TWI582328B - 用於提供一氣體混合物的方法及設備 - Google Patents

用於提供一氣體混合物的方法及設備 Download PDF

Info

Publication number
TWI582328B
TWI582328B TW102118095A TW102118095A TWI582328B TW I582328 B TWI582328 B TW I582328B TW 102118095 A TW102118095 A TW 102118095A TW 102118095 A TW102118095 A TW 102118095A TW I582328 B TWI582328 B TW I582328B
Authority
TW
Taiwan
Prior art keywords
gas
molecular weight
pressure
crystal oscillator
quartz crystal
Prior art date
Application number
TW102118095A
Other languages
English (en)
Other versions
TW201405045A (zh
Inventor
奈爾 亞力山大 道尼
Original Assignee
氣體產品及化學品股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 氣體產品及化學品股份公司 filed Critical 氣體產品及化學品股份公司
Publication of TW201405045A publication Critical patent/TW201405045A/zh
Application granted granted Critical
Publication of TWI582328B publication Critical patent/TWI582328B/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/135Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by sensing at least one property of the mixture
    • G05D11/137Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by sensing at least one property of the mixture by sensing the density of the mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/10Mixing gases with gases
    • B01F23/19Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means
    • B01F23/191Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means characterised by the construction of the controlling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/213Measuring of the properties of the mixtures, e.g. temperature, density or colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/2134Density or solids or particle number
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/135Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by sensing at least one property of the mixture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0329Mixing of plural fluids of diverse characteristics or conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0329Mixing of plural fluids of diverse characteristics or conditions
    • Y10T137/0352Controlled by pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2499Mixture condition maintaining or sensing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2499Mixture condition maintaining or sensing
    • Y10T137/2504By specific gravity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Fluid Pressure (AREA)
  • Accessories For Mixers (AREA)
  • Measuring Volume Flow (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

用於提供一氣體混合物的方法及設備
本發明關於一種用於提供一氣體混合物的方法及設備。更具體而言,本發明關於一種用於提供一氣體混合物的方法及設備,其使用壓電晶體振盪器(piezoelectric crystal oscillator)以決定及維持在混合物中的氣體的比例。
在此所揭述的方法及設備可應用在例如流體可能存在於相對高壓(例如,約10bar或更高)的系統,例如從高壓鋼瓶來供應流體、或利用高壓流體的製造工廠。本發明特別是關於「潔淨」氣體,亦即具有少量或無雜質或污染物例如水蒸氣或粉塵的氣體。
本發明是特別適用於永久氣體(permanent gas)。永久氣體是無法僅藉由壓力來加以液化的氣體,例如可在壓力為高達450bar g(bar g是高於大氣壓力的壓力的量度(單位為bar))的鋼瓶中來供應,其實例為氬氣及氮氣。然而,並不受限於此,且術語「氣體」是可視為涵蓋較廣泛範圍的氣體,例如永久氣體及液化氣體的蒸氣兩者。
在壓縮氣體鋼瓶中,液化氣體的蒸氣是存在於液體的上方。當彼等被壓縮以充填入鋼瓶而在壓力下液化的氣體並非為永久氣體,而其更準確地敘述為在壓力下的液化氣體、或液化氣體的蒸氣。關於一實例,一氧化二氮(笑氣:nitrous oxide)是在鋼瓶中以液態來供應,具有在15℃為44.4bar g的平衡蒸氣壓。由於此等蒸氣可藉由在周圍條件的壓力或溫度下而加以液化,因此彼等並非為永久或真實氣體(true gas)。
壓縮氣體鋼瓶是一種設計用於容納在高壓下,亦即在壓力顯著地大於大氣壓力的氣體的壓力容器(pressure vessel)。壓縮氣體鋼瓶是使用於廣泛範圍的市場,從低成本的一般工業市場、醫療市場到較高成本的應用,例如使用高純度腐蝕性、毒性或自燃性(pyrophoric)特用氣體的電子設備製造。一般而言,加壓氣體容器包含由鋼、鋁或複合材料所構成且能儲存壓縮、液化、或溶解的氣體,具 有最大充填壓力對於大多數氣體為高達450bar g,且對於例如氫氣及氦氣等氣體則為高達900bar g。
在許多情況,期望且有時候為重要的關鍵因素是需要知道在鋼瓶內部、或在鋼瓶的下游處,例如在焊接製程的管路中的氣體類型。如此情況的實例是當在進行吹淨(purging)時需要知道者。
分子量一般是使用質譜儀加以測量。如此的配置是測量氣體的質荷比(mass to charge ratio)而直接測定分子量。泛用的配置是一種介質輔助雷射脫附/游離源(matrix-assisted laser desorption/ionization source)與飛行式質譜儀(time-of-flight mass analyzer)的組合(亦即,習知的MALDI-TOF(介質輔助雷射脫附游離飛行式質譜儀:Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry))。然而,如此的配置是體積龐大、昂貴且不適合於許多可能與可攜帶性及成本有關聯性的應用。
另一可行的類型可用於測量分子量的量計(meter)是一種振動式氣體密度計,其係鈴木(Suzuki)等人在「橫河技報(Yokogawa Technical Report)」第29期(2000年)中所展示及揭述的「GD系列振動式氣體密度計(Vibratory Gas Density Meters)」。如此的配置包含一薄壁金屬鋼 瓶,且配置成可使得氣體能流入及從鋼瓶流出。兩對壓電元件是位於鋼瓶上,一對是驅動元件及一對是偵測元件。氣體密度是為補償由於溫度所造成的變異而從測量兩種不同的共振頻率所獲得。所使用的共振頻率是非常低,且為數百Hz的等級。
上述配置是複雜、相對地昂貴且非常容易受到振動的影響而損壞。此是因為所使用的共振頻率是與由於外部振動所產生的頻率類似。除此以外,需要複雜的激勵(excitation)及偵測配置以補償溫度的影響。
除此以外,在此技藝中需要能提供經控制的氣體混合物的流量(flow)。氣體流混合器典型為利用兩個質量流量計以提供經計量的各氣體的流量。然而,雖然各氣體的質量流量為已知,目前尚無可靠的方法可用於測量所生產的氣體的組成、或全部合併的流率。因此,在此技藝中存在的技術性難題是使用先前已知的配置無法提供準確計量所欲的兩種或以上的氣體混合物的流率或壓力。
根據本發明的第一形態,提供一種用於提供一氣體混合物的方法。該方法是以相對比率提供該氣體混合物,該混合物包含至少第一氣體及與第一氣體不同的第二氣體, 且該方法包括下列步驟:a)從第一氣體源以第一流率供應第一氣體;b)從第二氣體源以第二流率供應第二氣體;c)進行混合第一與第二氣體以形成混合氣體;d)進行測量與混合氣體相接觸的高頻平面壓電晶體振盪器(high-frequency planar piezoelectric crystal oscillator)的共振頻率;e)進行測量大氣壓力;f)從該共振頻率、及該大氣壓力測量,進行決定混合氣體的平均分子量;以及g)因應該所測得平均分子量,進行自動控制第一與第二流率中之一者,以控制在該混合氣體中的第一與第二氣體的相對比率。
在一具體實例中,該混合氣體是在約大氣壓力下供應至出口。
在一具體實例中,該步驟d)包括下列步驟:h)利用驅動電路(drive circuit)驅動該壓電振盪器(piezoelectric oscillator),使得該壓電晶體振盪器在單一共振頻率進行共振。
在一具體實例中,該步驟e)包括下列步驟:i)從該所測得共振頻率,進行決定混合氣體的密度;以及j)從氣體的密度、大氣壓力測量、及經決定或預定的溫度,進行決定混合氣體的平均分子量。
在一具體實例中,該第一閥是配置在該第一氣體源的下游,用於調節該第一流率:第二閥是配置在該第二氣體源的下游,用於調節該第二流率;且步驟g)包括進行控制該第一及第二閥中的一個。
在一具體實例中,該第一及第二閥中的一個是可手動操作。
在一具體實例中,該步驟e)包括下列步驟:k)進行測量與大氣相接觸的高頻平面壓電晶體振盪器的共振頻率;l)從該共振頻率,進行決定大氣密度(atmospheric density);以及m)從已知的空氣組成、及所測得大氣密度,進行決定大氣壓力。
根據本發明的第二形態,提供一種氣體混合器配置。該氣體混合器配置包含:第一氣體源,用於供應第一氣體;第二氣體源,用於供應與該第一氣體不同的第二氣體;第一閥,用於調節第一氣體的流量;第二閥,用於調節第二氣體的流量;混合器,位於第一及第二閥的下游,且配置成在使用時可混合第一與第二氣體,以提供一混合氣體;量計,配置成可測量混合氣體的平均分子量,且其具有與混合氣體相接觸的高頻平面壓電晶體振盪器、及可操作以決定大氣壓力的感測器;以及控制器,其因應所測得該混合氣體的平均分子量而可操作以控制該第一及第二 閥中的至少一個,以控制在該混合氣體中的第一與第二氣體的相對比率。
在一具體實例中,該氣體混合器進一步包含該混合氣體在約大氣壓力下的出口。
在一具體實例中,該量計進一步包含驅動電路,用於驅動壓電振盪器,使得該壓電晶體振盪器在單一共振頻率進行共振。
在一具體實例中,該量計進一步包含溫度感測器,且進一步可操作而從該所測得共振頻率以決定混合氣體的密度,且從混合氣體的密度、大氣壓力測量、及經決定的溫度進行決定混合氣體的平均分子量。
在一具體實例中,可操作以測量大氣壓力的該感測器包含:在大氣壓力下與空氣相接觸的高頻平面壓電晶體振盪器。
在一具體實例中,該第一及第二閥中的一個包含電磁閥(solenoid valve),其可藉由該控制器以電子方式操作。
在一具體實例中,該第一及第二閥中的一個是可手動操作。
在一具體實例中,第一與第二氣體源各自包含壓力調節裝置,且配置成可選擇性地控制從各氣體源的氣體的流量。在一具體實例中,該壓力調節裝置的一個或各自包含壓力調節器或閥。
在一具體實例中,該量計可因應所測得混合氣體的平均分子量而控制至少一壓力調節裝置。在一具體實例中,至少一壓力調節裝置是電子壓力調節裝置。在一具體實例中,至少一壓力調節裝置包含電磁閥。
在一具體實例中,該量計包含感測器組合,且其具有在使用時與該混合氣體相接觸的壓電晶體振盪器。該感測器組合是配置成:可驅動壓電晶體振盪器,使得壓電晶體振盪器在共振頻率進行共振;可測量該壓電晶體振盪器的共振頻率,以決定氣體的密度;以及可從氣體的密度、經決定或預定的氣體壓力、及經決定或預定的氣體的溫度,以決定氣體的分子量。
根據一具體實例,提供一種用於測量氣體的分子量的方法。該方法是使用與氣體相接觸的高頻平面壓電晶體振盪器、及在大氣壓力下與空氣相接觸的又一高頻平面壓電晶體振盪器。該方法包括下列步驟:a)利用該壓電晶體振盪器,以測量氣體的密度,亦即,藉由利用驅動電路驅 動該壓電振盪器,使得該壓電晶體振盪器在單一共振頻率進行共振,及測量該壓電晶體的該單一共振頻率,以決定氣體的密度;b)利用該又一壓電晶體振盪器,以測量空氣的密度,亦即,藉由利用又一驅動電路驅動又一壓電振盪器,使得又一壓電晶體振盪器在單一共振頻率進行共振,及測量該又一壓電晶體的該單一共振頻率,結合已知的空氣組成,以決定大氣壓力(air pressure);以及c)從氣體的密度、大氣壓力、及經決定或預定的氣體的溫度,進行決定氣體的分子量。
藉由提供如此的方法,則氣體的分子量(或在氣體混合物的情況時的平均分子量)可容易地藉由使用穩固且相對廉價的壓電晶體振盪器例如石英晶體振盪器加以測定。如此的振盪器作用包括作為:一激發源(excitation source)(藉由因應經驅動電路所驅動而進行振盪)、及一偵測器(藉由具有視振盪器所在位置的環境而定的單一共振頻率)。
平面晶體振盪器是小型化且穩固,因此相對地較不會受到環境干擾的影響。此外,因為振盪器的振盪頻率為高(kHz的等級),該振盪器是相對地較不會受到局部振動(localised vibration)(其傾向於具有Hz的等級的頻率)的影響。此是與習知的分子量偵測配置極不相同。
在一具體實例中,該方法進一步包括以溫度感測器進行測量氣體的溫度。在一具體實例中,該溫度感測器包含熱敏電阻(thermistor)、或溫度相依性電阻(temperature-dependent resistor)。
在一具體實例中,該石英晶體包含至少一叉齒(tine)。在一配置例中,該壓電晶體振盪器包含至少兩個平面叉齒。
在一具體實例中,該石英晶體是AT切割(AT cut)或SC切割(SC cut)。
在一變異例中,該石英晶體的表面是直接暴露於氣體。
在一具體實例中,該壓電晶體振盪器具有32kHz或以上的共振頻率。
在一具體實例中,該感測器組合包含電源。在一配置例中,該電源包含鋰離子電池。
在一具體實例中,該感測器組合包含處理器(processor)。
根據一具體實例,提供一種用於測量氣體的分子量的量計。該量計包含:一外罩(housing),其具有入口及內部用於接收將加以測量的該氣體;及一感測器組合,其包含位於該外罩內的高頻平面壓電晶體振盪器,使得在使用時壓電晶體振盪器是與該氣體相接觸。該感測器組合是配置成:可驅動壓電晶體振盪器,使得該壓電晶體振盪器在單一共振頻率進行共振;可測量該壓電晶體振盪器的該單一共振頻率,以決定氣體的密度;以及可從氣體的密度、經決定或預定的氣體壓力、及經決定或預定的氣體的溫度,以決定氣體的分子量。
藉由提供如此的配置,則氣體的分子量(或在氣體混合物的情況時的平均分子量)可容易地藉由使用穩固且相對廉價的壓電晶體振盪器例如石英晶體振盪器加以測定。如此的振盪器作用包括作為:一激發源(藉由因應經驅動電路所驅動而進行振盪)、及一偵測器(藉由具有視振盪器所在位置的環境而定的單一共振頻率)。
平面晶體振盪器是小型化且穩固,因此相對地較不會受到環境干擾的影響。此外,因為振盪器的振盪頻率為高(kHz的等級),該振盪器是相對地較不會受到局部振動(其傾向於具有Hz的等級的頻率)的影響。此是與習知的分子量偵測配置極不相同。
在一具體實例中,該量計進一步包含:一個或以上的驅動電路、處理器及電源。
在一具體實例中,該感測器組合包含驅動電路,其具有配置成從共射極放大器(common emitter amplifier)的反饋架構(feedback configuration)的達靈頓對(Darlington pair)。
在一具體實例中,該量計進一步包含壓力感測器,用於測量氣體的壓力。
在一具體實例中,該壓力感測器是電子壓力感測器。在一具體實例中,電子壓力感測器包含壓致電阻隔膜感測器(piezo-resistive diaphragm sensor)。
在一具體實例中,該量計是位於固定式壓力調節器的下游,且氣體的壓力具有一基於該固定式壓力調節器的輸出的預定值。
在一具體實例中,該量計進一步包含:一該入口的上游的限制孔口(restricting orifice)、及一該入口的下游至大氣的出口,其中該氣體的預定壓力是大氣壓力。
在一具體實例中,該方法進一步包括以溫度感測器進行測量氣體的溫度。在一具體實例中,該溫度感測器包含熱敏電阻、或溫度相依性電阻。
在一具體實例中,該石英晶體包含至少一叉齒。在一變異例中,該石英晶體包含一對平面叉齒。
在一具體實例中,該石英晶體是AT切割或SC切割。
在一變異例中,該石英晶體的表面是直接暴露於氣體。
在一具體實例中,該壓電晶體振盪器具有32kHz或以上的共振頻率。
在一具體實例中,該量計包含一設置於入口中的濾網。在一具體實例中,該濾網具有孔徑為在5至10μm的範圍。
在一具體實例中,該量計包含一設置於外罩內的加熱器元件。在一具體實例中,該加熱器元件是位於鄰近壓電晶體振盪器。在又一配置例中,該加熱器元件是設置成與壓電晶體振盪器相接觸。
在一具體實例中,該感測器組合包含電源。在一配置例中,該電源包含鋰離子電池。
在一具體實例中,該感測器組合包含處理器。
在一具體實例中,該量計包含顯示器。
在一具體實例中,該量計包含天線連接到感測器組合,且配置成可以無線傳輸來自該量計的數據。在一具體實例中,該量計是可操作以無線式傳輸數據至遠端顯示器單元。
根據本發明的第三形態,其配備一種可藉由可程式規劃處理設備來執行的電腦程式產品,具有一種或以上用於實施第一形態的步驟的軟體部份。
根據本發明的第四形態,其配備一種可使用於電腦的儲存媒體,具有根據第四形態而儲存於其中的電腦程式產品。
1 10‧‧‧gas cylinder assembly 氣體鋼瓶組合
2 100‧‧‧gas cylinder 氣體鋼瓶
3 102‧‧‧gas cylinder body 氣體鋼瓶體
4 102a‧‧‧base 底座
5 104‧‧‧valve 閥
6 106‧‧‧aperture 開口
7 108‧‧‧housing 外罩
8 110‧‧‧outlet 出口
9 112‧‧‧valve body 閥體
10 114‧‧‧valve seat 閥座
11 116‧‧‧graspable handle 可握緊的手柄
12 150‧‧‧regulator 調節器
13 152‧‧‧inlet 入口
14 154‧‧‧outlet 出口
15 156‧‧‧inlet pipe 入口管
16 158‧‧‧outlet pipe 出口管
17 160‧‧‧coupling 聯結器
18 162‧‧‧valve region 閥區
19 164‧‧‧poppet valve 提動閥
20 166‧‧‧valve seat 閥座
21 168‧‧‧diaphragm 隔膜
22 170‧‧‧aperture 開口
23 172‧‧‧spring 彈簧
24 174‧‧‧shaft 軸
25 200‧‧‧molecular weight meter 分子量計
26 202‧‧‧housing 外罩
27 204‧‧‧sensor assembly 感測器組合
28 206‧‧‧interior 內部
29 208‧‧‧short feed pipe;short pipe 短進料管;短管
30 210‧‧‧quartz crystal oscillator;quartz crystal resonator;crystal 石英晶體振盪器;石英晶體共振器;晶體
31 210a‧‧‧tines 叉齒
32 212‧‧‧drive circuit 驅動電路
33 214‧‧‧temperature sensor 溫度感測器
34 216‧‧‧battery 電池
35 218‧‧‧Darlington pair Common Emitter amplifier;Darlington pair 達靈頓對共射極放大器;達靈頓對
36 220‧‧‧single transistor(T1) Common Emitter amplifier; Common Emitter amplifier 單電晶體(T1)共射極放大器;共射極放大器
37 222‧‧‧buffer amplifier 緩衝放大器
38 224‧‧‧capacitor 電容器
39 230‧‧‧processor 處理器
40 240‧‧‧drive circuit 驅動電路
41 242‧‧‧common drain Metal Oxide Semiconductor Field Effect Transistor(MOSFET)amplifier;common drain MOSFET amplifier;MOSFET 共漏極金屬氧化物半導體場效電晶體(MOSFET)放大器;共漏極MOSFET放大器;MOSFET
42 244‧‧‧single transistor(Q2,Q3) Common Emitter Amplifiers;Common Emitter Amplifiers 單電晶體(Q2,Q3)共射極放大器;共射極放大器
43 246‧‧‧capacitor 電容器
44 248‧‧‧resistor 電阻
45 249‧‧‧battery 電池
46 250‧‧‧regulator; variable pressure regulator 調節器;可變壓力調節器
47 252‧‧‧graspable handle 可握緊的手柄
48 260‧‧‧drive circuit 驅動電路
49 300‧‧‧molecular weight meter 分子量計
50 302‧‧‧pressure sensor 壓力感測器
51 400‧‧‧molecular weight meter 分子量計
52 402‧‧‧conduit 導管
53 404‧‧‧restricting orifice 限制孔口
54 406‧‧‧distal end 遠端
55 500‧‧‧molecular weight meter 分子量計
56 504‧‧‧second sensor assembly 第二感測器組合
57 510‧‧‧quartz crystal oscillator 石英晶體振盪器
58 512‧‧‧second drive circuit 第二驅動電路
59 516‧‧‧second battery 第二電池
60 518‧‧‧housing 外罩
61 550‧‧‧Step 550:Initialise 步驟550:初始化
62 552‧‧‧Step 552:Drive crystal oscillator 步驟552:驅動晶體振盪器
63 554‧‧‧Step 554:Measure resonant frequency 步驟554:測量共振頻率
64 556‧‧‧Step 556:Determine temperature 步驟556:決定溫度
65 558‧‧‧Step 558:Determine gas pressure 步驟558:決定氣體壓力
66 560‧‧‧Step 560:Determine molecular weight 步驟560:決定分子量
67 562‧‧‧Step 562:Communicate and store results 步驟562:通訊及儲存結果
68 564‧‧‧Step 564:Power down sensor assembly 步驟564:切斷感測器組合電源
69 600‧‧‧gas mixer 氣體混合器
70 602‧‧‧first gas source 第一氣體源
71 604‧‧‧second gas source 第二氣體源
72 606‧‧‧first supply lines 第一供應管線
73 608‧‧‧second supply lines 第二供應管線
74 610‧‧‧non-return valve 止回閥
75 612‧‧‧non-return valve 止回閥
76 614‧‧‧main valve 主閥
77 616‧‧‧solenoid valve 電磁閥
78 618‧‧‧mixer unit 混合器單元
79 620‧‧‧third supply line 第三供應管線
80 622‧‧‧output 輸出
81 652‧‧‧solenoid drive; electronic solenoid drive 螺線管驅動裝置;電子螺線管驅動裝置
82 700‧‧‧gas mixer 氣體混合器
83 702‧‧‧first gas source 第一氣體源
84 704‧‧‧second gas source 第二氣體源
85 706‧‧‧first supply line 第一供應管線
86 708‧‧‧second supply line 第二供應管線
87 710‧‧‧non-return valve 止回閥
88 712‧‧‧non-return valve 止回閥
89 714‧‧‧first solenoid valve; solenoid valve 第一電磁閥;電磁閥
90 716‧‧‧second solenoid valve; solenoid valve 第二電磁閥;電磁閥
91 718‧‧‧mixer unit 混合器單元
92 720‧‧‧third supply line; supply pipe;supply line 第三供應管線;供應管;供應管線
93 722‧‧‧outlet 出口
94 750‧‧‧molecular weight meter 分子量計
95 752‧‧‧first sensor assembly 第一感測器組合
96 754‧‧‧second sensor assembly 第二感測器組合
97 756‧‧‧first quartz crystal oscillator 第一石英晶體振盪器
98 758‧‧‧second quartz crystal oscillator 第二石英晶體振盪器
99 760‧‧‧temperature sensor 溫度感測器
100 762‧‧‧first electronic solenoid drive; solenoid drive 第一電子螺線管驅動裝置;螺線管驅動裝置
101 764‧‧‧second electronic solenoid drive;solenoid drive 第二電子螺線管驅動裝置;螺線管驅動裝置
102 800‧‧‧gas mixer 氣體混合器
103 850‧‧‧molecular weight meter 分子量計
104 852‧‧‧third sensor assembly 第三感測器組合
105 854‧‧‧third quartz crystal oscillator 第三石英晶體振盪器
106 900‧‧‧gas mixer 氣體混合器
107 950‧‧‧molecular weight meter 分子量計
108 952‧‧‧mass flow assembly 質量流量組合
109 954‧‧‧body 本體
110 956‧‧‧sensor assembly 感測器組合
111 958‧‧‧conduit 導管
112 960‧‧‧housing 外罩
113 962‧‧‧orifice plate 孔口板
114 964‧‧‧orifice; restricted orifice;flow restriction orifice 孔口;限制孔口;流量限制孔口
115 966‧‧‧upstream; upstream portion 上游;上游部份
116 968‧‧‧downstream portion; downstream section 下游部份;下游區段
117 970‧‧‧sensor assembly 感測器組合
118 972‧‧‧quartz crystal oscillator 石英晶體振盪器
119 1000‧‧‧gas mixer 氣體混合器
120 1050‧‧‧molecular weight meter 分子量計
121 1052‧‧‧mass flow assembly 質量流量組合
122 1100‧‧‧sensor assembly 感測器組合
123 1102‧‧‧first quartz crystal oscillator 第一石英晶體振盪器
124 1104‧‧‧second quartz crystal oscillator 第二石英晶體振盪器
125 1106‧‧‧housing 外罩
126 1108‧‧‧drive circuit 驅動電路
127 1110‧‧‧drive circuit 驅動電路
128 1114‧‧‧electronic mixer circuit 電子混頻電路
129 1200‧‧‧gas cylinder assembly 氣體鋼瓶組合
130 1202‧‧‧regulator 調節器
131 1204‧‧‧molecular weight meter 分子量計
132 1206‧‧‧antenna 天線
133 1208‧‧‧connection pipe 連接管
134 1210‧‧‧quick connect connection; connector 快速連接的接頭;接頭
135 1212‧‧‧complementary quick connect connector 互補性快速連接的接頭
136 1250‧‧‧quick connect unit 快速連接單元
137 1252‧‧‧data unit 數據單元
138 1254‧‧‧display 顯示器
139 1256‧‧‧antenna 天線
140 A (Fig.20)‧‧‧cross-sectional area of orifice 孔口截面積
141 C1,C2,C3,C4 (Fig.7)‧‧‧capacitor 電容器
142 C1,C2 (Fig.8)‧‧‧capacitor 電容器
143 D1,D2 (Fig.6)‧‧‧single transistor 單電晶體
144 MW (Fig.1)‧‧‧molecular weight meter 分子量計
145 Q2,Q3 (Fig.7)‧‧‧single transistor 單電晶體
146 R1,R2,R3,R4,R5,R6,R7,R8 (Fig.7)‧‧‧resistor 電阻
147 R1,R2,RS (Fig.8)‧‧‧resistor 電阻
148 T (Fig.8)‧‧‧inverter 反相器
149 T1,T2 (Fig.6)‧‧‧single transistor;NPN emitter follower transistor 單電晶體;NPN射極隨耦器電晶體
150 V (Fig.1)‧‧‧internal volume 內部容積
151 ρ1 (Fig.20,21)‧‧‧upstream density 上游密度
152 ρ2 (Fig.20,21)‧‧‧downstream density 下游密度
本發明的具體實例將參照附加的圖式詳細地加以說明如下:第1圖是一氣體鋼瓶及調節器組合的示意圖;第2圖是展示一調節器組合及分子量計的第一具體實例的示意圖;第3圖是展示一調節器組合及分子量計的第二具體實例的示意圖;第4圖是展示一調節器組合及分子量計的第三具體實例的示意圖;第5圖是展示分子量計的第四具體實例的示意圖;第6圖是使用於第一至第四具體實例中的任一者的驅動電路的示意圖;第7圖是展示另一可行的驅動電路,使用於第一至第四具體實例中的任一者的示意圖;第8圖是展示又一可行的驅動電路,使用於第一至第四具體實例中的任一者的示意圖; 第9圖是展示處理器的輸入及輸出參數,使用於第一至第四具體實例中的任一者的示意圖;第10圖是展示關於數種不同的氣體的石英晶體頻率(kHz)(在Y-軸)作為密度(kg/m3)的函數圖;第11圖是展示關於氬氣、氧氣及一種含有氬氣:二氧化碳:氧氣的混合物,在壓力高達300bar g下的氣體密度(kg/m3)(在Y-軸)作為壓力(bar g)(在X-軸)的函數圖;第12圖是展示關於氬氣、氧氣及一種含有氬氣:二氧化碳:氧氣的混合物,在壓力高達100bar g下的氣體密度(kg/m3)(在Y-軸)作為壓力(bar g)(在X-軸)的函數圖;第13圖是展示當將氣體加以吹淨時,頻率變化(Hz)(在Y-軸)作為時間(sec)(在X-軸)的函數圖;第14圖是相對應於第13圖的圖,展示所計算得分子量的變化(在Y-軸)作為時間(sec)(在X-軸)的函數圖; 第15圖是以圖解說明一種根據所揭述的具體實例的方法的流程圖;第16圖是展示本發明的一具體實例的氣體混合器配置的示意圖;第17圖是展示本發明的又一具體實例的氣體混合器配置的示意圖;第18圖是展示本發明的又一具體實例的氣體混合器配置的示意圖;第19圖是展示本發明的又一具體實例的氣體混合器配置的示意圖;第20圖是展示一質量流量組合,使用於第19及23圖的具體實例;第21圖是展示另一可行的質量流量組合,使用於第19及23圖的具體實例;第22圖是展示晶體頻率作為質量流率的函數圖; 第23圖是展示本發明的又一具體實例的氣體混合器配置的示意圖;第24圖是展示不同的晶體類型的頻率行為圖;第25圖是展示具有兩個石英晶體的另一可行的感測器組合的示意圖;以及第26圖是展示使用遠端電子數據單元的另一可行的配置。
〔本發明的最佳實施方式〕
第1圖是展示可使用於本發明的情況的示意圖,其配備氣體鋼瓶100、調節器150及分子量計200。
氣體鋼瓶100具有氣體鋼瓶體102及閥104。該氣體鋼瓶體102包含一般為具有平坦底座102a的圓筒形壓力容器,且配置成可使得氣體鋼瓶組合10能未經支撐而站立於平坦表面上。
氣體鋼瓶體102是由鋼、鋁及/或複合材料所形成,且使其適配且配置成可承受高達大約900bar g的內部壓 力。開口(aperture)106是位於氣體鋼瓶體102在底座102a的對面側的近端(proximal end),且具有螺紋(未展示)以使其適配接到閥104。
氣體鋼瓶100定義一具有內部容積V的壓力容器。任何適當的流體皆可容納在氣體鋼瓶100內。然而,本具體實例是關於不含雜質例如粉塵及/或水份的純化永久氣體(但是並不受限於此)。此等氣體的非限制性實例可為:氧氣、氮氣、氬氣、氦氣、氫氣、甲烷、三氟化氮、一氧化碳、氪氣或氖氣。
閥104包含:外罩108、出口(outlet)110、閥體112及閥座114。該外罩108包含互補螺紋(complementary screw thread),用於銜接氣體鋼瓶體102的開口106。該出口110是使其適配且配置成可使得氣體鋼瓶100連接到在氣體鋼瓶組合中的其他構件,例如軟管、管線或其他壓力閥或調節器。該閥104可視需要而包含VIPR(整合型減壓閥:Valve with Integrated Pressure Reduction)。在此情況,調節器150是可省略。
閥體112可藉由轉動可握緊的手柄116,以軸向調整朝向或遠離閥座114而可選擇性地開放或關閉出口110。換句話說,該閥體112朝向或遠離閥座114的移動,可選擇性地控制在氣體鋼瓶體102的內部與出口110間的輸送 通道的面積。此可連續不斷地輪流控制從氣體鋼瓶100的內部到外部環境的氣體的流量。
調節器150是設置於出口110的下游。該調節器150具有入口(inlet)152及出口154。該調節器150的入口152是連接到入口管156,其提供一在氣體鋼瓶100的出口110與調節器150間的連通路徑。該調節器150的入口152是配置成可接收從氣體鋼瓶100的出口110在高壓下的氣體。此可為任何適當的壓力;然而,一般而言,退出(exiting)出口110的氣體的壓力將為超過20bar,且更可能為在100至900bar的範圍。
出口154是連接到出口管158。聯結器(coupling)160是設置於出口管158的遠端(distal end),且使其適配而連接到需要氣體的其他管路或裝置(未展示)。
分子量計200是設置成與在出口154與聯結器160間的出口管158連通。該分子量計200是位於緊鄰調節器150的下游,且配置成可決定調節器150的下游的氣體的分子量(或氣體混合物的平均分子量)。
調節器150及分子量計200是更詳細地展示於第2圖。
在此具體實例中,該調節器150包含單隔膜調節器。然而,熟習此技藝者將可容易地瞭解可使用於本發明的變異例,例如雙隔膜調節器或其他配置。
調節器150包含與入口152及出口154連通的閥區162。該閥區162包含位於鄰近閥座166的提動閥(poppet valve)164。該提動閥164是連接到隔膜(diaphragm)168,其構成為可使得提動閥164的直移運動朝向及遠離閥座166而可分別關閉及開放在其間的開口170。該隔膜168是藉由位於軸174周圍(about)的彈簧172而可彈性回復地偏動(resiliently biased)。
調節器150是可操作以接收從在全鋼瓶壓力(例如,100bar)的出口110的氣體,且可將實質地恆定的固定低壓(例如,5bar)的氣體輸送至出口154。此是藉由反饋機制來達成,藉此開口170的下游的氣體的壓力是可操作以與彈簧172的偏動力(biasing force)成相反地作用在隔膜168上。在第2圖的具體實例中,調節器150是一固定式壓力調節器,且配置成可從出口154輸送在已知的固定壓力下的氣體。壓力是藉由彈簧172相關的偏動力而決定。
若在鄰近隔膜168區域的氣體的壓力超過特定的位準(level),則該隔膜168是可操作以向上移動(相關於第2 圖)。因此,提動閥164移動至更接近閥座166而縮減開口170的大小,因此可限制從入口152至出口154的氣體的流量。一般而言,彈簧172的阻力與氣體的壓力間的競爭力將導致隔膜在一平衡位置,因此可在出口154輸送恆定壓力的氣體。
分子量計200包含:外罩202及感測器組合204。該外罩202可包含任何適當的材料,例如鋼、鋁或複合材料。該外罩具有內部206,其經由一短進料管208而與出口管158的內部連通。因此,外罩202的內部206是在與出口管158的內部相同的壓力下。在使用時,該外罩202通常是加以密封且與外部大氣隔離。該分子量計200是配置成可測量在外罩202內氣體的分子量。另一可行的是分子量計200可測量在外罩202內氣體的均質混合物的平均分子量。
另一可行的是外罩202可配備成為出口管158的一部份。例如,該出口管158的一部份可加寬以收納感測器組合204。另一可行的是可僅部份感測器組合204為位於管(pipe)158內,而其餘部份則位於外部或與其隔開。
除此以外,外罩202可形成為調節器150的整合部。例如,感測器組合204是可整體位於調節器150的出口 154內。熟習此技藝者將可容易地瞭解屬於在本發明的範圍內的變異及其他可行方法。
感測器組合204包含:石英晶體振盪器210連接到驅動電路212、溫度感測器214及電池216。此等構件是設置於外罩202內。
驅動電路212及石英晶體振盪器210稍後將參照第6及7圖加以敘述。溫度感測器214包含熱敏電阻。可使用任何適當的熱敏電阻。並不需要從熱敏電阻獲得高準確度,例如0.5℃的準確度是適用於此具體實例。因此,可使用廉價且小的構件。
也可配備處理器230(稍後將參照第9圖加以展示及說明),其可分開或作為驅動電路212的一部份兩者之一皆可。
在此配置中,該石英晶體振盪器210在分子量計200的外罩202內是經常在等靜壓力(isostatic pressure)下,因此不會經歷壓力梯度(pressure gradient)。換句話說,源自在外部大氣與分子量計200的內部構件間的壓力差異的任何機械式應力是表示橫過(across)該外罩202。
然而,此並不需要為如此。例如,可僅石英晶體振盪器210及溫度感測器214為設置於外罩202內,而感測器組合204的其餘部份則位於其外部。
本案發明人已經發現:僅少數的感測器組合204的構件對於高壓是具有敏感性。特別是較大的構件例如電池是易受到高壓的影響。然而,已經發現鋰電池在可能涉及高壓的氣體鋼瓶100內的性能是特別優良。因此,電池216包含鋰電池。然而,熟習此技藝者將可容易地預期其他可行適當的電源。
感測器組合204的位置是整體在外罩202內,當構成調節器150時,則可提供額外的適應性。特別是相對脆弱性電子構件的位置是整體在外罩202的強固金屬或複合壁內,則可提供相當大的保護免於環境或意外的損壞。此對於例如在儲存區域或補給站(depots),具有調節器150的氣體鋼瓶100是位於與其他氣體鋼瓶100、重型機械或粗糙表面相毗鄰是特別重要。
除此以外,感測器組合204的內部位置(internal location)可保護此等構件免於環境條件例如鹽、水及其他污染物的損壞。例如,此將允許對於鹽及水的損壞具有高度敏感性的高阻抗(impedance)電路,可用作為感測器組合204的一部份。
感測器組合204的內部位置的優點,對於固態感測器裝置例如石英晶體振盪器210是獨特的。例如,傳統的壓力感測器例如波頓壓力計(Bourdon gauge)是無法以此方式設置。雖然晶體系感測器可完全浸沒於氣體中在恆定壓力下操作,但是傳統的壓力感測器則無法測量等靜壓力,且需要一壓力梯度始能發揮作用。因此,傳統的壓力計必須位於將加以測量的高壓與大氣間。結果此會增加分子量計200的外部構件受到損壞的風險。
分子量計的第二具體實例是展示於第3圖。在第3圖所展示的第二具體實例的特性(feature)中,與第2圖的第一具體實例相同的部份是賦予相同的元件代表符號(reference numeral),因此在此將不再加以敘述。
在第3圖的具體實例中,調節器250與第2圖具體實例的調節器150不同的是該調節器250是配置成可提供從出口154的氣體的可變出口壓力。
關於此點,可握緊的手柄252是配備以使得使用者可調整彈簧172的偏動力。此可移動隔膜168的平衡位置,結果可調整提動閥164與閥座166間的平衡間隔。此使其可調整從出口110的高壓氣體流通過的開口170的大小(dimensions)。
壓力可能會典型地變化高達約20bar g。然而,熟習此技藝者將可容易地瞭解另一可行的配置及可藉由調節器250而供應的壓力。此外,調節器可包含第二級(secondary stages),用於例如在需要精確的壓力調節的氧乙炔焊接(oxy-acetylene welding)的情況。
第二具體實例包含分子量計300。為清楚的目的,在該分子量計300的構件中,與分子量計200相同的部份是賦予相同的元件代表符號。
分子量計300是實質地類似於第一具體實例的分子量計200。然而,該分子量計300進一步包含設置於外罩202內的壓力感測器302。任何適當的壓力感測器也可使用。
例如,壓力感測器302可包含壓致電阻隔膜感測器(piezo-resistive diaphragm sensor)。如此的壓力感測器典型為包含經機械加工的矽隔膜(silicon diaphragm),其具有形成於其中的壓致電阻應變計(piezo-resistive strain gauges)。隔膜是熔合到矽或玻璃背板。應變計一般是加以連接而形成惠斯登電橋(Wheatstone bridge),其輸出是直接與所測得壓力成比例。然後,可將從該壓力感測器302的輸出加以輸入至處理器230。
熟習此技藝者將可容易地瞭解可使用於本發明的另一可行的電子壓力感測器。換句話說,該壓力感測器302可包含可測量氣體的壓力及可提供該測量以電子方式輸出的任何感測器。
在此配置中,該石英晶體振盪器210及壓力感測器302在分子量計300的外罩202內是經常在等靜壓力下,因此不會經歷壓力梯度。換句話說,源自在外部大氣與分子量計300的內部構件間的壓力差異的任何機械式應力是表示橫過該外罩202。
本發明的第三具體實例是展示於第4圖。在第4圖所展示的第三具體實例的特性中,與第3圖的第二具體實例相同的部份是賦予相同的元件代表符號,因此在此將不再加以敘述。
在第4圖的具體實例中,調節器250相對應於第二具體實例的調節器250,且配置成可提供從出口154的氣體的可變出口壓力。該調節器250的構件已經加以說明,因此在此將不進一步加以敘述。
第三具體實例包含分子量計400。為清楚的目的,在該分子量計400的構件中,與分子量計200,300相同的部份是賦予相同的元件代表符號。
分子量計400是實質地類似於第一及第二具體實例的分子量計200,300。然而,該分子量計400是可與可變壓力調節器250一起操作而不需要第二具體實例的壓力感測器302。
分子量計400包含導管402。該導管402的內部是與外罩202的內部206連通。該導管402的近端包含限制孔口404,位於緊鄰短管208的下游且與出口154連通。該限制孔口404是配置成可提供物理性限制,以限制從出口154進入導管402的氣體的壓力。因此,在限制孔口404的下游的導管402內氣體的壓力是顯著地低於在出口154者。
導管402的遠端406是開放至大氣。該遠端406是設置於外罩202的下游的導管402的末端區段。對於典型的應用而言,適當的導管402應該具有管內徑(bore)為2mm且長度為約100mm的區域。此可確保並無大氣氣體的反向擴散入外罩202的內部206,以避免測量的潛在性誤差。
雖然在第4圖中的導管402基本上是線型,但是該導管402可為任何適當的形狀。例如,一種更緊密的配置可為將導管402配置成迷宮(labyrinthine)式或盤管(coil)形狀以將導管安裝入較小的空間。
因此,限制孔口404與導管402的遠端406(其在大氣壓力下)遙控(remote)的組合效應是該外罩202的內部206是經常為或約大氣壓力。此是與出口154的下游及限制孔口404的上游的氣體的壓力不相關。
因此,不需要壓力計,因為壓力可總是假設為在大氣壓力。若需要校正時(例如,當在大氣壓力為較低的高海拔下操作時),則此可以手動輸入至處理器230。
因此,在特定的條件下,不需要壓力感測器,因為壓力值可為自動設定或由使用者手動輸入,且所獲得的壓力值被處理器230使用以決定氣體或經感測的氣體的分子量。
分子量計的第四具體實例是展示於第5圖。第四具體實例是關於分子量計500。分子量計500是實質地類似於第一及第二具體實例的分子量計200,300,400。然而,該分子量計500是可與可變壓力調節器250(或其他可變壓 力氣體源)一起操作而不需要第二具體實例的壓力感測器302。
分子量計500是可在例如在金屬惰性氣體(MIG:Metal Inert Gas)焊接設備中,氣體將被排放至大氣的情況下操作。分子量計500是沿著導管158而充分地遠離調節器150,且充分地接近大氣的出口160,以確保在外罩202中的壓力狀態為大氣壓(atmospheric)狀態。
除了分子量計200,300,400的配置以外,其配備第二感測器組合504,且其包含:石英晶體振盪器510,連接到第二驅動電路512及第二電池516。該第二驅動電路512及第二電池516是實質地類似於驅動電路212及電池216,因此在此將不進一步加以敘述。
第二石英晶體振盪器510是經由一開放外罩518而暴露於外部大氣。該外罩518是可操作以屏蔽(shield)第二石英晶體振盪器510避免受到機械損害,但是使得第二石英晶體振盪器510將能暴露於大氣。該外罩518可包含具有形成於其遠端的通孔(through-hole)的有蓋外罩。
第二感測器組合504(包含石英晶體振盪器510在內)是配置成使其能獲得準確的大氣壓力測定。雖然第4圖的具體實例在某些條件下可能有效,但是在大氣壓力的 變異性,可能會導致在分子量的測定中產生誤差。若利用氣體混合物(如以後具體實例所揭述者)、且當前述具體實例的分子量計可能會造成不準確的測量時,此是特別重要。
如稍後將加以敘述者,第二石英晶體振盪器510在與氣體的密度成比例的頻率進行共振。然而,空氣的氣態組成是眾所皆知且通常為恆定。因此,使用如下所述的方程式7),則壓力可從已知的密度及已知的分子量加以決定。此配置可提供改良的準確度、製造成本效益高且小型化。
該分子量計500的其餘構件是類似於第一至第四具體實例的分子量計200,300,400的該等者,因此在此將不再進一步加以敘述。
第一至第四具體實例的任一者可額外地包含:顯示器(未展示),以對使用者展示所偵測的氣體實施測量的結果。另一可行的是該顯示器可位於分子量計200,300,400,500的遠端(remote),且相關的數據可以遠端方式通訊。
例如,第一至第四具體實例中的任何一者可進一步包含天線(未展示),用於與例如基地台進行遠端通訊。此 將討論於後。在此情況,該天線可設置於外罩202的外側,且藉由電線或等效接頭而連接到感測器組合204。
天線本身是可使其適配且配置成可使用任何適當的通訊協定(communication protocol),例如其非限制性列舉可為:RFID(無線射頻識別技術:Radio-frequency identification)、藍牙(Bluetooth)、紅外線(IR:Infrared)、802.11無線、調頻(FM:Frequency Modulation)傳輸或蜂窩網路(cell network)。
另一可行的是可執行一線式通訊(one-wire communication)。一線式通訊僅需要一單金屬導體來進行通訊,電路的「回程通路(return path)」是藉由在通訊裝置間的空間的電容耦合(capacitive coupling)來提供。熟習此技藝者將可容易地瞭解天線的其他替代方式(及相關的傳輸硬體)可使用於在此所論述的具體實例。
例如,通訊可藉由來自鋼瓶100內的聲波傳遞(acoustic transmission)而有效地實施。設置於外罩202內的發送器(transmitter)可有效地實施聲波傳遞。該發送器可包含例如簡單的固定頻率壓電共振器。
互補接收器(complementary receiver)也是需要,且此構件例如可位於分子量計200,300,400,500的遠端,且 可包含硬體,例如與麥克風整合的鎖相回路音調偵測器(phase-locked loop tone detector)。
感測器組合204,現在將參照第6及7圖更詳細地加以敘述。石英晶體振盪器210包含平面截面的切割石英。石英會顯示壓電行為,亦即施加電壓橫過晶體,則會造成晶體改變形狀而產生一機械力。相反地,對晶體施加一機械力,則會產生電荷。
石英晶體振盪器210的兩個平行表面是加以金屬化,以提供電連接橫過整個晶體(bulk crystal)。當藉由金屬接觸而施加電壓橫過晶體時,則晶體會改變形狀。藉由對晶體施加交流電壓,則會造成晶體振盪。
石英晶體的外形大小及厚度決定石英晶體的特徵或共振頻率。事實上,晶體210的特徵或共振頻率是與兩個金屬化表面間的外形厚度成反比例。石英晶體振盪器是在此技藝中眾所皆知者,因此石英晶體振盪器210的結構在此將不再進一步加以敘述。
除此以外,石英晶體的共振振動頻率將視晶體所在位置的環境而變化。在真空中,晶體將具有一特定頻率。然而,此頻率在不同的環境中將會改變。例如,在流體中,晶體的振動將會由於周圍的分子而發生阻尼(damped),且 此將會影響共振頻率、及晶體在一特定振幅(amplitude)振盪所需要的能量。
此外,周圍物質的沉積在晶體上,將會影響到振動中晶體的質量、改變共振頻率。如此物質的吸附或沉積會在晶體上形成吸附層,且當氣體吸附時質量會增加,此是構成泛用的選擇性氣體分析儀的理論基礎。
然而,在本案情況,並無塗層(coating)塗敷到石英晶體振盪器210。事實上,物質的吸附或沉積在石英晶體振盪器210上,在本案情況為非所欲,因為測量的準確度可能會受到影響。
如第6圖所展示,本具體實例的石英晶體振盪器210是音叉形狀,且其具有一對叉齒210a,大約5毫米長,且配置成可在32.768kHz的共振頻率進行振盪。該叉齒210a形成於石英的平面截面。該叉(fork)的叉齒210a通常是在彼等的基本模態振盪,且彼等是在共振頻率同步地朝向及遠離彼此而運動。
熔合型(fused)(非結晶性)石英具有非常低的溫度-相依性膨脹係數及低彈性係數。此會減少基本頻率對於溫度的相依性,且溫度的影響減至最小,如將展示於後者。
除此以外,較佳為使用AT切割或SC切割的石英。換句話說,該石英的平面截面是在特定的角度切割,使其可配置成振盪頻率的溫度係數在室溫附近具有寬幅波峰的拋物線。因此,該晶體振盪器可配置成使得在波峰頂部的斜率是精確地為零。
此等石英晶體通常是可以相對低成本獲得。與在真空中使用大多數的石英晶體振盪器相反,在本具體實例的石英晶體振盪器210是暴露於外罩202中在壓力下的氣體中。
用於驅動石英晶體振盪器210的驅動電路212是展示於第6圖。該驅動電路212必須符合數個特定的關鍵條件。第一,本發明的石英晶體振盪器210可能會暴露於某些範圍的氣體壓力;若氣體鋼瓶容納有經加壓的氣體例如氫氣,則壓力有可能會變化從大氣壓力(當氣體鋼瓶100是空瓶時)至約900bar g。因此,石英晶體振盪器210是需要可在寬廣範圍的壓力下操作(及在未使用一段期間後重新啟動)。
因此,石英晶體振盪器210的品質(Q)因素在使用期間將會顯著地變化。該Q因素(Q factor)是與振盪器或共振器的阻尼率(rate of damping)相關的無因次參數。此 相當於其可作為共振器相對於其中心頻率的頻寬(bandwidth)的特徵。
一般而言,振盪器的Q因素愈高,則振盪器的能量損失率相對於所儲存的能量愈低。換句話說,高Q因素振盪器的振盪,在無外力下振幅的減少更緩慢。具有較高Q因素的正弦驅動共振器,在共振頻率以較大的振幅進行共振,但是在彼等共振的該頻率附近具有較小的頻寬。
驅動電路212必須能驅動石英晶體振盪器210,不管Q因素的變化如何。當在氣體鋼瓶100中的壓力增加時,石英晶體振盪器210的振盪阻尼將會變得越來越增加,且該Q因素將下降。該下降的Q因素是需要藉由在驅動電路212中的放大器提供較高的增益(gain)。然而,若所提供的放大太高,則該驅動電路212、來自石英晶體振盪器210的響應可能會變得不易區別。在此情況,該驅動電路212可在非相關的頻率、或在石英晶體振盪器210的非基本模態的頻率單純地振盪。
關於又一限制是該驅動電路212必須為低功率,使其可在具有或無補充電力例如光電伏打電池(photovoltaic cell)下,以低功率電池長時間運轉。
驅動電路212,現在將參照第6圖加以敘述。為了驅動石英晶體振盪器210,該驅動電路212在本質上是取得來自石英晶體振盪器210的電壓訊號,將其放大,且將該訊號(signal)回饋至石英晶體振盪器210。該石英晶體振盪器210的基本共振頻率,在本質上是石英的膨脹與收縮速率的函數(function)。此通常是藉由晶體的切割及大小來決定。
然而,外在因素也會影響到共振頻率。當所產生的輸出頻率的能量符合在電路中的損失時,則振盪可持續。該驅動電路212是配置成可偵測及維持此振盪頻率。然後,該頻率可藉由處理器230(第9圖)加以測量,以用於計算使用者所需要的氣體的適當性質,且若有需要時,可輸出至一適當的顯示器裝置(如稍後將加以敘述者)。
驅動電路212是藉由6V電池216來提供電力。在此具體實例中,該電池216包含鋰電池。然而,另一可行的電源對於熟習此技藝者將是顯而易見的其他電池類,例如包括可再充電與非可再充電兩者、及太陽能電池配置。
驅動電路212進一步包含達靈頓對共射極放大器(Darlington pair Common Emitter amplifier)218。該達靈頓對包含由兩個雙極型NPN電晶體(bipolar NPN transistors)所構成的複合結構,使得藉由第一電晶體加以 放大的電流是進一步藉由第二者加以放大。當與各電晶體是採用分離方式者相比較時,則此架構可獲得較高的電流增益(current gain)。另一可行的是可使用PNP雙極型電晶體(PNP bipolar transistors)。
達靈頓對218是配置成從單電晶體(single transistor)(T1)共射極放大器220的反饋架構。NPN雙極型接面電晶體(NPN bipolar junction transistor)是展示於第6圖。然而,熟習此技藝者將可瞭解可使用另一可行的電晶體配置,例如雙極型接面PNP電晶體(bipolar junction PNP transistor)或金屬氧化物半導體場效電晶體(MOSFETs:Metal Oxide Semiconductor Field Effect Transistors)。
關於一變異例,自動增益控制(automatic gain control)(未展示)是可在達靈頓對218與共射極放大器220間的反饋迴路(feedback loop)中執行。此可採用電位計(potentiometer)、可變電阻器(variable resistor)或其他適當的構件位於例如如第6圖所展示的最右邊22k電阻的位置的形式。
自動增益控制能補償由於Q因素隨著壓力的變化及供應電壓的變化(例如,在低電池電力狀態下)。自動增益控制特別是可適用於低壓力應用。
驅動電路212包含又一NPN射極隨耦器電晶體T2,其作用如同緩衝放大器222。該緩衝放大器222是配置成可作用如同在電路與外部環境間的緩衝器。然而,此特性是視需要而可選用且可能不需要,例如FET(場效電晶體:Field Effect Transistor)可直接連接以驅動電路212。
電容器224是設置成與石英晶體振盪器210串聯。該電容器224在此實例中具有100pF值,在晶體例如受到鹽類或其他沉積物而已被污染的情況,可使得驅動電路212能驅動石英晶體振盪器210。
另一可行的驅動電路240,現在將參照第7圖加以敘述。該驅動電路240可用於取代上述的驅動電路204。與上述的驅動電路204完全不同,該驅動電路240包含一共漏極(common drain)金屬氧化物半導體場效電晶體(MOSFET)放大器242,以取代第6圖的電路的達靈頓對。該MOSFET 242作用如同一高阻抗輸入,其使得放大器級(amplifier stage)的輸入阻抗能配合石英晶體振盪器202的高阻抗。換句話說,該MOSFET 242提供具有高輸入阻抗的單位增益,以降低在石英晶體振盪器202的電負載(electrical load)。
共漏極MOSFET放大器242的輸出是輸入至兩個連續的單電晶體(Q2,Q3)共射極放大器244。電阻R6及R8是對電晶體提供包括負反饋(negative feedback)及偏壓電流(biasing current)兩者。該共射極放大器244提供高增益,以放大石英晶體振盪器202的振盪,且在此具體實例中,包含一NPN雙極型接面電晶體。然而,熟習此技藝者將可瞭解可使用另一可行的電晶體配置,例如雙極型接面PNP電晶體(bipolar junction PNP transistor)或MOSFETs。
電容器246是連接在石英晶體振盪器202與接地(ground)間。在此具體實例中,該電容器246是可操作以增加對石英晶體振盪器202的驅動。
電阻248是與石英晶體振盪器202連接成串聯。該電阻248在此具體實例中具有56kΩ值,可阻尼石英晶體振盪器202的振盪,使得電路可僅以逐漸的波形變化而在廣泛的壓力範圍振盪。
驅動電路240是藉由3V電池249來提供電力。在此具體實例中,該電池249包含鋰電池。然而,另一可行的電源對於熟習此技藝者將是顯而易見的其他電池類,例如包括可再充電與非可再充電兩者、及太陽能電池配置。另 一可行的是也可使用經直流整流(DC rectification)及適當的降低電壓的市電供電配置(mains supply arrangement)。
又一可行的驅動電路260,現在將參照第8圖加以敘述。如第8圖所展示的驅動電路是構成為類似於皮爾斯振盪器(Pierce oscillator)。皮爾斯振盪器是一種習知的數位IC時鐘振盪器(digital IC clock oscillator)。在本質上,該驅動電路260包含:一單數位反相器(single digital inverter)(以電晶體的形式)T、三個電阻R1,R2及RS、兩個電容器C1,C2、及石英晶體振盪器210。
在此配置中,該石英晶體振盪器210作用如同高選擇性濾波器元件(filter element)。電阻R1作用如同電晶體T的負載電阻(load resistor)。電阻R2作用如同反饋電阻(feedback resistor),在其操作的線性區域對反相器(inverter)T施加偏壓(biasing)。此可有效地使得反相器T操作如同高增益反相放大器(inverting amplifier)。另一電阻RS是使用於反相器T的輸出與石英晶體振盪器210間,以限制增益及阻尼在電路中非所欲的振盪。
石英晶體振盪器210與C1及C2組合而形成Pi網路帶通濾波器(Pi network band-pass filter)。此使其能在大約石英晶體振盪器的共振頻率獲得180度相位位移(phase shift)、及從輸出至輸入的電壓增益(voltage gain)。上述 的驅動電路260,因為其包含較少的構件,因此為可靠且可以廉價製造。
如上所述,感測器組合204可包含處理器230,以接收來自石英晶體振盪器210及驅動電路212的輸入。該處理器230可包含任何適當的配置,例如ASIC(特定應用積體電路:Application Specific Integrated Circuit)、或FPGA(現場可程式規劃閘陣列:Field Programmable Gate Array)。
處理器230是加以程式化以計算,且若有需要時可顯示及傳輸氣體的分子量(或氣體的均質混合物的平均分子量)的測定結果。該處理器230的示意性主要輸入及輸出是展示於第9圖。
當與石英晶體振盪器210一起使用時,處理器230可構成為可測量來自包含驅動電路212的感測器組合204的訊號的頻率f或週期(period)。此可藉由例如計數在固定時間的振盪來達成,且使用演算法(algorithm)或查表法(look-up table)而將該頻率換算成密度值。此數值是傳遞至處理器230。
處理器230也接收來自溫度感測器214所測得溫度T。此外,該處理器230接收來自壓力感測器302(若存 在時)、或從固定壓力值兩者之一皆可的壓力值。此值可自動設定,例如在分子量計400,500是僅將被使用在大氣壓力下、或將被使用在固定式壓力調節器的出口,如同分子量計200的情況。在此情況,將該固定壓力值輸入至該處理器230。另一可行的是該固定壓力值可由使用者手動加以輸入。
關於又一可行的是來自感測器組合504(包含驅動電路512在內)的訊號的頻率f或週期可藉由處理器230來接收。此可藉由例如計數在固定時間的振盪來達成,且使用演算法或查表法而將該頻率換算成壓力值(因為頻率是與密度成比例,且當空氣的氣體組成為已知時,則密度是與壓力成比例)。此數值是傳遞至處理器230。
處理器230是配置成可根據所供應的輸入資訊實施計算,以決定石英晶體振盪器210所浸沒的氣體的分子量。處理器230可包含分子量計200,300,400,500中任一者的一部份。
一旦該分子量已經決定,此數據可儲存在局部記憶體(local memory)、可顯示在顯示器螢幕上、或可傳送至遠端遙控站。
處理器230可視需要而設計成適用於大量生產,使其在所有的分子量計200中為完全相同,且在軟體及硬體中具有不同的特性而可用於不同的氣體。
除此以外,處理器230也可構成為可將電力消耗最小化,其經由執行可涵蓋處理器230、及附加的構件例如驅動電路212及石英晶體振盪器210的「待機(standby)」或「睡覺(sleep)」模式。
可執行各種的方案,例如處理器230在每11秒鐘中可待機10秒鐘。此外,該處理器230可控制石英晶體振盪器210及驅動電路212,使得此等構件大部份時間是處於待機狀態,僅對於更高耗電構件切換成每30秒鐘為接通½秒鐘。
感測器組合204的理論與操作,現在將參照第10至14圖加以敘述。
石英晶體振盪器210具有視其所在位置的流體密度而定的共振頻率。在振盪中的音叉型平面晶體振盪器暴露於氣體中,導致晶體的共振頻率發生位移(shift)及阻尼(damping)(當與晶體在真空中的共振頻率相比較時)。對於此是有數個理由。然而,氣體對於晶體的振盪具有阻尼效應(damping effect),氣體鄰近在振動中的音叉晶體振 盪器210的振動叉齒210a會增加振盪器的等效質量。根據單側固定彈性樑(one-sided,fixed elastic beam)的動作(motion),此會導致石英晶體振盪器的共振頻率降低: 其中,f是振盪頻率,f 0 是在真空中的振盪頻率,ρ是氣體密度,且M 0 是常數。
密度ρ在幾乎所有的情況與M 0 相比較為小,因此公式可加以近似為線性方程式(linear equation): 其可重新以與f 0 的頻率偏差(frequency deviation)△f來表示,如方程式3)所揭述者:
因此,以最佳近似法(to a good approximation),頻率的變化是與石英晶體振盪器所暴露的氣體的密度的變化成比例。第10圖是展示關於數種不同的氣體/氣體混合物,該石英晶體振盪器210的共振頻率作為密度的函數而以線性變化。
一般而言,石英晶體振盪器210的靈敏度為5%的頻率變化是可例如在250bar(當與大氣壓力相比較)的氧氣(具有原子質量數32)中觀察到。此等壓力及氣體密度是永久氣體所使用的儲存鋼瓶的典型數值,對於大多數的氣體通常為在137與450bar g間,而對於氦氣及氫氣則為高達700或900bar g。
石英晶體振盪器210是特別適合用作為商品級所供應的氣體的密度感測器而形成分子量計的一部份。為了正確地感測氣體的密度,其需要氣體為不含粉塵及液滴,此是商品級所供應的氣體所保證者,但是並不保證不含空氣或在一般的壓力監測狀態下。
一旦從石英晶體振盪器210獲得密度值,則氣體的分子量可從下式決定:4)PV=nRT
其中,P是氣體的壓力,V是氣體的體積,n是氣體的莫耳數,R是氣體常數(gas constant),且T是溫度。接著消除V,則可獲得:
以及
其中,MW是氣體的分子量且M是氣體的質量。因此,將在方程式5)中的V加以取代而導出:
其中,α是等於RT的常數,其中該R是氣體常數且T是絕對溫度(°K)。因此,對於一已知的氣體的壓力、密度及溫度,則可決定氣體的分子量(或在氣體混合物的情況時的平均分子量)。上述演算假設該氣體是接近理想氣體(ideal gas)。
根據上述方程式7),若壓力為已知(例如,壓力是在大氣壓力或固定式壓力調節器的輸出時),則僅需要氣體的溫度及密度以提供準確的分子量測定。同時,若壓力及溫度是已知為在合理的程度,則氣體的分子量是有效地與密度成比例,或換句話說,石英晶體振盪器的共振頻率是乘以一預定因素。
因此,氣體的分子量(或混合物的平均值)可從壓力的梯度作為密度的函數加以決定,其中,重新整理方程式7)而可提供:
第11及12圖是以圖解說明分子量測量的實驗數據。兩圖是展示關於相同的四種氣體的密度(kg/m3)(在Y-軸)作為壓力(bar g)(在X-軸)的函數。除了第11圖是展示壓力高達300bar g、而第12圖展示壓力僅至100bar g以外,兩圖是完全相同。
所使用的四種氣體是Ferromax 15(一種含有氬氣:二氧化碳:氧氣的混合物)、氦氣、二氧化碳、及氧氣,如第10圖所展示。線的斜度(gradient)是與分子量成比例(對全部三者假設RT是恆定)。因此,石英晶體振盪器210可容易地測定氣體或氣體混合物的分子量。
此外,該石英晶體振盪器210的高準確度可使得測量達到具有百萬分比(ppm)解析度的高準確度。配合石英密度感測器(quartz density sensor)210在高密度及壓力下的線性響應(linear response),則高準確度使其可準確地測量非常輕的氣體例如H2(氫氣)及He(氦氣)的分子量。
除此以外,在第5圖的具體實例的情況,分子量計500包含額外的石英晶體振盪器510,其可操作以決定大氣壓力。在此情況,方程式8)可簡單地加以重新整理成方程式9):
如上所揭述,空氣的組成(亦即,約78%氮氣、約21%氧氣、約1%其他)通常是相對恆定,因此方程式9)可用於從藉由石英晶體振盪器510的密度測量,以決定壓力。
此技術一有用的應用是在吹淨偵測(purge detection)。第13及14圖是以圖解說明氣體吹淨偵測的實驗數據。在例如管線的自動化軌道焊接(automatic orbital welding)的情況,如此的資訊是重要的。
第13圖是展示關於氬氣以5公升/分鐘流入氮氣環境,接著以氮氣重新充填的頻率(Hz)(在Y-軸)作為時間(sec)(在X-軸)的函數圖。明顯的是該頻率的階躍變化是可容易地以高準確度測得。
第14圖是展示相同的數據,例外的是在此情況,Y-軸已加以校正以讀取分子量(質量單位)。
此等圖示清楚地圖解說明:對於大多數正常用途而言,氣體的分子量是可使用石英晶體振盪器容易地測定。此外,當一氣體以另一氣體加以吹淨是清楚且可確認時,則會發生該分子量的變化。因此,在吹淨期間,該分子量變化可使用石英晶體振盪器210及驅動電路204,以充分的準確度及時間解析度(time resolution)計算得。
一具體實例的操作方法,現在將參照第15圖加以敘述。如下所述的方法可應用到如上所述第一至第四具體實例的任一者。
步驟550:初始化測量
在步驟550,在外罩202內氣體的分子量的測量是加以初始化。此可藉由例如使用者按壓在外罩202外側的按鈕加以啟動。另一可行的是該測量可藉由遠端連接加以初始化,例如訊號是橫過無線網路傳送,且經由天線而被分子量計200,300,400,500接收。
關於又一可行的或除此以外的是分子量計200,300,400,500可構成為以遠端方式或計時器進行初始化。然後,該方法接著進行步驟552。
步驟552:驅動石英晶體振盪器
一旦初始化,驅動電路212是用於驅動石英晶體振盪器210。在初始化期間,該驅動電路212施加隨機雜訊交流電壓橫過晶體210。該隨機電壓的至少一部份將在適當的頻率造成晶體210振盪。然後,該晶體210將開始與該訊號同步進行振盪。
應該暸解的是石英晶體振盪器210在本質上是一種自足式偵測器(self-contained detector)及驅動器,因為晶體本身的共振頻率是被測量。
藉由壓電效應(piezoelectric effect),石英晶體振盪器210的動作,則將會在石英晶體振盪器210的共振頻帶中產生一電壓。驅動電路212則將藉由石英晶體振盪器210所產生的訊號加以放大,使得在石英晶體共振器(quartz crystal resonator)210的頻帶中所產生的訊號優控(dominate)驅動電路212的輸出。石英晶體的狹幅共振頻帶濾除全部非所欲的頻率,而驅動電路212則在基本共振頻率f驅動該石英晶體振盪器210。一旦該石英晶體振盪器210已經穩定在一特定共振頻率,該方法接著進行步驟554。
步驟554:測量石英晶體振盪器的共振頻率
共振頻率f是視在外罩202內的環境條件而定。在本具體實例中,以最佳近似法,共振頻率的變化△f是與在外罩202的內部206中氣體的密度變化的大小成比例,且將隨著密度增加而減少。
為了進行測量,該石英晶體振盪器210的頻率是測量大約1秒鐘。此是為使得讀數穩定化而計數足夠的振盪,以決定準確的測量。該頻率的測量是在處理器230中進行。當測量啟動後,該處理器230也可登錄(log)時間T1
一旦該頻率已經測得,該方法接著進行步驟556。
步驟556:測量氣體的溫度
在步驟556,溫度感測器214測量在外罩202內氣體的溫度。實施此測量是為提高從在步驟554所測得的頻率變化的分子量計算的準確度。
溫度測量並不需要特別準確。例如,若溫度感測器214是準確至0.5℃,以在稍後步驟中分子量計算所需要的絕對溫度值為基準,則此是相對應於誤差為僅大約600分之1(假設常態大氣溫度)。
關於另一可行的是此步驟可簡單地涉及將一固定溫度值輸入至處理器230。此可能發生在例如其是使用已知的溫度環境的情況。在此情況,不需要溫度感測器214。
步驟558:於定氣體的壓力
一旦該石英晶體振盪器210的頻率已經在步驟554滿意地測得、且溫度在步驟556測得,然後處理器230決定在外罩202的內部206的氣體的壓力。
此可藉由使用來自可提供一與在外罩202中所測得壓力成比例的電子訊號的壓力感測器302(若有配備時)的輸入值來達成。此可應用於第二及第四具體實例。
另一可行的是若壓力已知為在合理的程度,則壓力值可以手動或自動輸入至處理器230。此可相對應於固定式壓力調節器的輸出(如在第一具體實例中)、或可相對應於大氣壓力(如在第三具體實例中)。
步驟560:於定氣體的分子量
此是藉由使用上述方程式8)來完成,其中該氣體的密度ρ、壓力P及溫度T是已知。因此,若知道經在步驟554所測得共振頻率、經在步驟556所測得在外罩202中已知的氣體的溫度T、及經在步驟558所測得已知的氣體 壓力,則可實施分子量(氣體的均質混合物的平均分子量)的準確的測量。然後,該方法接著進行步驟562。
步驟562:通訊及儲存結果
氣體的分子量可以數種方式來顯示。例如,搭接在外罩202或調節器150,250的螢幕(未展示)可用於顯示氣體的分子量(或平均分子量)。在另一可行的方法中,該壓力測量可以遠端方式與基地台、或位於鄰近的配件的量計進行通訊,如稍後將加以敘述者。
一旦該分子量已經決定,此數據是可儲存在與分子量計200,300,400,500相關聯的局部記憶體作為以後檢索取回使用。關於再一可行的是在時間T1的該氣體的壓力可暫時儲存在該處理器230的記憶體中而產生一時間登錄(time log)。
然後,該方法接著進行步驟564。
步驟564:切斷感測器組合電源
並不需要在所有的時間維持分子量計200,300,400,500皆可操作的狀態。相反地,當不使用時,藉由將分子量計200,300,400,500關閉以減少電力消耗是有利的。此可延長電池216的壽命。
驅動電路212的架構可使得石英晶體振盪器210,不論在外罩202中的壓力如何也可重新啟動。因此,分子量計200,300,400,500可視需要而加以停機以節省電池電力。
根據本發明的分子量計的重要應用是一種反饋式氣體混合器(feedback-type gas mixer)。在如此的配置中,兩種不相同的氣體是需要以精確的濃度及比率加以混合。例如,此在例如需要氬氣與二氧化碳的混合物的MIG焊接應用的情況可能是必要的,其中二氧化碳的百分率是充分地加以限定者。另一可行的是對於許多醫療保健或醫學應用而言,可能需要以高準確度知道一特定類型的氣體的相對百分率。
根據本發明的氣體混合器的一具體實例是展示於第16圖。第16圖是展示一種與前述具體實例的分子量計500一起使用的氣體混合器600。
氣體混合器600包含:第一氣體源602及第二氣體源604。在此具體實例中,該氣體源602,604包含氣體鋼瓶,其配置成可儲存在高壓下的永久氣體。各鋼瓶包含閥(未展示),其可為類似於在第一具體實例所展示的閥104。
在各氣體鋼瓶內所容納的氣體是不相同且視所需要的用途加以選擇。例如,在焊接應用中是使用一種含有氬氣與二氧化碳的混合物。另一可行的是對於醫療應用而言,一種含有氧氣與氮氣的混合物可能是必要的。
第一與第二氣體源602,604是分別連接到第一與第二供應管線606,608。止回閥(non-return valve)610,612是分別設置於各第一與第二氣體源602,604的下游的各第一與第二供應管線,以防止氣體回流至氣體源602,604。
此外,主閥614是位於止回閥610的下游的第一供應管線606中。該主閥614是可手動操作且可採取任何適當的形式。例如,該主閥614可採取簡單的開啟/關閉閥、或可包含可調整式流量閥(adjustable flow valve)、VIPR(整合型減壓閥:Valve with Integrated Pressure Reduction)或調節器。另一可行的是該主閥614可為由使用者從氣體混合器600的遠端以電子方式加以控制。氣體混合物的整體流率(稍後敘述)是藉由主閥614加以設定。
電磁閥616是位於止回閥612的下游的第二供應管線608中。該電磁閥616包含電樞(armature)(未展示),其可因應通過位於電磁閥616的本體中的一組線圈(未展示)的電流而移動。該電樞是可移動以開放或關閉電磁閥 616,使得氣體可流動通過電磁閥616而到達其下游的構件。
電磁閥616可為在正常開放狀態(normally open condition)。換句話說,在並無電流通過該電磁閥616時,則電樞是在伸展位置,使得該電磁閥616是開放,亦即,從第二氣體源604的氣體是可經由其而流動到達電磁閥616的下游的構件。若電流施加到該電磁閥616,則該電樞將會縮進(retract)、且該電磁閥616將被關閉以防止氣體經由其而流動。在此具體實例中,該電磁閥616是在線性方向可連續地變化。
熟習此技藝者將可容易地瞭解可使用於本發明的不同類型的電磁閥。例如,電樞可直接作用如同一可選擇性操作的流量限制。另一可行的是該電樞可直接作用在隔膜。關於又一可行的是該電樞可控制通過狹窄導管而與電磁閥616的下游的供應管線608連通的流量,以調節隔膜的移動。如此的配置是習知的隔膜導引閥(diaphragm pilot valve)。該電磁閥616是藉由分子量計500加以控制,如稍後將加以敘述者。
第一與第二供應管線606,608是兩者皆連接到混合器單元618。該混合器單元618是可操作以合併兩股來自第一與第二供應管線606,608的流(flow),且將經合併的流 輸送至第三供應管線620。該混合器單元618僅用於合併兩股流,並不會改變在各流中氣體的比例或壓力。
氣體混合器600包含第四具體實例的分子量計500。在此配置中,該分子量計500包含第一石英晶體振盪器210,位於第三供應管線620內,且在其遠端鄰接其輸出(output)622。該輸出622是通大氣。因此,以最佳近似法,第一石英晶體振盪器210所歷經的壓力是相對應於大氣壓力。
分子量計500也包含第二石英晶體振盪器510,其暴露於混合器600的外側的大氣壓力,類似於第5圖的具體實例。在此情況,該第二石英晶體振盪器510是位於輸出的附近(但是,非在其上),以確保準確的壓力讀數,同時其餘則未受到從輸出622的氣體的流量的影響。
除此以外,該分子量計500包含電子螺線管驅動裝置(electronic solenoid drive)652,連接到電磁閥616及分子量計500的感測器組合204。
螺線管驅動裝置(solenoid drive)652是配置成可接收來自感測器組合204的訊號,且可因應該訊號以控制電磁閥616。因此,分子量計500是可操作以控制通過電磁閥616的氣體的流量。換句話說,分子量計500與電磁閥 616形成反饋迴路,其允許精確且以遠端方式壓力調節沿著第二供應管線608至混合器618的氣體的流量。因此,在混合器單元618中所混合的氣體的比例是可精確地加以控制,如稍後將加以敘述者。
螺線管驅動裝置652可包含任何適當的驅動電路用於控制電磁閥616。一適當的電路可為運算放大器配置(operational amplifier arrangement),其具有從感測器組合204至運算放大器的負極端子的輸入。因此,一可變電阻器可搭接在正極端子。該可變電阻器是配置成可提供一恆定參考位準(reference level),且作用如同一比較器(comparator)。該參考位準可自動或手動加以變化。
從感測器組合204至螺線管驅動裝置652的輸入將會造成電磁閥616的動作。例如,若來自該感測器組合204(或另一選擇為處理器230)的輸入訊號超過一特定臨限位準(threshold level),則該螺線管驅動裝置652可激磁(energise)該電磁閥616。該電磁閥616可以數位式(digital)(亦即,開啟或關閉)的方式加以控制,其中DC電壓是在最大與最小值間變化。另一可行的是來自該螺線管驅動裝置652的DC電壓可為連續變化,以準確地調整通過該電磁閥616的流量限制量。
除此以外或另一可行的是該螺線管驅動裝置652藉由具有交流成份的直流輸出而可控制電磁閥616。因為電樞從該電磁閥616的伸展(extension)是大約與所施加的電流成比例,此會造成該電磁閥616的電樞振盪。如此的振盪可減輕該電樞的「靜摩擦(stiction)」,亦即,有助於防止該電樞變得卡住或塞住。
另一可行的其他控制配置,例如FETs(場效電晶體:Field Effect Transistor)、處理器或ASICs(特定應用積體電路:Application Specific Integrated Circuits)可適當地用於控制電磁閥616的動作。此外,該電磁閥616可以數位式(亦即,開啟/關閉)、或類比式(analogue)(亦即,可連續地變化)兩者之一皆可的模式而動作(operate),使得電樞或其類似物可準確的移動。
在第16圖中,分子量計500的主要構件是與電磁閥616分開展示。在如此的情況,該電磁閥616可藉由在感測器組合204與螺線管驅動裝置652間的無線通訊而以遠端方式控制。
氣體混合器600的操作,現在將加以敘述。如前所述,分子量計500是能測定氣體的分子量、或氣體的平均分子量。當兩種氣體以不同的比例混合時,則氣體混合物的平均分子量將會根據各氣體的相對比例而變化。因此, 藉由實施混合物的平均分子量的測量、及各個別氣體的分子量、壓力(從第二石英晶體振盪器510)及溫度(來自溫度感測器214)的知識,則可決定在混合物中各氣體的比例。
從第一氣體源602的氣體的主流率是藉由如前所述使用者可操作的主閥614加以設定。一旦此已經加以設定,則分子量計500可控制電磁閥616以分配從第二氣體源604的氣體的正確數量,以達成所欲比例的氣體混合物。此是經由螺線管驅動裝置652來達成。
因此,若從第二氣體源604的氣體的比例為太高時,則分子量計500將會經由螺線管驅動裝置652而關閉或部份關閉電磁閥616,以限制從第二氣體源604的氣體的流量。同時,若從第二氣體源604的氣體的比例為太低時,則分子量計500將會經由螺線管驅動裝置652而開放或部份開放電磁閥616以增加從第二氣體源604的氣體的流量。
上述具體實例提供一種低成本、可靠且穩固的供應氣體混合物的方法,其在混合物中各氣體的比率是可靠且可準確地決定及維持。
氣體混合器700的另一可行的具體實例是展示於第17圖。雖然先前具體實例的氣體混合器600是可操作以在使用者所決定的壓力下供應兩種不相同氣體的所欲比例的混合物,該氣體混合器700是可操作以電子方式控制氣體壓力及兩種氣體的比例兩者。
氣體混合器700包含:用於分配氣體A的第一氣體源702、及用於分配氣體B的第二氣體源704。在此具體實例中,該氣體源702,704包含氣體鋼瓶,其配置成可儲存在高壓下的永久氣體。各鋼瓶包含閥(未展示),其可為類似於在第一具體實例所展示的閥104。在各氣體鋼瓶內所容納的氣體A,B是不相同且視所需要的用途加以選擇,如第16圖的具體實例。
第一與第二氣體源702,704是分別連接到第一及第二供應管線706,708。止回閥710,712是分別位於各第一與第二氣體源702,704的下游的各第一及第二供應管線,以防止氣體回流至各氣體源702,704。
第一電磁閥714是位於止回閥710的下游的第一供應管線706中。該第一電磁閥714包含電樞(未展示),其可因應通過位於第一電磁閥714的本體中的一組線圈(未展示)的電流而移動。該電樞是可移動以開放或關閉第一電磁閥714,使得氣體可流動通過第一電磁閥714而到達 其下游的構件。氣體混合物的整體流率(稍後敘述)是藉由電磁閥714加以設定,如稍後將加以敘述者。
第二電磁閥716是位於止回閥712的下游的第二供應管線708中。該電磁閥716是實質地類似於第一電磁閥714,且可操作以開放或關閉,使得氣體可流動通過第二電磁閥716而到達其下游的構件。
第一及/或第二電磁閥714,716可為在正常開放狀態。換句話說,在並無電流通過第一及/或第二電磁閥714,716,則電樞是在伸展位置,使得電磁閥714,716是開放,亦即,從第一及/或第二氣體源702,704的氣體是可經由其而流動到達電磁閥714,716的下游的構件。若電流施加到電磁閥714,716,則該電樞將會縮進、且該電磁閥714,716將被關閉以防止氣體經由其而流動。在此具體實例中,電磁閥714,716在線性方向可連續地變化。
熟習此技藝者將可容易地瞭解可使用於本發明的不同類型的電磁閥。例如,電樞可直接作用如同一可選擇性操作的流量限制。另一可行的是該電樞可直接作用在隔膜。關於又一可行的是該電樞可控制通過狹窄導管而與電磁閥714,716的下游的供應管線706,708連通的流量,以調節隔膜的移動。如此的配置是習知的隔膜導引閥。該電磁閥 714,716是藉由分子量計750加以控制,如稍後將加以敘述者。
第一及第二供應管線706,708是兩者皆連接到混合器單元718。該混合器單元718是可操作以合併來自第一及第二供應管線706,708的兩股流(亦即,氣體A與氣體B),且將經合併的流(A與B的混合物)輸送至第三供應管線720。該混合器單元718僅用於合併兩股流,並不會改變在各流中氣體的比例或壓力。
氣體混合器700包含分子量計750。在此配置中,該分子量計750包含:第一感測器組合752及第二感測器組合754連接到處理器230(類似於先前所揭述的處理器230)。
第一感測器組合752包含:第一石英晶體振盪器756,其位於第一供應管線706中第一電磁閥714的下游,且浸沒於氣體中。該第一感測器組合752也包含:驅動電路及電源(未展示),實質地類似於先前具體實例的驅動電路212及電池216。
第二感測器組合756包含:第二石英晶體振盪器758及溫度感測器260,位於供應管線720中混合器單元718的下游,且浸沒於氣體中。該第二感測器組合756也包 含:驅動電路及電源(未展示),實質地類似於先前具體實例的驅動電路212及電池216。
除此以外,該分子量計750包含:第一電子螺線管驅動裝置762,連接到電磁閥714及處理器230,以及第二電子螺線管驅動裝置764,連接到電磁閥716及處理器230。
螺線管驅動裝置762是配置成可接收來自處理器230的訊號,且可因應該訊號以控制電磁閥714。因此,分子量計750是可操作以控制出口722的全部氣體流出量、或從出口722的輸出壓力。換句話說,分子量計750與電磁閥714形成反饋迴路,其允許精確且以遠端方式壓力調節沿著第一供應管線706至混合器718的氣體的流量。
螺線管驅動裝置764是也配置成可接收來自處理器230的訊號,且可因應該訊號以控制電磁閥716。因此,分子量計750是可操作以控制分別從氣體源704的氣體流量對於從氣體源702的氣體流量的比例。換句話說,分子量計750與電磁閥716形成反饋迴路,其允許精確且以遠端方式調節沿著第二供應管線708至混合器718的氣體的流量相對於沿著第一供應管線706的氣體的流量的比例。在其中,從第二氣體源704的氣體所必要的比例是在混合器單元718中加以混合。
螺線管驅動裝置762,764可包含任何適當的驅動電路用於控制各自的電磁閥714,716。一適當的電路可為運算放大器配置,其具有從感測器組合752,756及處理器230至運算放大器的負極端子的輸入。因此,一可變電阻器可搭接在正極端子。該可變電阻器是配置成可提供一恆定參考位準,且作用如同一比較器。該參考位準可自動或手動加以變化。
來自處理器230至螺線管驅動裝置762,764的輸入,將會造成電磁閥714,716的動作。例如,若來自處理器230的輸入訊號超過一特定臨限位準,則螺線管驅動裝置762或螺線管驅動裝置764可激磁各自的電磁閥714,716。該電磁閥714,716可以數位式(亦即,開啟或關閉)的方式加以控制,其中DC電壓是在最大與最小值間變化。另一可行的是來自螺線管驅動裝置762,764的IC電壓可為連續變化,以準確地調整通過該電磁閥714,716的流量限制量。
除此以外或另一可行的是該螺線管驅動裝置652藉由具有交流成份的直流輸出而可控制電磁閥616,如在相關的前述具體實例中所揭述者。
另一可行的其他控制配置,例如FETs(場效電晶體:Field Effect Transistor)、處理器或ASICs(特定應用積體電路:Application Specific Integrated Circuits)可適當地用於控制電磁閥714,716的動作。此外,該電磁閥714,716可以數位式(亦即,開啟/關閉)、或類比式(亦即,可連續地變化)兩者之一皆可的模式而動作(operate),使得電樞或其類似物可準確的移動。
在第17圖中,分子量計750的主要構件是與電磁閥714,716分開展示。在如此的情況,該電磁閥714,716可藉由在處理器230與電磁閥714,716間的無線通訊而以遠端方式控制。
氣體混合器700的操作,現在將加以敘述。如前所述,分子量計750是可決定氣體A與B的混合物的平均分子量。除此以外,該分子量計750是可操作以決定氣體壓力。當兩種氣體以不同的比例混合時,則氣體混合物的平均分子量將會根據各氣體的相對比例而變化。因此,藉由實施混合物的平均分子量的測量、及各個別氣體的分子量、壓力及溫度,則可決定在混合物中各氣體的比例,連同所欲的壓力輸出。
從第一氣體源702的氣體A的主流率是由使用者設定、或可為自動設定。此決定在處理器230中的設定點。 其假設:從第一氣體源702的氣體A是多數氣體(majority gas),而從第二氣體源704的氣體B是少數氣體(minority gas)。
感測器組合752是用於計算電磁閥714的下游的壓力P。因為第一氣體源的分子量MW A 是已知(因為從氣體源702的第一氣體A是封裝氣體(packaged gas)),則緊鄰電磁閥714的下游的壓力可從方程式10)加以決定:
其中,P是壓力,R是氣體常數,T是絕對溫度(如藉由溫度感測器760所測得者),MW A 是從第一氣體源702的氣體A的分子量,且ρ A 是在第一供應管線706中緊鄰電磁閥714的下游所測得密度。
假設在第一供應管線706中所測得壓力是大約與在混合器單元718中、及在輸出供應管線720中者相同。此假設適用於當與從第一氣體源702的多數氣體相比較,則從第二氣體源704的氣體的比例為少數。
將藉由感測器組合752所測得P的測量值,則輸入至處理器230,其可操作視其中情況而控制電磁閥714,以 達成所欲的輸出壓力。此可藉由按照比例(proportional basis)來完成,將所測得壓力值扣除處理器230所儲存的設定點壓力,而其間的差異是用於控制電磁閥。
其次,在第三供應管線720中氣體混合物的平均分子量是藉由感測器組合754加以測定。在此具體實例中,該第二石英晶體振盪器758是可操作以決定在第三供應管線720中氣體混合物的密度ρ mix 。該氣體混合物的平均分子量MW mix ,則可從方程式11)加以決定:
其中,P是藉由第一感測器組合752所測得的壓力。一旦計算得氣體混合物的平均分子量(MW mix ),則根據方程式12)可決定從第二氣體源704的少數氣體B的體積百分率(%B):12)MW mix =(1-%B)MW A +%BMW B
然後,其可提供方程式13):
然後,藉由處理器230,將氣體B(%B)的體積百分率值與所欲設定點值相比較,由電磁閥716根據此來加以控制。因此,分子量計750是能控制電磁閥716以分配正確數量的從第二氣體源704的氣體B,以達成所欲比例的氣體A與B的混合物。此是經由螺線管驅動裝置764來完成。
因此,若從第二氣體源704的氣體B的比例為太高,則分子量計750將會經由螺線管驅動裝置764而關閉或部份關閉電磁閥716,以限制從第二氣體源704的氣體B的流量。同時,若從第二氣體源704的氣體的比例為太低,則分子量計750將會經由螺線管驅動裝置754而開放或部份開放電磁閥716,以增加從第二氣體源704的氣體的流量。
上述具體實例提供一種低成本、可靠且穩固,可在特定壓力下提供準確的氣體混合物的方法,亦即,其中氣體的恆定壓力、及在混合物中各氣體的比率是可靠且可準確地維持。
氣體混合器800的另一可行的具體實例是展示於第18圖。該氣體混合器800是可操作以電子方式控制氣體壓力及兩種氣體的比例兩者,與在先前具體實例的氣體混 合器700相同。氣體混合器800的特性與氣體混合器700相同的部份是賦予相同的元件代表符號,因此在此將不再進一步加以敘述。
氣體混合器800包含分子量計850。在此配置中,該分子量計850包含:第一感測器組合752、第二感測器組合754及第三感測器組合852。各感測器組合752,754,852是連接到處理器230。第一及第二感測器組合752,754是與氣體混合器700的該等完全相同,因此在此將不進一步加以敘述。
第三感測器組合852包含第三石英晶體振盪器856,位於第二供應管線708中的第二電磁閥716的下游,且浸沒於氣體中。該第三感測器組合852也包含:驅動電路及電源(未展示),實質地類似於先前具體實例的驅動電路212及電池216。
氣體混合器800的操作,現在將加以敘述。如前所述,分子量計850是可決定氣體A與B的混合物的平均分子量。除此以外,該分子量計850是可操作以決定氣體壓力。當兩種氣體以不同的比例混合時,則氣體混合物的平均分子量將會根據各氣體的相對比例而變化。因此,藉由實施混合物的平均分子量的測量、及各個別氣體的分子 量、壓力及溫度,則可決定在混合物中各氣體的比例,連同所欲的壓力輸出。
從第一氣體源702的氣體A的主流率是由使用者設定、或可為自動設定。此決定在處理器230中的設定點。其假設:從第一氣體源702的氣體A是多數氣體,而從第二氣體源704的氣體B是少數氣體。
感測器組合852是用於計算在第二供應管線708中的電磁閥716的下游的壓力P。因為氣體B的分子量MW B 是已知(由於從氣體源704的氣體B是封裝氣體),則緊鄰電磁閥716的下游的壓力可從方程式14)加以決定:
其中,P是壓力,R是氣體常數,T是絕對溫度(如藉由溫度感測器760所測得者),MW B 是從第二氣體源704的氣體B的分子量,且ρ B 是在第二供應管線708中緊鄰電磁閥716的下游所測得密度。
此數值可用於取代使用感測器組合752在方程式9)的計算。另一可行的是可測量兩個壓力,且取其平均以獲 得混合器單元718的下游的壓力的較佳估計值,如在方程式15)所揭述者:
藉由感測器組合752及感測器組合852所測得P的測量值,則輸入至處理器230,其可操作視其中情況而控制電磁閥714,以達成所欲的輸出壓力。此可藉由:按照比例,及視需要可選擇性地包括對於所測得壓力P與處理器230所儲存的設定點壓力間的差異,相對於時間的積分及/或微分來完成。
其次,在第三供應管線720中氣體混合物的平均分子量是藉由使用上述所獲得P的數值的感測器組合754加以決定。在此具體實例中,該第二石英晶體振盪器758是可操作以決定在第三供應管線720中氣體混合物的密度ρ mix 。氣體混合物的平均分子量MW mix ,則可從上述方程式10)加以決定,且從第二氣體源704的少數氣體B的體積百分率(%B),則可根據上述方程式12)及13)加以決定。
另一可行的是氣體B的體積百分率(%B)的數值是可使用所測得密度根據方程式16)計算得:
除此以外,混合器的下游的壓力,若有需要,則可從方程式17)計算得:
其中,MW mix 是從上述方程式12)加以決定。
上述具體實例提供一種低成本、可靠且穩固,可在特定壓力下提供準確的氣體混合物的方法,亦即,其中氣體的恆定壓力、及在混合物中各氣體的比率是可靠且可準確地維持。
氣體混合器900的另一可行的具體實例是展示於第19圖。該氣體混合器900是可操作以電子方式控制兩種氣體的比例,與先前具體實例的氣體混合器600,700,800相同。然而,與先前具體實例的氣體混合器700,800完全不同的是該氣體混合器900是可操作以電子方式控制從出 口722的氣體的質量流率。氣體混合器900的特性與氣體混合器700,800相同的部份是賦予相同的元件代表符號,因此在此將不再進一步加以敘述。
氣體混合器900包含分子量計950。在此配置中,該分子量計950包含:第一感測器組合752及質量流量組合952。各組合752,952是連接到處理器230。該第一感測器組合752是與氣體混合器700,800中的該等完全相同,因此在此將不進一步加以敘述。
質量流量組合952的一具體實例是展示於第20圖。質量流量組合952的又一具體實例是展示於第21圖。
首先,關於第20圖的質量流量組合952,該質量流量組合952包含:本體954及感測器組合956。該感測器組合956是實質地類似於前述具體實例的感測器組合,且其使用相同的元件代表符號。
本體954可包含任何適當的材料,例如鋼、鋁或複合材料。本體954包含:導管958及外罩960。該導管958是與供應管720的內部連通(第19圖),且配置成可與其連接。導管958提供在出口722與供應管720間的連通路徑。
孔口板(orifice plate)962是位於導管958的內部。該孔口板962包含劃定限制孔口(restricted orifice)964界限(delimit)的壁。孔口板962在導管958內形成流量限制(flow restriction)。孔口(orifice)964具有截面積A,其相對於導管958的截面積為較小,使得通過孔口212的流速為在扼流狀態(choked condition),如稍後將加以敘述者。
雖然孔口板962如第20圖所展示為一薄壁板,但是此並不需要為如此。該孔口板962可採用任何適當的壁形態,且可具有錐形外形、或可具有比如圖所展示較大的厚度。另一可行的是可使用任何適當的流量限制以取代該孔口板962。例如,該流量限制可包含比其餘更狹窄直徑的管的一部份。熟習此技藝者將可容易地瞭解可使用另一可行的流量限制,以提供在使用時通過會發生扼流(choked flow)的流量限制孔口(flow restriction orifice)964。
在本具體實例中,導管958具有數公分等級的長度。孔口板962劃定一具有直徑範圍為在0.1毫米至4毫米孔口964的界限。對於例如氮氣或氬氣的氣體而言,此足以提供扼流狀態,且供應通過孔口964的氣體的流率為在1公升至40公升/分鐘間。對於具有較低分子量的氣體混合物而言,孔口964的直徑可加以縮小以達成類似的流率。另一可行的是對於較大的流率,該孔口964可按照比例而 加以擴大,其限制條件為上游壓力是充分地高於下游壓力,以產生通過孔口964的扼流狀態。
孔口板962將導管958的內部分成孔口板962的上游的上游區段966、及孔口板962的下游的下游區段968。在使用時,當氣體是從供應管720流入導管958的上游部966時,該孔口板962將作用如同一流量限制,結果導致在導管958的上游966與下游968部份間的壓力差異。因此,該導管958的上游部份966是在第一壓力P 1 及密度ρ 1 ,而導管的下游部份968是在第二壓力P 2 (因此,在使用時為較低)及密度ρ 2 。此稍後將詳細地加以敘述。
外罩960是位於鄰近導管958的上游部份966,且配置成可容納感測器組合956的至少一部份。該外罩960的內部可為在大氣壓力、或可為與導管958的內部連通,因此是在與供應管線720的內部相同的壓力下。此將消除對於在外罩960與導管958的內部間的壓力讀通(pressure feed-through)的需要。
另一可行的是外罩960可配備作為導管958的一部份。例如,該導管958的一部份可加寬以收納感測器組合956。
質量流量組合952是配置成可測量通過孔口964的氣體的質量流率。此氣體是藉由感測器組合956加以測量。該感測器組合956包含:石英晶體振盪器210連接到驅動電路212、溫度感測器214及電池216,如在先前具體實例中所敘述者。
在此具體實例中,石英晶體振盪器210及溫度感測器222是設置成與導管958的上游部份966的內部連通,然而感測器組合956的其餘構件是設置於外罩960內。換句話說,該石英晶體振盪器210是浸沒於孔口板962的上游的氣體中。
一旦從石英晶體振盪器210獲得密度值,通過孔口964的氣體的質量流率則可藉由處理器230加以決定。該通過孔口的質量流率(mass flow rate)Q是定義為:18) Q=kvρ 1 A
其中,k是常數,v是氣體的速度,ρ 1 是上游氣體的密度,且A是孔口A的截面積。然而,從白努利方程式(Bernoulli’s equation)19)可獲得:
當孔口的截面積減少,則氣體的速率將增加,而氣體的壓力將降低。
通過孔口964的質量流率的決定是視習知的「扼流(choked)」或「臨界(critical)」流量的狀態而定。當氣體速度達到音速條件,亦即當由於孔口板962所造成的流量限制而使得氣體流動通過孔口964的速度達到音速時,則會出現如此的情況。當橫過孔口964的壓力比(亦即,P 1 /P 2 )大約為2或以上時,此會發生。另一可行的措施是當上游絕對壓力P 1 為至少0.5至1bar高於下游絕對壓力P 2 時,則此條件通常可應用。
一旦符合此條件時,氣體通過孔口964的速度進一步增加是非常少。因此,在扼流狀態,該v=c(在此所討論的在氣體中的音速),則方程式18)變成為:20)Q=kcρ 1 A
因此,對於具有固定截面積A的孔口而言,通過孔口964的質量流量是僅視上游密度而定。此是石英晶體振盪器210配置以測量的參數。
第22圖是以圖解說明質量流率測量的實驗數據。第22圖是對於氮氣的共振頻率(kHz)(在Y-軸)作為氣體流率(l/min)(在X-軸)的函數圖。如所展示者,該圖是高度地線性且顯示質量流率是可使用石英晶體振盪器210準確地加以測量。
此外,該石英晶體振盪器210的高準確度可使得測量達到具有百萬分比(ppm)解析度的高準確度。配合石英密度感測器210在高密度及壓力下的線性響應,則高準確度使其可準確地測量非常輕的氣體例如H2(氫氣)及He(氦氣)的質量流率。
然而,如上所述,使用石英晶體振盪器210的質量流量測量,將僅在扼流狀態下,亦即當通過孔口964的流速為接近或等於在氣體中的音速時為準確。在實務應用上,此將需要使用者維持通過供應管線720的氣體流量(gas flow)為在一特定最小值,以提供準確的測量。
因此,在僅單獨一個上游石英晶體振盪器210進行操作下,則無法提供通過孔口964是否為存在扼流狀態的指示(indication)。第21圖的具體實例是可操作以表達此形態。
在第21圖的質量流量組合952中,其配置具有又一石英晶體振盪器972的又一感測器組合970。藉由在孔口964的上游及下游兩者使用壓電感測器,則可達成準確的流量計量。
如上所揭述關於方程式19),若流動通過孔口964的流體的速度是音速或接近音速,則質量流率Q是與上游密度ρ 1 成比例。如上所揭述,若上游壓力對於下游壓力的比率(亦即,P 1 /P 2 )大約為2或以上時,則通常是可符合此條件。
然而,在實務應用上,該壓力比可能不足夠。應用白努利方程式且建立扼流的理論及音速,則可導出方程式21):
其中,k’是無因次常數,A是孔口面積,ρ 1 是上游密度且ρ 2 是下游密度。
明顯可見,若ρ 1 /ρ 2 ≧2,則方程式21)可藉由上述方程式20)加以近似(approximated),因為橫過孔口964的扼流狀態是視為存在。因此,在此情況,在ρ 1 /ρ 2 ≧2的情況,則可僅利用從第一感測器組合956的測量,以提供準確的指示質量流率。
然而,若該比率為低於此,使用感測器組合954,970兩者而分別測量上游密度ρ 1 及下游密度ρ 2 ,則方程式18)可用於計算質量流率,且用於決定在通過孔口964的流率低於扼流狀態下的質量流率。
回顧參照第19圖,第20圖的質量流量組合952或第21圖的質量流量組合952兩者之一皆可使用於氣體混合器900。
氣體混合器900的操作,現在將加以敘述。如前所述,分子量計950是可決定氣體A與B的混合物的平均分子量。除此以外,該分子量計950是可操作且以電子方式設定,以決定從輸出722的質量流率。
當兩種氣體以不同的比例混合時,則氣體混合物的平均分子量將會根據各氣體的相對比例而變化。因此,藉由實施混合物的平均分子量的測量、及各個別氣體的分子量、壓力及溫度的知識,則可決定在混合物中各氣體的比例,連同所欲的質量流量輸出。
氣體混合物的所欲質量流率是由使用者設定、或可為自動設定。此決定在處理器230中的設定點。其假設:從 第一氣體源702的氣體A是多數氣體,而從第二氣體源704的氣體B是少數氣體。
與前述具體實例相同,該感測器組合752是用於計算電磁閥714的下游的壓力P。因為第一氣體源的分子量MW A 是已知(因為從氣體源702的第一氣體A是封裝氣體),則緊鄰電磁閥714的下游的壓力可從上述方程式10)加以決定。
藉由感測器組合752所測得P的測量值,則被處理器230利用。在第三供應管線720中氣體混合物的平均分子量是藉由形成質量流量組合952的一部份的感測器組合956加以決定。在此具體實例中,該石英晶體振盪器210與先前具體實例的振盪器758相同,可操作以決定在第三供應管線720中或在導管958的上游部份966的氣體混合物的密度ρ mix 。氣體混合物的平均分子量MW mix 則可藉由處理器230從上述方程式10)加以決定。
為了根據方程式20)計算質量流率(其中,在方程式20)中的ρ 1 是相對應於ρ mix ),則需要從方程式22)計算在氣體混合物的音速:
其中,γ是在恆定壓力與恆定體積的比熱(specific heat)的比率(在1.3與1.667間,視氣體而定,此可由使用者預先設定,例如預先設定為多數氣體),R是氣體常數,且T是在孔口964前的混合物的絕對溫度。
流率,則可根據方程式23)計算得:23) Q=kcρ mix A
然後,流率Q值可與預定的設定點值相比較,且其差異(按照比例(proportional)、及視需要可選擇性地包括相對於時間的積分及/或微分)反饋到閥714,藉此而調節質量流率。
從第二氣體源704的少數氣體B的體積百分率(%B),則可根據上述方程式11)及12)加以決定,且藉由分子量計950加以調整為適當值。
上述具體實例提供一種低成本、可靠且穩固的方法,其可在特定質量流率下提供準確的氣體混合物,亦即在所需要的氣體的恆定質量流量、及在混合物中各氣體的比率是可靠且可準確地維持。
氣體混合器1000的另一可行的具體實例是展示於第23圖。該氣體混合器1000是可操作以電子方式控制兩種氣體的比例,與先前具體實例的氣體混合器600,700,800,900相同。
與第18圖的氣體混合器800相同,氣體混合器1000是可操作以電子方式控制從出口722的氣體的質量流率。氣體混合器1000的特性與氣體混合器700,800,900相同的部份是賦予相同的元件代表符號,因此在此將不再進一步加以敘述。
氣體混合器1000包含分子量計1050。在此配置中,該分子量計1050包含:第18圖的氣體混合器800中的第一感測器組合752及第二感測器組合754。除此以外,該分子量計1050進一步包含質量流量組合1052。該質量流量組合1052是位於第一供應管線706中的電磁閥714的下游與感測器組合756的上游間。
各組合752,754,1052是連接到處理器230。第一感測器組合752及第二感測器組合754是與氣體混合器700,800中的該等完全相同,因此在此將不進一步加以敘述。質量流量組合1052是實質地類似於在第20或21圖的任一者中所展示的質量流量組合952。兩者之一皆可使用此 配置。為揭述結構的目的,在此具體實例中的差異是該質量流量組合1052是位於第一供應管線706中的混合器單元718的上游,而非在其下游如在先前具體實例中者。
分子量計1050的操作,現在將加以敘述。在此具體實例中,質量流量組合1052基本上是與分子量測定不相關,與先前具體實例中的石英密度感測器210是用於兩種功能者完全不同。
在此具體實例中,質量流量組合1052是使用石英晶體振盪器210(第20/21圖)首先用於測量孔口964的上游的氣體A的密度(ρ A )。孔口964的上游的絕對溫度也是使用溫度感測器214加以測量。從第一氣體源702的氣體A的質量流率,則可從方程式22)及23)加以決定:流率則可根據方程式24)計算得:24) Q=kcρ A A
其中,
其中,γ是在恆定壓力與恆定體積的比熱的比率(在1.3與1.667間,視氣體而定,此可由使用者預先設定,例如預先設定為多數氣體),R是氣體常數,且T是在孔口964前的氣體A的絕對溫度。
輸入至處理器230的設定點數值,則可用於控制電磁閥714,以維持通過孔口964的氣體A的恆定流量。使用此措施的優點是因為在單一氣體(氣體A)中是發生扼流狀態,對於在氣體混合物的音速並不需要校正。
質量流量組合1052的下游的壓力P,則可藉由感測器組合752,根據方程式26)加以決定:
其中,ρ’ A 是孔口964的下游的氣體A的密度,如藉由感測器組合752的石英晶體振盪器756所測得者。
除此以外,該石英晶體振盪器756可用於檢查質量流量組合1052的操作,且若有需要時,可提供根據在第21圖所揭述的具體實例操作的校正。
一旦壓力P已經決定,則混合物的平均分子量、及%B數值是可利用第二感測器組合754及如上所列舉的方程式11)至13),且參照前述具體實例所揭述者加以決定。
除此以外,若有如此必要時,則額外的感測器組合可以第18圖的具體實例的方式位於第二供應管線708中。
上述具體實例的變異例對於熟習此技藝者將是明顯可見。硬體與軟體構件的精確架構可能會不同,但是仍然屬於本發明的範圍內。熟習此技藝者將可容易地瞭解可使用其他可行的架構。
例如,上述的具體實例是使用具有32.768kHz的基本頻率的石英晶體振盪器。然而,可使用在其他可行的頻率操作的晶體。例如,在60kHz及100kHz操作的石英晶體振盪器可使用於上述的具體實例。一展示關於不同的晶體的頻率隨著密度的變化圖是如第24圖所展示。關於又一實例,可使用在1.8MHz的頻率操作的晶體振盪器。
在較高頻率操作,則由於取樣一特定周期數所需要的時間期間較短,可使其更頻繁地監測壓力。除此以外,較高頻率晶體可使其在晶體的「睡覺」模式所使用的工作週期(duty cycle)較小。舉例來說明,在大多數的情況下,該 晶體及驅動電路將花費大部份的時間關閉,僅在測量需要時將其開啟大約1秒鐘。此可能發生例如每分鐘一次。當使用較高頻率晶體時,則可較快速地測得壓力。因此,可縮減其中晶體是在操作中的時間。此可減少電力消耗,且伴隨著可改善電池壽命。
除此以外,上述具體實例已藉由測量石英晶體振盪器的絕對頻率加以敘述。然而,在自足式(self-contained)電子設備併用入一搭配調節器的氣體鋼瓶中,藉由與完全相同類型但是封入於真空或壓力封裝(pressure package)中的參考晶體(reference crystal)的頻率相比較,測量感測器的頻率位移可能也是有利的。該壓力封裝可容納在所選擇的密度的氣體、在大氣條件下或可開放至氣體鋼瓶的外部的大氣氣體。
一適當的感測器組合1100是展示於第25圖。該感測器組合1100包含:第一石英晶體振盪器1102及第二石英晶體振盪器1104。該第一石英晶體振盪器1102是一種參考晶體,其位於在真空下的密封容器1106內。第一石英晶體振盪器1102是藉由驅動電路1108加以驅動。
第二石英晶體振盪器1104是一種類似於在前述具體實例中所揭述的晶體210的晶體。第二石英晶體振盪器 1104是暴露於在外罩1106內的氣體環境中。第二石英晶體振盪器1104是藉由驅動電路1110加以驅動。
此比較可藉由使用電子混頻電路(electronic mixer circuit)1114來實施,其組合雙頻訊號,且在等於兩個晶體間的差異的頻率產生一輸出。此配置可使其忽視由於例如溫度的小變化。
此外,由於僅差異頻率是需要加以測量,在感測器組合956中所使用的電路可加以簡化。此外,此手段是特別適合使用於其可能不易直接測量晶體頻率的高頻率(MHz)晶體振盪器。
除此以外,用於測量及顯示密度、質量或質量流量所需要的全部電子設備,並不需要安裝在氣體鋼瓶上或其中。例如,電子功能(electronic functions)可分成:永久安裝在鋼瓶上的單元、及安裝在客戶的使用工作站或暫時安裝在鋼瓶的出口,例如一般傳統的流量計所使用的位置上兩者之一皆可的單元。
此配置的一實例是可參照如第26圖所展示者。該配置包含:具有氣體鋼瓶1200、調節器1202及分子量計1204的氣體鋼瓶組合1200。該氣體鋼瓶1200、調節器1202及分子量計1204是實質地類似於氣體鋼瓶100、調 節器150及分子量計200,300,400,500,如先前在參照先前具體實例已實質地揭述者。
在此具體實例中,該分子量計1204包含石英晶體振盪器及驅動電路(未展示),類似於前述具體實例的石英晶體振盪器210及驅動電路212。天線1206是配備用於經由任何適當的遠端通訊協定的通訊,例如藍牙、紅外線(IR:Infrared)或RFID(無線射頻識別技術:Radio-frequency identification)。另一可行的是可利用一線式通訊。
關於又一可行的是可使用聲波通訊方法(acoustic communication method)。此等方法的優點是遠端通訊並不需要外部天線而可有效地達成。
連接管1208是連接到氣體鋼瓶1200的出口。該連接管是藉由快速連接的接頭1210而終接。該快速連接的接頭1210可使得輸送管線或構件容易且快速地與氣體鋼瓶1200連接及拆卸。
快速連接單元1250是配備用於連接到氣體鋼瓶1200。互補性快速連接的接頭1212是配備用於連接到接頭1210。此外,該快速連接單元1250是配備數據單元1252。該數據單元1252包含:顯示器1254及天線 1256,用於與氣體鋼瓶組合120的天線1204通訊。該顯示器1254可包含例如LCD、LED或日光可讀顯示器(daylight-readable display),以將電力消耗最小化、及將顯示器的視認性最大化。
數據單元1252可登錄藉由氣體鋼瓶組合1200的感測器組合1202所測得的各種參數。例如,該數據單元1252可登錄相對於時間的分子量。如此的登錄是有用的,例如對於焊接包商希望檢查該氣體流量是存在、且在長時間的氣體焊接程序對於關鍵的構件是正確,或對一特定客戶的使用率提供公司的數據。
除此以外,數據單元1250是配置成可提供下列功能:若氣體類型改變時,提供可聽見或看見的警報;含有及顯示氣體的類型數據;提供多模式操作,例如供應商/充填者模式及客戶模式;允許數據的輸入;提供數據,例如鋼瓶數目、氣體的類型、產品檢驗報告書、客戶歷史記錄(何人何日擁有該鋼瓶)、安全資料及操作提示是可記載在鋼瓶的摘要表中。
關於另一可行的是全部上述實例可從一種整體位於氣體鋼瓶100或外罩202的上方(或其內部)的系統視需要而加以處理、儲存或獲得,如在分子量計200,300,400,500中所論述者。
上述實施例圖解說明混合器配置是可操作以任何所欲的比例且在預定的質量流率或壓力下混合兩種氣體。然而,其可級聯(cascade)此等配置而使其能混合三種或以上的氣體。例如,一額外的感測器組合可添加至輸出722,及一額外的感測器組合可添加至額外的氣體源C。一般而言,欲獲得具有N種成份的混合物,則需要具有(2N-1)個感測器組合。
雖然上述具體實例已參照石英晶體振盪器的用途而加以說明,但是熟習此技藝者將可容易地瞭解可使用另一可行的壓電材料。例如,非限制性列舉可包括晶體振盪器:包含鉭酸鋰、鈮酸鋰、硼酸鋰、塊磷鋁石、砷化鎵、四硼酸鋰、磷酸鋁、氧化鍺鉍、多晶形鈦酸鋯陶瓷、高氧化鋁陶瓷、氧化鋅矽複合物、或酒石酸二鉀。
本發明的具體實例已特別參照圖解說明的實例加以敘述。雖然特定的實例是展示於圖式且在本文中加以詳細說明,然而應瞭解該等圖式並不意圖限制本發明為如同所揭示的特定形態。應瞭解的是可在本發明的範圍內對所揭述的實施例作各種變異及改良。
210‧‧‧石英晶體振盪器;晶體
500‧‧‧分子量計
510‧‧‧石英晶體振盪器
600‧‧‧氣體混合器
602‧‧‧第一氣體源
604‧‧‧第二氣體源
606‧‧‧第一供應管線
608‧‧‧第二供應管線
610‧‧‧止回閥
612‧‧‧止回閥
614‧‧‧主閥
616‧‧‧電磁閥
618‧‧‧混合器單元
620‧‧‧第三供應管線
622‧‧‧輸出
652‧‧‧螺線管驅動裝置;電子螺線管驅動裝置

Claims (13)

  1. 一種提供一氣體混合物的方法,其以相對比率提供該氣體混合物,該混合物包含至少第一氣體及與第一氣體不同的第二氣體,且該方法包括下列步驟:a)從第一氣體源以第一流率供應第一氣體;b)從第二氣體源以第二流率供應第二氣體;c)進行混合第一與第二氣體以形成一混合氣體;及d)在大氣壓力下供應該混合氣體至一出口;其中該方法進一步包含:e)進行測量與混合氣體相接觸的高頻平面壓電晶體振盪器的共振頻率;f)進行測量大氣壓力;g)從該共振頻率決定該混合氣體的密度;h)從該密度、該大氣壓力的測量值及該混合氣體溫度的測定值或預定值,進行決定混合氣體的平均分子量;以及i)因應該所測得平均分子量,進行自動控制第一及第二流率中之一者,以控制在該混合氣體中的第一與第二氣體的相對比率。
  2. 如請求項1所述的方法,其中,該步驟e)包括下列步驟:j)利用驅動電路驅動該壓電振盪器,使得該壓電晶體振盪器在單一共振頻率進行共振。
  3. 如請求項1所述的方法,其中,第一閥是配置在該第一氣體源的下游,用於調節該第一流率;第二閥是配置在該第二氣體源的下游,用於調節該第二流率;且步驟g)包括進行控制該第一及第二閥中的一個。
  4. 如請求項3所述的方法,其中,該第一及第二閥中的一個是可手動操作。
  5. 如前述請求項1至4中任一項所述的方法,其中,該步驟r)包括下列步驟:k)進行測量與大氣相接觸的高頻平面壓電晶體振盪器的共振頻率;l)從該共振頻率,進行決定大氣密度;以及m)從已知的空氣組成、及所測得大氣密度,進行決定大氣壓力。
  6. 一種氣體混合器配置,其包含:第一氣體源,用於供應第一氣體;第二氣體源,用於供應與該第一氣體不同的第二氣體;第一閥,用於調節第一氣體的流量;第二閥,用於調節第二氣體的流量;混合器,位於第一及第二閥的下游,且配置成在使用時可混合第一與第二氣體,以提供一混合氣體;該混合氣體在大氣壓力下的出口量計,配置成可測量混合氣體的平均分子量,且其具有與混合氣體相接觸的高頻平面壓電晶體振盪器、 及可操作以決定大氣壓力的感測器,該量計可操作而從該所測得共振頻率決定該混合氣體的密度,且從該混合氣體的密度、大氣壓力的測量值、及經決定的或預定的該混合氣體的溫度決定混合氣體的平均分子量;以及控制器,其因應所測得該混合氣體的平均分子量而可操作以控制該第一及第二閥中的至少一個,以控制在該混合氣體中的第一與第二氣體的相對比率。
  7. 如請求項6所述的氣體混合器配置,其中,該量計進一步包含驅動電路,用於驅動壓電振盪器,使得該壓電晶體振盪器在單一共振頻率進行共振。
  8. 如請求項6所述的氣體混合器配置,其中,該量計進一步包含溫度感測器。
  9. 如請求項6所述的氣體混合器配置,其中,可操作以測量大氣壓力的該感測器包含:在大氣壓力下與空氣相接觸的高頻平面壓電晶體振盪器。
  10. 如前述請求項6至9中任一項所述的氣體混合器配置,其中,該第一及第二閥中的一個包含電磁閥,其可藉由該控制器以電子方式操作。
  11. 如請求項10所述的氣體混合器配置,其中,該第一及第二閥中的一個是可手動操作。
  12. 一種電腦程式產品,其可藉由可程式規劃處理設備來執行,具有一種或以上用於實施如請求項1至5中之任一項所述的步驟的軟體部份。
  13. 一種儲存媒體,其可使用於電腦,具有如請求項12所述而儲存於其中的電腦程式產品。
TW102118095A 2012-05-24 2013-05-22 用於提供一氣體混合物的方法及設備 TWI582328B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12169384.0A EP2667276B1 (en) 2012-05-24 2012-05-24 Method of, and apparatus for, providing a gas mixture

Publications (2)

Publication Number Publication Date
TW201405045A TW201405045A (zh) 2014-02-01
TWI582328B true TWI582328B (zh) 2017-05-11

Family

ID=48483086

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102118095A TWI582328B (zh) 2012-05-24 2013-05-22 用於提供一氣體混合物的方法及設備

Country Status (12)

Country Link
US (1) US9690304B2 (zh)
EP (1) EP2667276B1 (zh)
JP (1) JP6258926B2 (zh)
KR (1) KR101659200B1 (zh)
CN (1) CN104303127B (zh)
BR (1) BR112014029050B1 (zh)
CA (1) CA2874504C (zh)
ES (1) ES2659146T3 (zh)
MX (1) MX351638B (zh)
PL (1) PL2667276T3 (zh)
TW (1) TWI582328B (zh)
WO (1) WO2013174954A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10890548B2 (en) 2017-11-23 2021-01-12 Industrial Technology Research Institute Resistive gas sensor and gas sensing method therefor

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458348B1 (en) 2010-11-29 2013-08-14 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the mass flow rate of a gas
EP2458344B1 (en) * 2010-11-29 2018-03-14 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the true contents of a cylinder of gas under pressure
PL2458377T3 (pl) 2010-11-29 2020-02-28 Air Products And Chemicals, Inc. Sposób i urządzenie do pomiaru masy cząsteczkowej gazu
EP2667162B1 (en) 2012-05-24 2015-09-30 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the physical properties of two-phase fluids
EP2667176B1 (en) 2012-05-24 2015-02-25 Air Products And Chemicals, Inc. Apparatus for measuring the true contents of a cylinder of gas under pressure
PL2667159T3 (pl) 2012-05-24 2022-05-02 Air Products And Chemicals, Inc. Sposób oraz urządzenie dla mierzenia masowego natężenia przepływu gazu
PL2667277T3 (pl) * 2012-05-24 2018-05-30 Air Products And Chemicals, Inc. Sposób i urządzenia do dostarczania mieszaniny gazu
PL2667160T3 (pl) 2012-05-24 2021-05-04 Air Products And Chemicals, Inc. Sposób i urządzenie do regulowania masowego natężenia przepływu gazu
ES2659146T3 (es) 2012-05-24 2018-03-14 Air Products And Chemicals, Inc. Método y aparato para proporcionar una mezcla de gases
US9236958B2 (en) 2012-08-10 2016-01-12 Skorpios Technologies, Inc. Method and system for performing testing of photonic devices
CN104199474A (zh) * 2014-08-28 2014-12-10 四川金星压缩机制造有限公司 Mrc混合制冷剂自动配比控制系统及方法
US9672522B2 (en) * 2014-09-15 2017-06-06 Airgas, Inc. System and method for capturing and transferring information onto a gas cylinder using a QR code
GB201504443D0 (en) * 2015-03-17 2015-04-29 Linde Ag A digital valve for mixing fluids
DE102016000518A1 (de) * 2016-01-19 2017-07-20 Linde Aktiengesellschaft Gasverdünnungssystem
US11309172B2 (en) * 2016-08-09 2022-04-19 Purdue Research Foundation Reaction monitoring
US10537958B2 (en) 2016-08-15 2020-01-21 Illinois Tool Works Inc. System and method for controlling shielding gas flow in a welding device
JP6600854B2 (ja) * 2016-08-24 2019-11-06 株式会社フジキン 圧力式流量制御装置、その流量算出方法および流量制御方法
JP6975440B2 (ja) * 2017-01-11 2021-12-01 Q’z株式会社 二種混合気体の濃度測定装置
DE102017201045A1 (de) * 2017-01-23 2018-07-26 Bayerische Motoren Werke Aktiengesellschaft Druckbehältersystem für ein Kraftfahrzeug
CN106881029B (zh) * 2017-03-10 2022-10-18 大连大特气体有限公司 手自一体式混合气配置系统
CN107299241B (zh) * 2017-06-02 2019-01-29 青海盐湖工业股份有限公司 一种镁合金熔炼保护气体的供气系统及镁合金熔炼炉
CN108014667B (zh) * 2017-12-12 2019-08-13 中国科学院过程工程研究所 一种烟气混合装置及方法
US10591934B2 (en) * 2018-03-09 2020-03-17 Lam Research Corporation Mass flow controller for substrate processing
US10928287B2 (en) 2018-08-09 2021-02-23 Air Products And Chemicals, Inc Method and apparatus for using a gas density sensor to measure and control gas mixture composition
DE102018217844A1 (de) * 2018-10-18 2020-04-23 Intega Gmbh Gefahrgasmischer
CN109373183A (zh) * 2018-11-22 2019-02-22 中国工程物理研究院激光聚变研究中心 一种片状放大器的循环气体吹扫系统
US11596759B2 (en) * 2018-12-12 2023-03-07 General Electric Company Methods and systems for a medical gas delivery module
US11938574B2 (en) 2021-01-22 2024-03-26 Illinois Tool Works Inc. Gas surge prevention using improved flow regulators in welding-type systems
US11801482B2 (en) 2021-02-17 2023-10-31 Illinois Tool Works Inc. Mixing fluids in welding-type equipment
EP4169607A1 (de) * 2021-10-21 2023-04-26 Mems Ag Mischanteilsbestimmung beim mischen von gasen
CN114432916A (zh) * 2021-12-30 2022-05-06 北京航天长峰股份有限公司 一种气体混合设备
CN114432944B (zh) * 2022-01-27 2023-03-31 苏州科技大学 一种配气方法
US20240044738A1 (en) 2022-08-04 2024-02-08 Air Products And Chemicals, Inc. Compressed fluid vessel monitoring apparatus and method
DE102022122028A1 (de) * 2022-08-31 2024-02-29 Hoerbiger Flow Control Gmbh Gasmischvorrichtung zum kontrollierten Mischen von zwei unterschiedlichen Gasen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW247965B (zh) * 1993-05-07 1995-05-21 Teisan Kk
US6266996B1 (en) * 1998-10-06 2001-07-31 Trw Inc. Simple and inexpensive method and device for measuring concentration and rate of change of a crystal etchant gas, such as HF or DF gas
TW521000B (en) * 2000-02-04 2003-02-21 Air Liquide Apparatus and method for mixing gases
JP2004219386A (ja) * 2003-01-17 2004-08-05 Vacuum Products Kk 2種混合気体の濃度測定装置
JP2006241516A (ja) * 2005-03-03 2006-09-14 National Institute Of Advanced Industrial & Technology 混合ガスによる薄膜作製方法とその装置

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612966A (en) 1969-11-03 1971-10-12 Dybel Frank Richard Piezoelectric transducer with improved sensing circuit
US3561832A (en) 1969-12-05 1971-02-09 Hewlett Packard Co Quartz resonator pressure transducer
GB1349257A (en) 1970-04-24 1974-04-03 Rotron Inc Mass flow and mass flow rate indication
US3902355A (en) 1972-07-31 1975-09-02 Gauting Gmbh Apparatebau Apparatus for the electronic-digital measurement of gas pressure
US4126049A (en) 1977-02-14 1978-11-21 Cotter Mitchell A System and method of measuring fluid pressure force
GB2027886B (en) 1978-08-14 1983-02-02 Solartron Electronic Group Transducer for sensing a parameter of a fluid
US4275393A (en) 1979-07-03 1981-06-23 Polyvend Inc. Method and apparatus for sensing pressure
JPS58151517A (ja) 1982-03-05 1983-09-08 Sumitomo Metal Ind Ltd 粉粒体の流量測定方法及び装置
FR2530338A1 (fr) 1982-07-13 1984-01-20 Asulab Sa Element sensible a la pression et capteur de pression en faisant application
FR2532047A1 (fr) 1982-08-19 1984-02-24 Asulab Sa Capteur de mesure muni d'un resonateur piezo-electrique compense en temperature
US4644796A (en) 1983-06-21 1987-02-24 Quartztronics, Inc. Pressure measurement apparatus and method
US4526480A (en) 1983-06-21 1985-07-02 Quartztronics, Inc. Fluid density temperature measurement apparatus and method
US4574639A (en) 1983-06-21 1986-03-11 Quartztronics, Inc. Pressure force measurement apparatus and method
DE3345750A1 (de) 1983-12-17 1985-06-27 Robert Bosch Gmbh, 7000 Stuttgart Druckaufnehmer mit sensorquarz
US4644804A (en) 1984-07-17 1987-02-24 Franz Rittmeyer Ag Quartz resonating force and pressure transducer
DE3529948A1 (de) 1985-08-22 1987-03-05 Nord Micro Elektronik Feinmech Messanordnung zum messen des luftdrucks, insbesondere zur luftdatenerfassung im flugzeug
US4680970A (en) 1986-01-31 1987-07-21 Yokogawa Hokushin Electric Corporation Apparatus for measuring pressure
JPS62184325A (ja) 1986-02-07 1987-08-12 Seiko Instr & Electronics Ltd 水晶式気体圧力計
US4713774A (en) 1986-03-13 1987-12-15 Phillips Petroleum Company Alkylation reactor quality control
JPS62218834A (ja) 1986-03-20 1987-09-26 Seiko Instr & Electronics Ltd 気体圧力計
US4734609A (en) 1986-07-25 1988-03-29 Calogic Corporation Gas density transducer
DE3641842A1 (de) 1986-12-08 1988-06-16 Paul Prof Dr Leiderer Verfahren und vorrichtung zur druckmessung in einem gasfoermigen medium
US4802370A (en) 1986-12-29 1989-02-07 Halliburton Company Transducer and sensor apparatus and method
JPH06102253B2 (ja) 1987-07-31 1994-12-14 三菱重工業株式会社 薄板連続鋳造装置のサイド堰
US4938068A (en) 1988-09-28 1990-07-03 The Slope Indicator Co. Pressure transducer
JP3068828B2 (ja) 1988-12-29 2000-07-24 株式会社テクノール 緩減速機能を有する液圧アクチュエータ回路
CH687276A5 (de) 1989-01-23 1996-10-31 Balzers Hochvakuum Stimmgabelquarz-Manometer.
AT393416B (de) 1989-04-27 1991-10-25 Avl Verbrennungskraft Messtech Messverfahren zur bestimmung bzw. ueberwachung von mechanischen und/oder physikalischen groessen
JPH0368828A (ja) 1989-08-07 1991-03-25 Daishinku Co 圧力測定装置
EP0484569A1 (de) 1990-11-06 1992-05-13 Asea Brown Boveri Ag Vorrichtung zur Messung von Schwefelhexafluorid-Zersetzungsprodukten
US5136885A (en) 1991-04-05 1992-08-11 Tif Instruments, Inc. Quartz crystal pressure sensor
JPH0543044A (ja) 1991-08-07 1993-02-23 Murata Mach Ltd 無人搬送車の物品ガイド装置
US5235844A (en) 1991-10-23 1993-08-17 Niagara Mohawk Power Corporation Multiple gas property sensor
DE4218926A1 (de) 1992-06-10 1993-12-16 Asea Brown Boveri Vorrichtung zur Messung einer Gasdichte
RU2061218C1 (ru) 1992-07-22 1996-05-27 Всероссийский научно-исследовательский институт природных газов и газовых технологий Устройство для определения свойств текучих сред
US5307683A (en) 1992-08-05 1994-05-03 Marathon Oil Company Transient temperature compensation for pressure gauges
US5307668A (en) 1992-10-05 1994-05-03 Badger Meter, Inc. Gas density meter and method
US5471882A (en) 1993-08-31 1995-12-05 Quartzdyne, Inc. Quartz thickness-shear mode resonator temperature-compensated pressure transducer with matching thermal time constants of pressure and temperature sensors
US5476115A (en) 1994-03-10 1995-12-19 Praxair Technology, Inc. Automatic gas blending system
JP3865813B2 (ja) 1995-12-01 2007-01-10 有限会社エーディ 流体混合装置
GB2316773B (en) 1996-06-12 1999-09-29 Gas Technology Canada Electronic gas regulator
JPH1010031A (ja) * 1996-06-20 1998-01-16 Tokico Ltd 密度計
US5868159A (en) 1996-07-12 1999-02-09 Mks Instruments, Inc. Pressure-based mass flow controller
US5900534A (en) 1996-10-07 1999-05-04 Natural Fuels Corporation Densitometer
US6062256A (en) 1997-02-11 2000-05-16 Engineering Measurements Company Micro mass flow control apparatus and method
DE19718520C1 (de) 1997-05-02 1998-10-01 Daimler Benz Ag Jalousierahmenanordnung
US6076392A (en) * 1997-08-18 2000-06-20 Metasensors, Inc. Method and apparatus for real time gas analysis
US6286361B1 (en) 1998-01-05 2001-09-11 Rolls-Royce Plc Method and apparatus for remotely detecting pressure, force, temperature, density, vibration, viscosity and speed of sound in a fluid
US6058761A (en) * 1998-01-30 2000-05-09 Badger Meter, Inc. Measurement of relative density of combustible gases
WO1999040553A1 (en) 1998-02-05 1999-08-12 Wan Tae Kim Alarm device for sensing gas quantity within pressure vessel
US5954089A (en) 1998-04-17 1999-09-21 Trw Inc. Electromagnetic regulator utilizing alternate valve operating modes for gas pressure regulation
DE19901119B4 (de) 1999-01-14 2006-02-23 Abb Patent Gmbh Überwachungssystem für eine gasisolierte Hochspannungsschaltanlage
US6532822B1 (en) 2000-09-26 2003-03-18 Clark Davis Boyd Resonant torsion pendulum pressure sensor
JP2002122498A (ja) 2000-10-12 2002-04-26 Anelva Corp 含有ガスの圧力測定方法及び測定装置
GB2379983B (en) 2001-09-19 2004-11-17 Eric Atherton Transducer assembly
US7254983B2 (en) 2001-10-16 2007-08-14 Hera Usa Inc. Fuel gauge for hydrogen storage media
DE10232823B4 (de) 2002-04-29 2004-08-12 Hydrotechnik Gmbh Dichtewächter für SF6-isolierte Hoch- oder Mittelspannungsanlagen
JP3744913B2 (ja) 2003-03-20 2006-02-15 株式会社オーバル 渦流量計センサ及び渦流量計
US7063097B2 (en) 2003-03-28 2006-06-20 Advanced Technology Materials, Inc. In-situ gas blending and dilution system for delivery of dilute gas at a predetermined concentration
JP4266850B2 (ja) 2004-02-25 2009-05-20 バキュームプロダクツ株式会社 2成分混合気体の濃度測定装置
FR2888930B1 (fr) 2004-12-27 2007-08-31 Thales Sa Dispositfi de mesure a resonateur et procede mettant en oeuvre le dispositif
US7454952B2 (en) 2005-05-02 2008-11-25 Thermo Fisher Scientific Inc. Method and apparatus for monitoring mercury in a gas sample
EP1899040A2 (en) * 2005-06-22 2008-03-19 Advanced Technology Materials, Inc. Apparatus and process for integrated gas blending
CA2622383A1 (en) 2005-09-22 2007-04-05 Nano-Proprietary, Inc. Hydrogen sensor
US20100107735A1 (en) 2005-09-22 2010-05-06 Igor Pavlovsky Gas Sensor
JP3969442B2 (ja) 2005-09-26 2007-09-05 エプソントヨコム株式会社 圧力センサ
US20070089796A1 (en) 2005-10-26 2007-04-26 Tamara Electra Brown Medical air production systems
US20070186982A1 (en) 2006-02-10 2007-08-16 Cohen Joseph P Method for dispensing compressed gas
JP4798774B2 (ja) 2006-03-14 2011-10-19 株式会社山武 混合ガス供給システム
US7444878B1 (en) 2006-10-30 2008-11-04 Northrop Grumman Systems Corporation Resonant frequency pressure sensor
TWM334632U (en) 2007-11-02 2008-06-21 su-hua Dai Unitary gas pressure adjusting device
JP2009198472A (ja) 2008-02-25 2009-09-03 Mitsubishi Heavy Ind Ltd 高圧ガス流量計測装置及び流量計測方法
US20100269365A1 (en) 2008-05-16 2010-10-28 Miller Kenneth C System and Method for Alternating Fluid Flow
JP5093685B2 (ja) 2008-08-08 2012-12-12 独立行政法人産業技術総合研究所 プラズマ装置の供給ガス分解率測定装置
US7870791B2 (en) 2008-12-03 2011-01-18 Rosemount Inc. Method and apparatus for pressure measurement using quartz crystal
JP5457021B2 (ja) * 2008-12-22 2014-04-02 東京エレクトロン株式会社 混合ガスの供給方法及び混合ガスの供給装置
FR2940624A1 (fr) * 2008-12-30 2010-07-02 Akhea Dispositif melangeur d'au moins deux constituants gazeux
EP2409991B1 (en) 2009-03-19 2017-05-03 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
DE102009028006A1 (de) 2009-07-24 2011-01-27 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp sowie Meßgerät mit einem solchen Meßwandler
GB0917216D0 (en) 2009-10-01 2009-11-18 Johnson Matthey Plc Method and apparatus for determining a fluid density
DE102010043865A1 (de) 2009-11-30 2011-07-14 Horiba Stec Co., Ltd. Fluid device
CN101708437B (zh) * 2009-12-31 2012-07-25 中煤科工集团重庆研究院 煤矿用复合混气装置
DE102010028475A1 (de) 2010-05-03 2011-11-03 Endress + Hauser Gmbh + Co. Kg Verfahren und Vorrichtung zur Bestimmung von Strömungseigenschaften eines Mediums in einer Rohrleitung
CN101881640A (zh) 2010-06-30 2010-11-10 重庆耐德正奇流量仪表有限公司 涡街质量流量计
CN202061563U (zh) * 2011-03-15 2011-12-07 天津力冠能源科技有限公司 多气掺混混气机
CN202212112U (zh) * 2011-08-12 2012-05-09 苏州苏净保护气氛有限公司 氮氢自动配比混合装置
EP2667176B1 (en) 2012-05-24 2015-02-25 Air Products And Chemicals, Inc. Apparatus for measuring the true contents of a cylinder of gas under pressure
EP2667161A1 (en) 2012-05-24 2013-11-27 Air Products and Chemicals, Inc. Method of, and apparatus for, measuring the flow rate of a gas
PL2667159T3 (pl) 2012-05-24 2022-05-02 Air Products And Chemicals, Inc. Sposób oraz urządzenie dla mierzenia masowego natężenia przepływu gazu
ES2659146T3 (es) 2012-05-24 2018-03-14 Air Products And Chemicals, Inc. Método y aparato para proporcionar una mezcla de gases
PL2667160T3 (pl) 2012-05-24 2021-05-04 Air Products And Chemicals, Inc. Sposób i urządzenie do regulowania masowego natężenia przepływu gazu

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW247965B (zh) * 1993-05-07 1995-05-21 Teisan Kk
US6266996B1 (en) * 1998-10-06 2001-07-31 Trw Inc. Simple and inexpensive method and device for measuring concentration and rate of change of a crystal etchant gas, such as HF or DF gas
TW521000B (en) * 2000-02-04 2003-02-21 Air Liquide Apparatus and method for mixing gases
JP2004219386A (ja) * 2003-01-17 2004-08-05 Vacuum Products Kk 2種混合気体の濃度測定装置
JP2006241516A (ja) * 2005-03-03 2006-09-14 National Institute Of Advanced Industrial & Technology 混合ガスによる薄膜作製方法とその装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10890548B2 (en) 2017-11-23 2021-01-12 Industrial Technology Research Institute Resistive gas sensor and gas sensing method therefor

Also Published As

Publication number Publication date
JP2015526653A (ja) 2015-09-10
WO2013174954A1 (en) 2013-11-28
PL2667276T3 (pl) 2018-04-30
BR112014029050B1 (pt) 2022-05-17
MX351638B (es) 2017-10-23
ES2659146T3 (es) 2018-03-14
EP2667276A1 (en) 2013-11-27
CA2874504A1 (en) 2013-11-28
KR20150004924A (ko) 2015-01-13
EP2667276B1 (en) 2017-11-08
US20150107679A1 (en) 2015-04-23
JP6258926B2 (ja) 2018-01-10
TW201405045A (zh) 2014-02-01
US9690304B2 (en) 2017-06-27
BR112014029050A2 (pt) 2017-06-27
CA2874504C (en) 2016-08-23
CN104303127B (zh) 2017-04-19
CN104303127A (zh) 2015-01-21
MX2014013704A (es) 2015-02-04
KR101659200B1 (ko) 2016-09-22

Similar Documents

Publication Publication Date Title
TWI582328B (zh) 用於提供一氣體混合物的方法及設備
TWI582329B (zh) 提供一氣體混合物的方法及設備
TWI479128B (zh) 用於測量一氣體的質量流率的方法及設備
JP6126207B2 (ja) ガスの質量流速を測定するための方法及び機器
CA2817797C (en) Method of, and apparatus for, measuring the molecular weight of a gas
TWI448667B (zh) 測量氣體的質量流率的方法及設備
TWI512421B (zh) 用於調節一氣體的質量流率的方法、控制器、電腦程式產品及儲存該電腦程式產品的儲存媒體