TWI510446B - 具有改良的總節距穩定性之玻璃 - Google Patents

具有改良的總節距穩定性之玻璃 Download PDF

Info

Publication number
TWI510446B
TWI510446B TW102147209A TW102147209A TWI510446B TW I510446 B TWI510446 B TW I510446B TW 102147209 A TW102147209 A TW 102147209A TW 102147209 A TW102147209 A TW 102147209A TW I510446 B TWI510446 B TW I510446B
Authority
TW
Taiwan
Prior art keywords
glass
temperature
less
compaction
cao
Prior art date
Application number
TW102147209A
Other languages
English (en)
Other versions
TW201429911A (zh
Inventor
Douglas Clippinger Allan
Bradley Frederick Bowden
Adam James Ellison
Timothy James Kiczenski
Marcel Potuzak
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49917775&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI510446(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Corning Inc filed Critical Corning Inc
Publication of TW201429911A publication Critical patent/TW201429911A/zh
Application granted granted Critical
Publication of TWI510446B publication Critical patent/TWI510446B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

具有改良的總節距穩定性之玻璃 【相關申請案之交叉引用】
本申請案根據專利法主張2012年12月21日申請之美國臨時申請案第61/740,790號及2013年11月27日申請之美國臨時申請案第61/909,612號的優先權權益,該等申請案之全部內容在此以引用之方式併入本文中。
本揭示案係針對用於製造可用於高效能視訊及資訊顯示器中之玻璃片的組成物及方法。
液晶顯示器(例如,主動式矩陣液晶顯示裝置(AMLCD))之生產係非常複雜的,且基板玻璃之性質係極其重要的。首先,用於AMLCD裝置之生產中的玻璃基板必須嚴格控制該等玻璃基板的實體尺寸。
在液晶顯示器領域中,基於多晶矽之薄膜電晶體(TFT)係較佳的,因為該等薄膜電晶體能夠更有效地傳送電子。多晶基矽電晶體(p-Si)特徵為具有比基於非晶矽基電晶體(a-Si)之彼等遷移率高的遷移率。此情形允許製造更小且更快之電晶體,該等電晶體最終生產更亮且更快之顯示器。 p-Si基電晶體之一個問題在於:該等電晶體之製造需要比製造a-Si電晶體中所用之彼等處理溫度高的處理溫度。相比於製造a-Si電晶體中通常使用之350℃峰值溫度,該等溫度範圍為450℃至600℃。在該等溫度下,大部分AMLCD玻璃基板經受稱為壓實之製程。壓實(亦稱為熱穩定性或尺寸改變)為歸因於玻璃之假想溫度之變化的玻璃基板之不可逆尺寸改變(收縮)。「假想溫度」為用於指示玻璃之結構狀態的概念。由於「凍結」較高溫度結構,自高溫迅速冷卻之玻璃稱為具有較高假想溫度。更慢冷卻或接近玻璃之退火點藉由保持一時間退火的玻璃稱為具有較低假想溫度。當玻璃保持在高溫下時,允許結構使該玻璃之結構朝向熱處理溫度鬆弛。由於玻璃基板之假想溫度幾乎總是高於薄膜電晶體(TFT)製程中之相關熱處理溫度,故該結構鬆弛導致假想溫度之降低,該降低從而導致壓實(收縮/緻密)玻璃。
最小化玻璃中之壓實位準將係有利的,因為在顯示器製程期間,壓實導致可能的對準問題,此舉進而導致成品顯示器的解析度問題。
存在許多方法以最小化玻璃中之壓實。一種方法為熱預處理玻璃以形成假想溫度,該假想溫度類似於在p-Si TFT製造期間玻璃將經受之一個假想溫度。該方法存在許多困難。首先,在p-Si TFT製造期間使用之多個加熱步驟形成玻璃之稍微不同假想溫度,該等溫度不能由該預處理充分補償。第二,玻璃之熱穩定性變得緊密聯繫到p-Si TFT製造之細節,此舉將意謂不同預處理用於不同最終使用者。最後, 預處理增加處理成本及複雜性。
另一方法為增加玻璃之退火點。具有較高退火之玻璃將具有較高假想溫度,且在與經受與面板製造相關聯之高溫時相比,該等玻璃將較少地壓實。然而,該方法之挑戰為生產具成本效益之高退火點玻璃。影響成本之主要因素為缺陷及資產壽命。較高退火點玻璃在該等玻璃之製造期間通常使用較高操作溫度,從而降低與玻璃製造相關聯之固定資產的壽命。
又一方法涉及減慢製造期間的冷卻速率。雖然該方法具有優點,但一些製造技術(諸如,融合製程)導致玻璃片自熔融物之快速淬火,且相對高溫結構「凍結」。雖然一些受控冷卻對該製程係可能的,但難以控制。
揭示具有特殊總節距可變性(TPV)之玻璃基板,如由三個度量量測:(1)高溫試驗循環(HTTC)中之壓實小於40ppm;(2)低溫試驗循環(LTTC)中之壓實小於5.5ppm;及(3)在應力鬆弛試驗循環中鬆弛之應力鬆弛速率始終小於50%。藉由用單一玻璃產品滿足所有三個準則,確保基板對最高解析度TFT循環可接受。對玻璃鬆弛之基礎物理學的新近理解允許申請人揭示滿足所有三個準則之玻璃。
本揭示案描述用於高效能視訊或資訊顯示器中之玻璃片,該玻璃片滿足以下效能準則:低溫試驗循環中之壓實小於或等於5.5ppm、高溫試驗循環中之壓實小於或等於 40ppm且應力鬆弛試驗循環中之誘導應力位準小於50%。更具體言之,本揭示案提供滿足上述準則且具有熱膨脹係數之玻璃組成物,該等玻璃組成物與矽相容,實質上不含鹼金屬、不含砷且不含銻。更具體言之,本揭示案之玻璃進一步展示出小於2.6g/cc之密度、0.5mm厚之片在300nm處大於50%之透射率且(MgO+CaO+SrO+BaO)/Al2 O3 小於1.25。
根據本揭示案之某些其他態樣,玻璃具有高退火點及高液相黏度,因而降低或消除成形心軸上失透的可能性。由於玻璃組成物之具體細節,所揭示之玻璃用極低位準之氣態夾雜物熔化成優良品質,且用最低侵蝕融化至貴金屬、耐火材料及氧化錫電極材料。部分額外優點將在以下描述中闡述,且部分優點將自描述顯而易見,或可藉由實踐下文所描述之態樣認識到。下文所描述之優點將藉由附加申請專利範圍中特別指出之元素及組合得以認識和實現。應理解,前文一般描述及下文詳細描述兩者僅為示例性且說明性的且非限制性的。
併入本說明書且構成本說明書之一部分的隨附圖式圖示下文所描述之許多態樣。
第1圖為如本揭示案中所描述之高溫熱循環關於溫度隨指定時間週期的圖形表示。
第2圖為如本揭示案中所描述之低溫熱循環關於溫度隨指定時間週期的圖形表示。
第3圖為如高溫試驗循環(HTTC)中量測之壓 實作為研究之玻璃的退火點(以℃計)之函數的圖形表示。
第4圖為如低溫試驗循環(LTTC)中量測之壓實作為研究之玻璃的退火點(以℃計)之函數的圖形表示。
第5圖為應力鬆弛試驗循環(SRTC)(在650℃下60分鐘)之後鬆弛之應力百分數繪製作為研究之玻璃的退火點(以℃計)之函數的圖形表示。鬆弛小於50%之應力的玻璃經指出作為本揭示案之關鍵。
第6A圖為滿足本揭示案之壓實態樣之含在區域「1」中的玻璃的圖形表示。位於區域1中之玻璃亦具有本揭示案中體現之應力鬆弛速率。
第6B圖為圖示來自第6A圖之放大的區域「1」的圖形表示。
在歷史上,面板製造商通常已製造「較大、低解析度」顯示器或「較小、高解析度」顯示器。在該等兩種情況下,玻璃保持在高溫,從而導致玻璃基板經受已知為壓實之製程。
由經歷給定時間/溫度曲線之玻璃基板展示出的壓實量可由以下方程式描述:
其中T f (t )為玻璃之作為時間之函數的假想溫度,T 為熱處理溫度,T f (t =0)為初始假想溫度,b 為「拉伸指數」,且τ(T )為玻璃在熱處理溫度下之鬆弛時間。雖然增加 熱處理溫度(T )降低用於壓實之「驅動力」(亦即,使「T f (t =0)-T 」為更小量),但此舉導致極大減少基板之鬆弛時間τ。鬆弛時間隨溫度指數地變化,從而導致當溫度上升時,在給定時間內壓實量之增加。
對於使用非晶矽(a-Si)基TFT製造較大、低解析度之顯示器,處理溫度相對低(大致350℃或更小)。對低解析度顯示器之該等低溫結合寬鬆尺寸穩定性要求允許使用具有較高假想溫度之低退火點(T(ann))玻璃。在玻璃之黏度等於1013.18 泊的情況下,退火點界定為溫度。T(ann)用作簡單度量以表示玻璃之低溫黏度,界定為玻璃在低於玻璃轉移溫度之給定溫度下之有效黏度。較高「低溫黏度」經由馬克士威關係式導致較長鬆弛時間: 其中η為黏度,且G 為剪切模數。較高效能、較小的高解析度顯示器通常使用多晶矽基(p-Si)TFT製造,該等TFT利用比a-Si製程高很多之溫度。正因如此,需要較高退火點玻璃或較低假想溫度玻璃滿足對p-Si基TFT之壓實要求。已付出很大努力製造與現存製造平臺相容之較高退火點玻璃或改良較低退火點玻璃之熱歷程以能夠用於該等製程,且該等路徑兩者已顯示出適合用於前代高效能顯示器。然而,最近,p-Si基顯示器現製造於甚至更大「gen大小」片上(許多小顯示器在單一大玻璃片上),且註冊標記在TFT製程中更早置放。該等兩個因素迫使玻璃基板具有甚至更好之高溫壓實效能,且使得較低溫度步驟中之壓實變成總節距可變性之相關(及 或許甚至主要)源。總節距可變性(TPV)係指特徵(諸如,註冊標記)對準中之變化。在處理大玻璃片期間,TPV由不同源造成。如將圖示,適當的高溫壓實不必轉換成適當的低溫效能或適當的TPV。
為達到大顯示器中之較高遷移率,面板製造商已開始使用氧化物薄膜電晶體(OxTFT)製造較大、高解析度顯示器。雖然OxTFT製程類似於a-Si基TFT通常以峰值溫度(且通常使用相同設備)進行,但解析度要求相當高,此舉意謂低溫壓實相對於a-Si基板之壓實必須大幅改良。除對低溫壓實之緊密要求之外,OxTFT製程中累積之膜應力已導致玻璃中之應力鬆弛變成對整個TPV之主要貢獻者。
申請者已瞭解熱循環指示TPV為尺寸穩定性之最重要描述,該尺寸穩定性合併壓實以及應力鬆弛分量。相同製程之高溫壓實及低溫壓實及引入作為該新一代高效能顯示器之關鍵基板屬性之應力鬆弛的該共存已展示出所有現存市售之基板為不足的。表1揭示玻璃組成物,該等玻璃組成物可同時管理TPV之所有三個態樣:低溫壓實、高溫壓實及應力鬆弛。
本文中描述用作非晶矽TFT製程、氧化物TFT製程及低溫多晶矽TFT製程中之TFT背板基板的實質上不含鹼金屬之玻璃,該等玻璃具有高退火點,且因此具有優良尺寸穩定性(亦即,低壓實)。本揭示案之玻璃能夠管理TPV之所有三個態樣:低溫壓實、高溫壓實及應力鬆弛。
高退火點玻璃可在繼製造玻璃之後的熱處理期 間防止由於壓實/收縮導致之面板變形。在一個實施例中,揭示之玻璃亦具有非常高之液相黏度,且因此,在成形設備中寒冷處之失透風險顯著降低。應理解,雖然通常需要低鹼金屬濃度,但在實務中,經濟地製造完全不含鹼金屬之玻璃可能係困難或不可能的。討論中之鹼金屬作為原材料中之污染物、作為耐火材料中之微量組分等出現,且可能極難以完全消除。因此,若鹼金屬元素Li2 O、Na2 O及K2 O之總濃度小於約0.1莫耳百分數(莫耳%),則揭示之玻璃視為實質上不含鹼金屬。
在一個態樣中,實質上不含鹼金屬之玻璃具有大於約765℃,較佳大於775℃且更佳大於785℃之退火點。該等高退火點導致用作低溫多晶矽製程中之背板基板之所揭示的玻璃的低鬆弛速率,且因此導致相對少量之尺寸改變。在另一態樣中,揭示之玻璃在約35000泊(T 35k )之黏度處之溫度為小於約1310℃。玻璃之液相溫度(T liq )為最高溫度,高於該最高溫度,則無晶相可與玻璃均衡共存。在另一態樣中,對應於玻璃之液相溫度的黏度大於約150000泊,更佳大於200000泊且最佳大於250000泊。在另一態樣中,揭示之玻璃之特徵在於T 35k -T liq >0.25T 35k -225℃。此舉確保融合製程之成形心軸上之失透的最小趨勢。
在一個態樣中,實質上不含鹼金屬之玻璃基於氧化物以莫耳百分數計包含:50-85之SiO2
0-20之Al2 O3
0-10之B2 O3
0-20之MgO
0-20之CaO
0-20之SrO
0-20之BaO其中:0.9(MgO+CaO+SrO+BaO)/Al2 O3 3,其中Al2 O3 、MgO、CaO、SrO、BaO表示各個氧化物組分之莫耳百分數。
在進一步態樣中,實質上不含鹼金屬之玻璃基於氧化物以莫耳百分數計包含:68-74之SiO2
10-13之Al2 O3
0-5之B2 O3
0-6之MgO
4-9之CaO
1-8之SrO
0-5之BaO其中:1.05(MgO+CaO+SrO+BaO)/Al2 O3 1.2,其中Al2 O3 、MgO、CaO、SrO、BaO表示各個氧化物組分之莫耳百分數。
在一個態樣中,揭示之玻璃包括化學澄清劑。該等澄清劑包括(但不限於)SnO2 、As2 O3 、Sb2 O3 、F、Cl及Br,且其中化學澄清劑之濃度保持在0.5莫耳%或更小之位準。化學澄清劑亦可包括CeO2 、Fe2 O3 及過渡金屬之其他氧化物,諸如MnO2 。該等氧化物可經由玻璃中之該等氧化物之一或多個最終價態的可見吸收將顏色引入玻璃,且因此,該等氧化物之濃度可較佳地保持在0.2莫耳%或更小之位準。
在一個態樣中,揭示之玻璃可經由融合製程製造成片。融合拉製製程導致原始、火陷磨光玻璃表面,該表面降低高解析度TFT背板及濾色器之表面介導變形。美國專利第3,338,696號及第3,682,609號(皆為Dockerty)中描述之下拉片拉製製程及(詳言之)融合製程可在本文中使用,該等案以引用之方式併入本文中。相比於其他成形製程,諸如,浮法製程,出於許多原因,融合製程較佳。首先,由融合製程製造之玻璃基板不需要磨光。現有玻璃基板磨光能夠生產具有如由原子力顯微術量測之大於約0.5nm(Ra)之平均表面粗糙度的玻璃基板。由融合製程生產之玻璃基板具有如由原子力顯微術量測之小於0.5nm之平均表面粗糙度。基板亦具有如由光阻滯量測之小於或等於150psi之平均內應力。
雖然揭示之玻璃與融合製程相容,但該等玻璃亦可經由要求降低之製程製成片或其他製品。該等製程包括熟習此項技術者所熟知之狹槽拉製製程、浮法製程、軋製製程及其他片成形製程。
相對於用於形成玻璃片之該等替代方法,如上所 述之融合製程能夠形成具有原始表面之極薄、極平、極均勻之片。狹槽拉製亦可產生原始表面,但由於孔形狀隨時間之改變、揮發性碎屑在孔-玻璃界面處之累積及形成傳送真正平坦之玻璃的孔的挑戰,狹槽拉製玻璃之尺寸均勻性及表面品質通常次於融合拉製玻璃。浮法製程能夠傳送極大、均勻之片,但表面由於接觸一個側面上之浮槽且曝露至來自另一側面上之浮槽之縮合產物而實質上折中。此情形意謂浮法玻璃必須經磨光用於高效能顯示應用中。
不幸的是,且不同於浮法製程,融合製程導致玻璃自高溫快速冷卻,且此導致高假想溫度T f :假想溫度可視為表示玻璃之結構狀態與假設有利溫度下是否完全鬆弛的狀態之間的差異。吾人現在考慮用玻璃轉移溫度T g 將玻璃再加熱至處理溫度T p ,以使得T p <T g <T f 的結果。由於T p <T f ,故玻璃之結構狀態在T p 下為不均衡,且玻璃將朝向在T p 下均衡之結構狀態自發地鬆弛。該鬆弛速率與玻璃在T p 下之有效黏度成反比,以使得高黏度導致慢鬆弛速率,且低黏度導致快鬆弛速率。有效黏度與玻璃之假想溫度成反比,以使得低假想溫度導致高黏度,且高假想溫度導致相當低黏度。因此,在T p 下之鬆弛速率與玻璃之假想溫度成正比。當玻璃在T p 下再加熱時,引入高假想溫度之製程導致相當高之鬆弛速率。
降低T p 下之鬆弛速率之一個方式為增加玻璃在彼溫度下之黏度。玻璃之退火點表示玻璃具有1013.2 泊之黏度的溫度。當溫度降到低於退火點時,過冷熔融物之黏度增加。在低於T g 之固定溫度下,具有較高退火點之玻璃具有高於具 有較低退火點之玻璃的黏度。因此,為增加基板玻璃在T p 下之黏度,吾人可選擇增加該基板玻璃之退火點。不幸的是,通常情況下,必然增加退火點之組成改變亦增加所有其他溫度下之黏度。詳言之,由融合製程製造之玻璃的假想溫度對應於約1011 泊至1012 泊之黏度,故融合相容玻璃之退火點之增加通常亦增加該玻璃之假想溫度。對於給定玻璃,較高假想溫度在低於T g 之溫度下導致較低黏度,且因此增加假想溫度妨礙黏度增加,黏度增加將以其他方式藉由增加退火點而獲取。為看到鬆弛速率在T p 下之實質改變,通常必須使退火點發生相對大改變。揭示之玻璃之態樣為該玻璃具有大於約765℃之退火點,在另一態樣中,退火點大於775℃,且在又一態樣中,退火點大於785℃。在低溫TFT處理(例如,典型低溫多晶矽快速熱退火循環)期間,該等高退火點導致可接受的低熱鬆弛速率。
除對假想溫度之影響之外,增加退火點亦增加整個熔化及成形系統的溫度,特定言之,用作融合製程中之成形設備的等靜壓管上之溫度。舉例而言,Eagle XG®及LotusTM (Corning Incorporated,Corning,NY)具有相差約50℃之退火點,且該等玻璃傳送至等靜壓管之溫度亦相差約50℃。當保持高於約1310℃達延長時間週期時,鋯耐火材料展示出熱蠕變,且該熱蠕變可由等靜壓管自身之重量加等靜壓管上之玻璃的重量加快。揭示之玻璃的第二態樣為該等玻璃之傳送溫度小於1310℃。該等傳送溫度允許在不替換等靜壓管的情況下延長之製造運轉期。
在具有高退火點及低於1310℃之傳送溫度之玻璃的試製中,發現該等玻璃相對於具有較低退火點之玻璃展示出更大傾向於在等靜壓管(且尤其是邊緣導引件)之根部失透。仔細量測等靜壓管上之溫度曲線展示出由於輻射熱損失,邊緣導引件溫度相對於中心根部溫度比預期之溫度低得多。邊緣導引件通常必須維持在低於中心根部溫度之溫度下,以確保玻璃在離開根部時之黏性足夠,以在張力下將片放置在邊緣導引件之間,因而維持平坦形狀。當邊緣導引件在等靜壓管之任一末端處時,難以加熱邊緣導引件,且因此,根部中心與邊緣導引件之間的溫差可相差50℃或更多。
由於輻射熱損失隨溫度而增加,且由於高退火點玻璃通常在比較低退火點玻璃高之溫度下形成,故中心根部與邊緣導引件之間的溫差通常隨玻璃之退火點而增加。此情形具有關於玻璃在等靜壓管或邊緣導引件上形成失透產物之趨勢的直接結果。玻璃之液相溫度界定為最高溫度,若玻璃無限期地保持在彼溫度下,則晶相將在該最高溫度下出現。液相黏度為玻璃在液相溫度下之黏度。為完全避免等靜壓管上之失透,需要液相黏度足夠高以確保玻璃在液相溫度下或近似液相溫度下不再在等靜壓管耐火材料或邊緣導引件材料上。
實務中,較少不含鹼金屬之玻璃具有所需量級之液相黏度。適用於非晶矽應用(例如,Eagle XG® )之基板玻璃的經歷指示邊緣導引件可連續保持在高達60℃低於某些不含鹼金屬玻璃之液相溫度的溫度下。雖然應理解,具有較高 退火點之玻璃將需要較高成形溫度,但不預期邊緣導引件相對於中心根部溫度將冷得多。用於保持追蹤該效應之有用度量為至等靜壓管上之傳送溫度及玻璃之液相溫度T liq 之間的差異。在融合製程中,大體上需要在約35000泊下傳送玻璃,且對應於35000泊之黏度的溫度簡單地表示為T 35k 。對於特定傳送溫度,使T 35k -T liq 儘可能大總是理想的,但對於非晶矽基板,諸如,Eagle XG® ,發現若T 35k -T liq 為約80°或更大,則可進行延長之製造運轉期。當溫度增加時,T 35k -T liq 亦必須增加,以使得對於接近1300°之T 35k ,需要T 35k -T liq 為至少約100°。用於T35k-Tliq之最小有用值隨自約1200℃至約1320℃之溫度大致線性地改變,且可表示為:最小T 35k -T liq =0.25T 35k -225,其中所有溫度以℃計。因此,揭示之玻璃的進一步態樣為T 35k -T liq >0.25T 35k -225℃。
除該準則之外,融合製程需要具有高液相黏度之玻璃。此為必須的,以避免與玻璃之界面處的失透產物且最小化最終玻璃中之可見失透產物。對於與特定片大小及厚度之融合相容之給定玻璃,調整製程以製造更寬之片或更厚之片通常導致等靜壓管之任一末端(用於融合製程之成形心軸)處之較低溫度。因此,具有較高液相黏度之所揭示玻璃提供用於經由融合製程製造的更大可撓性。
在液相黏度與融合製程中之後續失透趨勢之間的關係試驗中,已觀察到,高傳送溫度(諸如,揭示之玻璃之彼等傳送溫度)通常需要比具有較低退火點之典型AMLCD 基板組成物的情況高的液相黏度用於長期生產。雖不希望受理論束縛,但該要求似乎自隨溫度增加而加速之晶體成長速率出現。融合本質上為等黏性製程,因此在某一固定溫度下更具黏性之玻璃必須藉由在比較不具黏性之玻璃高的溫度下融合而形成。雖然某種程度之過冷(冷卻低於液相溫度)可在較低溫度下於玻璃中維持延長週期,但晶體成長速率隨溫度增加,且因此,更具黏性玻璃在比較不具黏性之玻璃短的時間週期中生長等效、不可接受量之失透產物。視失透產物形成之處而定,失透產物可折中成形穩定性且將可見缺陷引入最終玻璃中。
為藉由融合製程形成,需要揭示之玻璃組成物具有大於或等於200000泊,更佳大於或等於250000泊之液相黏度,較高液相黏度係較佳的。令人驚奇的結果為在揭示之玻璃之整個範圍內,獲取足夠低之液相溫度及足夠高之黏度係可能的,以使得相比於揭示之範圍外的組成物,玻璃之液相黏度非常高。
當然,本揭示案不限於與融合製程一起使用且因此用於浮法製程,液相黏度條件以及上文描述之其他特定融合準則將為不必要的,從而延伸組成窗口用於彼等製程。
在本文中描述之玻璃組成物中,SiO2 用作基礎玻璃成形劑。SiO2 含量可為自50莫耳百分數至80莫耳百分數。在某些態樣中,SiO2 之濃度可大於68莫耳百分數,以為玻璃提供適用於平板顯示玻璃(例如,AMLCD玻璃)之密度及化學耐久性,及液相溫度(液相黏度),該液相溫度允許藉由 下拉製程(例如,融合製程)形成玻璃。在一個實施例中,SiO2 濃度可小於或等於約74莫耳百分數,以允許在耐火材料熔化器中使用習知、高容量熔化技術(例如,焦耳熔化)熔化批料。隨著SiO2 之濃度增加,200泊之溫度(熔化溫度)大體上升。在各種應用中,調整SiO2 濃度,以使得玻璃組成物具有小於或等於1725℃之熔化溫度。在一個態樣中,SiO2 濃度在70莫耳百分數與73莫耳百分數之間。
Al2 O3 為用於製造本文中描述之玻璃的另一玻璃成形劑。在一個實施例中,Al2 O3 濃度為0至20莫耳百分數。在另一實施例中且考慮到藉由融合製程製造之玻璃,大於或等於10莫耳百分數之Al2 O3 濃度為玻璃提供低液相溫度及高黏度,從而產生高液相黏度。使用至少10莫耳百分數之Al2 O3 亦改良玻璃之退火點及模數。對於具有大於或等於1.05之(MgO+CaO+SrO+BaO)/Al2 O3 比的實施例,需要保持Al2 O3 濃度低於約13莫耳百分數。在一個態樣中,Al2 O3 濃度在10莫耳百分數與13莫耳百分數之間。
B2 O3 為玻璃成形劑及幫助熔化且降低熔化溫度之助熔劑。B2 O3 對液相溫度之影響至少與B2 O3 對黏度之影響一樣大,以便增加之B2 O3 可用於增加玻璃之液相黏度。在一個實施例中,B2 O3 含量為0莫耳百分數至10莫耳百分數,且在另一實施例中,B2 O3 含量在0莫耳百分數至6莫耳百分數之間。在另一實施例中,本文中所描述之玻璃組成物具有等於或大於1莫耳百分數之B2 O3 濃度。如上關於SiO2 所述,玻璃耐久性對於LCD應用非常重要。耐久性某種程度上可受控 於鹼土金屬氧化物之高濃度,且藉由高B2 O3 含量明顯降低。退火點隨B2 O3 增加而降低,因此需要相對於B2 O3 在非晶矽基板中之典型濃度保持低B2 O3 含量。因此,在一個態樣中,本文中描述之玻璃具有在1莫耳百分數與5莫耳百分數之間的B2 O3 濃度。在另一態樣中,玻璃具有在2莫耳百分數與4.5莫耳百分數之間的B2 O3 含量。在又一態樣中,本發明之玻璃具有在2.5莫耳百分數與4.5莫耳百分數之間的B2 O3 含量。
Al2 O3 濃度及B2 O3 濃度可選擇作為一對以增加退火點、增加模數、改良耐久性、降低密度且降低熱膨脹係數(CTE),同時維持玻璃之熔化性質及成形性質。
舉例而言,B2 O3 之增加及Al2 O3 之相應降低可有助於獲得較低密度及CTE,而Al2 O3 之增加及B2 O3 之相應降低可有助於增加退火點、模數及耐久性,只要在尋求(MgO+CaO+SrO+BaO)/Al2 O3 控制之一些實施例中,Al2 O3 之增加不降低(MgO+CaO+SrO+BaO)/Al2 O3 比至低於約0.9(在一個實施例中)及1.05(在另一實施例中)。對於(MgO+CaO+SrO+BaO)/Al2 O3 比低於約1.0,由於氧化矽原材料之後期熔化,故可能難以或不可能自玻璃移除氣態夾雜物。此外,當(MgO+CaO+SrO+BaO)/Al2 O3 1.05,富鋁紅柱石(鋁矽酸鹽晶體)可以液相出現。一旦富鋁紅柱石呈現為液相,則組成物之液相敏感度大幅增加,且富鋁紅柱石失透產物皆極快生長且一旦建立,則該等產物極難移除。因此,在一個態樣中,本文中描述之玻璃具有(MgO+CaO+SrO+BaO)/Al2 O3 1.05。 (MgO+CaO+SrO+BaO)/Al2 O3 之上限可高達3,視成形製程而定,但在一個實施例中且如下文立即描述,上限小於或等於1.2。在另一實施例中,小於或等於1.6,且在又一實施例中,小於或等於1.4。
除玻璃成形劑(SiO2 、Al2 O3 及B2 O3 )之外,本文中描述之玻璃亦包括鹼土金屬氧化物。在一個態樣中,至少三個鹼土金屬氧化物為部分玻璃組成物,例如,MgO、CaO及BaO及視情況SrO。鹼土金屬氧化物為玻璃提供對熔化、澄清、成形及最終使用很重要之各種性質。因此,為改良就該等方面之玻璃效能,在一個態樣中,(MgO+CaO+SrO+BaO)/Al2 O3 比大於或等於1.05。當該比增加時,黏度傾向於比液相溫度增加迅猛,且因此,愈發難以獲得T 35k -T liq 之合適高值。因此,在另一態樣中,(MgO+CaO+SrO+BaO)/Al2 O3 比小於或等於1.2。
對於本發明之某些實施例,鹼土金屬氧化物可視為實際上為單一組成成分。此係因為該等氧化物對黏彈性性質之影響,液相溫度及液相關係品質上相比對玻璃成形氧化物SiO2 、Al2 O3 及B2 O3 而言更類似於彼此。然而,鹼土金屬氧化物CaO、SrO及BaO可形成長石礦物,尤其是鈣長石(CaAl2 Si2 O8 )及鋇長石(BaAl2 Si2 O8 ),及具有該等礦物之含鍶固溶體,但MgO在很大程度上不加入該等晶體。因此,當長石晶體已為液相時,追加MgO可用以使液體相對於晶體穩定,且因此降低液相溫度。同時,黏度曲線通常變得陡峭,從而降低熔化溫度,同時對低溫黏度影響較小或沒有影響。 就此而言,添加少量MgO藉由降低熔化溫度有益於熔化,藉由降低液相溫度及增加液相黏度有益於成形,同時保持高退火點,且因而保持低壓實。
用於AMLCD應用中之玻璃應具有範圍在28×10-7 /℃至42×10-7 /℃中之CTE(0℃至300℃),較佳為30×10-7 /℃至40×10-7 /℃,且更佳為32×10-7 /℃至38×10-7 /℃,或在其他實施例中為33×10-7 /℃至37×10-7 /℃。對於某些應用,當最終顯示器之重量可為重要屬性時,密度係重要的。
存在於玻璃組成物中之氧化鈣可產生用於平板應用(特別是AMLCD應用)之在最需要之範圍中的低液相溫度(高液相黏度)、高退火點及模數及CTE。氧化鈣亦有利地有助於化學耐久性,且相比於其他鹼土金屬氧化物,氧化鈣作為批料相對便宜。然而,在高濃度下,CaO增加密度及CTE。此外,在足夠低之SiO2 濃度下,CaO可穩定鈣長石,從而降低液相黏度。因此,在一個態樣中,CaO濃度可大於或等於0莫耳百分數至20莫耳百分數。在另一態樣中,玻璃組成物之CaO濃度在約4莫耳百分數與9莫耳百分數之間。在另一態樣中,玻璃組成物之CaO濃度在約4.5莫耳百分數與6莫耳百分數之間。
SrO及BaO皆可有助於低液相溫度(高液相黏度),且因此,本文中描述之玻璃將通常含有該等氧化物中之至少兩者。然而,選擇該等氧化物之選擇及濃度,以避免增加CTE及密度且降低模數及退火點。對於藉由下拉製程製造之玻璃,SrO及BaO之相對比例可平衡,以便獲得物理性 質及液相黏度之適當組合。
該等考慮中最為重要的是,玻璃較佳地可藉由下拉製程(例如,融合製程)形成,此意謂玻璃之液相黏度需要相對高。個別鹼土金屬在該方面起重要作用,由於該等鹼土金屬可使將以其他方式形成之晶相不穩定。BaO及SrO對控制液相黏度尤其有效,且包括在至少用於該目的之本發明之玻璃中。如下呈現之實例中所示,鹼土金屬之各種組合將生產具有高液相黏度之玻璃,其中總鹼土金屬滿足實現低熔化溫度、高退火點及適當CTE所需之RO/Al2 O3 比約束。
玻璃組成物大體上不含鹼金屬,然而,玻璃可含有一些鹼金屬污染物。在AMLCD應用的情況下,需要保持鹼金屬位準低於0.1莫耳百分數以避免經由將鹼金屬離子自玻璃擴散至TFT之矽中而對薄膜電晶體(TFT)效能起不良影響。如本文中所使用,「不含鹼金屬之玻璃」為具有小於或等於0.1莫耳百分數之總鹼金屬濃度的玻璃,其中總鹼金屬濃度為Na2 O濃度、K2 O濃度及Li2 O濃度之和。在一個態樣中,總鹼金屬濃度小於或等於0.1莫耳百分數。
基於氧化物,本文中描述之玻璃組成物可具有以下組成特徵中之一或多者或全部:(i)至多0.05莫耳百分數之As2 O3 濃度;(ii)至多0.05莫耳百分數之Sb2 O3 濃度;(iii)至多0.25莫耳百分數之SnO2 濃度。
As2 O3 為用於AMLCD玻璃之有效高溫澄清劑,且在本文中描述之一些態樣中,As2 O3 由於As2 O3 之優良澄清性質用於澄清。然而,As2 O3 係有毒的且在玻璃製程期間需要 特殊處理。因此,在某些態樣中,在不使用大量As2 O3 的情況下執行澄清,亦即,成品玻璃具有至多0.05莫耳百分數之As2 O3 。在一個態樣中,As2 O3 不特意用於澄清玻璃。在該等情況下,由於污染物存在於批料及/或用於熔化批料的設備中,故成品玻璃通常將具有至多0.005莫耳百分數之As2 O3
雖然毒性不如As2 O3 ,但Sb2 O3 亦係有毒的且需要特殊處理。另外,相比於使用As2 O3 或SnO2 作為澄清劑之玻璃,Sb2 O3 增加密度、增加CTE且降低退火點。因此,在某些態樣中,在不使用大量Sb2 O3 的情況下執行澄清,亦即,成品玻璃具有至多0.05莫耳百分數之Sb2 O3 。在另一態樣中,Sb2 O3 不特意用於澄清玻璃。在該等情況下,由於污染物存在於批料及/或用於熔化批料的設備中,故成品玻璃通常將具有至多0.005莫耳百分數之Sb2 O3
相比於As2 O3 及Sb2 O3 澄清,錫澄清(亦即,SnO2 澄清)不太有效,但SnO2 為不具有已知有害性質之普存材料。又,多年來,經由在焦耳熔化該等玻璃之批料時使用氧化錫電極,SnO2 一直為AMLCD玻璃之組分。AMLCD玻璃中之SnO2 的存在在使用該等玻璃製造液晶顯示器時未導致任何已知不良影響。然而,SnO2 之高濃度不為較佳的,由於此可導致在AMLCD玻璃中形成晶體缺陷。在一個態樣中,成品玻璃中SnO2 之濃度小於或等於0.25莫耳百分數。
若需要,錫澄清可單獨使用或與其他澄清技術組合使用。舉例而言,錫澄清可結合鹵化物澄清,例如,溴澄清。其他可能之組合包括(但不限於)錫澄清加硫酸鹽、硫 化物、氧化鈰、機械起泡及/或真空澄清。預期可單獨使用該等其他澄清技術。在某些態樣中,維持(MgO+CaO+SrO+BaO)/Al2 O3 比及各別鹼土金屬濃度在以上論述之範圍內使澄清製程更易於執行且更有效。
如所述,本文中描述之玻璃可使用此項技術中已知之各種技術製造。在一個態樣中,玻璃使用製程製造,藉由該製程由熔化且澄清批料生產50個連續玻璃片之群,且玻璃具有小於0.10氣態夾雜物/立方公分之平均氣態夾雜物位準,其中該群中之每一片具有至少500立方公分之體積。
在一個實施例中,本揭示案之玻璃對於0.5mm厚之物件在300nm處展示出大於50%之透射率。在另一實施例中,本揭示案之玻璃對於0.5mm厚之物件在300nm處展示出大於60%之透射率。在一個實施例中,本揭示案之玻璃展示出在2.3g/cc與2.6g/cc之間的密度。在另一實施例中,本揭示案之玻璃展示出小於2.58g/cc之密度。在一個實施例中,本發明之玻璃物件展示出內融合線,該內融合線指示該等玻璃物件之製造方法為藉由融合下拉製程。在一個實施例中,楊氏模數在70GPa至90GPa之間。在另一實施例中,楊氏模數在75GPa至85GPa之間。
實例
以下實例在下文闡述以根據揭示之標的物描述方法及結果。該等實例不欲包含本文中揭示之標的物的所有態樣,而是說明代表性方法及結果。該等實例不欲排除本發明之對熟習此項技術者顯而易見之等效物及變化。
已努力確保關於數字(例如,量、溫度等)之準確度,但應考慮到一些誤差及偏差。除非另外指明,溫度以℃計或為環境溫度,且壓力為大氣壓或接近大氣壓。組成物自身給定為基於氧化物以莫耳百分數計,且歸一化為100%。存在反應條件(例如,組分濃度、溫度、壓力及其他反應範圍)及可用於最佳化自描述之製程獲得之產物純度及產量的條件之許多變化及組合。將僅需要合理且常式實驗以最佳化該等製程條件。
表1中所述之玻璃性質根據玻璃領域中習知之技術確定。因此,在溫度範圍25℃至300℃內的線性熱膨脹係數(CTE)以×10-7 /℃表示,且退火點以℃表示。該等性質由纖維伸長技術(分別為ASTM參考文獻E228-85及C336)確定。以公克/cm3 表示之密度經由阿基米德方法(ASTM C693)量測。以℃表示之熔化溫度(界定為玻璃熔融物示出200泊之黏度的溫度)使用適用於經由旋轉圓筒黏度測定法(ASTM C965-81)量測之高溫黏度資料之Fulcher方程式計算。
玻璃之以℃表示之液相溫度使用ASTM C829-81之標準梯度舟皿液相方法量測。此舉包含以下步驟:將碎玻璃顆粒放置於鉑舟皿中;將舟皿放置於具有梯度溫度區域之爐中;在適當溫度區域中加熱舟皿24小時;及藉由顯微鏡檢查確定晶體出現在玻璃內部之最高溫度。更特定言之,玻璃樣本自Pt舟皿完整移除,且使用偏光顯微術檢查以識別晶體之位置及性質,該等晶體形成於Pt與空氣介面且形成於樣本 內部中。由於爐之梯度係眾所周知的,故溫度對位置可很好估計在5℃至10℃內。觀察到晶體在樣本之內部部分中之溫度經採用以表示玻璃之液相(針對對應試驗週期)。有時試驗執行較長時間(例如,72小時),以便觀察較慢生長相。對應於200泊之溫度及液相處之黏度(以泊計)使用Vogel-Fulcher-Tammann方程式由適用於高黏度資料決定。
log(η)=A+B/(T-To )其中T為溫度,且A、B及To 為擬合參數。為確定液相黏度,液相溫度用作T之值。以GPa表示之楊氏模數值使用ASTM E1875-00e1中所述之通用型共振超音波光譜技術確定。
如表1中可見,示例性玻璃具有密度值、CTE值、退火點值及楊氏模數值,該等值使得玻璃適用於顯示應用,諸如,AMLCD基板應用,且更特定言之,用於低溫多晶矽及氧化物薄膜電晶體應用。雖然表1中未圖示,但玻璃在酸及鹼介質中具有耐久性,該等玻璃類似於自市售AMLCD基板獲得之彼等玻璃,且因此適用於AMLCD應用。示例性玻璃可使用下拉技術形成,且詳言之,經由上述準則示例性玻璃與融合製程相容。
表1之示例性玻璃使用作為氧化矽源之市售砂製備,研磨,以使得按重量計90%通過標準U.S.100目網篩。氧化鋁為氧化鋁源,方鎂石為MgO之源,石灰石為CaO之源,碳酸鍶、硝酸鍶或上述各者之混合為SrO之源,碳酸鋇為BaO之源,且氧化錫(IV)為SnO2 之源。原材料經完全混合、載入懸浮於由碳化矽格羅棒加熱之爐中之鉑容器中、在1600℃ 與1650℃之間的溫度下熔化且攪動幾小時以確保均質性且經由鉑容器之底部處之孔傳送。所得玻璃餅在退火點下或接近退火點退火,且接著經受各種實驗方法以確定物理屬性、黏性屬性及液相屬性。
該等方法並非唯一的,且表1之玻璃可使用熟習此項技術者所熟知之標準方法製備。該等方法包括連續熔化製程,諸如將在連續熔化製程中執行,其中連續熔化製程中使用之熔化器由氣體、由電力或上述各者之組合加熱。
適用於生產揭示之玻璃的原材料包括作為SiO2 之源的市售砂;作為Al2 O3 之源的氧化鋁、氫氧化鋁、水合式氧化鋁及各種鋁矽酸鹽、硝酸鹽及鹵化物;作為B2 O3 之源的硼酸、無水硼酸及氧化硼;作為MgO之源的方鎂石、白雲石(亦為CaO之源)、氧化鎂、碳酸鎂、氫氧化鎂及各種形式之矽酸鎂、鋁矽酸鹽、硝酸鹽及鹵化物;作為CaO之源的石灰石、文石、白雲石(亦為MgO之源)、鈣矽石及各種形式之矽酸鈣、鋁矽酸鹽、硝酸鹽及鹵化物;及鍶及鋇之氧化物、碳酸鹽、硝酸鹽及鹵化物。若化學澄清劑係所需的,則錫可作為SnO2 、作為與另一主玻璃組分之混合氧化物(例如,CaSnO3 )、在氧化條件下作為SnO、草酸錫、錫鹵化物或熟習此項技術者所熟知之錫的其他化合物添加。
表1中之玻璃含有SnO2 作為澄清劑,但其他化學澄清劑亦可用以獲得用於TFT基板應用之足夠品質的玻璃。舉例而言,揭示之玻璃可使用As2 O3 、Sb2 O3 、CeO2 、Fe2 O3 及鹵化物中之任一者或組合作為審慎性添加物以促進澄清, 且該等化合物中之任一者可連同實例中所示之SnO2 化學澄清劑使用。其中,As2 O3 及Sb2 O3 通常視為有害材料,在碎屑流中受控制,諸如可在玻璃製造過程中或在處理TFT面板中產生。因此,需要限制As2 O3 及Sb2 O3 單獨或組合之濃度不大於0.005莫耳%。
除有意併入揭示之玻璃中的元素之外,週期表中之幾乎所有穩定元素經由原材料中之低位準污染、經由製程中耐火材料及貴金屬之高溫侵蝕或經由故意以低位準引入以微調最終玻璃之屬性以某一位準存在於玻璃中。舉例而言,鋯可經由與富鋯耐火材料之相互作用作為污染物引入。作為進一步實例,鉑及銠可經由與貴金屬之相互作用引入。作為進一步實例,鐵可作為雜質引入原材料中,或有意加入以增強氣態夾雜物之控制。作為進一步實例,可引入錳以控制顏色或增強其他夾雜物之控制。作為進一步實例,鹼金屬可為針對Li2 O、Na2 O及K2 O之組合濃度以高達約0.1莫耳%之位準存在之雜質組分。
氫必然以氫氧根負離子(OH- )存在,且氫之存在可經由標準紅外光譜技術確定。溶解之氫氧離子顯著地且非線性地影響揭示之玻璃的退火點,且因此獲得所需退火點,可能有必要調整主要氧化物組分之濃度以便補償。經由選擇原材料或選擇熔化系統可將氫氧離子濃度控制在某種程度。例如,硼酸為氫氧根之主要源,且用氧化硼替換硼酸可為控制最終玻璃中之氫氧根濃度之有用手段。相同推理用於包含氫氧根離子之其他潛在原材料、水合物或包含物理吸附 或化學吸附之水分子的化合物。若燃燒器用於熔化製程中,則氫氧根離子亦可經由來自燃燒天然氣及相關烴類之燃燒產物引入,且因此可能需要將熔化中使用之能自燃燒器轉移至電極以補償。或者,相反可使用調整主要氧化物組分之迭代製程,以補償溶解之氫氧根離子的有害影響。
硫通常存在於天然氣中,且同樣地為許多碳酸鹽、硝酸鹽、鹵化物及氧化物原材料中之雜質組分。以SO2 之形式,硫可為氣態夾雜物之有害源。形成富SO2 缺陷之趨勢可藉由控制原材料中之硫位準且藉由將低位準之相對減少之多價陽離子併入玻璃基質而管理至有效程度。雖然不希望受理論束縛,但似乎富SO2 氣態夾雜物主要經由還原溶解在玻璃中之硫酸鹽(SO4 = )出現。揭示之玻璃之高鋇濃度似乎在熔化早期增加玻璃中的固硫,但如上所述,鋇需要獲得低液相溫度,且因此,獲得高T 35k -T liq 及高液相黏度。將原材料中之硫位準有意控制到低位準為降低玻璃中溶解之硫(可能作為硫酸鹽)的有用手段。詳言之,硫在批料中按重量計較佳小於200ppm,且在批料中按重量計更佳小於100ppm。
降低之多價體亦可用於控制揭示之玻璃形成SO2 氣泡的趨勢。雖然不希望受理論束縛,但該等元素表現為潛在電子予體,該等電子予體抑制用於硫酸鹽還原作用之電動勢。硫酸鹽還原作用可寫成半反應,諸如:SO4 - → SO2 +O2 +2e-其中e-表示電子。用於半反應之「均衡常數」為:Keq =[SO2 ][O2 ][e-]2 /[SO4 = ] 其中括號表示化學活性。理想地,將要推動反應,以便由SO2 、O2 及2e-形成硫酸鹽。添加硝酸鹽、過氧化物或其他富氧原材料可幫助硫酸鹽還原作用,但亦可在熔化早期妨礙硫酸鹽還原作用,此可抵消添加該等原材料至第一位置中之益處。在多數玻璃中,SO2 具有極低溶解度,且因此,將SO2 添加至玻璃熔化製程係不切實際的。電子可經由降低之多價體「添加」。例如,用於二價鐵(Fe2+ )之適當推電子半反應表示為:2Fe2+ → 2Fe3+ +2e-
該電子「活性」可促使硫酸鹽還原反應至玻璃之左側穩定SO4 = 。適當降低之多價體包括(但不限於)Fe2+ 、Mn2+ 、Sn2+ 、Sb3+ 、As3+ 、V3+ 、Ti3+ 及熟習此項技術者所熟知之其他多價體。在每一情況下,最小化該等組分之濃度以避免對玻璃之顏色的不利影響,或在As及Sb的情況下,避免以足夠高位準添加該等組分,以複雜化最終使用者之製程的廢物管理可能係重要的。
除揭示之玻璃之主要氧化物組分,及上文所述之微量或雜質成分之外,鹵化物可以各種位準作為經由選擇原材料引入之污染物或作為用於消除玻璃中之氣態夾雜物之審慎性組分存在。作為澄清劑,鹵化物可以約0.4莫耳%或更小之位準合併,雖然若可能避免廢氣處理設備之侵蝕,則大體上需要使用較低量。在較佳實施例中,各別鹵化物元素之濃度可對於每一各別鹵化物按重量計低於約200ppm,或對於所有鹵化物元素之和按重量計低於約800ppm。
除該等主要氧化物組分、微量或雜質組分、多價 體及鹵化物澄清劑之外,合併其他無色氧化物組分之低濃度以實現所需物理性質、光學性質及黏彈性質可能係有用的。該等氧化物包括(但不限於)TiO2 、ZrO2 、HfO2 、Nb2 O5 、Ta2 O5 、MoO3 、WO3 、ZnO、In2 O3 、Ga2 O3 、Bi2 O3 、GeO2 、PbO、SeO3 、TeO2 、Y2 O3 、La2 O3 、Gd2 O3 及熟習此項技術者所熟知之其他氧化物。經由調整揭示之玻璃之主要氧化物組分之相對比例的迭代過程,在對退火點、T 35k -T liq 或液相黏度無不可接受影響的情況下,該等無色氧化物可添加至高達約2莫耳%之位準。
表1-續
揭示具有特殊總節距可變性(TPV)之玻璃基 板,如由三個度量量測:(1)高溫試驗循環(HTTC)中之壓實小於40ppm;(2)低溫試驗循環(LTTC)中之壓實小於5.5ppm;及(3)在應力鬆弛試驗循環(SRTC)中鬆弛之應力鬆弛速率始終小於50%。藉由滿足所有三個準則,確保基板對最高解析度TFT循環可接受。以下為該等試驗循環之簡單描述。
高溫試驗循環(HTTC)
樣本在箱式爐中根據第1圖中所示之熱曲線進行熱處理。首先將爐預熱至稍微高於590℃。接著將五個樣本之堆疊經由爐前方之小裂縫投入爐中。三十分鐘後,樣本自爐淬火進入環境空氣。樣本停留在峰值溫度590℃處之總時間為約18分鐘。為了本揭示案之目的,該試驗準則應界定為高溫試驗循環或HTTC。在一個實施例中,HTTC壓實小於或等於40ppm。在另一實施例中,HTTC壓實小於或等於38ppm。在另一實施例中,HTTC壓實小於或等於36ppm。在另一實施例中,HTTC壓實小於或等於30ppm。
低溫試驗循環(LTTC)
由典型TFT陣列或CF基板熱循環導致之熱壓實量級不足以進行可靠品質保證量測。450℃/1小時之熱循環用於實現更大壓實信號,從而使得能夠識別效能之實際改變。在投入五個樣本之堆疊(四個實驗樣本且一個對照樣本)之前,爐保持在剛剛高於450℃。爐需要大致7分鐘恢復時間到目標保持溫度。樣本保持在450℃達一小時,且接著在室溫下取出。第2圖中圖示示例性熱跡。為了本揭示案之目的,該 試驗準則應界定為低溫試驗循環或LTTC。在一個實施例中,LTTC壓實小於或等於5.5ppm。在另一實施例中,LTTC壓實小於或等於5ppm。在另一實施例中,LTTC壓實小於或等於4.6ppm。
應力鬆弛試驗循環(SRTC)
玻璃板經切割成10.00mm寬之橫樑。玻璃之厚度維持在玻璃之成形狀態厚度(在0.5mm與0.7mm之間)。藉由玻璃樣本加載於放置於電阻式加熱之電爐內之兩個剛性支架上、將S型熱電偶接近橫樑中心放置且調整推桿位置開始應力鬆弛實驗。兩個剛性支架之跨距為88.90mm。推桿之下端在室溫下高於玻璃之表面約5mm。爐之溫度快速達到最終實驗溫度650℃且在該溫度處停頓約5分鐘,以便實現放置在爐內之所有部分的熱均衡。藉由以2.54mm/min之速率降低推桿及監控測力計(LC)之信號來繼續實驗。完成該實驗,以達到推桿與玻璃橫樑的接觸。一旦LC信號達到0.1 lb,則觸發加速加載速率至10.16mm/min。當橫樑之中心偏向達到最終目標值(例如,2.54mm)時,停止加載,且程式自應力受控模式切換至應變受控模式。在剩餘實驗期間,應變保持恆定,而應力為可變的。自推桿與玻璃之首次接觸至達到最大應變2.54mm之點的總時間為約12秒。在收集資料幾小時之後,結束實驗。值得注意的是,由於仔細最佳化爐控制器之比例-積分-微分參數,在等溫線保持開始時未觀察到溫度之明顯超載量。
所有應力鬆弛實驗均在等溫線條件下進行,其中 藉由接近玻璃之平坦橫樑中心放置之S型熱電偶不斷地監控溫度。實驗期間的溫度波動不超過0.5℃。關於玻璃狀橫樑之整個長度上之溫度均質性的單獨實驗在實際應力鬆弛實驗之前進行。溫度均質性在任何給定實驗時間及條件下不應超過2℃。原則上,應力實驗模擬典型三點彎曲實驗,其中將負荷施加於橫樑之明確界定之中心,從而使該中心自原零線偏轉2.54mm,且接著將該中心保持在該恆定應變。當中心推桿接觸玻璃狀橫樑時,中心推桿轉移負荷(應力)。中心推桿之末端具有刀刃形狀,且楔狀物之寬度稍大於玻璃狀橫樑之寬度。楔形推桿之頂線較佳地與玻璃橫樑之表面平行。該配置確保應力在橫樑之整個寬度上之均勻分佈。推桿與控制位移之線性可變位移轉換器耦接。儀器亦具備良好校準之LC,該LC在進行中之鬆弛期間維持施加至玻璃狀橫樑之中心負荷。由於用於資料記錄之目的的鬆弛過程之非線性(其中鬆弛最初很快且接著逐步放慢),吾人將每一鬆弛實驗分成三個區段。第一區段以0.5秒間隔收集資料,第二區段每1.0秒收集資料,且第三區段每10.0秒收集資料。對於加載週期(亦即,實驗之前12秒)期間應力鬆弛之可能性,繪製針對研究中之玻璃組成物的所有加載曲線,且在每一情況下,加載曲線展示出線性應力/應變關係,該關係指示加載期間的主彈性回應。因此,應力鬆弛量測之零時間點作為如上所述之實驗自應力受控模式切換至應變受控模式之時間。循環期間鬆弛之百分數應力R 由以下方程式界定: 其中S 60 為藉由受控推桿在60分鐘(SRTC之結束)處施加之應力,且S 0 為在0分鐘(SRTC之開始)處施加之應力。為了本揭示案之目的,以上試驗準則應界定為應力鬆弛試驗循環(SRTC)。在一個實施例中,SRTC中鬆弛之百分數應力等於或小於50%。在另一實施例中,SRTC中鬆弛之百分數應力等於或小於45%。在另一實施例中,SRTC中鬆弛之百分數應力等於或小於40%。在另一實施例中,SRTC中鬆弛之百分數應力等於或小於35%。
實驗循環及TPV
該等三種量測能夠表示玻璃基板之總節距可變性效能,由於該等量測獲得在熱製程下總節距可變性的主要原因:高溫及低溫下之結構鬆弛(或壓實)及應力鬆弛。在歷史上,壓實對總節距可變性之作用已受高溫行為支配,由於註冊標記稍後放置於在消費者之TFT製程中,使得該等製程早期中之許多低溫步驟無關。該高溫壓實由HTTC壓實描述,且藉由降低玻璃帶在製造期間的冷卻速率、線下退火玻璃片及/或增加玻璃之黏度(如由T(ann)獲得)降低該高溫壓實。第3圖圖示當T(ann)增加時壓縮之一般降低,其中主要例外為(諸如,經由浮法製程,而非融合拉製製程)用明顯不同熱歷程製成之玻璃。此圖示玻璃製造商過去如何處理總節距:該等製造商具有減慢之冷卻速率及/或增加之退火點,以抑制重要之溫度狀況(亦即,高溫)的壓實。
TFT市場之最近變化現已促使面板製造商將面板製造商之註冊標記在面板製造商之製程開始時放置,使得 許多先前無關之低溫步驟對量測之總節距之可變性很重要。一般而言,低溫處之壓實(由第4圖中之LTTC獲得)遵循與HTTC類似之趨勢,但在高T(ann)(例如,大於750℃)處,壓實似乎與T(ann)分離但在大致6ppm處變成平坦線。此圖示降低壓實、增加T(ann)之傳統路徑中之一者不再為單獨可行方案。具有第4圖中之降低之LTTC壓實之高退火點玻璃為管理玻璃中之鬆弛機構的結果,該機構以比基於玻璃鬆弛動力學之傳統理解預測之速率相對快的速率操作。該機構與玻璃中之高度移動之雜質成分(諸如,鹼金屬及水)有關,且另外,較低(MgO+CaO+SrO+BaO)/Al2 O3 與較低LTTC壓實相關聯。結合組成基礎用於控制該快速鬆弛機構之該新發現理解與最佳化冷卻曲線控制已導致某些組成物之獨立於T(ann)之較低LTTC壓實(如由玻璃8(參見表2)之高LTTC壓實(在0.7mm及0.5mm下分別為5.8ppm及6.5ppm)證實,儘管高T(ann)=808℃)。很有可能的是,由於該解除結合,具有優良HTTC壓實之玻璃可具有不可接受之LTTC壓實,且同時管理HTTC壓實及LTTC壓實兩者在當今TFT製程中很重要。
在兩個壓實循環中,由極慢之冷卻速率(諸如,在浮法製程經歷之彼等速率)冷卻的玻璃具有極好的壓實效能,如表2之幾個玻璃2樣本所示。該等玻璃在舊TFT製程中表現良好,但在以大gen大小製備之最高解析度顯示器所必需之新循環中難以進行。此係由於TPV之另一態樣:應力鬆弛,該應力鬆弛與低溫黏度成正比。第5圖圖示誘導之應 力的百分數,該應力在SRTC中鬆弛,且清楚觀察T(ann)上之虛擬線性相依。此幫助解釋為何以前用於面板製造商的具有慢淬火速率之較低退火點玻璃不再可行。在第5圖中,釋放小於50%之應力的玻璃滿足本揭示案之SRTC準則。
已發現,管理TPV之所有三個態樣係有利的,且與許多消費者之大量交互幫助吾人界定用於所有三個試驗循環之「成功準則」(由第3圖、第4圖及第5圖上之紅線指示)。第6a圖圖示HTTC壓實對LTTC壓實,其中滿足成功準則之玻璃落入識別之區域1中。滿足應力鬆弛要求之玻璃由菱形表示,而不滿足應力鬆弛要求之玻璃由正方形表示。因此,本發明中揭示之玻璃為落入區域1內之菱形(第6圖中更容易看見)。
先前揭示之基板試圖經由較高退火點或製程控制(例如,製造期間的慢冷卻)完成低TPV。如由第6圖證實,該等努力總導致基板不滿足該等三個準則中之一者,從而導致基板對某些TFT循環為次佳的。除用於TPV之該等重要屬性之外,本揭示案之玻璃亦可與有益於製造TFT之其他屬性(諸如,低密度、高UV透射率等)一致。
表2為實驗可得及市售可得之玻璃的抽樣,該等玻璃根據本文中所描述之HTTC準則、LTTC準則及SRTC準則測試。玻璃1、玻璃6及玻璃7為實驗玻璃,該等玻璃經測試且滿足如一個實施例中描述之準則(HTTC小於或等於40ppm,LTTC小於或等於5.5ppm,且SRTC小於50%)。玻璃2、玻璃4、玻璃9、玻璃10、玻璃11、玻璃15、玻璃16及玻璃17表示現有或過去之市售玻璃,該等玻璃經測試且不滿足如由結果所示之測試準則。玻璃5、玻璃8、玻璃12、玻璃13及玻璃14為不滿足測試準則之實驗玻璃。
可對本文中所描述之材料、方法及物件進行各種修改及變化。本文中所描述之材料、方法及物件之其他態樣將自考慮本文中所揭示之材料、方法及物件之說明及實踐而顯而易見。說明書及實例意欲視為示例性的。

Claims (20)

  1. 一種玻璃,該玻璃展示出以下效能準則:A:低溫試驗循環(LTTC)中之壓實小於或等於5.5ppm B:高溫試驗循環(HTTC)中之壓實小於或等於40ppm C:應力鬆弛試驗循環(SRTC)中鬆弛之一誘導應力小於50%。
  2. 如請求項1所述之玻璃,該玻璃基於氧化物以莫耳百分數計包含:50-85之SiO2 、0-20之Al2 O3 、0-10之B2 O3 、0-20之MgO、0-20之CaO、0-20之SrO、0-20之BaO,其中SiO2 、Al2 O3 、B2 O3 、MgO、CaO、SrO及BaO以該等氧化物組分之莫耳百分數表示。
  3. 如請求項1所述之玻璃,該玻璃基於氧化物以莫耳百分數計包含:68-74之SiO2 、10-13之Al2 O3 、0-5之B2 O3 、0-6之MgO、4-9之CaO、1-8之SrO、0-5之BaO,其中SiO2 、Al2 O3 、B2 O3 、MgO、CaO、SrO及BaO以該等氧化物組分之莫耳百分數表示。
  4. 如請求項1所述之玻璃,其中包含As2 O3 及Sb2 O3 小於約0.005莫耳%。
  5. 如請求項1所述之玻璃,其中包含Li2 O、Na2 O、K2 O或上述各者之組合小於約0.1莫耳%的該玻璃。
  6. 如請求項1所述之玻璃,其中1.05(MgO+CaO+SrO+BaO)/Al2 O3 1.2,其中Al2 O3 、MgO、CaO、SrO及BaO以該等氧化物組分之莫耳百分數表示。
  7. 如請求項1所述之玻璃,其中1.05(MgO+CaO+SrO+BaO)/Al2 O3 1.4,其中Al2 O3 、MgO、CaO、SrO及BaO以該等氧化物組分之莫耳百分數表示。
  8. 如請求項1所述之玻璃,該玻璃具有超過765℃之一退火點。
  9. 如請求項1所述之玻璃,其中T 35k -T liq >0.25T 35k -225℃。
  10. 如請求項1所述之玻璃,該玻璃具有一T 35k <1310℃。
  11. 如請求項1所述之玻璃,該玻璃具有在溫度範圍0℃至300℃的熱膨脹係數(CTE)為28×10-7 /℃至42×10-7 /℃之間。
  12. 如請求項1所述之玻璃,在0.5mm之一厚度處,該玻璃在300nm處具有大於50%之透射率。
  13. 如請求項1所述之玻璃,該玻璃具有在2.3g/cc與2.6g/cc之間的一密度。
  14. 如請求項1所述之玻璃,該玻璃具有在75GPa至85GPa之間的一楊氏模量。
  15. 如請求項1所述之玻璃,其中該LTTC中之該壓實小於或等於5ppm。
  16. 如請求項1所述之玻璃,其中該LTTC中之該壓實小於或等於4.6ppm。
  17. 如請求項1所述之玻璃,其中該HTTC中之該壓實小於或等於38ppm。
  18. 如請求項1所述之玻璃,其中該HTTC中之該壓實小於或等於36ppm。
  19. 如請求項1所述之玻璃,其中小於45%之一誘導應力在該SRTC中鬆弛。
  20. 如請求項1所述之玻璃,其中小於40%之一誘導應力在該SRTC中鬆弛。
TW102147209A 2012-12-21 2013-12-19 具有改良的總節距穩定性之玻璃 TWI510446B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261740790P 2012-12-21 2012-12-21
US201361909612P 2013-11-27 2013-11-27

Publications (2)

Publication Number Publication Date
TW201429911A TW201429911A (zh) 2014-08-01
TWI510446B true TWI510446B (zh) 2015-12-01

Family

ID=49917775

Family Applications (3)

Application Number Title Priority Date Filing Date
TW104134218A TWI598313B (zh) 2012-12-21 2013-12-19 具有改良的總節距穩定性之玻璃
TW104134221A TWI574930B (zh) 2012-12-21 2013-12-19 具有改良的總節距穩定性之玻璃
TW102147209A TWI510446B (zh) 2012-12-21 2013-12-19 具有改良的總節距穩定性之玻璃

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW104134218A TWI598313B (zh) 2012-12-21 2013-12-19 具有改良的總節距穩定性之玻璃
TW104134221A TWI574930B (zh) 2012-12-21 2013-12-19 具有改良的總節距穩定性之玻璃

Country Status (7)

Country Link
US (5) US9051206B2 (zh)
EP (3) EP2935134B1 (zh)
JP (5) JP6134997B2 (zh)
KR (4) KR102029530B1 (zh)
CN (4) CN110698057A (zh)
TW (3) TWI598313B (zh)
WO (1) WO2014100432A1 (zh)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9162919B2 (en) * 2012-02-28 2015-10-20 Corning Incorporated High strain point aluminosilicate glasses
US9359251B2 (en) 2012-02-29 2016-06-07 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
CN105008297A (zh) * 2013-01-31 2015-10-28 康宁股份有限公司 假想化的玻璃及其制备方法
US9150448B2 (en) * 2013-03-14 2015-10-06 Corning Incorporated Dimensionally-stable, damage-resistant, glass sheets
DE102013102848B3 (de) * 2013-03-20 2014-02-06 Schott Ag Hochbrechende Dünngläser, Verfahren zu deren Herstellung, Schichtverbund und Verwendung
JP6365826B2 (ja) * 2013-07-11 2018-08-01 日本電気硝子株式会社 ガラス
CN105992749B (zh) * 2013-11-28 2020-11-03 Agc株式会社 无碱玻璃基板及无碱玻璃基板的减薄方法
TWI705889B (zh) 2014-06-19 2020-10-01 美商康寧公司 無易碎應力分布曲線的玻璃
US20170226000A1 (en) * 2014-08-13 2017-08-10 Corning Incorporated Intermediate cte glasses and glass articles comprising the same
JP6575223B2 (ja) * 2014-08-27 2019-09-18 Agc株式会社 無アルカリガラス
WO2016053775A1 (en) * 2014-09-30 2016-04-07 Corning Incorporated Methods and glass manufacturing system for impacting compaction in a glass sheet
TWI734317B (zh) 2014-10-08 2021-07-21 美商康寧公司 含有金屬氧化物濃度梯度之玻璃以及玻璃陶瓷
CN115417596A (zh) 2014-10-31 2022-12-02 康宁股份有限公司 对玻璃进行尺寸稳定的快速蚀刻
KR20230148860A (ko) * 2014-11-28 2023-10-25 에이지씨 가부시키가이샤 액정 디스플레이 패널
KR20170093922A (ko) * 2014-12-08 2017-08-16 코닝 인코포레이티드 낮은 압축을 갖는 적층 유리 제품 및 이를 형성하는 방법
JP7060915B2 (ja) * 2014-12-12 2022-04-27 日本電気硝子株式会社 無アルカリガラス
KR101632614B1 (ko) * 2014-12-24 2016-06-22 코닝정밀소재 주식회사 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
CN107207322A (zh) * 2015-04-03 2017-09-26 日本电气硝子株式会社 玻璃
WO2016185863A1 (ja) * 2015-05-15 2016-11-24 日本電気硝子株式会社 強化ガラス板の製造方法、強化用ガラス板及び強化ガラス板
CN114538771A (zh) * 2015-07-03 2022-05-27 Agc株式会社 载体基板、层叠体、电子器件的制造方法
US10579106B2 (en) 2015-07-21 2020-03-03 Corning Incorporated Glass articles exhibiting improved fracture performance
US11613103B2 (en) 2015-07-21 2023-03-28 Corning Incorporated Glass articles exhibiting improved fracture performance
US20180319700A1 (en) * 2015-12-01 2018-11-08 Kornerstone Materials Technology Company, Ltd. Low-boron, barium-free, alkaline earth aluminosilicate glass and its applications
DE202016008722U1 (de) 2015-12-11 2019-03-21 Corning Incorporated Durch Fusion bildbare glasbasierte Artikel mit einem Metalloxidkonzentrationsgradienten
CN105601105B (zh) * 2015-12-30 2018-09-07 芜湖东旭光电装备技术有限公司 一种玻璃用组合物、低脆性无碱玻璃及其制备方法和应用
TW202304826A (zh) * 2016-02-22 2023-02-01 美商康寧公司 無鹼硼鋁矽酸鹽玻璃
CN105753329B (zh) * 2016-03-15 2018-07-31 巨石集团有限公司 一种高性能玻璃纤维组合物及其玻璃纤维和复合材料
EP3904302A1 (en) 2016-04-08 2021-11-03 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
KR20180132077A (ko) 2016-04-08 2018-12-11 코닝 인코포레이티드 두 영역을 포함하는 응력 프로파일을 포함하는 유리-계 물품, 및 제조 방법
CN115557695A (zh) * 2016-08-23 2023-01-03 Agc株式会社 无碱玻璃
WO2018053078A1 (en) * 2016-09-16 2018-03-22 Corning Incorporated High transmission glasses with alkaline earth oxides as a modifier
KR102106613B1 (ko) * 2016-10-13 2020-05-04 주식회사 엘지화학 열적 안정성을 나타내는 무알칼리 유리 조성물 및 그로부터 제조된 고변형점 무알칼리 유리
CN109843817B (zh) * 2016-12-20 2021-11-02 日本电气硝子株式会社 玻璃
RU2642732C1 (ru) * 2016-12-23 2018-01-25 Юлия Алексеевна Щепочкина Стекло
KR20230165866A (ko) * 2016-12-28 2023-12-05 니폰 덴키 가라스 가부시키가이샤 유리
JP7113827B2 (ja) * 2016-12-29 2022-08-05 コーニング インコーポレイテッド 耐ソラリゼーション性の希土類ドープガラス
JP6972598B2 (ja) * 2017-03-22 2021-11-24 日本電気硝子株式会社 ガラス板及びその製造方法
CN107032604A (zh) 2017-04-18 2017-08-11 东旭科技集团有限公司 玻璃用组合物、碱土铝硅酸盐玻璃及其制备方法和应用
TWI766041B (zh) 2017-06-14 2022-06-01 美商康寧公司 控制壓實的方法
TW201912597A (zh) 2017-08-24 2019-04-01 美商康寧公司 用於選擇性地改變玻璃基製品的虛擬溫度之方法及設備
CN109809687A (zh) * 2017-11-21 2019-05-28 彩虹显示器件股份有限公司 一种用于高分辨率显示器的基板玻璃
JP6787872B2 (ja) * 2017-11-28 2020-11-18 日本電気硝子株式会社 無アルカリガラス板
US10829408B2 (en) * 2017-12-13 2020-11-10 Corning Incorporated Glass-ceramics and methods of making the same
TWI809029B (zh) 2018-01-15 2023-07-21 美商康寧公司 尺度上穩定快速地蝕刻玻璃
CN112384484A (zh) * 2018-06-19 2021-02-19 康宁公司 高应变点且高杨氏模量玻璃
US20210347679A1 (en) * 2018-09-25 2021-11-11 Corning Incorporated Dimensionally stable glasses
JP7478340B2 (ja) 2018-10-17 2024-05-07 日本電気硝子株式会社 無アルカリガラス板
KR20220043118A (ko) * 2019-07-29 2022-04-05 에이지씨 가부시키가이샤 지지 유리 기판
CN110746111A (zh) * 2019-09-29 2020-02-04 彩虹显示器件股份有限公司 一种玻璃基板及其作为玻璃衬底的应用
WO2022066574A1 (en) * 2020-09-25 2022-03-31 Corning Incorporated Stress profiles of glass-based articles having improved drop performance
CN112881196A (zh) * 2021-01-14 2021-06-01 清华大学深圳国际研究生院 一种玻璃材料高温粘弹性参数检测方法
WO2023084979A1 (ja) * 2021-11-10 2023-05-19 日本電気硝子株式会社 無アルカリガラス板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774751A (zh) * 2008-11-21 2010-07-14 康宁股份有限公司 稳定玻璃板及其制造方法
CN102066273A (zh) * 2008-05-13 2011-05-18 康宁股份有限公司 含稀土元素的玻璃材料和基板以及包括这种基板的器件
TW201219334A (en) * 2010-10-06 2012-05-16 Corning Inc Alkali-free glass compositions having high thermal and chemical stability
TW201233655A (en) * 2011-01-25 2012-08-16 Corning Inc Glass compositions having high thermal and chemical stability

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE547830A (zh) * 1956-04-23 1900-01-01
US3338696A (en) 1964-05-06 1967-08-29 Corning Glass Works Sheet forming apparatus
BE757057A (fr) 1969-10-06 1971-04-05 Corning Glass Works Procede et appareil de controle d'epaisseur d'une feuille de verre nouvellement etiree
US6169047B1 (en) 1994-11-30 2001-01-02 Asahi Glass Company Ltd. Alkali-free glass and flat panel display
JP3901757B2 (ja) * 1994-11-30 2007-04-04 旭硝子株式会社 無アルカリガラス、液晶ディスプレイパネルおよびガラス板
JP3800657B2 (ja) * 1996-03-28 2006-07-26 旭硝子株式会社 無アルカリガラスおよびフラットディスプレイパネル
JP3988209B2 (ja) * 1996-06-03 2007-10-10 旭硝子株式会社 無アルカリガラスおよび液晶ディスプレイパネル
JP3804112B2 (ja) * 1996-07-29 2006-08-02 旭硝子株式会社 無アルカリガラス、無アルカリガラスの製造方法およびフラットディスプレイパネル
JP2000044278A (ja) * 1998-05-20 2000-02-15 Nippon Electric Glass Co Ltd ディスプレイ用ガラス基板
US6753279B2 (en) * 2001-10-30 2004-06-22 Corning Incorporated Glass composition for display panels
JP4305817B2 (ja) 2002-12-11 2009-07-29 日本電気硝子株式会社 無アルカリガラス基板
WO2004087597A1 (ja) * 2003-03-31 2004-10-14 Asahi Glass Company Limited 無アルカリガラス
US7207193B2 (en) * 2003-12-08 2007-04-24 Corning Incorporated Method of fabricating low-warp flat glass
EP1746076A1 (en) * 2005-07-21 2007-01-24 Corning Incorporated Method of making a glass sheet using rapid cooling
US8007913B2 (en) * 2006-02-10 2011-08-30 Corning Incorporated Laminated glass articles and methods of making thereof
US7833919B2 (en) * 2006-02-10 2010-11-16 Corning Incorporated Glass compositions having high thermal and chemical stability and methods of making thereof
TWI388520B (zh) * 2006-11-01 2013-03-11 Corning Inc 硼鋁酸矽酸鹽玻璃澄清
CN101092280B (zh) * 2007-06-07 2012-01-18 河南安彩高科股份有限公司 铝硼硅酸盐玻璃组合物及其应用
US7709406B2 (en) * 2007-07-31 2010-05-04 Corning Incorporation Glass compositions compatible with downdraw processing and methods of making and using thereof
WO2009028570A1 (ja) * 2007-08-31 2009-03-05 Asahi Glass Company, Limited ガラス板およびその製造方法ならびにtftパネルの製造方法
JP5327702B2 (ja) * 2008-01-21 2013-10-30 日本電気硝子株式会社 ガラス基板の製造方法
RU2010154445A (ru) * 2008-05-30 2012-07-10 Фостер Вилер Энергия Ой (Fi) Способ и система для генерации энергии путем сжигания в чистом кислороде
CN102471134B (zh) 2009-07-02 2015-04-15 旭硝子株式会社 无碱玻璃及其制造方法
WO2011049100A1 (ja) * 2009-10-19 2011-04-28 旭硝子株式会社 基板用ガラス板、その製造方法およびtftパネルの製造方法
US20110265516A1 (en) 2010-04-29 2011-11-03 Douglas Clippinger Allan Compositional control of fast relaxation in display glasses
JP5874316B2 (ja) * 2010-10-27 2016-03-02 日本電気硝子株式会社 無アルカリガラス
JP5729673B2 (ja) * 2010-12-06 2015-06-03 日本電気硝子株式会社 無アルカリガラス
US9162919B2 (en) 2012-02-28 2015-10-20 Corning Incorporated High strain point aluminosilicate glasses
JP6037117B2 (ja) 2012-12-14 2016-11-30 日本電気硝子株式会社 ガラス及びガラス基板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102066273A (zh) * 2008-05-13 2011-05-18 康宁股份有限公司 含稀土元素的玻璃材料和基板以及包括这种基板的器件
CN101774751A (zh) * 2008-11-21 2010-07-14 康宁股份有限公司 稳定玻璃板及其制造方法
TW201219334A (en) * 2010-10-06 2012-05-16 Corning Inc Alkali-free glass compositions having high thermal and chemical stability
TW201233655A (en) * 2011-01-25 2012-08-16 Corning Inc Glass compositions having high thermal and chemical stability

Also Published As

Publication number Publication date
EP2935134B1 (en) 2019-01-16
US20140249017A1 (en) 2014-09-04
TW201429911A (zh) 2014-08-01
TWI598313B (zh) 2017-09-11
JP6152576B2 (ja) 2017-06-28
US20140179510A1 (en) 2014-06-26
US20170144918A1 (en) 2017-05-25
US9919952B2 (en) 2018-03-20
EP3447034A3 (en) 2019-06-26
CN110698057A (zh) 2020-01-17
KR20150117300A (ko) 2015-10-19
JP2019048767A (ja) 2019-03-28
EP2935134A1 (en) 2015-10-28
TW201619085A (zh) 2016-06-01
JP6134997B2 (ja) 2017-05-31
EP3447034A2 (en) 2019-02-27
US9573839B2 (en) 2017-02-21
JP2016155753A (ja) 2016-09-01
KR20150117299A (ko) 2015-10-19
US9051206B2 (en) 2015-06-09
KR101872577B1 (ko) 2018-06-28
TWI574930B (zh) 2017-03-21
CN105314848A (zh) 2016-02-10
JP2016052987A (ja) 2016-04-14
CN105399326A (zh) 2016-03-16
JP2016505502A (ja) 2016-02-25
CN105164068A (zh) 2015-12-16
US20160168013A1 (en) 2016-06-16
KR20160045938A (ko) 2016-04-27
TW201619086A (zh) 2016-06-01
KR101872576B1 (ko) 2018-06-28
US20150259241A1 (en) 2015-09-17
EP3444229A1 (en) 2019-02-20
JP6589034B2 (ja) 2019-10-09
KR101632546B1 (ko) 2016-06-21
KR102029530B1 (ko) 2019-10-07
US8975198B2 (en) 2015-03-10
WO2014100432A1 (en) 2014-06-26
KR20150097787A (ko) 2015-08-26
US9328013B2 (en) 2016-05-03
JP2016011255A (ja) 2016-01-21

Similar Documents

Publication Publication Date Title
TWI510446B (zh) 具有改良的總節距穩定性之玻璃
TWI656105B (zh) 尺寸穩定之快速蝕刻玻璃
KR20200104910A (ko) 치수적으로 안정한 급속 에칭 유리
CN112384484A (zh) 高应变点且高杨氏模量玻璃