TWI629305B - Composition for interlayer filler of laminated semiconductor device, laminated semiconductor device, and method for manufacturing laminated semiconductor device - Google Patents

Composition for interlayer filler of laminated semiconductor device, laminated semiconductor device, and method for manufacturing laminated semiconductor device Download PDF

Info

Publication number
TWI629305B
TWI629305B TW103111795A TW103111795A TWI629305B TW I629305 B TWI629305 B TW I629305B TW 103111795 A TW103111795 A TW 103111795A TW 103111795 A TW103111795 A TW 103111795A TW I629305 B TWI629305 B TW I629305B
Authority
TW
Taiwan
Prior art keywords
particles
less
composition
filler
semiconductor device
Prior art date
Application number
TW103111795A
Other languages
English (en)
Other versions
TW201443146A (zh
Inventor
杉山雅哉
河瀨康弘
池本慎
桐谷秀紀
山崎正典
Original Assignee
三菱化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014060707A external-priority patent/JP2015183093A/ja
Application filed by 三菱化學股份有限公司 filed Critical 三菱化學股份有限公司
Publication of TW201443146A publication Critical patent/TW201443146A/zh
Application granted granted Critical
Publication of TWI629305B publication Critical patent/TWI629305B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83948Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking

Abstract

本發明係提供高K1c值、高玻璃轉移溫度、且兼顧低黏度、可形成即使有環境變化仍維持穩定接合之積層型半導體裝置用之層間填充材層的組成物。
本發明為一種組成物,係含有:25℃之黏度為50Pa‧s以下之環氧化合物(A);融點或軟化點為80℃以上之胺化合物(B);與融點或軟化點為未滿80℃之胺化合物(C);該胺化合物(C)之比例係在將上述胺化合物(B)與上述胺化合物(C)之合計設為100重量份時,為1重量份以上且未滿40重量份。

Description

積層型半導體裝置之層間填充材用之組成物,積層型半導體裝置及積層型半導體裝置之製造方法
本發明係關於適合於積層型半導體裝置之層間填充材層的組成物、具有含該組成物之層間填充材層的積層型半導體裝置、及經特定步驟而成之積層型半導體裝置之製造方法。
近年來,為了進一步提升半導體裝置之性能,除了電晶體或佈線之細微化之外,將形成有半導體裝置層之半導體基板、或有機基板等之基板相對於複數基板面呈垂直地積疊而進行積層化的、積層型半導體裝置之研究開發正進展著。積層型半導體裝置中,已知有將半導體基板與有機基板經積層者等,更具體而言,已知有半導體基板彼此於其基板間由焊料凸塊等之電氣信號端子等所連接的同時,於基板間填充層間填充材之組成物,具有藉層間填充材層使基板彼此接黏之構造的三維積層型半導體裝置(例如參照專利文獻1)。
此種積層型半導體裝置,被指摘了各種課題,其中之一為由電晶體或佈線等之裝置所發出之熱的放熱課題,作為解決此課題的一手法,舉例有層間填充材組成物之高熱傳導化。具體而言,係使用高熱傳導性之環氧樹脂作為構成層間填充材組成物之接黏成分的熱硬化性樹脂,或將此種高熱傳導性樹脂與高熱傳導性無機填充材複合化,藉此進行層間填充材組成物的高熱傳導化。例如已知有調配球狀氮化硼凝集體作為填充材的層間填充材組成物(例如參照專利文獻2)。
作為於基板間填充了層間填充材之組成物的積層型半導體裝置的製造方法,已提案有於形成了半導體裝置層之晶圓上,形成由層間填充材組成物(Inter Chip Fill,以下有時簡稱為ICF)所形成的層,視需要予以加熱而進行B階段化,接著進行由切割所進行之晶片切出,將所得之半導體基板複數積層,重複加壓加熱之假接合,最終於加壓加熱條件下進行真接合的預施法的製程(例如參照非專利文獻1)。
於此種適合於積層型半導體裝置之實用化的預施法等技術的提案中,提案有關於在填充材對ICF之高填充量化時環氧樹脂組成物之流動性改善(液狀化)與其維持的技術,或(例如參照專利文獻3)為了提升環氧樹脂組成物之靭性而進行超級工程塑膠之添加的技術(例如參照非專利文獻2)。
[先前技術文獻] [專利文獻]
專利文獻1:國際公開第2008/087701號公報
專利文獻2:日本專利特表2008-510878號公報
專利文獻3:日本專利第4848925號公報
專利文獻4:日本專利特開2006-193595號公報
[非專利文獻]
非專利文獻1:電子裝置安裝學會演講大會演講論文集(61, 23, 2009)
非專利文獻2:Journal of Polymer Science: Part B: Polymer Physics, Vol. 45, 2481-2496(2007)
於在基板層間形成由習知技術之組成物所構成之層而成的積層型半導體裝置中,尚未能發揮使積層型半導體裝置之集成電路之高密度化所伴隨之發熱充分散熱之程度的熱傳導性。而且,於積層型半導體裝置中,除了提升熱傳導性之外,為了緩和積層體使用時之發熱膨脹等所造成的應力,尚存在有必須滿足適當之線膨脹率或玻璃轉移溫度等各種要求特性的課題。
另外,製造於半導體基板彼此之層間、具有層間填充材組成物而成的積層型半導體裝置的製程(以下有時簡稱為積層製程)中,亦存在有必須使層間填充材組成物成為適合於加熱加壓條件之接合之程度的黏度等、滿足積層製程之各步驟所要求之特性的課題。
再者,亦瞭解到於積層製程中,有半導體基板彼此之層間的薄膜化、半導體基板間之電氣信號端子之確實接合、或其穩定性(可靠性)等之過去未知的課題。尤其是亦瞭解到由於積層型半導體裝置中之半導體基板或有機基板之線膨脹率之差等影響,而因環境溫度之變化所造成的基板與層間填充材料之界面間的剝離等課題。
因環境溫度之變化所造成之基板與層間填充材料之界面間的剝離等課題,係對半導體裝置之長期間使用之可靠性造成影響者,若為了使此可靠性提升,應用填充材對ICF之高填充量化或超級工程塑膠之添加等過去已知技術,則引起ICF之明顯黏度上升而變得缺乏流動性,因此難以應用至積層製程。又,亦發現到,在改善組成物之流動性時,ICF之玻璃轉移溫度降低而耐熱性降低、或平面應變之 破壞靭性(以下有時簡稱為K1c)降低,而更容易發生基板與層間填充材料之界面間的剝離等的課題。
本發明之目的在於提供一種適合於積層製程之具有高流動性的組成物,其不僅熱傳導性優越,亦可進行半導體基板彼此之確實電氣接合,因高玻璃轉移溫度而具有優越耐熱性,可形成即使有各種環境變化亦不發生龜裂或剝離、具有可維持穩定接合的適當線膨脹率與高靭性的層間填充層,適合於積層型半導體裝置用之層間填充材。而且,本發明之目的在於提供使用其之積層型半導體裝置、及其製造方法。
本發明者等人為了解決上述課題而經潛心研究,結果發現下述發明可解決上述課題,遂完成本發明。亦即,本發明之要旨如下。
[1]一種組成物,係含有:25℃之黏度為50Pa‧s以下之環氧化合物(A);融點或軟化點為80℃以上之胺化合物(B);與融點或軟化點為未滿80℃之胺化合物(C);該胺化合物(C)之比例係在將上述胺化合物(B)與上述胺化合物(C)之合計設為100重量份時,為1重量份以上且未滿40重量份。
[2]如上述[1]記載之組成物,其中,上述胺化合物(C)係具有直接鍵結於具芳香族性之環的胺基的化合物。
[3]如上述[1]或[2]記載之組成物,其中,上述胺化合物(C)係下式(1)所示化合物;[化1] (上式(1)中,n為1~10之整數。)
[4]如上述[1]至[3]中任一項記載之組成物,其中,上述胺化合物(C)之75℃之黏度為50Pa‧s以下。
[5]如上述[1]至[4]中任一項記載之組成物,其中,上述環氧化合物(A)之環氧當量為150g/當量以上、650g/當量以下。
[6]如上述[1]至[5]中任一項記載之組成物,其中,進一步含有至少1種以上之無機填充材(D)。
[7]一種組成物,係含有:120℃之熔融黏度為0.001Pa‧s以上且1Pa‧s以下的環氧化合物(A-1);體積平均粒徑0.1μm以上且10μm以下之無機填充材(D-1);體積平均粒徑0.1μm以上且10μm以下、由與無機填充材(D-1)之體積平均粒徑為相異之體積平均粒徑及化學種所構成的無機填充材(D-2)。
[8]如上述[7]記載之組成物,其中,上述無機填充材(D-1)與無機填充材(D-2)之體積平均粒徑的差為1μm以上且5μm以下。
[9]如上述[7]或[8]記載之組成物,其中,上述無機填充材(D-1)為氮化硼填充材。
[10]如上述[7]或[8]記載之組成物,其中,上述無機填充材(D-1)為二氧化矽填充材。
[11]如上述[7]至[10]中任一項記載之組成物,其中,上述環氧化合 物(A-1)之環氧當量為150g/當量以上且650g/當量以下。
[12]如上述[1]至[11]中任一項記載之組成物,其中,含有助熔劑(E)。
[13]如上述[1]至[12]中任一項記載之組成物,其中,含有分散劑(F)。
[14]一種積層型半導體裝置,係具有複數之基板、與形成於該基板間之層間填充材層,該層間填充材層之至少一者為將上述[1]至[13]中任一項記載之組成物硬化而成之層。
[15]如上述[14]記載之積層型半導體裝置,其中,上述基板之至少一者為形成有半導體裝置層之半導體基板。
[16]如上述[15]記載之積層型半導體裝置,其中,具有複數之上述半導體基板。
[17]一種積層型半導體裝置之製造方法,係含有:於形成有半導體裝置層之半導體基板表面,藉預施法形成由上述[1]至[13]中任一項記載之組成物所構成之層,將該半導體基板與其他基板積層並加壓接合後,依120℃~180℃進行處理的步驟。
[18]如上述[17]記載之積層型半導體裝置之製造方法,其中,上述其他基板係形成有半導體裝置層之半導體基板。
根據本發明,可提供一種適合於積層製程之具有高流動性的組成物,其不僅熱傳導性優越,亦可進行半導體基板彼此之確實電氣接合,因高玻璃轉移溫度而具有優越耐熱性,可形成即使有各種環境變化亦不發生龜裂或剝離、具有可維持穩定接合、提升半導體裝置之長期可靠性的適當線膨脹率與高靭性的層間填充層,適合於積層型半導體裝置用之層間填充材。而且,可提供使用其之積層型半導體 裝置、及其製造方法。
以下說明本發明之實施形態,但本發明並不限定於以下實施形態,於本發明範圍內可進行各種變形而實施。
本發明之第1發明之技術思想在於併用特定之環氧化合物、與具有特定融點之至少2種胺化合物;第2發明之技術思想在於併用特定之環氧化合物、與具有特定體積平均粒徑之至少2種填充材。此等發明係有助於解決本發明共通課題之、在積層型半導體裝置之基板間所形成之層間填充材層所具有之課題的目的的組成物。本發明中,亦可將第1發明與第2發明所具有之技術特徵予以適當組合而應用,通常較佳係將第1發明與第2發明組合應用。
更具體而言,第1發明為一種組成物,係含有:25℃之黏度為50Pa‧s以下之環氧化合物(A);融點或軟化點為80℃以上之胺化合物(B);與融點或軟化點為未滿80℃之胺化合物(C);該胺化合物(C)之比例係在將上述胺化合物(B)與上述胺化合物(C)之合計設為100重量份時,為1重量份以上且未滿40重量份。
又,更具體而言,第2發明為一種組成物,係含有:120℃之熔融黏度為0.001~1Pa‧s的環氧化合物(A-1);體積平均粒徑0.1μm以上且10μm以下之無機填充材(D-1);體積平均粒徑0.1μm以上且10μm以下、由與無機填充材(D-1)之體積平均粒徑為相異之體積平均粒徑及化學種所構成的無機填充材(D-2)。
<環氧化合物>
所謂環氧化合物,係指具有至少1個環氧基的化合物,本發明中,若為本發明特定之範圍者,則可使用任意構造之環氧化合物。本發明之環氧化合物係為了提升本發明組成物之玻璃轉移溫度,較佳係使用具有2個以上環氧基的化合物。又,為了將使本發明組成物經熱硬化之硬化物的K1c值設為較高,較佳係1分子中所含之環氧基之數為1以上且8以下、更佳為2以上且3以下。
另外,為了提升本發明組成物之熱傳導性,作為本發明之環氧化合物,可例示雙酚A型環氧化合物、雙酚F型環氧化合物、雙酚S型環氧化合物、聯苯型環氧化合物、含萘環之環氧化合物、具有二環戊二烯骨架之環氧化合物、苯酚酚醛清漆型化合物、甲酚酚醛清漆型環氧化合物、酚芳烷基型環氧樹脂、二環戊二烯型環氧樹脂、環氧丙基酯型環氧樹脂、環氧丙基胺型環氧樹脂、多官能酚型環氧樹脂、三苯基甲烷型環氧化合物、脂肪族系環氧化合物、脂肪族系環氧化合物與芳香族系環氧化合物的共聚合體環氧樹脂等。
此等之中,較佳為雙酚A型環氧化合物、雙酚F型環氧化合物、雙酚S型環氧化合物、聯苯型環氧化合物、含萘環之環氧化合物等之具有芳香環的環氧化合物,更佳為雙酚A型環氧化合物、雙酚F型環氧化合物、含有萘環之環氧化合物、聯苯基環氧化合物。此等可單獨使用1種或作為2種以上之混合體而使用。
更具體而言,可例示可由市售物取得之三菱化學公司製雙酚A型環氧樹脂(YL6810;120℃之黏度0.008Pa‧s以下)、三菱化學公司製雙酚F型環氧樹脂(1750;120℃之黏度0.01Pa‧s以下)、三菱化學公司製聯苯型環氧樹脂(YX4000(H),120℃之黏度0.03Pa‧s以 下;YL6121H,120℃之黏度0.02Pa‧s以下)、三菱化學公司製蒽型環氧樹脂(YX8800)、新日鐵化學公司製雙酚型環氧樹脂(YSLV-80XY、YSLV-120TE)、新日鐵化學公司製氫醌型環氧樹脂(YDC-1312)、DIC公司製萘型環氧樹脂(HP4032D)等。
‧環氧化合物(A)
本發明之25℃之黏度為50Pa‧s以下之環氧化合物(A),若25℃之黏度為50Pa‧s以下,則無特別限制,可使用任意之環氧化合物。
本發明之25℃之黏度係依照JIS Z 8803:2011所測定的值,設為由圓錐-平板形旋轉黏度計之黏度測定方法所測定之值。更具體而言,係藉由以JIS K 7117-2:1999所定義之E型黏度計所測定。又,即使為顯示結晶性之低分子環氧化合物,在加溫至結晶融解溫度以上後,於5℃以上之環境下於12小時內冷卻至25℃時之狀態為液狀、25℃之黏度為50Pa‧s以下的環氧化合物,仍視為屬於25℃之黏度為50Pa‧s以下之環氧化合物。
‧環氧化合物(A-1)
本發明之環氧化合物(A-1),若為120℃之黏度為0.001~1Pa‧s,則無特別限制,可使用任意之環氧化合物。本發明之120℃之黏度可使用市售之熔融黏度計進行測定。更具體而言,係使用例如Anton-Paar Japan公司製之黏彈性測定裝置、Physica MCR301所測定的平行板動態黏度。
平行板動態黏度可依以下方法進行測定。若樹脂於室溫下呈液狀則直接使用,若於室溫下呈固體,則藉由將其加熱並冷卻至 室溫而得到不定型固體後,將該樹脂載置於平行板皿與平行板(25mm)之間,進行平行板動態黏度測定。測定條件係對上述樣本賦予正弦波變應0.5%,將此應變之角頻率數設為10rad/sec,測定依1分鐘3℃之比例使其於40℃~200℃升溫之過程中的黏度。
<環氧化合物之黏度的控制>
為了使本發明之環氧化合物之25℃之黏度成為50Pa‧s以下、或使環氧化合物之120℃之黏度成為0.001~1Pa‧s係使用習知之調製化合物黏度的方法,例如藉由調整化合物之分子量、或於化合物骨架中導入脂肪族烴基等之高柔軟性構造,可降低黏度;導入具有環狀構造或橋頭之構造等低柔軟性構造,可提高黏度。又,藉由混合高黏度化合物與低黏度化合物而使用、或使用具有明確融點之化合物而降低黏度等,亦可達成。所謂具有明確融點之樹脂,係指於室溫下依結晶狀態以穩定固體存在,另一方面,在達到融點之同時結晶狀態迅速崩解、成為極低黏度之液狀的物質,其可藉由市售之示差掃描熱量計等確認結晶狀態之變化。
更佳可舉例如,若為控制環氧化合物之環氧當量的方法,為了降低黏度,則使用環氧當量小之化合物,為了提高黏度,則使用環氧當量大之化合物。環氧當量可藉由一般習知方法測定。
更具體而言,為了使25℃之黏度成為50Pa‧s以下,較佳係使用環氧當量為500g/當量以下者、更佳300g/當量以下、再更佳210g/當量以下、特佳190g/當量以下的環氧化合物。
另外,為了使120℃之黏度成為0.001以上且1Pa‧s以下,較佳係使用環氧當量為150g/當量以上且650g/當量以下者、更佳 175g/當量以上且600g/當量以下。環氧當量小於150g/當量者,有耐熱性惡化的傾向;若大於650g/當量,則環氧化合物之融點變高,且本發明組成物之熔融黏度變高,半導體裝置晶片彼此之接合產生問題,有積層型半導體裝置無法有效發揮機能之情況,或有無法滿足3D積層製程之各步驟所要求物性、難以製造積層型半導體裝置的情形。
<其他環氧化合物>
另外,本發明之組成物中,在不損及其目的之範圍內,可含有本發明之環氧化合物以外的、其他環氧化合物(A-2)(以下有時簡稱為環氧化合物(A-2))。
作為環氧化合物(A-2),若25℃之黏度或120℃之黏度為本發明之環氧化合物所規定的範圍,則可使用任意環氧化合物。例如可使用雙酚A型環氧樹脂、雙酚F型環氧樹脂、萘型環氧樹脂、苯酚酚醛清漆型樹脂、甲酚酚醛清漆型環氧樹脂、酚芳烷基型環氧樹脂、聯苯型環氧樹脂、三苯基甲烷型環氧樹脂、二環戊二烯型環氧樹脂、環氧丙基酯型環氧樹脂、環氧丙基胺型環氧樹脂、多官能酚型環氧樹脂、雙酚A型或雙酚F型之固形環氧樹脂、苯氧基環氧樹脂等。此等可單獨使用1種或作為2種以上之混合體而使用。
由本發明組成物之黏度控制的觀點而言,環氧化合物(A-2)之環氧當量較佳係大於650g/當量且30000g/當量以下、更佳800g/當量以上且25000g/當量以下。環氧當量為650g/當量以下者,即使為併用,無法得到作為用於層間填充材之組成物的充分物性的情形較多,若大於30000g/當量,則有本發明組成物之黏度大至無法適合積層製程的可能性。
本發明之組成物係在含有環氧化合物(A-2)的情況,本發明所規定之環氧化合物(環氧化合物(A)及環氧化合物(A-1))與環氧化合物(A-2)的比例,係將總環氧化合物之合計設為100重量%,本發明所規定之環氧化合物之總重量(環氧化合物(A)及環氧化合物(A-1)的重量的和)為75~99重量%、較佳80~95重量%。
<硬化劑>
本發明之組成物亦可含有硬化劑。本發明之硬化劑係顯示有助於環氧化合物之環氧基間之交聯反應的物質,於第1發明中,屬於必須成分之胺化合物(B)及胺化合物(C)相當於硬化劑。
作為硬化劑,若為一般已知為環氧化合物之硬化劑,則可無特別限制地使用所有物。可舉例如酚系硬化劑、脂肪族胺、聚醚胺、脂環式胺、芳香族胺等胺系硬化劑、酸酐系硬化劑、醯胺系硬化劑、三級胺、咪唑或其衍生物、有機膦類、鏻鹽、四苯基硼鹽、有機酸二醯肼、鹵化硼胺錯合物、聚硫醇系硬化劑、異氰酸酯系硬化劑、嵌段異氰酸酯系硬化劑等。此等可單獨使用1種或依任意組合及比率混合2種以上而使用。
作為酚系硬化劑之具體例,可例示:雙酚A、雙酚F、4,4'-二羥基二苯基甲烷、4,4'-二羥基二苯醚、1,4-雙(4-羥基苯氧基)苯、1,3-雙(4-羥基苯氧基)苯、4,4'-二羥基二苯基硫醚、4,4'-二羥基二苯基酮、4,4'-二羥基二苯基碸、4,4'-二羥基聯苯、2,2'-二羥基聯苯、10-(2,5-二羥基苯基)-10H-9-氧雜-10-磷雜菲-10-氧化物、苯酚酚醛清漆、雙酚A酚醛清漆、鄰甲酚酚醛清漆、間甲酚酚醛清漆、對甲酚酚醛清漆、二甲苯酚酚醛清漆、聚-對羥基苯乙烯、對苯二酚、間苯二酚、鄰苯二酚、 第三丁基鄰苯二酚、第三丁基對苯二酚、間苯三酚、鄰苯三酚、第三丁基鄰苯三酚、1,2,4-苯三醇、2,3,4-三羥基二苯甲酮、1,2-二羥基萘、1,3-二羥基萘、1,4-二羥基萘、1,5-二羥基萘、1,6-二羥基萘、1,7-二羥基萘、1,8-二羥基萘、2,3-二羥基萘、2,4-二羥基萘、2,5-二羥基萘、2,6-二羥基萘、2,7-二羥基萘、2,8-二羥基萘、上述二羥基萘之烯丙基化物或聚烯丙基化物、烯丙基化雙酚A、烯丙基化雙酚F、烯丙基化苯酚酚醛清漆、烯丙基化鄰苯三酚、聚烯丙基化鄰苯三酚等。
作為胺系硬化劑之具體例,作為脂肪族胺類,可例示:伸乙基二胺、1,3-二胺基丙烷、1,4-二胺基丙烷、六亞甲基二胺、2,5-二甲基六亞甲基二胺、三甲基六亞甲基二胺、二伸乙基三胺、亞胺基雙丙胺、雙(六亞甲基)三胺、三伸乙基四胺、四伸乙基五胺、五伸乙基六胺、N-羥基乙基伸乙基二胺、四(羥基乙基)伸乙基二胺等。作為聚醚胺類,可例示:三乙二醇二胺、四乙二醇二胺、二乙二醇雙(丙胺)、聚氧伸丙基二胺、聚氧伸丙基三胺類等。作為脂環式胺類,可例示:異佛爾酮二胺、薄荷烷二胺、N-胺基乙基哌、雙(4-胺基-3-甲基二環己基)甲烷、雙(胺基甲基)環己烷、3,9-雙(3-胺基丙基)-2,4,8,10-四氧雜螺(5,5)十一烷、降烯二胺等。作為芳香族胺類,可例示:四氯-對二甲苯二胺、間二甲苯二胺、對二甲苯二胺、間伸苯基二胺、鄰伸苯基二胺、對伸苯基二胺、2,4-二胺基苯甲醚、2,4-甲苯二胺、2,4-二胺基二苯基甲烷、4,4'-二胺基二苯基甲烷、4,4'-二胺基-1,2-二苯基乙烷、2,4-二胺基二苯基碸、4,4'-二胺基二苯基碸、間胺基苯酚、間胺基苄基胺、苄基二甲基胺、2-(二甲基胺基甲基)苯酚、三乙醇胺、甲基苄基胺、α-(間胺基苯基)乙胺、α-(對胺基苯基)乙胺、二胺基二乙基二甲基二苯基甲烷、α,α'-雙(4-胺基苯基)-對二異丙基苯等。
作為酸酐系硬化劑之具體例,可例示:十二烯基琥珀酸酐、聚己二酸酐、聚壬二酸酐、聚癸二酸酐、聚(乙基十八烷二酸)酐、聚(苯基十六烷二酸)酐、甲基四氫苯二甲酸酐、甲基六氫苯二甲酸酐、六氫苯二甲酸酐、甲基雙環庚烯二甲酸酐、四氫苯二甲酸酐、三烷基四氫苯二甲酸酐、甲基環己烯二羧酸酐、甲基環己烯四羧酸酐、鄰苯二甲酸酐、偏苯三酸酐、均苯四甲酸酐、二苯甲酮四羧酸酐、乙二醇雙偏苯三酸二酐、氯橋酸酐、耐地酸酐(nadic anhydride)、甲基耐地酸酐、5-(2,5-二側氧基四氫-3-呋喃基)-3-甲基-3-環己烷-1,2-二羧酸酐、3,4-二羧基-1,2,3,4-四氫-1-萘基琥珀酸二酐、1-甲基-二羧基-1,2,3,4-四氫-1-萘基琥珀酸二酐等。
作為醯胺系硬化劑,可例示:二氰基二醯胺、聚醯胺樹脂等。
作為三級胺,可例示:1,8-二氮雙環(5,4,0)十一烯-7、三伸乙基二胺、苄基二甲胺、三乙醇胺、二甲胺基乙醇、參(二甲胺基甲基)苯酚等。
作為咪唑或其衍生物,可例示:1-氰乙基-2-苯基咪唑、2-苯基咪唑、2-乙基-4(5)-甲基咪唑、2-苯基-4-甲基咪唑、1-苄基-2-甲基咪唑、1-苄基-2-苯基咪唑、1-氰乙基-2-十一烷基咪唑、1-氰基-2-苯基咪唑、1-氰乙基-2-十一烷基咪唑偏苯三酸酯、1-氰乙基-2-苯基咪唑鎓偏苯三酸酯、2,4-二胺基-6-[2'-甲基咪唑基-(1')]-乙基-均三、2,4-二胺基-6-[2'-乙基-4'-甲基咪唑基-(1')]-乙基-均三、2,4-二胺基-6-[2'-甲基咪唑基-(1')]-乙基-均三異三聚氰酸加成物、2-苯基咪唑異三聚氰酸加成物、2-苯基-4,5-二羥基甲基咪唑、2-苯基-4-甲基-5-羥基甲基咪唑、或環氧樹脂與上述咪唑類之加成物、2-苯基-4,5-二羥基甲基咪唑、2-苯基-4-甲基-5-羥基甲基咪唑等。
作為有機膦類,可例示:三丁基膦、甲基二苯基膦、三苯基膦、二苯基膦、苯基膦等;作為鏻鹽,可例示:四苯基鏻-四苯基硼酸鹽、四苯基鏻-乙基三苯基硼酸鹽、四丁基鏻-四丁基硼酸鹽等;作為四苯基硼鹽,可例示:2-乙基-4-甲基咪唑-四苯基硼酸鹽、N-甲基啉-四苯基硼酸鹽等。
另外,可舉例如下式(1)所示之芳香族胺系硬化劑。
H2N-Ar-COO-[X-O]-CO-Ar-NH2‧‧‧(1)
上式(1)中,Ar表示伸芳基、更佳為伸苯基。
式(1)中,-[X-O]-係指由-[(CH2)n-O]m-及具有此構造所具有之任一碳為具有烷基之分枝構造所選擇的至少1種構造。此式(1)中之n可為1~20之整數、較佳2~12之整數、更佳2~8、最佳2~4。又,此式(1)中之m可為1~10之整數、較佳1~6之整數、最佳1~4之整數。若n或m過大,則硬化物之彈性係數或玻璃轉移溫度降低,另一方面,n=0時,由於芳香族二胺之剛直性,而有環氧化合物中之液晶原(mesogen)之運動性降低、妨礙液晶原排列而高秩序化之區塊相的形成、熱傳導性不變大的情形。
更具體而言,可舉例如雙(4-胺基苯醯氧基)甲烷、雙(4-胺基苯醯氧基)乙烷、1,3-雙(4-胺基苯醯氧基)丙烷、1,4-雙(4-胺基苯醯氧基)丁烷、1,5-雙(4-胺基苯醯氧基)戊烷、1,6-雙(4-胺基苯醯氧基)己烷、1,7-雙(4-胺基苯醯氧基)庚烷、1,8-雙(4-胺基苯醯氧基)辛烷、1,9-雙(4-胺基苯醯氧基)壬烷、1,10-雙(4-胺基苯醯氧基)癸烷、1,11-雙(4-胺基苯醯氧基)十一烷、1,12-雙(4-胺基苯醯氧基)十二烷等。
尚且,其中,在-[X-O]-為來自丁二醇之單元(n=4)時,或X為由具有烷基之分枝構造所選擇之至少一種構造,係由容易工業性取得而言 為較佳。作為此種芳香族胺系硬化劑之例子,可舉例如:1,4-雙(4-胺基苯醯氧基)丁烷、二(四亞甲基氧基)雙-4-胺基苯甲酸酯、三(四亞甲基氧基)雙-4-胺基苯甲酸酯、聚(四亞甲基氧基)雙-4-胺基苯甲酸酯。
