CN108610044B - 用于3d直写的氧化锆墨水 - Google Patents

用于3d直写的氧化锆墨水 Download PDF

Info

Publication number
CN108610044B
CN108610044B CN201611142375.7A CN201611142375A CN108610044B CN 108610044 B CN108610044 B CN 108610044B CN 201611142375 A CN201611142375 A CN 201611142375A CN 108610044 B CN108610044 B CN 108610044B
Authority
CN
China
Prior art keywords
zirconia
polyelectrolyte
ink
direct
polyacrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611142375.7A
Other languages
English (en)
Other versions
CN108610044A (zh
Inventor
张斗
廖晶晶
陈何昊
周科朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201611142375.7A priority Critical patent/CN108610044B/zh
Publication of CN108610044A publication Critical patent/CN108610044A/zh
Application granted granted Critical
Publication of CN108610044B publication Critical patent/CN108610044B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Abstract

一种3D直写的氧化锆墨水,原料包括氧化锆颗粒、溶剂、粘结剂和聚电解质;所述的氧化锆颗粒粒径范围为0.1‐2μm,其在氧化锆墨水中的固相含量范围为40‐58vol%;所述的聚电解质由聚阳离子聚电解质和聚阴离子聚电解质两种构成;其中,所述的聚阴离子电解质的量为氧化锆颗粒干粉质量的0.1‐1.5%,所述的聚阴离子聚电解质和聚阳离子聚电解质的电荷比为(0.1‐4)∶1。本发明的用于3D直写成型的氧化锆墨水,可在室温下打印,具有较高的固含量的同时仍可以从精细的喷嘴中流出而不发生堵塞,并且可以迅速固化成具有一定强度的细丝用于各种造型,具有良好流变性能。

Description

用于3D直写的氧化锆墨水
技术领域
本发明涉及一种用于3D直写的氧化锆陶瓷墨水,属于3D打印材料领域。
背景技术
现代微加工技术在微纳米尺度上具有传统加工方式无可比拟的优势。微加工技术包括软刻蚀技术、激光烧蚀技术、立体光刻技术、双光子聚合技术、静电排放技术和3D直写技术等。其中,3D直写技术(three dimensional direct‐writing),又称直写组装技术(Direct‐writing Assembly),是3D打印技术的一个分支。3D打印制造技术典型的例子有光固化成型、选择性激光烧结成型以及分层实体成型等,但存在成型精度低、后续处理复杂、成型强度低等缺点,不适合制备小型精细件。近年来,基于快速成型的3D直写成型技术(Direct ink writing,DIW)由于其可制备具有较大高宽比和含有跨度特征的复杂精细的三维周期结构而引起研究者的广泛关注。
3D直写从广义上讲,指的是一种使用安装在计算机控制平台上的造型设备,将特定成分的材料按照计算机软件设定的结构精密成型的技术。一般将墨水材料(ink)存储在一个温度可控的料筒中,喷头与料筒相连并安装在一个三轴CNC定位台上,由压力控制给料的微喷头(micronozzle)将材料喷出,根据材料的固化方式选择不同的固化工艺将喷出的墨水材料进行固化成型。只要具有合适的流变性能和一定的保形性,各种材料均可以设计成打印墨水用于此种造型方式,其打印出来的丝径范围从百纳米到毫米之间,细丝可以横跨较大的空隙,甚至可以空间自由成型,完成其他加工技术难以完成的加工任务。
3D直写成型技术是一种新型的无模成型技术,该技术借助计算机辅助设计和精密机械,精确控制悬浮液的沉积,通过逐层叠加的方式制备简单三维周期结构和含跨度(无支撑)或具有很大高宽比的复杂三维结构。与其他快速成型方法相比,直写成型技术具有显著优势:1)成型过程无需模具,生产周期短、效率高、成本低;2)可根据需求便捷地改变样品的形状和尺寸,生产灵活,控制精确;3)原材料种类多样化,有无机非金属、金属和有机聚合物等;4)可制备生物、光学、电子等领域的功能材料,甚至是活体细胞。
与传统的材料加工技术完全不同,3D直写具有仿真性强、速度快,价格便宜,高易用性等优点,是对传统制造业的颠覆性变革。但是,作为一种尚不成熟的技术,3D直写的科学技术研究还处于起步阶段,有关这方面的研究和文献报道较少,在国内尚未见到有关文献报道。另外,3D直写打印墨水需从精细的喷嘴中流出而不发生堵塞,并且可以迅速固化成具有一定强度的细丝用于各种造型;因此,3D直写打印墨水必须同时具备剪切致稀性和粘弹性,如弹性模量超过损耗模量。一般来说,用于超细尺度打印的墨水在切应变速率为20‐200S‐1时粘度约为10-100Pa·S。
陶瓷材料作为3D打印材料之一,由于陶瓷材料的结构和其键性的原因,致使陶瓷材料本身的滑移系统少,位错产生和运动困难,另一方面就是有沿晶界分离的倾向,这一系列情况使得陶瓷材料在本质上是一种脆性材料;而脆性材料的热塑加工性和流动性都很难控制,因此,陶瓷材料的3D打印相较于金属材料而言,更加难以控制。中国专利公开号为CN104108131A公开了一种陶瓷材料的3D打印成型方法,该方法将低温冷冻特性的溶胶与陶瓷或金属等粉体混合制备成具有冷冻凝胶性质的浆料,浆料通过打印头喷射在低温的打印平台上冷冻、凝胶固化,逐层打印得到各类材料和产品。该方法原材料制备工艺简单,快捷方便的特点,但是在3D打印过程中需要冷冻状态,成本很高。另外,公开号为104877463公开了一种3D喷墨打印用氧化锆陶瓷墨水及制备方法;但所述的墨水毕竟是用于3D喷墨打印,固含量要求不高,也无法在3D直写状态下,有效固化成型,按此方案所得的墨水根本不适应3D直写墨水的要求。因此,对于本领域的技术人员而言,如何得到一种制备成本较低,适合于3D直写打印陶瓷墨水仍是一个需要解决的技术难题。
发明内容
本发明针对现有技术的不足,提供一种用于3D直写成型的氧化锆墨水,可在室温下打印,具有较高的固含量的同时仍可以从精细的喷嘴中流出而不发生堵塞,并且可以迅速固化成具有一定强度的细丝用于各种造型,具有良好流变性能。
为实现上述目的,本发明所提供的技术方案是:
本发明提供了一种3D直写的氧化锆墨水,原料包括氧化锆颗粒、溶剂、粘结剂和聚电解质;所述的氧化锆颗粒粒径范围为0.1‐2μm,其在氧化锆墨水中的固相含量范围为40‐58vol%;所述的聚电解质由聚阳离子聚电解质和聚阴离子聚电解质两种构成;其中,所述的聚阴离子电解质的量为氧化锆颗粒干粉质量的0.1‐1.5%,所述的聚阴离子聚电解质和聚阳离子聚电解质的电荷比为(0.1‐4)∶1。
发明人通过对3D直写的氧化锆墨水深入的研究,惊喜地发现,发明人通过控制所述的聚阴离子电解质的量为氧化锆颗粒干粉质量的0.1‐1.5%的同时,将加入聚阴离子聚电解质和聚阳离子聚电解质两者之间的配比控制在(0.1‐4)∶1,可以在氧化锆墨水中的固相含量高达40‐58vol%的范围内及高剪切作用下,墨水悬浮液的黏度仍很低,保证墨水悬浮液可顺利通过喷嘴而不发生堵塞,且可以迅速固化成具有一定强度的细丝用于各种造型,仍具有良好流变性能。另外,由于本发明的方案很好的解决高固相含量的喷嘴堵塞的情况,保证了氧化锆陶瓷粉体的高固相含量,从而在墨水中成型过程中可有效避免成型结构在干燥和烧结过程中因收缩引起的开裂或变形的情况。
本发明还包括以下优选的技术方案是:
所述的聚阴离子聚电解质选自聚丙烯酸、聚乙烯酸、聚丙烯酸氨、聚丙烯酸盐、聚乙烯酸盐、聚羧酸盐中的一种或几种。
所述的聚阳离子聚电解质为聚乙烯亚胺和/或聚氧化乙烯。
所述的溶剂为去离子水、无水乙醇、聚乙二醇中一种或几种。
所述的粘结剂为丙烯酰胺、明胶、琼脂、环氧树脂、纤维素、壳聚糖、阿拉伯树胶、果胶中的一种或几种。
所述的粘结剂为溶剂质量的0.01wt%‐25wt%。
本发明的用于3D直写的氧化锆陶瓷墨水优选的技术方案一为:
将粒径为0.1‐1μm氧化锆颗粒,溶剂为去离子水,粘结剂为纤维素,聚阴离子聚电解质为聚乙烯酸或聚丙烯酸,聚阳离子聚电解质为聚乙酰亚胺混合形成浆料;浆料中:氧化锆固相含量范围为40‐56vol%,纤维素含量为为溶剂质量的0.002‐0.008g/ml,聚乙烯酸或聚丙烯酸为氧化锆颗粒干粉质量含量的0.4‐1.2%;聚乙烯酸或聚丙烯酸与聚乙酰亚胺的电荷比为(0.1‐3):1。
本发明的用于3D直写的氧化锆陶瓷墨水优选技术方案二为:将粒径为0.1‐1μm氧化锆颗粒,去离子水,环氧树脂,聚乙烯酸或聚丙烯酸,聚氧化乙烯混合形成浆料;浆料中:氧化锆固相含量范围为48‐56vol%,环氧树脂含量为溶剂质量的5wt%‐25wt%,聚乙烯羧酸或聚丙烯酸为氧化锆颗粒干粉质量含量的0.4‐1.2%;聚乙烯羧酸或聚丙烯酸与聚氧化乙烯的电荷比为(0.1‐3):1。
本发明的用于3D直写的氧化锆陶瓷墨水优选技术方案三为:
将粒径为0.1‐1μm氧化锆颗粒,去离子水,阿拉伯树胶,聚丙烯酸或聚丙烯酸钠,聚氧化乙烯或聚丙烯亚胺混合形成浆料;浆料中:氧化锆固相含量范围为48‐56vol%,阿拉伯树胶含量为溶剂质量的0.04‐0.08g/ml,聚丙烯酸或聚丙烯酸钠为氧化锆颗粒干粉质量含量的0.4‐1.2%;聚丙烯酸或聚丙烯酸钠∶聚氧化乙烯或聚丙烯亚胺的电荷比为(0.1‐2)∶1。
进一步的,本发明方案中还包括向墨水中加入酸碱调节剂的步骤,调节PH值范围为6‐9。
本发明优选的方案之四为:原料中,氧化锆颗粒在墨水中的固含量范围为48‐56vol%;所述的溶剂为水;所述的聚阳离子聚电解质为聚乙烯亚胺;所述的聚阴离子聚电解质为聚乙烯酸、聚丙烯酸、聚羧酸盐或聚丙烯酸铵中的一种或几种,为氧化锆颗粒干粉质量的0.2‐1.0%,所述的聚阴离子电解质和聚阳子聚电解质的电荷比(0.1‐4):1;所述的酸剂为盐酸、硫酸、硝酸中的一种或几种,其加入量不超过墨水质量的0.1%,所述的碱剂为氢氧化钠、氢氧化钾、氨水中的一种或几种,为加入量不超过墨水质量的0.1%。
所述的优选的方案四中粘结剂若优选为果胶。其中果胶为溶剂质量的0.01‐10wt%。
将所述的原料混匀形成浆料,加入氧化锆磨球和消泡剂,球磨后,超声振荡,即可制备所述的氧化锆陶瓷墨水。
进一步的,本发明可将原料形成的浆料加入氧化锆的磨球及消泡剂正辛醇,以80‐120rmp转速球磨12‐24h后,超声振荡1‐12h后,即得3D直写的氧化锆陶瓷墨水。
所述的3D直写的氧化锆陶瓷墨水的具体应用是:将3D直写的氧化锆陶瓷墨水装入3D直写设备的喷筒中,喷嘴直径为0.5‐400um,设置好3D直写设备的程序,开启通过逐层叠加的方式在空气中打印即可得到三维立体结构,将得到的三维立体结构在室温下干燥6‐12h后放于60℃下干燥12‐24h,随后至于80℃干燥12‐24h,得到三维立体结构的生坯,随后将生坯至于普通烧结炉中程序升温至1300‐1700℃烧结得三维立体结构的氧化锆陶瓷制品。通过本发明的方案的应用,可以成功制备得到复杂精细的微尺度三维结构(参见图1、5)。在成型过程中,本发明的悬浮液墨水可顺利通过微纳米级的细小圆柱状喷嘴形成特征线形流体,并迅速固化以保持形状,甚至在成型含有跨度或悬空梁(无支撑)结构时保持其形状不发生坍塌或断裂现象。因此,由本发明方案所得的3D直写成型的墨水可满足具有以下3个优势:1)在高剪切作用下,所述的墨水的黏度很低,保证所述的墨水可顺利通过喷嘴而不发生堵塞;2)无剪切作用时迅速固化,且固化后的线形流体有较好的弹性性能和强度,即使在无支撑条件下也可保持原有形状;3)另外,由于本发明所述的墨水有尽可能高的固相体积分数,高固相体积分数可避免成型结构在干燥和烧结过程中因收缩引起的开裂或变形
本发明所述的墨水在成型过程中,在喷嘴内部的细丝所受的径向剪切应力从中心到边缘呈线性增加,且细丝中心基本不受剪切应力的影响,呈刚性凝胶态;而细丝边缘部分与喷嘴内壁存在较大摩擦产生剪切应力,当该剪切应力大于τy时,细丝表面黏度急剧降低呈流动状态。因此,本发明的墨水在喷嘴中的细丝具有刚性(凝胶)核-剪切流体壳结构,该结构能够很好地起到保持成型形状的作用。此外,本发明的悬浮液墨水也顺利解决了微纳米尺度喷嘴下的压滤现象,可使得悬浮液顺利输出,避免了悬浮液出现压力过滤现象造成的喷嘴堵塞,由于没有出现压滤现象,发明人发现作为3D直写成型的墨水成型所需的作用在细丝状线形流体上的剪切应力是符合大于屈服剪切应力τy且小于悬浮液的压缩屈服应力py这一关系。
本发明的墨水打印还一优势在于在20‐100S‐1剪切速度下粘度是低于10Pa·S,在直写状态下具有良好的流变性能。采用本发明的墨水打印,不需要热塑加工,因为是近净尺寸成型,所以不需要后续的机加工过程,可以直接成型。本发明的墨水打印制得的生坯结构为具有三维周期性定向排列的支架结构。
另外,本发明的墨水打印还可适用喷嘴直径为50nm‐1mm的喷头,适用范围十分广泛。本发明的一种3D直写成型制备氧化锆陶瓷的应用,可用于制备各种氧化锆陶瓷的异形件及结构件和定制产品,包括将所述氧化锆陶瓷墨水经过3D直写制备成医用植入体及组织工程支架。
本发明所开发的氧化锆陶瓷墨水可直接用于3D直写打印,通过3D直写打印出来的氧化锆陶瓷支架强度大,孔隙率及支架宽度可随意调控,制备方法简单易于操作,制备条件温和无特殊要求,易于大规模工业化应用,本发明的氧化锆陶瓷墨水弥补了国内尚无相关研究的不足。
附图说明
图1为采用实施例1的氧化锆陶瓷墨水3D直写成型的2层蛛网结构,喷嘴直径为210um。
图2为采用实施例1氧化锆陶瓷墨水3D直写成型的过程示意图。
图3为实施例1中陶瓷墨水的粘度数据,图中的横坐标为剪切速率,纵坐标是粘度,该陶瓷墨水在10s‐1剪切速度下的粘度为2Pa·s。
图4为实施例1中陶瓷墨水的弹性模量,图中的横坐标为震荡应力,纵坐标为弹性模量,该陶瓷墨水其在200Pa压力下弹性模量仍高达105Pa。
图5为实施例2中氧化锆陶瓷墨水3D直写成型制备的具有跨度结构的3层三角形支架结构。
图6为实施例2中陶瓷墨水的粘度数据,图中的横坐标为剪切速率,纵坐标是粘度,该陶瓷墨水在10s‐1剪切速度下的粘度为10Pa·s。
图7为实施例2中氧化锆陶瓷墨水的弹性模量,图中的横坐标为震荡应力,纵坐标为弹性模量,该陶瓷墨水在11Pa的压力下弹性模量高达104Pa。
图8为实施例3中陶瓷墨水的粘度数据,图中的横坐标为剪切速率,纵坐标是粘度,该陶瓷墨水在10s‐1剪切速度下的粘度为3Pa·s
图9为实施例3中氧化锆陶瓷墨水的弹性模量,图中的横坐标为震荡应力,纵坐标为弹性模量,该陶瓷墨水在10Pa的压力下弹性模量高达103Pa。
图10为普通浆料与3D直写成型墨水中氧化锆颗粒分散情况对比图,其中图a为普通浆料的氧化锆颗粒分散情况,氧化锆颗粒彼此间互相独立分散于溶剂中,图b为本发明墨水中颗粒分散情况,颗粒彼此间连接形成网络结构分散于溶剂中。
具体实施方式
实施例1
将氧化锆颗粒(粒径D50=0.8um),去离子水,纤维素,聚乙烯酸,聚乙酰亚胺混合形成浆料;氧化锆固相含量为56%,纤维素含量为0.002g/ml,聚乙烯羧酸为干粉含量的0.6%,聚乙烯酸与聚乙酰亚胺的配比为2:1,将上述物料按比例混合好后置于球磨机上以90rmp转速球磨12h,即得氧化锆陶瓷墨水,该氧化锆陶瓷墨水具有非常好的剪切致稀性,其在10s‐1剪切速度下的粘度为2Pa·s,并且具有非常好的粘弹性,其在200pa弹性模量高达105Pa,具有良好的保形性,能顺利通过针嘴堵塞且保持三维立体形状,随后将该墨水装入3D直写设备的喷筒中,喷嘴直径为100um,设置好3D直写设备的程序,开启通过逐层叠加的方式在空气中打印即可得到三维立体结构,将得到的三维立体结构在室温下干燥6h后放于60℃下干燥12h,随后至于80℃干燥12h,得到三维立体结构的生坯,随后将生坯至于普通烧结炉中以1℃/min升温至500℃保温4h,随后10℃/min升温至1000℃保温1h后以相同速率升温至1550℃保温烧结得三维立体结构的氧化锆陶瓷制品(参见图1‐4)。
实施例2
将1μm氧化锆颗粒,去离子水,海因环氧树脂,聚丙烯酸,聚氧化乙烯混合形成浆料;浆料中:氧化锆固相含量范围为45vol%,含量15wt%的海因环氧树脂,聚丙烯酸为干粉含量的0.8%,聚丙烯酸与聚氧化乙烯的配比为0.5:1,将上述物料按比例混合好后置于球磨机上以100‐140rmp转速球磨12‐24h,取下,超声振荡1‐12h后即得3D直写的氧化锆陶瓷墨水。该氧化锆陶瓷墨水具有非常好的剪切致稀性,其在10s‐1剪切速度下的粘度为10Pa·s,并且具有非常好的粘弹性,其在11pa弹性模量高达104Pa,具有良好的保形性,能顺利通过针嘴堵塞且保持三维立体形状。
所述的3D直写的氧化锆陶瓷墨水装入3D直写设备的喷筒中,喷嘴直径为2um,设置好3D直写设备的程序,开启通过逐层叠加的方式在空气中打印即可得到三维立体结构,将得到的三维立体结构在室温下干燥6‐12h后放于60℃下干燥12‐24h,随后至于80℃干燥12‐24h,得到三维立体结构的生坯,随后将生坯至于普通烧结炉中程序升温至1400℃烧结得三维立体结构的氧化锆陶瓷制品。(参见图5‐7)
实施例3
将0.5μm氧化锆颗粒,去离子水,阿拉伯树胶,聚丙烯酸钠,聚丙烯亚胺混合,氧化锆固相含量范围为40vol%,阿拉伯树胶含量为0.05g/ml,聚丙烯酸钠为干粉含量的1%,聚丙烯酸钠与聚丙烯亚胺的配比为2:1,将上述物料按比例混合好后置于球磨机上以100‐140rmp转速球磨12‐24h,取下,超声振荡1‐12h后即得3D直写的氧化锆陶瓷墨水。该氧化锆陶瓷墨水具有非常好的剪切致稀性,其在10s‐1剪切速度下的粘度为3Pa·s,并且具有非常好的粘弹性,其在10pa弹性模量高达103Pa,具有良好的保形性,能顺利通过针嘴堵塞且保持三维立体形状。
所述的3D直写的氧化锆陶瓷墨水装入3D直写设备的喷筒中,喷嘴直径为10um,设置好3D直写设备的程序,开启通过逐层叠加的方式在空气中打印即可得到三维立体结构,将得到的三维立体结构在室温下干燥6‐12h后放于60℃下干燥12‐24h,随后至于80℃干燥12‐24h,得到三维立体结构的生坯,随后将生坯至于普通烧结炉中程序升温至1500℃烧结得三维立体结构的氧化锆陶瓷制品(参见图8、9)。
实施例4
将氧化锆颗粒(粒径D50=0.5um),去离子水,果胶,聚羧酸钠盐,聚乙酰亚胺,酸碱调节剂混合形成浆料;氧化锆固相含量为48%,果胶含量为0.08g/ml,酸剂为硫酸,其用量为0.1%,碱剂为氢氧化钠,用量为0.1%,聚羧酸钠盐为干粉含量的0.6%,聚羧酸钠盐与聚乙酰亚胺的配比为4:1,将上述物料按比例混合好后置于球磨机上以90rmp转速球磨12h,即得氧化锆陶瓷墨水,该氧化锆陶瓷墨水具有非常好的剪切致稀性和粘弹性,其在10s‐1剪切速度下的粘度为3Pa·s,并且具有非常好的粘弹性,其在10pa弹性模量高达104Pa,具有良好的保形性,能顺利通过针嘴堵塞且保持三维立体形状。具有良好的保形性,能顺利通过针嘴堵塞且保持三维立体形状,随后将该墨水装入3D直写设备的喷筒中,喷嘴直径为
100um,设置好3D直写设备的程序,开启通过逐层叠加的方式在空气中打印即可得到三维立体结构,将得到的三维立体结构在室温下干燥6h后放于60℃下干燥12h,随后至于80℃干燥12h,得到三维立体结构的生坯,随后将生坯至于普通烧结炉中以1℃/min升温至500℃保温4h,随后10℃/min升温至1000℃保温1h后以相同速率升温至1550℃保温烧结得三维立体结构的氧化锆陶瓷制品。

Claims (8)

1.一种3D直写的氧化锆墨水,其特征在于,原料包括氧化锆颗粒、溶剂、粘结剂和聚电解质;所述的氧化锆颗粒粒径范围为0.1‐2μm,其在氧化锆墨水中的固相含量范围为40‐58vol%;所述的粘结剂为丙烯酰胺、明胶、琼脂、环氧树脂、纤维素、壳聚糖、阿拉伯树胶、果胶中的一种或几种;所述的聚电解质由聚阳离子聚电解质和聚阴离子聚电解质两种构成;其中,所述的聚阴离子电解质的量为氧化锆颗粒干粉质量的0.1‐1.5%,所述的聚阴离子聚电解质和聚阳离子聚电解质的电荷比为(0.1‐4)∶1。
2.根据权利要求1所述的3D直写的氧化锆墨水,其特征在于,所述的聚阴离子聚电解质选自聚丙烯酸、聚羧酸盐中的一种或两种。
3.根据权利要求1所述的3D直写的氧化锆墨水,其特征在于,所述的聚阳离子聚电解质为聚乙烯亚胺和/或聚氧化乙烯。
4.根据权利要求1所述的3D直写的氧化锆墨水,其特征在于,所述的溶剂为去离子水、无水乙醇、聚乙二醇中一种或几种。
5.根据权利要求1所述的3D直写的氧化锆墨水,其特征在于,将粒径为0.1‐1μm氧化锆颗粒,溶剂为去离子水,粘结剂为纤维素,聚阴离子聚电解质为聚丙烯酸,聚阳离子聚电解质为聚乙酰亚胺混合形成浆料;浆料中:氧化锆颗粒固相含量范围为40‐56vol%,纤维素含量为溶剂质量的0 .002‐0 .008%,聚丙烯酸为氧化锆颗粒干粉质量含量的0.4‐1.2%;聚丙烯酸与聚乙酰亚胺的电荷比为(0.1‐3):1。
6.根据权利要求1所述的3D直写的氧化锆墨水,其特征在于,将粒径为0.1‐1μm氧化锆颗粒,溶剂为去离子水,粘结剂为环氧树脂,聚阴离子聚电解质为聚丙烯酸,聚阳离子聚电解质为聚氧化乙烯混合形成浆料;浆料中:氧化锆颗粒固相含量范围为48‐56vol%,环氧树脂含量为溶剂质量的5‐25wt%,聚丙烯酸为氧化锆颗粒干粉质量含量的0.4‐1.2%;聚氧化乙烯的电荷比为(0.1‐3):1。
7.根据权利要求1所述的3D直写的氧化锆墨水,其特征在于,将粒径为0 .1‐1μm氧化锆颗粒,溶剂去离子水,粘结剂阿拉伯树胶,聚阴离子聚电解质为聚丙烯酸或聚丙烯酸钠,聚阳离子聚电解质为聚氧化乙烯或聚丙烯亚胺混合形成浆料;浆料中:氧化锆颗粒固相含量范围为40‐56vol%,阿拉伯树胶含量为溶剂质量的0.04‐0.08%,聚丙烯酸或聚丙烯酸钠为氧化锆颗粒干粉质量含量的0 .4‐1 .2%;聚丙烯酸或聚丙烯酸钠∶聚氧化乙烯或聚丙烯亚胺的电荷比为(0 .1‐2)∶1。
8.根据权利要求1‐5任一项所述的3D直写的氧化锆墨水,其特征在于,向墨水中加入酸碱调节剂调节pH 值范围为6‐9。
CN201611142375.7A 2016-12-12 2016-12-12 用于3d直写的氧化锆墨水 Active CN108610044B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611142375.7A CN108610044B (zh) 2016-12-12 2016-12-12 用于3d直写的氧化锆墨水

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611142375.7A CN108610044B (zh) 2016-12-12 2016-12-12 用于3d直写的氧化锆墨水

Publications (2)

Publication Number Publication Date
CN108610044A CN108610044A (zh) 2018-10-02
CN108610044B true CN108610044B (zh) 2021-06-25

Family

ID=63643711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611142375.7A Active CN108610044B (zh) 2016-12-12 2016-12-12 用于3d直写的氧化锆墨水

Country Status (1)

Country Link
CN (1) CN108610044B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110256069B (zh) * 2019-06-25 2021-11-30 济南大学 一种可光固化的3d打印成型用染色齿科氧化锆陶瓷料浆的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415337A (zh) * 2010-10-25 2013-11-27 拜耳技术服务有限公司 具有掺杂的银纳米颗粒的金属颗粒溶胶
CN105339445A (zh) * 2013-06-28 2016-02-17 西康有限公司 油墨组合物的工业脱墨
CN105384449A (zh) * 2015-11-11 2016-03-09 华中科技大学 一种陶瓷墨水及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0308937D0 (en) * 2003-04-17 2003-05-28 Eastman Kodak Co Inkjet recording element comprising particles and polymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415337A (zh) * 2010-10-25 2013-11-27 拜耳技术服务有限公司 具有掺杂的银纳米颗粒的金属颗粒溶胶
CN105339445A (zh) * 2013-06-28 2016-02-17 西康有限公司 油墨组合物的工业脱墨
CN105384449A (zh) * 2015-11-11 2016-03-09 华中科技大学 一种陶瓷墨水及其制备方法与应用

Also Published As

Publication number Publication date
CN108610044A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
CN108456457B (zh) 3d直写氧化锆陶瓷墨水
CN108456456B (zh) 3d直写的氧化锆胶体墨水
CN106242507B (zh) 一种直接成型3d陶瓷打印用粘土泥料及其制备方法和应用
Jin et al. Study of extrudability and standoff distance effect during nanoclay-enabled direct printing
CN109400200B (zh) 一种宏观与微观结构皆可控的羟基磷灰石多孔陶瓷及其制备方法和应用
JP2020512943A (ja) ゲル支持環境における付加製造
CN109400179B (zh) 一种制备宏观与微观结构皆可控的材料的方法
CN113045297B (zh) 一种3d直写打印复合陶瓷浆料、制备方法及得到的陶瓷
CN101148360B (zh) 一种梯度多孔结构陶瓷的定制化成型方法
CN108275979B (zh) 一种用于光固化3d打印的陶瓷材料、陶瓷件及其制备方法
CN110193893B (zh) 聚合物基球形粉体的制备方法
CN107140953B (zh) 一种快速挤出制备陶瓷微球的方法
CN109692967A (zh) 一种3d打印用团状粉料及其制备方法和打印方法
CN201357575Y (zh) 一种结合静电纺丝技术的快速成型装置
CN108638403B (zh) 一种基于范德华力效应的干黏附垫及其制作方法
CN107365158B (zh) 一种用于挤出式3d打印的结构陶瓷膏体及其制备方法
CN106348745B (zh) 一种3dp工艺快速成型yag透明陶瓷粉体材料的制备
CN106007709A (zh) 一种凝胶注模成型制备高强度陶瓷的方法
CN109880324B (zh) 一种具有高导电性能的制件及其制备方法
CN109054765B (zh) 一种聚乙二醇/乙基纤维素相变微胶囊及其制备方法
CN110732672A (zh) 一种梯度金属基多孔材料及其制备方法和应用
CN106238111A (zh) 一种基于微流控芯片剪切流的微胶囊制备方法
CN108610044B (zh) 用于3d直写的氧化锆墨水
CN106077640B (zh) 块材合金制备系统及其制备方法
CN112452251B (zh) 月牙形及其变形陶瓷微颗粒、其制备方法、应用及制备装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant