TWI503530B - 微粒偵測技術 - Google Patents
微粒偵測技術 Download PDFInfo
- Publication number
- TWI503530B TWI503530B TW099114049A TW99114049A TWI503530B TW I503530 B TWI503530 B TW I503530B TW 099114049 A TW099114049 A TW 099114049A TW 99114049 A TW99114049 A TW 99114049A TW I503530 B TWI503530 B TW I503530B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- receiver
- received
- wavelengths
- light source
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims description 367
- 238000001514 detection method Methods 0.000 title claims description 208
- 238000000034 method Methods 0.000 claims description 143
- 230000008859 change Effects 0.000 claims description 58
- 238000012545 processing Methods 0.000 claims description 33
- 238000005259 measurement Methods 0.000 claims description 29
- 230000008569 process Effects 0.000 claims description 20
- 238000001228 spectrum Methods 0.000 claims description 13
- 230000003287 optical effect Effects 0.000 description 252
- 239000000779 smoke Substances 0.000 description 154
- 238000005286 illumination Methods 0.000 description 91
- 230000000875 corresponding effect Effects 0.000 description 61
- 230000000007 visual effect Effects 0.000 description 57
- 238000004891 communication Methods 0.000 description 51
- 230000007613 environmental effect Effects 0.000 description 51
- 230000010287 polarization Effects 0.000 description 50
- 238000012360 testing method Methods 0.000 description 44
- 238000009434 installation Methods 0.000 description 39
- 238000010586 diagram Methods 0.000 description 37
- 238000012544 monitoring process Methods 0.000 description 36
- 230000004044 response Effects 0.000 description 36
- 230000007246 mechanism Effects 0.000 description 32
- 230000002829 reductive effect Effects 0.000 description 31
- 230000005693 optoelectronics Effects 0.000 description 27
- 230000000694 effects Effects 0.000 description 24
- 238000003384 imaging method Methods 0.000 description 18
- 230000033001 locomotion Effects 0.000 description 17
- 230000001965 increasing effect Effects 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 230000000295 complement effect Effects 0.000 description 15
- 230000006870 function Effects 0.000 description 15
- 230000035945 sensitivity Effects 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 14
- 238000009826 distribution Methods 0.000 description 14
- 238000012423 maintenance Methods 0.000 description 14
- 238000007493 shaping process Methods 0.000 description 14
- 230000008901 benefit Effects 0.000 description 12
- 230000007423 decrease Effects 0.000 description 12
- 241000238631 Hexapoda Species 0.000 description 11
- 239000000428 dust Substances 0.000 description 11
- 230000009471 action Effects 0.000 description 10
- 238000010304 firing Methods 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 238000011109 contamination Methods 0.000 description 9
- 230000007774 longterm Effects 0.000 description 9
- 235000014676 Phragmites communis Nutrition 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 230000008685 targeting Effects 0.000 description 8
- 230000002238 attenuated effect Effects 0.000 description 7
- 230000010354 integration Effects 0.000 description 7
- 230000000873 masking effect Effects 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 6
- 230000005670 electromagnetic radiation Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000012806 monitoring device Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 238000007689 inspection Methods 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 239000013618 particulate matter Substances 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 230000003750 conditioning effect Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000010329 laser etching Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 238000003854 Surface Print Methods 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 210000000887 face Anatomy 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 238000011410 subtraction method Methods 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 241000446313 Lamella Species 0.000 description 1
- 235000009827 Prunus armeniaca Nutrition 0.000 description 1
- 244000018633 Prunus armeniaca Species 0.000 description 1
- KZNMRPQBBZBTSW-UHFFFAOYSA-N [Au]=O Chemical compound [Au]=O KZNMRPQBBZBTSW-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000001444 catalytic combustion detection Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000009193 crawling Effects 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910001922 gold oxide Inorganic materials 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000000003 hoof Anatomy 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/103—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
- G08B17/107—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
- G01N21/538—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke for determining atmospheric attenuation and visibility
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1434—Optical arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1456—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
- G01N15/1459—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
- H01L29/045—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
- H01L29/1037—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/872—Schottky diodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/061—Sources
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/062—LED's
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/062—LED's
- G01N2201/0621—Supply
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/062—LED's
- G01N2201/0627—Use of several LED's for spectral resolution
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/063—Illuminating optical parts
- G01N2201/0633—Directed, collimated illumination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/069—Supply of sources
- G01N2201/0696—Pulsed
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1066—Gate region of field-effect devices with PN junction gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Dispersion Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Fire-Detection Mechanisms (AREA)
- Optics & Photonics (AREA)
- General Engineering & Computer Science (AREA)
Description
本發明係關微粒偵測。後文將方便地以煙霧偵測內容來說明本發明,但須瞭本發明並非限於該項應用。於一個面相中,本發明更加大致上係關電池供電裝置,但具體實施例將就光束偵測器做說明。
多種檢測空氣中的微粒之方法為已知。一種檢測空氣中粒狀物質的存在之方法涉及投射光束橫過一監視區及測量光束的衰減。此種偵測器俗稱為「遮蔽偵測器」,或簡稱「光束偵測器」。
習知光束偵測器實例顯示於第1圖。偵測器100包括一光發射器及偵測器102及反射器104置於監視區106之任一側上。來自光發射器及偵測器102之入射光108朝向反射器104投射。反射器104反射入射光108成為反射光110。反射光110朝光發射器及偵測器102反射。若有粒狀物質進入監視區106,則將衰減入射光108及反射光110,且造成於光發射器及偵測器102接收的光數量遞減。另一種光束偵測器刪除反射器而以光源直射照明橫過監視區106的偵測器。其它幾何形狀亦屬可能。
雖然光束偵測器所使用的煙霧偵測機轉乃眾所周知,但光束偵測器常見多項問題。
首先,光束偵測器可能有第一型(偽陽性)錯誤,此處異物或其它粒狀物質諸如粉塵進入監視區而遮蔽光束。光束偵測器通常無法區分由關注的微粒諸如煙霧所造成的遮蔽,與由非關注異物例如飛進光束內昆蟲的存在所導致的吸光。
其次,光束偵測器可能要求於安裝時小心對準。此項對準係針對確保於正常情況下,不含煙霧的情況下,光線進入感測器因而捕捉大部分發射光束,而其又最大化對遮蔽的敏感度。此項對準的速度可能緩慢,因而執行成本高。此外,隨著偵測器的物理環境的改變,例如由於光束偵測器所附接的結構體的小量移動,可能需要重複進行對準。某些情況下,若偵測器上的入射光強度快速減低,則此項錯誤對準也可能造成假警報。
補償第二項問題的辦法係導入於寬廣範圍的入射角具有高敏感度之光偵測器。如此減低光束與光偵測器間可能有的不良對準。但此項解決之道需要以對非期望的背景光的敏感度增高來換取,而其又使得偵測程序複雜化,且提高未能偵測出關注微粒的存在之機率。
供電予微粒偵測系統中的發射器可能成本昂貴。可供應的電量有實際/商業極限。有限的供電量限制了發射器的光學功率輸出,而其又限制測得的信號之信號對雜訊比。若系統的信號對雜訊比降級太過度,則系統可能頻繁地或連續地出現假警報。
某些系統中,信號對雜訊比可藉由採用接收器的長期積分時間或平均時間來增強。但若使用長期積分時間,則系統響應時間須高度增加,該系統響應時間通常為10秒至60秒。
於第一面相,本發明提供一種微粒偵測系統,包括:適用於以至少二波長照明接受監視的體積之至少一個光源;具有一視野之一接收器,其係適用於來自於至少一個光源的光已經通過接受監視的體積後接收該光,且係適用於產生指示於該接收器之視野內部各區所接收的光強度;與該接收器結合之一處理器,其係適用於處理由該接收器所產生之信號來相關聯該接收器之視野內部於相對應區所接收的至少二波長光,及產生指示所接收的至少二波長光之相對遮蔽的一輸出信號。
於另一面相中,本發明提供一種微粒偵測系統包括:適用於以至少二波長照明欲監視的體積之至少一個光源;適用於接收來自至少一個光源而通過欲監視的體積後之光及產生空間上及頻譜上可光學分割所接收的光之一接收器;一處理器來找出於相對應的空間位置於至少二波長接收的光之相關性,及產生指示微粒存在於欲監視的體積之一輸出信號。
較佳該接收器包括具有多個感測器元件之一感測器。也包括影像成形光學裝置來形成包括該至少一個光源之一影像。
光源可包括適用於發射於個別波長之光的一個或多個光發射器。光源可只發射單一波長或多個波長。
光源可於不同時間以至少二波長照明欲監視的體積。另外,光源可包括適用於同時發射於寬廣波長頻帶包括至少二波長之光的一光發射器。
較佳該微粒偵測系統包括多個光源。
處理器適用於測定於相對應的空間位置於至少二波長所接收的光之相對強度,及產生指示微粒存在於欲監視的體積之一輸出信號。
此種系統的委任包括約略對準光源與接收器,使得至少一個光源照明該接收器,及於影像感測器中選擇哪一個空間位置係與光源相對應且將用來測量與該光源相對應的所接收之光強度測量值。由於系統的幾何形狀將隨著時間而漂移,故處理器較佳追蹤哪一個空間位置係與光源隨著時間之經過之變化相對應。
光束可使用遠在光感測器遠端的且橫過監視區以一個或多個波長發光的光源形成。光束可使用適用於橫過監視區反射來自一光發射器的光束之一個或多個反射標靶形成。於此種配置中,光發射器可安裝接近光感測器而反射標靶位在遠端。
系統可包括接收於一共通光接收器上的多道光束。
於另一個面相中,本發明提供一種用以偵測於一接受監視的體積內部之所關注的微粒之微粒偵測器,該偵測器包括:投射光橫過一監視區之至少一個光源,該光包括多個波長,包括相對不受關注微粒影響之至少一第一波長,及關注微粒影響之至少一第二波長;一接收器用以接收該投射光之至少一部分及輸出接收自該光源於該第一及第二波長至少其一之光強度的指示信號;及一控制器其係適用於處理該接收器之於該第一及第二波長至少其一之光強度的輸出信號,及提供指示於該監視區是否檢測得關注微粒之輸出信號。
當然須瞭解「第一波長」及「第二波長」可指示由寬頻輻射發射器所發射之一波長組分,但也可用來表示經由參考其中的一個波長(通常為中心波長)相對窄的波長頻帶,諸如由具有窄通帶發射器例如雷射二極體或LED等所發射的波長頻帶,使如第一波長頻帶可在紅外線,取中於850奈米,且有50奈米頻寬。
如所瞭解,雖然說明例係有關可見光或近可見光電磁輻射的使用,但光一詞可視為寬廣涵蓋電磁頻譜。但於電磁頻譜之可見光或近可見光部分,實際上且廉價地產生、控制、聚焦與接收方面的挑戰極少。
藉此方式,於第一及第二波長所接收的光位準可用來區別關注微粒的存在與由其它因素所造成的接收光位準的改變。
光源可選擇性地(例如,時間上、空間上、或頻譜上)投射於至少二波長光。另外,光源可投射有寬頻寬的光,例如白光其包括第一及第二波長光至少其一。於有寬頻寬光源的系統中,接收器可與彩色濾鏡協力合作來接收與區別至少二波長。
較佳測定於至少二波長的所接收的光位準之相對強度,例如其間之比或其間之差。於光的相對強度維持實質上相等的情況下,所接收的光位準之改變可歸因於監視區存在有關注微粒以外的因素。若符合故障情況則傳訊故障信號。
於所接收的光位準於一波長或二波長改變而造成光之相對強度係以預定方式改變之情況下,所接收的光位準之改變可歸因於監視區中關注微粒的存在。若符合警報狀況,則發出微粒偵測警報。
較佳第一波長係在電磁頻譜的紅外線部分。第二波長係在電磁頻譜的紫外線部分。
於第一及第二波長照明較佳係交替進行。交替照明可能穿插有未照明週期。
於另一個實施例中,第二警報狀況係基於一波長或二波長所接收的光位準判定,也定義為於一波長或二波長所接收的光位準改變並未造成光之相對強度係以滿足造成第一警報情況的方式而改變之情況下,可符合第二警報狀況。
較佳第二警報狀況係基於一波長或二波長所接收的光位準值。最特別,第二警報狀況比較於一波長或二波長所接收的光位準值與臨界值。第二警報狀況可基於一波長或二波長所接收的光位準改變率測定。
本發明之此一面相也提供一種於欲監視區偵測微粒之方法,包括:發射包括一第一及第二波長光至監視區;該第一波長為其橫過該監視區之發射係相對不受關注微粒影響的波長,及該第二波長為其橫過該監視區之發射係受關注微粒影響的波長;接收已經通過監視區後之於至少及第二波長光,及產生指示所接收的於該第一及第二波長光至少其一強度之一信號;處理指示所接收的於該第一及第二波長光至少其一強度之該信號來提供指示於該監視區是否檢測得關注微粒之一輸出信號。
處理指示所接收的於該第一及第二波長光至少其一強度之該信號之步驟可基於第一波長或第二波長所接收的光之相對強度的變化。
於第一波長或第二波長所接收的光之相對強度係以預定方式改變的情況下,可做出指示於監視區內關注微粒的存在之一輸出信號。較佳於該二波長的相對強度變化係與臨界值比較,而若相對遮蔽的變化超過臨界值時,指示警報狀況。臨界值可由使用者選定,但較佳係反映出10%至50%間之於二波長的遮蔽差。
於第一波長或第二波長所接收的光之相對強度係維持實質上穩定但於該等波長中之一者或多者所接收的光之絕對強度符合一項或多項預定標準的情況下,可做出指示於監視區內關注微粒的存在之一輸出信號。
本發明之另一面相提供一種光束偵測器,包括用以投射光橫過一監視區之裝置;用以接收該光之裝置;該接收裝置係適用於鑑別於該光內部之至少二波長;該處理裝置係配置來應回應於所接收的於該至少二波長光之相對強度,而提供指示於該監視區之微粒之一信號;及該處理裝置回應於所接收的於至少一波長,較佳為該等至少二波長中之一者的光位準,而提供指示於該監視區之微粒之一信號。
本發明之此一面相也提供一種偵測於監視區之微粒之方法;包括:測量一所接收的於該至少二波長光位準來測定微粒濃度,基於所接收的於該至少二波長光之相對強度,來判定是否滿足至少一項第一微粒偵測標準,及基於所接收的於該至少一波長之光位準,來判定是否滿足至少一項第二微粒偵測標準。
於又一面相,本發明提供一種用於微粒偵測系統之接收器,該接收器具有一視野且係適用於接收來自於至少一個光源且已經通過欲監視的體積之至少二波長光,該接收器係配置來產生指示該視野內部於與至少一個或多個波長之各個光源相對應的區所接收的光強度之信號。接收器較佳具有相關聯的處理器,其係配置來處理指示於二或多波長所接收的光強度俾判定於該二波長自至少一個光源所接收的光之相對遮蔽。接收器可包括一感測器,其具有多個感測器元件,各自適用於接收來自於該接收器,例如視訊攝影機或類似的成像裝置的視野內部之一個別區的光。接收器於同一區於至少二波長的來自光源之光。另外,接收器可接收於不同區於不同波長來自二光源之光,及測定於不同波長自二光源所接收的光之相對遮蔽。
於又一面相中,本發明提供一種用於微粒偵測系統之接收器,該接收器包括一光感測器其具有視野且可區別接收自該視野內的多區於二波長或多波長之光;及一處理器適用於自該光感測器,接收代表所接收之光之資料,及識別多區中接收該光之至少一區,及基於該等多區中之所識別區所接收的於該至少二波長光之相對位準而產生指示微粒於該監視區之一信號。
較佳該處理器係適用於更新該至少一區隨著時間之經過之識別符。較佳該光感測器包括多個光感測器元件,例如像素,其各自係對應於視野的一個別區。該處理器可適用於識別包括接收來自於光源的光之一個或多個光感測器元件之一子集。該處理器可於接續時間週期處理所接收的資料,及追蹤於感測器元件子集中隨著時間之經過之與一個或多個光源相對應的變化。
較佳此項配置可處理寬野感測器就容易對準方面的優點,及窄視角感測器就接收器雜訊方面的優點。
此種系統的委任可包括約略對準光束與光感測器,使得光束落至感測器上,及執行影像感測器元件選擇程序來判定哪一個影像感測器元件將用於取得所接收的光強度測量值。因系統的幾何形狀將隨著時間之經過而漂移,故處理器可追蹤一個影像感測器元件係隨著時間之經過而接收光束。
光束可使用適用於橫過監視區反射來自光發射器的光束之一個或多個反射標靶形成。於此種配置中,光發射器可安裝於光感測器附近及反射標靶位在遠方。確實接收器可包括一個或多個發射器用以朝一個或多個反射標靶投射光,該等標靶形成光源。
系統可包括接收於一共用光感測器上的多道光杏。
各光源可包括一個或多個帶通濾鏡來選擇性地發射於選定的波長頻帶光。
本發明之此一面相也提供一種微粒偵測系統,包括一接收器及至少一個光源用以與該接收器協力合作來界定至少一個光束偵測器。較佳該系統包括至少另一個光束偵測器及控制裝置(可藉處理器全部或部分形成)配置來:使用該第一光束偵測器檢測微粒;判定微粒是否藉至少另一個光束偵測器偵測;及基於該項判定及該第一光束偵測器與該至少另一個光束偵測器的相對位置來測定該所偵測微粒的所在位置。
該至少兩個光束偵測器可單純為與一共用接收器協力合作的二光源。
較佳,於微粒也藉至少另一個光束偵測器檢測的情況下,該等微粒之所在位置係測定為由二光束偵測器所監視區。
於微粒並未藉另一個光束偵測器檢測得之情況下,該等微粒之所在位置係測定為由第一光束偵測器所監視區,但非另一個光束偵測器所監視區。
較佳光束偵測器係設置成於該區的由該系統所監視的至少多個所在位置係藉至少二光束偵測器監視。
系統可包括設置來監視交叉區之多個光束偵測器。
最佳微粒偵測系統包括第一接收器適用於監視多道光束的遮蔽俾此界定相對應的多個光束偵測器。
於一個實施例中,系統包括二接收器,各自監視多道光束藉此界定兩組光束偵測器,及其中各組光束偵測器中之至少一者監視一共通位置。較佳各組的各光束監視由另一組光束偵測器所監視的至少一個位置。
微粒偵測系統可包括有不等長度的光束路徑之光束偵測器。較佳至少二光束偵測器係設置成彼此併排,使得其長度重疊而允許順著第一偵測器的光束縱向,測定微粒偵測之所在位置。
較佳微粒偵測系統包括一光接收器適用於接收多道光束。微粒偵測系統可包括多個光接收器適用於接收個別的多道光束。
較佳光接收器及光束係設置成使得一道或多道光束於已知位置通過另一道光束附近來允許於至少一對光束上檢測得微粒之情況下,微粒偵測事件侷限於此等所在位置之一。
本發明之此一面相也提供一種委任一包括多個光源及一光接收器之微粒偵測器之方法,該光接收器包括一光感測器,該光感測器具有視野且可區別接收自該視野的多區之光;該方法包括:設置該光接收器使得該等多個光源係在該光接收器之視野內;及基於該光接收器之輸出信號,識別該等多區中之至少二區其中接收來自於該等至少二或多個光源中之個別光源之光,來界定多個名目光束偵測器,及獨立地判定微粒是否使用該等名目光束偵測器各自偵測。
該方法可包括對應於由一光源於該接收器視野及該接收器所界定的各該名目光束偵測器,於一火災警報系統分配一位址。
該方法可包括定位一個或多個反射器,該等反射器形成光源且適用於反射來自光發射器之光。
於又一面相,本發明提供一種結合多個光束偵測器之微粒偵測系統,各個偵測器具有沿相對應之光束路徑發射之一個別光束,及其中該等光束偵測器中之至少二者的光束路徑具有實質上重合之一區,使得於微粒係於二光束檢測得之情況下,檢測得之微粒位置可判定係於該實質上重合區內部。
較佳,於二光束中之一者而非另一者檢測得微粒之情況下,該等檢測得之微粒之位置可判定為係在產生檢測的該光束內部位置,但係在該實質上重合區外部。
於一個系統實例中,二光束的實質重合區為光束的交叉點。另外,光束可彼此平行投射及重疊該等光束中之至少一者的部分長度,及實質重合區可為光束重疊區。
較佳多個光束偵測器共享一光源或一光接收器。
於前述實施例中之任一者,可使用多於一個空間上分開的光源、反射器或光束。
於另一面相,提供一種配置來檢測於監視區的關注微粒之微粒偵測器,該偵測器包括:適用於發射於一個或多個第一波長光來照明監視區的至少一部分之遠端照明裝置;適用於發射於一個或多個第二波長光來照明監視區的至少一部分之第二照明裝置;配置來於具有第一及第二波長光通過監視區後,接收該發射光之一部分之一接收器,該接收器係實質上與該第二照明裝置位在同一地點;及至少一個反射器其係位在該接收器遠端且係設置成反射自該第二照明裝置發射至該接收器之光。
較佳該接收器係實質上與遠端照明裝置位在同一地點。最佳係罩在一共用裝置內。
較佳該接收器與該第二照明裝置係罩在一共用裝置內。
遠端照明裝置較佳為電池供電。照明裝置較佳包括一個或多個光源。最佳光源為LED。
系統可包括多個遠端照明裝置及/或反射器。
於另一面相,本發明提供一種結合遠端照明裝置及反射器用於此種系統之裝置。
一種用於微粒偵測系統之光源,該光源包括至少一個光發射器適用於投射光束;殼體支承該光發射器及安裝裝置,允許該殼體附接至一支承結構,該安裝裝置係耦聯該殼體使得該殼體之方向可相對於其上支承光源的該支承結構而改變。
該光源或接收器可額外包括用來指示光束投射方向之相對定向的一指示器及下列任一者或二者:其上支承光源的該支承結構;或該安裝裝置之一軸線。
指示器可包括一撥盤,具有指示相對於該安裝裝置之一軸線之角方向的一部分,及指示相對於光束投射方向的角方向之另一部分。
光源或接收器可配置來與活動式照準(sighting)裝置協力合作而用於光源相對於接收器的對準。
一種指示於一微粒偵測器中光源與接收器對準之方法,該光源係配置來發射二部分重疊光束欲由該接收器所接收,該方法包括:以第一調變體系調變該等重疊光束中之一第一光束;以與該第一調變體系不同的第二調變體系調變該等重疊光束中之一第二光束;自光源接收光;基於所接收的光偵測得之調變體系,判定該光源與接收器之相對對準。
較佳該方法包括若所接收光之一組分係根據第一及第二調變體系中之各者調變,則指示光源及接收器的正確對準。
較佳該方法包括若所接收光之一組分係根據第一及第二調變體系中之只有一者調變,則指示未對準。
一種偵測一微粒偵測系統其發射由一接收器所接收的光束之一光源狀況之方法,該方法包括:根據一預定調變體系而調變光源之照明;於一預定狀況存在於該光源之情況下,改變該調變體系;偵測由該接收器所接收的光於調變體系的變化。
較佳該所指示的狀況為光源之電池蓄電量低的情況。
該方法可包括間歇地改變該預定調變體系與已變更的調變體系間之調變體系。
一種用以偵測一區之微粒之方法,包含:提供一接收器其具有不足以觀看全區之一視野;形成朝接收器橫過全區投射多道光束;改變接收器之視野的方向來監視多道光束;及基於自各道所接收光束之所接收的各別光位準,判定微粒是否存在於該區。
形成朝接收器橫過全區投射多道光束之步驟可包括橫過該區投射光束來當接收器的視野改變時與該視野重合。該等光束可藉光源直射形成或藉反射來自反射器的光源形成。
於較佳形式,該方法包括通過預定角,掃描視野來循序接收來自多道光束之光。該方法包括與該接收器之視野同時橫過該區掃描一統源,及接收來自所個反射器之光束。
於又一面相,本發明提供一種使用前述該型微粒偵測器監視一區的微粒之方法,該方法包:使用該遠端照明裝置照明欲監視區的至少一部分;於通過欲監視區後,接收由該遠端照明裝置所發射之光之至少一部分,及於所接收的光位準符合至少一個預定標準之情況下,使用第二照明裝置而照明欲監視區之至少一部分;於通過欲監視區後,接收於第二波長之所發射之光之至少一部分,及基於該等波長中之一者或二者之所接收的光,判定微粒是否存在於所監視區。
於一面相,本發明提供一種用於微粒偵測器之光源,該光源包括:設置來於個別方向投射光束之多個光發射元件;用以選擇性地照明該等光發射元件中之一者或多者之裝置,使得該光源可配置來投射至少一個選定方向。
較佳該等光發射元件為LED。
較佳光發射元件有相對窄照明野且係配置使得光源可具有相對寬照明野。較佳各個光發射元件之照明野至少部分重疊另一個光發射元件之照明野。
一種於包括本發明之前一個面相之光源來產生光束之一微粒偵測器之方法,該方法包括:測定光束投射之預定方向;及選擇性地照明該等光發射元件中之一者或多者,其投射於期望方向之光束。
該方法可包括照明該等光發射元件中之一者或多者,及監視光束於接收器的接收;以及於光束未接收之情況下,選定另一個光發射元件來照明。此一步驟可重複直至檢測得光束為止。
於前述實施例中,各光源適用於產生於多波長,較佳二波長之照明,來允許執行此處所述微粒偵測方法中之任一者之實施例。
於前述實施例中,光源適用於根據調變體系,產生二波長光。該體系包括一波長串列,其包括於第一波長之至少一個光脈衝及於第二波長之至少一個光脈衝。於該等波長中之一者或二者的多個光脈衝可含括於一脈衝串列。於使用多個光源之情況下,光源之調變樣式可為相同或相異。此外,光源之調變樣式較佳為彼此非同步。
於另一面相,本發明提供一種光束偵測器配置,包含:適用於發射穿過一照明野具有預定特性之一道或多道光束之一發射器,及具有一視野且適用於接收由該發射器所發射之一光束之一接收器;該光束偵測器係安裝來保護欲受監視的體積,其包括一結構其係具有於該發射器之照明野及該接收器之視野內部的一個或多個反射表面;該光束偵測器包括適用於判定於該接收器所接收之一光束是否具有一項或多項預定光特性之一處理器。
於具有一項或多項特性有待處理之情況下,該處理器係適用於判定已接收來自於該發射器之光束。於所接收的光束並未具有該等特性中之一項或多項之情況下,該處理器可判定並未接收來自於該發射器之光束。另外,處理器可判定所接收的光束為發射光束之反射。
該光束偵測器配置可包括適用於該處理器判定並未接收來自於該發射之一光束及/或接收反射光束之情況下,傳訊一故障狀況之信號之傳訊裝置。
於又一面相,本發明提供一種用以判定由一光束偵測器的接收器所接收的光束是否為直射發射光束或反射光束之方法。該方法包括於一接收器接收該光束及測量該光束之一項或多項預定特性,及根據該預定特性存在於光束之程度而定,判定所接收的光束為直射發射光束或反射光束。於所接收的光束之一項或多項特性並未實質上匹配發射光束之一項或多項預定特性之情況下,該方法可包括判定接收的光束是否為反射。該等光束特性可包括於所接收的光束中之兩個或多個波長組分的相對強度及/或所接收的光束之偏振特性。
於又一面相,本發明提供一種用於一光束偵測器之接收器,該接收器包括多個影像感測器,各個影像感測器包括多個感測器元件,該等影像感測器係設置來具有至少部分重疊的視野。該接收器可額外包括適用於於該二感測器中之各者上形成影像之一光學配置。該接收器可額外包括影像分析裝置來分析得自該等多個影像感測器中之多於一者的影像俾測定於多個感測器之視野內部的一影像組分的角位置。該影像組分可為由一光束偵測器之一光源所發射的一道或多道光束。
於又一面相,本發明提供一種用於一光束偵測器之接收器,該接收器包括:一個或多個感測器包括多個感測器元件來接收得自一發射器之一光束;與該等一個或多個感測器作資料通訊之處理裝置而接收與處理得自其中之影像資料;及適用於接收代表欲接收自該光束偵測器之一個或多個發射器的多道光束之一輸入信號的輸入裝置。
較佳,該輸入裝置包括一個或多個開關(例如,DIP開關),或設置資料輸入介面諸如串列埠等,透過該介面,資料可提供予處理器裝置或相關聯的記憶體。
於又一面相,本發明提供一種光束偵測器包括:適用於發射光束穿過一監視區之一個或多個光源;相對於該發射器及欲監視的體積配置之一個或多個接收器,使得來自於發射器之光於通過欲監視的體積的至少一部分後到達該接收器。
於本發明之若干實施例中,微粒偵測系統可包括相對於該監視體積與該發射器及/或該接收器設置之一個或多個光遮蔽擋板,使得自該光束偵測器之一光源的照明野及光接收器之視野內部表面並無反射光到達該接收器。
於光束偵測器之較佳實施例中,光接收器係根據此處所述本發明之面相中之一者製作。
於本發明之若干實施例中,光束偵測器之發射器係根據此處所述本發明之面相中之一者製作。
於一面相,本發明提供一種用於光束偵測器之發射器,該發射器包括適用於以空間上區隔的光束樣式產生光之一個或多個光源。較佳,該空間上可區別的光束樣式於至少一個平面為非對稱性。該空間上可區別的光束樣式包括具有可資區別特性之個別該空間上可區別的光束樣式。該等特性可為彼此可資區別的波長特性、偏振特性、或調變特性。也可使用其它特性。舉例言之,於較佳形式,此項可資區別樣式包括一對可資區別光束。於發射器之若干實施例可使用單一光源。此種情況下,藉接收器所形成的光束影像須為與光源影像可直射區別。舉例言之,光源影像可為「L」字形,因而上下左右可與光源影像區別。
於包括前述類型發射器的光束偵測器中,本發明之又一面相也提供一種測定於一接收器所接收之一光束係藉直射或反射路徑發射之方法,該方法包括:設置一光源及接收器使得由該光源所發射之光束係由該接收器所接收;及相對於該光源之照明野及該接收器之視野內部的相鄰表面定向該光源,使得來自於該表面的光源之直射影像及光源之反射鏡像於該接收器可資區別。
此一對準步驟可包括對準光源,使得其影像於直射影像及反射影像為非對稱性。
於又一面相,本發明提供一種於一光束偵測器系統區別一直射接收的光束與一反射光束之方法,該方法包括接收含有二影像節段之一影像,其可能係與由微粒偵測器所發射之光束相對應;測定所接收之光束各自之亮度;及判定所接收的光束中之最亮者為該直射接收的光束。
本發明之又一面相也提供一種測定多道所接收的光束中之哪一者係直射接收自光源而哪一者係藉自表面反射而接收之方法,該方法包括:測定所接收的光束中之哪一者係接收於該光束偵測器之一接收器之一光感測器中於垂直方向係最遠離該反射表面的一感測器元件;及指定該經測定的光束影像作為直射光束影像。
於另一面相,提供一種光束偵測器包括:一光源適用於發射具有第一偏振態之一光束;一光接收器適用於接收於第二偏振態之光及輸出一接收得的光位準;及一控制器適用於分析該接收得的光位準及應用警報及/或故障邏輯電路,且若存在有預定故障狀況則起始一動作。
於一個實施例中,第一及第二偏振態為平行。
於另一個實施例中,第一及第二偏振態為彼此偏移。該等偏振態可為正交。
光束偵測器可包括適用於發射有第三偏振態之第二光束的光源。第一與第三偏振態較佳為相異。最佳為正交。第一及第二光源可為共用光源。第三與第二偏振態可為相同。
光束偵測器也可包括適用於接收有第四偏振態之一光接收器。
第二與第四偏振態較佳為相異。最佳為正交。第四與第一偏振態可為相同。
光接收器或發射器中之一者或二者可包括一偏振濾鏡或多個可互換的濾鏡。
一種微粒偵測系統之一組件包括:配置來於一第一空間分布發射光或接收光的至少一個光電組件;及相對於該光電組件設置的一光學次系統,使得該第一空間分布經調整而形成一第二空間分布,其中沿二非平行軸線之該第一空間分布的相對程度係與沿該等軸線之第二空間分布的相對程度不同。
較佳軸線為彼此正交。最佳一者禁止為垂直軸線,而另一者禁止為水平軸線。
較佳該第二空間分布當與第一空間分布比較時為水平比垂直相對更寬。
該光學次系統包括一變形鏡頭,或其它「寬螢幕」光學系統。
光電組件可為影像感測器。光電組件可為光發射器,例如LED、雷射二極體。
本發明之又一面相提供一種用於光束偵測器之光源包括:至少一光發射器來產生一光束;及用以控制該光束之角分布之一光學次系統,其中該光學次系統係適用於成形該光束,使得該光束沿一軸線比另一軸線有更大的角分布。
較佳該光束形狀為寬度大於高度。光束可形為具有5至25度之水平角分布。最佳為約10至15度。
垂直分布可為0至10度。最佳為約3至5度。
本發明之又另一面相提供一種用於光束偵測器之接收器包括:一光感測器可提供代表於該感測器上多個位置感測得之光位準之一輸出信號;及一光學次系統適用於接收於一視野具有第一形狀之光,及以第二不同形狀之影像導引該光至該光感測器上。
較佳該光學次系統包括變形鏡頭。光學次系統之視野較佳係於一方向比另一方向寬。較佳寬度係大於高度。
光學次系統之視野可由於一個方向之最大光接收角及於另一個方向之最大光接收角界定。
較佳最大水平接收角為90度或以下。但於某些情況下可更高。
較佳最大垂直射收角為10度或以下。
廣義綱要言之,本發明之又一面相係關微粒偵測裝置的設置,其中結合或附接該微粒偵測裝置之一視覺對準裝置係朝向標靶,且係用來於安裝時,或當需要調整對準時,與該裝置準確對準。微粒偵測器內的視覺對準裝置及光學元件將相對於彼此固定對準。視覺對準裝置可包含一視覺光束產生器,其係朝遠端表面投影視覺上可觀察的光束;或其包含視訊攝影機,其接收遠端表面之影像及顯示該表面之影像於顯示幕上。
本發明之一面相提供一種煙霧偵測器之組件,包含:一光學模組包括一個或多個光源及/或一個或多個光接收器;用以安裝該光學模組至一支承表面之固定安裝裝置;位在該安裝裝置與該光學模組間之一活節安裝裝置;及固定來隨同該光學模組移動之一視覺對準裝置用以相對於一標靶,協助對準該(等)光源及/或接收器。
選擇性地,該視覺對準裝置包含於該光學模組內之一個或多個套筒,其中可插入一對準光束產生器。
該活節聯結可包括一個或多個鎖定裝置用以相對於該安裝裝置,鎖定該光學模組之方向。該活節安裝裝置可包含一球窩關節,可允許該光學模組相對於該安裝裝置傾斜相當大的傾斜弧度,該鎖定裝置適用於以一選定方向鎖定該球至該窩。該鎖定裝置可包含一螺絲件,其係齧合於該窩中之一螺紋鏜孔且接觸該球表面來將該球與該窩一起鎖定。選擇性地,該螺絲可透過該視覺對準裝置接取。
於又另一配置,本發明提供一種煙霧偵測器之組件,包含:一光學模組包括一個或多個光源及/或一個或多個光接收器;用以安裝該光學模組至一支承表面之固定安裝裝置;位在該光學模組與一個或多個光源或光接收器間之一活節安裝裝置;及固定來隨同該(等)光源及或接收器移動之一視覺對準裝置用以相對於一標靶,協助對準該(等)光源及/或接收器。
選擇性地,該視覺對準裝置包括於該活節安裝裝置中之一個或多個套筒,其中可插入一對準光束產生器。
該活節安裝裝置可包括一個或多個鎖定裝置用以相對於該活節安裝裝置,鎖定該光學模組之方向。該活節安裝裝置可包含一球窩關節,可允許該光學模組相對於該安裝裝置傾斜相當大的傾斜弧度,該鎖定裝置適用於以一選定方向鎖定該球至該窩。該鎖定裝置可包含一螺絲件,其係齧合於該窩中之一螺紋鏜孔且接觸該球表面來將該球與該窩一起鎖定。選擇性地,該螺絲可透過該視覺對準裝置接取。另外可使用旋轉座。
視覺對準裝置可包含罩於或安裝於一筒形管或主軸之內或之上的雷射,其尺寸係滑動式嵌合於該光束對準裝置內。選擇性地,雷射構成用以鎖定該活節安裝裝置的工具之一部分。雷射可閃光來協助視覺辨識。
另外,視覺對準裝置包含一安裝來隨殼體移動且可產生該標靶之影像之一視訊攝影機,該影像包括瞄準裝置,其當與該標靶對準時將指示該光學組件係經工作式對準。該殼體包括一視訊攝影機座,當該攝影機安裝於該座上時對準該攝影機與該殼體,使得該攝影機具有相對於該光源為已知方向之方向對準的視野。選擇性地,該已知方向係與自該光源發射之光軸向對準。
該組件可為例如微粒偵測器之發射器、接收器或標靶,諸如光束偵測器。
本發明之另一面相提供一種對準煙霧偵測器之一組件之方法,包含:於一初始方向安裝該組件至一支承表面,該組件包括一視覺對準裝置;藉視覺觀察該視覺對準裝置之一輸出信號而測定該組件之方向;藉監視該視覺對準裝置來調整該組件之方向直至該組件係位在一選定的操作方向為止;及將該組件固定在該操作方向。
該方法包括自該組件移開該視覺對準裝置。
該組件之方向可藉觀察位在遠離該支承表面之一所在位置自該視覺對準裝置所發射之一對準光束位置,或觀察由該視覺對準裝置之一攝影機所產生的該遠端表面之一影像測定。
本發明之又一面相提供一種對準工具包含:具有一手柄之一主軸;藉該手柄作動之一主動件;相對於該主動件於一固定方向或已知方向之一視覺對準裝置;及一主軸及一手柄。
進一步提供視覺對準裝置來包含一雷射,其係位在一篋內,及一手柄其中具有一凹部其係成形來容納該篋。該雷射典型為由電池供電的帶有on/off開關的雷射,因此不使用時可關掉雷射。依據與該工具一起使用的裝置之組態而定,主軸可為管直或有肘管。另外,視覺對準裝置可包含視訊攝影機。
本發明之一面相提供一種視覺對準工具具有:齧合裝置用以齧合該視覺對準工具且相對於一微粒偵測器組件,對準該視覺對準工具;及視覺靶定裝置用以當如此齧合時,提供該微粒偵測器組件已對準之視覺指示。
該視覺靶定裝置可為攝影機,但較佳為投射可見光之裝置。該可見光可為單純光束,如同雷射指標器,或為較複雜的樣式諸如準星。投射裝置可閃光來協助視覺辨識。視覺靶定裝置較佳為電池供電,及包括on/off開關,故不用時可關閉。
齧合裝置較佳為可容納於微粒偵測器組件的凹部內部之一細長凸部。較佳該視覺靶定裝置係與該齧合裝置同軸對準。
該視覺對準工具較佳包括一細長手柄及一主軸,該主軸係自該手柄之一端突起且係與該手柄同軸對準,其中該主軸之至少一部分形成該齧合裝置。該主軸及凹部可為圓柱形,及其尺寸為可滑套嵌合於其中。
該視覺靶定裝置較佳設置於手柄的另一端。選擇性地,該視覺靶定裝置可自該手柄移開。
視覺對準工具可包括用以與一微粒偵測器組件的鎖定裝置齧合且作動該鎖定裝置之一主動件。
該主動件較佳係形成於該主軸之遠離該手柄之一端且係環繞該主軸之軸線旋轉來作動該鎖定裝置。該主動件可為例如六角扳手(六角)、十字頭螺絲起子或其它專有形狀,例如三角形。理想上,主動件係成形用以於只有單一相對旋轉方向,與該鎖定裝置齧合,因而該視覺對準工具之旋轉方向係指示該鎖定裝置之狀態。該視覺指標係提供於該工具上俾協助該指示。
於此一面相,本發明提供一種微粒偵測器組件;該組件包括一安裝部、一光學模組、及鎖定裝置;該安裝部係固定式附接至一安裝表面;該光學模組相對於該安裝部呈活節式用以相對於一標靶對準,以包括用以允許該對準之視覺指示之裝置;及該鎖定裝置係可作動來相對於該安裝部,於一選定之對準鎖定該光學模組。
「標靶」一詞用於此處意圖作廣義解譯,且可包括安裝於遠端用以反射來源光返回接收器之一實際標靶。但標靶也可單純指稱遠端表面(若自該遠端表面反射光係藉該接收器監視)或甚至一組件應對準該點的一期望點,例如接收器可為光源的標靶,或反之亦然。
允許視覺指示之裝置可為視覺靶定裝置,包括一光電裝置諸如攝影機或雷射指標器,但較佳為齧合結構用以與結合視覺靶定裝置的視覺對準工具協力合作。
較佳該光學模組包括形成該齧合結構之一細長凹部。該凹部較佳具有至少一個開放端且係設置使得當該光學模組係與該標靶對準時,該凹部之軸線係朝向該標靶突起。該凹部可於平行於該光學模組之操作野極限之一方向突起;或與該光學模組之空間光學特性呈任何已知之物理關係。
該鎖定裝置較佳係可藉該視覺對準工具作動。該鎖定裝置較佳包括位在該凹部內之一從動件,且可與該視覺對準工具之一主動件齧合而作動該鎖定機構。較佳其係適用於環繞該凹部旋轉式傳動至一選定的方向而作動該鎖定裝置。該從動件較佳係成形來於只有單一相對旋轉方向,與該視覺對準工具之主動件齧合,例如該主動件可為非等邊三角形凸部,可容納於從動件形成的互補凹部,因而該視覺對準工具之旋轉方向係指示該鎖定裝置之狀態。印記可設置於該組件上來協助該指示。
較佳光學模組及安裝部中之一者,最佳為光學模組係捕捉於另一部分內部,該活節連接係藉該光學模組與該安裝部間之球狀滑動式嵌套執行。從動件可為於該光學模組及該安裝部中之一者內部的一平頭螺絲,及可旋轉來齧合該光學模組及該安裝部中之另一者。但較佳,該光學模組包括一制動蹄及一凸輪,其中該凸輪係設置來藉該從動件傳動,而其又傳動該制動蹄來以摩擦式或以其它方式齧合該安裝部,及藉此相對於該安裝部,鎖定該光學模組。該凸輪可附接至該從動件或與其一體成形。該制動蹄可朝回縮的非制動位置偏轉。
光學模組可包括簡單光學元件,諸如透鏡或面鏡。舉例言之,面鏡可對準用來轉向至或來自一固定式安裝的光電元件。於此種情況下,面鏡及光電元件可安裝於一殼體內。
較佳光學模組包括一光電元件,諸如光發射元件或光接收器。該光電元件可為攝影機。
較佳微粒偵測器係配置來當鎖定裝置作動時,工作式連結一電路至一電源供應器,允許光電元件操作。用於此項目的,開關可與從動件結合。例如從動件可於距其軸線的半徑上一點攜載一磁鐵,其係設置來當該從動件係旋轉至該選定方向時作用於磁簧開關。
本發明之此一面相也提供一種微粒偵測器組件與視覺對準工具之組合,及安裝與對準微粒偵測器組件之方法。
提供一種對準微粒偵測器組件之方法,該微粒偵測器組件包括一光學模組、一安裝部及鎖定裝置,該方法包括:
相對於該安裝部,活節連結該光學模組來將一視覺指示方向與一標靶相對準。
較佳該方法包括作動該鎖定裝置來將該光學模組鎖定於該對準。
較佳該方法進一步包括齧合一視覺對準工具與該微粒偵測器組件之該光學模組俾提供該光學模組之方向之視覺指示;及分離該視覺對準工具。
該作動較佳包括旋轉該視覺指示工具,及最佳同時連結光電組件至電源供應器。
該安裝微粒偵測器組件之方法包括:固定式安裝該微粒偵測器組件之一安裝部至一安裝表面;及根據前述方法對準該微粒偵測器組件。
於一較佳形式中,該步驟鎖定該光學模組及連結該光電組件至一電源供應器。
於另一面相,本發明提供一種煙霧偵測器組件:該組件,包括一安裝部、一光學模組、鎖定裝置,及啟動裝置;該安裝部係固定式附接至一安裝表面;該光學模組包括一光電元件,且相對於該安裝部呈活節式用以相對於一標靶對準;該鎖定裝置可回應於安裝者之輸入信號而作動來將該光學模組相對於該安裝部鎖定於一選定的對準;及該啟動裝置係配置來回應於該安裝者之輸入信號而工作式連結該光電元件至一電源供應器。
於又一面相,本發明提供一種微粒偵測器之組件包括一光電組件適用於至少發射或接收於一角區之一光信號,一光學總成適用於轉向一光信號,該光學總成與一光電組件係相對於彼此安裝而使得該光電組件透過該光學總成接收或發射光信號,其中:該光學總成之方向可相對於該光電組件調整來允許改變由該組件所發射或接收的光信號之方向。
較佳該組件包括該光電組件及光學總成安裝於其中之一殼體;及光信號可通過其中之一孔口。
該安裝裝置可適用於相對於該殼體安裝該光學總成。該安裝裝置較佳係於殼體的凹部摩擦嵌合。該安裝裝置較佳包括可由致動工具齧合之齧合裝置來允許光學總成的旋轉。齧合裝置可適用於齧合如此處所述之致動工具。
光學總成可包括一面鏡來反射光信號。
光電組件可為包括多個感測器元件的光感測器。光感測器較佳為適合拍攝一系列影像的攝影機。
根據本發明之一面相,提供一種微粒偵測器總成,包含具有一致動器之一第一模組,及配置來安裝該第一模組之一第二模組。該第二模組包含用於一光束偵測系統之一光電系統,及可操作來提供電力予該光電系統之一電源。該第二單元也包括回應於該致動器之一開關。當該第二模組係安裝於該第一模組時,該致動器造成該開關工作式連結電源至該光電系統。
於一配置,該致動器為磁鐵,及磁簧開關係用來檢測當組裝二模組時該磁鐵的鄰近情況。
廣義言之,本發明之一個面相可於光學表面污染影響二波長為實質上等量之情況下改良系統效能。於此一面相,使用時間常數,該時間常數係經選擇來比實際火警未被偵測得遠更長的時間,例如一週,極為緩慢減低的所接收的信號係藉二信號通道的有效總接收器增益的增加來補償。
如此,於一個面相,本發明包括檢測於微粒偵測系統中所接收的光位準之長時間漂移;及提高一偵測電路之增益來補償該漂移。於有多重照明例如於不同波長照明之系統中,可進行波長相依性增益增加。
此一構想可延伸使得光學表面的污染影響較短波長比影響較長波長更大,例如可能出現於污染主要包含極小型粒子,諸如煙霧污染所存在的微粒,再度使用時間常數,該時間常數係經選擇來比實際火警未被偵測得遠更長的時間,例如一週,極為緩慢減低的所接收的信號分別係藉各信號通道的有效總接收器增益的增加來個別補償。
於另一面相,本發明提供一種用於微粒偵測系統之光源,該光源係適用於發射:於一第一波長頻帶之一第一光束;於一第二波長頻帶之一第二光束;及於一第三波長頻帶之一第三光束,其中該第一及第二波長頻帶為實質上相等而與該第三波長頻帶為不同。
該第一及第二波長頻帶可於該電磁頻譜的紫外線部分。該第三波長頻帶可於該電磁頻譜的紅外線部分。
該第一光束自該光源發射之所在位置可與該第二光束自該光源發射之所在位置分開。該分開可約為50毫米。
該光源可進一步包括用以發射該第一及第二光束之一第一光發射器及用以發射該第三光束之一第二光發射器。此種情況下,光源可進一步包括用以將自該第一光發射器所發射之光分束成為第一及第二光束之一分束器。另外,光源可包括用以發射該第一光束之一第一光發射器,及用以發射該第二光束之一第二光發射器,及用以發射該第三光束之一第三光發射器。該第一、第二及/或第三光發射器可為發光二極體。
光源可進一步包括一控制器,該控制器係配置來以重複順序產生第一、第二及第三光束。較佳該重複順序包括該第一、第二及/或第三光發射器的交替操作。
於又一面相,本發明提供一種用於微粒偵測系統之光源,該光源包括:用以發射第一光束之一第一光發射器;用以發射第二光束之一第二光發射器;及一光學系統包括一發射區段,由該區段來自於第一及第二光發射器之光係自光源發射,其中該光學系統之設置使得光發射區段的阻擋導致第一及第二光束二者實質上相等的阻擋。
該第一及第二光發射器可為半導體晶粒。較佳其為罩於單一光學封裝體內部之半導體晶粒。
該光學系統進一步包括用以導引該第一及第二光束自該第一及第二光發射器至該發射區段的導光光學裝置。
導光光學裝置可選自於一個組群,包括但非限於一凸透鏡、一菲涅爾透鏡、及一面鏡。可使用其它光學組件或其組合。
該發射區段較佳構成該光學系統之外部可接取光學表面之至少一部分。例如透鏡、面鏡、窗、LED封裝體等之外側表面。
該光學系統可進一步包括適用於修改第一及第二光束中之一者或二者的光束形狀之光束成形光學裝置。
該光束成形光學裝置提供自該光源發射具有約10度光束發散之光。
此種情況下,該光束成形光學裝置可修改該等光束中之一者或二者之光束形狀來進一步於一個方向而非另一方向延伸,例如進一步水平延伸而非垂直延伸。
該光束成形光學裝置可修改該第一及第二光束使得其具有彼此不同的光束形狀。該光束成形光學裝置可修改該第一光束而具有比該第二光束更寬的光束形狀。
該光束成形光學裝置可包括配置來調整該光束之空間強度之一個或多個光束強度調整元件。光束強度調整元件可選自於一個組群,包括但非限於一光學表面被覆層,一經研磨的玻璃漫射器,及一經蝕刻的玻璃漫射器。
該第一光發射器可發射紫外線光束及該第二光發射器可發射紅外線光束。
該導光光學裝置及光束成形光學裝置經組合成為單一光學元件,或包含具有多個光學元件之光學配置。該等光學元件可為發射元件或反射元件。
於又一面相,本發明提供一種包括光源及接收器之微粒偵測系統,該光源為如前文說明之光源中之任一者或多者。
一種用於微粒偵測器之光源,包括:適用於產生至少一道光束其具有自遠端觀看點有第一表觀尺寸之一個或多個光發射器;一光學系統其係設置來接收該至少一道光束及發射至少一道光束,且係適用於造成該發射光束具有自遠端觀看點具有比第一表觀尺寸更大的第二表觀尺寸。
該光學系統較佳包括一光束漫射器。該漫射器可為專用光學組件(例如,一塊蝕刻玻璃)或形成為用於另一項目的光學組件之表面處理。
於另一面相,本發明提供一種用於微粒偵測器之光源,包括:適用於產生具有於至少二波長頻帶之組分的至少一道光束之一個或多個光發射器,及選擇性地該等一道或多道光束通過其中之一光學系統;該光發射器及/或光學系統係配置來造成於該等至少二波長頻帶中之一者的光具有與於該等波長頻帶中之另一者的光不同的空間強度輪廓。
較佳於一個波長頻帶之光束寬度係比於另一個波長頻帶之光束寬度更寬。較佳於較長的波長頻帶之光具有比於較短的波長頻帶之光更窄的光束寬度。較佳該較長的波長頻帶包括該電磁頻譜之紅外線部分或紅光部分。該較短的波長頻帶包括於電磁頻譜之藍、紫、或紫外光部分之光。
於又另一面相,本發明提供一種可用一微粒光束偵測器之光發射器,該光發射器包括:殼體包括可經由其發射光之一窗部;產生於多個波長頻帶之光之裝置;及設置於該殼體內部之一光敏感元件,及其係配置來接收由該產生光之裝置所發射的光之波長頻帶中之至少一者或多者之部分光;一個或多個電接點用以允許該產生光之裝置、光敏感元件及電路間之電連接。
較佳該光發射器包括多個適用於發射於相對應波長頻帶之光的多個光發射元件。
該光敏感元件可為發光二極體或其它光敏感電路元件。
最佳該等光發射器元件為LED晶粒。較佳該殼體之窗部適用於控制所發射的光束形狀。
該殼體可為LED封裝體。
於一個形式,該光發射器包括用以發射於該等波長頻帶中之一者或多者之光的多個光發射器。該等多個光發射器可排列於殼體內部來達成預定光束特性。於一個實例中,與一個波長頻帶相對應之光發射器可設置來環繞與另一個波長頻帶相對應之光發射器。
於一較佳形式,該殼體可包括減少周圍光到達光敏感元件之裝置。舉例言之,該裝置包括一個或多個濾鏡,其衰減由光發射元件所發射之於該等波長頻帶外側之光。另外,可包括設置於該殼體內部之一個或多個擋板或壁面,使得該光敏感元件實質上屏蔽不接收來自該殼體外部之直射光。
於又一面相,本發明提供一種測定一微粒偵測器內光源之一發光元件的輸出信號強度之方法。該方法包括根據調變樣式照明該發光元件,該調變樣式包括「啟動週期」其中光發射器發光及「關斷週期」其中光發射器未發光;於一個或多個啟動週期及一個或多個關斷週期檢測來自於該發光元件之輸出信號;基於於一個或多個關斷週期所測量得之光位準,校正於一個或多個啟動週期所檢測之光輸出信號。舉例言之,該校正可包括自一相鄰的啟動週期測量值扣除該關斷週期測量值。另外,該等啟動或關斷週期可歷經若干預定數目的啟動或關斷週期累加或求平均值來決定光輸出位準。
於另一面相,本發明提供一種包括至少一個如此處所述之該型光發射器之用於微粒偵測器之光源。
該光源可包括適用於控制該光源之照明樣式之一調變電路組件,及電連結至該光敏感元件且適用於自其中接收輸入信號與輸出控制信號至調變電路之一回授電路。
該調變電路可適用於基於所接收的回授信號之位準或變化而變更下列中之一者或多者:照明持續時間;照明強度;施加至光發射器之電壓;或施加至光發射器之電流。
於又一面相,本發明提供一種於微粒偵測器之光源之方法,該方法包括:根據第一調變樣式照明該光源之至少光發射器,該樣式包括多個照明脈衝;接收一回授信號;回應於該回授信號而調整該調變樣式。
該方法可包括調整下列中之一者或多者:照明持續時間;照明強度;施加至光發射器之電壓;或施加至光發射器之電流。
較佳該回授信號係由設置來監視該光源之至少一個光發射元件之光輸出信號的一光敏感元件產生。
該回授信號可為適用於補償該光源的至少一個光發射器之預定特性之一信號。該預定特性可為光發射器之溫度響應。
於本發明之一個實施例中,該回應於回授信號而調整調變樣式之步驟可包括調整調變樣式來編碼與該光源的至少一個光發射器之輸出強度相關的資料。舉例言之,一個或多個調變脈衝可插入、或於調變樣式調整來發射光發射器之輸出資料至一接收器。
於又一面相,本發明提供一種用於光束偵測器之組件,包括:具有至少一個側邊界定至少一個內部體積之一殼體,該至少一壁面包括一透光壁部,光可經由該透光壁部而進出該殼體;適用於經由該殼體的透光壁部而發射光及/或接收光之於該內部體積中之一光電系統;適用於檢測位在該透光壁部外表面上或接近其外表面之一異物之一異物偵測系統,及包括適用於照明該外表面及於該外表面上或接近其外表面之任何異物之一光源;一光接收器其係於異物被照明之情況下,接收來自於該異物之散射光,及產生一輸出信號;於滿足一項或多項標準的情況下,適用於分析該輸出信號及施加故障邏輯來測定一異物的存在並採行動作之一控制器。
該光接收器可為下列中之任一者:光二極體;及使用中用以檢測微粒之光感測器之一部分。
光源可架設於內部體積。另外,光源可安裝於殼體外部。
於另一面相,本發明提供一種於一微粒偵測系統之方法,該系統包含一個或多個光源及一接收器設置成來自於該一個或多個光源之光通過欲監視微粒區且係由該接收器所接收,及經程式規劃來基於至少一個所接收的光強度臨界值而監視一項或多項預先界定的警報情況及/或故障情況的發生之一控制器;該方法包括:提供至少一個所接收的初始光強度臨界值用以由該控制器於一委任週期使用;及提供至少一個第一所接收的操作光強度臨界值用以由該控制器於該委任週期後的一操作週期使用。
較佳於委任週期期間提供的所接收之光強度臨界值包括一最小所接收之光強度臨界值,低於該值則指示故障狀況。
於操作週期期間提供的所接收之光強度臨界值包括一最小所接收之光強度臨界值,低於該值則指示故障狀況或警報狀況。
於委任週期的最小所接收之光強度臨界值可高於於操作週期之至少部分期間的最小所接收之光強度臨界值。
該方法可進一步包括:提供至少一個第二操作光強度臨界值,於一延遲週期通過後,至少一個第二操作光強度臨界值用以於該延遲週期後的至少部分操作週期使用。
該第二操作強度臨界值可基於延遲週期後所接收的一個或多個強度測量值。
第二操作光強度臨界值較佳係高於至少一個第一操作光強度臨界值。第二操作光強度臨界值可低於至少一個初始光強度臨界值。
該方法進一步包括:判定延遲週期的通過。該步驟:判定延遲週期的通過可藉控制器自動執行;及/或當接收到指令時,傳訊延遲週期的結束。
若接收光包括包括多個波長組分,該方法包括:基於於二個或多個波長之所接收光強度,測定至少一個預定警報情況的發生。該方法可包括基於於二個或多個波長之所接收光強度的組合,測定至少一個預定警報情況的發生。
該方法可進一步包括於委任週期後,啟動操作週期。啟動操作週期可自動化執行,例如基於計時器自動執行;或當接收到啟動指令時執行。
於又一面相,本發明提供一種用於微粒偵測系統之控制器,包含一個或多個光源及一接收器設置成來自於該一個或多個光源之光通過欲監視微粒區且係由該接收器所接收,該控制器係經程式規劃來基於至少一個所接收的光強度臨界值而監視一項或多項預先界定的警報情況及/或故障情況的發生;該控制器係適用於執行如此處所述之方法。
該控制器可於一個或多個預定警報情況及/或故障情況出現時啟動一動作。舉例言之,該動作可為產生警報信號或故障信號。
本發明也提供一種包括此種控制器之微粒偵測系統。該微粒偵測系統可進一步包括用以接收光之一接收器;設置來發射於一個或多個波長之光的一個或多個光源,因此來自於該一個或多個光源之光通過欲監視微粒區而由該接收器所接收。較佳各個光源為發光二極體。該接收器可包括光感測器元件陣列,例如該接收器可為視訊攝影機。
本發明之又一面相也可提供一種委任與操作一微粒偵測系統之方法,包含:設置一個或多個光源及一接收器,使得來自於該一個或多個光源之光於由接收器所接收前,通過欲監視煙霧的一區;及執行屬於本發明之前述面相之實施例之方法。
於又一面相,提供一種用以監視一體積之微粒偵測系統,該系統包括:適用於發射一道或多道光束之至少一個發射器;適用於來自於至少一個發射器之該一道或多道光束通過欲監視的體積後接收該光束之一接收器;適用於基於該接收器之輸出信號而判定於該體積是否有微粒存在之一控制器;及用於微粒偵測之用以測定一發射器之光輸出強度之裝置。
用以測定發射器之光輸出強度之裝置係與該發射器相關。該用以測定發射器之光輸出強度之裝置可包括選擇性地可選擇性地定位於由該發射器所發射之光束路徑的一個或多個濾波器。該發射器可包括安裝裝置其係配置來容納一個或多個濾波器元件而允許由該發射器所輸出之光強度係設定於預定位準。
用以測定發射器之光輸出強度之裝置可包括適用於電子式控制發射器的光輸出量之電子控制裝置。該電子控制裝置可包括一個或多個開關,其可經手動控制來選擇發射器之光輸出強度。
該電子控制裝置可與接收器作資料通訊,且係適用於接收來自於該接收器的有關自該發射器接收光位準的控制資訊,且係適用於回應該控制資訊來控制發射器之光輸出信號。
用以測定發射器之光輸出強度之裝置可與該接收器結合。
發射器適用於發射於不同光位準的多個信號。於此種情況下,用於微粒偵測的該用以測定發射器之光輸出強度之裝置包括與接收器結合之裝置,其係用來對不同強度位準所發射的多個信號測定所接收的光強度位準,及比較所接收的光強度位準與一個或多個標準來判定用於微粒偵測之發射器之光輸出強度。
該發射器適用於發射重複的信號樣式,包括於不同強度位準之多個信號;及該接收器適用於選擇性地接收測定用於微粒偵測之重複樣式的一個或多個信號。
該發射器包括用以產生包括多個信號之重複信號樣式之裝置,其係配置來產生於偵測系統之接收器的不同接收光位準。
該微粒偵測系統最佳為光束偵測器。
該重複的信號樣式包括以多個強度位準發射之信號。重複的信號樣式可包括不同持續時間之信號。
於另一面相,本發明提供一種用於微粒偵測系統之發射器,包括:至少一個光源來產生至少一波長之光束;其中安裝該光源之一殼體;可選擇性地相對於該光源安裝用以選擇性地衰減該光束之一個或多個濾波器。
發射器可包括供電予該至少一個光源之電源。
發射器可包括控制電路來控制該至少一個光源之照明樣式。
於又另一面相,本發明提供一種用於微粒偵測系統之接收器:至少一個光感測器用以測量所接收的來自於一微粒偵測系統之一發射器之光位準;一控制器用以選擇性地啟動該光感測器而接收信號。該控制器適用於對由微粒偵測系統之發射器所發射的預定接收信號,選擇性地啟動該光感測器。
由發射器所發射之預定信號可基於時間週期早期,由感測器所接收的測量得之光位準而預先決定。
該測試濾波器包含至少一個薄片狀濾波元件,且係配置來藉該微粒偵測器發射於第一波長頻帶之光至與藉該微粒偵測器所發射的於第二波長頻帶之光不同的程度。較佳該測試濾波器發射由該微粒偵測器所發射的較短波長光,少於其發射由該微粒偵測器所發射的較長波長頻帶光。
該測試濾波器可包括一個或多個濾材薄片。
於一個實施例中,一片或多片濾材可由可達成於二波長的差異發射之材料製成。另外,一個或多個濾波器元件可以色彩選擇發射材料處理或浸漬。此種情況下之材料可為染料。
於較佳形式,測試濾波器包括多個濾波器元件,其組合方式可達成預定的發射特性。較佳該發射特性模擬預定濃度的煙霧。多個薄片可組合因而提供可選擇的發射特性。
於一個實施例中,實質上透明材料薄片其中已經添加對應於欲藉接收測試的偵測器所偵測的微粒之預定粒徑範圍之微粒。最佳微粒之直徑為0.2微米至1.0微米。
於又一個實施例中,濾波器元件可經表面處理來形成期望的吸收特性。於一個形式中,濾波器元件可包括結構化表面。該結構化表面可藉例如機械磨蝕、微粒爆噴、或化學蝕刻或雷射蝕刻所形成。
於另一個實施例中,第三個形式,表面印刷與預定發射相對應的預定數目之點。
濾波器元件可反射或吸收未被發射的光。但吸收典型較為方便。
於另一面相,本發明提供一種於微粒偵測器之接收器,該接收器包括至少一個感測器元件其係適用於接收光及輸出指示於多個空間位置所接收的光強度之一信號;及一光學系統包括至少一個波長選擇元件,其係配置來同時接收於多個波長之光及發射於二或多波長頻帶之光至一個或多個感測器元件,因而獲得指示於該至少二波長頻帶之所接收的光強度之一輸出信號。
於較佳形式,該接收器係配置來實質上同時測量於多個波長頻帶於多個空間分開位置的所接收之光強度。
於本發明之一個形式,波長選擇元件可包括位在光徑上接收器前方之一個或多個濾波器元件。最佳濾波器元件包括鑲嵌染料濾波器。另外,波長選擇元件可包括一個或多個光分離元件,例如稜鏡、繞射光柵等。又另外,該光分離元件可組合光感測器元件,且包含多層光敏感元件,其中光敏感元件之個別層係配置來測量於相對應波長頻帶之光強度。
於特佳形式,該等關注的波長頻帶包括紅外線頻帶及紫外線頻帶。於本實例中,波長選擇元件可適用於紅外線選擇性及紫外線選擇性。
於本發明之若干實施例中,波長選擇元件可適用於將入射的光束分束成個別波長組分且導引各個波長組分至相對應的感測器或感測器元件子集。
於又一面相,本發明提供一種用於光束偵測器之接收器,包括具有多個通帶之濾波裝置。於一種形式,該濾波裝置可包括多個通帶干涉濾波器。舉例言之,此種濾波器可設置來選擇性地於第一通帶感測器發射一長波長及該波長之一個或多個諧波。例如,濾波器可設計來實質上發射於800奈米及400奈米的全部光,同時阻斷大部分其它波長光。濾波裝置可包括多個濾波器。舉例言之,多個濾波器可包括多於一個干涉濾波器或多個染料濾波器等。該等多個濾波器可排列成預定空間樣式,使得於不同通帶光落至接收器之一感測器的不同部分上。
於本發明之又一面相,提供一種包括前述類型的接收器之投射光束微粒偵測器。較佳該微粒偵測器包括多彩光源。最佳該光源適用於同時發射於多個波長頻帶之光。於特佳實施例中,光源包括同步操作的單色光源。但另外可包括多彩光源。該多彩光源可包括氙閃光管或氪光源。另外,光發射器可為螢光材料與設置來照明螢光材料之光發射器的組合。光發射器例如可為LED。
於本發明之又一面相,提供一種用於光束偵測器之發射器,包括一光源,其適用於發射實質上與該光束偵測器之接收器之濾波器的個別通帶相對應之多個波長頻帶之光。
於又一面相,本發明提供一種光束偵測器包含根據本發明之前述面相製成的至少一個接收器及發射器。
根據本發明之一個面相,提供一種煙霧偵測器包括:用以偵測該光束之具有一光感測器帶有多個感測器元件之一接收器,該等感測器元件各自係適用於產生與撞擊其上之光強度相關之一電信號;該發射器及接收器之設置使得來自於該發射器之至少部分光束係由該接收器所接收;位在於該光束至該接收器之行進路徑的一光束漫射光學裝置,用以於該光感測器上形成該光束之一漫射影像,及一控制器其處理由多個感測器元件所產生之電信號來測定所接收的光束強度,及施加警報邏輯及/或故障邏輯至該強度資料來判定是否滿足預定條件,以及若滿足預定條件則起始一動作。
該光束漫射光學裝置可包括一透鏡,其聚焦光束於非重合感測器的一點。光束漫射光學裝置選擇性地可包括一漫射器,其可位在發射器與光感測器間。漫射器及透鏡可一起使用。
光束之漫射影像較佳係涵蓋接收器的感測器上之多個感測器元件。舉例言之,可涵蓋2至100個元件。較佳可涵蓋4至20個元件,但可能更加取決於感測器上的感測器元件之尺寸及密度。光束之漫射影像較佳係大於光束之鮮明聚焦影像。
控制器較佳係適用於組合自多個感測器元件所接收的信號來測定所接收的光位準。於一種形式,自多個感測器元件所測得的光位準經加總。於加總前,各個貢獻感測器元件之信號位準可經加權。
控制器可測定光感測器上與一光束影像相對應的信號中心位置,及根據各個感測器與信號中心位置間距來加權得自各個感測器元件之信號。
發射器可發射具有於二或多波長頻帶之組分之一光束。
根據本發明之另一個面相,提供一種偵測煙霧之方法,包括:自一發射器發射一光束至一接收器,其具有包含多個感測器元件之一感測器;設置一接收器使得其接收該光束;於該感測器上形成該光束之一漫射影像;產生與該所接收的光位準強度相關之電信號,其係藉該等多個感測器元件中光束撞擊其上的至少該等感測器元件所檢測;基於多個信號測定所接收的光束強度;施加警報邏輯及/或故障邏輯至該所接收的已測定的強度;及若測得預定的警報及/或故障狀況,則起始一動作。
形成漫射的光束影像之步驟選擇性地包含散焦該光束,使得其聚焦於非重合該光感測器之位置。
另外或此外,漫射光束之步驟可包括將一漫射器設置於該發射器與該感測器間。
測定所接收之光束強度之步驟可包括組合多個所接收的信號。該等信號可於組合時加權。例如該方法可包括測定該漫射光束影像的信號中心位置,及根據其相對應感測器元件與信號中心位置間距來加權該等信號。
於另一面相,本發明提供一種用於微粒偵測系統之組件,包括:適用於間歇地接收來自於一影像拍攝裝置之資料及處理該資料之一第一處理器;通訊式地耦接該第一處理器及適用於選擇性地啟動該第一處理器之一第二處理器。
該第二處理裝置係配置來執行該微粒偵測系統之下列功能中之一者或多者:與連結至該微粒偵測器之一外部資料通訊系統通訊;控制該系統之一個或多個介面組件;監視該組件之故障情況等。
較佳該第二處理器係具有比該第一處理器更低的功率消耗。
該組件較佳也包括成像裝置來接收得自一發射器立興該微粒偵測系統相關的一個或多個光信號。
於本發明之又一面相,提供一種於微粒偵測系統之方法。該方法包括:使用一第二處理器監視一第一處理器之啟動週期;回應於來自該第二處理器之信號而啟動該第一處理器;及使用該第一處理器執行一項或多項資料處理步驟。
該方法可包括當一項或多項工作完成時解除該第一處理器的啟動。
該第一處理器較佳係適用於處理得自該微粒偵測系統之一接收器之視訊資料。
於一個面相,本發明提供一種用於微粒偵測器之光源,包括:至少一個光發射器用以發射至少一道光束用於照明欲監視區的一部分;一電池用以供給電力予該光源;一電池監視器用以測量電池電壓或其電流輸出量中之至少一者;一控制器其係配置來控制該光源之至少一個光發射器之照明,及接收電池電壓或其電流輸出量中之至少一者,及測定指示電池預期剩餘壽命之一閥。較佳,於剩餘預期電池壽命少於預定時間週期時,該控制器係適用於產生該剩餘預期電池壽命的指示。
較佳該光源包括一環境監視器來監視影響剩餘預期電池壽命之環境因素,例如溫度。
較佳該預定的時間週期係比較光源之已排程的、推薦的、或經授權的服務時間間隔間之週期更長。
於另一面相,本發明提供一種環境監視系統,包括:一光束偵測器次系統包括至少一個發射器其係適用於橫過欲監視的一區發射一道或多道光束及至少一個接收器其係適用於接收由一發射器所發射之至少一道光束;至少一個額外環境監視器適用於感測與欲監視的該區相關聯之環境條件及透過一光學通訊頻道而通訊一輸出信號至該光束偵測器次系統之一接收器。
於一較佳形式,該光學通訊頻道可藉調變該光束偵測次系統之一個或多個發射器輸出之一光束而實施。
另外,該光學通訊頻道可包括與該一個或多個環境監視器結合的光發射器,且係設置位在該光束偵測器次系統之視野以內,其中該光發射器係適用於經調變來通訊由相關聯的環境監視器感測得的情況。
於一特佳形式,該光束偵測器次系統之光接收器可包括一個或多個感測器,包括多個感測器元件適用於測量於多個空間位置所接收的光強度。此種系統可用來同時監視一光學通訊頻道及該光束偵測器次系統之一個或多個發射器之微粒偵測光束。
於本發明之又一面相,提供一種光束偵測系統,包含:多個光束偵測器;與該等偵測器作資料通訊之且接收來自於該等光束偵測器各自之一輸出信號之至少一個控制器。該控制器係適用於找出至少一對光束偵測器其於空間上實質上空間重合至少部分波長之輸出信號的相關性,及於存在有預定相關性狀況之情況下,測定發生微粒偵測情況或出現故障情況。於一個形式,該相關性包括時間相關性。該相關性包括微粒偵測位準相關性。於簡化形式,該相關性可單純經由比較兩個或多個光束偵測器之微粒偵測位準是否實質上相等而執行,另外,多個光束偵測器之微粒偵測輪廓可彼此比較來測定其間之相關性程度。
於本發明之另一面相,提供一種操作包括多個光束偵測器其具有實質上重合至少一點的光束之一微粒偵測系統之方法。該方法包括:接收來自於多個光束偵測器之一輸出信號,判定至少二輸出信號間是否存在有相關性狀況,及若存在有預定相關性狀況;則根據預定微粒偵測邏輯及/或故障邏輯,判定是否發生微粒偵測事件或故障警報事件。警報可包括交叉相關兩個偵測器之隨時間而改變的微粒偵測輪廓。也可或另外可包括測定微粒偵測狀態間之相關性,亦即兩個或多個偵測器之警報位準或警報臨界值交叉。
於另一面相,本發明提供一種微粒偵測系統,包括:適用於照明欲監視的體積之至少一個光源,該照明包括含有多個脈衝之一脈衝串列,該脈衝串列係以第一週期重複;一接收器其具有一視野,且係適用於當來自於至少一個光源之光已經通過欲監視的體積後接收該光,且係適用於產生指示於該接收器之視野內部各區所接收的光強度之信號,該接收器係配置來於由曝光時間及接收訊框率所界定的一串列而接收來自於該至少一個光源之光;適用於處理由該接收器所產生之信號之與該接收器相關聯的一處理器,其中於多個脈衝各自內部所取射之具有脈衝串列之脈衝具有與所接收的訊框率相關的時間位置。
該脈衝串列中之一脈衝較佳具有約時間週期之半的持續時間。較佳該脈衝串列之重複週期實質上係比時間上相鄰的二訊框間之時間週期更長。訊框率係於下列範圍中之任一者:100 fps-1500 fps、900 fps-1100 fps、500 fps-1200 fps。最佳該訊框率為約1000 fps。
一脈衝之持續時間較佳為1微秒至100微秒。最佳一脈衝之持續時間為約50微秒。
曝光時間典型為2微秒至200微秒。較佳曝光時間為約100微秒。
該脈衝串列可包括至少一個同步脈衝。較佳包括二個。該脈衝串列可包括至少一個第一波長之脈衝。該脈衝串列可包括至少一個第二波長之脈衝。該脈衝串列可包括至少一個資料脈衝。
該訊框率及脈衝各自間之時間間隔係經選擇使得於至少一第一時間週間,其間有改變中的相位差。該訊框率及脈衝各自間之時間間隔係經選擇使得於一脈衝串列中之脈衝各自實質上係落入於個別曝光以內。
於本發明之另一個面相,提供一種於微粒偵測系統之方法,包括:適用於照明欲監視的體積之至少一個光源,一接收器其具有一視野,且係適用於當來自於至少一個光源之光已經通過欲監視的體積後接收該光,且係適用於產生一系列訊框指示於該接收器之視野內部各區所接收的光強度,及與該接收器相關聯之一處理器其係適用於處理由該接收器所產生之信號,及提供一輸出信號;該方法包括:判定接收器自其中接收光之多個光源。
該方法可進一步包括:分析由該接收器輸出的多個訊框來測定光源數目。
該方法可進一步包括:於測定光源數目之步驟期間,以高訊框率操作該接收器;及隨後以第二較低訊框率操作該接收器。
該方法可進一步包括:分析得自該接收器之多個訊框來識別訊框間所接收光位準有相對高變化之區俾識別於該接收器之視野內部之候選位置。
該方法可進一步包括:對訊框間之一位置比較所接收光位準之變化與一臨界值。
該方法可進一步包括:嘗試同步化該接收器與對一候選位置預期自一發射器之一預定發射樣式,及於同步化成功的情況下,判定該候選位置接收來自一發射器之光。
該方法可進一步包括:嘗試同步化該接收器與對一候選位置預期自一發射器之一預定發射樣式,及於同步化不成功的情況下,判定該候選位置並未接收來自一發射器之光。
該試圖同步化接收器與一預定發射樣式之步驟包括:拍攝包括該候選位置之多個至少部分訊框;比較所接收的訊框與由一發射器所發射之一脈衝串列相對應的預期之接收光樣式;試圖使用一鎖相迴路來同步化該所接收的樣式。
該比較所接收的訊框與由一發射器所發射之一脈衝串列相對應的預期之接收光樣式之步驟包括測定所接收之光之參考位準其係代表當對該候選位置並未接收得脈衝之時間;比較接收自各個脈衝之光位準與該參考位準及若差值超過預定臨界值時,判定接收一脈衝。
該比較所接收的訊框與由一發射器所發射之一脈衝串列相對應的預期之接收光樣式之步驟包括測定是否接收與一預期的樣式相對應的一串列脈衝。
該方法可進一步包括:比較所測定數目的光源與預定數目之光源;且於所測定之數目不匹配該預定數目時:重複該測定步驟;或傳訊一故障信號。
為了更清晰說明本發明之多個面相中之各者及其實施,此等面相已經關係分開實施例作說明。熟諳技藝人士容易瞭解如何將此等實施例中之二者或多者組合成為本發明之一實施例。如此須瞭解於本說明書揭示與定義之本發明延伸至自正文或圖式所述或顯然易明的個別特徵及面相中之二者或多者的全部其它組合。全部此等不同組合物構成本發明之多個其它面相。
於本說明書全文,「光束」一詞將用來指光發射器諸如LED之輸出信號。光束並非必然為準直或侷限於單一方向,反而可為發散、會聚、或具有任何適當形狀。同理,須瞭解「光」廣義表示電磁輻射而非囿限於電磁頻譜的可見光部分。
現在將藉非限制性實例,只參考下列圖式說明本發明之具體實施例,附圖中:第1圖為先前技術光束偵測器;第2圖顯示本發明之第一實施例;第3a圖及第3b圖示意顯示於第2圖之系統之光接收器204的光感測器所接收之影像;第4圖顯示使用二波長光之本發明之第二實施例;第5a及5b圖示意顯示於兩種情況下第4圖之偵測器之操作;第6圖顯示本發明之又一實施例其包括二標靶於接收器的視野;第7圖顯示本發明之又一實施例其未包括標靶;第8圖顯示本發明之又一實施例其具有六道光束橫過據一監視區;第9圖顯示一種微粒偵測系統示例說明根據本發明之又一面相之一種定址體系;第10圖顯示一種微粒偵測系統具有根據本發明之一實施例之第二定址體系;第10A圖顯示一後反射標靶;第11A圖顯示於二波長操作的微粒偵測器當偵測燃燒產物而驗證比較小型微粒,有異常高比例的大型微粒時所接收的光強度之作圖;第11B圖為與對11A圖相對應,於第一及第二波長之偵測器輸出信號的比較作圖;第12A圖顯示於三波長操作的偵測器對燃燒產物而驗證比較小型微粒,有異常高比例的大型微粒時之輸出信號;第12B圖為第12A圖之第一波長興第三波長間之二波長比較之作圖;第13圖顯示警報臨界值如何可於本發明之一實施例實施;第14圖顯示用於本發明之一實施例之信標;第15圖顯示第14圖之信標之示意圖;第16圖顯示第14圖之信標之變化例之示意側視圖;第17圖顯示於本發明之一實施例中可由信標所使用之兩種編碼體系;第18圖顯示根據本發明之又一實施例之微粒偵測系統,其使用多個靜態信標及一掃描信標來涵蓋90度視野;第19圖為用於本發明之一實施例之掃描接收器及光源配置之機械系統之示意代表圖;第20圖顯示根據本發明之又一實施例之微粒偵測系統,其使用一掃描攝影機及光源配置來涵蓋360度視野;第21圖顯示帶有一對準機構之根據本發明之一實施例之信標;第22圖顯示第21圖之信標之頂視圖;第23圖顯示於本發明之一實施例中用於對準信標之另一裝置;第24圖顯示第23圖之對準機構之底視圖;第25圖顯示根據本發明之又一實施例之信標;第25A圖顯示根據本發明之又一實施例之信標;第26圖顯示可用於本發明之又一實施例之又一信標;第27圖顯示根據本發明之一實施例之光束偵測器之一接收器組件之示意方塊圖;第28圖顯示用於本發明之一實施例之脈衝串列之實例;第29圖顯示根據本發明之一實施例於一光束偵測器中所接收的於二波長光之作圖;第30圖顯示當實施根據本發明之一實施例之方法時增益及經校正的輸出信號之作圖;第31圖顯示於本發明之一實施例於二波長頻帶所接收的光位準;及第32圖顯示當於第31圖所示條件下實施根據本發明之一實施例之方法時經校正的輸出位準及經調整的增益位準。
第33圖顯示根據本發明之一實施例結合一光源之一種微粒偵測系統;第34圖顯示當被異物部分阻擋時第33圖之光源;第35圖顯示當被煙霧所阻擋時第33圖之光源;第36圖顯示第33至35圖所示光源之另一個實施例;第37圖顯示根據本發明之另一實施例結合一光源之一種微粒偵測系統;第38圖顯示當被異物部分阻擋時第37圖之光源;第39圖顯示第37及38圖所示光源之另一個實施例;第40圖顯示可用於本發明之一實施例之光學次系統;第41及42圖顯示根據本發明之又一實施例之光源;第43及44圖顯示修改用於微粒偵測系統之光源之光束寬度的效果;及第45及46圖顯示用於微粒偵測系統之所發射光之於不同波長頻帶光具有不同空間輪廓之優點;第47圖顯示可用於本發明之第一實施例之一光發射器;第48圖顯示可用於本發明之一實施例之一光發射器之進一步細節;第49圖顯示可用於本發明之一實施例之一光發射器之又一實施例;第50圖顯示可用於本發明之一實施例之一電路之示意方塊圖;第51圖為顯示第50圖之電路之操作之作圖;第52圖顯示可用於本發明之一實施例之第二電路之示意方塊圖;第53圖為顯示第52圖之電路之操作之作圖;第54圖顯示採用本發明之一實施例之光束偵測器之光源之示意代表圖;第55圖顯示採用本發明之一實施例之光束偵測器之光源之示意代表圖;第56圖顯示採用本發明之一實施例之光束偵測器之光源之示意代表圖;第57圖顯示其中安裝根據本發明之一實施例之一微粒偵測系統的房間;第58圖顯示可實施來安裝根據本發明之一實施例操作之光束偵測器之一個方法實施例之流程圖。
第59圖顯示於安裝後可藉根據本發明之一實施例之光束偵測器的控制器執行之方法之一個實施例之流程圖;第60圖顯示於安裝後可藉根據本發明之一實施例之光束偵測器的控制器執行之方法之另一個實施例之流程圖;第61圖示意顯示根據本發明之一實施例之發射器之一部分;第62圖顯示第61圖所示發射器之一第二實施例;第63圖顯示可用於本發明之一實施例之衰減器實例;第64圖為時序圖,顯示代表本發明之另一實施例之發射功率及相對應的接收器之線圖;第65圖示意顯示根據本發明之一面相採用測試濾波器之微粒偵測系統;第66圖顯示根據本發明之一實施例製成的測試濾波器實例;第67圖為根據本發明之一實施例製成的濾波器之發射光譜之作圖;第68圖至第75圖顯示根據本發明之一面相製成的濾波器之多個實施例;第76圖示意顯示根據本發明之一實施例製成之微粒偵測系統;第77圖顯示根據本發明之一實施例製成之接收器實例;第78圖顯示根據本發明之一光接收器之又一個具體實施例;第79圖顯示根據本發明之一實施例製成之又一個光接收器;第80圖顯示根據本發明之一實施例製成之光接收器之第四實施例;第81圖為利用本發明之一實施例之光束偵測器之示意代表圖;第82圖為第81圖表示之光束偵測器之示意代表圖,顯示不同的發射器位置;第83圖為示意圖,顯示本發明之一實施例之漫射裝置之一個實施例,此處該發射器充分遠離使得進入透鏡之光束射線大致上為平行;第84圖為示意圖,顯示本發明之漫射裝置之另一實施例;第85圖顯示本發明之一面相之又一個實施例;第86至89圖顯示可用於本發明之一實施例之之多個波長濾波器配置,諸如第85圖所示。
第90圖為適用於根據本發明之一實施例操作的火災警報系統之示意說明圖;第91圖示意顯示根據本發明之第一實施例之環境監視系統;第92圖示意顯示根據本發明之第二實施例之環境監視系統之第二實施例;第93圖示意顯示可用於本發明之一實施例之之一光源;第94圖顯示根據本發明之又一實施例製成之系統;第95圖顯示其中於光束偵測器可能造成反射之一種情況;第96圖顯示根據本發明之一實施例製成之光束偵測器中的接收器之特寫視圖;第97圖顯示根據本發明之另一實施例製成之光束偵測器配置;第98圖顯示根據本發明之另一實施例製成之光束偵測器配置;第99圖顯示根據本發明之另一實施例製成之光束偵測器之另一個實施例;第100圖示意顯示本發明之一實施例其中發射器與接收器之偏振態為經對準;第101圖示意顯示本發明之一實施例其中發射器與接收器之偏振態為正交配置;第102圖顯示本發明之一實施例其中二正交偏振光束係發射至一偏振敏感的接收器;第103圖顯示本發明之一實施例之,發射器發射單一偏振光束欲由二正交偏振接收器所接收;第104圖顯示藉根據本發明之一實施例操作的微粒偵測系統監視之一體積之平面圖;第105圖顯示通過第104圖之一體積之剖面圖,顯示該系統之該接收器及一個發射器;第106圖顯示用於根據本發明之一實施例之一個實例的接收器之示意圖;第107圖顯示用於根據本發明之一實施例之發射器之示意代表圖;第108圖圖解顯示根據本發明之煙霧偵測器及安裝配置;第109圖顯示第108圖所示煙霧偵測器之剖面側視圖;第110圖顯示根據本發明之煙霧偵測器裝置之另一個實施例之側視圖;第111圖顯示根據本發明之煙霧偵測器裝置之另一個實施例之平面圖;第112圖顯示根據本發明之煙霧偵測器裝置之又一個實施例之圖解說明圖;第113圖顯示貫穿根據本發明之另一實施例製成的煙霧偵測器之組件之剖面圖;第114圖為具有一第一模組及一第二模組之光束偵測器總成之示意說明圖,該總成於兩個模組組裝時啟動;第115圖為根據本發明之一實施例之發射器之透視圖;第116圖為第115圖之該發射器之制動蹄及心軸之特寫透視圖;第117圖為第115圖之接收器之透視切除視圖;第118圖為根據本發明之一實施例之接收器之透視圖;第119圖為第118圖之該發射器之制動蹄、桿臂、及心軸之特寫。
第2圖顯示本發明之一實施例。偵測器200包括一光發射器202、一接收器204、及一標靶206協力合作作用來檢測於監視區208的微粒。標靶206反射入射光210,藉此形成一光源,且將反射光212送返接收器204。較佳標靶為直角稜鏡或其它適用來將光順著其入射路徑或其它預定路徑反射回之反射鏡。
「光源」一詞如此處使用意圖解譯為包括一裝置其主動產生來自一個或多個(一般於此處定名為光發射器或發射器)之照明,以及由另一個裝置(通常於此處定名為標靶或反射鏡)所產生之照明之接收器。
於較佳實施例中,接收器204較佳為視訊攝影機或有光感測器陣列之其它接收器。熟諳技藝人士將瞭解可未悖離本發明之範圍,接收器204可使用一定範圍之影像感測器類型組成,包括一個或多個CCD(電荷耦合裝置)影像感測器或CMOS(互補金氧半導體)影像感測器,或確實可記錄與報告橫過其視野的多點之光強度之任一種裝置。
接收器204接收於其視野220之全部光,及包裝成像光學裝置來於其影像感測器上形成其視野220之影像,包括標靶206。此光包括反射光212。接收器204以表示遍布其視野一系列多個位置之影像強度的資料形式,記錄其視野的全部光強度。此一資料部分將與反射光212至少部分對應。接收器204將該影像資料通訊至一微控制器。該微控制器分析該影像資料,及判定資料的哪一部分提供反射光212之最佳估值。因接收器204具有寬廣視野,且可測量於此視野以內之寬廣範圍之多點的光,光發射器202無需小心對準標靶206或接收器204,原因在於未對準的效應單純為:與視野內部之不同像素相對應的資料不同部分將使用反射光212之測量值。如此,設接收器之視野包括標靶206,影像內部之一個或多個關注區將包括反射光212之測量值。須注意來自關注區以外區域的額外背景光或雜散光可由微控制器忽略。
對於有關例如影像感測器之哪一個像素係與反射光212相對應,微控制器可基於影像之一特定部分比較影像之其它區所得相對強度而做出決策。同樣也可使用有關環境或歷史上記錄的資料取得的資訊。此項決策過程的結論,微控制器將選出部分資料其能最可靠地用來測量反射光212之強度,或許係與讀取自影像感測器之一像素或一群像素相對應的部分資料。
微控制器現在監視先前選出作為與該反射光212相對應的影像區域。若煙霧或其它粒狀物質進入監視區208,則煙霧或粒狀物質將遮掩或散射入射光210或反射光212。如此遮掩或散射將藉微控制器偵測判定為該影像區中測量得之所接收的反射光212之強度降低。
落在微控制器所選定的包括反射光212區外側的像素可被忽略,原因在於此等像素所接收的光並非與反射光212相對應。
隨著時間之經過,當建築物移動或其它因素變更系統的幾何形狀時,標靶206將仍在接收器204的視野以內,但標靶206之影像將出現在接收器204之影像偵測器上的不同點。為了解決偵測器影像之此項移動問題,微控制器適用於隨著時間之經過之變化追蹤標靶206影像橫過其光感測器,來允許隨著時間之經過於正確的影像區上執行煙霧偵測。
第3a圖及第3b圖示意顯示於不同時間,於第2圖系統之光接收器204的光感測器接收得之影像。於本實施例中,感測器之輸出信號允許測定於多個位置所接收之光強度。於一個形式,感測器為CMOS成像晶片或其類,且包括多個像素302,各個像素係與光接收器之視野300的一個位置相對應。於使用中,微控制器讀出多個像素例如302之光強度。於任何給定影像訊框,所接收之光位準隨像素陣列300內部之各像素而異。
經由分析影像,微控制器可判定某些像素(或單一像素)係與位在接收器204的視野以內之標靶206的影像相對應。此像素組群標示為304具有比較其它像素實質上更高的所接收之光位準,且係與所接收之該光源所發射之光束相對應。
隨著時間之經過,當建築物移動或其它因素變更系統的幾何形狀時,標靶206將仍在接收器204的視野以內,但標靶206之影像將出現在接收器204之影像偵測器上的不同點。為了解決偵測器影像之此項移動問題,系統微控制器適用於隨著時間之經過之變化追蹤標靶36影像橫過其光感測器,來允許隨著時間之經過於正確的影像區上執行微粒偵測。第3b圖實質上係與第3a圖相同,但但由視野300的標靶所造成的「斑點」將於箭頭310指示之方向移動。
於一個實施例中,「斑點」的追蹤可藉微控制器初步於記憶體內儲存與視野中的該「斑點」相對應之第一像素座標集合來執行。定期地,微控制器檢查距該「斑點」預定距離以內之像素之測量值,包括與該「斑點」相對應之像素之測量值。然後微控制器經由自該環繞區中選出n個最亮的像素來計算第二像素座標表單。然後第二表單與第一表單作比較,而若二表單差異大於m像素座標對,則指示錯誤。若二表單之差異為m以下之像素座標對,則儲存第二像素座標表單來取代第一像素座標表單。
於另一方案,系統控制器可分析所接收的影像,及判定影像的哪一部分含有與所接收的光束最強力相關的資訊。於此決策過程結束,控制器將已選出由個別感測器或感測器組群所產生的信號之二部分,因此該選定的信號可最可靠地用來測量光束強度。選定其資料可最可靠地使用的感測器之一種方式係在委任煙霧偵測器且選擇適當感測器時觀看接收器所產生的影像。
確保計算得之所接收之光束強度係儘可能地接近所接收之光束的實際強度之又一項機轉,涉及微控制器根據某個感測器元件對總體影像強度的貢獻度,判定是否使用與該元件相對應之數值。舉例言之,自感測器元件之輸出信號,控制器可決定光束之「信號中心」位置。該信號中心位置係類似質心位置,但係由計算中所使用的各個像素(亦即感測器元件)所貢獻的信號值,而非質量。例如可使用如下方程式:
信號中心位置向量={(各個像素之位置向量)*(各個像素值)}/(得自全部像素之數值總和}。
於已測定信號中心位置後,控制器可根據該感測器元件間距,加權由各個感測器元件貢獻予所接收之光束強度之信號(亦即與由各個感測器所產生之電信號相對應)。藉此方式,控制器可測定其信號最佳代表該標靶影像且最不可能因感測器上的光束影像之漂移而自隨後測量值下降之該等感測器元件。
於使用中,微控制器將比較於此組像素所接收之光強度與前一影像所接收之光強度,來判定是否因監視區208的微粒造成光束的遮掩的增加。
然後微控制器可使用習知煙霧偵測方法來判定何時偵測得煙霧以及是否應發布警報。舉例言之,煙霧可藉監視所接收之光位準來偵測,而當所接收之光的選定特性符合一項或多項預定標準時,判定煙霧存在於接受監視的體積。舉例言之,當所接收之光位準降至低於預定位準時,可判定存在有煙霧。另外,當所接收之光位準的變化速率超過預定程度時,可判定偵測得煙霧。如所瞭解煙霧偵測標準也包括時間條件,例如所接收之光位準須降至低於臨界值歷經大於預定時間週期才發出警報。
為了改進系統的靈敏度,可使用抵消演繹法則來減少背景光對所測得之所接收之光強度的影響。一個此種演繹法則之操作辦法係以光源交替開及關來交替拍攝接收器之視野影像。「關」訊框(亦即未照明時拍攝的影像)測得之光強度可自「開」訊框(亦即照明時拍攝的影像)扣除。藉此實質上消除非歸因於光源照明之所接收之光亦即背景光。
熟諳技藝人士將瞭解「關訊框」集合可以多種方式達成,包括藉選擇性地阻遏有特定波長之光源,例如經由調變該等光源之控制輸入信號,或另外藉導入一濾波器位在光源前方來暫時阻斷有特定波長之光。此等熟諳技藝人士也將瞭解可利用單純扣除以外的手段來達成背景光的消除,例如經由使用適當濾波器,或經由若干其它運算辦法來達成背景光的消除。
於本發明之較佳實施例中,標靶係以二(或多)波長照明。第4圖顯示有多個光發射器其發射於二波長λ1
及λ2
之光。本實例包括沿二實質上共線的光徑發光的紅外線(IR)光發射器及紫外線(UV)光發射器。也包括一接收器404及一標靶406協力合作來檢測監視區408之煙霧。標靶406反射入射的紫外光410成為反射的紫外光414,及也反射入射的紅外光412成為反射的紅外光416。選用此二波長,使得欲偵測的微粒例如煙霧微粒存在下有不同的表現。藉此方式,於二(或多)波長所接收之光之相對變化可用來產生造成光束衰減之指示。
接收器404接收反射的紅外光416及反射的紫外光414連同其視野內的其它光。接收器404如前文說明,記錄整個視野一系列位置於其視野之全部光強度。此種資料部分將至少部分對應於反射的紫外光414強度。此種資料部分將至少部分對應於反射的紫外光414強度。接收器404包括用以處理影像資料之微控制器424。
於本系統為了應用如前文之背景抵消辦法,發射於二波長λ1
及λ2
之光的二光源可配置來交替操作而其間有短時間的無照明期來允許收集空白訊框。於本實施例之簡單形式,照明樣式及接收器可同步化操作如下:
另外,可實施更複雜的系統,其對各波長使用分開的影像拍攝晶片,或使用連續照明及選擇性地濾波所接收之光來產生於各波長的開及關訊框。
微控制器424分析資料,及判定資料的哪一部分含有分別與前文說明之反射的紫外光414及反射的紅外光416最強力相關的資訊。
然後微粒偵測演繹法則可分開應用於如前文說明之反射的紫外光及反射的紅外光。但較佳二波長係經選擇使得其於欲偵測的微粒例如煙霧微粒存在下有不同表現。藉此方式,於二(或多)波長所接收之光之相對變化可用來產生造成光束衰減之指示。若所接收之光束的相對遮掩至低於預定臨界值,則可發出警報。
光束於空氣中衰減的產生主要係由於部分光與空氣懸浮微粒交互作用而偏軸散射所致。紫外光藉小型粒子例如煙霧相對強力散射,而紅外光較少藉此型粒子散射;如此於煙霧偵測器,IR光束可用作為主要UV煙霧偵測光束的參考光束。於本實例中,UV及IR光束對因例如系統的漂移、系統的光學裝置污染、大型異物通過光束(例如,小鳥)或相對大型的惱人粒子諸如灰塵等因素所造成的所接收之光束強度變化同等敏感,但紫外光對典型主要為小型粒子的煙霧較為重度衰減。經由小心選擇用於該系統之波長,可擇定期望粒徑之選擇性。本實例使用850奈米紅外光波長作為參考波長,但於某些實施例也可使用更長的波長諸如1500奈米。同理,較短波長之光束可變得更短,例如200奈米來達成對小型粒子之較高敏感度。也可使用較長的或較短的其它波長。但於此等系統實施光發射器及接收器的成本於大部分應用用途高得令人卻步。
第5A及5B圖示意顯示隨著時間之經過系統於二波長所接收之光強度。此等圖式中所接收之紫外光位準係以曲線1402表示,而所接收之紅外光位準係以曲線1404顯示。大致上,二光束之所接收之光強度將以類似方式隨著時間之經過而改變,如此其比例隨著時間之經過將為恆定。於時間506,二曲線1402及1404發散。如此指示發生一事件,造成紫外光束比紅外光束更大的衰減。結果所接收的紫外光及紅外光之射線比將偏離其實質上恆定狀態。
由於前述UV及IR射線之性質,如此指示小型粒子例如煙霧已經進入光徑且造成衰減,可建置微處理器來指示檢測得煙霧。
第5B圖顯示光束因不同原因而衰減之情況。於時間510,所接收之二光束強度大減。如此指示遮掩的起因並非波長相依性,而可能為對準問題或大型異物進入光束。
如於本簡單實例可見,參考光束及一次偵測光束的使用,允許區別可能的微粒偵測事件與其它光束衰減起因。
此處所述光波長僅供舉例說明之用,發明人預期可選用其它波長而其系統適用於偵測某些類型的微粒。於特佳實施例中,參考光束絲毫也無法被關注微粒所吸收或散射,但可被全部其它事件所衰減。於此種情況下,參考光束只對系統產生影響的結構體或異物產生指示。但發明人已測定於某些情況下於此二波長執行煙霧偵測,及然後自另一波長所接收的信號中扣除於一個波長所接收的信號,或取於該二波長所接收的信號比可能易於某些類型微粒或有某種粒徑分布的微粒雲存在下失敗。
舉例言之,已經於二波長煙霧偵測系統執行煙霧偵測測試,其中煙霧係使用如下設備產生。白色棉製毛巾緊密包裹電氣元件,電氣元件與毛巾置於一容器內。當電流通過電氣元件時產生大量煙霧。得自此來源之煙霧導入裝置內測量於紫色(405奈米)及紅外光(850奈米)波長之光發射,但發現此二波長的影響實質上相等,因而仰賴差異或比例計量來測量的煙霧偵測器無效。相反地,於單一紅外光波長操作的煙霧偵測器易偵測此煙霧。
第11A圖顯示於二波長λ1
及λ2
響應的煙霧偵測器之實例。如圖可知於二波長所接收之光強度隨著時間之經過而改變,但最初於二波長為實質上平坦且相等。於時間t1
,煙霧(以前述方式產生)進入偵測器,及於各波長所接收之光強度實質上減低。但不似第5a圖所示情況,於時間t1
後於二波長λ1
及λ2
的響應一致地減低。
此項趨勢可見於第11B圖,該圖指示如第11A圖之經過相同時間刻度,於二波長λ1
及λ2
(例如,λ1
=405奈米及λ2
=850奈米),煙霧偵測器之輸出信號之比較。二波長比較可為任一種已知之比較措施,諸如於λ2
所接收之光強度自於λ1
所接收之光強度中扣除、或二數值之比、或若干其它措施。如圖可知,因於λ1
及λ2
的響應維持實質上相等,故第11B圖之比較曲線並未偏離中心位置,指示於波長λ1
的響應係與於波長2
的響應相同。於煙霧偵測器係配置成當比較值達預定臨界值例如T1
時進入警報狀況之情況下,則第11A圖顯示之情況將不成發出警報。於尋常操作,發明人已經判定反映10%至50%之相對遮掩的變化之一臨界值的效果良好。但可設定期望的臨界值位準來達成故障警報與敏感度間的平衡。
發明人已經設計兩種解決缺點之辦法,其可單獨使用,或連同前述微粒偵測器之實施例使用,或連同其它類型微粒偵測器使用,包括基於正向或逆向散射幾何所接收的散射光來偵測微粒的存在之偵測器來避免前述缺點。
於一個具體實施例中,發明人已經判定以前述方式產生的煙霧可使用參考波長更優異地偵測,及該系統可使用發射第三光束的第三波長光發射器加強。發明人經由實驗測定取中於約540奈米波長頻帶之光束出乎意外地不受前述煙霧測試中的微粒影響。
第12A圖顯示於指示為λ1
、λ2
、及λ3
(例如,λ1
=405奈米、λ2
=850奈米及λ3
=520奈米)三波長操作的煙霧偵測器於以前述方式產生的煙霧存在下之響應,此處λ3
係於可見光譜之綠光部。於此種情況下,λ1
及λ2
之作圖係同第11A圖,但如圖可知λ3
之作圖相當不同。就此方面而言,最初亦即於時間t1
之前,λ1
之作圖實質上對λ1
及λ2
為相同。第12B圖之相對應部分其顯示λ1
與λ3
之作圖的比較為實質上平坦,且密切環繞λ1
=λ3
線改變。
於時間t1
之後,於煙霧導入偵測器之該點,λ1
及λ2
之作圖一起減低,但λ3
之作圖係以遠較緩慢的方式減低。如此,如第12B圖可見,λ3
與λ1
間之比較增加,最終交叉警報臨界值t1
。如熟諳技藝人士瞭解,經由比較λ3
響應與λ2
響應可產生類似的曲線。
如此可知經由於此處所述類型的微粒偵測器中以至少一個參考波長(例如,綠光波長)加強二波長系統,可偵測出否則可能無法偵測的微粒偵測事件。
於另一形式,可使用包括照明及只有另一色照明的二波長系統,替代前述三(或更多)波長系統。
第13圖顯示本發明人所測定之可用來改善先前技術用於偵測此種煙霧缺點之第二機轉。此種辦法係於前文說明用於使用多波長之微粒偵測器所使用的辦法不同。若干市面上送氣偵測器或點偵測器,其使用多個光波長來偵測煙霧,來自另一波長所偵測的信號中扣除接收器信號,或算出微粒偵測器於二波長之輸出信號比來偵測煙霧的存在。但由前文說明可知,當二波長係均等地(或成正比地)衰減時此項辦法無法偵測出煙霧。舉例言之,西門子許威茲公司(Siemens Schweiz AG)所擁有的國際專利申請案WO2008/064396說明一種多波長煙霧偵測器,當短波長響應實質上大於長波長響應時,使用短波長信號來提升小型微粒的偵測。但當各個波長之響應為實質上類似之情況下,例如當一個響應係於另一波長響應之60%至95%時,發明入教示使用於二波長之響應比。於燃燒產物存在下,其驗證比較小型微粒,有異常高比例的大型微粒時,諸如於有限空氣供應情況下加熱材料時所產生的情況,由於於二波長的響應實質上相同,偵測器將經常性使用比較辦法,如此未能發出警報,偵測器未能偵測出煙霧。
本發明人已經判定此項問題可藉應用後備偵測臨界值來克服,該後備偵測臨界值可用來觸發警報而與偵測器於二波長之響應無關。
如此於第13圖,設定臨界值T2
,一旦於於波長λ1
及λ2
中之任一者或二者所接收之光強度降至低於該臨界值時指示警報狀況。
若煙霧偵測光束被異物阻擋時,此種臨界值可能引發假警報,但此項風險可藉其它手段減低,諸如經由分析遮掩信號之變化速率或應用適當警報延遲等。如所瞭解,實心本體典型地造成鮮明遮掩變化,而煙流典型地略為緩慢蓄積且於各波長有較慢的變化速率。此外,經由對一段短時間之遮掩求取平均,暫時性的遮掩例如飛鳥飛過光束所造成的遮掩大為可被忽略。
第6圖顯示可同時監視多個標靶之一實施例。根據此一實施例,偵測器600包括一光發射器602、一接收器604一第一標靶606、及一第二標靶608協力合作來偵測於監視區610的煙霧。標靶606反射入射光612,導致反射光614送返接收器604。標靶607反射入射光616,導致反射光618送返接收器604。
如同先前實施例,接收器604包括用以處理影像資料之微控制器624。微控制器624分析資料,判定資料的哪一部分含有分別與反射光614及反射光618最強力相關的資訊。於本決策過程結束,微控制器624將選擇與讀取自其影像感測器之個別像素或個別像素群相對應的二部分資料,該等資料可最可靠地用來分別測量反射光614及反射光618之強度。
藉此方式,系統600經由只加總額外標靶來發揮二光束偵測器的功能。熟諳技藝人士將瞭解此項原理可擴充至包括任何數目之標靶及反射光束。
第7圖顯示本發明之又另一實施例。於本實例中,系統700只包括一接收器704及一光發射器706位在監視區708之兩相對側上。於此種情況下,光發射器706為接收器用來成像之光源。最佳光發射器為電池供電單元,包括一個或多個LED或其它發光元件,其適合發射一道或多道光束橫過監視區708,但可使用其它光源(例如,藉主電力供電,或藉資料纜線連結至接收器)。光發射器706係位在接收器704的視野內,且係適用於包括該接收器704的體積發射寬光束(或光錐)。接收器704適用於以前述相同方式處理所接收的光(於一或多波長)。於此種情況下,微控制器適用於識別來自光源發射的光直射衝擊其上之影像感測器的該等像素。然後如關聯先前實施例之說明進行基於測量得之所接收之光的遮掩而偵測微粒。如所瞭解,光源可發射於多個波長之光(例如,藉由含括多個LED或多彩LED或寬頻帶光源)。
於較佳實施例中,適端光源彼此獨立無關且自由操作,亦即與光接收器獨立無關地操作(換言之,接收器與光源間並無導線或用於通訊之光通訊頻道)。於本實施例中,接收器需要識別各個光源的時序。然後進入變更與同步化其本身之訊框率與光源之程序。此種同步化將須對各個光源分開執行,及連續調整訊框率來允許轉而與各光源之相位同步化。
於更複雜的實施例中,攝影機可與遠端光源通訊來將攝影機之訊框率與光源之照明調變同步化。
較佳同步化體系之操作如下。最初啟用信標,及根據其調變體系以未知調變率產生光束。接收器係配置來連續繰作及識別影像感測器上與各個光源相對應之像素或像素群。一旦如此執行,接收器接識別各個光源之調變率,及據此調整接收器之光柵之相位及訊框率中之一者或二者。
於後文說明之本發明之實施例中,其使用掃描攝影機或光源,接收器之訊框率及相位、及亦光源之調變率可經測定來匹配系統之掃描速率。
於本發明之較佳實施例中,系統將由火災警報迴路供電,如此減低架設成本。如此減低裝置的架設成本在於免除供電或發射器與接收器間資料通訊的專用線路需求。但火災警報迴路通常只提供偵測器極小量的直流電力。舉例言之,此種偵測器可能需要約50毫瓦的平均耗電量。但使用目前技術,視訊拍攝及處理期間所耗用的電力遠高於得自迴路的50毫瓦。為了解決此項問題,可使用分開的電源供應器,但其成本高,原因在於火警安全設備標準繁苛,例如要求有完全經核准的且經監督的電池備用供電及固定的主電力電線。
為了減少接收器端的耗電量,可於接收器之遠端安裝光源,及使用電池供電予光源。藉使用低功率光源諸如LED變成可能。最佳光源係以相對低工作週期調變來延長電池壽命。
如前述,當使用遠端安裝的光源時,無需反射標靶作為遠端光源直射照明接收器。但較佳使用混成系統,其中一次光源係安裝於接收器遠端,及第二光源係安裝於接收器上。使用此種配置,最初一次煙霧偵測可使用遠端安裝的光源執行,但當達到預定煙霧偵測臨界值(例如,遮掩臨界值)時可啟動接收器安裝的光源。於此種體系,將需要反射標靶來將接收器安裝的光源之光束反射回接收器用以偵測。於此種系統,接收器安裝的光源可於多波長操作來實施前述多波長偵測。接收器安裝的光源可於信標上安裝的光源之相同或相異的波長操作。
第14圖顯示光源與標靶之組合配置之實例。信標1800包括一逆反射標靶部1802及一光源1804。第15圖示意顯示信標1800之切除側視圖來更明白顯示其構造。信標1800的下半包括呈直角稜鏡1806形式之一逆反射鏡。如熟諳技藝人士已知,直角稜鏡典型地包括一個或多個反射配置,其具有相鄰面夾角內角90度。使用此種配置,光係於平行於入射光束方向反射遠離反射器。信標1800頂部包括一光源1804。光源1804係使用LED 1808照明,LED連結至由電池1812供電之驅動電路1810。LED 1808發射之光通過光學系統,指示為透鏡1814。如所見,此型裝置無需連結至任何外部電源或透過通訊線鏈接回接收器。
於某些情況下,發射器或接收器之透鏡或窗可能因水分子呈冷凝物沈積於透鏡或窗上而被遮掩。有某種範圍之可能辦法可用來避免透鏡以此種方式遮掩。以第15圖為例,於一個實施例中,一個加熱裝置設置於透鏡1814內部或附近。該加熱裝置操作來提高透鏡及殼體1814內部空氣之溫度,及協助減少因冷凝而遮掩。於另一個實施例中,乾燥劑或其它吸濕物質提供於信標1800內部自空氣吸收水分,如此減低冷凝的可能。如熟諳技藝人士瞭解,任一種辦法皆可以若干修改而應用於接收器704。
第16圖顯示根據本發明之一實施例信標100之又一實施例。
於本實施例中,信標100包括一逆反射部102及一光源部104。但本實施例與第14及15圖之差異在於設置兩個LED 106及108。LED 106及108產生不同波長之光束來允許微粒偵測器於前述方式於多個波長操作。
此種信標可採用多於二光波長用於微粒偵測而用於本發明之一實施例。
因信標1800及100並未透過通訊線連結至外部光源或接收器,LED之照明典型係經調變使得LED偶爾閃爍來橫過監視區間歇發射光束。第17及28圖顯示適合用於本發明之一實施例之調變體系。使用此種調變體系,可延長遠端安裝信標之電池壽命且可實施規則監視欲監視區之微粒密度。
因信標1800及1000係由電池供電,故須監視信標電池之剩餘電量。為了自動執行此一任務,信標可經規劃於達低電池態時改變其照明調變。舉例言之,替代使用一種調變體系1100,一旦電池電壓降至低於預定位準時,可採用另一種調變體系,例如體系1102。接收器可經規劃成可識別信標調變樣式的改變而需更換新電池。
信標之調變體系可暫時地或間歇地切換至「低電池」調變體系來允許系統繼續以全偵測能力操作。另外,可維持低電池調變體系。雖然本體系減低LED之工作週期來進一步延長電池壽命,但也減半於一給定時間週期所作微粒偵測之讀取次數。但即使於此減低的工作週期,仍可適當偵測於監視區的微粒。
於本發明之若干實施例,其中監視區大為超過接收器的視野,可實施掃描接收器系統。第18圖顯示此種系統。於本實例中,監視區1202有多個信標1204至1214設置環繞其周邊。於房間的一個角落架設一部接收器1216。接收器1216具有由扇區1218所界定的視野。扇區1218相當窄且未涵蓋欲監視的全區且無法同時觀看全部信標1204至1214。為了克服此項缺點,接收器1216之安裝裝置係配置來自室內一側掃描至另一側通過90度而掃描接收器的視野。例如接收器可自其觀看信標1204之位置1220移動搖攝至其觀看信標1214之位置1222。此種系統適用於涵蓋不同的幾何形狀,例如取中安裝攝影機且旋轉通過360度來觀看安裝於建築物全部壁面上的發射器。又一替代之道,可使用有360度視野的取中安裝的靜態攝影機來替代旋轉元件。
當使用第14或16圖所示該型信標或遠端安裝標靶時,接收器之偵測軟體係與掃描同步化來判定任何給定時間哪一個信標1204至1214係落入其視野內。另外,接收器安裝有相對窄視野光源也可與接收器同步化掃描橫過監視區。
第19圖顯示用於掃描接收器及光源光束二視野之機構實例。安裝機構1300包括一接收器1302及光源1304。一對旋轉鏡1306及1308係安裝於其間且藉驅動機構1310驅動。
於本實例旋轉鏡係成形為四稜錐且彼此同步旋轉。接收器1302觀看旋轉鏡之一面,當鏡旋轉時,接收器1302之視野1312重複掃描通過90度。光源1304相對於鏡1308係以類似方式安裝,而當其旋轉時,光源1304之照明野1314也掃描通過90度。因鏡1306及1308係彼此準確對準,照明野1314及視野1312重合於反射標靶點且係一起掃描。如熟諳技藝人士瞭解,第19圖之機構所掃描的角度可藉由改變鏡1306及1308上的面數來調整。此外於較佳實施例中,若有所需,鏡1306及1308之旋轉速率可經控制來允許與接收器1302之訊框率同步化。
第20圖顯示本發明之又一實施例,其中取中安裝的攝影機及光發射器配置係用來偵測區1408的微粒。攝影機及光發射器配置1410較佳係安裝於欲監視房間1408之天花板且適用於掃描通過全室歷360度。安裝於接收器之光源的照明野係重合接收器的視野。當接收器及光發射器配置1410環繞房間掃描時,多個反射性標靶1406循序被照明。實際上,微粒偵測系統1400操作為取中於房間中央的一系列徑向光束偵測器,其係循序操作來偵測全室的煙霧。當然光發射器可用來替代反射性標靶1406,於該種情況下,配置1410無需載有光發射器。
於本發明之實施例中,其使用遠端安裝信標,可優異地有光源安裝於信標上來發出相對窄的射線束。使用窄射線束,對一給定電力使用位準,提高光束內的射線強度,而增加於接收器所接收之信號強度。但使用窄光束光發射器增加對準光源與接收器的需要。但須注意5度至10度之較佳光束發散為可容許,如此無需低於此公差的對準。
為了協助光源與接收器的對準,發明人提示若干對準機構。第21圖顯示根據本發明之一實施例包括第一對準機構之一信標1500。信標1500包括一信標殼體1502且係安裝於托架1504上。信標殼體1502可相對托架1504旋轉來允許接收器相對托架的對準。於本實施例中,信標1500設置有指示器撥盤1506來協助架設期間的對準。信標1500之頂部特寫顯示於第22圖,更明白說明指示器撥盤1506之操作。指示器撥盤1506包括一中部1508,其係相對於信標殼體1502成固定角向關係;及包括一指示器箭頭1510,其係與罩於信標內部的光源之照明野1512之中線對準。指示器撥盤1506額外包括一系列角度刻度記號1514,其指示相對於托架1504之安裝平面之角度位置。
典型地根據本發明之一實施例架設的煙霧偵測系統之幾何形狀於最終安裝前將已知。如此,一信標相對於接收器之方向及位置須為已知。於此種情況下,架設者單純計算欲設定信標相對於其安裝托架之適當角度,及單純對準信標相對於托架,使得撥盤上的箭頭510對準撥盤面上的適當刻度記號1514即可。
第23及24圖顯示於本發明之一實施例中可用的又一對準機構。於本實施例中,信標1700係以允許其環繞其附接點迴轉之方式安裝於一安裝托架1702上。信標1700之對準可藉將活動式瞄準機構1704附接至信標1700判定。瞄準機構1704之操作係類似槍枝的瞄準鏡,及包括一觀看裝置諸如目鏡1706及一位置標記1708。於使用中,於安裝托架1702至其支承面,架設者可藉由於托架樞轉信標1700來改變信標1700之角定向,使得接收器對準附接至信標之瞄準機構。架設後瞄準機構可自信標卸下而用來對準其它構成微粒偵測系統之一部分的信標。
第25及25A圖顯示可用於本發明之一實施例之另一信標配置。為求清晰,顯示信標1900之光源部。但信標可包括如先前實施例指示之一逆反射部。
於本信標1900,光源係藉多個光發射器例如LED 1902、1904形成。各個光發射器產生一光束諸如由光源1902產生之光束1906,其具有相對狹窄的分布樣式。較佳由鄰近光源產生的照明重疊而允許於寬廣照明野照明,如1908指示。使用中,一旦信標1900安裝於一表面上,個別光發射器最佳對準接收器,可用來形成導向該接收器之光束。於使用多個接收器來監視信標1900之一系統中,個別光發射器1902、1904中之二者或多者可照明來界定導向個別接收器之分開光束。
當架設系統時,操作員可手動選擇最密切對準接收器的個別光發射器,或可採用自動光源選擇演繹法則。例如最初可啟動全部光源使用信標識別於接收器的視野以內,及然後可以一種樣式循序關掉(或再開啟)光源來識別哪一個個別光源1902或1904最佳照明該接收器。
光源可配置來於多種空間樣式照明光束。例如第25及25A圖顯示具有半圓形側寫的光發射器,各個光發射器係位在半圓圓周上的一點。但其它配置亦屬可能。例如可增加額外光源,使得光源垂直及水平延伸至不同程度。於第25A圖之實施例中,光發射器係以半球形排列,比較線性/平面排列,信標可以額外自由度選擇。其它實施例可能包括其它幾何形狀、表面或體積的光源配置。
第26圖顯示採用於本發明之一實施例之另一型信標。於此種情況下,信標2000包括兩個個別光源2002及2004,其發射不同波長光。於設定期期間,第一光源2002可以2006指示的調變體系開關,而光源2004可以調變體系2008照明。
由於接收器需同時接收來自二光源的光,接收器須在二光源2002及2004的照明野內,換言之,接收器須於區2010內部對準。於架設期間,可以下述方式使用接收器來判定信標是否正確對準接收器。首先,光源2002及2004以2006及2008指示的調變樣式照明。若信標2000正確對準接收器,則接收器將位在區2010內。因調變體系2006及2008係以互補方式成形,亦即當一者為開時另一者為關,且可藉其調變樣式而彼此區別,當正確對準時接收器應接收到恆常「啟動信號」。另一方面,若信標之對準使得接收器位在區2012,則接收的光樣式將類似調變體系2006。若所接收的光顯然係以調變樣式2008指示的樣式調變,則接收器係位在區2014內。