本發明組成物中之硬化劑的含量,係相對於總環氧化合物每100重量份,較佳為0.005重量份以上且200重量份以下、更佳0.01重量份以上且180重量份以下。
總環氧化合物每100重量份之硬化劑的含量為未滿0.005重量份時,有硬化不足之虞,若超過200重量份,則有無法得到接黏性或熱傳導性等之積層型半導體裝置的所需物性的情形。
<融點或軟化點為80℃以上之胺化合物(B)>
屬於本發明之第1發明之必要成分的融點或軟化點為80℃以上之胺化合物(B),若屬於融點或軟化點為80℃以上之胺化合物,則可使用任意胺化合物。本發明中,所謂融點,係定義為使用示差掃描熱量計,藉由由25℃至100℃為止依2℃/分鐘進行升溫時所顯現之吸熱波峰的溫度。
又,所謂軟化點,係定義為使用熱機械分析裝置,依負重2gf、升溫速度5℃/分鐘之條件所測定時,針大幅下沉之溫度。
所謂胺化合物,係具有至少1個胺基的化合物,本發明之胺化合物(B)中,由提升本發明組成物之玻璃轉移溫度的觀點而言,較佳係使用具有2個以上胺基的化合物。又,由使本發明組成物之K1c值成為較高的觀點而言,所具有之胺基之範圍較佳為1以上且5以下、更佳1以上且3以下、特佳1以上且2以下。
為了提升本發明組成物之耐熱性,本發明之胺化合物(B) 較佳係於其分子構造中具有環狀構造。作為環狀構造,可為脂肪族烴之環狀構造、含有氮原子或氧原子等之含雜原子環狀構造、或具有芳香族性之環狀構造。更具體而言,較佳為苯、萘、蒽等之具有類苯芳香族環的胺化合物。
在將本發明之胺化合物(B)之融點或軟化點設為80℃以上時,通常有增大分子量,或作成為具有具複數芳香環之剛直構造的化合物,或增加1分子中所具有之胺基數的方法等,藉由適當組合此等,可選擇融點或軟化點為80℃以上之胺化合物。
作為胺化合物(B),具體可舉例如:鄰伸苯基二胺、對伸苯基二胺、4,4'-二胺基二苯基甲烷、4,4'-二胺基-1,2-二苯基乙烷、2,4-二胺基二苯基碸、4,4'-二胺基二苯基碸、間胺基苯酚、2-(二甲基胺基甲基)苯酚、甲基苄基胺、α-(間胺基苯基)乙胺、α-(對胺基苯基)乙胺、α,α'-雙(4-胺基苯基)-對二異丙基苯、三亞甲基雙-4-胺基苯甲酸酯等之芳香族胺類。此等之中,較佳為使用4,4-二胺基二苯基碸。藉由應用4,4-二胺基二苯基碸作為胺化合物(B),可得到具有高K1c值與高玻璃轉移點的層間填充材組成物。
<融點或軟化點為未滿80℃之胺化合物(C)>
屬於本發明之第1發明之必要成分的融點或軟化點為未滿80℃之胺化合物(C),若屬於融點或軟化點為未滿80℃之胺化合物,則可使用任意胺化合物。胺化合物(C)之融點及軟化點,係與胺化合物(B)之定義相同。
本發明之胺化合物(C)中,由提升本發明組成物之玻璃轉移溫度的觀點而言,較佳係使用具有2個以上胺基的化合物。又,由使本發明 組成物之硬化物之K1c值提高的觀點而言,所具有之胺基之範圍較佳為1以上且3以下、更佳1以上且2以下。
又,由提升本發明組成物之耐熱性的觀點而言,本發明之胺化合物(C)較佳係於其分子構造中具有1個以上之具芳香族性之環狀構造、更佳為具有2個以上之具芳香族性之環狀構造的胺化合物。作為具芳香族性之環狀構造,可為類苯芳香族環、非類苯芳香族環、雜芳香環等;其中較佳為類苯芳香族環或雜芳香環。具有芳香族性之環狀構造所具有之環數較佳為3以下、更佳2以下、特佳為1。作為類苯芳香族環,可舉例如苯、萘、蒽、芘、苝等;較佳為苯或萘、更佳為苯。又,作為非類苯芳香族環,可舉例如薁、二茂鐵等。又,作為雜芳香環,可舉例如吡啶、噻吩、吡咯、喹啉、吲哚等,較佳為吡啶或喹啉。
另外,本發明之胺化合物(C)所具有之胺基,係由提升本發明組成物之玻璃轉移溫度的觀點而言,較佳為直接鍵結於具芳香族性之環狀構造,在為具有2個以上胺基之化合物的情況,較佳係胺基分別直接鍵結於個別之具芳香族性之環狀構造。在胺基分別直接鍵結於個別之具芳香族性之環狀構造的情況,並無對於各別之具芳香族性之環狀構造之連結部的制約,可依各種二價基進行鍵結、亦可直接鍵結。作為鍵結部所使用之二價基,具體可舉例如伸烷基、氧基伸烷基等,進而由容易製造胺化合物(C)的觀點而言,較佳係此等經由羰基或酯基而鍵結於具芳香族性之環狀構造。
為了提升本發明組成物之流動性,胺化合物(C)較佳係使用分子量為1000g/mol以下者,更佳為使用800g/mol以下、再更佳600g/mol以下、特佳500g/mol以下的化合物。
在將本發明之胺化合物(C)之融點或軟化點設為未滿80℃時,通常有減小分子量,或作成為具有不僅有芳香環、亦含有脂肪族鏈之構造的化合物,或增加所具有之取代基數的方法等,藉由適當組合此等,可選擇融點或軟化點為未滿80℃之胺化合物。
作為胺化合物(C),具體可例示伸乙基二胺、1,3-二胺基丙烷、1,4-二胺基丙烷、六亞甲基二胺、2,5-二甲基六亞甲基二胺、三甲基六亞甲基二胺、二伸乙基三胺、亞胺基雙丙胺、雙(六亞甲基)三胺、三伸乙基四胺、四伸乙基五胺、五伸乙基六胺、N-羥基乙基伸乙基二胺、四(羥基乙基)伸乙基二胺、三乙醇胺等之脂肪族胺類。又,可舉例如三乙二醇二胺、四乙二醇二胺、二乙二醇雙(丙胺)等之醚胺類,聚氧伸丙基二胺、聚氧伸丙基三胺類等之聚醚胺類中融點或軟化點為未滿80℃者。又,可例示異佛爾酮二胺、薄荷烷二胺、N-胺基乙基哌、雙(4-胺基-3-甲基二環己基)甲烷、雙(胺基甲基)環己烷、3,9-雙(3-胺基丙基)-2,4,8,10-四氧雜螺(5,5)十一烷、降烯二胺等之脂環式胺類。又,可例示四氯-對二甲苯二胺、間二甲苯二胺、對二甲苯二胺、間伸苯基二胺、2,4-二胺基苯甲醚、2,4-甲苯二胺、2,4-二胺基二苯基甲烷、間胺基苄基胺、苄基二甲基胺、二胺基二乙基二甲基二苯基甲烷、聚四亞甲基氧基雙-4-胺基苯甲酸酯等之芳香族胺類。
作為胺化合物(C),更具體而言,較佳係使用下述式(1)所示化合物。下述式(1)中,n為1~10之整數,但由組成物之硬化進行加快的觀點而言,較佳為1~6之整數、更佳1~4之整數。又,下述式(1)中,相對於芳香環之胺基的取代基數可為1以上,較佳係取代基對於酮基取代於鄰位、更佳為取代於對位的化合物。
[化2]
<無機填充材(D)>
本發明之組成物係在不妨礙本發明效果的範圍內,亦可含有無機填充材(D)。第2發明中,無機填充材(D)為必須成分,無機填充材(D)之中,含有具特定體積平均粒徑之無機填充材(D-1)、與化學上與無機填充材(D-1)相異的無機填充材(D-2)。於此,所謂化學上相異,係不僅止於構成無機填充材之元素的種類相異者,即使構成之元素種類相同但組成比相異者,亦定義為化學上相異之無機填充材。
尤其是在含有具高熱傳導率之無機填充材(D)的情況,可促進來自半導體基板之熱傳導,使半導體基板之溫度降低,使積層型半導體裝置穩定動作。又,本發明組成物係藉由含有無機填充材(D),而可將由本發明組成物所得之層間填充材層之線膨脹係數控制為較佳範圍,進而可提高K1c值。
作為此種無機填充材(D),具體可舉例如從由金屬、碳、金屬碳化物、金屬氧化物及金屬氮化物所組成群選擇之至少1種之粒子。作為碳之例子,可舉例如碳黑、碳纖維、石墨、富勒烯、鑽石等。作為金屬碳化物之例子,可舉例如碳化矽、碳化鈦、碳化鎢等。作為金屬氧化物之例子,可舉例如氧化鎂、氧化鋁、氧化矽、氧化鈣、氧化鋅、氧化釔、氧化鋯、氧化鈰、氧化鐿、矽鋁氮氧化物(矽、鋁、氧、氮所構成的陶瓷)等。又,其等之形狀並無限制,可為粒子狀、晶鬚狀、 纖維狀、板狀、或此等之凝集體。作為上述金屬氮化物,可舉例如氮化硼、氮化鋁、氮化矽等。
於積層型半導體裝置用之層間填充材中,由於要求絕緣性之情況較多,故無機填充材(D)中,較佳為氧化物或氮化物。作為此種無機填充材(D),更具體可舉例如氧化鋁(Al2O3)、氮化鋁(AlN)、氮化硼(BN)、氮化矽(Si3N4)、二氧化矽(SiO2)等。
無機填充材(D)可單獨使用1種,或依任意組合及比率混合2種以上而使用。
‧熱傳導率
無機填充材(D)之熱傳導率可依燒結等形成薄板並對其藉定常法或非定常法進行測定。非定常法中,由於熱傳導率λ係與熱擴散率(α)與比熱容量(Cp)、及密度(ρ)成比例,故可依照JIS R1611規定之方法,分別求得α、Cp及ρ後,藉此等之積測定熱傳導率λ。
‧體積平均粒徑
無機填充材(D)若粒徑過大,則有妨礙積層型半導體裝置之層間的電氣接合,或暫時接合之基板彼此之電氣接合因溫度變化等而被切斷等發生不良情況的情形。又,若過小,則有容易凝集、於組成物中之分散性變差、發生黏度上升或接合不良,故若為粒狀或扁平狀之無機填充材,較佳係使用體積平均粒徑為0.1μm以上且10μm以下者。更佳為1μm以上且9μm以下、再更佳2μm以上且8μm以下、最佳3μm以上且5μm以下。
無機填充材(D)之體積平均粒徑可藉由通常已知之粒度 分佈測定裝置,將無機填充材(D)分散於適當溶劑中,以雷射繞射/散射式粒度分佈測定裝置等測定粒度分佈,由所得之粒度分佈予以求得。更具體而言,可例如藉以下方法進行測定。將層間填充材組成物依所需濃度分散於環己酮中,以粒度分佈測定裝置(島津製作所公司製「SALD-2200」)進行測定,得到體積粒度分佈。由所得之粒度分佈,可求得粉碎後之無機填充材的平均粒徑。
近年來,積層型半導體裝置係為了更進一步提升高速化、高容量化等性能,而有將各基板間之距離變小的傾向,基板間之層間填充材層所具有之無機填充材的最大粒徑,係由電氣接合等觀點而言,較佳係設為基板間距離之1/3以下。
另一方面,若無機填充材(D)之粒徑過小,則必要之熱傳導距徑數增加、於晶片間之厚度方向由上至下連繫的機率變小,即使組合使用熱傳導性高之環氧化合物,仍有層間填充材層之厚度方向上之熱傳導率變得不足的情形。又,若無機填充材(D)之粒徑過小,則無機填充材(D)容易凝集,組成物中之無機填充材(D)的分散性惡化。本發明中,藉由將無機填充材(D)之體積平均粒徑設為上述範圍,可抑制填充材彼此之過度凝集,得到具有良好之熱傳導率的層間填充層。
另外,無機填充材(D)係為了提高於組成物之分散性,亦可適當進行表面處理。更具體而言,例如亦可藉由矽烷偶合劑等適當進行表面處理。作為矽烷偶合劑,較佳為具有選自乙烯基、環氧基、胺基、脲基、巰基、硫基、異氰酸酯基之至少1個基作為官能基者,其中更佳為具有環氧基或胺基者。
尚且,無機填充材(D)係在剛製造後,有粉末凝集、未滿足上述粒徑範圍的情況。因此,較佳係將無機填充材粉碎為滿足上述粒徑範圍 而使用。
無機填充材之粉碎方法並無特別限定,可應用以輥磨或行星混合器進行的解碎、與鋯珠球等粉碎用介質一起進行攪拌混合之方法、噴流噴射等之習知粉碎方法。
‧比表面積
無機填充材(D)之比表面積,係由降低組成物黏度的觀點而言,較佳為0.1m2/g以上且100m2/g以下、更佳0.5m2/g以上且50m2/g以下、特佳1m2/g以上且10m2/g以下。比表面積可藉由氣體吸附法等通常已知之比表面積測定方法而測定,例如可藉由以下方法進行測定。對無機填充材(D)進行250℃、15分鐘氮氣流動的前處理後,使用Mountech公司製之Macsorb HM、MODEL-1201,依BET1點法(吸附氣體:氮),可測定比表面積。
‧無機填充材之含量
本發明組成物中之無機填充材(D)的含量,係在將總環氧化合物與總硬化劑的合計設為100重量份時,較佳為10重量份以上且400重量份以下、更佳20重量份以上且300重量份以下、特佳20重量份以上且240重量份以下。若無機填充材(D)之含量於總環氧化合物與總硬化劑之合計每100重量份中,為未滿10重量份,則有含有無機填充材(D)之效果變小、或無法得到目標之K1c值的情形,若超過400重量份,則有妨礙基板間之電氣接合的情形。
<無機填充材(D-1)>
本發明之第2發明中,組成物係含有體積平均粒徑0.1μm以上且10μm以下之無機填充材(D-1)。作為無機填充材(D-1),若化學上相同,則亦可使用粒子形狀或結晶構造相異的複數種粒子的混合體,此時之體積平均粒徑,係藉由對化學上相同之粒子全體概括性測定時之體積平均粒徑所規定。
無機填充材(D-1)之體積平均粒徑亦與無機填充材(D)同樣地,藉由通常已知之粒度分佈測定裝置,將無機填充材(D-1)分散於適當溶劑中,以雷射繞射/散射式粒子分佈測定裝置等測定粒度分佈,由所得之粒度分佈予以求得。更具體而言,可例如將層間填充材組成物依所需濃度分散於環己酮中,以粒度分佈測定裝置(島津製作所公司製「SALD-2200」)進行測定,得到體積粒度分佈。由所得之粒度分佈,可求得粉碎後之無機填充材的平均粒徑。
無機填充材(D-1)若體積平均粒徑為0.1μm以上且10μm以下,則可使用與無機填充材(D)相同者,較佳係與無機填充材(D)相同,特佳為氮化硼填充材或二氧化矽填充材。第2發明中,雖含有無機填充材(D-1)、及化學上與無機填充材(D-1)相異之無機填充材(D-2),但在無機填充材(D-1)為氮化硼填充材時,亦可使用二氧化矽填充材作為無機填充材(D-2);在無機填充材(D-1)為二氧化矽填充材時,亦可使用氮化硼填充材作為無機填充材(D-2)。
‧氮化硼填充材
如上述,作為無機填充材(D-1),特佳為氮化硼填充材,若為體積平均粒徑0.1μm以上且10μm以下、含有氮化硼之填充材,則可使用任意者。更具體而言,可為具有特定結晶構造的氮化硼粒子(以下有時 簡稱為特定結晶BN粒子),亦可為藉造粒使氮化硼凝集之氮化硼凝集粒子(以下有時簡稱為凝集BN粒子),亦可含有具黏結劑機能之金屬氧化物等之氮化硼以外的成分。特定結晶BN粒子亦可使用作為凝集BN粒子的原料,但作為凝集BN粒子之原料,並不限定於特定結晶BN粒子,亦可使用之後詳細說明的製造凝集BN粒子時成為原料的氮化硼(原料BN粉末)。
本發明之氮化硼填充材之體積平均粒徑的測定方法係如上述,若為通常已知之體積平均粒徑測定方法即可。例如,將氮化硼填充材分散於適當溶劑中,以雷射繞射/散射式粒度分佈測定裝置等測定粒度分佈,由所得之粒度分佈求得氮化硼填充材之體積平均粒徑。
本發明之層間填充材組成物中,氮化硼填充材的添加係以尤其提升熱傳導性為主要目的,在組合後述之無機填充材(E)而含於三維積體電路之層間時,有助於同時達成高熱傳導性與低線膨脹率。
[特定結晶BN粒子]
作為本發明之氮化硼填充材,較佳為使用特定結晶BN粒子。特定結晶BN粒子之微晶之尺寸,係指002面及100面各別的微晶徑,002面之微晶徑(Lc)係測定X射線之2θ=26.5°之波峰的半寬度,藉下述(ii)式而求得。關於100面之微晶徑(La),亦同樣地測定X射線之2θ=41.5°之波峰的半寬度,藉下述(ii)式而求得。
L(Å)=(0.9λ‧180)/(β‧cosθ‧π)...(ii)
λ:1.54056Å
β:波峰半寬度
本發明之特定結晶BN粒子,係100面之微晶徑(La)為 500[Å]以上。藉由使此La為500[Å]以上,則微晶界面變得充分少,得到高熱電導性。此La係由更加提高熱傳導性的觀點而言,較佳為550[Å]以上、特佳600[Å]以上。
另一方面,由工業生產性的觀點而言,此La較佳為2000[Å]以下、更佳1000[Å]以下。
此La係在本發明之特定結晶BN粒子之製造時,例如將La為未滿500Å之六方晶氮化硼於非氧化性氣體中,依通常1300~2300℃、較佳1500℃~2100℃、更佳1800℃~2000℃之溫度進行熱處理則可予以調整。在增大La時,可採取依上述溫度範圍之儘可能高溫的條件下,進行長時間熱處理的方法。
本發明之特定結晶BN粒子,係002面之微晶尺寸(Lc:六角網面積層方向)為450[Å]以上。藉由使此Lc為450[Å]以上,則微晶界面變得充分少,得到高熱電導性。此Lc係由更加提高熱傳導性的觀點而言,較佳為470[Å]以上、特佳500[Å]以上。
另一方面,由工業生產性的觀點而言,此Lc較佳為2000[Å]以下、更佳1000[Å]以下。
此Lc係在本發明之凝集BN粒子之製造時,例如將Lc為未滿450Å之六方晶氮化硼於非氧化性氣體中,依通常1500~2300℃、較佳1800~2100℃之溫度進行熱處理則可予以調整,在增大Lc時,較佳係採用使用上述原料之六方晶氮化硼之含氧量為未滿1.0重量%者的方法。
本發明之凝集BN粒子中,上述Lc與La之關係係滿足以下關係式(i)。
0.70≦Lc/La...(i)
上述關係式(i),係顯示本發明之特定結晶BN粒子之形狀異向性 者,Lc/La越接近1,則顯示越小的形狀異向性。
本發明之特定結晶BN粒子係藉由滿足上述關係式(i),則在其與樹脂一起被含於組成物中時,可防止該組成物之黏度上升。又,在將本發明之特定結晶BN粒子使用作為原料的氮化硼凝集粒子與樹脂一起被含於組成物中時,亦可防止該組成物的黏度上升。Lc與La之關係較佳係0.75≦Lc/La、特佳0.78≦Lc/La。另一方面,由減小形狀異向性的觀點而言,Lc與La之關係較佳係Lc/La≦1.2。
(特定結晶BN粒子的氧含量)
本發明之特定結晶BN粒子,其氧含量為0.30重量%以下。藉由使特定結晶BN粒子之氧含量為0.30重量%以下,則在其與樹脂一起被含於組成物中時,該組成物之熱傳導率變得較佳。該氧含量更佳為0.25重量%以下,特佳0.15重量%以下。另一方面,該氧含量之下限值通常為0.01重量%。
在使本發明之特定結晶BN粒子之氧含量成為此種範圍時,可於特定結晶BN粒子之製造步驟中,藉由於非氧化性氣體環境下進行燒成而達成。為了減少氧含量,特佳係於氮氣體環境下進行燒成。
尚且,本發明之特定結晶BN粒子之氧含量可藉由惰性氣體熔解-紅外線吸收法,使用HORIBA製氧‧氮分析計而測定。
(特定結晶BN粒子之體積平均粒徑)
本發明之特定結晶BN粒子較佳係體積平均粒徑為10μm以下。又,本發明之特定結晶BN粒子更佳係體積平均粒徑為7μm以下,體積平均粒徑再更佳為5μm以下、特佳4μm以下。另一方面,由得到良 好之熱傳導性及良好之流動性的觀點而言,較佳係體積平均粒徑為0.1μm以上。
本發明之特定結晶BN粒子之體積平均粒徑,例如可將其分散於適當之溶劑中,藉雷射繞射/散射式粒度分佈測定裝置等測定粒度分佈,由所得之粒度分佈求得特定結晶BN粒子之體積平均粒徑。具體而言,例如可藉由雷射繞射/散射式粒度分佈測定裝置(堀場製作所公司製「LA-920」)進行測定。
(特定結晶BN粒子之製造方法)
作為用於獲得本發明之特定結晶BN粒子的原料,可無限制地使用市售之六方晶氮化硼、市售之α及β-氮化硼、藉由硼化合物與氨之還原氮化法所製作的氮化硼、由硼化合物與三聚氰胺等之含氮化合物所合成的氮化硼、由硼氫鈉與氯化銨所製作之氮化硼等,特佳係使用六方晶氮化硼。此等原料之中,為了使本發明之特定結晶BN粒子具有既定之微晶尺寸,作為原料,係使用六方晶氮化硼,尤其是La為300[Å]以上、更佳係Lc為250[Å]以上,特佳係使用Lc/La為0.8~1.0者。
本發明之特定結晶BN粒子可藉由將上述原料於非氧化性氣體之環境下,依1800~2300℃之溫度進行燒成而獲得。
作為非氧化性氣體,可使用氮氣、氦氣、氬氣、氨氣、一氧化碳等,特佳為使用氮氣。
燒成時間為1~20小時左右、更佳3~15小時、特佳5~15小時。
燒成溫度或燒成時間可依使本發明之特定結晶BN粒子之Lc及La同時變大之方式進行適當調整而決定。
另外,燒成所使用的爐,特佳為碳爐,在燒成時置入六方晶氮化 硼的坩堝,特佳為碳製。
另外,在燒成時不妨礙六方晶氮化硼之所需結晶成長的範圍內,亦可加入添加劑而進行。
尚且,特定結晶BN粒子係有在剛製造後所得粒子進一步凝集而未滿足上述粒徑範圍的情形。因此,特定結晶BN粒子較佳係粉碎為滿足上述粒徑範圍而使用。
特定結晶BN粒子之粉碎方法並無特別限定,可應用與氧化鋯珠球等之粉碎用介質一起攪拌混合的方法、或噴流噴射等之習知公知的粉碎方法。
在使本發明之特定結晶BN粒子含於組成物中而使用的情形,特定結晶BN粒子可單獨使用1種,亦可將物性不同之特定結晶BN粒子之2種以上任意組合而使用,進而亦可併用本發明之凝集BN粒子。
[凝集BN粒子]
本發明之氮化硼凝集粒子(凝集BN粒子),係比表面積為10m2/g以上,總細孔容積為2.15cm3/g以下,且該氮化硼凝集粒子之表面係由平均粒徑0.05μm以上且1μm以下之氮化硼一次粒子所構成者。
本發明之凝集BN粒子係平均粒徑較佳為10μm以下、更佳為7μm以下、再更佳5μm以下、特佳4μm以下。另一方面,平均粒徑通常為0.1μm以上,由得到良好之熱傳導性及良好之流動性的觀點而言,平均粒徑為較佳為0.3μm以上。
本發明之凝集BN粒子之平均粒徑,例如可將其分散於適當溶劑中,藉雷射繞射/散射式粒度分佈測定裝置(堀場製作所公司製LA-920)所測定。由所得之粒度分佈可求得凝集BN粒子之體積平均粒 徑。
本發明之凝集BN粒子通常係總細孔容積為2.15cm3/g以下。藉由減小總細孔容積,則凝集BN粒子內變得緻密,而可減少阻礙熱傳導的境界面,可得到熱傳導性更高的凝集BN粒子。
凝集BN粒子之總細孔容積通常為2.15cm3/g以下,較佳0.3cm3/g以上且2.00cm3/g以下,更佳0.5cm3/g以上且1.95cm3/g以下。又,凝集BN粒子之比表面積通常為20m2/g以上、較佳20m2/g以上且50m2/g以下、更佳25m2/g以上且30m2/g以下。
尚且,凝集BN粉末之總細孔容積可藉水銀壓入法進行測定,比表面積可藉BET1點法(吸附氣體:氮)進行測定。
凝集BN粉末之總細孔容積及比表面積具體而言可依後述實施例之項目所記載之方法進行測定。
本發明之凝集BN粒子較佳為球狀。本發明中所謂「球狀」,係指將後述原料BN粉末凝集並造粒成縱橫比(長徑與短徑之比)為1以上且2以下、較佳為1以上且1.5以下之形狀的粒子,並非一次粒子。亦即,本發明中,所謂「球狀」或「球形」,係表示縱橫比為1以上且2以下者。又,此縱橫比較佳為1以上且1.5以下。所造粒之凝集BN粒子之縱橫比係由掃描型電子顯微鏡(SEM)所拍攝之影像中任意選擇200個以上粒子,分別求取長徑與短徑之比並算出平均值而決定。
尚且,由造粒所得之造粒粒子的粒徑,在加熱處理後作成本發明之凝集BN粒子,為了使較佳之體積基準之最大粒徑之範圍成為0.1~25μm,體積基準之平均粒徑D50較佳為2~20μm、特佳5~10μm。於此,造粒粒子之體積基準之平均粒徑D50可例如藉日機裝 公司製「MICROTRAC HRA」進行測定。
尚且,凝集BN粒子係有在剛製造後所得粒子進一步凝集,而未能滿足上述粒徑範圍的情形。因此,凝集BN粒子較佳係粉碎為滿足上述粒徑範圍而使用。
凝集BN粒子之粉碎方法並無特別限定,可應用與氧化鋯珠球等之粉碎用介質一起攪拌混合的方法、或噴流噴射等之習知公知的粉碎方法。
在使本發明之凝集BN粒子含於組成物中而使用的情形,凝集BN粒子可單獨使用1種,亦可將物性不同之凝集BN粒子之2種以上任意組合而使用,進而亦可併用本發明之特定結晶BN粒子。
例如,亦可使用平均粒徑相異之2種以上之凝集BN粒子。亦即,藉由併用平均粒徑較小之例如0.1~2μm、較佳0.2~1.5μm之凝集BN粒子,與平均粒徑較大之例如1~5μm、較佳1~3μm之凝集BN粒子,將平均粒徑較大之凝集BN粒子彼此的熱傳導路徑,藉由平均粒徑較小之凝集BN粒子所連繫,則相較於僅使用同一平均粒徑者的情形,可進行高填充、得到更高之熱傳導性。
此時,由熱傳導路徑之形成方面而言,較佳係將平均粒徑較小之凝集BN粒子與平均粒徑較大之凝集BN粒子依重量比為10:1~1:10之比例使用。另外,在使用凝集BN粒子作為氮化硼填充材時,為了提高於樹脂(A)或塗佈液中的分散性,亦可適當進行表面處理。
[凝集BN粒子之製造方法]
本發明中,作為製造凝集BN粒子的方法,並無限制,特佳係將原料BN粉末藉粉碎步驟進行粉碎後,於造粒步驟使其凝集而進行造 粒,進而經過進行加熱處理的加熱步驟。更具體而言,較佳係使成為原料之BN粉末暫時分散於媒體中而作成原料BN粉末之漿料(本說明書中,以下有時稱為「BN漿料」)後,施行粉碎處理,使用其後所得之漿料而造粒為球形粒子,為了進行所造粒之凝集BN造粒粒子之結晶化而施行加熱處理。
(原料BN粉末)
本發明中,作為製造凝集BN粒子時之成為原料的氮化硼(本說明書中,有時簡稱為「凝集BN粒子」),可無限制地使用市售之六方晶氮化硼、市售之α及β-BN、藉由硼化合物與氨之還原氮化法所製作的BN、由硼化合物與三聚氰胺等之含氮化合物所合成的BN、由硼氫鈉與氯化銨所製作之BN等,特佳係使用六方晶氮化硼。
由六方晶氮化硼之結晶成長的觀點而言,較佳係於成為原料之六方晶氮化硼等之原料BN粉末中存在某程度的氧,本發明之凝集BN粒子中,作為原料BN粉末,較佳係使用總氧含量為1重量%以上且10重量%以下者。更佳係總氧含量為3重量%以上且10重量%以下,再更佳係總氧含量為3重量%以上且9重量%以下。
總氧含量為上述範圍內的BN粉末,由於一次粒徑較小、結晶未發達者較多,故藉由加熱處理容易使結晶成長。本發明中,較佳係藉由對藉造粒使原料BN粉末凝集之凝集BN粒子進行加熱處理,使BN結晶成長,但藉由使用上述總氧含量之範圍的原料BN粉末,可使BN結晶之一次粒子依a軸朝外之方式於法線方法向上成長,亦即使BN一次粒子於凝集BN粒子表面配置成放射狀。
原料BN粉末之總氧含量為未滿上述下限時,由於原料 BN粉末本身之純度、結晶性佳,故C面之結晶成長變得不足,於凝集BN粒子表面,BN一次粒子無法配置成放射狀。相反地若超過上述上限,則加熱處理後亦成為氧含量較高之狀態,在使用作為組成物之氮化硼填充材時,無法達到高熱傳導化,故不佳。
然而,在將此種凝集BN粒子使用作為組成物之氮化硼填充材而形成層間填充層時,由於層間填充層中,六方晶氮化硼之高熱傳導面(C面)經由a軸接觸而容易形成熱傳導路徑,故於層間填充層之厚度方向上亦可得到高熱傳導性。
作為將原料BN粉末之總氧含量調製為上述範圍的方法,可舉例如使BN合成時之合成溫度為1800℃以下之低溫進行的方法等。
另外,作為總氧含量為上述較佳範圍之原料BN粉末,亦可使用市售物,可舉例如日新REFRATECH公司製之六方晶氮化硼「ABN」或MARUKA公司製之六方晶氮化硼「AP170S」等。
尚且,本發明中所使用之原料BN粉末之氧含量,可藉由惰性氣體熔解-紅外線吸收法、使用HORIBA製氧‧氮分析計進行測定。
另外,原料BN粉末較佳係滿足下述(1)及/或(2)。
(1)總細孔容積為1.0cm3/g以下
(2)比表面積為20m2/g以上
藉由使總細孔容積為1.0cm3/g以下,則在為了使原料BN粉末變得緻密而使用作為構成凝集BN粒子之一次粒子時,可進行球形度高之造粒。又,藉由使比表面積為20m2/g以上,則可減小造粒之球形化時所使用之BN漿料中之分散粒徑,故較佳。
本發明中,原料BN粉末之總細孔容積為1.0cm3/g以下,較佳為0.3cm3/g以上且1.0cm3/g以下,特佳0.5cm3/g以上且1.0cm3/g 以下。又,本發明中,原料BN粉末之比表面積為20m2/g以上,較佳為20m2/g以上且500m2/g以下,特佳50m2/g以上且200m2/g以下。
尚且,原料BN粉末之總細孔容積可藉水銀壓入法所測定,比表面積可藉由BET1點法(吸著氣體:氮)所測定。
原料BN粉末之總細孔容積及比表面積,具體而言係依後述實施例之項目所記載之方法進行測定。
另外,上述原料BN粉末中,為了使本發明之凝集BN粒子具有既定之微晶尺寸,特佳係使用BN粉末、尤其La為300[Å]以上、Lc為250[Å]以上、Lc/La為0.8~1.0者。
(BN漿料之調製)
作為BN漿料之調製中所使用的媒體,並無特別限制,可使用水及/或各種有機溶媒,但由噴霧乾燥之容易度、裝置之簡單化等觀點而言,較佳係使用水(純水)。
水之使用量若過多,則噴霧乾燥時之負荷增大,若過少,則均勻分散變得困難,故相對於原料BN粉末,較佳係設為1~20重量倍、特佳1~10重量倍。
(界面活性劑)
BN漿料係由抑制後述之粉碎處理時之漿料的黏度上升、與BN粒子之分散穩定性(凝集抑制)的觀點而言,亦可添加各種之界面活性劑。
作為界面活性劑,可使用陰離子系界面活性劑、陽離子系界面活性劑、非離子性界面活性劑等,此等可單獨使用1種,亦可混合2種以上使用。
於BN漿料中添加界面活性劑而使用時,較佳係依BN漿料中之界面活性劑濃度成為0.1重量%以上且10重量%以下、特佳0.5重量%以上且5重量%以下之比例而使用。藉由使BN漿料之濃度為上述下限以上,則可充分獲得添加界面活性劑所造成之上述效果,而且,藉由為上述上限以下,則在調製BN粉末含量高之BN漿料後,進行造粒、進而施行加熱處理時,可減小殘存碳的影響。
尚且,界面活性劑可於以下之粉碎處理前進行添加,亦可於粉碎處理後添加。
(黏結劑)
BN漿料係為了將BN粉末有效地造粒為凝集粒子,較佳係含有黏結劑。黏結劑原本之作用在於將粒子彼此間不具接黏性之BN粉末牢固地接合,使造粒粒子之形狀穩定化。
作為BN漿料中所使用之黏結劑,若為可提高BN粒子彼此間之接黏性者即可,本發明中,由於造粒粒子係於凝集化後進行加熱處理,故較佳係於對此加熱處理步驟中之高溫條件具有耐熱性者。
作為此種黏結劑,較佳為金屬氧化物,具體而言,較佳係使用氧化鋁、氧化鎂、氧化釔、氧化鈣、氧化矽、氧化硼、氧化鈰、氧化鋯、氧化鈦等。此等之中,由作為氧化物之熱傳導性與耐熱性、結合BN粒子彼此間之結合力等觀點而言,較佳為氧化鋁、氧化釔。又,黏結劑亦可使用氧化鋁溶膠般之液狀黏結劑。
此種黏結劑可單獨使用1種,亦可混合2種以上而使用。
黏結劑之使用量(在液狀黏結劑之情況,係指作為固形份的使用量),係相對於BN漿料中之BN粉末,較佳為1重量%以上且 30重量%以下,更佳1重量%以上且20重量%以下,再更佳5重量%以上且20重量%以下。在黏結劑之使用量未滿上述下限的情況,由於使BN彼此黏結的效果變小,故有造粒粒子無法確保造粒後之形狀之虞,若超過上述上限,則造粒粒子中之BN含量變少,不僅影響到結晶成長,在使用作為熱傳導性之填充材時,有熱傳導率改善效果變小之虞。
(粉碎處理)
BN漿料係可直接供於噴霧乾燥之造粒步驟中,但較佳係在造粒前,將漿料中之原料BN粉末之BN粒子進行粉碎處理予以細微化。藉由將BN粒子粉碎而細微化,可使凝集化順利地進行。亦即,雖與原料BN粉末之粒徑亦有關,在使BN粉末直接分散於媒體中時,由於BN粒子呈平板狀,故有於凝集化之步驟中未受造粒之粒子變多的傾向,但藉由BN粒子之細微化,可進行有效率之凝集化。
於粉碎時,可使用珠磨、球磨、柱磨等通常之粉碎方法,由作為漿料可大量地進行循環粉碎並容易控制粉碎粒徑的觀點而言,較佳為珠磨。又,藉由以粉碎將BN粒子微粒子化,BN漿料之黏度上升,故可依更高濃度、高黏度進行粉碎,此外,由於隨著粉碎進行、亦發生BN漿料之溫度上升,故較佳係具備冷卻系統。作為此種裝置,可舉例如FREUND TURBO公司製「OB MILL」、ASHIZAWA FINETECH公司製「STAR MILL MZ系列」等。
本發明中,藉由粉碎,依將BN漿料中之原料BN粉末之體積基準之平均粒徑D50,較佳係相對於造粒為球形時之BN造粒粒子之體積基準之平均粒徑D50為1/5以下之粒徑的方式進行粉碎。若 BN漿料中之BN粉末之體積基準之平均粒徑D50大於造粒粒子之體積基準之平均粒徑D50的1/5,則由於BN粒子為平板狀,故於球形化之造粒步驟中未被造粒為球形的粒子變多,故不佳。且造粒後之粒子強度亦變弱,故不佳。在考慮到粉碎效果與粉碎之負荷時,供於造粒之BN漿料中之BN粒子的體積基準之平均粒徑D50,較佳係將該BN漿料進行造粒而得之造粒粒子之體積基準之平均粒徑D50的1/100~1/5、特佳1/50~1/5。
尚且,BN漿料中之BN分散粒子之體積基準之平均粒徑D50,可例如將粉碎後之漿料分散於適當之溶劑中,藉雷射繞射/散射式粒度分佈測定裝置(堀場製作所公司製「LA-920」、日機裝公司製MICROTRAC「FRA」、「HRA」、「MT3300EX」、「UPA-EX150」、日機裝公司製NANOTRAC「UPA-EX150」等)所測定。
(造粒(凝集化))
在由BN漿料獲得屬於凝集BN粒子之造粒粒子時,適合使用噴霧乾燥法。噴霧乾燥法中,藉由成為原料之漿料的濃度、導入至裝置之每單位時間的送液量與將所送液之漿料進行噴霧時之壓空壓力及壓空量,可製造所需尺寸的造粒粒子,亦可得到球狀之造粒粒子。球狀化時所使用之噴霧乾燥裝置並無限制,為了作成更微小尺寸之球狀BN造粒粒子,最佳為四流體噴嘴所進行者。作為此種裝置,可舉例如藤崎電機公司製「MDL-050M」等。
(加熱處理)
由上述造粒所得之氮化硼之造粒粒子,較佳係進一步於非氧化性 氣體環境下進行加熱處理。
於此,所謂非氧化性氣體環境,係指氮氣、氦氣、氬氣、氨氣、氫氣、甲烷氣體、丙烷氣體、一氧化碳氣體等之環境氣體。根據於此所使用之環境氣體的種類,凝集BN粒子之結晶化速度亦有差異,例如在氬氣時,結晶化之速度變慢、加熱處理時間需要長時間。為了依短時間進行結晶化,特佳係使用氮氣、或併用了氮氣與其他氣體的混合氣體。
藉由適當選擇此加熱處理的條件,可使本發明之凝集BN粒子之比表面積或總細孔容積成為特定範圍,且於表面上配置平均粒徑1μm以下之氮化硼一次粒子、而且配置成放射狀。
加熱處理溫度通常為1300℃~2100℃、較佳1300℃~2000℃、更佳1400℃~2000℃。加熱處理溫度為未滿上述下限時,六方晶氮化硼之結晶化變得不足,殘留結晶化未發達之非晶型部分,作成熱傳導性填充材時之熱傳導率改善效果變小。加熱處理溫度若超過上述上限,則所添加之黏結劑成分發生熔融‧分解而凝集BN粒子彼此凝集,有無法保有原本之形狀、發生BN之分解等之虞。
加熱處理時間通常為1小時以上且50小時以下,較佳為3~40小時,特佳5~30小時。再者,上述加熱處理時間內,特佳係導入依1300℃~1500℃、3小時以上之保持步驟。藉由依上述溫度範圍導入保持步驟,由於可更有效率地進行六方晶氮化硼之結晶化,故有可降低上限之加熱處理溫度的傾向。在加熱處理時間未滿上述下限的情況,有結晶化變得不足之虞,若超過上述上限,則有六方晶氮化硼部分分解之虞。
加熱處理較佳係於非氧化性氣體環境下進行,因此,較 佳係通常藉真空泵使爐內抽空並加熱,進行排氣至加熱所伴隨之分解氣體等變少為止後,一邊導入非氧化性氣體,一邊繼續進行加熱使其升溫至所需溫度。作為藉真空泵進行排氣之溫度的基準,較佳係依30~60分鐘左右進行加熱升溫至200~500℃、例如400℃附近後,一邊保持於該溫度、一邊繼續排氣30~60分鐘左右,進行真空抽引至真空度成為10Pa以下,其後,導入非氧化性氣體。非氧化性氣體之流量係視爐尺寸而異,通常若為2L(升)/分鐘以上則無問題。其後,一邊導入非氧化性氣體、一邊依50~100℃/小時升溫至1500℃左右,其後,由1500℃依30~50℃/小時升溫至既定之加熱處理溫度。於此溫度下於上述加熱處理時間中進行了加熱後,較佳係依5~50℃/分鐘左右降溫至室溫。
例如,藉由在氮氣環境下進行加熱處理時,設為依2000℃左右、5小時左右之條件,在氬氣環境下時設為依2000℃左右、5~15小時左右之條件,則可使BN結晶之一次粒子成為平均1μm以下,成長為放射狀。
施行加熱處理之燒成爐,可舉例如回熱爐、管狀爐、環境爐等之批次式爐,或旋窯、螺旋運送爐、隧道式爐、帶狀爐、推式爐、直立式連續爐等之連續爐,配合目的而分別使用。
(分級)
上述加熱處理後之凝集BN粒子,為了減小平均粒徑、而且抑制調配於組成物中時的黏度上升,故較佳係進行分級處理。此分級通常係於造粒粒子之加熱處理後進行,但亦可對加熱處理前之造粒粒子進行,其後供於加熱處理。
分級可為濕式或乾式之任一種,由抑制六方晶氮化硼之分解的觀點而言,較佳為乾式之分級。尤其是在黏結劑具有水溶性的情況,特佳係使用乾式分級。
在乾式之分級時,除了由篩所進行之分級之外,亦有藉離心力與流體阻力之差進行分級的風力分級等,由分級精度的觀點而言,較佳為風力分級,可使用迴旋氣流式分級機、強制旋渦離心式分級機、半自由旋渦離心式分級機等之分級機而進行。此等之中,可配合所分級之粒子粒徑分別適當使用,例如對次微米至單微米領域之較小微粒子進行分級時,使用迴旋氣流式分級機,對其以上之較大粒子進行分級時,使用半自由旋渦離心式分級機等。
本發明中,為了得到體積基準之最大粒徑為0.1μm以上且25μm以下之凝集BN粒子,較佳係使用迴旋氣流式分級機進行分級操作。
(凝集BN粒子之物性)
如上述,藉由將原料BN粉末進行造粒、並進行加熱處理,則可在保持其形狀之下使六方晶氮化硼之結晶成長,使比表面積或總細孔容積成為特定範圍,並可於表面配置平均粒徑1μm以下之氮化硼一次粒子,而且,於凝集粒子表面,使平均1μm以下之BN一次粒子由凝集粒子之中心側起朝表面側配置成放射狀、亦即使BN結晶之一次粒子依a軸朝外之方式配置於法線方向上,可調製成本發明之凝集BN粒子。
尚且,較佳係於本發明之凝集BN粒子表面,存在平均粒徑1μm以下之氮化硼一次粒子,「平均1μm以下之BN一次粒子」之「1μm以下」,係指相當於該BN一次粒子之粒徑的長度。該BN一次粒子之結 晶尺寸,可使用掃描型電子顯微鏡(SEM),依2萬倍左右之倍率觀察,計測在表面所觀察到之任意100個粒子之最大粒子尺寸,求得平均值而測定。
本發明之凝集BN粒子中,結晶如何成長係在作為高熱傳導性填充材之用途方面的重要要件。本發明之凝集BN粒子,由熱傳導性之異向性、與樹脂間之混練性、耐崩壞性優越的觀點而言,較佳係進行此種特異之結晶成長。
本發明之凝集BN粒子較佳係表面被平均1μm以下之細微之BN一次結晶所被覆,更佳係比表面積及總細孔容積為特定範圍。又,平均1μm以下之細微之BN一次結晶,係配置成放射狀,亦即使BN結晶之一次粒子依a軸朝外之方式配置於法線方向上。作為其調製方法之一手段,重要的是於原料中使用總氧含量1重量%以上且10重量%以下之六方晶氮化硼粉末,進而將加熱處理條件控制如上述。
亦即,以總氧含量為未滿1重量%之六方晶氮化硼粉末作為原料而製作之凝集BN粒子與本發明之凝集BN粒子,係凝集BN表面之結晶構造完全相異,六方晶氮化硼之結晶成長方向亦完全不同。
具體而言,本發明之凝集BN粒子中,六方晶氮化硼之結晶成長方向係相對於球由中心成長為放射狀,亦即BN結晶之一次粒子依a軸朝外之方式於法線方向上成長;相對於此,在使用總氧含量未滿1重量%之原料六方晶氮化硼時,於圓周方向上進行結晶成長(使六方晶氮化硼之C面朝外而成長),其結果比表面積小,總細孔容積亦較大。
再者,在將本發明之凝集BN作為氮化硼填充材而調配至組成物中時,若依同一填充量進行比較,則可急遽地改善所形成之層間填充層之厚度方向的熱傳導率。推論此係由於本發明之六方晶氮 化硼中,球表面之細微之六方晶氮化硼一次粒子之高熱傳導面(C面或002面)係經由a軸彼此間之接觸,而於層間填充層中容易形成有效之熱傳導路徑所致。此種結晶成長係原料六方晶氮化硼粉末本身之總氧含量較高,藉由使其由結晶性較低之狀態進行再結晶化而獲得者,在使用總氧含量低、結晶性佳之六方晶氮化硼原料時,幾乎不引起放射狀之六方晶氮化硼結晶成長。
另外,藉由使用總氧含量高、結晶性低之原料,可使粉碎時之微粒子化順利進行,並達成造粒之球形度提升,在熱處理後之分級步驟中,亦容易效率佳地分級為體積基準之最大粒徑0.1μm以上且25μm以下之範圍。
另外,本發明之凝集BN粒子,由於將金屬氧化物使用作為黏結劑,作成造粒物時可得到具有較小之細孔容量與較高之整體密度者,故與樹脂之混練性優越,可進行高填充,進而亦防止與樹脂之混練時的崩壞。
如上述,在將使凝集BN粒子中之BN結晶由球狀粒子之中心側起成長為放射狀之、本發明之凝集BN粒子用於組成物中時,藉由來自BN結晶之成長方向的熱傳導路徑的形成,則不僅呈微粒子,亦可得到顯著較高之熱傳導性的改善效果。
再者,使用本發明之凝集BN粒子所形成的層間填充層,亦大幅改善了習知以來即為課題的熱傳導性的異向性。
(凝集BN粒子之結晶構造、其表面及平均粒徑)
本發明中,凝集BN粒子之結晶構造可藉由粉末X射線繞射測定而確認,凝集BN粒子之表面之BN一次粒子之結晶的成長方向,可藉 由掃描型電子顯微鏡(SEM)予以確認。另外,凝集BN之平均粒徑,可對於在含有六甲基磷酸鈉作為分散穩定劑之純水媒體中使凝集BN粒子分散而成的試料,使用雷射繞射/散射式粒度分佈測定裝置等進行測定,
(凝集BN粒子之體積基準之最大粒徑)
凝集BN粒子之粒度分佈亦與無機填充材(D)同樣地,可藉由通常已知之粒度分佈測定裝置。更具體而言,可例如將層間填充材組成物依所需濃度分散於環己酮中,以粒度分佈測定裝置(島津製作所公司製「SALD-2200」)進行測定,得到體積粒度分佈。由所得之粒度分佈,可求得粉碎後之無機填充材的平均粒徑。
本發明之凝集BN粒子,較佳係體積基準之最大粒徑為0.1~25μm、更佳2~10μm、特佳4~10μm之範圍。藉由使凝集BN粒子之最大粒徑為上述上限以下,則在使用作為組成物之氮化硼填充材時,可形成無表面粗糙的層間填充層。又,亦可形成較薄之層間填充層,可適合用於薄膜塗佈,並可提高其厚度方向的熱傳導性。在最大粒徑小於上述下限之凝集BN時,作為熱傳導性填充材之熱傳導性提升效果變小。
尚且,對於本發明之凝集BN粒子之體積基準之平均粒徑D50並無特別限制,但基於與上述積體基準之最大粒徑之值相同的理由,較佳為1~20μm、特佳1~10μm。
尤其是作為氮化硼填充材之凝集BN粒子,較佳係平均粒徑D50為0.1~5μm,且最大粒徑為10μm以下,更佳係平均粒徑D50為0.3~4.5μm,且最大粒徑為9.5μm以下,再更佳係平均粒徑D50為 0.5~4μm,且最大粒徑為9μm以下。
一般而言,三維積體電路係為了更進一步之高速化‧高容量化等之性能提升,而使各晶片間之距離小至晶片間距離10~50μm左右,但在晶片間之層間填充層中,所調配之填充材之最大粒徑較佳係層間填充層之厚度的1/2至1/3以下。
若氮化硼填充材之最大粒徑超過10μm,則氮化硼填充材突出至硬化後之層間填充層表面,而有層間填充層之表面形狀惡化的傾向。
另一方面,若氮化硼填充材之粒徑過小,則必要之熱傳導路徑數增加,晶片間之厚度方向由上至下的相連結機率變小,即使與熱傳導性高之樹脂(A)組合,層間填充層於厚度方向上的熱傳導率仍不足。
另外,若氮化硼填充材之粒徑過小,則氮化硼填充材容易凝集,在組成物或塗佈液中之分散性變差。藉由將氮化硼填充材之平均粒徑D50設為上述範圍,則抑制填充材彼此之過度凝集,可得到於厚度方向上具有充分之熱傳導率的層間填充層。
尚且,本發明之凝集BN粒子之體積基準之最大粒徑及平均粒徑D50,具體係依後述實施例之項目所記載的方法進行測定。
尚且,上述凝集BN粒子可單獨使用1種,或將物性相異之凝集BN粒子之2種以上任意組合使用。
例如,可使用平均粒徑D50相異之2種以上凝集BN粒子。亦即,藉由併用平均粒徑D50較小、例如0.1~2μm、較佳0.2~1.5μm之凝集BN粒子,與平均粒徑D50較大、例如1~5μm、較佳1~3μm的凝集BN粒子,可將平均粒徑D50較大之凝集BN粒子彼此間之熱傳導路徑藉平均粒徑D50較小之凝集BN粒子所連繫,故相較於僅使用同一平均粒徑 D50者的情況,可進行高填充,而可得到更高之熱傳導性。
此時,由熱傳導路徑之形成而言,較佳係將平均粒徑D50較小之凝集BN粒子與平均粒徑D50較大之凝集BN粒子依重量比10:1~1:10之比例使用。
另外,作為氮化硼填充材之凝集BN粒子,係為了提高於樹脂(A)或塗佈液中之分散性,亦可藉由例如矽烷偶合劑等適當進行表面處理。作為矽烷偶合劑,較佳為具有選自乙烯基、環氧基、胺基、脲基、巰基、硫基、異氰酸酯基之至少1個基作為官能基者,其中更佳為具有環氧基或胺基者。
‧二氧化矽填充材
如上述,作為無機填充材(D-1),較佳係與氮化硼填充材同樣、特佳為二氧化矽填充材,若為體積平均粒徑0.1μm以上且10μm以下、含有二氧化矽之填充材,則可使用任意物。更具體而言,可使用例如將天然矽石粉碎之結晶性二氧化矽,或石英玻璃、熔融二氧化矽、合成二氧化矽等之非晶性二氧化矽等。此等可單獨使用1種或作為2種以上之混合體而使用。
本發明之組成物中,二氧化矽填充材係以尤其提升熱傳導性為主要目的,在組合後述之無機填充材(D-2)而含於積層型半導體裝置之層間時,有助於同時達成高熱傳導性與低線膨脹率。
本發明之二氧化矽填充材係平均粒徑較佳為10μm以下。又,本發明之二氧化矽填充材係體積平均粒徑更佳為7μm以下、再更佳5μm以下、特佳4μm以下。另一方面,由得到良好之熱傳導性及良好之流動性的觀點而言,體積平均粒徑為較佳為0.1μm以上。
本發明之二氧化矽填充材之體積平均粒徑,係與無機填充材(D)同 樣地,藉由通常已知之粒度分佈測定裝置,將二氧化矽填充材分散於適當溶劑中,藉雷射繞射/散射式粒度分佈測定裝置等測定粒度分佈,由所得之粒度分佈可求得體積平均粒徑。更具體而言,可例如將層間填充材組成物依所需濃度分散於環己酮中,以粒度分佈測定裝置(島津製作所公司製「SALD-2200」)進行測定,得到體積粒度分佈。由所得之粒度分佈,可求得粉碎後之無機填充材的平均粒徑。又,亦可藉由堀場製作所公司製雷射繞射/散射式粒度分佈測定裝置「LA-920」進行測定。
通常,二氧化矽填充材之比表面積為0.1m2/g以上、較佳0.1m2/g以上且100m2/g以下、更佳0.5m2/g以上且50m2/g以下、再更佳1m2/g以上且10m2/g以下。
尚且,二氧化矽填充材之比表面積可藉BET1點法(吸附氣體:氮)進行測定。更具體而言,二氧化矽填充材之比表面積可依後述實施例之項目所記載之方法進行測定。
本發明之二氧化矽填充材較佳為球狀。本發明中所謂「球狀」,係指縱橫比(長徑與短徑之比)為1以上且2以下者。又,此縱橫比較佳為1以上且1.5以下。粒子之縱橫比係由掃描型電子顯微鏡(SEM)所拍攝之影像中任意選擇200個以上粒子,分別求取長徑與短徑之比並算出平均值而決定。
尚且,二氧化矽填充材係有在剛製造後,所得粒子進一步凝集,而未能滿足上述粒徑範圍的情形。因此,二氧化矽填充材較佳係粉碎為滿足上述粒徑範圍而使用。粒子之粉碎方法並無特別限定,可應用與氧化鋯珠球等之粉碎用介質一起攪拌混合的方法、或噴流噴射等之習知公知的粉碎方法。又,藉由以篩等由所得粒子去除粒徑相異物、 或予以追加,亦可調整體積平均粒徑。
在使本發明之二氧化矽填充材含於組成物中而使用的情形,二氧化矽填充材可單獨使用1種,亦可將物性不同之2種以上任意組合而使用。
亦可使用平均粒徑相異之2種以上之二氧化矽填充材。亦即,藉由併用平均粒徑較小之例如0.1~2μm、較佳0.2~1.5μm之二氧化矽填充材,與平均粒徑較大之例如1~5μm、較佳1~3μm之二氧化矽填充材,將平均粒徑較大之二氧化矽填充材彼此的熱傳導路徑,藉由平均粒徑較小之二氧化矽填充材所連繫,則相較於僅使用同一平均粒徑者的情形,可進行高填充、得到更高之熱傳導性。
此時,由熱傳導路徑之形成方面而言,較佳係將平均粒徑較小之二氧化矽填充材與平均粒徑較大之二氧化矽填充材依重量比為10:1~1:10之比例所使用。另外,在使用二氧化矽填充材時,為了提高於樹脂(A)或塗佈液中的分散性,亦可適當進行表面處理。
(體積基準之最大粒徑)
本發明之二氧化矽填充材,較佳係體積基準之最大粒徑為0.1~20μm、更佳0.3~15μm、特佳0.5~10μm之範圍。藉由使二氧化矽填充材之最大粒徑為上述上限以下,則在使用作為組成物之氮化硼填充材時,可形成無表面粗糙的層間填充層。又,亦可形成較薄之層間填充層,可適合用於薄膜塗佈,並可提高其厚度方向的熱傳導性。在最大粒徑小於上述下限之二氧化矽填充材時,作為熱傳導性填充材之熱傳導性提升效果變小。
尚且,對於本發明之二氧化矽填充材之體積基準之平均粒徑D50 並無特別限制,但基於與上述積體基準之最大粒徑之值相同的理由,較佳為0.1~20μm、更佳0.3~10μm、特佳0.5~5μm。
一般而言,積層型半導體裝置係為了更進一步之高速化‧高容量化等之性能提升,而使各晶片間之距離小至晶片間距離10~50μm左右,但在晶片間之層間填充層中,所調配之填充材之最大粒徑較佳係層間填充層之厚度的1/2至1/3以下。
若二氧化矽填充材之最大粒徑超過10μm,則二氧化矽填充材突出至硬化後之層間填充層表面,而有層間填充層之表面形狀惡化的傾向。
另一方面,若二氧化矽填充材之粒徑過小,則必要之熱傳導路徑數增加,晶片間之厚度方向由上至下的相連結機率變小,即使與熱傳導性高之樹脂(A)組合,層間填充層於厚度方向上的熱傳導率仍不足。
另外,若二氧化矽填充材之粒徑過小,則二氧化矽填充材容易凝集,在組成物或塗佈液中之分散性變差。藉由將二氧化矽填充材之平均粒徑D50設為上述範圍,則抑制填充材彼此之過度凝集,可得到於厚度方向上具有充分之熱傳導率的層間填充層。
<無機填充材(D-2)>
無機填充材(D-2)係如上述般為化學上與無機填充材(D-1)相異的無機填充材,使用體積平均粒徑0.1μm以上且10μm以下、具有與無機填充材(D-1)之體積平均粒徑為相異之體積平均粒徑者。
無機填充材(D-2)之體積平均粒徑亦與無機填充材(D)或無機填充材(D-1)同樣地,藉由通常已知之粒度分佈測定裝置,將無機填充材(D-2)分散於適當溶劑中,以雷射繞射/散射式粒子分佈測定裝置等測定粒度 分佈,由所得之粒度分佈予以求得。更具體而言,可例如將層間填充材組成物依所需濃度分散於環己酮中,以粒度分佈測定裝置(島津製作所公司製「SALD-2200」)進行測定,得到體積粒度分佈。由所得之粒度分佈,可求得粉碎後之無機填充材的平均粒徑。
本發明組成物中,無機填充材(D-2)係以提升熱傳導性與控制線膨脹率為目的而使用。藉由具有與無機填充材(D-1)之體積平均粒徑相異之體積平均粒徑,則可將組成物中之粒子間空隙與無機填充材(D-1)相互填充,對提升熱傳導性與控制線膨脹率表示顯著效果。無機填充材(D-2)之使用尤其有助於線膨脹率之控制。
本發明之無機填充材(D-2)較佳係體積平均粒徑為7μm以下,更佳係體積平均粒徑為5μm以下、特佳4μm以下。另一方面,由得到良好之熱傳導性及良好之流動性的觀點而言,體積平均粒徑較佳為0.1μm以上、更佳0.3μm以上、再更佳0.5μm以上。
本發明中,無機填充材(D-1)之體積平均粒徑、與無機填充材(D-2)之體積平均粒徑係相異,為了兼顧熱傳導性之提升與線膨脹率之控制,其體積平均粒徑之差較佳為1μm以上且5μm以下、更佳2μm以上且4μm以下。
本發明中,無機填充材(D-1)之使用量、與無機填充材(D-2)之使用量的比並無特別限制,依無機填充材(D-1)與無機填充材(D-2)之重量比率計,較佳係無機填充材(D-1):無機填充材(D-2)=9:1~1:9、更佳8:2~2:8。
<助熔劑(E)>
本發明之組成物較佳係進一步含有助熔劑(E)。所謂助熔劑,具體 而言,係具有於金屬端子之焊接時,溶解去除焊料凸塊等金屬電氣訊號端子及焊墊之表面氧化膜、或提高焊料凸塊於焊墊表面之潤濕擴散性,進而防止焊料凸塊之金屬端子表面之再氧化等機能的化合物。
作為本發明所使用之助熔劑,可舉例如:草酸、丙二酸、琥珀酸、戊二酸、己二酸、蘋果酸、酒石酸、檸檬酸、乳酸、乙酸、丙酸、丁酸、油酸、硬脂酸等脂肪族羧酸;苯甲酸、水楊酸、鄰苯二甲酸、偏苯三甲酸、偏苯三甲酸酐、均苯三甲酸、苯四甲酸等芳香族羧酸或其酸酐;松香酸、松香等萜烯系羧酸等之有機羧酸;及使有機羧酸與烷基乙烯基醚類反應所轉化之半縮醛酯之有機羧酸酯;麩胺酸鹽酸鹽、苯胺鹽酸鹽、鹽酸肼、溴化鯨蠟基吡啶、鹽酸苯肼、四氯萘、甲基鹽酸肼、甲胺鹽酸鹽、乙胺鹽酸鹽、二乙胺鹽酸鹽、丁胺鹽酸鹽等有機鹵化合物;尿素、二乙三胺肼等胺類;乙二醇、二乙二醇、三乙二醇、四乙二醇、甘油等之多元醇類;鹽酸、氟酸、磷酸、氫氟硼酸等無機酸;氟化鉀、氟化鈉、氟化銨、氟化銅、氟化鎳、氟化鋅等氟化物;氯化鉀、氯化鈉、氯化亞銅、氯化鎳、氯化銨、氯化鋅、氯化亞錫等氯化物;溴化鉀、溴化鈉、溴化銨、溴化錫、溴化鋅等溴化物等。該等化合物可直接使用,另外亦可使用應用利用有機聚合物或無機化合物等之被覆劑而微膠囊化者。該等化合物可單獨使用1種、亦可以任意組合及比率混合使用2種以上。
本發明之組成物中之助熔劑(E)之含量,係於總環氧化合物每100重量份,較佳為0.1重量份以上且10重量份以下,更佳為0.5重量份以上且5重量份以下。若助熔劑(E)之含量於總環氧化合物每100重量份中為未滿0.1重量份,則有因氧化膜去除性降低而導致焊料連接不良之虞,又,若超過10重量份,則出現因組成物之黏度上升而導致 連接不良之虞。
助熔劑(E)之含量,係相對於總環氧化合物、總硬化劑、及總無機填充材的合計100重量份,可為5重量份以上、較佳10重量份以上。若少於5重量份,則所得樹脂組成物之熱傳導性較小而不佳。另一方面,含量上限可為150重量份、較佳100重量份。若多於150重量份,則複合材之黏度變大、無機填充材(D)難以均勻分散,故不佳。
本發明之組成物中所適當含有之助熔劑(E)的含量,若為可解決本發明課題者,則可為任意比率,為了提升本發明組成物之保存穩定性,在將上述環氧化合物(A)+上述胺化合物(B)+上述胺化合物(C)的合計設為100重量份時,助熔劑(E)較佳為0.1重量份以上且6重量份以下、更佳0.5重量份以上且5重量份以下、特佳0.5重量份以上且3重量份以下。
<分散劑(F)>
本發明之組成物中,為了提高無機填充材(D)之分散性,較佳係含有分散劑、界面活性劑、乳化劑、低彈性化劑、稀釋劑、消泡劑、離子捕捉劑等。作為分散劑,為了提高無機填充材(D)之分散性,較佳係使用胺價(mg-KOH/g)為10以上且300以下的分散劑。又,由於液之塗佈性提升或塗膜性狀之改善效果優越,故較佳係具有3級胺基作為官能基者。作為此種分散劑之一例,可舉例如丙烯酸系分散劑及/或胺基甲酸乙酯系分散劑。
作為界面活性劑,可使用過去已知之陰離子系界面活性劑、非離子系界面活性劑、陽離子系界面活性劑之任一種。
可舉例如聚氧乙烯烷基醚類、聚氧乙烯烷基芳基醚類、聚氧乙烯 烷基酯類、山梨醇酐烷基酯類、單甘油酯烷基酯類、烷基苯磺酸鹽類、烷基萘磺酸鹽類、烷基硫酸鹽類、烷基磺酸鹽類、磺酸基琥珀酸酯鹽類、烷基甜菜鹼類、胺基酸類等。
另外,此等分散劑中,較佳亦可使用C-H鍵結之一部分或全部成為C-F鍵結的氟界面活性劑。
作為界面活性劑之使用量,係相對於組成物中之總固形份,較佳設為0.001~5重量%左右、更佳0.01~1重量%。未滿0.001重量%時,有無法改善無機填充材(D)之分散特性的情形,又,若超過5重量%,則發生與環氧化合物間之相分離等,故不佳。
本發明組成物中所適當含有之分散劑(F)的含量,若為可解決本發明課題者,則可為任意比率,為了提升本發明組成物之流動性,在將本發明組成物中所含之上述無機填充材(D)設為100重量份時,分散劑(F)較佳為0.1重量份以上且4重量份以下、更佳0.1重量份以上且2重量份以下。
<組成比>
本發明之組成物若為可解決本發明課題者,則其各含量可為任意比率,為了提升本發明組成物之玻璃轉移溫度,第1發明中,上述胺化合物(B)之比例係在將上述胺化合物(B)與上述胺化合物(C)之合計設為100重量份時,較佳為51重量份以上且99重量份以下、更佳51重量份以上且85重量份以下、再更佳55重量份以上且70重量份以下、特佳61重量份以上且70重量份以下。
另外,為了提升本發明組成物之K1c值、使K1c與玻璃轉移溫度的平衡變得較佳,在將上述胺化合物(B)與上述胺化合物(C) 之合計設為100重量份時,上述胺化合物(C)較佳為49重量份以下、更佳40重量份以下、特佳35重量份以下。又,同樣地,較佳為1重量份以上、更佳15重量份以上、特佳20重量份以上。
本發明之組成物中所適當含有的無機填充材(D)的含量,若為可解決本發明課題者,則可為任意比率,為了提升本發明組成物之K1c值,在將環氧化合物(A)與胺化合物(B)與上述胺化合物(C)的合計設為100重量份時,無機填充材(D)較佳為10重量份以上且400重量份以下、更佳20重量份以上且300重量份以下、特佳20重量份以上且240重量份以下。
<其他添加劑>
本發明組成物中,以進一步提升其機能為目的,在不損及本發明效果之範圍內,亦可含有各種添加劑。
作為此種添加劑,可舉例如用於控制無機填充材之配向的微粒子成分、不損及環氧樹脂特性而使組成物低黏度化的反應性稀釋劑成分、用於改良彈性率或破壞韌性等膜物性而具有柔軟性骨架或橡膠彈性骨架的樹脂成分、或0.01~1μm左右之橡膠粒子、捕捉鹼金屬離子或鹵離子等離子成分的離子捕捉劑等。
作為用於控制無機填充材之配向的微粒子成分,較佳係使用體積平均粒徑為0.5μm以上且20μm以下者、更佳1μm以上且10μm以下。作為此種微粒子成分,例如作為樹脂之微粒子有如甲基丙烯酸甲酯、甲基丙烯酸丁酯等之甲基丙烯酸酯,或以由丙烯酸酯等所得樹脂作為基材之微粒子、上述單體與甲基乙烯基醚、醋酸乙烯酯、二乙烯基苯等其他單體的共聚合物微粒子,或將此等經交聯的微粒子等的 丙烯酸系微粒子;苯乙烯系微粒子;低密度聚乙烯微粒子、高密度聚乙烯微粒子、超高分子量聚乙烯微粒子、或乙烯‧丙烯酸共聚合體微粒子等之聚乙烯系微粒子;尼龍系微粒子;以聚丙烯腈為主成分之PAN系微粒子;熱硬化性或熱可塑性之聚胺基甲酸酯系微粒子;酚醛清漆樹脂微粒子、可溶酚醛樹脂微粒子等之酚樹脂系微粒子;聚矽氧樹脂微粒子、聚矽氧樹脂被覆微粒子等之聚矽氧樹脂系微粒子;苯胍‧甲醛縮合物微粒子、苯胍‧三聚氰胺‧甲醛縮合物微粒子、三聚氰胺‧甲醛縮合物微粒子等之苯胍‧三聚氰胺系微粒子;四氟化乙烯樹脂微粒子等之氟樹脂系微粒子;芳醯胺微粒子、聚醯亞胺微粒子、PEEK微粒子等之工程塑膠系微粒子;絲等之天然高分子系微粒子等。又,作為無機之微粒子,較佳為具絕緣性之微粒子,可舉例如氧化鋁、氧化矽(二氧化矽)、氧化鎂、氧化鋇、氧化鋅、氧化鈣、氧化鋯等之無機氧化物;氮化鋁、氮化矽等之無機氮化物;碳化矽、碳化鈦、碳化硼等之無機碳化物;鑽石等;等之微粒子。其中,較佳為氧化矽(二氧化矽)、氧化鋁。此等微粒子可單獨使用1種、或依任意組合及比率混合2種以上而使用。
作為反應性稀釋劑,較佳係於分子內具有2個以上環氧基者,由熔融黏度減低之觀點而言,其環氧當量較佳為70g/當量以上且350g/當量以下、更佳80g/當量以上且200g/當量以下。作為此種反應性稀釋劑,可舉例如1,4-丁二醇二環氧丙基醚、1,6-己二醇二環氧丙基醚、1,4-環己二醇二環氧丙基醚、1,4-環己烷二甲醇二環氧丙基醚、甘油二環氧丙基醚、甘油三環氧丙基醚、季戊四醇四環氧丙基醚等、2價以上之多元醇類的環氧丙基醚體等。
又,作為樹脂成分,較佳為具有柔軟性或橡膠彈性骨架 之樹脂,其中特佳為具有柔軟性或橡膠彈性骨架的環氧樹脂。
再者,作為橡膠粒子,考量作為層間填充材之對於積層型半導體裝置之製造製程的適合性,較佳係具有0.01~1μm粒徑的橡膠狀粒子。為了促進橡膠狀粒子於樹脂中的分散性,該粒子表面可由與橡膠狀成分相異之樹脂成分所被覆。作為橡膠狀成分,可使用通用之橡膠成分。其中,較佳為苯乙烯丁二烯橡膠或聚丁二烯橡膠、矽橡膠等之橡膠成分。
其他,作為用於提升與基材間之接黏性、或樹脂與無機填充材間之接黏性的添加成分,可舉例如矽烷偶合劑或鈦酸酯偶合劑等偶合劑、用以提高保存安定性之紫外線抑制劑、抗氧化劑、塑化劑、難燃劑、著色劑,由成形時之流動性改良及與基材間之密黏性提升的觀點而言,亦可添加熱可塑性之寡聚物類。此等可單獨使用1種、或依任意組合及比率混合2種以上而使用。其他添加劑之調配量並無特別限制,於得到所需機能性之程度,依通常之樹脂組成物的調配量而使用。
本發明組成物中,為了減低來自硬化膜之離子成分的溶出、提升積層型半導體裝置之可靠性,較佳係應用對於屬於構成成分之環氧化合物、胺化合物、無機填充材、助熔劑、分散劑及其他添加劑事先施行了精製處理者。又,在使來自硬化膜之離子成分溶出減低、使用作為積層型半導體裝置之層間材料時,為了提升積層型半導體裝置之可靠性,較佳係使用具有捕捉離子成分之作用的離子捕捉劑。作為離子捕捉劑,可適合使用捕捉鈉離子或鉀離子等之鹼金屬離子者,更佳係使用氯或溴等鹵離子之捕捉性優越的捕捉劑。作為此等離子捕捉劑,較佳為含有鉍或鋁、鎂等之無機離子交換體。
又,本發明組成物中,若含有水解性之氯,則有積層型半導體裝置之可靠性降低之虞,故組成物中之水解性的氯量較佳為150ppm以下、更佳100ppm以下、再更佳50ppm以下、特佳20ppm以下。為了使水解性之氯成為較佳範圍,可藉由應用將環氧化合物(A)中之水解性之氯以水等溶媒進行萃取洗淨後予以分液、或進行蒸餾之精製處理的方法而達成。例如可藉由對2,2-雙(4-羥基苯基)丙烷之二環氧丙基醚改質性,依160~200℃之溫度、100Torr以下進行減壓蒸餾,或對1,4-環己烷二甲醇二環氧丙基醚改質物,添加純水進行攪拌混合並靜置而層分離後,予以分液並進行脫水處理,則可分別進行精製。
<組成物之製造方法>
本發明之積層型半導體裝置之層間填充材所適合的組成物,可藉由將上述構成成分依上述混合比例進行混合而製造。此時,以提高組成物之均勻性、消泡等為目的,較佳為使用塗料振盪器或珠磨機、行星式攪拌機、攪拌型分散機、自公轉攪拌混合機、三輥研磨機等進行混合。又,混合順序亦只要不產生反應或沉澱物等特別之問題,則為任意順序,可預先混合組成物之構成成分中之任意2種成分或3種成分以上,其後混合剩餘成分,或亦可一次混合全部。
在將本發明組成物之構成成分混合時,為了使各構成成分更均勻混合,較佳係加熱至常溫以上。更佳係依40℃以上且130℃以下的溫度條件進行混合。若依40℃以下之溫度進行混合,則由於環氧化合物(A)之黏度高,故有混合無機填充材(D)時難以均勻分散之虞;若依130℃以上之溫度進行混合,則有組成物中容易混合存在氣泡之虞。
另外,在將本發明組成物之構成成分進行混合時,藉由降低混合時之壓力則可減低氣泡的混合存在。更具體而言,較佳係將混合槽內之壓力設為100Torr以下、更佳90Torr以下、特佳80Torr以下。
再者,為了使混合均勻,亦可併用有機溶媒或液狀樹脂。作為本發明組成物所使用之有機溶媒,可舉例如丙酮、甲基乙基酮(MEK)、甲基異丁基酮、甲基戊基酮、環己酮等之酮類,醋酸乙酯等之酯類,乙二醇單甲基醚等之醚類,N,N-二甲基甲醯胺、N,N-二甲基乙醯胺等之醯胺類,甲醇、乙醇等之醇類,己烷、環己烷等之烷類,甲苯、二甲苯等之芳香族類等。
此等之中,若考慮到樹脂之溶解性及溶媒之沸點等,較佳為甲基乙基酮或環己酮等之酮類、酯類或醚類,特佳為使用甲基乙基酮、環己酮等之酮類。
此等有機溶媒可單獨使用1種、或依任意組合及比率混合2種以上而使用。
本發明組成物中,有機溶媒之相對於其他成分的混合比例並無特別限制,較佳係依組成物中之固形份濃度為20重量%以上且70重量%以下、特佳30重量%以上且60重量%以下的比例使用有機溶媒。藉由將有機溶媒設為此種含有比例,可使用本發明組成物、藉任意塗佈法形成良好之塗佈膜。
有機溶媒之混合比例未滿上述下限時,有組成物之黏度上升、無法得到良好層間的情況,另外,若超過上述上限,則有發生無法得到所需層間膜厚等問題的可能性。溶媒可於混合後,藉減壓乾燥予以去除。
適合作為本發明之積層型半導體裝置用之層間填充材的組成物, 可藉由進一步加熱、成形而得到成形體。此成形方法係使用一般方法,可配合組成物之狀態或樹脂種類而適當進行。
例如,具有可塑性或流動性之組成物的成形,可藉由將組成物依所需形狀、例如收容於模具之狀態,使其硬化而進行。此種成形體的製造,可利用射出成形、射出壓縮成形、擠出成形、或壓縮成形。又,成形體之成形、亦即硬化,可依各別之硬化溫度條件進行。又,上述成形體亦可藉由將層間填充材組成物之硬化物削切為所需形狀而獲得。
本發明之組成物由於具有高熱傳導性,故可使用於電氣‧電子領域等要求熱傳導性的放熱基板、放熱片、熱傳導性膏、熱傳導性接黏劑、半導體封裝、熱阱、熱管、電氣電子機器之框體等。其中,特別適合作為積層型半導體裝置之層間填充材。
<積層型半導體裝置>
本發明之積層型半導體裝置,係具有複數基板者,作為該基板,可舉例如以有機中介層等為代表之有機基板、以形成有記憶體電路或邏輯電路等之半導體裝置層的矽基板為代表的半導體基板;於由此等基板中所選擇之任意基板之間具有含本發明組成物的層間填充材層者。
本發明之積層型半導體裝置,係藉由本發明組成物的特性,即使在依高比例調配了無機填充材(D)的情況下仍顯示低熔融黏度,兼顧高熱傳導率、高K1c值、及高玻璃轉移溫度,藉此可形成適合於積層基板之製程、及積層型半導體裝置,即使有各種環境變化仍穩定維持積層型半導體裝置之電氣接合的層間填充材層。
‧基板
本發明之積層型半導體裝置中之基板,具體可舉例如由環氧樹脂或聚醯亞胺樹脂等所得的有機基板、或形成有佈線電路或貫通電極(TSV)、半導體元件電路等的半導體基板。將本發明組成物硬化而成的層,可設於有機基板與半導體基板之間,亦可設於半導體基板與半導體基板之間,或可設為有機基板與有機基板之間。藉由使用本發明之層間填充劑組成物,即使在由有機基板與半導體基板所得的積層型半導體裝置中,相較於習知迴焊後以底填充材所進行之層間填充,在較薄之半導體基板或較大之半導體基板的接合時,可抑制基板曲翹、即使是較大接合面積中仍抑制空隙形成、可達成端子間電阻較小之接合。又,相較於有機基板,半導體基板係其基板表面平滑性高,可進行更細微之光刻的電路轉印等,可形成更小之銅柱或焊料凸塊等之連接端子的形成,可藉由端子間之較窄連接端子之形成而實現佈線密度更高、高性能之積層型半導體裝置。
‧半導體基板
作為本發明之半導體基板,可使用積體電路製造中可用於作為基板的任意材質者,適合使用矽基板。作為矽基板,可直接使用配合了口徑的基板膜厚,亦可藉由背側蝕刻或背研磨等之背面研磨,予以薄膜化為100μm以下後而使用。
作為本發明之半導體基板,可舉例如形成了佈線電路之半導體基板、形成了貫通電極(TSV)之半導體基板、形成了電晶體等半導體元件電路等的半導體基板;可舉例如於矽、鍺、矽化鍺、碳化矽、鎵砷、 鎵磷、氮化鎵等之基板,視需要將磷或硼藉離子注入法進行摻雜的基板;更具體可舉例如N型矽基板、P型矽基板等。
作為形成於半導體基板表面之半導體元件電路,除了DSP或MPU等之演算元件之外,可舉例如不揮發性記憶體或動態隨機存取記憶體等之記憶元件等。半導體基板之線膨脹係數係視其材質而異,通常為1~10ppm/K。
半導體基板通常具有焊料凸塊與連接盤端子。作為焊料凸塊,可使用細微之焊球,亦可藉光刻形成開口部後,於開口部之基底直接、或於形成了鎳或銅柱後,施行焊料鍍敷,去除抗焊材後,藉加熱處理形成焊料凸塊。作為焊料之組成並無特別限定,考慮到電氣接合性及低溫接合性,適合使用含有錫作為主要成分的焊料。
連接盤端子係於半導體基板上使用PVD(Physical Vapor Deposition)等形成薄膜後,藉由光刻之抗焊膜形成、及乾式或濕式蝕刻,將不需要部分去除,而可形成。作為連接盤端子之材料,若為可與焊料凸塊接合者,則無特別限定,考量到與焊料間之接合性及可靠性等,可適合使用金或銅。
‧有機基板
有機基板係具有導電性之佈線電路者,更具體而言係將環氧樹脂、聚醯亞胺樹脂等之熱硬化性樹脂以玻璃纖維等挾持而成形為板狀者。有機基板係將以焊球作為外部電極之矩陣狀電極與半導體基板進行連接之高密度安裝用圖案變換基板(中介層),作為構成有機基板之樹脂成分,可適合使用環氧樹脂等,作為佈線層可適合使用銅(Cu)。於有機基板表面係設有連接用端子,通常藉光刻法及鍍覆法之組合或印 刷法而形成,其端子間之間隔通常為50μm~300μm。有機基板之線膨脹係數係因其材質而異,有機中介層基板之情況通常為5~50ppm/K。搭載於印刷基板上之半導體基板積層體,亦可經由焊料凸塊等連接於有機基板,使有機基板經由矩陣狀之電極而與印刷基板之端子進行電氣連接。
‧積層
含有本發明組成物之層間填充材層,係形成於選自有機基板及半導體基板之任意基板之間,為了發揮低熔融黏度、高熱傳導率、高K1c值、且高玻璃轉移溫度之特性,較佳係形成於與半導體基板相接的面,特佳係於半導體基板與半導體基板之間形成含有本發明組成物的層間填充材層。
<積層型半導體裝置之製造方法>
本發明之積層型半導體裝置,可藉由含有下述步驟的製造方法所製造:在半導體基板表面藉預施法形成含有本發明組成物的層間填充材層,將該半導體基板與其他基板加壓接合後,依120℃以上且180℃以下之溫度範圍進行處理的步驟。
‧由預施法所進行之層間填充材層的形成
在以預施法進行層間填充材層之形成時,可藉由習知形成法、例如具體而言為浸漬法、旋塗法、噴塗、刮塗法或其他任意之方法而形成。層間填充材層可形成於半導體基板之任一面,較佳係形成於具有焊料凸塊之面、或具有連接盤之面。
‧加壓接合
為了將組成物中所含之低分子量成分等去除,較佳係對由本發明組成物所得之層間填充材層依50~150℃之任意溫度、較佳60~130℃之任意溫度進行烘烤處理,而進行B階段化處理。
此時,亦可於一定之溫度中進行烘烤處理,但為了順利地進行去除組成物中之揮發成分,亦可於減壓條件下進行烘烤處理。又,在不進行環氧樹脂硬化之範圍內,亦可進行階段性升溫之烘烤處理。例如,可實施首先於60℃、繼而於80℃、進而於120℃各5~90分鐘左右之烘烤處理。
在形成層間填充材層後,與接合對象之基板進行暫時接合。作為暫時接合之溫度,較佳為於80℃~150℃之溫度進行。於半導體基板之接合為複數層之情形時,可依基板之層數重複進行上述暫時接合,亦可於將基板重疊複數層後,進行加熱而整體地進行暫時接合。於暫時接合時,視需要於基板間施加較佳1gf/cm2~50Kgf/cm2、更佳10gf/cm2~10Kgf/cm2之負荷而實施。
於暫時接合後進行正式接合。藉由將已實施暫時接合之積層基板於200℃以上、較佳220℃以上進行加壓接合,可使層間填充材層所含之組成物的熔融黏度降低,並促進基板間之電氣端子之連接,同時可實現半導體基板間之焊接。再者,加熱溫度之上限若為所使用之環氧化合物不分解、變質之溫度,則可適當決定,通常於300℃以下進行。
又,於加壓接合時,視需要於基板間施加較佳10gf/cm2~10Kgf/cm2之負荷更佳為50gf/cm2~5kgf/cm2之負荷而實施。
[實施例]
以下,針對本發明,使用實施例進一步具體說明,但本發明係在不脫離其要旨之範圍內,並不限定於以下實施例。
<實施例A-1~A-5、比較例A-6~A-12> [調配成分]
以下所使用之層間填充材組成物塗佈液的調配成分係如下述。
<環氧化合物>
環氧化合物(A-5):DAISO CHEMICAL公司製「LX-01」(雙酚A型環氧丙基醚環氧樹脂,環氧當量181g/當量,25℃之黏度為1×10^1Pa‧s)
胺化合物(B)
胺化合物(B1):和歌山精化工業公司製「SEIKACURE-S」(4,4'-二胺基二苯基碸,胺價124g/Eq,融點177℃)
胺化合物(B2):IHARA CHEMICAL工業公司製「CUA-4」(三亞甲基氧基雙-4-胺基苯甲酸酯,胺價157g/Eq,融點122-128℃)
<胺化合物(C)>
胺化合物(C1):IHARA CHEMICAL工業公司製「ELASMER-250P」(聚四亞甲基氧基雙-4-胺基苯甲酸酯,胺價235g/Eq,融點60℃,25℃之黏度為1×10^2Pa‧s)
胺化合物(C2):日本化藥公司製「KAYAHARD AA」(3,3'-二乙基-4,4'-二胺基二苯基甲烷(融點46℃)與甲醛‧2-乙基苯胺之聚縮合物的混合物,胺價126g/Eq,常溫下為液體)
<無機填充材(D)>
無機填充材(2):龍森公司製「MUF-2BV」(二氧化矽填充材)
無機填充材(8):日新REFRATECH公司製氮化硼「R-BN」
<助熔劑(E)>
和光純藥工業公司製己二酸 試藥特級
<分散劑(F)>
BYK-Chemie Japan公司製「BYK-2155」胺價48mg-KOH/g
[各種物性、特性之評價] (1)環氧化合物之熔融黏度
使用Anton Paar Japan公司製黏彈性測定裝置Physica MCR102而測定熔融黏度(平行板剪切黏度)。
將屬於測定對象之環氧化合物載置於平行板皿與錐形板(25mm,α=1.984°)間,而進行錐形板剪切黏度測定。
(2)氮化硼填充材及無機填充材的粒徑
將攪拌混合後之層間填充材組成物塗佈液分散於環己酮,以島津製作所公司製、粒度分佈測定裝置「SALD-2200」進行測定。由所得粒度分佈求得粉碎後之無機填充材的體積平均粒徑及最大粒徑。
(3)無機填充材之比表面積
對無機填充材進行250℃、15分鐘氮氣流之前處理後,使用Mountech公司製造之Macsorb HM MODEL-1201,利用BET1點法(吸附氣體:氮氣)測定比表面積。
(4)破壞韌性(以下有時簡稱為K1c)評價
破壞韌性評價係根據ASTM E-399實施。使用島津製作所公司製 MST-1、負重單元100N,依速度0.5mm/min進行3點彎曲法,由破斷時之最大負重值算出破壞韌性值。破壞韌性值越高、半導體裝置之接合強度變高而不佳,在所算出之破壞韌性值為1.0(MPa‧√m)以上時,評價為具有使用於積層型半導體裝置之充分強度者。
(5)玻璃轉移溫度(以下有時簡稱為Tg)測定
使用Anton Paar Japan公司製黏彈性測定裝置Physica MCR102,將所調製之組成物挾持於鋁製拋棄式皿與平行板(20mm)間,進行動態黏彈性測定。以在30~200℃間硬化物之損失彈性係數成為極大的溫度作為玻璃轉移點。測定條件係設為於皿上,依γ=0.5%、ω=1Hz之條件以150℃進行熱硬化2小時後冷卻至室溫,於30~200℃間依3℃/min進行升溫的條件。玻璃轉移溫度越高、耐熱性越優越而較佳,必須為半導體裝置之動作溫度以上。
(6)流動性評價
將所調製之組成物加溫至80℃,將傾斜容器時流出的情況評價為流動性良好者「○」,將未流動的情況評價為流動性差者「×」,記載於表1。
(7)接合評價
使用東麗Engineering公司製倒裝晶片黏接器FC3000S,在倒裝晶片安裝之同時藉預施法填充所調製之組成物而製成樣本,以四端子法評價所形成之電子電路的電阻值。將倒裝晶片安裝後之電阻值設為R1、將依150℃熱硬化2小時後之電阻值設為R2時,將(R2-R1)/R1為±3%以內的情況,評價為可良好接合者「○」,記載於表1。
[實施例A-1]
於125cc之攪拌容器,秤量環氧化合物(A-5)7.1g,於其中調配相對於總填充材添加量為2重量份(0.47g)的分散劑(F),使用自公轉攪拌機(THINKY公司製,ARV-310)依2000rpm、1kPa之條件下攪拌1分鐘。於其中添加胺化合物(B)2.3g、胺化合物(C1)0.6g,使用自公轉攪拌機依2000rpm、1kPa攪拌2分鐘後,添加無機填充材(2)23.3g,使用自公轉攪拌機依1kPa之壓力條件下以2000rpm攪拌5分鐘。進而相對於所使用之環氧化合物及所使用之胺化合物的總重量,添加助熔劑(E)4重量份(0.4g),於1kPa之壓力條件下,以2000rpm攪拌5分鐘,得到組成物。將此組成物流入至縱50mm、橫30mm、厚3mm之模框內,以150℃熱硬化2小時,藉此得到硬化物。將該硬化物切出為縱4.4mm、橫21.6mm、寬2.2mm而得到破壞韌性測定用樣本。將破壞韌性評價結果、玻璃轉移溫度測定結果、流動性評價結果記載於表1。
[實施例A-2~A-5、比較例A-6~A-12]
與實施例1同樣地,如表1般調配環氧化合物(A-5)、胺化合物(B1)、胺化合物(B2)、胺化合物(B3)、胺化合物(C1)、無機填充材(2)、無機填充材(8)。於各實施例及比較例之所有中,藉由調配與實施例1同量之助熔劑(E)及分散劑(F),而得到組成物。
將破壞韌性評價結果、玻璃轉移溫度測定結果、流動性評價結果記載於表1。
由以上結果,根據本發明組成物,可形成因高玻璃轉移溫度而具有優越耐熱性、即使有各種環境變化亦不發生龜裂或剝離、具有可維持穩定接合的適當高靭性的層間填充層,而且可使基板彼此確實地進行電氣接合,可製造良好之積層型半導體裝置。
<實施例B-1~B-13、比較例B-1~B-3> [調配成分] <環氧化合物>
環氧化合物(A-1):三菱化學公司製「YL6810」(環氧當量171g/當量)
環氧化合物(A-5):DAISO公司製「LX-01」(環氧當量189g/當量)
環氧化合物(A-6):三菱化學公司製「1006FS」(環氧當量950g/當量)
<無機填充材(D-1)>
無機填充材(1):龍森公司製二氧化矽「PLV-4」
無機填充材(2):龍森公司製二氧化矽「MUF-2BV」
<無機填充材(D-2)>
無機填充材(3):TOKUYAMA公司製氮化鋁「ALN-H」
無機填充材(6):住友化學公司製氧化鋁「AA-3」
無機填充材(7):神島化學工業公司製氧化鎂「HP-30A」
無機填充材(8):日新REFRATECH公司製氮化硼「R-BN」
無機填充材(9):Admatechs公司製氧化鋁「AE-2054SXM」
<硬化劑>
硬化劑(1):四國化成工業公司製1-氰基乙基-2-十一基咪唑「C11Z-CN」
硬化劑(2):IHARA CHEMICAL工業公司製聚四亞甲基氧基雙-4-胺基苯甲酸酯「ELASMER 250P」
硬化劑(3):和歌山精化工業公司製4,4'-二胺基二苯基碸「SEIKACURE-S」
<助熔劑(E)>
和光純藥工業公司製己二酸 試藥特級
<分散劑(F)>
BYK-Chemie Japan公司製「BYK-2155」胺價48mg-KOH/g
[各種物性、特性之評價] (1)環氧化合物之熔融黏度
使用Anton Paar Japan公司製黏彈性測定裝置Physica MCR102而測定熔融黏度(平行板剪切黏度)。
首先,將屬於測定對象之環氧化合物(於使用複數之環氧化合物時為其等之組成物)載置於平行板皿與平行板(20mm)間,而進行平行板動態黏度測定。
測定條件係對上述樣本賦予正弦波應變0.5%,將此應變之角頻率數設為10rad/sec,測定依1分鐘3℃之比例使其於40℃~200℃升溫之過程中的黏度。
(2)二氧化矽填充材及無機填充材的粒徑
將調配成分經攪拌混合後之組成物分散於環己酮,以島津製作所公司製、粒度分佈測定裝置「SALD-2200」進行測定。由所得粒度分佈求得粉碎後之無機填充材的體積平均粒徑及最大粒徑。
(3)無機填充材之比表面積
對無機填充材進行250℃、15分鐘氮氣流之前處理後,使用Mountech公司製造之Macsorb HM MODEL-1201,利用BET1點法(吸附氣體:氮氣)測定比表面積。
(4)龜裂評價
將使組成物0.1g塗佈於10mm正方之矽基板(厚500μm)上者,於加熱板上以150℃或165℃硬化2小時,硬化處理後,冷卻至室溫。此時,以目視確認龜裂,將在硬化層或矽基板上產生龜裂者,評價為不適合用於作為積層型半導體裝置之層間材料「×」,將無變化之組成物評價為適合用於作為積層型半導體裝置之層間材料者「○」,記載於表4中。
(5)硬化層之熱傳導率
對組成物之硬化層,使用以下裝置,測定熱擴散率、比重及比熱,藉由將此3個測定值相乘而求得。
1)熱擴散率:ai-Phase公司製「ai-Phase-Mobile 1u」
2)比重:Mettler-Toledo公司製「天秤XS-204」(使用固體比重測定套組)
3)比熱:Seiko Instruments公司製「DSC320/6200」
(6)破壞韌性評價
與上述實施例A系列之(4)破壞韌性評價同樣地進行。
(7)玻璃轉移溫度測定
將組成物之硬化層切出為20mm×3mm之尺寸,使用Bruker製熱機械分析裝置TMA4000SA,於氮環境下以負重5gf之拉伸法,依升溫速度10℃/min測定-50℃至290℃為止的變位量(μm)。將直線斜率大幅變化之點的外插線的交點作為玻璃轉移點,將此時之溫度作為玻璃轉移溫度。玻璃轉移溫度越高、耐熱性越優越而較佳,必須為半導體裝置之動作溫度以上。
(8)線膨脹率
在測定玻璃轉移溫度時,算出-10℃~40℃中每1℃(1K)之硬化層的伸長率(ppm),以此作為線膨脹率(ppm/K)。本發明組成物係適合使用於積層型半導體裝置之基板間,此時,在與半導體裝置之基板之線膨脹率的關係上,硬化層之線膨脹率較佳為20ppm/k~33ppm/k。
(9)接合性之評價
將所調製之組成物一邊加熱至80℃、一邊以約25μL塗佈於WALTS公司製之矽製焊料凸塊基板(CC80Modell)。
將此焊料凸塊基板及WALTS公司製之中介層(IP80Modell),使用東麗Engineering公司製倒裝晶片黏接器(FC3000S)使其升溫至250℃而加熱壓黏接合,冷卻後依150℃硬化2小時,形成積層體。藉數位多用表測定積層體內部之菊花鏈之電阻,將電阻為30Ω以下者視為達成了電氣接合者、合格者,於表4中記載為「○」。
(10)接合面內之空隙評價
對於將矽製焊料凸塊基板經由組成物接合至有機中介層基板的晶片,使用日立建機FineTech公司製、超音波探查映像裝置(HYE-FOCUSII),評價接合晶片間之凸塊與凸塊間有無空孔。作為積層型半導體之層間材料,較佳為空孔少,特佳為未確認到空孔者。
[實施例B-1~B-4]
於125ml之攪拌容器,秤量環氧化合物(A-1)7.1g,於其中添加分散劑(F),使用自公轉攪拌機(THINKY公司製,ARV-310)依2000rpm攪拌5分鐘。於其中添加表4記載之量的無機填充材(1)及無機填充材(6)及無機填充材(8),使用自公轉攪拌機依2000rpm攪拌5分鐘。再分別對於總樹脂量添加硬化劑(1)6重量%、及相對於總樹脂量添加助熔劑(E)2重量%後,以自公轉攪拌機依2000rpm、1.2kPa一邊進行減壓脫泡5分鐘、一邊攪拌,得到實施例B-1~B-4之組成物。將所使用之環氧化合物之物性示於表2,將填充材之體積平均粒徑及比表面積示於表3。
將此等組成物,分別塗佈於載置於玻璃基板之脫模薄膜上,於此塗佈層上進一步經由間隔件載置挾持脫模薄膜及玻璃基板後,藉由以150℃壓製2小時(壓力1MPa),使其成形、硬化,而製作膜厚500μm之層。將此等層之線膨脹率及熱傳導率示於表4。
將實施例B-2之組成物0.1g以80℃塗佈於10mm正方之矽基板(膜厚500μm)上後,於加熱板上以150℃硬化2小時。硬化反應結束後,將矽基板冷卻至室溫,結果於由組成物所構成之層及矽基板均未發生龜裂。
使用實施例B-2及實施例B-4的組成物,於WALTS公 司製之矽製焊料凸塊基板(CC80Modell),將此等組成物一邊加熱至80℃、一邊塗佈約25μL。將其與WALTS公司製之中介層(IP80Modell),使用東麗Engineering公司製倒裝晶片黏接器(FC3000S)使其升溫至250℃而加熱壓黏接合,冷卻後依150℃硬化2小時,形成積層體。藉數位多用表測定積層體內部之菊花鏈之電阻,結果任一樣本均為30Ω以下之良好者。
對此等積層體使用日立建機FineTech公司製、超音波探查映像裝置(HYE-FOCUSII),評價接合晶片間之凸塊與凸塊間有無空孔(空隙),結果任一樣本均未見到空孔。
[實施例B-5~B-13]
於125ml之攪拌容器,如表4所記載般,秤量環氧化合物(A-5),於其中加入硬化劑(2)及(3),再添加分散劑(F),使用自公轉攪拌機(THINKY公司製,ARV-310)依2000rpm攪拌5分鐘。於其中添加表4記載之量的無機填充材(1)或(2)、及無機填充材(3)、(6)、(7)、(8)或(9),使用自公轉攪拌機依2000rpm攪拌5分鐘。再分別對於總樹脂量添加助熔劑(E)1重量%後,以自公轉攪拌機依2000rpm、1.2kPa一邊進行減壓脫泡5分鐘、一邊攪拌,得到實施例B-5~13之組成物。將所使用之環氧化合物之物性示於表2,將填充材之體積平均粒徑及比表面積示於表3。
與實施例B-1~B-4同樣地,使此等組成物成形、硬化,作成膜厚500μm之層。將此等層之線膨脹率及熱傳導率示於表4。
將實施例B-6及實施例B-10之組成物0.1g以80℃塗佈於10mm正方之矽基板(膜厚500μm)上後,於加熱板上以165℃硬化2小時。硬 化反應結束後,將矽基板冷卻至室溫,結果於組成物之硬化層及矽基板均未發生龜裂。
使用實施例B-6、實施例B-10及實施例B-11的組成物,與實施例B-2同樣地進行接合,形成積層體。藉數位多用表測定積層體內部之菊花鏈之電阻,為30Ω以下之良好者。
對此積層體使用日立建機FineTech公司製、超音波探查映像裝置(HYE-FOCUSII),評價接合晶片間之凸塊與凸塊間有無空孔(空隙),結果未見到空孔。
對實施例B-10及實施例B-11之組成物,進行破壞韌性評價,結果由實施例B-10組成物所得之樣本的破壞韌性為1.8,具有作為積層型半導體裝置之充分韌性、為合格者。又,由實施例B-11組成物所得之樣本的破壞韌性為2.2,具有更高、更佳之韌性、為合格者。
[比較例B-1、B-2]
除了於比較例B-1中僅使用無機填充材(1)、於比較例B-2中僅使用無機填充材(6),並分別依表4記載之量使用以外,其餘與實施例B-1~B-4同樣地進行而形成層。將此層之線膨脹率及熱傳導率的結果示於表4。
與實施例B-2同樣地,將比較例B-2之組成物0.1g以80℃塗佈於10mm正方之矽基板(膜厚500μm)上後,於加熱板上以150℃硬化2小時。硬化反應結束後,將矽基板冷卻至室溫,結果於矽基板發生大龜裂。
[比較例3]
於比較例B-3中除了將環氧化合物(A-6)設為表4記載之量以外, 其餘與實施例B-1~B-4同樣地進行。添加無機填充材(1)及無機填充材(6)後,以自公轉攪拌機依2000rpm攪拌5分鐘,但無法均勻地攪拌混合環氧化合物與填充材。
由以上結果,本發明組成物係可形成具有高熱傳導率、因高玻璃轉移溫度而具有優越耐熱性、具有適當線膨脹率並具有高韌性,而即使有各種環境變化亦不發生龜裂或剝離、具有可維持穩定接合的較佳層間填充層,而且可使基板彼此確實地進行電氣接合,可製造良好之積層型半導體裝置。
<實施例C-1~C-7、比較例C-1~C-5> [調配成分]
以下使用之層間填充材組成物塗佈液的調配成分係如下述。
<環氧樹脂>
環氧樹脂(A-1):三菱化學公司製「YL6810」(環氧當量171g/當量)
環氧樹脂(A-2):三菱化學公司製「YL7805」(環氧當量177g/當量)
環氧樹脂(A-3):三菱化學公司製「YL7175」(環氧當量487g/當量)
環氧樹脂(A-4):三菱化學公司製「630」(環氧當量96g/當量)
<無機填充材(D-1)>
無機填充材(4):凝集BN粒子
無機填充材(8):日新REFRATECH公司製氮化硼「R-BN」(熱傳導率3W/(m‧K)(厚度方向)、275W/(m‧K)(面內方向))
<無機填充材(D-2)>
無機填充材(3):TOKUYAMA公司製氮化鋁「AIN-H」
無機填充材(5):Micron公司製氧化鋁「AX-3」
無機填充材(10):Admatechs公司製二氧化矽「SO-E6」
<硬化劑(C)>
硬化劑(1):四國化成工業公司製1-氰基乙基-2-十一基咪唑 「C11Z-CN」
<助熔劑(E)>
和光純藥工業公司製己二酸 試藥特級
<分散劑(F)>
BYK-Chemie Japan公司製「BYK-2155」胺價48(mg-KOH/g)
[各種物性、特性之評價] (1)環氧樹脂之熔融黏度
與上述實施例A系列之(1)環氧樹脂之熔融黏度同樣地進行測定。
(2)氮化硼填充材及無機填充材的粒徑
將攪拌混合後之層間填充材組成物塗佈液分散於環己酮,以島津製作所公司製、粒度分佈測定裝置「SALD-2200」進行測定。由所得粒度分佈求得粉碎後之無機填充材的體積平均粒徑及最大粒徑。
(3)無機填充材之比表面積
對無機填充材進行250℃、15分鐘氮氣流之前處理後,使用Mountech公司製造之Macsorb HM MODEL-1201,利用BET1點法(吸附氣體:氮氣)測定比表面積。
(4)龜裂評價
將使層間填充材組成物化合物0.1g塗佈於10mm正方之矽基板(厚500μm)上者,於加熱板上以150℃硬化2小時,硬化處理後,冷卻至室溫。此時,將在層間填充材之硬化膜或矽基板上產生龜裂者,於表7中記載為「×」,將無變化者於表7中記載為「○」。
(5)硬化膜之熱傳導率
對層間填充材組成物化合物之硬化膜,使用以下裝置,測定熱擴散率、比重及比熱,藉由將此3個測定值相乘而求得。
1)熱擴散率:ai-Phase公司製「ai-Phase-Mobile 1u」
2)比重:Mettler-Toledo公司製「天秤XS-204」(使用固體比重測定套組)
3)比熱:Seiko Instruments公司製「DSC320/6200」
(6)接合性之評價
將層間填充材組成物塗佈液一邊加熱至80℃、一邊以約25μL塗佈於WALTS公司製之矽製焊料凸塊基板(CC80Modell)。
將此焊料凸塊基板及WALTS公司製之中介層(IP80Modell),使用東麗Engineering公司製倒裝晶片黏接器(FC3000S)使其升溫至250℃而加熱壓黏接合,冷卻後依150℃硬化2小時,形成積層體。藉數位多用表測定積層體內部之菊花鏈之電阻,將電阻為30Ω以下者視為合格者,於表7中記載為「○」。
(7)接合面內之空隙評價
對於將矽製焊料凸塊基板經由層間填充材組成物接合至有機中介層基板的晶片,使用日立建機FineTech公司製、超音波探查映像裝置(HYE-FOCUSII),評價接合晶片間之凸塊與凸塊間有無空孔。
[實施例C-1]
於125ml之攪拌容器,秤量環氧樹脂(A-1)1.25g、(A-2)0.75g、(A-3)0.25g及(A-4)0.5g,於其中相對於總填充材添加量添加2重量份(0.15g)之分散劑(F1),使用自公轉攪拌機(THINKY公司製,ARV-310) 依2000rpm攪拌1分鐘。於其中添加表7記載之量的無機填充材(2)及(8),使用自公轉攪拌機依2000rpm攪拌5分鐘。再分別對於總樹脂量添加硬化劑(1)2重量%、及相對於總樹脂量添加助熔劑(E)4重量%後,以自公轉攪拌機於1.2kPa之條件下依2000rpm一邊進行減壓脫泡5分鐘、一邊攪拌,得到層間填充材化合物。將所使用之環氧樹脂之物性示於表5,將填充材之體積平均粒徑及比表面積示於表6。
將層間填充材化合物0.1g以80℃塗佈於10mm正方之矽基板(膜厚500μm)上後,於加熱板上以150℃硬化2小時。硬化反應結束後,將矽基板晶片冷卻至室溫,結果於層間填充材之硬化膜及矽基板均未發生龜裂。
將此層間填充材化合物,塗佈於載置於玻璃基板之脫模薄膜上,於此膜上進一步經由間隔件載置挾持脫模薄膜及玻璃基板後,藉由以150℃壓製2小時(壓力1MPa),使其成形、硬化,而得到膜厚500μm之層間填充材組成物膜。測定此膜之熱傳導率,結果為1.3W/(m‧K)。
[實施例C-2]
除了使用環氧樹脂之(A-1)2.80g、(A-3)0.35g及(A-4)0.35g,並依表7記載量添加無機填充材(8)及無機填充材(10)以外,其餘與實施例C-1同樣進行。將龜裂評價及熱傳導率的測定結果示於表7。
將層間填充材化合物,於WALTS公司製之矽製焊料凸塊基板(CC80Modell),將此等組成物一邊加熱至80℃、一邊塗佈約25μL。將其與WALTS公司製之中介層(IP80Modell),使用東麗Engineering公司製倒裝晶片黏接器(FC3000S)使其升溫至250℃而加熱壓黏接合,冷卻後依150℃硬化2小時,形成積層體。藉數位多用表測定積層體內部之菊花鏈之電阻,結果為30Ω以下之良好者。
對此積層體使用日立建機FineTech公司製、超音波探查映像裝置(HYE-FOCUSII),評價接合晶片間之凸塊與凸塊間有無空孔(空隙),結果未見到空孔。
[實施例C-3~C-7]
除了使用環氧樹脂之(A-1),並依表7記載量添加無機填充材(4)或(8)及無機填充材(3)、(5)或(10)以外,其餘與實施例C-1同樣進行。將龜裂評價及熱傳導率的測定結果示於表7。
[比較例C-1~C-5]
除了使用環氧樹脂之(A-1),並依表7記載量添加無機填充材(3)、(5)、(8)或(10)之任一者以外,其餘與實施例C-1同樣進行。將龜裂評價及熱傳導率的測定結果示於表7。
由以上結果,本發明組成物係可形成具有高熱傳導率、具有適當線膨脹率,而即使有各種環境變化亦不發生龜裂或剝離、具有可維持穩定接合的較佳層間填充層,而且可使基板彼此確實地進行電氣接合,可製造良好之積層型半導體裝置。
(產業上之可利用性)
根據本發明,可形成於半導體裝置基板及層間填充層不發生龜裂或剝離、高品質的層間填充層。
尚且,將2013年3月28日申請之日本專利出願2013-070084號、2013年12月日申請之日本專利出願2013-267644號、及2014年3月24日申請之日本專利出願2014-060707號說明書、申請專利範圍、圖式及摘要的所有內容引用於此,作為本發明說明書揭示之一部分。

Claims (12)

  1. 一種組成物,係含有:25℃之黏度為50Pa‧s以下之環氧化合物(A);融點或軟化點為80℃以上之胺化合物(B);與融點或軟化點為未滿80℃之胺化合物(C);該胺化合物(C)之比例係在將上述胺化合物(B)與上述胺化合物(C)之合計設為100重量份時,為1重量份以上且未滿40重量份;進一步含有從由金屬氮化物所組成群選擇之至少1種的無機填充材(D),該無機填充材(D)係選自由具有特定結晶構造的氮化硼粒子及氮化硼凝集粒子所構成群之至少1種;具有特定結晶構造的氮化硼粒子係滿足0.70≦Lc/La;氮化硼凝集粒子係比表面積為10m2/g以上,總細孔容積為2.15cm3/g以下,且該氮化硼凝集粒子之表面係由平均粒徑0.05μm以上且1μm以下之氮化硼一次粒子所構成。
  2. 一種組成物,係含有:25℃之黏度為50Pa‧s以下之環氧化合物(A);融點或軟化點為80℃以上之胺化合物(B);與融點或軟化點為未滿80℃之胺化合物(C);該胺化合物(C)之比例係在將上述胺化合物(B)與上述胺化合物(C)之合計設為100重量份時,為1重量份以上且未滿40重量份;進而含有助熔劑(E),並進一步含有選自由金屬氮化物所構成群之至少1種之無機填充材(D),該無機填充材(D)係選自由具有特定結晶構造的氮化硼粒子及氮化硼凝集粒子所構成群之至少1種;具有特定結晶構造的氮化硼粒子係滿足0.70≦Lc/La;氮化硼凝集粒子係比表面積為10m2/g以上,總細孔容積為2.15cm3/g以下,且該氮化硼凝集粒子之表面係由平均粒徑0.05μm以上且1μm 以下之氮化硼一次粒子所構成。
  3. 如申請專利範圍第1或2項之組成物,其中,上述胺化合物(C)係具有直接鍵結於具芳香族性之環的胺基的化合物。
  4. 如申請專利範圍第1或2項之組成物,其中,上述胺化合物(C)係下式(1)所示化合物; (上式(1)中,n為1~10之整數)。
  5. 如申請專利範圍第1或2項之組成物,其中,上述胺化合物(C)之75℃之黏度為50Pa‧s以下。
  6. 如申請專利範圍第1或2項之組成物,其中,上述環氧化合物(A)之環氧當量為150g/當量以上且650g/當量以下。
  7. 如申請專利範圍第1或2項之組成物,其中,含有分散劑(F)。
  8. 一種積層型半導體裝置,係具有複數之基板、與形成於該基板間之層間填充材層,該層間填充材層之至少一者為將申請專利範圍第1至7項中任一項之組成物硬化而成之層。
  9. 如申請專利範圍第8項之積層型半導體裝置,其中,上述基板之至少一者為形成有半導體裝置層之半導體基板。
  10. 如申請專利範圍第9項之積層型半導體裝置,其中,具有複數之上述半導體基板。
  11. 一種積層型半導體裝置之製造方法,係含有:於形成有半導體裝置 層之半導體基板表面,藉預施法形成由申請專利範圍第1至7項中任一項之組成物所構成之層,將該半導體基板與其他基板積層並加壓接合後,依120℃~180℃進行處理的步驟。
  12. 如申請專利範圍第11項之積層型半導體裝置之製造方法,其中,上述其他基板係形成有半導體裝置層之半導體基板。
TW103111795A 2013-03-28 2014-03-28 Composition for interlayer filler of laminated semiconductor device, laminated semiconductor device, and method for manufacturing laminated semiconductor device TWI629305B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-070084 2013-03-28
JP2013070084 2013-03-28
JP2013267644 2013-12-25
JP2013-267644 2013-12-25
JP2014-060707 2014-03-24
JP2014060707A JP2015183093A (ja) 2014-03-24 2014-03-24 積層型半導体装置用の層間充填材に好適な組成物、積層型半導体装置、および積層型半導体装置の製造方法

Publications (2)

Publication Number Publication Date
TW201443146A TW201443146A (zh) 2014-11-16
TWI629305B true TWI629305B (zh) 2018-07-11

Family

ID=51624582

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103111795A TWI629305B (zh) 2013-03-28 2014-03-28 Composition for interlayer filler of laminated semiconductor device, laminated semiconductor device, and method for manufacturing laminated semiconductor device

Country Status (6)

Country Link
US (1) US10125289B2 (zh)
KR (1) KR20150136064A (zh)
CN (1) CN105073883B (zh)
CA (1) CA2907767A1 (zh)
TW (1) TWI629305B (zh)
WO (1) WO2014157626A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505674A (ja) * 2012-12-14 2016-02-25 ブルー キューブ アイピー エルエルシー 高固体エポキシコーティング
EP3249022B1 (en) * 2015-01-22 2020-04-29 Sekisui Chemical Co., Ltd. Inkjet adhesive, manufacturing method for semiconductor device, and electronic component
JP6625659B2 (ja) * 2015-04-08 2019-12-25 アモグリーンテック カンパニー リミテッド 放熱コーティング組成物およびこれを使用して形成された放熱ユニット
CA2997390C (en) * 2015-09-04 2022-09-27 Adeka Corporation Resin composition for fiber-reinforced plastic, cured product thereof, fiber-reinforced plastic containing said cured product, and method for producing fiber-reinforced plastic
JP6135817B1 (ja) 2016-03-09 2017-05-31 東洋インキScホールディングス株式会社 熱伝導性絶縁シート、およびその製造方法
KR102208589B1 (ko) 2016-08-24 2021-01-27 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판
KR101944627B1 (ko) * 2017-08-09 2019-01-31 주식회사 케이씨씨 에폭시 수지 조성물
CN111032721A (zh) * 2017-08-30 2020-04-17 日立化成株式会社 环氧树脂固化物、环氧树脂组合物、成形体及复合材料
US10297564B2 (en) * 2017-10-05 2019-05-21 Infineon Technologies Ag Semiconductor die attach system and method
CN108587461A (zh) * 2018-03-15 2018-09-28 南安市创培电子科技有限公司 一种电子防护剂及其制备方法
JP7240378B2 (ja) * 2018-03-30 2023-03-15 リンテック株式会社 硬化封止体の反り防止用積層体、及び、硬化封止体の製造方法
KR102088512B1 (ko) * 2018-07-13 2020-03-12 주식회사 에스엠티 Cmp 리테이너 링, 이를 제조하는 방법, 및 리테이너 링을 포함하는 cmp 장치
KR20220158222A (ko) * 2020-04-01 2022-11-30 쇼와덴코머티리얼즈가부시끼가이샤 반도체용 접착제, 및, 반도체 장치 및 그 제조 방법
JP2021181381A (ja) * 2020-05-18 2021-11-25 株式会社Adeka 無機粉末組成物、それを含有する樹脂組成物及び放熱材

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102101935A (zh) * 2010-12-23 2011-06-22 广东生益科技股份有限公司 无卤环氧树脂组合物以及使用其制备的挠性覆铜板
TW201239026A (en) * 2011-02-14 2012-10-01 Sumitomo Bakelite Co Liquid sealing resin composition and semiconductor device using the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040206A1 (fr) * 2001-11-07 2003-05-15 Toray Industries, Inc. Compositions de resine epoxy pour materiaux composites a fibres, procede de production de ces materiaux, et materiaux composites a fibres
JP2004018790A (ja) * 2002-06-19 2004-01-22 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP5305656B2 (ja) 2004-08-23 2013-10-02 モーメンティブ・パフォーマンス・マテリアルズ・インク 熱伝導性組成物およびその作製方法
JP4747580B2 (ja) 2005-01-12 2011-08-17 住友ベークライト株式会社 アンダーフィル用液状封止樹脂組成物、それを用いた半導体装置、及びその製造方法
JP2007308678A (ja) * 2005-11-02 2007-11-29 Shin Etsu Chem Co Ltd 液状エポキシ樹脂組成物
JP4848925B2 (ja) * 2006-10-26 2011-12-28 パナソニック電工株式会社 エポキシ樹脂組成物と接着剤
US8907459B2 (en) 2007-01-15 2014-12-09 Zycube Co., Ltd. Three-dimensional semiconductor integrated circuit device and method of fabricating the same
JP2008274083A (ja) * 2007-04-27 2008-11-13 Shin Etsu Chem Co Ltd 液状エポキシ樹脂組成物及び半導体装置
US20090044727A1 (en) * 2007-08-17 2009-02-19 Super-Tek Products, Inc. Epoxy additive composition for cement grouts
JP2011233883A (ja) * 2010-04-09 2011-11-17 Kyocera Chemical Corp カバーレイ用ドライフィルム、カバーレイ、フレキシブルプリント配線板、及びフレキシブルプリント配線板の製造方法
JP5696518B2 (ja) * 2011-02-17 2015-04-08 株式会社デンソー エポキシ樹脂組成物およびこの硬化物
JP2012209424A (ja) 2011-03-30 2012-10-25 Tokyo Electron Ltd 半導体装置の製造方法
JP2012216838A (ja) 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp 三次元集積回路積層体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102101935A (zh) * 2010-12-23 2011-06-22 广东生益科技股份有限公司 无卤环氧树脂组合物以及使用其制备的挠性覆铜板
TW201239026A (en) * 2011-02-14 2012-10-01 Sumitomo Bakelite Co Liquid sealing resin composition and semiconductor device using the same

Also Published As

Publication number Publication date
CA2907767A1 (en) 2014-10-02
KR20150136064A (ko) 2015-12-04
CN105073883B (zh) 2018-04-17
US20160009947A1 (en) 2016-01-14
TW201443146A (zh) 2014-11-16
WO2014157626A1 (ja) 2014-10-02
US10125289B2 (en) 2018-11-13
CN105073883A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
TWI629305B (zh) Composition for interlayer filler of laminated semiconductor device, laminated semiconductor device, and method for manufacturing laminated semiconductor device
TWI547436B (zh) 氮化硼凝集粒子、含有該粒子之組成物、以及具有由該組成物所構成的層之三維積體電路
JP6331575B2 (ja) 積層型半導体装置の層間充填材用の組成物、積層型半導体装置、および積層型半導体装置の製造方法
US9847298B2 (en) Three-dimensional integrated circuit laminate, and interlayer filler for three-dimensional integrated circuit laminate
JP2018138634A (ja) 樹脂組成物および該樹脂組成物を用いた半導体装置
JP2015183093A (ja) 積層型半導体装置用の層間充填材に好適な組成物、積層型半導体装置、および積層型半導体装置の製造方法
JP2017130676A (ja) 三次元集積回路積層体
JP2013145840A (ja) 三次元集積回路の層間充填層形成用塗布液、及び三次元集積回路の製造方法
JP2018039992A (ja) 樹脂組成物および該樹脂組成物を用いた三次元積層型半導体装置
JP6089510B2 (ja) 三次元積層型半導体装置用の層間充填材組成物、三次元積層型半導体装置、および三次元積層型半導体装置の製造方法
JP2017101140A (ja) 樹脂組成物および該樹脂組成物からなる層を有する半導体装置
JP7119477B2 (ja) 樹脂組成物、半導体装置及び半導体装置の製造方法
JP2014175462A (ja) 三次元集積回路の製造方法
JP6277821B2 (ja) 積層型半導体装置の層間充填材用の組成物、積層型半導体装置、および積層型半導体装置の製造方法
TW202402902A (zh) 絕緣性片、積層體、及半導體裝置
JP2012216839A (ja) 三次元集積回路積層体