,尤佳為Ag(NO3 )。 分離活性層中之金屬鹽之濃度較佳為10質量%以上且70質量%以下,更佳為30質量%以上且70質量%以下,進而較佳為50質量%以上且70質量%以下。若金屬鹽之濃度過低,則有無法獲得氣體分離性能之提高效果之情形。另一方面,若金屬鹽濃度過高,則有產生製造成本變高之不良情況之情形。 <分離膜模組> 繼而,對本實施形態之氣體分離膜模組進行說明。 本實施形態之分離膜模組具備上述所說明之本實施形態之氣體分離膜。 [結構] 於基材膜為中空纖維之情形時,將氣體分離膜編入而製造任意大小之纖維束。可僅使用1條,亦可彙集複數條而使用。作為彙集複數條而使用之情形時之使用條數,較佳為設為10條以上且100,000條以下,更佳為設為10,000條以上且50,000條以下。於條數過少之情形時,會產生導致分離膜模組之生產性降低之問題。纖維束可為任何結構、形狀。 將上述中空纖維束收納於與所使用之殼體直徑相符之接著劑硬化用模具中後,向纖維束之兩端部注入特定量之接著劑,進行硬化而形成接著部,藉此可獲得本實施形態之分離膜模組。 [接著部] 本實施形態之分離膜模組中之接著部有因分離對象氣體(尤其是烴系氣體)、及分離活性層中任意地添加之金屬種(尤其是金屬鹽)而劣化之可能性。然而,藉由脈衝NMR所算出之低運動性成分之組成比V(%)滿足30≦V≦100之關係,且該接著部中之藉由脈衝NMR所算出之測定開始後0.05 msec時之信號強度(I2)相對於測定開始時之信號強度(I1)之衰減率W(%)滿足30≦W≦100之關係的接著部對上述分離對象氣體及金屬種具有較高之耐久性。 業界所使用之通常之市售之接著劑具有約30%以下之低運動性成分之組成比及約30%以下之信號強度之衰減率。該等組成比及衰減率分別引起由烴系氣體所導致之膨潤或金屬鹽之滲入。其結果,有接著部於分離膜模組之使用中發生膨潤或溶出,發生該接著部與氣體分離膜之剝離、接著部之崩解、殼體之破壞等,從而發生原料氣體(分離對象氣體)與精製氣體(分離氣體或處理氣體)之混合等之危險。因此,接著部中之低運動性成分之組成比V及信號強度之衰減率W分別越高越佳。 藉由上述脈衝NMR所算出之低運動性成分之組成比V較佳為30%以上且100%以下,更佳為50%以上且100%以下,進而較佳為70%以上且100%以下,最佳為90%以上且100%以下。藉由上述脈衝NMR所算出之測定開始後0.05 msec時之信號強度(I2)相對於測定開始時之信號強度(I1)之衰減率W較佳為30%以上且100%以下,更佳為60%以上且100%以下,進而較佳為90%以上且100%以下。V及W滿足上述關係之接著部對分離對象氣體及金屬種具有較高之耐久性,故而可提供一種實用性較高之膜模組。 於本實施形態之分離膜模組中之接著部中,較佳為使用滿足於25℃下將包含接著劑之硬化物之試驗片於7 mol/L硝酸銀水溶液中或庚烷中浸漬1個月後之該試驗片之 (1)低運動性成分之組成比V2(%)相對於浸漬前之組成比V1(%)之變化率X(%)較佳為處於-50%以上且50%以下之範圍內,更佳為處於-25%以上且25%以下之範圍內; (2)測定開始後0.05 msec時之信號強度(I2)相對於測定開始時之信號強度(I1)之衰減率W1(%)相對於浸漬前之衰減率W2(%)的變化率(Y、%)較佳為處於-120%以上且120%以下之範圍內,更佳為處於-60%以上且60%以下之範圍內; 之任一者之接著劑而形成,更佳為使用滿足兩者之接著劑而形成。X及Y滿足上述關係之接著部對分離對象氣體及金屬種具有較高之耐久性,故而可提供一種實用性較高之分離膜模組。 於本實施形態中,藉由脈衝NMR而獲得之低運動性成分之組成比(V、%)可藉由以下方法算出。作為脈衝NMR之測定裝置,使用Bruker BioSpin公司製造之Minispec MQ20,將測定核種設為1H,將測定法設為固體回波法,將累計次數設為256次而進行測定。具體而言,將放入有以成為高度1.5 cm之方式所切削之測定試樣的外徑10 mm之玻璃管設置於溫度被控制為190℃之裝置內,於設置後經過5分鐘之時點藉由固體回波法測定1H之T2弛豫時間。於測定時,以成為試樣之T1弛豫時間之5倍以上之方式設定測定期間之重複等待時間。使用包含韋伯函數與勞倫茲函數之以下之式(1): [數1]對以上述方式所獲得之磁化衰減曲線(表示磁化強度之經時變化之曲線)進行擬合。將使用韋伯函數表現之成分設為低運動性成分,將使用勞倫茲函數表現之成分設為高運動性成分。M(t)表示某一時間t時之信號強度,Cs及Cl表示低運動性成分與高運動性成分之組成比(%),Wa表示韋伯係數,Ts及Tl表示低運動性成分與高運動性成分之弛豫時間。關於韋伯係數,將初始值設為2.0後以成為1.2以上且2.0以下之方式進行擬合。 由以上述順序使用脈衝NMR所獲得之磁化衰減曲線可算出將吸收開始時點之測定開始時之信號強度設為100%時之0.05 msec時之信號強度之衰減率W(%)。 本實施形態中之接著部之硬化物較佳為使用具有下述(1)~(3)中之至少1個物性之接著劑而形成。作為接著部,更佳為使用具有下述(1)~(3)中之至少2個物性之接著劑而形成,尤佳為使用滿足下述(1)~(3)之全部物性之接著劑而形成。 (1)於25℃下將包含接著劑之硬化物之試驗片於7 mol/L硝酸銀水溶液中或庚烷中浸漬1個月後之該試驗片之彎曲楊氏模數及彎曲強度之變化率係相對於浸漬前之各者之值處於-30%以上且+30%以下之範圍內; (2)於25℃下將包含接著劑之硬化物之試驗片於7 mol/L硝酸銀水溶液中或庚烷中浸漬1個月後之該試驗片之單位表面積之質量變化係與浸漬前相比處於-30 mg/cm2 以上且+30 mg/cm2 以下之範圍內;及 (3)於25℃下將包含接著劑之硬化物之試驗片於7 mol/L硝酸銀水溶液中或庚烷中浸漬1個月後之該試驗片之厚度變化率係與浸漬前相比處於-5%以上且+5%以下之範圍內。 由將包含硬化物之試驗片於7 mol/L硝酸銀水溶液或庚烷中浸漬後之彎曲楊氏模數變化率與彎曲強度變化率未達-30%或大於30%之接著劑所形成之接著部有於分離膜模組之使用中發生膨潤、溶出、或劣化之可能性。若發生接著部之劣化,則有發生該接著部與氣體分離膜之剝離、接著部之崩解、殼體之破壞等,從而發生原料氣體(分離對象氣體)與精製氣體(分離氣體或處理氣體)之混合等之危險。為了提供實用性較高之膜模組,較佳為使用賦予浸漬後之彎曲楊氏模數變化率及彎曲強度變化率分別為-30%以上且30%以下之硬化物的接著劑,更佳為使用賦予為-10%以上且10%以下之硬化物的接著劑。 由將包含硬化物之試驗片於7 mol/L硝酸銀水溶液或庚烷中浸漬後之單位表面積之質量變化大於30 mg/cm2 之接著劑所形成之接著部有於膜模組之使用中發生膨潤之可能性。若發生接著部之膨潤,則有發生該接著部與氣體分離膜之剝離、接著部之崩解、殼體之破壞等之危險。另一方面,由浸漬後之單位表面積之質量變化未達-30 mg/cm2 之接著劑所形成之接著部有於膜模組之使用中溶出之可能性。若接著部溶出,則有難以嚴格地將原料氣體與精製氣體區分開之危險。為了提供實用性較高之分離膜模組,較佳為使用賦予單位表面積之質量變化為-30 mg/cm2 以上且30 mg/cm2 以下之硬化物的接著劑,更佳為使用賦予為-10 mg/cm2 以上且10 mg/cm2 以下之硬化物之接著劑。 由將包含硬化物之試驗片於7 mol/L硝酸銀水溶液或庚烷中浸漬後之厚度變化率大於5%之接著劑所形成之接著部有於分離膜模組之使用中發生膨潤之可能性。另一方面,由浸漬後之厚度變化率未達-5%之接著劑所形成之接著部有於膜模組之使用中發生溶出之可能性。為了提供實用性較高之膜模組,較佳為使用賦予浸漬後之厚度變化率為-5%以上且5%以下之硬化物的接著劑,更佳為使用賦予為-2%以上且2%以下之硬化物的接著劑。 本實施形態之分離膜模組中之接著部較佳為含有選自環氧樹脂系接著劑之硬化物及聚胺酯樹脂系接著劑之硬化物中之1種以上。 環氧樹脂系接著劑包括包含具有環氧基之化合物之主劑、及硬化劑,藉由將該等混合並使其硬化,可製成本實施形態之分離膜模組中之接著部。該環氧樹脂系接著劑除主劑及硬化劑以外亦可進而包含硬化促進劑。 聚胺酯樹脂系接著劑包括包含具有羥基之化合物之主劑、及包含具有異氰酸酯類之化合物之硬化劑,藉由將該等混合並使其硬化,可製成本實施形態之分離膜模組中之接著部。 作為本實施形態之分離膜模組中之接著部,尤佳為環氧樹脂系接著劑之硬化物。 關於作為環氧樹脂系接著劑之主劑的具有環氧基之化合物,例如可列舉:雙酚A型環氧樹脂、雙酚F型環氧樹脂等雙酚系環氧樹脂;以及酚醛清漆系環氧樹脂、三苯酚甲烷系環氧樹脂、萘系環氧樹脂、苯氧基系環氧樹脂、脂環式環氧樹脂、縮水甘油胺系環氧樹脂、縮水甘油酯系環氧樹脂等。其中,雙酚系環氧樹脂就分子鏈間之相互作用較強,可抑制由分離對象氣體及金屬鹽所引起之膨潤及劣化之觀點而言較佳。 作為環氧樹脂系接著劑中之硬化劑,例如可列舉胺類、聚胺基醯胺類、酚類、酸酐等。該等中,更佳為使用酸酐。其原因在於:使用酸酐作為硬化劑而獲得之環氧樹脂系接著劑之硬化物中,分子鏈間之相互作用較強,難以發生由分離對象氣體及金屬鹽所引起之膨潤及劣化。於使用酸酐作為硬化劑之情形時,所獲得之分離膜模組中之接著部中含有酸酐環氧樹脂。 作為用作環氧樹脂系接著劑中之硬化劑之酸酐,例如可列舉:鄰苯二甲酸酐、偏苯三甲酸酐、均苯四甲酸二酐、二苯甲酮四羧酸二酐、乙二醇雙偏苯三酸酯、偏苯三酸三甘油酯等芳香族酸酐; 甲基-5-降𦯉烯-2,3-二羧酸酐(甲基耐地酸酐)、十二烯基琥珀酸酐、聚己二酸酐、聚壬二酸酐、聚癸二酸酐、聚(乙基十八碳二酸)酐、聚(苯基十六烷二酸)酐等脂肪族酸酐; 甲基四氫鄰苯二甲酸酐、甲基六氫鄰苯二甲酸酐、甲基雙環庚烯二甲酸酐、六氫鄰苯二甲酸酐、三烷基四氫鄰苯二甲酸酐、甲基環己烯二羧酸酐等脂環式酸酐等。可單獨使用該等中之任一者,或者亦可使用該等之混合物。 作為環氧樹脂系接著劑中任意地使用之硬化促進劑,可列舉:慣用之化合物、例如三(二甲基胺基甲基)苯酚、1,8-二氮雜雙環[5,4,0]十一烯-7(DBU)、1,5-二氮雜雙環[4.3.0]壬烯-5(DBN)、1,4-二氮雜雙環[2.2.2]辛烷(DABCO)等三級胺;以及咪唑類、路易斯酸、布忍斯特酸等。可單獨使用該等中之任一者,或者亦可使用該等之混合物。 所使用之環氧樹脂系接著劑之主劑及硬化劑之種類可藉由利用例如紅外線光譜法(IR)、熱分解GC(Gas Chromatography,氣相層析法)/IR、熱分解GC/MS(Mass Spectrometry,質譜分析法)、元素分析、飛行時間二次離子質譜分析法(TOF-SIMS)、固體核磁共振(固體NMR)、X射線光電子光譜法(XPS)等對分離膜模組之接著部進行測定而確認。 本實施形態之分離膜模組中之接著部較佳為實質上不含有氟系熱塑性樹脂之硬化物者。此處,所謂「實質上不含有」,係指接著部中所占之氟系熱塑性樹脂之硬化物之質量比率為5質量%以下,較佳為3質量%以下,更佳為1質量%以下,進而較佳為0.1質量%以下。 本實施形態中之氟系熱塑性樹脂中例如包含聚四氟乙烯(PTFE)、四氟乙烯·全氟烷基乙烯醚共聚物(PFA)、四氟乙烯·六氟丙烯共聚物(FEP)、四氟乙烯·乙烯共聚物(ETFE)、聚偏二氟乙烯(PVDF)、聚三氟氯乙烯(PCTFE)、三氟氯乙烯·乙烯共聚物(ECTFE)等。 本實施形態中所使用之接著劑(因此,本實施形態之分離膜模組中之接著部)視需要亦可進而包含填充劑、防老化劑、補強劑等各種添加劑。 [氣體分離膜之性能] 本實施形態之氣體分離膜可於加濕氛圍下較佳地使用。 本實施形態之氣體分離膜尤其可較佳地用於加濕氛圍下之烯烴與烷烴之分離。具體而言,例如,對於膜面積42 cm2 之氣體分離膜模組,使用包含丙烷40質量%及丙烯60質量%之混合原料氣體,將供給側氣體流量設為190 mL/min,將透過側氣體流量設為50 mL/min,於加濕氛圍下以等壓式於30℃下所測得之丙烯氣體之透過速度較佳為15 GPU以上且2,500 GPU以下,更佳為100 GPU以上且2,000 GPU以下。丙烯/丙烷之分離係數較佳為50以上且2,000以下,更佳為150以上且1,000以下。該等值應該於丙烯分壓1.5氣壓以下之條件下進行測定。 氣體分離膜之性能例如可於以下條件下進行測定。 裝置:GTR Tec公司製造之型式「等壓式氣體透過率測定裝置(GTR20FMAK)」 溫度:25℃ 本實施形態之氣體分離膜亦可較佳地用於二氧化碳之分離。具體而言,例如,對於膜面積2 cm2 之氣體分離膜模組,使用包含二氧化碳40質量%及氮60質量%之混合氣體,將供給側氣體流量設為190 mL/min,將透過側氣體流量設為50 mL/min,於加濕氛圍下以等壓式於30℃下所測得之二氧化碳之透過速度較佳為50 GPU以上且3,000 GPU以下,更佳為100 GPU以上且3,000 GPU以下。二氧化碳/氮之分離係數較佳為100以上且100,000以下,更佳為100以上且10,000以下,進而較佳為100以上且1,000以下。 該等值應該於二氧化碳分壓1氣壓以下、具體而言為0.4氣壓之條件下進行測定。 <氣體分離膜之製造方法> 繼而,對本實施形態之氣體分離膜之製造方法進行說明。 本實施形態之氣體分離膜之製造方法至少包括以下步驟: 製造基材膜之基材膜製造步驟; 製造形成分離活性層之包含含有氣體分離性高分子之水溶液之塗佈液之塗佈液製造步驟;及 於上述基材膜之表面塗佈上述塗佈液之塗佈步驟。 於上述塗佈步驟之前亦可具有使基材膜含浸於黏性水溶液中之含浸步驟。 亦可進行用以自上述塗佈後之基材膜將塗佈液中之溶劑乾燥去除之乾燥步驟。 (基材膜製造步驟) 首先,對本實施形態中較佳地使用之基材膜之製造方法進行記載。 基材膜可藉由非溶劑誘導相分離法或熱誘導相分離法而獲得。 以下,對藉由非溶劑誘導相分離法製造PVDF之中空纖維之情形進行說明。 首先,使PVDF溶解於溶劑中而準備PVDF溶液。關於本實施形態中所使用之PVDF之分子量,以藉由尺寸排除層析法所測得之聚苯乙烯換算之數量平均分子量計較佳為2,000以上且100,000以下,更佳為10,000以上且50,000以下。其原因在於:若分子量過低,則有產生無法表現出實用性較高之耐久性等問題之情形,另一方面,若分子量過大,則有產生該基材膜之製造變困難等問題之情形。 於本實施形態中,上述PVDF溶液中之PVDF之濃度較佳為15質量%以上且50質量%以下,更佳為20質量%以上且35質量%以下。其原因在於:若PVDF之濃度過低,則有產生無法表現出實用性較高之耐久性等問題之情形,另一方面,若PVDF之濃度過高,則有產生該基材膜之製造變困難等問題之情形。 作為PVDF溶液之溶劑,例如可使用:N-甲基-2-吡咯啶酮、二甲基乙醯胺、二甲基甲醯胺、二甲基亞碸等良溶劑;甘油、乙二醇、三乙二醇、聚乙二醇、非離子系界面活性劑等不良溶劑。關於PVDF溶液中之良溶劑/不良溶劑之質量比,考慮到提高將該PVDF溶液用作紡絲原液之情形時之穩定性且使均質膜結構變得容易獲得等,較佳為設為97/3~40/60。 繼而,使用藉由上述方式所獲得之PVDF溶液作為紡絲原液而進行紡絲。分別自雙管狀噴嘴之外側狹縫吐出該PVDF溶液,自中心孔吐出芯液。芯液可使用水或水與良溶劑之混合液。 芯液之吐出量較佳為相對於作為紡絲原液之PVDF溶液之吐出量設為0.1倍以上且10倍以下,更佳為設為0.2倍以上且8倍以下。藉由於上述範圍內適當地控制芯液之吐出量與作為紡絲原液之PVDF溶液之吐出量,可製造較佳之形狀之基材膜。 使自噴嘴吐出之紡絲原液通過空中移行部後浸漬於凝固槽而進行凝固及相分離,藉此形成中空纖維。作為凝固槽中之凝固液,例如可使用水。 為了將溶劑等去除而將自凝固槽提拉出之濕潤狀態之中空纖維於洗淨槽中進行洗淨後,通過乾燥機使其乾燥。 以上述方式可獲得利用非溶劑誘導相分離法之中空纖維。 繼而,對藉由熱誘導相分離法製造PVDF之中空纖維之情形進行說明。 將包含PVDF、塑化劑、及二氧化矽之混合物熔融混練。作為二氧化矽、塑化劑、及PVDF之調配量,相對於二氧化矽、塑化劑、及PVDF之混合物之合計容量較佳為以下之範圍。即,二氧化矽較佳為3~60質量%,更佳為7~42質量%,進而較佳為15~30質量%。塑化劑較佳為20~85質量%,更佳為30~75質量%,進而較佳為40~70質量%。PVDF較佳為5~80質量%,更佳為10~60質量%,進而較佳為15~30質量%。 若二氧化矽為3質量%以上,則二氧化矽可充分地吸附塑化劑,混合物可保持為粉末或顆粒之狀態,容易成形。又,若為60質量%以下,則熔融時之混合物之流動性較佳,成形性提高。此外,所獲得之成形品之強度提高。 若塑化劑為20質量%以上,則塑化劑之量充足,形成充分地發達之連通孔,可形成充分地形成有連通孔之多孔質結構。又,若為85質量%以下,則容易成形,可獲得機械強度較高之基材膜。 若PVDF為5質量%以上,則形成多孔質結構之主幹之有機高分子樹脂之量充足,強度或成形性提高。又,若為80質量%以下,則可製成充分地形成有連通孔之基材膜。 作為無機物粒子、塑化劑及有機高分子樹脂之混合法,可列舉使用亨舍爾混合機、V型摻合機、帶式摻合機等調配機之通常之混合法。作為混合之順序,可列舉:將無機物粒子、塑化劑及有機高分子樹脂同時混合之方法;及將無機物粒子與塑化劑混合而使無機物粒子充分地吸附塑化劑,繼而,調配有機高分子樹脂並進行混合之方法等。若以後者之順序進行混合,則熔融時之成形性提高,所獲得之多孔性支持膜之連通孔充分地發達,進而機械強度亦提高。 為了獲得均質之三成分組合物,混合之溫度處於混合物成為熔融狀態之溫度範圍、即有機高分子樹脂之熔融軟化溫度以上且熱分解溫度以下之溫度範圍。但是,混合之溫度應該根據有機高分子樹脂之熔融指數、塑化劑之沸點、無機物粒子之種類、以及加熱混練裝置之功能等而適當地進行選擇。 於本實施形態中,所謂塑化劑,係指沸點為150℃以上之液體。塑化劑於使經熔融混練之混合物成形時有助於形成多孔質結構,最終進行提取而被去除。作為塑化劑,較佳為於低溫(常溫)下不與有機高分子樹脂相容,但於熔融成形時(高溫)與有機高分子樹脂相容者。 作為塑化劑之例,可列舉鄰苯二甲酸二乙酯(DEP)、鄰苯二甲酸二丁酯(DBP)、鄰苯二甲酸二辛酯(DOP)等鄰苯二甲酸酯或磷酸酯等。該等中,尤佳為鄰苯二甲酸二辛酯、鄰苯二甲酸二丁酯、及該等之混合物。再者,鄰苯二甲酸二辛酯係2個酯部分之碳數分別為8之化合物之總稱,例如包括鄰苯二甲酸二-2-乙基己酯。 於本實施形態中,藉由適當地選擇塑化劑,可控制多孔性支持膜之開孔之大小。 又,亦可於不嚴重阻礙本發明之效果之範圍內視需要添加潤滑劑、抗氧化劑、紫外線吸收劑、成形助劑等。 可藉由將以上述方式所獲得之混合物自雙管狀噴嘴之外側狹縫吐出而獲得中空纖維狀之成形體。 使用溶劑自上述成形體進行塑化劑之提取。藉此可形成有機高分子樹脂具備開孔及連通孔之多孔質結構。用於提取之溶劑為可溶解塑化劑者,且為實質上不溶解有機高分子樹脂者。作為用於提取之溶劑,可列舉甲醇、丙酮、鹵化烴等。尤佳為1,1,1-三氯乙烷、三氯乙烯等鹵素系烴。 提取可利用批次法或逆流多段法等通常之提取方法進行提取。提取塑化劑後,視需要亦可進行溶劑之乾燥去除。 繼而,使用鹼性溶液自上述成形體進行二氧化矽之提取。用於提取之鹼性溶液為可溶解二氧化矽者,且只要不會使有機高分子樹脂劣化,則可為任意者,尤佳為苛性鈉水溶液。提取後視需要亦可將基材膜進行水洗並進行乾燥。 再者,去除塑化劑及二氧化矽之方法不限定於上述之利用提取之方法,可採用通常所進行之各種方法。 作為本實施形態中之基材膜,亦可自市售之基材膜中選擇具有本實施形態特定之參數者而使用。 (含浸步驟) 關於以上述方式所獲得之基材膜,可直接將其供於其後之塗佈步驟,亦可於進行過使該基材膜含浸於黏性水溶液中之含浸步驟後供於塗佈步驟。 於本實施形態中,黏性水溶液之黏度較佳為1 cP以上且200 cP以下,更佳為5 cP以上且150 cP以下,進而較佳為10 cP以上且100 cP以下。其原因在於:若黏性水溶液之黏度過低,則有產生未發揮出使用黏性水溶液之效果等問題之情形,另一方面,若黏性水溶液之黏度過高,則有產生該黏性水溶液未充分地含浸於基材膜等問題之情形。 作為本實施形態中之黏性水溶液之溶質,可使用以任意之比率與水混合之物質。例如可較佳地使用二醇、二醇醚等。分別作為二醇,例如可列舉甘油、乙二醇、二乙二醇、三乙二醇、丙二醇、二丙二醇、三丙二醇、聚乙二醇等,作為二醇醚,例如可列舉乙二醇單甲醚、乙二醇單乙醚、乙二醇單丁醚、乙二醇異丙醚、乙二醇二甲醚、3-甲基3-甲氧基丁醇、乙二醇第三丁基醚、3-甲基3-甲氧基丁醇、3-甲氧基丁醇、二乙二醇單甲醚、二乙二醇單丁醚、三乙二醇單甲醚、三乙二醇單丁醚、丙二醇單甲醚、丙二醇丙基醚、二丙二醇單甲醚、三丙二醇單甲醚等。較佳為選自甘油、乙二醇、及丙二醇中之1種以上。該等溶質可單獨使用,亦可混合而使用。 黏性水溶液中之溶質之濃度較佳為10質量%以上且90質量%以下,且較佳為20質量%以上且80質量%以下。藉由以該範圍將溶質與水混合並調整為上述之黏度範圍,可製備黏性水溶液。 作為黏性水溶液之pH值,較佳為4以上且10以下,更佳為5以上且9以下。其原因在於:無論黏性水溶液之pH值過低抑或過高,均有該黏性水溶液向基材膜之含浸未充分地發生之情形。 為了提高對基材膜之潤濕性,亦可向黏性水溶液中添加相對於溶液之總量為10質量%以下之界面活性劑。作為界面活性劑,例如可列舉:聚氧乙烯之長鏈脂肪酸酯、具有全氟基之氟界面活性劑等。關於其具體例,分別作為聚氧乙烯之長鏈脂肪酸酯,例如可列舉Tween20(註冊商標、聚氧乙烯山梨醇酐單月桂酸酯)、Tween40(註冊商標、聚氧乙烯山梨醇酐單棕櫚酸酯)、Tween60(註冊商標、聚氧乙烯山梨醇酐單硬脂酸酯)、Tween80(註冊商標、聚氧乙烯山梨醇酐單油酸酯)(以上為東京化成工業公司製造)、Triton-X100、Pluronic-F68、Pluronic-F127等;作為具有全氟基之氟界面活性劑,例如可列舉氟系界面活性劑FC-4430、FC-4432(以上為3M公司製造)、S-241、S-242、S-243(以上為AGC Seimi Chemical公司製造)、F-444、F-477(以上為DIC公司製造)等。 進而,於基材膜之素材為疏水性之情形時,為了使黏性水溶液充分地滲入至基材膜中,亦可於黏性水溶液浸漬前浸漬於醇中。作為醇,例如可較佳地使用乙醇或甲醇。又,浸漬於將醇與水混合而成之溶液亦可獲得相同之效果。 使基材膜浸漬於黏性水溶液之情形時之浸漬溫度較佳為設為0℃以上且100℃以下,更佳為設為20℃以上且80℃以下。其原因在於:若浸漬溫度過低,則有產生黏性水溶液向基材膜之含浸未充分地發生等問題之情形,另一方面,若浸漬溫度過高,則有產生黏性水溶液中之溶劑(水)於浸漬中過度揮發等問題之情形。 浸漬時間較佳為設為15分鐘以上且5小時以下,更佳為設為30分鐘以上且3小時以下。若浸漬時間過短,則有產生向基材膜之含浸未充分地發生等問題之情形,另一方面,若浸漬時間過長,則有產生氣體分離膜之製造效率降低等問題之情形。 (塗佈液製造步驟) 分離活性層可藉由使塗佈液接觸基材膜而形成。作為接觸方法,例如存在利用浸漬塗佈法(浸漬法)、刮刀塗佈法、凹版塗佈法、模嘴塗佈法、噴霧塗佈法等進行之塗佈。 以下,對藉由浸漬塗佈法使聚葡萄胺糖接觸而形成分離活性層之情形進行說明。 首先,製備聚葡萄胺糖塗佈液。使聚葡萄胺糖溶解於水性溶劑中而製成聚葡萄胺糖塗佈液。聚葡萄胺糖之濃度較佳為0.2質量%以上且10質量%以下,更佳為0.5質量%以上且5質量%以下。若聚葡萄胺糖濃度未達0.2質量%,則有無法獲得實用性較高之氣體分離膜之情形。本實施形態中所使用之聚葡萄胺糖亦可經化學修飾。 聚葡萄胺糖塗佈液中亦可相對於溶劑之總量以80質量%以下之範圍包含有機溶劑。作為此處所使用之有機溶劑,例如可使用甲醇、乙醇、丙醇等醇、乙腈、丙酮、二㗁烷、四氫呋喃等極性溶劑等。該等有機溶劑可單獨使用,亦可將2種以上混合而使用。 為了提高對基材膜之潤濕性,聚葡萄胺糖塗佈液中亦可相對於溶液之總量包含10質量%以下之界面活性劑。就不與形成分離活性層之素材發生靜電排斥,於酸性、中性、及鹼性之任一種水溶液中均均勻地溶解等觀點而言,界面活性劑較佳為使用非離子性界面活性劑。 作為非離子性界面活性劑,例如可列舉:聚氧乙烯之長鏈脂肪酸酯、具有全氟基之氟界面活性劑等。關於其具體例,分別作為聚氧乙烯之長鏈脂肪酸酯,例如可列舉Tween20(註冊商標、聚氧乙烯山梨醇酐單月桂酸酯)、Tween40(註冊商標、聚氧乙烯山梨醇酐單棕櫚酸酯)、Tween60(註冊商標、聚氧乙烯山梨醇酐單硬脂酸酯)、Tween80(註冊商標、聚氧乙烯山梨醇酐單油酸酯)(以上為東京化成工業公司製造)、Triton-X100、Pluronic-F68、Pluronic-F127等;作為具有全氟基之氟界面活性劑,例如可列舉氟系界面活性劑FC-4430、FC-4432(以上為3M公司製造)、S-241、S-242、S-243(以上為AGC Seimi Chemical公司製造)、F-444、F-477(以上為DIC公司製造)等。 為了提高分離活性層之柔軟性,聚葡萄胺糖塗佈液中亦可相對於溶液之總量添加20質量%以下之黏性溶質。作為黏性溶質,可較佳地使用二醇、二醇醚等。分別作為二醇,例如可列舉甘油、乙二醇、二乙二醇、三乙二醇、丙二醇、二丙二醇、三丙二醇、聚乙二醇等,作為二醇醚,例如可列舉乙二醇單甲醚、乙二醇單乙醚、乙二醇單丁醚、乙二醇異丙醚、乙二醇二甲醚、3-甲基3-甲氧基丁醇、乙二醇第三丁基醚、3-甲基3-甲氧基丁醇、3-甲氧基丁醇、二乙二醇單甲醚、二乙二醇單丁醚、三乙二醇單甲醚、三乙二醇單丁醚、丙二醇單甲醚、丙二醇丙基醚、二丙二醇單甲醚、三丙二醇單甲醚等。較佳為選自甘油、乙二醇、及丙二醇中之1種以上。該等溶質可單獨使用,亦可混合而使用。 (塗佈步驟) 與基材膜接觸時之塗佈液之溫度較佳為設為0℃以上且100℃以下,更佳為設為20℃以上且80℃以下。若接觸溫度過低,則有產生塗佈液未均勻地塗佈於基材膜上等問題之情形,另一方面,若接觸溫度過高,則有產生塗佈液之溶劑(例如水)於接觸中過度揮發等問題之情形。 利用浸漬法進行接觸之情形時之接觸時間(浸漬時間)較佳為設為15分鐘以上且5小時以下,更佳為設為30分鐘以上且3小時以下。若接觸時間過短,則有產生向基材膜上之塗佈變得不充分等問題之情形,另一方面,若接觸時間過長,則有產生氣體分離膜之製造效率降低等問題之情形。 於塗佈時,為了使分離活性層滲入至基材膜內部,亦可施加壓力。壓力根據基材膜與塗佈液之潤濕性而相差較大,於中空纖維之情形時,較佳為設定為未達基材膜自身之耐壓性之壓力且塗佈液不會滲入至中空部之壓力。 (乾燥步驟) 於上述塗佈步驟後,亦可任意地設置乾燥步驟(溶劑去除步驟)。該乾燥步驟可藉由如下方法進行:將塗佈後之基材膜於較佳為80℃以上且160℃以下、更佳為120℃以上且160℃以下之環境下例如靜置較佳為5分鐘以上且5小時以下、更佳為10分鐘以上且3小時以下。其原因在於:於乾燥溫度過低之情形或乾燥時間過短之情形或該等兩者之情形時,有產生無法將溶劑充分地乾燥去除等問題之情形,另一方面,於乾燥溫度過高之情形或乾燥時間過長之情形或該等兩者之情形時,有產生製造成本增加,製造效率降低等問題之情形。 於乾燥時施加於基材膜之張力較佳為大於0且為120 g以下。該張力更佳為2 g以上且60 g以下,最佳為5 g以上且30 g以下。尤其,於基材膜之素材為熱塑性樹脂之情形時,若基材膜於乾燥步驟中塑化,則存在如下情形:基材膜收縮或延伸,由此,因與分離活性層之熱膨脹、收縮率之差異而產生缺陷。又,基材膜孔徑有時亦變化,因此有產生缺陷之情形。藉由控制為特定之張力,可使分離活性層無缺陷地形成。 (具有含有金屬鹽之分離活性層之氣體分離膜之製造方法) 分離活性層含有金屬鹽之氣體分離膜可藉由使以上述方式所獲得之氣體分離膜進而與含有所需之金屬鹽之金屬鹽水溶液接觸而製造。其後,亦可任意地進行乾燥步驟。 上述金屬鹽水溶液中之金屬鹽之濃度較佳為0.1莫耳/L以上且50莫耳/L以下。若金屬鹽水溶液中之金屬鹽之濃度為0.1莫耳/L以下,則有於將所獲得之氣體分離膜用於烯烴與烷烴之分離時未表現出實用性較高之分離性能之情形。若該濃度超過50莫耳/L,則會產生導致原料成本增加等不良情況。 氣體分離膜與金屬鹽水溶液之接觸處理較佳為利用浸漬法。浸漬時之水溶液溫度較佳為設為10℃以上且90℃以下,更佳為設為20℃以上且80℃以下。若該浸漬溫度過低,則有產生金屬鹽向分離活性層之含浸未充分地發生等問題之情形,另一方面,若浸漬溫度過高,則有產生金屬鹽水溶液之溶劑(水)於浸漬中過度揮發等問題之情形。 使氣體分離膜含有金屬鹽之步驟可於氣體分離膜之狀態下進行,亦可於藉由下述接著步驟形成模組之狀態後進行。 藉由以上製造條件可製造本實施形態之氣體分離膜。 (接著步驟) 於上述塗佈步驟後,將複數條分離膜彙集並利用接著劑將端部固定。作為使用條數,較佳為設為10條以上且100,000條以下,更佳為設為10,000條以上且50,000條以下。於條數過少之情形時,可能引起分離膜模組之生產性降低。中空纖維束可為任意結構及形狀。 將以上述方式所製造之中空纖維或中空纖維束收納於與所使用之殼體直徑相符之接著劑硬化用模具中後,向纖維束之兩端部注入特定量之接著劑,進行硬化而形成接著部。 <連續氣體供給系統> 本實施形態中之氣體供給系統之特徵在於:其係至少具備原料氣體接收口、氣體精製部及精製氣體之出口之連續氣體供給系統,且具備下述吸收劑填充模組、吸附劑填充模組、及/或膜模組單元作為氣體精製部。 藉由將如上所述之構成之氣體供給系統設置於使用高純度氣體之現場並連續地供給高純度氣體,可省去於使用先前之氣體鋼瓶之高純度氣體供給時所產生之將鋼瓶更換時之氣體配管內洗淨之步驟。 以下,對於本實施形態之連續氣體供給系統,一面參照圖一面對在殼體內具備原料氣體接收口、氣體精製部及精製氣體出口且內包有上述分離膜模組之情形時之具體態樣進行說明。圖7及圖8中表示本實施態樣之膜模組之構成之例。 圖7係表示殼體為圓筒狀且氣體分離膜為中空纖維狀之氣體供給系統之膜模組之一例的概略剖視圖。圖7之氣體供給系統係於具備原料氣體入口41及處理氣體出口42之圓筒狀之殼體31內收納有於中空纖維狀之基材膜2之外表面上具備分離活性層3之中空纖維狀之氣體分離膜1,上述氣體分離膜1藉由接著部21而接著固定於殼體31,進而具備具有透過氣體入口51之尾部32、及具有精製氣體出口52之頭部33。 氣體分離膜1之兩端未被封閉,透過氣體入口51、氣體分離膜1之中空部分、及精製氣體出口52係以流體可流通之方式構成。另一方面,原料氣體入口41與處理氣體出口42之間亦可流通流體。而且,氣體分離膜1之中空部分與該氣體分離膜1之外部空間除了經由該氣體分離膜接觸以外被阻隔。 於圖7之氣體供給系統中,分離對象氣體(例如烯烴與烷烴之混合物)自原料氣體入口41被導入至該模組而與氣體分離膜1之表面接觸。此時,分離對象氣體成分中與基材膜2及分離活性層3中之至少一者之親和性較高之成分(分離氣體)通過氣體分離膜1之外壁而被釋出至該氣體分離膜1內之空間,並自精製氣體出口52回收。分離對象氣體成分中,與基材膜2及分離活性層3兩者之親和性較低之成分自處理氣體出口42排出。 亦可自殼體31之透過氣體入口51供給透過氣體。 透過氣體係具有如下功能之氣體:藉由與分離對象氣體成分中之被釋出至氣體分離膜1內之空間之成分一併自精製氣體出口52排出,而可回收分離氣體。 作為透過氣體,較佳為不與殼體31、接著部21、及氣體分離膜1、以及分離氣體進行反應之氣體,例如可使用惰性氣體。作為惰性氣體,例如可使用氦氣、氬氣等稀有氣體,此外還可使用氮氣等。 圖8係表示殼體為圓筒狀且氣體分離膜為平板膜狀之膜模組之一例的概略剖視圖。圖8之氣體供給系統係於具備透過氣體入口51及精製氣體出口52、原料氣體入口41及處理氣體出口42、以及用以固定氣體分離膜1之板狀構件22的圓筒狀之殼體31內收納有於平板膜狀之基材膜2之單面上具備分離活性層3之平板膜狀之氣體分離膜1,上述氣體分離膜1藉由接著部21介隔板狀構件22而接著固定於殼體31。 原料氣體入口41與處理氣體出口42之間形成有流體可流通之空間,該空間與氣體分離膜1中之存在分離活性層3之面接觸。另一方面,透過氣體入口51與精製氣體出口52之間亦形成有流體可流通之空間,該空間與氣體分離膜1中之不存在分離活性層3之面接觸。而且,氣體分離膜1中之存在分離活性層3之面所接觸之空間1與不存在分離活性層3之面所接觸之空間2除了經由上述氣體分離膜接觸以外被阻隔。 於圖8之氣體供給系統中,分離對象氣體自原料氣體入口41被導入至該模組之空間1內而與氣體分離膜1之表面接觸,僅與基材膜2及分離活性層3中之至少一者之親和性較高之分離氣體通過氣體分離膜1而被釋出至空間2。分離對象氣體成分中,與基材膜1及分離活性層3兩者之親和性較低之成分直接通過空間1自處理氣體出口42排出。 亦可自殼體31之透過氣體入口51供給透過氣體。透過氣體與分離對象氣體成分中之被釋出至氣體分離膜1內之空間之成分一併自精製氣體出口52排出。 其餘態樣可與圖7之氣體供給系統之情形相同。 自原料氣體接收口導入至氣體精製部之原料氣體藉由氣體分離膜而精製至所需之純度後,自精製氣體出口被直接供給至使用高純度氣體之現場。即,精製氣體之出口亦成為高純度氣體之供給口。 [吸收劑填充模組] 吸收劑填充模組係具有吸收塔與解吸塔之吸收劑填充模組。 <吸收塔> 吸收塔至少具有塔本體、氣體導入管、吸收液導出管、氣體導出管,使原料氣體接觸吸收液而被吸收。塔本體為密閉容器,於其內部收容有吸收液(劑)。 作為分離目標氣體為烯烴之情形時之吸收液(劑),可列舉金屬鹽水溶液、聚乙二醇等溶液、氯化亞銅之水溶液、咪唑鎓系化合物、吡啶鎓系化合物等之離子液體,其中較佳為金屬鹽。 作為該金屬鹽,較佳為包含選自由一價銀(Ag+ )及一價銅(Cu+ )所組成之群中之金屬離子、或其錯離子之金屬鹽。更佳為包含Ag+ 或Cu+ 或其錯離子、及選自由F- 、Cl- 、Br- 、I- 、CN- 、NO3 - 、SCN- 、ClO4 - 、CF3 SO3 - 、BF4 - 、及PF6 - 所組成之群中之陰離子的金屬鹽。該等中,就獲取之容易性及製品成本之觀點而言,尤佳為Ag(NO3 )。 作為分離目標氣體為二氧化碳之情形時之吸收液(劑),可列舉:單乙醇胺等於分子內包含氮原子之化合物及其溶液、咪唑鎓系化合物、吡啶鎓系化合物等之離子液體。 氣體導入管之開放端部於塔本體內之吸收液內下部打開,將原料氣體導入至吸收塔內。吸收液導出部之端部於塔本體內之吸收液內打開,將吸收塔內之吸收液導出至塔外。未被吸收之氣體自塔本體內氣層部之氣體導出管被導出至塔外。 <解吸塔> 解吸塔至少具有塔本體、吸收液導入管、氣體導出管、吸收液導出管,使吸收於吸收液中之氣體解吸。解吸塔中,為了將吸收液維持為所需之溫度而安裝有溫度維持裝置。 吸收液導入管之端部於解吸塔內下部打開,將自吸收塔導出之吸收液導入至解吸塔內。氣體導出管之端部於解吸塔內氣層部打開,將自吸收液所解吸之精製氣體導出至塔外。吸收液導出管之端部於解吸塔內下部打開,將已解吸精製氣體之吸收液導出至塔外。 [吸附劑填充模組] 吸附劑填充模組係至少具有吸附槽之吸附劑填充模組。 <吸附槽> 吸附槽至少具有氣體導入管、氣體導出管,使分離目標氣體吸附於吸附材料。於吸附槽內部收容有吸附劑。 被導入之氣體一面反覆進行吸附、均壓、脫附、洗淨、升壓之步驟,一面被精製至所需之純度。氣體導入管於吸附槽內打開,將已升壓之原料氣體導入至槽內。氣體導出管將精製氣體導出至槽外。 作為吸附劑,可列舉氧化鋁、二氧化矽、沸石、將金屬離子與有機配位基組合而成之多孔體MOF(Metal Organic Framework,金屬有機骨架)等。 [膜模組單元] 本實施形態中之膜模組單元之特徵在於:具備內包上述分離膜模組之殼體、用以對供給至上述氣體分離膜之原料氣體進行加濕之加濕機構(器件)、以及用以對經上述氣體分離膜精製之氣體進行脫水之脫水機構(器件)。 藉由設為上述構成之單元,可提供一種可長期有效地去除無機雜質、有機雜質兩者之膜模組單元。 (加濕機構) 膜模組單元之特徵在於具備加濕機構。加濕機構較佳為設置於分離膜模組之前段或內部。作為設置於分離膜模組前段之加濕機構,例如可列舉起泡器。藉由將原料氣體通入水中,而依據起泡器溫度之水分同時含有於氣體中。作為設置於分離膜模組內部之加濕機構,可列舉:於氣體分離膜之分離活性層側充滿水溶液之方法、或設置向殼體供給霧狀淋浴之噴嘴之方法等。藉由具備加濕機構,可使原料氣體中之無機雜質溶解於水中。 (脫水機構) 膜模組單元之特徵在於:於分離膜模組後段具備脫水機構。作為脫水機構,例如可列舉分霧器、或利用氧化鋁、沸石等吸附劑之方法。藉由具備脫水機構,可將溶於水中之無機雜質與水一併去除。 (氣體純度檢測系統) 膜模組單元較佳為於系統內具備可於線上測定精製氣體純度之氣體純度檢測系統。作為氣體純度檢測系統,可列舉氣相層析質譜分析儀、氣相層析氫焰離子化偵測器、氣相層析熱導偵檢器、氣相層析火焰光度偵測器、離子層析儀等。 [實施例] 以下,使用實施例等具體地對本發明進行說明。然而,本發明不受該等實施例等任何限定。 使用以下之評價方法,對實施例1-1~1-7、比較例1-1之氣體分離膜之性能進行評價。 (氣體透過性) 將氣體分離膜於0.8 M氫氧化鈉溶液(溶劑=乙醇:水(體積比80:20))中浸漬1天後,利用蒸餾水洗淨5次並使其乾燥。將上述氣體分離膜切割成15 cm,利用接著劑將1條固定於殼體內,其後,於7 M硝酸銀水溶液中浸漬24小時,藉此獲得含有銀鹽之氣體分離膜。使用該含有銀鹽之氣體分離膜測定丙烷及丙烯之透過速度。 使用GTR Tec公司製造之型式名「等壓式氣體透過率測定裝置(GTR20FMAK)」,分別對透過側使用包含丙烷及丙烯之混合氣體(丙烷:丙烯=40:60(質量比)),對供給側使用氦氣,將供給側氣體流量設為50 mL/min,將透過側氣體流量設為50 mL/min,於測定溫度30℃下且加濕氛圍下以等壓式(200 kPa加壓條件)測定各試驗氣體之透過速度Q(1 GPU=1×10-6 [cm3 (STP(standard temperature and pressure,標準溫度與壓力))/cm2 /s/cmHg])。 進而,基於以下式: 選擇性α[%]=丙烯透過速度(Q)/丙烷透過速度(Q)×100 自丙烯及丙烷之透過速度求出選擇性α[%]。 (耐久性) 使用Minebea公司製造之型式名「拉伸壓縮試驗機(TG-1k)」,實施氣體分離膜之庚烷溶液浸漬前後之拉伸試驗。基於下述式: 斷裂伸長率之變化率β[%]=(庚烷浸漬後之斷裂伸長率/庚烷浸漬前之斷裂伸長率)×100 算出於庚烷中浸漬1天後之斷裂伸長率相對於庚烷浸漬前之斷裂伸長率之變化率β,基於以下評價基準對耐久性進行評價, β[%]為80%以上且119%以下之情形時:良好(○)、 β[%]為50%以上且79%以下或120%以上且149%以下之情形時:可(△)、 β[%]為49%以下或150%以上之情形時:不良(×)。 關於上述斷裂伸長率之測定,於氣體分離膜為中空纖維狀之情形時(實施例1-1~1-6及比較例1-1),將該中空纖維直接設為試樣,另一方面,於氣體分離膜為平板膜狀之情形時(實施例1-7),將使該平板膜沖裁成寬度5 mm長度70 mm之短條狀而成者設為試樣而進行。 [實施例1-1] 作為基材膜,使用聚偏二氟乙烯製之中空纖維。外徑及內徑、以及平均孔徑A及B分別如以下之表1所示。 使上述中空纖維成為長度25 cm後,藉由熱密封將兩端密封,並使其以1 cm/sec之速度浸漬於以下之表2中亦示之下述組成之塗佈(水溶)液A(液溫25℃)中,中空纖維之全部沒入上述水溶液中並靜置5秒後,以1 cm/sec之速度提拉,於120℃下加熱10分鐘,藉此於中空纖維之外表面上形成分離活性層而製造氣體分離膜。 塗佈液A之組成如下: 聚葡萄胺糖:數量平均分子量50萬 1質量% 其他成分:含有乙酸1質量%、及甘油1質量%之水溶液。 將實施例1-1中所製造之氣體分離膜之剖面SEM圖像示於圖2。 [實施例1-2~1-6及比較例1-1] 分別使用以下之表1所示之中空纖維作為基材膜,使用以下之表1與表2所示之水溶液作為塗佈水溶液,除此以外,以與實施例1相同之方式製造氣體分離膜。 [實施例1-7] 使用Durapore VVLP04700(商品名、Millipore公司製造、孔徑0.1 μm之PVDF薄膜過濾器)作為基材膜。 使用刮刀敷料器以狹縫寬度125 μm將以下之表2中亦示之下述塗佈液D塗佈於上述支持體上,於80℃下使其乾燥6小時,藉此於平板膜狀支持體之單面上形成分離活性層而製造平板膜狀之氣體分離膜。 塗佈液D之組成如下: 聚葡萄胺糖:數量平均分子量50萬 4質量% 其他成分:含有乙酸2質量%之水溶液。 將實施例1-1、1-4、1-5及1-6、以及比較例1-1中所使用之基材膜之表面附近之剖面SEM圖像分別示於圖3~6。 [表1] [表2] 表1中之基材膜之素材欄之簡稱分別為以下含義。 PVDF:聚偏二氟乙烯 PSU:聚碸 PES:聚醚碸 表2中之「FC-4430」係3M公司製造之具有全氟烷基之氟系界面活性劑、商品名「Novec FC-4430」。 表2中之「Nafion」為註冊商標。 由表1可知:於不具有緻密層或具有厚度未達1 μm之緻密層、平均孔徑A為0.05 μm以上且0.5 μm以下、A/B大於0且為0.9以下之基材膜上形成有分離活性層之實施例1~7之氣體分離膜與比較例1之情形相比,獲得極高之丙烯透過速度、及較高之丙烯選擇性。 由以上結果驗證了:藉由對基材膜之孔徑進行控制,可獲得於高濕度氛圍下具有較高之氣體透過速度之氣體分離膜。 <實施例2-1~2-7、比較例2-1~2-4> (氣體透過性評價) 將氣體分離膜於0.8 M氫氧化鈉溶液(溶劑=乙醇:水(體積比80:20))中浸漬1天後,利用蒸餾水洗淨5次並使其乾燥。將上述氣體分離膜切割成15 cm並使10條成為一束,使用以下之表4所示之接著劑製作氣體分離膜模組。 其後,於7 M硝酸銀水溶液中浸漬24小時,藉此獲得含有銀鹽之氣體分離膜。使用該含有銀鹽之氣體分離膜測定丙烷及丙烯之透過速度。 實施例2-1~2-6、比較例2-1之測定係使用將於28.5℃下以起泡器式包含水蒸氣之99.5%之丙烯(作為雜質,包含丙烷及一氧化碳、二氧化碳、氨、氧氣、氮氣、NOx等)以190 cc/min於30℃下供給至氣體分離用膜模組,並利用氧化鋁吸附劑進行脫水之氣體精製系統而進行。 實施例2-7、比較例2-2之測定係使用將99.5%之丙烯(作為雜質,包含丙烷及一氧化碳、二氧化碳、氨、氧氣、氮氣、NOx等)以190 cc/min於30℃下供給至填充有7 M之硝酸銀水溶液之氣體分離用膜模組,並利用氧化鋁吸附劑進行脫水之氣體精製系統而進行。 比較例2-3之測定係使用將99.5%之丙烯(作為雜質,包含丙烷及一氧化碳、二氧化碳、氨、氧氣、氮氣、NOx等)以190 cc/min於30℃下直接供給至氣體分離用膜模組之氣體精製系統而進行。 將由開始供給原料氣體3小時後自氣體精製系統排出之氣體之組成所算出之結果設為測定第1天之結果,將開始供給7天後所獲得之結果設為測定第7天之結果。 [實施例2-1] 作為多孔質膜,使用聚偏二氟乙烯製之中空纖維。外徑及內徑、以及平均孔徑A及B分別如以下之表3所示。 使上述中空纖維支持體成為長度25 cm後,藉由熱密封將兩端密封,並使其以1 cm/sec之速度浸漬於塗佈液A(液溫25℃)中,支持體之全部沒入上述水溶液中並靜置5秒後,以1 cm/sec之速度提拉,於120℃下加熱10分鐘,藉此於中空纖維支持體之外表面上形成分離活性層而製造中空纖維狀之氣體分離膜。 [實施例2-2~2-5、2-7及比較例2-1、2-3] 分別使用以下之表3所示之中空纖維作為多孔質膜,使用表2及以下之表3所示之水溶液作為塗佈液,除此以外,以與實施例2-1相同之方式製造中空纖維狀之氣體分離膜。 [實施例2-6] 使用Durapore VVLP04700(商品名、Millipore公司製造、孔徑0.1 μm之PVDF薄膜過濾器)作為多孔質膜。 使用刮刀敷料器以狹縫寬度125 μm將塗佈液D塗佈於上述支持體上,於80℃下使其乾燥6小時,藉此於平板膜狀支持體之單面上形成分離活性層而製造平板膜狀之氣體分離膜。 [比較例2-2] 將以下之表3所示之中空纖維作為多孔質膜,不塗佈分離活性層而直接作為氣體分離膜。 [比較例2-4] 不使用氣體精製系統而使用市售之高純度丙烯氣體鋼瓶實施測定。 將由自氣體鋼瓶開始高純度丙烯氣體之供給3小時後之組成所算出之結果設為測定第1天之結果,將開始供給7天後所獲得之結果設為測定第7天之結果。又,取得由氣體鋼瓶剛更換後之組成所算出之結果。分離氣體之分析係使用氣相層析法(GC)而進行。 將分析結果示於以下之表5。 氣體鋼瓶剛更換後,精製氣體之純度大幅降低。為了再次精製為99.99%以上,需要約15小時。 [表3] [表4] [表5] 由表3與表5可知:使用於不具有緻密層或具有厚度未達1 μm之緻密層、平均孔徑A為0.05 μm以上且0.5 μm以下、且平均孔徑未達0.01 μm、A/B大於0且為0.9以下多孔質膜上形成有分離活性層之氣體分離用膜模組並具備加濕機構與脫水機構之實施例2-1~2-7與比較例2-1~2-4之情形相比,可長期穩定地精製高純度之丙烯氣體。 由以上結果驗證了:藉由具備多孔質膜之孔徑得到控制之氣體分離膜模組、及加濕、脫水機構,而獲得可進行高純度氣體精製之膜模組單元、及連續氣體供給系統。 [產業上之可利用性] 本發明之氣體分離膜藉由對構成氣體分離膜之基材膜之孔徑進行控制,可將高濕度氛圍下之氣體透過速度長時間保持為較高之狀態,故而可較佳地用於各種氣體分離。
1‧‧‧氣體分離膜
2‧‧‧基材膜
3‧‧‧分離活性層
4‧‧‧孔
11‧‧‧決定平均孔徑A之深度範圍
12‧‧‧決定平均孔徑B之深度範圍
21‧‧‧接著部
22‧‧‧板狀構件
31‧‧‧殼體
32‧‧‧尾部
33‧‧‧頭部
41‧‧‧原料氣體入口
42‧‧‧處理氣體出口
51‧‧‧透過氣體入口
52‧‧‧精製氣體出口
圖1係本實施形態之氣體分離膜之膜厚方向剖面之模式圖。 圖2係實施例1-1中所製造之氣體分離膜之SEM圖像。 圖3係實施例1-1中所使用之基材膜之SEM圖像。 圖4係實施例1-4中所使用之基材膜之SEM圖像。 圖5係實施例1-5及1-6中所使用之基材膜之SEM圖像。 圖6係比較例1-1中所使用之基材膜之SEM圖像。 圖7係表示本實施形態之氣體供給系統構成之一例(使用中空纖維者)之概略剖視圖。 圖8係表示本實施形態之氣體供給系統構成之另一例(使用平板膜者)之概略剖視圖。

Claims (34)

  1. 一種氣體分離膜,其特徵在於:其係用以對包含凝聚性氣體之混合原料氣體進行精製者,且該氣體分離膜係於多孔性基材膜上具有分離活性層,該多孔性基材膜沿該氣體分離膜之膜厚方向剖面中之該多孔性基材膜與該分離活性層之邊界線不具有緻密層,或具有該厚度未達1μm且平均孔徑未達0.01μm之緻密層,而且,於將該多孔性基材膜之距離該分離活性層側2μm深度為止之平均孔徑設為A,將距離10μm深度為止之平均孔徑設為B時,A為0.05μm以上且0.5μm以下,B為0.06μm以上且5μm以下,比A/B超過0且為0.9以下,且平均孔徑A與B之和(A+B)為0.2μm以上且5.5μm以下。
  2. 如請求項1之氣體分離膜,其中上述分離活性層為包含液體之層。
  3. 如請求項1或2之氣體分離膜,其中上述平均孔徑A為0.1μm以上且0.5μm以下。
  4. 如請求項3之氣體分離膜,其中上述平均孔徑A為0.25μm以上且0.5μm以下。
  5. 如請求項4之氣體分離膜,其中上述平均孔徑A為0.3μm以上且0.5μm以下。
  6. 如請求項1或2之氣體分離膜,其中上述平均孔徑B為0.1μm以上且3μm以下。
  7. 如請求項6之氣體分離膜,其中上述平均孔徑B為0.5μm以上且1μm以下。
  8. 如請求項1或2之氣體分離膜,其中上述比A/B超過0且為0.6以下。
  9. 如請求項8之氣體分離膜,其中上述比A/B超過0且為0.4以下。
  10. 如請求項1或2之氣體分離膜,其中上述平均孔徑A與B之和(A+B)為0.4μm以上且5.5μm以下。
  11. 如請求項10之氣體分離膜,其中上述平均孔徑A與B之和(A+B)為0.6μm以上且5.5μm以下。
  12. 如請求項1或2之氣體分離膜,其中一部分上述分離活性層滲入上述多孔性基材膜中,所滲入之分離活性層之厚度超過0且為50μm以下。
  13. 如請求項1或2之氣體分離膜,其中上述分離活性層包含含有選自由胺基、吡啶基、咪唑基、吲哚基、羥基、苯酚基(phenolyl)、醚基、羧基、酯基、醯胺基、羰基、硫醇基、硫醚基、磺基、磺醯基、及下述式:[化1]{式中,R為碳數2~5之伸烷基}所表示之基所組成之群中之1種以上之官能基的聚合物。
  14. 如請求項13之氣體分離膜,其中上述聚合物為聚胺。
  15. 如請求項14之氣體分離膜,其中上述聚胺為聚葡萄胺糖。
  16. 如請求項1或2之氣體分離膜,其中上述分離活性層含有選自由Ag+及Cu+所組成之群中之金屬離子之金屬鹽。
  17. 如請求項1或2之氣體分離膜,其中上述多孔性基材膜包含氟系樹脂。
  18. 如請求項17之氣體分離膜,其中上述氟系樹脂為聚偏二氟乙烯。
  19. 如請求項1或2之氣體分離膜,其中使用包含丙烷40質量%及丙烯60質量%之混合原料氣體作為供給側氣體,於加濕氛圍下,將供給側氣體流量設為190mL/min,將透過側氣體流量設為50mL/min,於加濕氛圍下以等壓式於30℃下所測得之丙烯之透過速度Q為15GPU以上且2,500GPU以下,且丙烯/丙烷之分離係數α為50以上且2,000以下。
  20. 一種烯烴分離方法,其係使用如請求項1至19中任一項之氣體分離膜。
  21. 一種分離膜模組單元,其具備:分離膜模組,其利用接著部固定有如請求項1至20中任一項之氣體分離膜;殼體,其收容該分離膜模組;加濕器件,其用以對供給至該氣體分離膜之原料氣體進行加濕;以及脫水器件,其用以對經該氣體分離膜精製之精製氣體進行脫水。
  22. 如請求項21之分離膜模組單元,其中上述精製氣體為純度99.9%以上之烯烴氣體。
  23. 如請求項21或22之分離膜模組單元,其進而具備氣體純度檢測系統。
  24. 一種純度99.9%以上之烯烴氣體之製造方法,其係使用如請求項21至23中任一項之分離膜模組單元。
  25. 如請求項24之方法,其中上述烯烴氣體為CVD供給用之丙烯。
  26. 一種連續氣體供給系統,其特徵在於:其係具備上述原料氣體接收口、包含如請求項21至23中任一項之膜模組單元之原料氣體精製部、及上述精製氣體之出口的氣體流動式之連續氣體供給系統,且該精製氣體之純度為99.5%以上。
  27. 如請求項26之連續氣體供給系統,其中上述精製氣體之主成分為烴氣。
  28. 如請求項27之連續氣體供給系統,其中上述精製氣體中含有合計5000ppm以下之非烴氣。
  29. 如請求項28之連續氣體供給系統,其中上述非烴氣係選自由氧氣、氮氣、水、一氧化碳、二氧化碳及氫氣所組成之群中之1種以上之氣體。
  30. 如請求項29之連續氣體供給系統,其中上述非烴氣為水。
  31. 如請求項26至30中任一項之連續氣體供給系統,其中上述烴氣為烯烴氣體。
  32. 如請求項31之連續氣體供給系統,其中上述烯烴氣體為碳數1~4之脂肪族烴。
  33. 如請求項32之連續氣體供給系統,其中上述烯烴氣體為乙烯或丙烯。
  34. 如請求項26至30中任一項之連續氣體供給系統,其中使用包含丙烷40質量%及丙烯60質量%之混合氣體作為原料氣體,於加濕氛圍下,將每2cm2膜面積之供給側氣體流量設為190mL/min,將透過側氣體流量設為50mL/min,於加濕氛圍下以等壓式於30℃下所測得之丙烯/丙烷之分離係數α為50以上且100,000以下。
TW106126517A 2016-08-31 2017-08-07 Gas separation membrane TWI660771B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP??2016-169557 2016-08-31
JP2016169557 2016-08-31
JP2017026214 2017-02-15
JP??2017-026214 2017-02-15
JP2017040880 2017-03-03
JP??2017-040880 2017-03-03
JP2017040889 2017-03-03
JP??2017-040889 2017-03-03

Publications (2)

Publication Number Publication Date
TW201815459A TW201815459A (zh) 2018-05-01
TWI660771B true TWI660771B (zh) 2019-06-01

Family

ID=61309380

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106126517A TWI660771B (zh) 2016-08-31 2017-08-07 Gas separation membrane

Country Status (6)

Country Link
US (1) US20190193022A1 (zh)
JP (1) JP6806778B2 (zh)
KR (1) KR102257669B1 (zh)
CN (1) CN109475823B (zh)
TW (1) TWI660771B (zh)
WO (1) WO2018043053A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108697982B (zh) * 2016-03-04 2022-07-22 旭化成株式会社 气体分离用组件和气体分离方法
JP6822998B2 (ja) 2018-03-20 2021-01-27 株式会社東芝 電気化学反応装置
JP2019166443A (ja) * 2018-03-22 2019-10-03 東芝ライフスタイル株式会社 酸素富化膜
US10639591B1 (en) * 2019-01-07 2020-05-05 Compact Membrane Systems, Inc. Thin-film composite membrane and processes for the separation of alkenes from a gaseous feed mixture
US11149634B2 (en) 2019-03-01 2021-10-19 Richard Alan Callahan Turbine powered electricity generation
US11149636B2 (en) 2019-03-01 2021-10-19 Richard Alan Callahan Turbine powered electricity generation
KR102180607B1 (ko) * 2019-08-14 2020-11-18 한국화학연구원 전이금속이 담지된 아민계-고분자착체 분리막 및 그 제조방법
KR102177251B1 (ko) * 2019-08-14 2020-11-10 한국화학연구원 전이금속이 담지된 산계-고분자착체 분리막 및 그 제조방법
CN110887908B (zh) * 2019-12-05 2022-05-06 中维安全检测认证集团有限公司 一种气相色谱法检测气体中乙烯的方法
CN111111479B (zh) * 2020-01-02 2021-05-18 中国科学院大连化学物理研究所 一种用于气体分离的混合基质膜及其制备方法与应用
CN111686596B (zh) * 2020-06-19 2022-07-12 万华化学(宁波)有限公司 一种油水分离膜的制备方法和及其应用
JP2022045188A (ja) 2020-09-08 2022-03-18 キオクシア株式会社 ガス回収装置、半導体製造システムおよびガス回収方法
US11808206B2 (en) 2022-02-24 2023-11-07 Richard Alan Callahan Tail gas recycle combined cycle power plant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691130A (ja) * 1990-04-09 1994-04-05 Standard Oil Co:The 選択分離用高圧促進膜及びその使用法
US20120067209A1 (en) * 2009-02-02 2012-03-22 Ntnu Technology Transfer As Gas separation membrane
JP2014208325A (ja) * 2013-03-29 2014-11-06 富士フイルム株式会社 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019502B2 (zh) 1971-10-15 1975-07-08
JPS557079B2 (zh) 1974-05-17 1980-02-21
US5015268A (en) * 1988-10-13 1991-05-14 Exxon Research And Engineering Co. Polymeric membrane and process for separating aliphatically unsaturated hydrocarbons
IL131851A0 (en) * 1999-09-09 2001-03-19 Carbon Membranes Ltd Recovery of olefins from gaseous mixtures
WO2007123356A1 (en) * 2006-04-26 2007-11-01 Industry-University Cooperation Foundation Hanyang University The facilitated olefin transporting composite membrane comprising nanosized metal and ionic liquid
JP2011161387A (ja) 2010-02-10 2011-08-25 Fujifilm Corp ガス分離膜その製造方法、それらを用いたガス混合物の分離方法、ガス分離膜モジュール、気体分離装置
WO2011163016A2 (en) * 2010-06-25 2011-12-29 Chevron U.S.A. Inc. Processes using molecular sieve ssz-81
CN102580570B (zh) * 2012-02-27 2014-12-17 浙江工商大学 一种固载Ag+促进传递膜及其制备方法和应用
JP6188731B2 (ja) * 2012-03-02 2017-08-30 サウジ アラビアン オイル カンパニー 非芳香族から芳香族を分離するための促進輸送膜
JP6100552B2 (ja) 2013-02-15 2017-03-22 オークマ株式会社 位置検出装置
JP6161124B2 (ja) 2013-03-29 2017-07-12 富士フイルム株式会社 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
JP6315573B2 (ja) * 2013-06-27 2018-04-25 日本碍子株式会社 複合体、構造体、複合体の製造方法及び複合体の使用方法
US10029248B2 (en) * 2013-07-18 2018-07-24 Compact Membrane Systems Inc. Membrane separation of olefin and paraffin mixtures
CN105771698A (zh) * 2016-03-16 2016-07-20 中国石油大学(华东) 一种用于烯烃/烷烃分离的稳定促进传递膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691130A (ja) * 1990-04-09 1994-04-05 Standard Oil Co:The 選択分離用高圧促進膜及びその使用法
US20120067209A1 (en) * 2009-02-02 2012-03-22 Ntnu Technology Transfer As Gas separation membrane
JP2014208325A (ja) * 2013-03-29 2014-11-06 富士フイルム株式会社 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール

Also Published As

Publication number Publication date
JP6806778B2 (ja) 2021-01-06
CN109475823B (zh) 2021-06-29
US20190193022A1 (en) 2019-06-27
CN109475823A (zh) 2019-03-15
JPWO2018043053A1 (ja) 2019-02-21
KR20190032544A (ko) 2019-03-27
WO2018043053A1 (ja) 2018-03-08
TW201815459A (zh) 2018-05-01
KR102257669B1 (ko) 2021-05-31

Similar Documents

Publication Publication Date Title
TWI660771B (zh) Gas separation membrane
TWI710401B (zh) 氣體分離用膜模組、連續氣體供給系統、烯烴氣體之製造方法、及膜模組單元
CN104226124B (zh) 一种聚偏氟乙烯膜及其制备方法
Naim et al. Effect of non-solvent additives on the structure and performance of PVDF hollow fiber membrane contactor for CO2 stripping
KR101392943B1 (ko) 정삼투용 복합 중공사막, 및 이의 제조방법
KR20170137195A (ko) 기체 분리막
CN102824859B (zh) 一种热致相分离/界面交联同步法制备中空纤维纳滤膜的方法
CN110917912A (zh) 内压式复合中空纤维纳滤膜丝及其制备方法
US11077405B2 (en) Module for gas separation, and gas separation method
Kim et al. Hollow-fiber mixed-matrix membrane impregnated with glutaraldehyde-crosslinked polyethyleneimine for the removal of lead from aqueous solutions
CN112827360A (zh) 重金属吸附膜色谱超滤膜及其膜组件和制造方法
JP2019018124A (ja) 分離膜
KR20120077997A (ko) 폴리아마이드계 역삼투 분리막의 제조방법 및 그에 의해 제조된 폴리아마이드계 역삼투 분리막
CN104548976A (zh) 一种反渗透膜及其制备方法和应用
JP2019013885A (ja) 分離膜モジュール
Xiao et al. Preparation of asymmetric chitosan hollow fiber membrane and its pervaporation performance for dimethyl carbonate/methanol mixtures
JP2019018169A (ja) 複合分離膜
KR101716045B1 (ko) 투과유량 특성이 우수한 폴리아미드계 수처리 분리막의 제조 방법 및 상기 제조 방법으로 제조된 수처리 분리막
JP2019013886A (ja) 複合分離膜
CN112827358B (zh) 中空纤维重金属吸附超滤膜的制备方法
JP6960825B2 (ja) ガス分離膜
KR102270472B1 (ko) 분리막, 수처리 모듈, 분리막의 제조 방법 및 분리막의 활성층 개질용 조성물
KR20180080425A (ko) 아세틸화 알킬 셀룰로스와 폴리올레핀케톤의 복합 중공사막
KR20230056299A (ko) 저분자량 친수성 유기 올리고머를 이용한 기체 투과 성능이 향상된 유기 고분자 분리막의 제조 방법

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees