TWI548449B - 包含經摻雜的銀奈米粒子之金屬粒子溶膠 - Google Patents

包含經摻雜的銀奈米粒子之金屬粒子溶膠 Download PDF

Info

Publication number
TWI548449B
TWI548449B TW100138416A TW100138416A TWI548449B TW I548449 B TWI548449 B TW I548449B TW 100138416 A TW100138416 A TW 100138416A TW 100138416 A TW100138416 A TW 100138416A TW I548449 B TWI548449 B TW I548449B
Authority
TW
Taiwan
Prior art keywords
metal
group
nanoparticle sol
solution
silver
Prior art date
Application number
TW100138416A
Other languages
English (en)
Other versions
TW201233437A (en
Inventor
史蒂芬妮 伊登
艾爾莎 舒德里奇
Original Assignee
拜耳智慧財產有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 拜耳智慧財產有限公司 filed Critical 拜耳智慧財產有限公司
Publication of TW201233437A publication Critical patent/TW201233437A/zh
Application granted granted Critical
Publication of TWI548449B publication Critical patent/TWI548449B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0043Preparation of sols containing elemental metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1026Alloys containing non-metals starting from a solution or a suspension of (a) compound(s) of at least one of the alloy constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Catalysts (AREA)
  • Conductive Materials (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Description

包含經摻雜的銀奈米粒子之金屬粒子溶膠
本發明係關於一種金屬粒子溶膠,其包含摻雜有金屬或金屬化合物的銀奈米粒子,該金屬或金屬化合物係選自下列金屬之群組:釕、銠、鈀、鋨、銥與鉑,較佳地為釕;關於一種製造此溶膠之方法及關於其用途。
含有銀奈米粒子之金屬粒子尤其被用來製造塗層導電塗層或用來製造用以製造導電結構塗層(如呈印刷法所製造之微結構形式)之噴墨與絲印法之目的的墨水。在此文義下,例如對於製造撓性RFID標籤而言,撓性塑膠基底的塗層尤其重要。為了達到充分的導電率,必須在高溫下充分乾燥並燒結藉由銀奈米粒子溶膠所施加的塗層,對塑膠基底而言這代表了可觀的熱應力。
因此業界試著藉由適合的手段來降低為了達到充分導電率的燒結時間及/或燒結溫度,因而降低塑膠基底上的此類熱應力。
WO 2007/118669 A1揭露了金屬粒子溶膠的製造方法,其中用於製造的金屬鹽溶液含有選自由下列組成之群組的離子:鐵、釕、鋨、鈷、銠、銥、鎳、鈀、鉑、銅、銀、金、鋅及/或鎘。然後WO 2007/118669 A1並未揭露任何降低燒結時間或燒結溫度的手段。
US 4,778,549揭露,當加熱至750℃以上的溫度時,藉由選自下列群組之催化作用金屬的存在而加速自玻璃或陶瓷體的有機材料分解:釕、銠、鈀、鋨、銥及鉑。自J.Am.Chem.Soc. 1989,111,1185-1193已知,在Ru(001)的金屬表面上會催化聚醚的分解。然而上述文獻並未指出,如何降低達到充分導電率所需之銀奈米粒子塗層的燒結時間及/或燒結溫度以減低塑膠基底上的熱應力。
因此仍需要一種能夠降低含有銀奈米粒子之塗層之燒結時間及/或燒結溫度的簡單方法,以減低塑膠基底上的熱應力並同時達到該應用充分所需的導電率。
故本發明的一目的在於找到一種含有銀奈米粒子的金屬粒子溶膠及其製造方法,利用此方法可降低達到充分導電率所需的燒結時間及/或燒結溫度因而可減低尤其是塑膠基底上的熱應力。
令人驚訝地發現利用選自下列群組之金屬以0.1至10重量%含量來摻雜銀奈米粒子能夠大幅地降低為了達到充分導電率所需的燒結時間:釕、銠、鈀、鋨、銥與鉑,其以金屬粒子溶膠的銀含量為基準且呈金屬或至少一金屬化合物的形式。在此例中可降低上至80%的燒結時間,這會使得尤其是熱敏感之塑膠基底的熱應力緩和並同時可增加可用來塗佈此類導電結構的塑膠基底的範圍。或者相較於未有對應摻雜之已知銀奈米粒子而言,根據本發明之金屬粒子溶膠在使用相對的燒結時間下可達到明顯較高的導電率。
因此,本發明提供一種金屬奈米粒子溶膠,其具有金屬奈米粒子的含量1 g/l,該溶膠含有
- 銀奈米粒子
- 至少一分散劑,及
- 至少一液態分散介質
其特徵在於,金屬粒子溶膠含有0.1至10重量%之至少一選自下列群組的金屬:釕、銠、鈀、鋨、銥與鉑,其以金屬奈米粒子溶膠的銀含量為基準且呈金屬及/或至少一金屬化合物的形式。
較佳地,以金屬奈米粒子溶膠的銀含量為基準,呈金屬及/或至少一金屬化合物之形式的金屬(選自下列群組:釕、銠、鈀、鋨、銥與鉑)含量係為0.1至5重量%的量,尤其較佳地具有0.4至2重量%的量。
在本發明的範疇中,選自下列群組的金屬:釕、銠、鈀、鋨、銥與鉑,較佳為釕。在根據本發明的金屬奈米粒子溶膠中,較佳地至少90重量%,更較佳地至少95重量%,尤其較佳地至少99重量%,更特佳全部的釕係以二氧化釕的形式存在。
在大部分的較佳實施例,金屬奈米粒子溶膠中的銀奈米粒子包含至少80%,較佳地至少90%含量的至少一金屬(選自下列群組:釕、銠、鈀、鋨、銥與鉑)的含量。金屬奈米粒子溶膠只含有少量不含銀之至少一金屬(選自下列群組:釕、銠、鈀、鋨、銥與鉑)的金屬奈米粒子或金屬化合物奈米粒子。較佳地,金屬奈米粒子溶膠含有少於20%,尤其較佳地少於10%含量之此金屬,其以此金屬的含量為基準,該金屬係選自下列群組:釕、銠、鈀、鋨、銥與鉑,其係呈此金屬之無銀的金屬奈米粒子或金屬化合物奈米粒子。
一般而言,根據本發明的金屬奈米粒子溶膠較佳地具有1 g/l至25.0 g/l的金屬奈米粒子含量。然而,藉由使用濃縮步驟亦可達到上至500.0 g/l或更高的金屬奈米粒子含量。
在本發明的範疇中,金屬奈米粒子意指有效動態水力直徑(藉由動態光散射所量測)小於300 nm,較佳地有效動態水力直徑0.1至200 nm,尤其較佳地1至150 nm,更尤其較佳地20至140 nm的金屬奈米粒子。例如,來自Brookhaven Instrument Corporation的ZetaPlus Zeta Potential Analyzer適合用於動態光散射之量測。
金屬奈米粒子係藉助於至少一液態分散介質中的至少一分散劑而進行分散。
因此,根據本發明的金屬奈米粒子溶膠藉由高膠體化學穩定性而區分,即便是進行濃縮後仍保留此特性。「膠體化學穩定性」一詞在此係指,即便在施用前經過傳統的儲存時間但膠狀分散液或膠體的特性並不會有大幅的改變,例如膠體粒子不會發生實質上的聚集或凝聚。
較佳地使用聚合物分散劑來作為分散劑,其較佳地具有100 g/mol至1 000 000 g/mol,尤其較佳地1000 g/mol至100 000 g/mol的分子量(重量平均) Mw。此類分散劑可自市面上購得。分子量(重量平均) Mw可較佳地使用聚苯乙烯來作為標準以凝膠滲透層析來加以測定。
藉著選擇分散劑亦可調整金屬奈米粒子的表面特性。附著至粒子表面的分散劑可以例如對粒子提供表面正或負電荷。
在本發明的一較佳實施例中,分散劑係選自由下列者所構成的群組:烷氧化物、烷基醇醯胺(alkylolamides)、酯、氧化胺、烷基聚葡萄糖苷、烷基酚、芳烷基酚、水溶性均聚物、統計共聚物(statistical copolymers)、嵌段共聚物、接枝聚合物、聚環氧乙烷、聚乙烯醇、聚乙烯醇與聚乙烯基乙酸酯的共聚物、聚乙烯吡咯啶酮、纖維素、澱粉、明膠、明膠衍生物、胺基酸聚合物、聚離胺酸、聚天冬胺酸(polyasparagic acid)、聚丙烯酸酯、聚伸乙基磺酸酯、聚苯乙烯磺酸酯、聚甲基丙烯酸酯、芳族磺酸與甲醛的縮合產物、萘磺酸鹽、木質素磺酸鹽、丙烯酸單體的共聚物、聚伸乙基亞胺、聚乙烯胺、聚烯丙基胺、聚(2-乙烯吡啶)及/或聚二烯丙基二甲基氯化銨。
此類分散劑一方面會影響金屬奈米粒子溶膠的粒子尺寸或粒子尺寸分佈。對於某些應用而言,具有狹窄的粒子尺寸分佈是很重要的。對於其他應用而言,由於粒子可採取較密集的充填,具有寬廣或多型態的粒子尺寸分佈是有利的。該類分散劑的另一優點在於,其可對其所附著的表面上之粒子提供有利的特性。除了上述可藉由互斥而影響膠體穩定性的表面正與負電荷外,亦可對表面提供親水性或斥水性及生物相容性。在例如粒子欲分散至特定介質如聚合物中時,奈米粒子的親水性與斥水性是很重要的。表面的生物相容性使奈米粒子能被用於醫療應用。
液態分散介質/複數介質係較佳地為水或含水與有機溶劑(較佳地為水溶性有機溶劑)的混合物。但例如當此方法欲於0℃以下或100℃以上的溫度下進行時或當產物欲被混入其中水的存在會導致問題的基質中時,亦可使用其他溶劑。例如,可使用極性質子性溶劑如醇類與丙酮、極性非質子性溶劑如N,N-二甲基甲醯胺(DMF)或非極性溶劑如CH2Cl2。混合物較佳地含有至少50重量%,較佳地至少60重量%的水,尤其較佳地至少70重量%的水。液態分散介質/複數介質尤其較佳地為水或水與醇類、醛類及/或酮類的混合物,尤其較佳地為水或水與單價或多價醇類(具有上至四個碳原子,例如甲醇、乙醇、正丙醇、異丙醇或乙二醇)、醛類(具有上至四個碳原子,例如甲醛)及/或酮類(具有上至四個碳原子,例如丙酮或甲基乙基酮)的混合物。水是更尤其較佳的分散介質。
本發明更提供一種根據本發明之金屬奈米粒子溶膠的製造方法。
在此已證明了尤其有利的方法中,先製造至少部分奈米級的金屬氧化物及/或金屬氫氧化物粒子然後在接續的步驟中將其還原,以製造奈米級的金屬粒子。然而在本發明的範疇中,在此例中只會將氧化銀及/或氫氧化銀及/或氧化銀-氫氧化銀還原為元素銀。選自下列群組之金屬的金屬氧化物不會或不會完全被還原為元素金屬:釕、銠、鈀、鋨、銥與鉑,且其較佳地不會被還原為元素金屬。
因此本發明提供一種根據本發明之金屬奈米粒子溶膠的製造方法,其特徵在於
a) 將一銀鹽溶液、一含有至少一選自下列群組之金屬的金屬鹽之溶液:釕、銠、鈀、鋨、銥與鉑及一含有氫氧離子的溶液組合;
b) 接著利用一還原劑與步驟a)中所獲得的該溶液反應,
步驟a)中的所有溶液中的至少一者含有至少一分散劑,其特徵在於在步驟a)中同時組合該三種溶液。
令人驚訝地發現,只有利用步驟a)中同時組合銀鹽溶液、含有至少一選自釕、銠、鈀、鋨、銥與鉑的群組之金屬的金屬鹽之溶液及含有氫氧離子的溶液所獲得的金屬奈米粒子溶膠才能降低達到充分導電率所需的燒結時間。若在添加含有氫氧離子的溶液前將含有至少一選自釕、銠、鈀、鋨、銥與鉑的群組之金屬的金屬鹽之溶液添加至銀鹽溶液,或者若先將銀鹽溶液與含有氫氧離子的溶液混合,然後才將含有至少一選自釕、銠、鈀、鋨、銥與鉑的群組之金屬的金屬鹽之溶液添加至該溶液中,在相同的燒結時間下這樣的作法會導致導電率明顯地低於三種溶液同時組合所製作出之金屬奈米粒子溶膠所達到的導電率。
根據本發明,在步驟a)中同時混合三種溶液可藉由下列方式進行:將三種溶液中的兩種添加至第三種溶液,但選擇此些溶液中的哪一種並不重要。根據本發明,在步驟a)中同時組合三種溶液亦可以下列方式進行:組合三種溶液而不單獨處理三種溶液中的一者。
因此,本發明尤其提供一種金屬奈米粒子溶膠,其係由根據本發明的方法所製造。
在不限於特定理論的情況下可假定,在根據本發明之方法的步驟a)中,存在於金屬鹽溶液中的金屬陽離子會和含有氫氧離子之溶液中的氫氧離子反應,並藉此自溶液沈澱作為金屬氧化物、金屬的氫氧化物、混合的金屬氫氧化物及/或其水合物。此過程可被視為是奈米級及次微米級粒子的非均相沈澱。
在根據本發明之方法的步驟b)中,含有金屬氧化物/氫氧化物粒子的溶液與還原劑反應。
在根據本發明的方法中,步驟a)中奈米級及次微米級粒子的非均相沈澱較佳係於至少一分散劑(亦被稱為保護性膠體)的存在下進行。較佳地使用用於根據本發明之金屬粒子溶膠之上述者來作為此類分散劑。
在根據本發明之方法的步驟a)中,較佳地選則氫氧離子量與金屬陽離子量間的莫耳比係自0.5:1至10:1較佳地自0.7:1至5:1尤其較佳地自0.9:1至2:1。
進行方法步驟a)的溫度可例如落在下列範圍內:自0℃至100℃,較佳地自5℃至50℃,尤其較佳地自10℃至30℃。
在還原步驟b)中,對比於欲還原的金屬陽離子,較佳地選定等莫耳比或超量當量的還原劑量,其比值落在下列範圍:自1:1至100:1,較佳地自2:1至25:1,尤其較佳地自4:1至5:1。
進行方法步驟b)的溫度可例如落在下列範圍內:自0℃至100℃,較佳地自30℃至95℃,尤其較佳地自55℃至90℃。
在步驟a)後,可將酸或鹼添加至所獲得之溶液以設定至期望的pH值。例如有利地將pH值維持在酸性範圍內。在此方式下可改善接續步驟b)中的粒子分佈的單分散性。
較佳地在將分散劑含有於欲使用之三種溶液(反應物溶液)中的至少一溶液中,其濃度係落在下列範圍:自0.1 g/l至100 g/l,較佳地自1 g/l至60 g/l,尤其較佳地自1 g/l至40 g/l。若在根據本發明之方法的步驟a)中欲使用之三種溶液中的兩者或全部含有分散劑,則分散劑有可能不同且以不同的濃度存在。
一方面選擇此類濃度範圍能確保粒子自溶液沈澱的過程期間會受到分散劑之包覆而保留期望的特性如穩定性與可再分散性。另一方面,可避免粒子受到分散劑的過度包覆。不需要的過度分散劑更可能會不期望地與還原劑發生反應。又,太大量的分散劑可能會損害粒子的膠體穩定性並更進一步地使處理變得更困難。至少,此選擇能夠處理液體並獲得具有就處理技術而言可輕易操作之黏度的液體。
銀鹽溶液較佳地為含有銀陽離子與選自下列群組之陰離子者:硝酸鹽、過氯酸鹽、雷酸鹽、檸檬酸鹽、醋酸鹽、乙醯基丙酮酸鹽(acetylacetonate)、四氟硼酸鹽或四苯硼酸鹽。尤其較佳的是硝酸銀、醋酸銀或檸檬酸銀。更尤其較佳的是硝酸銀。
銀鹽溶液中所含的銀離子較佳地具有下列濃度範圍:自0.001 mol/l至2 mol/l,尤其較佳地自0.01 mol/l至1 mol/l,更尤其較佳地自0.1 mol/l至0.5 mol/l。此濃度範圍為有利的,因為濃度過低則奈米溶膠所達到的固體含量會過低,因此可能需要更昂貴的處理步驟。較高的濃度會造成氧化物/氫氧化物粒子太快速沈澱而導致不均勻的粒子形態之風險。此外,高濃度會更進一步地使粒子團聚。
含有至少一選自群組:釕、銠、鈀、鋨、銥與鉑之金屬的金屬鹽之溶液較佳地為含有一選自群組:釕、銠、鈀、鋨、銥與鉑之金屬的陽離子及至少一對該金屬陽離子的平衡陰離子(選自群組:硝酸鹽、氯化物、硼化物、硫酸鹽、碳酸鹽、醋酸鹽、乙醯基丙酮酸鹽、四氟硼酸鹽、四苯硼酸鹽或烷氧化物陰離子(醇化陰離子),例如乙氧化物)。金屬鹽尤其較佳地是至少一釕鹽,更尤其較佳地是選自下列的一者:氯化釕、乙酸釕、硝酸釕、乙氧化釕或乙醯基丙酮酸釕。
金屬鹽溶液中所含有的金屬離子較佳地具有自0.01 g/l至1 g/l的濃度。
含有氫氧離子的溶液可較佳地藉由鹼的反應所獲得,此鹼係選自由下列者所構成的群組:LiOH、NaOH、KOH、Mg(OH)2、Ca(OH)2、NH4OH、脂肪族胺、芳族胺、鹼金屬醯胺及/或烷氧化物。NaOH與KOH為尤其較佳的鹼。此些鹼類具有下列優點:其可以經濟的方式獲得且在後續根據本發明之溶液的流出物處理時其可被輕易處置。
含有氫氧離子之溶液中的氫氧離子的濃度可有利且較佳地落在下列範圍內:自0.001 mol/l至2 mol/l,尤其較佳地自0.01 mol/l至1 mol/l,更尤其較佳地自0.1 mol/l至0.5 mol/l。
還原劑係較佳地選自由下列者所構成的群組:聚醇、胺基酚、胺基醇、醛類、糖類、酒石酸、檸檬酸、抗壞血酸及其鹽類、硫脲、羥基丙酮、檸檬酸鐵銨、三乙醇胺、對苯二酚、二硫亞磺酸鹽如二硫亞磺酸鈉、羥甲烷亞磺酸、二亞硫酸鹽如二亞硫酸鈉、甲脒亞磺酸、亞硫酸、聯氨、羥胺、乙二胺、四甲基乙二胺、硫酸羥胺、硼氫化物如硼氫化鈉、甲醛、醇類如乙醇、正丙醇、異丙醇、正丁醇、異丁醇、第二丁醇、乙二醇、乙二醇二乙酸酯、丙三醇及/或二甲基胺基乙醇。甲醛為尤其較佳的還原劑。
亦可將其他物質如低分子量的添加物、鹽、異離子、界面活性劑與螯合劑(sequestrants)添加至反應物溶液,反應物溶液一詞亦欲包含步驟b)中的還原劑溶液或在步驟a)後所獲得的溶液。在反應前亦可針對反應物溶液進行除氣,例如以移除氧氣與CO2。類似地,亦可在保護氣體及/或黑暗中操作反應物溶液。
為了移除溶解在產品分散液(即金屬粒子分散液)中的伴隨物質及/或鹽類並為了濃縮分散液,可使用傳統的機械式液體分離方法(如利用壓力過濾件或離心場作用的過濾法、重力場或離心場作用下的沈降法)、萃取、薄膜技術(透析)及蒸餾。
根據本發明的方法可以批次法或連續法進行之。亦可使用兩種方法的變形組合。
產物分散液更亦可藉由標準的方法(超過、離心、選擇性地添加凝聚劑或弱溶劑後進行沈降、透析及蒸餾)來加濃縮及選擇性地清洗。
產品分散液之膠體化學穩定性及技術應用特性更可藉著清洗步驟或藉著導入添加物來加以最佳化。
在尤其本發明的較佳實施例中,步驟a)與b)的至少一者,且尤其較佳地步驟a)與b)兩者可在微反應器中進行。此處,在本發明範疇內的「微反應器」一詞代表微型化、較佳地為連續操作的反應器,其尤其被稱為「微反應器」、「微型反應器」、「微混合器」或「微型混合器」。實例為T-混合器與Y-混合器及來自廣泛公司(如Ehrfeld Mikrotechnik BTS GmbH、Institut fr Mikrotechnik Mainz GmbH、Siemens AG、CPC Cellular Process Chemistry Systems GmbH)的微混合器。
因為微粒子與奈米粒子的濕式化學與異相沈澱製造需要使用混合單元,故微反應器極有利。上述之微反應器與分散噴嘴或噴嘴反應器可被用來作為混合單元。噴嘴反應器的實例為MicroJetReactor(Synthesechemie GmbH)及jet disperser(Bayer Technology Services GmbH)。相較於批次式的方法,連續操作方法具有下列優點:可利用「數值放大(numbering up)」的理論來取代「規模放大(scaling up)」的理論,簡單地將實驗室等級放大至量產等級。
根據本發明之方法的另一優點為,由於產物特性的良好可控制性,因此可在微反應器中進行本方法而不會在連續操作的過程中發生堵塞。
較佳地在毛細系統中以微方法來進行製造金屬氧化物/氫氧化物粒子的異相沈降方法,此毛細系統含有第一支撐(holding)元件、第二支撐元件、微反應器、第三支撐元件及壓力閥。在此例中,尤其較佳地藉由泵浦或高壓泵如HPLC泵以固定流率將反應物溶液即銀鹽溶液、金屬鹽溶液及含有氫氧離子的溶液泵送通過設備或毛細系統。經由壓力閥在冷卻器後,緩和液體並經由出口毛細管將液體收集於產品容納槽中。
微反應器係有利地為混合時間自0.01 s至10 s較佳地自0.05 s至5 s尤其較佳地自0.1 s至0.5 s的混合器。
適合作為支撐元件的是直徑自0.05 mm至20 mm較佳地自0.1 mm至10 mm尤其較佳地自0.5 mm至5 mm的毛細管。
支撐元件的長度可有利地介於0.05 m至10 m間較佳地介於0.08 m至5 m間尤其較佳地介於0.1 m至0.5 m。
系統中之反應混合物的溫度係有利地介於0℃至100℃,較佳地介於5℃至50℃,尤其較佳地介於3℃至30℃。
每個微反應器單元之反應物流的流率係有利地介於0.05 ml/min至5000 ml/min間,較佳地介於0.1 ml/min至250 ml/min間,尤其較佳地介於1ml/min至100 ml/min間。
由於相較於已知的銀粒子溶膠,本發明達到等同導電率的燒結時間較短,故根據本發明的金屬粒子溶膠及利用根據本發明之方法所製得之金屬粒子溶膠尤其適合用來製造用以製造塗層導電塗層或導電結構之導電印刷墨水以及用來製造此類塗層導電塗層或導電結構。
因此本發明更提供根據本發明之金屬粒子溶膠用來製造下列者的用途:導電印刷墨水,尤其是噴墨與絲印法的墨水、塗層導電塗層,尤其是透明的塗層導電塗層、導電的微結構及/或功能層。根據本發明的金屬粒子溶膠更適合用來製造下列者:催化劑、其他塗佈材料、冶金產品、電子產品、電子陶瓷產品、光學材料、生物標記、偽造-安全標記、塑膠複合物、抗微生物材料及/或活性劑配方。
下面將以實例更詳細地說明本發明但本發明並不受其限。
實例 實例1(根據本發明)
a)藉由批次法來備製Ag 2 O/RuO 2 奈米粒子溶膠
製備作為反應物溶液1的54毫莫耳的硝酸銀溶液(9.17 g/l AgNO3)、作為反應物溶液2之54毫莫耳的NaOH溶液(2.14 g/l,具有10 g/l的分散劑濃度)及作為反應物溶液3之0.12莫耳(在乙醇中)的RuCl3溶液。使用去離子水(利用Milli-Qplus,QPAK 2,Millipore Corporation備製)作為溶劑。使用Disperbyk 190(Byk GmbH)作為分散劑。將250 ml的反應物溶液1置於室溫下的玻璃燒杯中。在持續攪拌的同時,於10秒期間內將250 ml的反應物溶液2與1 ml的反應物溶液3均勻地添加至反應溶液中。因此在反應物混合物中,釕對銀的當量比為9:1000(以銀含量來表示,釕為0.9重量%)。接著再度攪拌該批次10分鐘。獲得灰黑色之膠體化學穩定的Ag2O/RuO2奈米粒子溶膠。
b)藉由批次法以甲醛來進行還原
在室溫下持續攪拌的同時,將25 ml之2.33莫耳的水性甲醛溶液(70 g/l)添加至500 ml實例1所備製出的Ag2O/RuO2奈米粒子溶膠中,在60℃下儲存30分鐘然後冷卻。獲得含有經摻雜金屬氧化釕之銀奈米粒子的膠體化學穩定的溶膠。接下來藉由離心法(30000 rpm下進行60分鐘,Avanti J 30i,Rotor JA 30.50,Beckman Coulter GmbH)來分離粒子,並施加超音波(Branson Digital Sonifier)使粒子再次分散於去離子水中。獲得固體含量為10重量%之膠體化學穩定的金屬粒子溶膠。
動態光散射的粒子尺寸分析顯示結晶奈米粒子具有128 nm的有效動態水力直徑。動態光散射的量測使用到來自Brookhaven Instrument Corporation的ZetaPlus Zeta Potential Analyzer。
將2 mm線寬的此分散液施加至聚碳酸酯(Bayer MaterialScience AG,Makrolon DE1-1)薄片上,在140℃的溫度與環境壓力(1013 hPa)的烘箱中乾燥及燒結十分鐘。
10分鐘後的導電率為3000 S/m,60分鐘後的導電率為4.4*106 S/m。
實例2(根據本發明)
a)藉由批次法來備製Ag 2 O/RuO 2 奈米粒子溶膠
製備作為反應物溶液1的54毫莫耳的硝酸銀溶液(9.17 g/l AgNO3)、作為反應物溶液2之54毫莫耳的NaOH溶液(2.14 g/l,具有10 g/l的分散劑濃度)及作為反應物溶液3之0.12莫耳的RuCl3溶液。使用去離子水(利用Milli-Qplus,QPAK 2,Millipore Corporation備製)作為溶劑。使用Disperbyk 190作為分散劑。將250 ml的反應物溶液1置於室溫下的玻璃燒杯中。在持續攪拌的同時,於10秒期間內將250 ml的反應物溶液2與2.0 ml的反應物溶液3均勻地添加至反應溶液中。因此在反應物混合物中,釕對銀的當量比為18:1000(以銀含量來表示,釕為1.8重量%)。接著再度攪拌該批次10分鐘。獲得灰黑色之膠體化學穩定的Ag2O/RuO2奈米粒子溶膠。
b)藉由批次法以甲醛來進行還原
在室溫下持續攪拌的同時,將25 ml之2.33莫耳的水性甲醛溶液(70 g/l)添加至500 ml實例2a)所備製出的Ag2O/RuO2奈米粒子溶膠中,在60℃下儲存30分鐘然後冷卻。獲得含有經摻雜金屬氧化釕之銀奈米粒子的膠體化學穩定的溶膠。接下來藉由離心法(30000 rpm下進行60分鐘,Avanti J 30i,Rotor JA 30.50,Beckman Coulter GmbH)來分離粒子,並施加超音波(Branson Digital Sonifier)使粒子再次分散於去離子水中。獲得固體含量為10重量%之膠體化學穩定的金屬粒子溶膠。
以實例1b)中所述的相同方式將此分散液的表面塗層施加至聚碳酸酯上。60分鐘後,如實例1b)相似地測定出的導電率為4.4*106 S/m。
比較實例3:無釕之銀奈米溶膠
為了比較,製備空間穩定之銀奈米粒子的分散液。為了此目的,將0.054莫耳的硝酸銀溶液混合至下列混合物中並攪拌10分鐘:體積比1:1之0.054莫耳的氫氧化鈉溶液及分散劑Disperbyk 190(1 g/l)。攪拌的同時將4.6莫耳的水性甲醛溶液添加至此反應混合物中,故Ag+對還原劑的比例為1:10。將此混合物加熱至60℃並使其維持此溫度30分鐘,接著將其冷卻。先利用透析過濾法自未反應的反應物中分離出粒子,接著濃縮溶膠。為了此目的,使用30000 Dalton的薄膜。獲得固體含量上至20重量%(銀粒子與分散劑)的膠體穩定溶膠。根據薄膜過濾後的元素分析,以銀含量來表示Disperbyk 190佔了6重量%。以實例1b)中所述的相同方式將此分散液的表面塗層施加至聚碳酸酯薄片上。類似於實例1b)中所測定的比導電率只能夠在140℃與環境壓力(1013 hPa)下乾燥與燒結一小時後才能測定。在一小時乾燥與燒結時間後,比導電率約為1 S/m。
比較實例4:非根據本發明之摻雜釕的銀奈米溶膠
a)藉由批次法來備製Ag 2 O/RuO 2 奈米粒子溶膠
製備作為反應物溶液1的54毫莫耳的硝酸銀溶液(9.17 g/l AgNO3)、作為反應物溶液2之54毫莫耳的NaOH溶液(2.14 g/l,具有10 g/l的分散劑濃度)及作為反應物溶液3之0.12莫耳的RuCl3溶液。使用去離子水(利用Milli-Qplus,QPAK 2,Millipore Corporation備製)作為溶劑。使用Disperbyk 190作為分散劑。將250 ml的反應物溶液1置於室溫下的玻璃燒杯中。將250 ml的反應物溶液1置於室溫下的玻璃燒杯中。在持續攪拌的同時,於10秒期間內將250 ml的反應物溶液2與0.1 ml的反應物溶液3均勻地添加至反應溶液中。因此在反應物混合物中,釕對銀的當量比為9:1000(以銀含量來表示,釕為0.09重量%)。接著再度攪拌該批次10分鐘。獲得灰黑色之膠體化學穩定的Ag2O/RuO2奈米粒子溶膠。
b)藉由批次法以甲醛來進行還原
在室溫下持續攪拌的同時,將25 ml之2.33莫耳的水性甲醛溶液(70 g/l)添加至500 ml實例4a)所備製出的Ag2O/RuO2奈米粒子溶膠中,在60℃下儲存30分鐘然後冷卻。獲得含有經摻雜金屬氧化釕之銀奈米粒子的膠體化學穩定的溶膠。接下來藉由離心法(30000 rpm下進行60分鐘,Avanti J 30i,Rotor JA 30.50,Beckman Coulter GmbH)來分離粒子,並施加超音波(Branson Digital Sonifier)使粒子再次分散於去離子水中。獲得固體含量為10重量%之膠體化學穩定的金屬粒子溶膠。
以實例1b)中所述的相同方式將此分散液的表面塗層施加至聚碳酸酯薄片上。即便在140℃與環境壓力(1013 hPa)下乾燥與燒結一小時後,仍然無法以類似於實例3)的方式偵測到比導電率。

Claims (14)

  1. 一種金屬奈米粒子溶膠,其具有金屬粒子含量1g/l,該溶膠含有:銀奈米粒子;至少一分散劑;及至少一液態分散介質,其特徵在於,金屬奈米粒子溶膠含有0.1至10重量%之至少一選自下列群組的金屬:釕、銠、鈀、鋨、銥與鉑,其以金屬奈米粒子溶膠的銀含量為基準且呈金屬或至少一金屬化合物的形式。
  2. 如申請專利範圍第1項之金屬奈米粒子溶膠,其特徵在於該選自群組:釕、銠、鈀、鋨、銥與鉑之金屬為釕。
  3. 如申請專利範圍第1或2項之金屬奈米粒子溶膠,其特徵在於至少90重量%之釕係以二氧化釕的形式存在。
  4. 如申請專利範圍第1或2項之金屬奈米粒子溶膠,其特徵在於該液態分散介質為水或含有至少50重量%之水的混合物。
  5. 如申請專利範圍第1或2項之金屬奈米粒子溶膠,其特徵在於該分散劑為聚合物分散劑。
  6. 如申請專利範圍第1或2項之金屬奈米粒子溶膠,其特徵在於該分散劑為至少一選自由下列者 所構成之群組的分散劑:烷氧化物、烷基醇醯胺(alkylolamides)、酯、氧化胺、烷基聚葡萄糖苷、烷基酚、芳烷基酚、水溶性均聚物、統計共聚物(statistical copolymers)、嵌段共聚物、接枝聚合物、聚環氧乙烷、聚乙烯醇、聚乙烯醇與聚乙烯基乙酸酯的共聚物、聚乙烯吡咯啶酮、纖維素、澱粉、明膠、明膠衍生物、胺基酸聚合物、聚離胺酸、聚天冬胺酸(polyasparagic acid)、聚丙烯酸酯、聚伸乙基磺酸酯、聚苯乙烯磺酸酯、聚甲基丙烯酸酯、芳族磺酸與甲醛的縮合產物、萘磺酸鹽、木質素磺酸鹽、丙烯酸單體的共聚物、聚伸乙基亞胺、聚乙烯胺、聚烯丙基胺、聚(2-乙烯吡啶)及/或聚二烯丙基二甲基氯化銨。
  7. 如申請專利範圍第1或2項之金屬奈米粒子溶膠,其特徵在於金屬奈米粒子溶膠含有0.1至5重量%之至少一選自下列群組的金屬:釕、銠、鈀、鋨、銥與鉑,其以銀含量為基準且呈金屬或至少一金屬化合物的形式。
  8. 一種製造如申請專利範圍第1至7項中至少一項之金屬奈米粒子溶膠的方法,其特徵在於a)將一銀鹽溶液、一含有至少一選自下列群組之金屬的金屬鹽之溶液:釕、銠、鈀、鋨、銥與鉑、及一含有氫氧離子的溶液組合;b)接著利用一還原劑與自步驟a)獲得的該溶液 反應,步驟a)溶液中的至少一者含有至少一分散劑,其特徵在於在步驟a)中同時組合該三種溶液。
  9. 如申請專利範圍第8項之方法,其特徵在於該銀鹽溶液為一種含有銀陽離子與陰離子者,該陰離子係選自下列之群組:硝酸鹽、過氯酸鹽、雷酸鹽、檸檬酸鹽、醋酸鹽、乙醯基丙酮酸鹽(acetylacetonate)、四氟硼酸鹽或四苯硼酸鹽。
  10. 如申請專利範圍第8或9項之方法,其特徵在於該含有氫氧離子的溶液可藉由鹼的反應所獲得,該鹼係選自由下列者所構成的群組:LiOH、NaOH、KOH、Mg(OH)2、Ca(OH)2、NH4OH、脂肪族胺、芳族胺、鹼金屬醯胺及/或烷氧化物。
  11. 如申請專利範圍第8或9項之方法,其特徵在於該還原劑係選自由下列者所構成的群組:聚醇、胺基酚、胺基醇、醛類、糖類、酒石酸、檸檬酸、抗壞血酸及其鹽類、三乙醇胺、對苯二酚、二硫亞磺酸鈉、羥甲烷亞磺酸、二亞硫酸鈉、甲脒亞磺酸、亞硫酸、聯氨、羥胺、乙二胺、四甲基乙二胺、硫酸羥胺、硼氫化鈉、甲醛、醇類、乙醇、正丙醇、異丙醇、正丁醇、異丁醇、第二丁醇、乙二醇、乙二醇二乙酸酯、丙三醇及/或二甲基胺基乙醇。
  12. 如申請專利範圍第8或9項之方法,其特徵在於選自釕、銠、鈀、鋨、銥與鉑的群組之金屬的金屬鹽 是至少一選自氯化釕、乙酸釕、硝酸釕、乙氧化釕或乙醯基丙酮酸釕的釕鹽。
  13. 一種如申請專利範圍第1至7項中至少一項之金屬奈米粒子溶膠用於製造導電印刷墨水的用途。
  14. 一種如申請專利範圍第1至7項中至少一項之金屬奈米粒子溶膠用於製造導電塗層或導電結構的用途。
TW100138416A 2010-10-25 2011-10-24 包含經摻雜的銀奈米粒子之金屬粒子溶膠 TWI548449B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10188779A EP2444148A1 (de) 2010-10-25 2010-10-25 Metallpartikelsol mit dotierten Silbernanopartikeln

Publications (2)

Publication Number Publication Date
TW201233437A TW201233437A (en) 2012-08-16
TWI548449B true TWI548449B (zh) 2016-09-11

Family

ID=43828274

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100138416A TWI548449B (zh) 2010-10-25 2011-10-24 包含經摻雜的銀奈米粒子之金屬粒子溶膠

Country Status (12)

Country Link
US (1) US20130313490A1 (zh)
EP (2) EP2444148A1 (zh)
JP (1) JP5946463B2 (zh)
KR (1) KR101935767B1 (zh)
CN (1) CN103415337B (zh)
BR (1) BR112013010148B1 (zh)
CA (1) CA2815761A1 (zh)
ES (1) ES2662545T3 (zh)
HK (1) HK1191604A1 (zh)
SG (1) SG189527A1 (zh)
TW (1) TWI548449B (zh)
WO (1) WO2012055758A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103080247B (zh) * 2010-08-27 2016-05-25 Lg化学株式会社 导电金属墨水组合物及制备导电图形的方法
EP2610366A3 (en) * 2011-12-31 2014-07-30 Rohm and Haas Electronic Materials LLC Plating catalyst and method
CN103421970B (zh) * 2012-03-30 2017-11-17 施耐德电器工业公司 一种银基电接触材料的制备方法
CN104226210B (zh) * 2013-06-21 2017-02-08 中国科学院理化技术研究所 二氧化钛‑金属水性纳米复合溶胶的制备方法
CN103737014B (zh) * 2013-12-23 2015-12-30 暨南大学 一种纳米硫银复合溶胶及其制备方法与应用
CN103737018A (zh) * 2014-01-17 2014-04-23 昆明理工大学 一种微流体技术连续快速制备纳米镍的方法
CN103769604B (zh) * 2014-01-25 2016-03-02 华南理工大学 一种木质素—纳米银溶胶的绿色快速制备方法
CN103990814B (zh) * 2014-06-09 2016-04-06 中北大学 一种金纳米颗粒的制备方法
KR102153165B1 (ko) * 2014-06-16 2020-09-07 오사카 유니버시티 은입자의 합성방법, 은입자, 도전성 페이스트의 제조방법, 및 도전성 페이스트
CN104070177B (zh) * 2014-06-28 2017-02-22 内蒙古工业大学 一种银、金纳米粒子的制备方法
JP6666846B2 (ja) * 2014-10-02 2020-03-18 株式会社ダイセル 銀粒子塗料組成物
KR20160053352A (ko) 2014-11-03 2016-05-13 경희대학교 산학협력단 다기능성 고분자와 환원제를 이용한 금속나노입자의 제조방법
CN104399972A (zh) * 2014-12-11 2015-03-11 成都明日星辰科技有限公司 一种液相单分散银钯复合粉的制备方法
US10116000B1 (en) * 2015-10-20 2018-10-30 New Jersey Institute Of Technology Fabrication of flexible conductive items and batteries using modified inks
KR20180077252A (ko) * 2015-10-30 2018-07-06 클라리언트 인터내셔널 리미티드 증가된 안정성을 갖는 금속 분산물
US10648460B2 (en) * 2015-12-16 2020-05-12 The University Of Hong Kong Nanomotor propulsion
CN105562708B (zh) * 2016-01-06 2018-01-12 昆明理工大学 一种分散剂改性纳米零价铁及其制备方法和应用
CN105665748B (zh) * 2016-04-25 2018-01-19 辽宁石化职业技术学院 一种高纯超细银粉的制备方法
CN106448810A (zh) * 2016-09-08 2017-02-22 芜湖桑乐金电子科技有限公司 一种石墨浆料及其制备方法
CN106735284A (zh) * 2016-11-24 2017-05-31 宁波卫生职业技术学院 一种使纳米银在聚合物中均匀分布的方法
CN108610044B (zh) * 2016-12-12 2021-06-25 中南大学 用于3d直写的氧化锆墨水
CN107446143B (zh) * 2017-07-20 2020-04-28 广州德臻生物技术有限公司 银离子抗菌液、银离子抗菌凝胶及其制备方法
CN107356583B (zh) * 2017-08-16 2019-07-26 广西师范大学 用纳米银催化表面增强拉曼光谱测定nh4+的方法
CN108190831B (zh) * 2017-11-28 2019-06-28 郑州大学 一种掺杂调控热熔Ag纳米粒子微纳互连线性能的方法
JP7157597B2 (ja) * 2018-08-31 2022-10-20 花王株式会社 水系金属微粒子分散体
JP7361464B2 (ja) 2018-10-18 2023-10-16 株式会社ノリタケカンパニーリミテド AgPdコアシェル粒子およびその利用
JP7329941B2 (ja) 2019-03-28 2023-08-21 株式会社ノリタケカンパニーリミテド コアシェル粒子およびその利用
CN110860695A (zh) * 2019-11-25 2020-03-06 天津科技大学 一种尺寸大小和分布可调控的银纳米颗粒的制备方法
CN111097923A (zh) * 2020-02-25 2020-05-05 南宁师范大学 一种以间氨基苯酚为还原剂制备金纳米棒的方法
CN114425444B (zh) * 2020-10-14 2024-01-26 中国石油化工股份有限公司 乙烯法合成醋酸乙烯催化剂及其制备方法
KR102560213B1 (ko) * 2021-12-29 2023-07-28 강릉원주대학교 산학협력단 이산화루테늄-은 복합체 제조방법
CN115283687B (zh) * 2022-05-25 2024-05-17 苏州艾美特企业管理有限公司 一种金属颗粒及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101421032A (zh) * 2006-04-15 2009-04-29 拜尔技术服务有限责任公司 用于生产金属颗粒的方法,由其制备的金属颗粒及其用途
EP2130627A1 (en) * 2008-06-05 2009-12-09 Xerox Corporation Photochemical synthesis of bimetallic core-shell nanoparticles

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2131683A5 (en) * 1971-03-29 1972-11-10 Du Pont Palladium-silver alloy powder prepn - by reduction of an aq suspension of palladium and silver carbonate
US3788833A (en) * 1972-02-18 1974-01-29 Du Pont Production of palladium-silver alloy powder
US3876560A (en) * 1972-05-15 1975-04-08 Engelhard Min & Chem Thick film resistor material of ruthenium or iridium, gold or platinum and rhodium
US3958996A (en) * 1973-05-07 1976-05-25 E. I. Du Pont De Nemours And Company Photopolymerizable paste composition
CA1272011A (en) * 1984-08-29 1990-07-31 William R. Bushey Process for forming solid solutions
US4752370A (en) * 1986-12-19 1988-06-21 The Dow Chemical Company Supported membrane/electrode structure combination wherein catalytically active particles are coated onto the membrane
US4778549A (en) 1987-04-13 1988-10-18 Corning Glass Works Catalysts for accelerating burnout or organic materials
JPH0885807A (ja) * 1994-09-16 1996-04-02 Noritake Co Ltd 単分散性銀−パラジウム複合粉末の製造方法及びその粉末
JP3740244B2 (ja) * 1996-04-05 2006-02-01 ナミックス株式会社 導電性焼成体およびそれを用いるガス放電表示パネル
US6316100B1 (en) * 1997-02-24 2001-11-13 Superior Micropowders Llc Nickel powders, methods for producing powders and devices fabricated from same
JP3941201B2 (ja) * 1998-01-20 2007-07-04 株式会社デンソー 導体ペースト組成物及び回路基板
JP2001325831A (ja) * 2000-05-12 2001-11-22 Bando Chem Ind Ltd 金属コロイド液、導電性インク、導電性被膜及び導電性被膜形成用基底塗膜
US6838828B2 (en) * 2001-11-05 2005-01-04 Lg Electronics Inc. Plasma display panel and manufacturing method thereof
JP3766350B2 (ja) * 2002-05-29 2006-04-12 東邦チタニウム株式会社 ニッケル粉末分散体の調製方法ならびに導電ペーストの調製方法
JP4302453B2 (ja) * 2003-07-03 2009-07-29 サカタインクス株式会社 Ni粉末の分散方法及びその方法によって得られるNi粉末分散体
US20070144305A1 (en) * 2005-12-20 2007-06-28 Jablonski Gregory A Synthesis of Metallic Nanoparticle Dispersions
JP2008007849A (ja) * 2006-06-01 2008-01-17 Nippon Paint Co Ltd 無電解めっき用プライマー組成物及び無電解めっき方法
TWI477332B (zh) * 2007-02-27 2015-03-21 Mitsubishi Materials Corp 金屬奈米粒子分散液及其製造方法及金屬奈米粒子之合成方法
CN101622090B (zh) * 2007-02-27 2013-03-13 三菱麻铁里亚尔株式会社 金属纳米颗粒分散液及其制备方法以及金属纳米颗粒的合成方法
KR101127056B1 (ko) * 2008-09-25 2012-03-23 삼성전기주식회사 금속 씨앗을 이용한 금속 나노 입자의 제조 방법 및 금속씨앗을 함유하는 금속 나노 입자

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101421032A (zh) * 2006-04-15 2009-04-29 拜尔技术服务有限责任公司 用于生产金属颗粒的方法,由其制备的金属颗粒及其用途
EP2130627A1 (en) * 2008-06-05 2009-12-09 Xerox Corporation Photochemical synthesis of bimetallic core-shell nanoparticles

Also Published As

Publication number Publication date
KR101935767B1 (ko) 2019-01-08
SG189527A1 (en) 2013-06-28
US20130313490A1 (en) 2013-11-28
JP2014503682A (ja) 2014-02-13
EP2632583B1 (de) 2018-02-21
CN103415337A (zh) 2013-11-27
ES2662545T3 (es) 2018-04-06
CA2815761A1 (en) 2012-05-03
HK1191604A1 (zh) 2014-08-01
WO2012055758A1 (de) 2012-05-03
BR112013010148B1 (pt) 2019-09-03
JP5946463B2 (ja) 2016-07-06
EP2632583A1 (de) 2013-09-04
EP2444148A1 (de) 2012-04-25
BR112013010148A2 (pt) 2016-09-06
TW201233437A (en) 2012-08-16
CN103415337B (zh) 2016-01-20
KR20140001921A (ko) 2014-01-07

Similar Documents

Publication Publication Date Title
TWI548449B (zh) 包含經摻雜的銀奈米粒子之金屬粒子溶膠
CA2649005C (en) Process for producing metal particles, metal particles produced therefrom and use thereof
CN104254418A (zh) 用于制备金属纳米颗粒分散体的方法、金属纳米颗粒分散体及其用途
KR101474040B1 (ko) 금속 나노 입자 분산액 및 그 제조 방법 그리고 금속 나노 입자의 합성 방법
TWI426111B (zh) 含銀水性調配物及其用於製造電導性或反射性塗層之用途
US20110020170A1 (en) Metal nanoparticles stabilized with derivatized polyethyleneimines or polyvinylamines
US20150166810A1 (en) Metal Nanoparticle Synthesis and Conductive Ink Formulation
CN105238135A (zh) 纳米尺寸银微粒油墨以及银微粒烧结体
CN101939091A (zh) 制备贵金属纳米颗粒分散体和将这样的纳米颗粒从所述分散体中分离的方法
KR100905399B1 (ko) 우수한 전도성과 유리 및 세라믹 기판과의 접착력 향상을위한 금속 나노입자와 나노 글래스 프릿을 포함하는 전도성잉크 조성물
RU2009112753A (ru) Водная дисперсия для создания оболочек, способ ее производства, ее применение для нанесения покрытия на поверхности
JP2009191354A (ja) 金属ナノ粒子の合成方法
JP2010209366A (ja) 金属ナノ粒子の製造方法
KR20070083988A (ko) 초미립 금속 분말의 수성 제조 방법
JP2010116625A (ja) 金属ナノ粒子の合成方法
KR100768004B1 (ko) 금속 나노 입자의 제조방법
TW201731587A (zh) 具有增加穩定性之金屬分散液
KR101431791B1 (ko) 하프미러 형성 조성물 및 이를 이용한 하프미러의 제조방법
JP2007301461A (ja) 金属コロイド溶液の製造方法及び金属コロイド溶液
TWI361196B (en) Preparations of polymeric microspheres with multiple functional groups and with metallic nanoparticles deposited thereon