TWI596898B - Power module and control method thereof - Google Patents

Power module and control method thereof Download PDF

Info

Publication number
TWI596898B
TWI596898B TW105142344A TW105142344A TWI596898B TW I596898 B TWI596898 B TW I596898B TW 105142344 A TW105142344 A TW 105142344A TW 105142344 A TW105142344 A TW 105142344A TW I596898 B TWI596898 B TW I596898B
Authority
TW
Taiwan
Prior art keywords
current
power switch
switch
electrically coupled
pull
Prior art date
Application number
TW105142344A
Other languages
Chinese (zh)
Other versions
TW201818659A (en
Inventor
宋海斌
楊樂陽
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Application granted granted Critical
Publication of TWI596898B publication Critical patent/TWI596898B/en
Publication of TW201818659A publication Critical patent/TW201818659A/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/042Modifications for accelerating switching by feedback from the output circuit to the control circuit
    • H03K17/04206Modifications for accelerating switching by feedback from the output circuit to the control circuit in field-effect transistor switches

Landscapes

  • Power Conversion In General (AREA)
  • Dc-Dc Converters (AREA)
  • Electronic Switches (AREA)

Description

功率模組與其控制方法Power module and its control method

本案係關於一種功率模組以及功率模組之控制方法。具體來說,本案係關於一種可調整開關速度之功率模組以及功率模組之控制方法。This case relates to a power module and a control method of the power module. Specifically, the present invention relates to a power module capable of adjusting the switching speed and a control method of the power module.

作為第三代半導體材料之典型代表,寬禁帶半導體氮化鎵(GaN)具有眾多傳統矽材料所不具備之優異性能,是高頻、高壓、高溫和大功率應用之優良半導體材料,隨著氮化鎵技術之進步,氮化鎵功率半導體器件在民用和軍事領域具有廣闊之應用前景。As a typical representative of the third generation of semiconductor materials, the wide bandgap semiconductor gallium nitride (GaN) has many excellent properties not found in traditional tantalum materials, and is an excellent semiconductor material for high frequency, high voltage, high temperature and high power applications. With advances in GaN technology, GaN power semiconductor devices have broad application prospects in the civil and military fields.

然而,現有採用氮化鎵功率半導體器件之功率模組都無法外在調節功率管之開關速度,這對於終端產品之電磁相容特性非常不利,也從另一個角度限制了GaN功率器件性能之發揮。However, the existing power modules using GaN power semiconductor devices cannot adjust the switching speed of the power tube externally, which is very unfavorable for the electromagnetic compatibility characteristics of the terminal products, and also limits the performance of the GaN power devices from another angle. .

因此,如何改善現有之氮化鎵功率模組,並控制氮化鎵功率模組之開關速度,是該領域內重要之研究議題。Therefore, how to improve the existing GaN power module and control the switching speed of the GaN power module is an important research topic in this field.

本揭示內容之一種態樣為一種功率模組。功率模組包含:一氮化鎵功率開關,包含一汲極端、一源極端以及一閘極端;以及一驅動電路,包含一輸入端以及一輸出端,其中該驅動電路之該輸出端用以透過一外接電阻與該氮化鎵功率開關之該閘極端電性耦接,其中通過調節該外接電阻之電阻值改變該氮化鎵功率開關之該閘極端之電流,以控制該氮化鎵功率開關之導通或關斷之速度。One aspect of the present disclosure is a power module. The power module includes: a GaN power switch including a 汲 terminal, a source terminal, and a gate terminal; and a driving circuit including an input end and an output end, wherein the output end of the driving circuit is configured to transmit An external resistor is electrically coupled to the gate of the GaN power switch, wherein a current of the gate of the GaN power switch is changed by adjusting a resistance value of the external resistor to control the GaN power switch The speed at which it is turned on or off.

在本揭示內容之部分實施例中,功率模組更包含:一第一引腳,電性耦接至該驅動電路之該輸出端;以及一第二引腳,電性耦接至該氮化鎵功率開關之該閘極端;其中該外接電阻用以電性耦接於該第一引腳與該第二引腳之間。In some embodiments of the present disclosure, the power module further includes: a first pin electrically coupled to the output end of the driving circuit; and a second pin electrically coupled to the nitriding The gate terminal of the gallium power switch; wherein the external resistor is electrically coupled between the first pin and the second pin.

在本揭示內容之部分實施例中,該驅動電路之該輸入端用以接收一輸入信號,並根據該輸入信號輸出一驅動電壓至該第一引腳。In some embodiments of the present disclosure, the input end of the driving circuit is configured to receive an input signal and output a driving voltage to the first pin according to the input signal.

在本揭示內容之部分實施例中,該輸入信號包含一脈衝寬度調變信號或頻率調變信號。In some embodiments of the present disclosure, the input signal comprises a pulse width modulation signal or a frequency modulation signal.

本揭示內容之另一種態樣為一種功率模組。功率模組包含:一氮化鎵功率開關,包含一汲極端、一源極端以及一閘極端;以及一驅動電路,包含:一輸入端,用以接收一輸入信號;以及一輸出端,電性耦接至該氮化鎵功率開關之該閘極端;其中該驅動電路通過調節一外接電阻之電阻值改變該驅動電路對該氮化鎵功率開關之該閘極端之充電電流或放電電流,以控制該氮化鎵功率開關之導通或關斷之速度。Another aspect of the disclosure is a power module. The power module comprises: a GaN power switch comprising a 汲 extreme, a source terminal and a gate terminal; and a driving circuit comprising: an input terminal for receiving an input signal; and an output terminal, electrical The driving circuit is coupled to the gate terminal of the GaN power switch; wherein the driving circuit changes a charging current or a discharging current of the driving terminal to the gate terminal of the GaN power switch by adjusting a resistance value of an external resistor to control The speed at which the gallium nitride power switch is turned on or off.

在本揭示內容之部分實施例中,該驅動電路包含一電流控制單元,用以控制該驅動電路對該氮化鎵功率開關之導通或關斷之速度,該功率模組更包含:一第一引腳,電性耦接至該電流控制單元之一第一端;以及一第二引腳,電性耦接至該電流控制單元之一第二端;其中該外接電阻用以電性耦接於該第一引腳與該第二引腳之間,以調節該驅動電路對該氮化鎵功率開關之該閘極端之該充電電流或該放電電流之大小。In some embodiments of the present disclosure, the driving circuit includes a current control unit for controlling a speed at which the driving circuit turns on or off the GaN power switch, and the power module further includes: a first a pin electrically coupled to the first end of the current control unit; and a second pin electrically coupled to the second end of the current control unit; wherein the external resistor is electrically coupled And between the first pin and the second pin to adjust a magnitude of the charging current or the discharging current of the driving circuit to the gate terminal of the GaN power switch.

在本揭示內容之部分實施例中,該輸入信號包含一脈衝寬度調變信號或頻率調變信號。In some embodiments of the present disclosure, the input signal comprises a pulse width modulation signal or a frequency modulation signal.

在本揭示內容之部分實施例中,該電流控制單元包含:一第一驅動電壓調節器,電性耦接於該第一引腳,用以根據該外接電阻之電阻值將一供電電壓轉換為一控制電壓;一驅動器,電性耦接於該第一驅動電壓調節器和該第二引腳,用以根據該控制電壓與該輸入信號輸出一驅動電壓;以及一電流調節器,電性耦接於該驅動器,用以根據該驅動電壓輸出該充電電流或該放電電流至該氮化鎵功率開關之該閘極端。In some embodiments of the present disclosure, the current control unit includes: a first driving voltage regulator electrically coupled to the first pin for converting a supply voltage to a resistance value according to the external resistor a control voltage electrically coupled to the first driving voltage regulator and the second pin for outputting a driving voltage according to the control voltage and the input signal; and a current regulator electrically coupled Connected to the driver for outputting the charging current or the discharging current to the gate terminal of the GaN power switch according to the driving voltage.

在本揭示內容之部分實施例中,該電流調節器包含:一上拉開關,該上拉開關之一第一端用以接收該供電電壓,該上拉開關之一第二端用以輸出該充電電流,該上拉開關之一控制端用以接收該驅動電壓;以及一下拉開關,該下拉開關之一第一端電性耦接於該第二引腳,該下拉開關之一第二端用以輸出該放電電流,該下拉開關之一控制端用以接收該驅動電壓。In some embodiments of the present disclosure, the current regulator includes: a pull-up switch, a first end of the pull-up switch is configured to receive the power supply voltage, and a second end of the pull-up switch is configured to output the a charging current, a control terminal of the pull-up switch is configured to receive the driving voltage; and a pull-down switch, the first end of the pull-down switch is electrically coupled to the second pin, and the second end of the pull-down switch The output current is output, and one of the pull-down switches is used to receive the driving voltage.

在本揭示內容之部分實施例中,該電流調節器用以根據該驅動電壓調節該上拉開關之通態阻抗與該下拉開關之通態阻抗。In some embodiments of the present disclosure, the current regulator is configured to adjust an on-state impedance of the pull-up switch and an on-state impedance of the pull-down switch according to the driving voltage.

在本揭示內容之部分實施例中,當該驅動電壓為一第一位準時,該驅動電路對該氮化鎵功率開關之該閘極端提供該充電電流,當該驅動電壓為一第二位準時,該驅動電路對該氮化鎵功率開關之該閘極端提供該放電電流。In some embodiments of the present disclosure, when the driving voltage is a first level, the driving circuit supplies the charging current to the gate terminal of the GaN power switch, when the driving voltage is a second level. The driving circuit supplies the discharge current to the gate terminal of the gallium nitride power switch.

在本揭示內容之部分實施例中,該第一驅動電壓調節器包含:一第一電晶體,包含:一第一端,用以接收該供電電壓;一第二端,用以輸出該控制電壓;以及一控制端;以及一比較放大器,包含:一第一輸入端,電性耦接於該第一引腳;一第二輸入端,電性耦接於該第一電晶體之該第二端;以及一輸出端,電性耦接於該第一電晶體之該控制端。In some embodiments of the present disclosure, the first driving voltage regulator includes: a first transistor, comprising: a first terminal for receiving the supply voltage; and a second terminal for outputting the control voltage And a control terminal; and a comparison amplifier comprising: a first input electrically coupled to the first pin; a second input electrically coupled to the second of the first transistor And an output end electrically coupled to the control end of the first transistor.

在本揭示內容之部分實施例中,該電流控制單元包含:一第二驅動電壓調節器,電性耦接於該第一引腳,用以根據該外接電阻之電阻值將一供電電壓轉換為一調節供電電壓;一驅動器,電性耦接於該第二驅動電壓調節器和該第二引腳,用以根據該輸入信號輸出一驅動電壓;以及一電流調節器,電性耦接於該驅動器與該第二驅動電壓調節器,用以根據該驅動電壓與該調節供電電壓輸出該充電電流或該放電電流 至該氮化鎵功率開關之該閘極端。In some embodiments of the present disclosure, the current control unit includes: a second driving voltage regulator electrically coupled to the first pin for converting a supply voltage to a resistance value of the external resistor a driver is electrically coupled to the second driving voltage regulator and the second pin for outputting a driving voltage according to the input signal; and a current regulator electrically coupled to the The driver and the second driving voltage regulator are configured to output the charging current or the discharging current to the gate terminal of the GaN power switch according to the driving voltage and the regulated power supply voltage.

在本揭示內容之部分實施例中,該電流調節器包含:一上拉開關,該上拉開關之一第一端用以接收該調節供電電壓,該上拉開關之一第二端用以輸出該充電電流,該上拉開關之一控制端用以接收該驅動電壓;以及一下拉開關,該下拉開關之一第一端電性耦接於該第二引腳,該下拉開關之一第二端用以輸出該放電電流,該下拉開關之一控制端用以接收該驅動電壓。In some embodiments of the present disclosure, the current regulator includes: a pull-up switch, a first end of the pull-up switch is configured to receive the regulated supply voltage, and a second end of the pull-up switch is configured to output a charging current, a control terminal of the pull-up switch is configured to receive the driving voltage; and a pull-down switch, wherein the first end of the pull-down switch is electrically coupled to the second pin, and the one of the pull-down switches is second The terminal is configured to output the discharge current, and one of the pull-down switches is configured to receive the driving voltage.

在本揭示內容之部分實施例中,該電流調節器用以根據該調節供電電壓調節該充電電流與該放電電流之大小。In some embodiments of the present disclosure, the current regulator is configured to adjust the charging current and the discharging current according to the adjusted power supply voltage.

在本揭示內容之部分實施例中,該參考電壓調節器包含:一第一電晶體,包含:一第一端,用以接收該供電電壓;一第二端,用以輸出該調節供電電壓;以及一控制端;以及一比較放大器,包含:一第一輸入端,電性耦接於該第一引腳;一第二輸入端,電性耦接於該第一電晶體之該第二端;以及一輸出端,電性耦接於該第一電晶體之該控制端。In some embodiments of the present disclosure, the reference voltage regulator includes: a first transistor, comprising: a first end for receiving the supply voltage; and a second end for outputting the regulated supply voltage; And a control terminal, and a comparison amplifier, comprising: a first input end electrically coupled to the first pin; and a second input end electrically coupled to the second end of the first transistor And an output end electrically coupled to the control end of the first transistor.

在本揭示內容之部分實施例中,當該外接電阻為一第一電阻值時,該驅動電路對該氮化鎵功率開關之該閘極端提供一第一充電電流,當該外接電阻為一第二電阻值時,該驅動電路對該氮化鎵功率開關之該閘極端提供一第二充電電流,其中該第一電阻值大於該第二電阻值時,該第一充電電流之值大於該第二充電電流之值;當該外接電阻為一第三電阻值時,該驅動電路對該氮化鎵功率開關之該閘極端提供一第一放電電流,當該外接電阻為一第四電阻值時,該驅動電路對該氮化鎵功率開關之該閘極端提供一第二放電電流,其中該第三電阻值大於該第四電阻值時,該第一放電電流之值大於該第二放電電流之值。In some embodiments of the present disclosure, when the external resistor is a first resistance value, the driving circuit provides a first charging current to the gate terminal of the GaN power switch, and when the external resistor is a first When the resistance value is two, the driving circuit provides a second charging current to the gate terminal of the GaN power switch, wherein when the first resistance value is greater than the second resistance value, the value of the first charging current is greater than the first a value of the charging current; when the external resistor is a third resistance value, the driving circuit provides a first discharging current to the gate terminal of the GaN power switch, and when the external resistor is a fourth resistance value The driving circuit provides a second discharge current to the gate terminal of the GaN power switch, wherein when the third resistance value is greater than the fourth resistance value, the value of the first discharge current is greater than the second discharge current value.

在本揭示內容之部分實施例中,當該氮化鎵功率開關之該閘極端接收該第一充電電流時,該氮化鎵功率開關以第一導通速度導通,當該氮化鎵功率開關之該閘極端接收該第二充電電流時,該氮化鎵功率開關以第二導通速度導通,其中,當該第一充電電流之值大於該第二充電電流之值時,該第一導通速度大於該第二導通速度。In some embodiments of the present disclosure, when the gate terminal of the GaN power switch receives the first charging current, the GaN power switch is turned on at a first conduction speed when the GaN power switch is When the gate terminal receives the second charging current, the GaN power switch is turned on at a second conduction speed, wherein when the value of the first charging current is greater than the value of the second charging current, the first conduction speed is greater than The second conduction speed.

在本揭示內容之部分實施例中,當該氮化鎵功率開關之該閘極端接收該第一放電電流時,該氮化鎵功率開關以第一關斷速度關斷,當該氮化鎵功率開關之該閘極端接收該第二放電電流時,該氮化鎵功率開關以第二關斷速度關斷,其中,當該第一放電電流之值大於該第二放電電流之值時,該第一關斷速度大於該第二關斷速度。In some embodiments of the present disclosure, when the gate terminal of the GaN power switch receives the first discharge current, the GaN power switch is turned off at a first off speed when the GaN power When the gate terminal of the switch receives the second discharge current, the GaN power switch is turned off at a second turn-off speed, wherein when the value of the first discharge current is greater than the value of the second discharge current, the first A turn-off speed is greater than the second turn-off speed.

本揭示內容之又一種態樣為一種功率模組之控制方法。控制方法包含:調整一外接電阻之電阻值;由一驅動電路內之一電流控制單元,根據該外接電阻之電阻值調整該驅動電路對一氮化鎵功率開關之閘極端之充電電流或放電電流;以及透過調節該充電電流或該放電電流控制該氮化鎵功率開關之導通或關斷之速度,其中當該充電電流或該放電電流增大時,該氮化鎵功率開關之導通速度或關斷速度加快,當該放電電流或該放電電流減小時,該氮化鎵功率開關之導通或關斷速度減慢。Yet another aspect of the present disclosure is a method of controlling a power module. The control method comprises: adjusting a resistance value of an external resistor; and adjusting, by a current control unit in a driving circuit, a charging current or a discharging current of the driving terminal to a gate terminal of a GaN power switch according to a resistance value of the external resistor And controlling the turn-on or turn-off speed of the GaN power switch by adjusting the charging current or the discharging current, wherein when the charging current or the discharging current increases, the conduction speed of the GaN power switch is turned off or off The breaking speed is increased, and when the discharging current or the discharging current is decreased, the turning-on or turning-off speed of the GaN power switch is slowed down.

在本揭示內容之部分實施例中,由該電流控制單元調節該驅動電路對該氮化鎵功率開關之該閘極端之該充電電流或該放電電流之步驟包含:透過一第一驅動電壓調節器根據該外接電阻之電阻值調節一控制電壓;透過一驅動器根據該控制電壓與一輸入信號輸出一驅動電壓;以及透過一電流調節器根據該驅動電壓輸出該充電電流或該放電電流至該氮化鎵功率開關之該閘極端。In some embodiments of the present disclosure, the step of adjusting, by the current control unit, the charging current or the discharging current of the driving circuit to the gate terminal of the GaN power switch comprises: transmitting a first driving voltage regulator Adjusting a control voltage according to the resistance value of the external resistor; outputting a driving voltage according to the control voltage and an input signal through a driver; and outputting the charging current or the discharging current to the nitriding according to the driving voltage through a current regulator The gate terminal of the gallium power switch.

在本揭示內容之部分實施例中,由該電流控制單元調節該驅動電路對該氮化鎵功率開關之該閘極端之該充電電流或該放電電流之步驟包含:透過一第二電壓驅動調節器根據該外接電阻之電阻值將一供電電壓轉換為一調節供電電壓;透過一驅動器根據一輸入信號輸出一驅動電壓;以及透過一電流調節器根據該驅動電壓與該調節供電電壓輸出該充電電流或該放電電流至該氮化鎵功率開關之該閘極端。In some embodiments of the present disclosure, the step of adjusting, by the current control unit, the charging current or the discharging current of the driving circuit to the gate terminal of the GaN power switch comprises: driving a regulator through a second voltage Converting a power supply voltage into a regulated power supply voltage according to the resistance value of the external resistor; outputting a driving voltage according to an input signal through a driver; and outputting the charging current according to the driving voltage and the adjusting power supply voltage through a current regulator or The discharge current is to the gate terminal of the gallium nitride power switch.

綜上所述,本揭示內容中之功率模組可透過調整外接電阻之電阻值調整充電電流或放電電流之值,進而調整功率模組內之氮化鎵功率開關之導通速度與關斷速度,據以改善終端產品之電磁相容特性,提升氮化鎵功率器件性能之發揮。In summary, the power module in the present disclosure can adjust the value of the charging current or the discharging current by adjusting the resistance value of the external resistor, thereby adjusting the conduction speed and the shutdown speed of the GaN power switch in the power module. According to the improvement of the electromagnetic compatibility characteristics of the terminal products, the performance of the GaN power device is improved.

下文係舉實施例配合所附圖式作詳細說明,以更好地理解本案之態樣,但所提供之實施例並非用以限制本揭露所涵蓋之範圍,而結構操作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效之裝置,皆為本揭露所涵蓋之範圍。此外,根據業界之標準及慣常做法,圖式僅以輔助說明為目之,並未依照原尺寸作圖,實際上各種特徵之尺寸可任意地增加或減少以便於說明。下述說明中相同元件將以相同之符號標示來進行說明以便於理解。The following is a detailed description of the embodiments in order to provide a better understanding of the present invention, but the embodiments are not intended to limit the scope of the disclosure, and the description of structural operation is not limited. The order of execution, any device that is recombined by components, produces equal devices, and is covered by this disclosure. In addition, according to industry standards and practices, the drawings are for illustrative purposes only and are not drawn to the original dimensions. In fact, the dimensions of the various features may be arbitrarily increased or decreased for ease of illustration. In the following description, the same elements will be denoted by the same reference numerals for explanation.

在全篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明外,通常具有每個用詞使用在此領域中、在此揭露之內容中與特殊內容中之平常意義。某些用以描述本揭露之用詞將於下或在此說明書之別處討論,以提供本領域技術人員在有關本揭露之描述上額外之引導。The terms used in the entire specification and the scope of the patent application, unless otherwise specified, generally have the ordinary meaning of each term used in the field, the content disclosed herein, and the particular content. Certain terms used to describe the disclosure are discussed below or elsewhere in this specification to provide additional guidance to those skilled in the art in the description of the disclosure.

此外,在本文中所使用之用詞『包含』、『包括』、『具有』、『含有』等等,均為開放性之用語,即意指『包含但不限於』。此外,本文中所使用之『及/或』,包含相關列舉項目中一或多個項目之任意一個以及其所有組合。In addition, the terms "including", "including", "having", "including", etc., as used herein, are all terms of openness, meaning "including but not limited to". In addition, "and/or" as used herein includes any one or more of the associated listed items and all combinations thereof.

於本文中,當一元件被稱為『連接』或『耦接』時,可指『電性連接』或『電性耦接』。『連接』或『耦接』亦可用以表示二或多個元件間相互搭配操作或互動。此外,雖然本文中使用『第一』、『第二』、…等用語描述不同元件,該用語僅是用以區別以相同技術用語描述之元件或操作。除非上下文清楚指明,否則該用語並非特別指稱或暗示次序或順位,亦非用以限定本發明。As used herein, when an element is referred to as "connected" or "coupled", it may mean "electrically connected" or "electrically coupled". "Connected" or "coupled" can also be used to indicate that two or more components operate or interact with each other. In addition, although the terms "first", "second", and the like are used herein to describe different elements, the terms are used to distinguish between elements or operations described in the same technical terms. The use of the term is not intended to be a limitation or a

請參考第1圖。第1圖為根據本發明部分實施例所繪示之功率模組100之示意圖。如第1圖所示,功率模組100包含氮化鎵功率開關120以及驅動電路140。氮化鎵功率開關120包含汲極端D、源極端S以及閘極端G。在部分實施例中,氮化鎵功率開關120之源極端S電性耦接於參考電壓VSS。驅動電路140包含輸入端以及輸出端。驅動電路140之輸出端用以透過外接電阻Rd與氮化鎵功率開關120之閘極端G電性耦接。在部分實施例中,功率模組100通過調節外接電阻Rd之電阻值改變氮化鎵功率開關120之閘極端G之電流,以控制氮化鎵功率開關120之導通或關斷之速度。Please refer to Figure 1. FIG. 1 is a schematic diagram of a power module 100 according to some embodiments of the present invention. As shown in FIG. 1 , the power module 100 includes a gallium nitride power switch 120 and a drive circuit 140 . The GaN power switch 120 includes a 汲 terminal D, a source terminal S, and a gate terminal G. In some embodiments, the source terminal S of the GaN power switch 120 is electrically coupled to the reference voltage VSS. The drive circuit 140 includes an input and an output. The output end of the driving circuit 140 is electrically coupled to the gate terminal G of the gallium nitride power switch 120 through the external resistor Rd. In some embodiments, the power module 100 changes the current of the gate terminal G of the GaN power switch 120 by adjusting the resistance value of the external resistor Rd to control the speed at which the GaN power switch 120 is turned on or off.

如第1圖所示,在本發明部分實施例中,功率模組100包含引腳PIN1、引腳PIN2。引腳PIN1電性耦接至驅動電路140之輸出端。引腳PIN2電性耦接至氮化鎵功率開關120之閘極端G。在結構上,外接電阻Rd用以電性耦接於引腳PIN1與引腳PIN2之間。As shown in FIG. 1, in some embodiments of the present invention, the power module 100 includes a pin PIN1 and a pin PIN2. The pin PIN1 is electrically coupled to the output of the driving circuit 140. The pin PIN2 is electrically coupled to the gate terminal G of the GaN power switch 120. Structurally, the external resistor Rd is electrically coupled between the pin PIN1 and the pin PIN2.

在本發明部分實施例中,驅動電路140之輸入端用以接收輸入信號P,並根據輸入信號P輸出驅動電壓VD至引腳PIN1。舉例來說,在部分實施例中,輸入信號P包含脈衝寬度調變信號(Pluse Width Modulation,PWM)。在其他部分實施例中,輸入信號P包含頻率調變信號。具體來說,驅動電路140接收供電電壓VDD與參考電壓VSS。藉此,驅動電路140便可根據不同之輸入信號P,例如,脈衝寬度調變或頻率調變,輸出不同準位之驅動電壓VD。In some embodiments of the present invention, the input terminal of the driving circuit 140 is configured to receive the input signal P and output the driving voltage VD to the pin PIN1 according to the input signal P. For example, in some embodiments, the input signal P includes a Pluse Width Modulation (PWM). In other partial embodiments, the input signal P includes a frequency modulation signal. Specifically, the drive circuit 140 receives the supply voltage VDD and the reference voltage VSS. Thereby, the driving circuit 140 can output driving voltages VD of different levels according to different input signals P, for example, pulse width modulation or frequency modulation.

如此一來,透過調節外接電阻Rd之電阻值,便可相應調節改變氮化鎵功率開關120之閘極端G之電流,以控制氮化鎵功率開關120之導通或關斷之速度。於本實施例中,當驅動電路140控制氮化鎵功率開關120導通時,調大外接電阻Rd之電阻值以使氮化鎵功率開關之導通速度變慢;調小外接電阻Rd之電阻值以使氮化鎵功率開關之導通速度變快。當驅動電路140控制氮化鎵功率開關120關斷時,調大外接電阻Rd之電阻值以使氮化鎵功率開關之關斷速度變慢;調小外接電阻Rd之電阻值以使氮化鎵功率開關之關斷速度變快。於其他實施例中,當驅動電路140控制氮化鎵功率開關120導通時,調大外接電阻Rd之電阻值以使氮化鎵功率開關之導通速度變快;調小外接電阻Rd之電阻值以使氮化鎵功率開關之導通速度變慢。當驅動電路140控制氮化鎵功率開關120關斷時,調大外接電阻Rd之電阻值以使氮化鎵功率開關之關斷速度變快;調小外接電阻Rd之電阻值以使氮化鎵功率開關之關斷速度變慢。In this way, by adjusting the resistance value of the external resistor Rd, the current of the gate terminal G of the GaN power switch 120 can be adjusted correspondingly to control the speed of turning on or off the GaN power switch 120. In this embodiment, when the driving circuit 140 controls the GaN power switch 120 to be turned on, the resistance value of the external resistor Rd is increased to slow the conduction speed of the GaN power switch; and the resistance value of the external resistor Rd is adjusted to The conduction speed of the GaN power switch is made faster. When the driving circuit 140 controls the GaN power switch 120 to be turned off, the resistance value of the external resistor Rd is increased to slow down the turn-off speed of the GaN power switch; the resistance value of the external resistor Rd is adjusted to make the gallium nitride The power switch's turn-off speed becomes faster. In other embodiments, when the driving circuit 140 controls the GaN power switch 120 to be turned on, the resistance value of the external resistor Rd is increased to make the conduction speed of the GaN power switch faster; and the resistance value of the external resistor Rd is adjusted to The conduction speed of the GaN power switch is slowed down. When the driving circuit 140 controls the GaN power switch 120 to be turned off, the resistance value of the external resistor Rd is increased to make the turn-off speed of the GaN power switch faster; the resistance value of the external resistor Rd is adjusted to make the GaN The power switch's turn-off speed is slower.

請參考第2圖。第2圖為根據本發明其他部分實施例所繪示之功率模組200之示意圖。如第2圖所示,在本發明部分實施例中,功率模組200包含氮化鎵功率開關220以及驅動電路240。氮化鎵功率開關220包含汲極端D、源極端S以及閘極端G。在部分實施例中,氮化鎵功率開關220之源極端S電性耦接於參考電壓VSS。驅動電路240包含輸入端以及輸出端。具體來說,驅動電路240之輸入端用以接收輸入信號P。與第1圖所示實施例相似,在部分實施例中,輸入信號P包含脈衝寬度調變信號(PWM)。在其他部分實施例中,輸入信號P包含頻率調變信號。驅動電路240之輸出端電性耦接至氮化鎵功率開關220之閘極端G。Please refer to Figure 2. FIG. 2 is a schematic diagram of a power module 200 according to another embodiment of the present invention. As shown in FIG. 2, in some embodiments of the present invention, the power module 200 includes a gallium nitride power switch 220 and a driving circuit 240. The GaN power switch 220 includes a 汲 terminal D, a source terminal S, and a gate terminal G. In some embodiments, the source terminal S of the GaN power switch 220 is electrically coupled to the reference voltage VSS. The drive circuit 240 includes an input and an output. Specifically, the input of the driving circuit 240 is for receiving the input signal P. Similar to the embodiment shown in Figure 1, in some embodiments, the input signal P comprises a pulse width modulated signal (PWM). In other partial embodiments, the input signal P includes a frequency modulation signal. The output of the driving circuit 240 is electrically coupled to the gate terminal G of the GaN power switch 220.

在部分實施例中,驅動電路240包含電流控制單元,用以控制驅動電路240對該氮化鎵功率開關220之導通或關斷之速度。具體來說,驅動電路240透過外接電阻Rd之電阻值調節驅動電路240對氮化鎵功率開關220之閘極端G之充電電流或放電電流以控制氮化鎵功率開關240之導通或關斷之速度。In some embodiments, the driver circuit 240 includes a current control unit for controlling the speed at which the driver circuit 240 turns the GaN power switch 220 on or off. Specifically, the driving circuit 240 adjusts the charging current or the discharging current of the driving terminal 240 to the gate terminal G of the GaN power switch 220 through the resistance value of the external resistor Rd to control the speed of turning on or off the GaN power switch 240. .

如第2圖所示,在本發明部分實施例中,功率模組200亦包含引腳PIN1、引腳PIN2。引腳PIN1、引腳PIN2分別電性耦接至驅動電路240。驅動電路240包含電流控制單元。具體來說,引腳PIN1電性耦接至電流控制單元之第一端。引腳PIN2電性耦接至電流控制單元之第二端。在部分實施例中,引腳PIN2電性耦接於參考電壓VSS。在結構上,外接電阻Rd用以電性耦接於引腳PIN1與引腳PIN2之間,以調節驅動電路240對該氮化鎵功率開關220之閘極端G之充電電流或放電電流之大小。As shown in FIG. 2, in some embodiments of the present invention, the power module 200 also includes a pin PIN1 and a pin PIN2. The pin PIN1 and the pin PIN2 are electrically coupled to the driving circuit 240, respectively. Drive circuit 240 includes a current control unit. Specifically, the pin PIN1 is electrically coupled to the first end of the current control unit. The pin PIN2 is electrically coupled to the second end of the current control unit. In some embodiments, the pin PIN2 is electrically coupled to the reference voltage VSS. Structurally, the external resistor Rd is electrically coupled between the pin PIN1 and the pin PIN2 to adjust the magnitude of the charging current or the discharging current of the driving circuit 240 to the gate terminal G of the gallium nitride power switch 220.

請一併參考第3圖。第3圖為根據本揭示內容部分實施例所繪示之功率模組200之控制方法300之流程圖。為方便及清楚說明起見,下述控制方法300是配合第2圖所示之功率模組200進行說明,但不以此為限,任何熟習此技藝者,在不脫離本案之精神和範圍內,當可對其作各種更動與潤飾。如第3圖所示,控制方法300包含步驟S310、S320以及S330。Please refer to Figure 3 together. FIG. 3 is a flow chart of a control method 300 of the power module 200 according to some embodiments of the present disclosure. For convenience and clarity of description, the following control method 300 is described in conjunction with the power module 200 shown in FIG. 2, but it is not limited thereto, and any person skilled in the art can avoid the spirit and scope of the present invention. When it can be used for various changes and retouching. As shown in FIG. 3, the control method 300 includes steps S310, S320, and S330.

首先,在步驟S310中,調整外接電阻Rd之電阻值。接著,在步驟S320中,由驅動電路240內之電流控制單元,根據外接電阻Rd之電阻值調整驅動電路240對氮化鎵功率開關220之閘極端G之充電電流或放電電流。接著,在步驟S330中,透過調節充電電流或放電電流控制氮化鎵功率開關220之導通或關斷之速度。具體來說,當充電電流或放電電流增大時,氮化鎵功率開關220之導通速度或關斷速度加快,當放電電流或放電電流減小時,氮化鎵功率開關220之導通或關斷速度減慢。First, in step S310, the resistance value of the external resistor Rd is adjusted. Next, in step S320, the current control unit in the drive circuit 240 adjusts the charging current or the discharge current of the driving circuit 240 to the gate terminal G of the gallium nitride power switch 220 according to the resistance value of the external resistor Rd. Next, in step S330, the speed at which the gallium nitride power switch 220 is turned on or off is controlled by adjusting the charging current or the discharging current. Specifically, when the charging current or the discharging current increases, the on-speed or the off-speed of the gallium nitride power switch 220 is increased, and when the discharge current or the discharge current is decreased, the on or off speed of the gallium nitride power switch 220 is increased. Slow down.

以下段落中,將搭配圖示說明驅動電路240內之電流控制單元控制驅動電路240對氮化鎵功率開關220之導通或關斷之速度之具體電路及操作方法。請參考第4圖。第4圖為根據本發明部分實施例所繪示之驅動電路240之細部電路示意圖。In the following paragraphs, a specific circuit and operation method for controlling the speed at which the current control unit in the drive circuit 240 controls the turn-on or turn-off of the GaN power switch 220 by the drive circuit 240 will be described. Please refer to Figure 4. FIG. 4 is a detailed circuit diagram of the driving circuit 240 according to some embodiments of the present invention.

如第4圖所示,在本發明部分實施例中,驅動電路240內之電流控制單元包含第一驅動電壓調節器242、驅動器244以及電流調節器246。在結構上,第一驅動電壓調節器242電性耦接於引腳PIN1,用以根據外接電阻Rd之電阻值將供電電壓VDD轉換為控制電壓Vdrv。驅動器244電性耦接於第一驅動電壓調節器242和引腳PIN2,用以根據控制電壓Vdrv與輸入信號P輸出驅動電壓Vg。電流調節器246電性耦接於驅動器244,用以根據驅動電壓Vg輸出充電電流I1或放電電流I2至氮化鎵功率開關220之閘極端G。As shown in FIG. 4, in some embodiments of the present invention, the current control unit in the drive circuit 240 includes a first drive voltage regulator 242, a driver 244, and a current regulator 246. Structurally, the first driving voltage regulator 242 is electrically coupled to the pin PIN1 for converting the supply voltage VDD into the control voltage Vdrv according to the resistance value of the external resistor Rd. The driver 244 is electrically coupled to the first driving voltage regulator 242 and the pin PIN2 for outputting the driving voltage Vg according to the control voltage Vdrv and the input signal P. The current regulator 246 is electrically coupled to the driver 244 for outputting the charging current I1 or the discharging current I2 to the gate terminal G of the gallium nitride power switch 220 according to the driving voltage Vg.

具體來說,在本發明部分實施例中,電流調節器246包含上拉開關S1以及下拉開關S2。上拉開關S1之第一端用以接收供電電壓VDD,上拉開關S1之第二端用以輸出充電電流I1。上拉開關S1之控制端用以接收驅動電壓Vg。下拉開關S2之第一端電性耦接於引腳PIN2,用以接收參考電壓VSS。下拉開關S2之第二端用以輸出放電電流I2,下拉開關S2之控制端用以接收驅動電壓Vg。藉此,當驅動電壓Vg為一第一位準時,上拉開關S1導通,下拉開關S2關斷,驅動電路240對氮化鎵功率開關220提供充電電流I1。相對地,當驅動電壓Vg為第二準位時,上拉開關S1關斷,下拉開關S2導通,驅動電路240對氮化鎵功率開關220提供放電電流I2。In particular, in some embodiments of the invention, current regulator 246 includes pull up switch S1 and pull down switch S2. The first end of the pull-up switch S1 is for receiving the power supply voltage VDD, and the second end of the pull-up switch S1 is for outputting the charging current I1. The control terminal of the pull-up switch S1 is for receiving the driving voltage Vg. The first end of the pull-down switch S2 is electrically coupled to the pin PIN2 for receiving the reference voltage VSS. The second end of the pull-down switch S2 is for outputting the discharge current I2, and the control end of the pull-down switch S2 is for receiving the driving voltage Vg. Thereby, when the driving voltage Vg is at a first level, the pull-up switch S1 is turned on, the pull-down switch S2 is turned off, and the driving circuit 240 supplies the charging current I1 to the GaN power switch 220. In contrast, when the driving voltage Vg is at the second level, the pull-up switch S1 is turned off, the pull-down switch S2 is turned on, and the driving circuit 240 supplies the discharging current I2 to the gallium nitride power switch 220.

如此一來,電流調節器246便可根據驅動電壓Vg調節上拉開關S1之通態阻抗與下拉開關S2之通態阻抗。當外接電阻Rd之電阻值提高時,通過第一驅動電壓調節器242,控制電壓Vdrv之準位也較高。因此,驅動電壓Vg之準位也較高。上拉開關S1以及下拉開關S2之通態阻抗降低,進而使得驅動電路240對氮化鎵功率開關220之閘極端G之充電電流I1或放電電流I2增大,氮化鎵功率開關220之開關速度加快。另一方面。當外接電阻Rd之電阻值降低時,通過第一驅動電壓調節器242,控制電壓Vdrv之準位也較低。因此,驅動電壓Vg之準位也較低。上拉開關S1以及下拉開關S2之通態阻抗提高,進而使得驅動電路240對氮化鎵功率開關220之閘極端G之充電電流I1或放電電流I2減小,氮化鎵功率開關220之開關速度減慢。In this way, the current regulator 246 can adjust the on-state impedance of the pull-up switch S1 and the on-state impedance of the pull-down switch S2 according to the driving voltage Vg. When the resistance value of the external resistor Rd is increased, the level of the control voltage Vdrv is also higher by the first driving voltage regulator 242. Therefore, the level of the driving voltage Vg is also high. The on-state impedance of the pull-up switch S1 and the pull-down switch S2 is lowered, thereby causing the driving circuit 240 to increase the charging current I1 or the discharging current I2 of the gate terminal G of the gallium nitride power switch 220, and the switching speed of the gallium nitride power switch 220. accelerate. on the other hand. When the resistance value of the external resistor Rd is lowered, the level of the control voltage Vdrv is also lowered by the first driving voltage regulator 242. Therefore, the level of the driving voltage Vg is also low. The on-state impedance of the pull-up switch S1 and the pull-down switch S2 is increased, thereby causing the driving circuit 240 to reduce the charging current I1 or the discharging current I2 of the gate terminal G of the gallium nitride power switch 220, and the switching speed of the gallium nitride power switch 220. Slow down.

以下段落中,將搭配圖示說明第一驅動電壓調節器242內之具體電路及操作方法。請參考第5圖。第5圖為根據本發明部分實施例所繪示之第一驅動電壓調節器242之細部電路示意圖。In the following paragraphs, the specific circuit and operation method in the first driving voltage regulator 242 will be illustrated. Please refer to Figure 5. FIG. 5 is a detailed circuit diagram of the first driving voltage regulator 242 according to some embodiments of the present invention.

如第5圖所示,在本發明部分實施例中,第一驅動電壓調節器242包含第一電晶體T1以及比較放大器OP1。在結構上,第一電晶體T1包含第一端、第二端以及控制端。第一電晶體T1之第一端用以接收供電電壓VDD。第一電晶體T1之第二端用以輸出控制電壓Vdrv。比較放大器OP1包含第一輸入端、第二輸入端以及輸出端。比較放大器OP1之第一輸入端電性耦接於引腳PIN1。比較放大器OP1之第二輸入端電性耦接於第一電晶體T1之第二端。如第5圖所示,在部分實施例中,比較放大器OP1之第二輸入端更透過帶差參考電壓電路(Bandgap Reference Circuit)BGR電性耦接於第一電晶體T1之第二端。帶差參考電壓電路根據第一驅動電壓調節器242所接收之致能信號EN進行控制。比較放大器OP1之輸出端電性耦接於第一電晶體T1之控制端。外接電阻R1電性耦接於比較放大器OP1之第一輸入端與第一電晶體T1之第二端之間。外接電阻Rd與電容C1分別電性耦接於比較放大器OP1之第一輸入端與參考電壓VSS之間。電容Cout電性耦接於第一電晶體T1之第二端與參考電壓VSS之間。As shown in FIG. 5, in some embodiments of the present invention, the first driving voltage regulator 242 includes a first transistor T1 and a comparison amplifier OP1. Structurally, the first transistor T1 includes a first end, a second end, and a control end. The first end of the first transistor T1 is for receiving the supply voltage VDD. The second end of the first transistor T1 is used to output a control voltage Vdrv. The comparison amplifier OP1 includes a first input terminal, a second input terminal, and an output terminal. The first input of the comparison amplifier OP1 is electrically coupled to the pin PIN1. The second input end of the comparison amplifier OP1 is electrically coupled to the second end of the first transistor T1. As shown in FIG. 5, in some embodiments, the second input of the comparison amplifier OP1 is electrically coupled to the second end of the first transistor T1 through a bandgap reference circuit BGR. The differential reference voltage circuit is controlled in accordance with the enable signal EN received by the first drive voltage regulator 242. The output of the comparison amplifier OP1 is electrically coupled to the control terminal of the first transistor T1. The external resistor R1 is electrically coupled between the first input end of the comparison amplifier OP1 and the second end of the first transistor T1. The external resistor Rd and the capacitor C1 are electrically coupled between the first input terminal of the comparison amplifier OP1 and the reference voltage VSS, respectively. The capacitor Cout is electrically coupled between the second end of the first transistor T1 and the reference voltage VSS.

如此一來,當外接電阻Rd之電阻值提高時,通過第一驅動電壓調節器242內第一電晶體T1以及比較放大器OP1所形成之回授電路,第一驅動電壓調節器242輸出之控制電壓Vdrv之準位也隨之提高。相對地,當外接電阻Rd之電阻值降低時,通過第一驅動電壓調節器242內第一電晶體T1以及比較放大器OP1所形成之回授電路,第一驅動電壓調節器242輸出之控制電壓Vdrv之準位也隨之降低。As a result, when the resistance value of the external resistor Rd increases, the control voltage output by the first driving voltage regulator 242 is passed through the feedback circuit formed by the first transistor T1 and the comparison amplifier OP1 in the first driving voltage regulator 242. The level of Vdrv has also increased. In contrast, when the resistance value of the external resistor Rd decreases, the control voltage Vdrv outputted by the first driving voltage regulator 242 is passed through the feedback circuit formed by the first transistor T1 and the comparison amplifier OP1 in the first driving voltage regulator 242. The level is also reduced.

請一併參考第6圖。第6圖為根據本揭示內容部分實施例所繪示之功率模組200之控制方法300之流程圖。為方便及清楚說明起見,下述控制方法300是配合第4圖所示之驅動電路240進行說明,但不以此為限,任何熟習此技藝者,在不脫離本案之精神和範圍內,當可對作各種更動與潤飾。如第6圖所示,在部分實施例中,控制方法300之步驟S320進一步包含步驟S322a、步驟S324a以及步驟S326a。Please refer to Figure 6 together. FIG. 6 is a flow chart of a control method 300 of the power module 200 according to some embodiments of the present disclosure. For the sake of convenience and clarity, the following control method 300 is described in conjunction with the driving circuit 240 shown in FIG. 4, but it is not limited thereto, and any person skilled in the art can avoid the spirit and scope of the present invention. When you can make a variety of changes and retouching. As shown in FIG. 6, in some embodiments, step S320 of the control method 300 further includes step S322a, step S324a, and step S326a.

首先,在步驟S322a中,透過第一驅動電壓調節器242根據外接電阻Rd之電阻值調節控制電壓Vdrv。接著,在步驟S324a中,透過驅動器244根據控制電壓Vdrv與輸入信號P輸出驅動電壓Vg。接著,在步驟S326a中,透過電流調節器246根據驅動電壓Vg輸出充電電流I1或放電電流I2至氮化鎵功率開關220之閘極端G。First, in step S322a, the control voltage Vdrv is adjusted by the first driving voltage regulator 242 in accordance with the resistance value of the external resistor Rd. Next, in step S324a, the transmission driver 244 outputs the driving voltage Vg based on the control voltage Vdrv and the input signal P. Next, in step S326a, the permeation current regulator 246 outputs the charging current I1 or the discharging current I2 to the gate terminal G of the gallium nitride power switch 220 in accordance with the driving voltage Vg.

所屬技術領域具有通常知識者可直接瞭解第6圖中所述之控制方法300如何基於上述第2圖所示之功率模組200與第4圖所示之驅動電路240以執行該等操作及功能,故不在此贅述。Those skilled in the art can directly understand how the control method 300 described in FIG. 6 is based on the power module 200 shown in FIG. 2 and the driving circuit 240 shown in FIG. 4 to perform the operations and functions. Therefore, it is not described here.

請參考第7圖。第7圖為根據本發明其他部分實施例所繪示之驅動電路240之細部電路示意圖。Please refer to Figure 7. FIG. 7 is a schematic diagram showing a detailed circuit of the driving circuit 240 according to another embodiment of the present invention.

如第7圖所示,在本發明部分實施例中,驅動電路240內之電流控制單元包含第二驅動電壓調節器243、驅動器245以及電流調節器247。在結構上,第二驅動電壓調節器243電性耦接於引腳PIN1,用以根據外接電阻Rd之電阻值將供電電壓VDD轉換為調節供電電壓Vtp。驅動器245電性耦接於第二驅動電壓調節器243和引腳PIN2,用以根據輸入信號P輸出驅動電壓Vg。電流調節器247電性耦接於驅動器245與第二驅動電壓調節器243,用以根據驅動電壓Vg與調節供電電壓Vtp輸出充電電流I1或放電電流I2至氮化鎵功率開關220之閘極端G。As shown in FIG. 7, in some embodiments of the present invention, the current control unit in the drive circuit 240 includes a second drive voltage regulator 243, a driver 245, and a current regulator 247. Structurally, the second driving voltage regulator 243 is electrically coupled to the pin PIN1 for converting the supply voltage VDD to the regulated supply voltage Vtp according to the resistance value of the external resistor Rd. The driver 245 is electrically coupled to the second driving voltage regulator 243 and the pin PIN2 for outputting the driving voltage Vg according to the input signal P. The current regulator 247 is electrically coupled to the driver 245 and the second driving voltage regulator 243 for outputting the charging current I1 or the discharging current I2 to the gate terminal G of the gallium nitride power switch 220 according to the driving voltage Vg and the regulated power supply voltage Vtp. .

與第4圖所示之驅動電路240相似,在本發明部分實施例中,電流調節器247亦可包含上拉開關S1以及下拉開關S2。上拉開關S1之第一端用以接收調節供電電壓Vtp,上拉開關S1之第二端用以輸出充電電流I1。上拉開關S1之控制端用以接收驅動電壓Vg。下拉開關S2之第一端電性耦接於引腳PIN2,用以接收參考電壓VSS。下拉開關S2之第二端用以輸出放電電流I2,下拉開關S2之控制端用以接收驅動電壓Vg。藉此,當驅動電壓Vg為一第一位準時,上拉開關S1導通,下拉開關S2關斷,驅動電路240對氮化鎵功率開關220之閘極端G提供充電電流I1。相對地,當驅動電壓Vg為第二準位時,上拉開關S1關斷,下拉開關S2導通,驅動電路240對氮化鎵功率開關220之閘極端G提供放電電流I2。Similar to the driving circuit 240 shown in FIG. 4, in some embodiments of the present invention, the current regulator 247 may also include a pull-up switch S1 and a pull-down switch S2. The first end of the pull-up switch S1 is for receiving the regulated supply voltage Vtp, and the second end of the pull-up switch S1 is for outputting the charging current I1. The control terminal of the pull-up switch S1 is for receiving the driving voltage Vg. The first end of the pull-down switch S2 is electrically coupled to the pin PIN2 for receiving the reference voltage VSS. The second end of the pull-down switch S2 is for outputting the discharge current I2, and the control end of the pull-down switch S2 is for receiving the driving voltage Vg. Thereby, when the driving voltage Vg is at a first level, the pull-up switch S1 is turned on, the pull-down switch S2 is turned off, and the driving circuit 240 supplies the charging current I1 to the gate terminal G of the gallium nitride power switch 220. In contrast, when the driving voltage Vg is at the second level, the pull-up switch S1 is turned off, the pull-down switch S2 is turned on, and the driving circuit 240 supplies the discharging current I2 to the gate terminal G of the GaN power switch 220.

如此一來,電流調節器247便可根據調節供電電壓Vtp調節電流調節器247輸出之充電電流I1或放電電流I2。當外接電阻Rd之電阻值提高時,通過第二驅動電壓調節器243,調節供電電壓Vtp之準位也較高,進而使得驅動電路240對氮化鎵功率開關220之閘極端G之充電電流I1或放電電流I2增大,氮化鎵功率開關220之開關速度加快。另一方面。當外接電阻Rd之電阻值降低時,通過第二驅動電壓調節器243,調節供電電壓Vtp之準位也較低,進而使得驅動電路240對氮化鎵功率開關220之閘極端G之充電電流I1或放電電流I2減小,氮化鎵功率開關220之開關速度減慢。In this way, the current regulator 247 can adjust the charging current I1 or the discharging current I2 outputted by the current regulator 247 according to the regulated power supply voltage Vtp. When the resistance value of the external resistor Rd is increased, the level of the supply voltage Vtp is also adjusted by the second driving voltage regulator 243, and the charging current I1 of the driving terminal 240 to the gate terminal G of the GaN power switch 220 is further increased. Or the discharge current I2 increases, and the switching speed of the GaN power switch 220 is increased. on the other hand. When the resistance value of the external resistor Rd decreases, the level of the supply voltage Vtp is also lowered by the second driving voltage regulator 243, so that the driving circuit 240 charges the charging current I1 of the gate terminal G of the GaN power switch 220. Or the discharge current I2 is decreased, and the switching speed of the GaN power switch 220 is slowed down.

以下段落中,將搭配圖示說明第二驅動電壓調節器243內之具體電路及操作方法。請參考第8圖。第8圖為根據本發明部分實施例所繪示之第二驅動電壓調節器243之細部電路示意圖。In the following paragraphs, specific circuits and operation methods in the second driving voltage regulator 243 will be described with reference to the drawings. Please refer to Figure 8. FIG. 8 is a detailed circuit diagram of the second driving voltage regulator 243 according to some embodiments of the present invention.

如第8圖所示,在本發明部分實施例中,第二驅動電壓調節器243包含第一電晶體T1以及比較放大器OP1。在結構上,第一電晶體T1包含第一端、第二端以及控制端。第一電晶體T1之第一端用以接收供電電壓VDD。第一電晶體T1之第二端用以輸出調節供電電壓Vtp。比較放大器OP1包含第一輸入端、第二輸入端以及輸出端。比較放大器OP1之第一輸入端電性耦接於引腳PIN1。比較放大器OP1之第二輸入端電性耦接於第一電晶體T1之第二端。如第8圖所示,在部分實施例中,比較放大器OP1之第二輸入端更透過帶差參考電壓電路(Bandgap Reference Circuit)BGR電性耦接於第一電晶體T1之第二端。帶差參考電壓電路根據第二驅動電壓調節器243所接收之致能信號EN進行控制。比較放大器OP1之輸出端電性耦接於第一電晶體T1之控制端。外接電阻R1電性耦接於比較放大器OP1之第一輸入端與第一電晶體T1之第二端之間。外接電阻Rd與電容C1分別電性耦接於比較放大器OP1之第一輸入端與參考電壓VSS之間。電容Cout電性耦接於第一電晶體T1之第二端與參考電壓VSS之間。As shown in FIG. 8, in some embodiments of the present invention, the second driving voltage regulator 243 includes a first transistor T1 and a comparison amplifier OP1. Structurally, the first transistor T1 includes a first end, a second end, and a control end. The first end of the first transistor T1 is for receiving the supply voltage VDD. The second end of the first transistor T1 is used to output the regulated supply voltage Vtp. The comparison amplifier OP1 includes a first input terminal, a second input terminal, and an output terminal. The first input of the comparison amplifier OP1 is electrically coupled to the pin PIN1. The second input end of the comparison amplifier OP1 is electrically coupled to the second end of the first transistor T1. As shown in FIG. 8 , in some embodiments, the second input of the comparison amplifier OP1 is electrically coupled to the second end of the first transistor T1 through a bandgap reference circuit BGR. The differential reference voltage circuit is controlled in accordance with the enable signal EN received by the second drive voltage regulator 243. The output of the comparison amplifier OP1 is electrically coupled to the control terminal of the first transistor T1. The external resistor R1 is electrically coupled between the first input end of the comparison amplifier OP1 and the second end of the first transistor T1. The external resistor Rd and the capacitor C1 are electrically coupled between the first input terminal of the comparison amplifier OP1 and the reference voltage VSS, respectively. The capacitor Cout is electrically coupled between the second end of the first transistor T1 and the reference voltage VSS.

如此一來,當外接電阻Rd之電阻值提高時,通過第二驅動電壓調節器243內第一電晶體T1以及比較放大器OP1所形成之回授電路,第二驅動電壓調節器243輸出之調節供電電壓Vtp之準位也隨之提高。相對地,當外接電阻Rd之電阻值降低時,通過第二驅動電壓調節器243內第一電晶體T1以及比較放大器OP1所形成之回授電路,第二驅動電壓調節器243輸出之調節供電電壓Vtp之準位也隨之降低。In this way, when the resistance value of the external resistor Rd is increased, the feedback circuit of the output voltage of the second driving voltage regulator 243 is outputted through the feedback circuit formed by the first transistor T1 and the comparison amplifier OP1 in the second driving voltage regulator 243. The level of the voltage Vtp also increases. In contrast, when the resistance value of the external resistor Rd decreases, the feedback voltage generated by the second driving voltage regulator 243 is outputted through the feedback circuit formed by the first transistor T1 and the comparison amplifier OP1 in the second driving voltage regulator 243. The level of Vtp is also reduced.

請一併參考第9圖。第9圖為根據本揭示內容其他部分實施例所繪示之功率模組200之控制方法300之流程圖。為方便及清楚說明起見,下述控制方法300是配合第7圖所示之驅動電路240進行說明,但不以此為限,任何熟習此技藝者,在不脫離本案之精神和範圍內,當可對作各種更動與潤飾。如第9圖所示,在部分實施例中,控制方法300之步驟S320進一步包含步驟S322b、步驟S324b以及步驟S326b。Please refer to Figure 9 together. FIG. 9 is a flow chart of a control method 300 of the power module 200 according to other embodiments of the present disclosure. For the sake of convenience and clarity, the following control method 300 is described in conjunction with the driving circuit 240 shown in FIG. 7, but it is not limited thereto, and any person skilled in the art can avoid the spirit and scope of the present invention. When you can make a variety of changes and retouching. As shown in FIG. 9, in some embodiments, step S320 of the control method 300 further includes step S322b, step S324b, and step S326b.

首先,在步驟S322b中,透過第二電壓調節器243根據外接電阻Rd之電阻值將供電電壓VDD轉換為調節供電電壓Vtp。接著,在步驟S324b中,透過驅動器245根據輸入信號P輸出驅動電壓Vg。接著,在步驟S326b中,透過電流調節器247根據驅動電壓Vg與調節供電電壓Vtp輸出充電電流I1或放電電流I2至氮化鎵功率開關220之閘極端G。First, in step S322b, the supply voltage VDD is converted to the regulated supply voltage Vtp by the second voltage regulator 243 according to the resistance value of the external resistor Rd. Next, in step S324b, the transmission driver 245 outputs the driving voltage Vg based on the input signal P. Next, in step S326b, the permeation current regulator 247 outputs the charging current I1 or the discharging current I2 to the gate terminal G of the gallium nitride power switch 220 in accordance with the driving voltage Vg and the regulated supply voltage Vtp.

所屬技術領域具有通常知識者可直接瞭解第9圖中所述之控制方法300如何基於上述第2圖所示之功率模組200與第7圖所示之驅動電路240以執行該等操作及功能,故不在此贅述。Those skilled in the art can directly understand how the control method 300 described in FIG. 9 is based on the power module 200 shown in FIG. 2 and the driving circuit 240 shown in FIG. 7 to perform the operations and functions. Therefore, it is not described here.

如此一來,透過以上各個實施例中所示之驅動電路240,當外接電阻Rd之電阻值提高時,驅動電路240對氮化鎵功率開關220之閘極端G之充電電流I1或放電電流I2增大,氮化鎵功率開關220之開關速度加快。另一方面。當外接電阻Rd之電阻值降低時,驅動電路240對氮化鎵功率開關220之閘極端G之充電電流I1或放電電流I2減小,氮化鎵功率開關220之開關速度減慢。As a result, when the resistance value of the external resistor Rd is increased by the driving circuit 240 shown in each of the above embodiments, the driving circuit 240 increases the charging current I1 or the discharging current I2 of the gate terminal G of the GaN power switch 220. The switching speed of the large, GaN power switch 220 is increased. on the other hand. When the resistance value of the external resistor Rd decreases, the driving circuit 240 decreases the charging current I1 or the discharging current I2 of the gate terminal G of the gallium nitride power switch 220, and the switching speed of the gallium nitride power switch 220 is slowed down.

換言之,當外接電阻Rd為第一電阻值時,驅動電路240對氮化鎵功率開關220之閘極端G提供第一充電電流I1,當外接電阻Rd為第二電阻值時,驅動電路240對氮化鎵功率開關220之閘極端G提供第二充電電流I1,當第一電阻值大於第二電阻值時,第一充電電流I1之值大於第二充電電流I1之值。In other words, when the external resistor Rd is the first resistance value, the driving circuit 240 provides the first charging current I1 to the gate terminal G of the gallium nitride power switch 220, and when the external resistor Rd is the second resistance value, the driving circuit 240 applies the nitrogen to the circuit. The gate terminal G of the gallium power switch 220 provides a second charging current I1. When the first resistance value is greater than the second resistance value, the value of the first charging current I1 is greater than the value of the second charging current I1.

相似地,當外接電阻Rd為第三電阻值時,驅動電路240對氮化鎵功率開關220之閘極端G提供第一放電電流I2,當外接電阻Rd為第四電阻值時,驅動電路240對氮化鎵功率開關220之閘極端G提供第二放電電流I2,當第三電阻值大於第四電阻值時,第一放電電流I2之值大於第二放電電流I2之值。Similarly, when the external resistor Rd is the third resistance value, the driving circuit 240 provides the first discharging current I2 to the gate terminal G of the gallium nitride power switch 220, and when the external resistor Rd is the fourth resistance value, the driving circuit 240 pairs The gate terminal G of the gallium nitride power switch 220 provides a second discharge current I2. When the third resistor value is greater than the fourth resistor value, the value of the first discharge current I2 is greater than the value of the second discharge current I2.

如此一來,在本發明部分實施例中,當氮化鎵功率開關220之閘極端G接收第一充電電流I1時,氮化鎵功率開關220以第一導通速度導通,當氮化鎵功率開關220之閘極端G接收第二充電電流I1時,氮化鎵功率開關220以第二導通速度導通。當第一充電電流I1之值大於第二充電電流I1之值時,第一導通速度大於第二導通速度。As such, in some embodiments of the present invention, when the gate terminal G of the GaN power switch 220 receives the first charging current I1, the GaN power switch 220 is turned on at the first conduction speed, when the GaN power switch When the gate terminal G of 220 receives the second charging current I1, the gallium nitride power switch 220 is turned on at the second conduction speed. When the value of the first charging current I1 is greater than the value of the second charging current I1, the first conduction speed is greater than the second conduction speed.

相似地,在本發明部分實施例中,當氮化鎵功率開關220之閘極端G接收第一放電電流I2時,氮化鎵功率開關220以第一關斷速度關斷,當氮化鎵功率開關220之閘極端G接收第二放電電流I2時,氮化鎵功率開關220以第二關斷速度關斷。當第一放電電流I2之值大於第二放電電流I2之值時,第一關斷速度大於第二關斷速度。Similarly, in some embodiments of the present invention, when the gate terminal G of the gallium nitride power switch 220 receives the first discharge current I2, the gallium nitride power switch 220 is turned off at the first off-speed, when the GaN power When the gate terminal G of the switch 220 receives the second discharge current I2, the GaN power switch 220 is turned off at the second off speed. When the value of the first discharge current I2 is greater than the value of the second discharge current I2, the first off speed is greater than the second off speed.

綜上所述,本揭示內容中各個實施例中之功率模組100、200便可透過調整外接電阻Rd之電阻值調整充電電流I1或放電電流I2之值,進而調整功率模組100、200內之氮化鎵功率開關120、220之導通速度與關斷速度,並據以改善終端產品之電磁相容特性,提升了氮化鎵功率器件性能之發揮。In summary, the power modules 100 and 200 in the embodiments of the present disclosure can adjust the values of the charging current I1 or the discharging current I2 by adjusting the resistance value of the external resistor Rd, thereby adjusting the power modules 100 and 200. The turn-on speed and turn-off speed of the GaN power switches 120 and 220, and improve the electromagnetic compatibility characteristics of the terminal products, thereby improving the performance of the GaN power device.

雖然本文將所公開之方法示出和描述為一系列之步驟或事件,但是應當理解,所示出之這些步驟或事件之順序不應解釋為限制意義。例如,部分步驟可以以不同順序發生和/或與除了本文所示和/或所描述之步驟或事件以外之其他步驟或事件同時發生。另外,實施本文所描述之一個或多個態樣或實施例時,並非所有於此示出之步驟皆為必需。此外,本文中之一個或多個步驟亦可能在一個或多個分離之步驟和/或階段中執行。While the methods disclosed are shown and described herein as a series of steps or events, it should be understood that the order of the steps or events are not to be construed as limiting. For example, some of the steps may occur in a different order and/or concurrently with other steps or events other than those illustrated or/or described herein. In addition, not all of the steps shown herein may be required to implement one or more aspects or embodiments described herein. Furthermore, one or more steps herein may also be performed in one or more separate steps and/or stages.

需要說明的是,在不衝突之情況下,在本揭示內容各個圖式、實施例及實施例中之特徵與電路可以相互組合。圖式中所繪示之電路僅為示例之用,系簡化以使說明簡潔並便於理解,並非用以限制本案。此外,上述實施例中所舉例之氮化鎵功率開關120、220、上拉開關S1、下拉開關S2、第一電晶體T1、比較放大器OP1等等皆可有多種不同之實作方式。舉例而言,上拉開關S1、下拉開關S2、第一電晶體T1等可分別由雙極性接面型電晶體(Bipolar Junction Transistor,BJT)、金屬氧化物半導體場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)或是其他適當之半導體元件實現。It should be noted that the features and circuits in the various figures, embodiments, and embodiments of the present disclosure may be combined with each other without conflict. The circuit illustrated in the drawings is for illustrative purposes only, and is simplified for simplicity and ease of understanding and is not intended to limit the present invention. In addition, the GaN power switches 120, 220, the pull-up switch S1, the pull-down switch S2, the first transistor T1, the comparison amplifier OP1, and the like, which are exemplified in the above embodiments, can be implemented in various different ways. For example, the pull-up switch S1, the pull-down switch S2, the first transistor T1, and the like can be respectively composed of a Bipolar Junction Transistor (BJT), a metal oxide semiconductor field effect transistor (Metal-Oxide- Semiconductor Field-Effect Transistor (MOSFET) or other suitable semiconductor components.

雖然本揭示內容已以實施方式揭露如上,然其並非用以限定本揭示內容,任何熟習此技藝者,在不脫離本揭示內容之精神和範圍內,當可作各種更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為准。The present disclosure has been disclosed in the above embodiments, and is not intended to limit the disclosure, and the present disclosure may be variously modified and retouched without departing from the spirit and scope of the present disclosure. The scope of protection of the content is subject to the definition of the scope of the patent application.

100、200‧‧‧功率模組100, 200‧‧‧ power modules

120、220‧‧‧氮化鎵功率開關120, 220‧‧‧ GaN power switch

140、240‧‧‧驅動電路140, 240‧‧‧ drive circuit

242、243‧‧‧驅動電壓調節器242, 243‧‧‧ drive voltage regulator

244、245‧‧‧驅動器244, 245‧‧‧ drive

246、247‧‧‧電流調節器246, 247‧‧‧ Current Regulator

300‧‧‧控制方法300‧‧‧Control method

S310~S330‧‧‧步驟S310~S330‧‧‧Steps

S322a~S326a、S322b~S326b‧‧‧步驟S322a~S326a, S322b~S326b‧‧‧ steps

S‧‧‧源極端S‧‧‧ source extreme

D‧‧‧汲極端D‧‧‧汲 Extreme

G‧‧‧閘極端G‧‧‧ gate extreme

PIN1、PIN2‧‧‧引腳PIN1, PIN2‧‧‧ pin

Rd‧‧‧外接電阻Rd‧‧‧ external resistor

BGR‧‧‧帶差參考電壓電路BGR‧‧‧Differential reference voltage circuit

S1、S2‧‧‧開關S1, S2‧‧‧ switch

T1‧‧‧電晶體T1‧‧‧O crystal

C1、Cout‧‧‧電容C1, Cout‧‧‧ capacitor

OP1‧‧‧比較放大器OP1‧‧‧Comparative amplifier

VSS‧‧‧參考電壓VSS‧‧‧reference voltage

VDD‧‧‧供電電壓VDD‧‧‧ supply voltage

VD‧‧‧驅動電壓VD‧‧‧ drive voltage

Vg‧‧‧驅動電壓Vg‧‧‧ drive voltage

Vdrv‧‧‧控制電壓Vdrv‧‧‧ control voltage

Vtp‧‧‧供電電壓Vtp‧‧‧ supply voltage

I1、I2‧‧‧電流I1, I2‧‧‧ current

PWM‧‧‧輸入信號PWM‧‧‧ input signal

EN‧‧‧致能信號EN‧‧‧Enable signal

第1圖為根據本發明部分實施例所繪示之功率模組之示意圖。 第2圖為根據本發明其他部分實施例所繪示之功率模組之示意圖。 第3圖為根據本揭示內容部分實施例所繪示之功率模組之控制方法之流程圖。 第4圖為根據本發明部分實施例所繪示之驅動電路之細部電路示意圖。 第5圖為根據本發明部分實施例所繪示之第一驅動電壓調節器之細部電路示意圖。 第6圖為根據本揭示內容部分實施例所繪示之功率模組之控制方法之流程圖。 第7圖為根據本發明其他部分實施例所繪示之驅動電路之細部電路示意圖。 第8圖為根據本發明部分實施例所繪示之第二驅動電壓調節器之細部電路示意圖。 第9圖為根據本揭示內容其他部分實施例所繪示之功率模組之控制方法之流程圖。FIG. 1 is a schematic diagram of a power module according to some embodiments of the present invention. FIG. 2 is a schematic diagram of a power module according to another embodiment of the present invention. FIG. 3 is a flow chart of a method for controlling a power module according to some embodiments of the present disclosure. 4 is a schematic diagram showing a detailed circuit of a driving circuit according to some embodiments of the present invention. FIG. 5 is a detailed circuit diagram of a first driving voltage regulator according to some embodiments of the present invention. FIG. 6 is a flow chart of a method for controlling a power module according to some embodiments of the present disclosure. FIG. 7 is a schematic diagram showing a detailed circuit of a driving circuit according to another embodiment of the present invention. FIG. 8 is a detailed circuit diagram of a second driving voltage regulator according to some embodiments of the present invention. FIG. 9 is a flow chart of a method for controlling a power module according to other embodiments of the present disclosure.

300‧‧‧控制方法 300‧‧‧Control method

S310~S330‧‧‧步驟 S310~S330‧‧‧Steps

Claims (22)

一種功率模組,包含:一氮化鎵功率開關,包含一汲極端、一源極端以及一閘極端;以及一驅動電路,包含一輸入端以及一輸出端,其中該驅動電路之該輸出端用以透過一外接電阻與該氮化鎵功率開關之該閘極端電性耦接,其中通過調節該外接電阻之電阻值改變該氮化鎵功率開關之該閘極端之電流,以控制該氮化鎵功率開關之導通或關斷之速度。 A power module includes: a GaN power switch including a 汲 terminal, a source terminal, and a gate terminal; and a driving circuit including an input terminal and an output terminal, wherein the output terminal of the driving circuit is used The gate is electrically coupled to the gate of the GaN power switch through an external resistor, wherein a current of the gate of the GaN power switch is changed by adjusting a resistance of the external resistor to control the GaN The speed at which the power switch is turned on or off. 如請求項1所述之功率模組,更包含:一第一引腳,電性耦接至該驅動電路之該輸出端;以及一第二引腳,電性耦接至該氮化鎵功率開關之該閘極端;其中該外接電阻用以電性耦接於該第一引腳與該第二引腳之間。 The power module of claim 1, further comprising: a first pin electrically coupled to the output of the driving circuit; and a second pin electrically coupled to the GaN power The gate of the switch; wherein the external resistor is electrically coupled between the first pin and the second pin. 如請求項2所述之功率模組,其中該驅動電路之該輸入端用以接收一輸入信號,並根據該輸入信號輸出一驅動電壓至該第一引腳。 The power module of claim 2, wherein the input end of the driving circuit is configured to receive an input signal and output a driving voltage to the first pin according to the input signal. 如請求項3所述之功率模組,其中該輸入信號包含一脈衝寬度調變信號或頻率調變信號。 The power module of claim 3, wherein the input signal comprises a pulse width modulation signal or a frequency modulation signal. 一種功率模組,包含:一氮化鎵功率開關,包含一汲極端、一源極端以及一閘 極端;以及一驅動電路,包含:一輸入端,用以接收一輸入信號;以及一輸出端,電性耦接至該氮化鎵功率開關之該閘極端;其中該驅動電路通過調節一外接電阻之電阻值改變該驅動電路對該氮化鎵功率開關之該閘極端之充電電流或放電電流,以控制該氮化鎵功率開關之導通或關斷之速度。 A power module comprising: a GaN power switch comprising a 汲 extreme, a source terminal, and a gate And a driving circuit comprising: an input terminal for receiving an input signal; and an output terminal electrically coupled to the gate terminal of the GaN power switch; wherein the driving circuit adjusts an external resistor The resistance value changes a charging current or a discharging current of the driving circuit to the gate terminal of the GaN power switch to control the speed at which the GaN power switch is turned on or off. 如請求項5所述之功率模組,其中該驅動電路包含一電流控制單元,用以控制該驅動電路對該氮化鎵功率開關之導通或關斷之速度,該功率模組更包含:一第一引腳,電性耦接至該電流控制單元之一第一端;以及一第二引腳,電性耦接至該電流控制單元之一第二端;其中該外接電阻用以電性耦接於該第一引腳與該第二引腳之間,以調節該驅動電路對該氮化鎵功率開關之該閘極端之該充電電流或該放電電流之大小。 The power module of claim 5, wherein the driving circuit comprises a current control unit for controlling a speed at which the driving circuit turns on or off the GaN power switch, the power module further comprising: a first pin electrically coupled to the first end of the current control unit; and a second pin electrically coupled to the second end of the current control unit; wherein the external resistor is used for electrical And being coupled between the first pin and the second pin to adjust a magnitude of the charging current or the discharging current of the driving circuit to the gate terminal of the GaN power switch. 如請求項5所述之功率模組,其中該輸入信號包含一脈衝寬度調變信號或頻率調變信號。 The power module of claim 5, wherein the input signal comprises a pulse width modulation signal or a frequency modulation signal. 如請求項6所述之功率模組,其中該電流控制單元包含:一第一驅動電壓調節器,電性耦接於該第一引腳,用以根據該外接電阻之電阻值將一供電電壓轉換為一控制電壓; 一驅動器,電性耦接於該第一驅動電壓調節器和該第二引腳,用以根據該控制電壓與該輸入信號輸出一驅動電壓;以及一電流調節器,電性耦接於該驅動器,用以根據該驅動電壓輸出該充電電流或該放電電流至該氮化鎵功率開關之該閘極端。 The power module of claim 6, wherein the current control unit comprises: a first driving voltage regulator electrically coupled to the first pin for supplying a supply voltage according to a resistance value of the external resistor Converted to a control voltage; a driver is electrically coupled to the first driving voltage regulator and the second pin for outputting a driving voltage according to the control voltage; and a current regulator electrically coupled to the driver And outputting the charging current or the discharging current to the gate terminal of the GaN power switch according to the driving voltage. 如請求項8所述之功率模組,其中該電流調節器包含:一上拉開關,該上拉開關之一第一端用以接收該供電電壓,該上拉開關之一第二端用以輸出該充電電流,該上拉開關之一控制端用以接收該驅動電壓;以及一下拉開關,該下拉開關之一第一端電性耦接於該第二引腳,該下拉開關之一第二端用以輸出該放電電流,該下拉開關之一控制端用以接收該驅動電壓。 The power module of claim 8, wherein the current regulator comprises: a pull-up switch, a first end of the pull-up switch is configured to receive the power supply voltage, and a second end of the pull-up switch is used Outputting the charging current, one of the pull-up switches is configured to receive the driving voltage; and a pull-down switch, the first end of the pull-down switch is electrically coupled to the second pin, and the one of the pull-down switches The two ends are used to output the discharge current, and one of the pull-down switches is used to receive the driving voltage. 如請求項9所述之功率模組,其中該電流調節器用以根據該驅動電壓調節該上拉開關之通態阻抗與該下拉開關之通態阻抗。 The power module of claim 9, wherein the current regulator is configured to adjust an on-state impedance of the pull-up switch and an on-state impedance of the pull-down switch according to the driving voltage. 如請求項8所述之功率模組,其中當該驅動電壓為一第一位準時,該驅動電路對該氮化鎵功率開關提供該充電電流,當該驅動電壓為一第二位準時,該驅動電路對該氮化鎵功率開關提供該放電電流。 The power module of claim 8, wherein the driving circuit supplies the charging current to the GaN power switch when the driving voltage is a first level, and when the driving voltage is a second level, A drive circuit provides the discharge current to the gallium nitride power switch. 如請求項8所述之功率模組,其中該第一驅動電壓調節器包含:一第一電晶體,包含:一第一端,用以接收該供電電壓;一第二端,用以輸出該控制電壓;以及一控制端;以及一比較放大器,包含:一第一輸入端,電性耦接於該第一引腳;一第二輸入端,電性耦接於該第一電晶體之該第二端;以及一輸出端,電性耦接於該第一電晶體之該控制端。 The power module of claim 8, wherein the first driving voltage regulator comprises: a first transistor, comprising: a first end for receiving the supply voltage; and a second end for outputting the a control voltage; and a control terminal; and a comparison amplifier, comprising: a first input terminal electrically coupled to the first pin; and a second input terminal electrically coupled to the first transistor a second end; and an output end electrically coupled to the control end of the first transistor. 如請求項6所述之功率模組,其中該電流控制單元包含:一第二驅動電壓調節器,電性耦接於該第一引腳,用以根據該外接電阻之電阻值將一供電電壓轉換為一調節供電電壓;一驅動器,電性耦接於該第二驅動電壓調節器和該第二引腳,用以根據該輸入信號輸出一驅動電壓;以及一電流調節器,電性耦接於該驅動器與該第二驅動電壓調節器,用以根據該驅動電壓與該調節供電電壓輸出該充電電流或該放電電流至該氮化鎵功率開關之該閘極端。 The power module of claim 6, wherein the current control unit comprises: a second driving voltage regulator electrically coupled to the first pin for supplying a supply voltage according to a resistance value of the external resistor Converting to a regulated supply voltage; a driver electrically coupled to the second driving voltage regulator and the second pin for outputting a driving voltage according to the input signal; and a current regulator electrically coupled The driver and the second driving voltage regulator are configured to output the charging current or the discharging current to the gate terminal of the GaN power switch according to the driving voltage and the regulated supply voltage. 如請求項13所述之功率模組,其中該電流調節器包含: 一上拉開關,該上拉開關之一第一端用以接收該調節供電電壓,該上拉開關之一第二端用以輸出該充電電流,該上拉開關之一控制端用以接收該驅動電壓;以及一下拉開關,該下拉開關之一第一端電性耦接於該第二引腳,該下拉開關之一第二端用以輸出該放電電流,該下拉開關之一控制端用以接收該驅動電壓。 The power module of claim 13, wherein the current regulator comprises: a pull-up switch, a first end of the pull-up switch is configured to receive the regulated supply voltage, and a second end of the pull-up switch is configured to output the charging current, and one of the pull-up switches is configured to receive the a driving voltage; and a pull-down switch, the first end of the pull-down switch is electrically coupled to the second pin, and the second end of the pull-down switch is used to output the discharge current, and one of the pull-down switches is used for the control end To receive the driving voltage. 如請求項14所述之功率模組,其中該電流調節器用以根據該調節供電電壓調節該充電電流與該放電電流之大小。 The power module of claim 14, wherein the current regulator is configured to adjust the charging current and the discharging current according to the adjusted power supply voltage. 如請求項13所述之功率模組,其中該第二驅動電壓調節器包含:一第一電晶體,包含:一第一端,用以接收該供電電壓;一第二端,用以輸出該調節供電電壓;以及一控制端;以及一比較放大器,包含:一第一輸入端,電性耦接於該第一引腳;一第二輸入端,電性耦接於該第一電晶體之該第二端;以及一輸出端,電性耦接於該第一電晶體之該控制端。 The power module of claim 13, wherein the second driving voltage regulator comprises: a first transistor, comprising: a first end for receiving the supply voltage; and a second end for outputting the Adjusting the power supply voltage; and a control terminal; and a comparison amplifier comprising: a first input terminal electrically coupled to the first pin; and a second input terminal electrically coupled to the first transistor The second end; and an output end electrically coupled to the control end of the first transistor. 如請求項6所述之功率模組,其中當該外接電阻為一第一電阻值時,該驅動電路對該氮化鎵功率開關之 該閘極端提供一第一充電電流,當該外接電阻為一第二電阻值時,該驅動電路對該氮化鎵功率開關之該閘極端提供一第二充電電流,其中該第一電阻值大於該第二電阻值時,該第一充電電流之值大於該第二充電電流之值;當該外接電阻為一第三電阻值時,該驅動電路對該氮化鎵功率開關之該閘極端提供一第一放電電流,當該外接電阻為一第四電阻值時,該驅動電路對該氮化鎵功率開關之該閘極端提供一第二放電電流,其中該第三電阻值大於該第四電阻值時,該第一放電電流之值大於該第二放電電流之值。 The power module of claim 6, wherein the driving circuit is configured to the GaN power switch when the external resistor is a first resistance value The gate terminal provides a first charging current. When the external resistor is a second resistor value, the driving circuit provides a second charging current to the gate terminal of the GaN power switch, wherein the first resistor value is greater than In the second resistance value, the value of the first charging current is greater than the value of the second charging current; when the external resistor is a third resistance value, the driving circuit provides the gate terminal of the GaN power switch a first discharge current, when the external resistor is a fourth resistance value, the driving circuit provides a second discharge current to the gate terminal of the GaN power switch, wherein the third resistor value is greater than the fourth resistor The value of the first discharge current is greater than the value of the second discharge current. 如請求項17所述之功率模組,其中當該氮化鎵功率開關之該閘極端接收該第一充電電流時,該氮化鎵功率開關以第一導通速度導通,當該氮化鎵功率開關之該閘極端接收該第二充電電流時,該氮化鎵功率開關以第二導通速度導通,其中,當該第一充電電流之值大於該第二充電電流之值時,該第一導通速度大於該第二導通速度。 The power module of claim 17, wherein when the gate terminal of the GaN power switch receives the first charging current, the GaN power switch is turned on at a first conduction speed when the GaN power When the gate terminal of the switch receives the second charging current, the GaN power switch is turned on at a second conduction speed, wherein when the value of the first charging current is greater than the value of the second charging current, the first conducting The speed is greater than the second conduction speed. 如請求項17所述之功率模組,其中當該氮化鎵功率開關之該閘極端接收該第一放電電流時,該氮化鎵功率開關以第一關斷速度關斷,當該氮化鎵功率開關之該閘極端接收該第二放電電流時,該氮化鎵功率開關以第二關斷速度關斷,其中,當該第一放電電流之值大於該第二放電電流之值時,該第一關斷速度大於該第二關斷速度。 The power module of claim 17, wherein when the gate terminal of the GaN power switch receives the first discharge current, the GaN power switch is turned off at a first off speed when the nitriding When the gate terminal of the gallium power switch receives the second discharge current, the GaN power switch is turned off at a second turn-off speed, wherein when the value of the first discharge current is greater than the value of the second discharge current, The first turn-off speed is greater than the second turn-off speed. 一種功率模組之控制方法,包含: 調整一外接電阻之電阻值;由一驅動電路內之一電流控制單元,根據該外接電阻之電阻值調整該驅動電路對一氮化鎵功率開關之閘極端之充電電流或放電電流;以及透過調節該充電電流或該放電電流控制該氮化鎵功率開關之導通或關斷之速度,其中當該充電電流或該放電電流增大時,該氮化鎵功率開關之導通速度或關斷速度加快,當該放電電流或該放電電流減小時,該氮化鎵功率開關之導通或關斷速度減慢。 A control method for a power module, comprising: Adjusting the resistance value of an external resistor; adjusting a charging current or a discharging current of the driving circuit to a gate terminal of a gallium nitride power switch according to a resistance current value of the external resistor; and adjusting The charging current or the discharging current controls a speed at which the GaN power switch is turned on or off, wherein when the charging current or the discharging current increases, an on-speed or a shutdown speed of the GaN power switch is increased, When the discharge current or the discharge current decreases, the on or off speed of the GaN power switch is slowed down. 如請求項20所述之控制方法,其中由該電流控制單元調節該驅動電路對該氮化鎵功率開關之該閘極端之該充電電流或該放電電流之步驟包含:透過一第一驅動電壓調節器根據該外接電阻之電阻值調節一控制電壓;透過一驅動器根據該控制電壓與一輸入信號輸出一驅動電壓;以及透過一電流調節器根據該驅動電壓輸出該充電電流或該放電電流至該氮化鎵功率開關之該閘極端。 The control method of claim 20, wherein the step of adjusting, by the current control unit, the charging current or the discharging current of the driving circuit to the gate terminal of the GaN power switch comprises: adjusting by a first driving voltage Adjusting a control voltage according to the resistance value of the external resistor; outputting a driving voltage according to the control voltage and an input signal through a driver; and outputting the charging current or the discharging current to the nitrogen according to the driving voltage through a current regulator The gate terminal of the gallium power switch. 如請求項20所述之控制方法,其中由該電流控制單元調節該驅動電路對該氮化鎵功率開關之該閘極端之該充電電流或該放電電流之步驟包含:透過一第二驅動電壓調節器根據該外接電阻之電阻值將一供電電壓轉換為一調節供電電壓; 透過一驅動器根據一輸入信號輸出一驅動電壓;以及透過一電流調節器根據該驅動電壓與該調節供電電壓輸出該充電電流或該放電電流至該氮化鎵功率開關之該閘極端。 The control method of claim 20, wherein the step of adjusting, by the current control unit, the charging current or the discharging current of the driving circuit to the gate terminal of the GaN power switch comprises: adjusting by a second driving voltage Converting a supply voltage into a regulated supply voltage according to a resistance value of the external resistor; And outputting a driving voltage according to an input signal through a driver; and outputting the charging current or the discharging current to the gate terminal of the GaN power switch according to the driving voltage and the adjusting power supply voltage through a current regulator.
TW105142344A 2016-11-11 2016-12-21 Power module and control method thereof TWI596898B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??201610993854.3 2016-11-11
CN201610993854.3A CN108075755B (en) 2016-11-11 2016-11-11 Power module and control method thereof

Publications (2)

Publication Number Publication Date
TWI596898B true TWI596898B (en) 2017-08-21
TW201818659A TW201818659A (en) 2018-05-16

Family

ID=60189390

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105142344A TWI596898B (en) 2016-11-11 2016-12-21 Power module and control method thereof

Country Status (2)

Country Link
CN (1) CN108075755B (en)
TW (1) TWI596898B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817112A (en) * 2015-12-02 2017-06-09 西门子公司 The overvoltage crowbar and over-voltage protection method of power semiconductor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113037059B (en) * 2019-12-24 2022-11-08 广东美的白色家电技术创新中心有限公司 Intelligent power module and drive control method
WO2021174524A1 (en) * 2020-03-06 2021-09-10 香港科技大学深圳研究院 Overcurrent protection circuit of gallium nitride power device and method for improving response speed
CN117294294B (en) * 2023-11-22 2024-03-19 深圳市弗镭斯激光技术有限公司 Electro-optical Q switch driving circuit based on gallium nitride MOS tube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225326B2 (en) * 2011-05-25 2015-12-29 Fuji Electric Co., Ltd. Voltage controlled switching element gate drive circuit
US9413352B2 (en) * 2014-11-04 2016-08-09 Infineon Technologies Austria Ag Adjustable internal gate resistor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201571032U (en) * 2009-09-18 2010-09-01 德国新创系统股份有限公司 Drive board for power semiconductor element
US8766671B2 (en) * 2010-11-22 2014-07-01 Denso Corporation Load driving apparatus
GB2505135B (en) * 2011-06-09 2017-12-20 Mitsubishi Electric Corp Gate drive circuit
JP5881477B2 (en) * 2012-03-06 2016-03-09 三菱電機株式会社 Switching element drive circuit
CN103684378B (en) * 2012-08-29 2017-05-24 英飞凌科技奥地利有限公司 Circuit for driving a transistor
US9094005B2 (en) * 2013-07-30 2015-07-28 Denso Corporation Semiconductor element module and gate drive circuit
JP5931116B2 (en) * 2014-04-28 2016-06-08 三菱電機株式会社 Gate drive circuit
CN104901668B (en) * 2015-05-14 2017-11-28 湖南大学 A kind of static drive device and method of silicon carbide bipolar junction transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225326B2 (en) * 2011-05-25 2015-12-29 Fuji Electric Co., Ltd. Voltage controlled switching element gate drive circuit
US9413352B2 (en) * 2014-11-04 2016-08-09 Infineon Technologies Austria Ag Adjustable internal gate resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817112A (en) * 2015-12-02 2017-06-09 西门子公司 The overvoltage crowbar and over-voltage protection method of power semiconductor

Also Published As

Publication number Publication date
CN108075755B (en) 2021-07-06
TW201818659A (en) 2018-05-16
CN108075755A (en) 2018-05-25

Similar Documents

Publication Publication Date Title
TWI596898B (en) Power module and control method thereof
CN105446923B (en) Differential driver with pull-up booster and pull-down booster
JP2010051165A (en) Gate drive circuit of semiconductor apparatus and power conversion apparatus using the same
CN101888178B (en) Charge pump circuit used for reducing current mismatch at extra-low voltage in phase-locked loop
JP6626267B2 (en) Semiconductor device
CN106027028B (en) Electronic drive circuit and method
CN211377999U (en) High-reliability GaN power tube rapid gate drive circuit
JP2009201096A (en) Switch circuit
WO2022227077A1 (en) Driver circuit and driving system
JP2018078721A (en) Gate drive circuit and switching power supply device
KR102028388B1 (en) Gate driving circuit and power switch control device comprising the same
JP2006128393A (en) Light emitting diode driving device and optical transmission device equipped therewith
TW201337500A (en) The current limit circuit apparatus
JP2024014878A (en) Semiconductor device
JP6706875B2 (en) Power module and semiconductor device
CN109818257B (en) CMOS (complementary Metal oxide semiconductor) process laser driving circuit
KR102322658B1 (en) Level shift circuit
US11942942B1 (en) High-speed level-shifter for power-conversion applications
KR102026929B1 (en) Gate driving circuit for power switch
CN110518903B (en) Level shift circuit
WO2018152719A1 (en) Square wave generating method and square wave generating circuit
US9525414B2 (en) Gate drive circuit providing constant driving current
TWI707528B (en) Switch control circuit
TWI476559B (en) Over current protection circuit and operation method thereof
KR20150125569A (en) Pulse generator and driving circuit comprising the same