如此本系統可告知架設者信標2000是否正確對準接收器,而若否,則可告知操作員信標應調整至哪個方向來正確對準信標與接收器。
如第25及26圖之實施例明瞭,顯示光發射器之線性排列。但光源1902、1904、2002、2004之陣列可於二方向擴展來於第25A圖所示垂直面及水平面達成正確對準。第25A圖顯示一信標1920包括LED 1922、1924投射彼此於二維發散的光束。
回頭參考第8圖,顯示根據本發明之一實施例之微粒偵測器,其已經延伸包括六部光束偵測器。系統800係配置來使用單一接收器802監視一空間801的六個標靶804、806、808、810、812及814。自接收器上安裝的光源(圖中未顯示)發射光。光源發射光歷90度扇區照明線816間之空間。接收器802也有類似的寬視野,涵蓋約90度。
自各個標靶804至814之反射光界定六道光束818、820、822、824、826及828。各道光束818至828藉標靶804至814中之一個別者導向返回接收器802。如前文說明,各光束將於接收器802的影像感測器上形成不同像素或像素群的影像,藉此可界定獨立光束偵測器。經由設置自空間801之一角隅射出光束陣列,可監視整個房間。此外,因各個光束偵測器係可各自分開操作,故可達成分開定址。舉例言之,考慮於房間的一部分形成一股小而侷限的煙流830。最初此煙流830不一定交叉光束偵測器之光束,但當其展開成為煙流832時,其與光束820交叉,及光源、反射器806及光感測器802形成的光束偵測器將偵測得此煙流。如此可判定煙霧係沿光束820線的某處檢測得。當煙流進一步擴展,例如形成煙流834,煙流834將額外交叉光束818,及光源、反射器804及光接收器802形成的光束偵測器將也偵測得煙霧。如此指示第一,煙流大小加大,其次,煙流(或多道煙流)已經出現於光束820及818沿線某處。
如熟諳技藝人士瞭解,各個光束偵測器可有獨立警報邏輯電路,獨立識別於火災警報迴路上,且可配置來分別觸發警報。
第9圖顯示提供加強定址能力之系統900。系統900包括第8圖之系統的各個組件,也包括額外接收器(及相關的光源)902。系統900也包括三個額外反射標靶904、906及908。接收器902之視野係由線909界定,且實質上涵蓋整個空間901。如此,接收器902可看到其視野的六個反射器904、906、908、804、806及808。據此,接收器902、其光源及其可觀看的反射器形成由光束910、912、914、916、918及920所界定的六個光束偵測器。如圖可知,此等光束偵測器交叉光接收器902所接收的光束。
經由設置交叉的光束偵測器,監視區901全區的定址能力大增。再度採用小型煙流830。當其最初形成時,其交叉由接收器902、其光源及反射器804所形成的光束916。當其大小隨著時間之經過變大而形成煙流832時,煙流832也交叉由接收器802、其光源及反射器806所形成的光束820。如此,煙流832之位置可侷限在光束916與820的交叉點。隨著煙流大小的加大,其成長可更準確地判定,原因在於其額外交叉光束818,而將藉接收器802、其光源及反射器804所界定的光束偵測器偵測。但須注意由於其未交叉任何其它光束,故可判定煙流834係於特定界限區成長。
於本實施例中,除了各光束可獨立定址外,各個交叉點可於火警迴路或類似系統指定為一定址點,及各個獨立光束偵測器上之各次偵測間之關聯性可於軟體測定來輸出煙霧偵測的侷限位置。藉此方式,交叉光束各自作為於交叉點偵測煙霧的虛擬點偵測器。
須瞭解第9圖之實施例只有增加單一接收器且透過比第8圖系統額外的標靶,允許定址能力大增。於此種情況下,系統可定址27個獨特點。
雖然此處說明已經討論交叉光束,但光束無需真正交叉,只須彼此通過附近使得其監視監視區內部的實質上共通所在位置。
第10圖顯示可提供定址能力之另一系統1000。於本實施例中,第8圖之系統已經以多個額外反射標靶1002、1004、1006、1008、1010、1012及1014擴大。反射標靶例如1002可為第10A圖所示該類型。
於第10A圖中,反射標靶1050包括安裝於一安裝托架1054上之一逆反射標靶表面1052。安裝托架1054較佳適用於安裝於欲監視空間1001的天花板,使得標靶1050之反射表面1052係懸吊向下,且係以偵測器之光源照明,也係於接收器之視野內。
經由將反射標靶1002至1014置於橫過欲監視區1001的中間位置,可達成沿光束長度之可定址能力。於本實施例中,反射器1002至1012已經放置接近相對應之全長光束818至828。如此,交叉光束818之煙流若係位在反射器1002與接收器802間,則可能也交叉由反射器1002所反射的光束1016。若煙流出現在比反射器1002更遠離接收器802,則只有光束818上的光束偵測器將檢測得煙霧。又復,懸垂反射器可置在其它位置,例如位在其它光束中途,例如懸垂反射器1014光束1018位在光束818與820中途。如於先前實施例中討論,初步形成且未交叉任何光束的小煙流830將無法藉此種系統偵測。但一旦已經成長成煙流832,則將交叉光束820外部且由接收器802亦即其相關聯的光源反射器806所界定的微粒偵測器所偵測。但因其係比反射器1004更遠離接收器,故不會交叉光束1020,如此將不會被由該反射器所界定的光束偵測器所偵測。如此,可判定煙流之某個部分係位在光束820之最外部上。隨著該煙流之尺寸的進一步長大而形成煙流834,其將交叉三道光束,亦即光束820、光束1018及光束818外部。如此,可高度確定性地判定煙流834係形成於光束818及820之外部,及亦交叉光束1018。可知經由將多個此種中間反射器置於接收器802之視野以內,可大為提高系統立定址能力。此一實施例可實施來大為提供於橫過欲監視空間有多道屋頂光束之環境的效果,原因在於各道屋頂光束將有效地界定可方便地安裝反射器及提供沿該光束之深度定址能力之平面。於本實施例中,光接收器802須置於由多道光束所界定的平面以外,俾便分開觀看各道光束。顯然如圖所示,此處說明之任一種定址體系可以遠端安裝的光發射器實施而非反射標靶實施。此外,也可使用第9及10圖之定址體系的組合。
第90圖顯示其中可使用本發明之一實施例之火警系統之示意代表圖。火災警報系統9000包括一火災警報面板9010其連結一火災警報迴路9012。火災警報迴路9012輸送電力及來自火災警報面板之通訊至附接至該系統9000之多件火災警報設備。舉例言之,火災警報迴路9012可用來通訊及供電予一個或多個點偵測器9014及警報鳴笛9016。也可用來與一個或多個送氣微粒偵測器諸如微粒偵測器9018通訊。此外,光束偵測器系統9020也附接至火災警報迴路9012。本發明中,光束偵測器系統9020可屬於前文關聯此處所述任一實施例說明的類型,及包括位在第一端的一接收器9022及位在該接收器遠端之一發射器9024。較佳發射器9024為電池供電裝置,而無需取自該火災警報迴路9012之電力。另外,例如可於主電源或迴路關閉時分開供電。接收器9022係連接至火災警報迴路9012且自該迴路獲得電力,及透過該迴路與火災警報回板9010通訊。通訊手段為熟諳技藝人士已知且允許微粒偵測器9020將火災或故障狀況或其它狀況指示回火災警報面板9010。
本發明人已經實現由於煙霧偵測器無需即刻回應,因此經由間歇地,中間穿插有暫停處理與拍攝期間,來啟動視訊拍攝次系統及/或視訊處理次系統,可獲得可接受的平均耗電量。如此系統可進入「凍結」狀態,其中設計來耗用極少量電或不耗電。
達成此種解決之道的第一方式係對微粒偵測器之視訊處理次系統設置一簡單計時器單元,該單元操作來啟動視訊拍攝及處理次系統。
但於系統之較佳形式中,發射器9024並未自該迴路或其它主電源供電,反而係藉電池供電,且較佳並未連接至接收器9022或與其高速通訊。結果,發射器9024須只以極低負載循環發光來節電。於此種系統中,各次發射光之叢發脈衝時間可能既無法藉接收器9022控制,也無法與任何其它也與該發射器通訊的接收器9022同步。
此外,於視訊處理器的「凍結」週期期間,接收器9022仍然需要管理其它功能,諸如自火災警報迴路抽樣,或閃爍顯示器LED等。因此,使用簡單計時器機構來啟動系統處理器與自「凍結」狀態喚醒系統處理器並未此項問題的較佳解決之道。
於本發明之較佳形式,接收器9022採用二次處理器,該二次處理器具有比一次處理器遠更低的耗電量,用來啟動一次處理器,及當一次處理器於「凍結」狀態時處理其它必須持續而無間斷的功能。
第27圖顯示採用本發明之此一面相之接收器401之示意方塊圖,該接收器係相當於第90圖之接收器9022。
接收器401包括一成像晶片403,例如艾堤那公司(Aptina Inc)製造的部件號碼MT9V034之CMOS感測器,用以接收來自一發射器324之光學信號。該接收器可選擇性地包括一光學系統405,例如聚焦透鏡,諸如4.5毫米f1.4c-mount透鏡用以以期望的方式聚焦所接收的電磁輻射至成像晶片上。
成像晶片403係與控制器407作資料通訊,控制器407較佳為阿特爾(Actel) M1AGL600-V2野可程式閘極陣列(FPGA)及相關聯之記憶體409其包括用於程式儲存之一PC28F256P33快閃ROM、用於影像儲存之二IS61LV51216高速RAM、及用於程式執行及資料儲存之二CY621777DV30L。該控制器的功能係控制成像晶片403,及執行發揮偵測系統所要求的功能所需資料操作順序。如熟諳數位電子裝置設計人士眾所周知,該控制裝置具有正確操作所需的各式各樣的額外組件。
也提供第二處理器413。此一處理器413可為德州儀器公司(Texas Instruments) MSP430F2122微控制器等,及發揮諸如檢查控制裝置的健康狀況之功能,及若有所需,如果控制裝置故障或控制裝置由於任何其它理由而無法執行其要求的任務,則傳訊錯誤予外部監視設備。也負責定時控制供電予控制裝置或成像裝置俾便減少耗電。此點係藉處理器413於不需要時解除主處理器407的啟用,而當需要時間歇地喚醒主處理器407來達成。
處理器413也與介面裝置415諸如,顯示器或使用者介面作資料通訊,也係連結至火災警報迴路來允許與連結至火災警報迴路的其它裝置,例如火災警報面板作資料通訊。
於較佳實施例中,介面裝置係用來通知外部監視僅是否存在有警報或故障狀況。若接收器判定存在有故障,則介面裝置藉由開開關而中斷流出前述臨視設備的電流來通知監視設備。於較佳實施例中,開關為採用MOSFET電晶體的固態配置,具有以極低耗電量啟動與解除啟用的優點。若接收器判定存在有警報狀況,則介面裝置藉由自該監視設備汲取超過預定臨界值的電流來通知監視設備。於較佳實施例中,所汲取的過量電流係藉由橫過來自該監視設備的介面導線安置一兩極電晶體限流分路來達成。約50毫安培的總汲取電流係用來傳訊該警報狀況。於較佳實施例中,用於正常操作的電力係於非警報狀況下以3毫安培恆定電流自連接導線汲取至監視設備。
於本發明之較佳實施例中,發射器324包括一控制器來控制其照明樣式,控制各個光源例如IR及UV之照明時間、順序及強度。例如控制器可為德州儀器公司MSP430F2122微控制器。微控制器也偵測首次安裝時裝置的啟動。於發射器之較佳實施例中,電源為亞磺醯氯鋰電池。
於本發明之較佳形式中,於系統委任期間,主控制器407可經程式規劃來發現各個光源之照明樣式,及歷經較佳數分鐘例如10分鐘時間,判定其啟動樣式。此種程序可對與該接收器相關聯的全部光源重複施行。低電力處理器413可於正確時間使用所發現的光源排序資訊來啟動處理器B。
如所瞭解,經由使用此種結構之系統,須隨時操作的系統功能可藉極低耗電量處理器413控制,同時藉主視訊控制器407可間歇地執行高度密集處理,藉此可將平均耗電量維持於極低位準。
本發明人已經判定當選擇發射器的照明樣式及相對應的接收器之操作來準確地獲得與追蹤發射器之輸出信號時,須處理與實際實施例相關聯的多項且經常為競爭性的限制。舉例言之,於某些系統,期望使用衰減改變速率來區別故障狀況與微粒偵測事件。如此造成發明背景章節討論的使用長期積分時間的複雜化。較佳實施例係使用10秒之積分時間用於正常測量,及1秒之較短積分時間用於基於變化率的故障偵測。
系統效能之另一項限制為景物亮度位準。用於實際系統,通常須假設景物可由日光照明至少部分操作壽命。使用攝影機上的波長選擇性濾波器之能力也有限制(例如,至少成本限制)。因此,需使用短時間曝光來避免飽和,而仍然留有足夠的頂上空間供信號之用。於系統之較佳實施例中,曝光時間為100微秒,但最佳值係取決於感測器、濾波器、透鏡的選擇、最惡劣情況的景物照明、及信號要求的頂上空間量。
也要求同步化接收器與發射器之手段。較佳係達成同步化而未使用額外硬體,諸如組件間之無線電系統或硬接線。於較佳實施例中,替代執行同步化,以光學方式使用用於微粒偵測的相同成像與處理硬體。但熟諳技藝人士將瞭解使用相同硬體用於微粒偵測及用於同步化,鏈接起系統內部的兩項考量擔憂,因而更對可能的解決辦法加諸進一步限制。
系統的另一項限制係因存在有雜訊。系統的主要雜訊源為攝影機的拍攝雜訊及來自景物照明變化的雜訊。對須處理全日光的系統而言,暗雜訊通常不會顯著造成問題。景物雜訊可藉發明人先前專利申請案所述背景扣除方法極為有效地處理。拍攝雜訊無法完全去除,原因在於其基本上係量子偵測程序。但拍攝雜訊可藉縮短曝光時間而減少,及亦可藉加總減少曝光次數而減少。於較佳實施例中,實質上全部發射器電力係用在極為簡短的閃光,重複率仍然允許有足夠的系統響應時間。
舉例言之,每秒一次閃光率將滿足響應時間要求,(原則上)可使用少於1微秒之閃光持續時間及2微秒之曝光時間。實際上如此極為難以同步化。此外,發射器LED需可於如此短時間內輸送能量來處理極高峰電流,其又增加成本。另一項限制係感測器的動態範圍。將全功率置於每秒一次閃光,可能導致感測器的飽和。
考慮前述各項因素,較佳實施例使用100微秒曝光、50微秒閃光持續時間、及300毫秒週期。3個樣本之積分長度用於基於變化率之故障偵測。30個樣本之積分長度用於煙霧測量。
為了執行背景抵消技術,接收器也須恰在閃光之前及恰在閃光之後拍攝影像,其係用來消除來自於景物的貢獻。理想上,此等「關」曝光之出現儘可能地接近於「開」曝光來於時間變化背景情況下,最佳化背景的抵消。接收器系統用於較佳實施例中,最大實際訊框率為1000 fps,故「關」曝光於「開」曝光的全一側間隔1毫秒。
於一種形式,發射器光學輸出信號係由一系列短脈衝有極低工作週期所組成。脈衝係設置來匹配成像系統之訊框率(例如,1000 fps)。第28圖顯示與接收器中感測器曝光相關的脈衝序列實例。於此種情況下,發射器適用於發射於IR波長頻帶之光之IR波長頻帶。此系列脈衝係以300毫秒週期重複。
於該實例中,有5個脈衝如下:
● Snyc 1(訊框1)110及Snyc 1(訊框2)112
:Snyc脈衝係用來維持發射器與接收器間的同步化(容後詳述)。此等為於最具功率效率的波長頻帶製作的脈衝。於此種情況下,使用IR光源,原因在於其導致較低耗電。此外,較長波長更能穿透煙霧,因而可於更大條件範圍維持同步化。Snyc脈衝長50微秒。
理想上,各個snyc脈衝於時間上係取中於接收器的光閘開啟時間的前緣(snyc 1)及後緣(snyc 2)。如此使得其所接收的強度依小量同步化誤差而各異。
● IR(訊框5)115及UV(訊框7)116
:IR及UV脈衝係用於信號位準測量(而又轉而用於測量衰減及煙霧位準)。長50微秒,其允許發射器與接收器間之長達25微秒的時間誤差而不影響所接收的強度。
● 資料(訊框9)118
:資料脈衝係用來傳送小量資料予接收器。該資料係藉發射資料脈衝或未發射資料脈衝編碼。資料脈衝具有減小的振幅來節電,且因相同理由而為IR。長50微秒。此種系統提供3 bps資料通道。資料可包括序號、製造日期、總處理時間、電池狀態、及故障狀況。熟諳技藝人士瞭解於本系統發送資料的多種替代之道。此等替代之道包括脈衝位置編碼、脈寬編碼、及多位準編碼體系。易達成較大資料率,但簡單體系用於較佳實施例即足夠用於所需小量資料。
第29圖中,於「關」訊框期間(亦即不具相對應的發射器輸出信號之訊框)得自接收器的資料用於下列目的:
● 訊框0及3用於sync脈衝之背景抵消
● 訊框4及6用於IR脈衝之背景抵消
● 訊框6及8用於UV脈衝之背景抵消
● 訊框8及10用於資料脈衝之背景抵消
(a)空間搜尋
如前文說明,接收器於一影像訊框內以一個或多個像素形式接收各個所發射的脈衝。
● 若發射器係在攝影機的視野內以且脈衝係於拍攝週期期間發送,則系統首先須以高訊框率及經歷足以確保發射器脈衝將存在於一個或多個影像的時間拍攝多幅影像。
● 然後系統扣除各對(時間上)相鄰的影像,及取各個像素之模數,及然後相對於臨界值測試各像素模數來欲測可能存在有發射器的大量變化之所在位置。
● 然後系統經由合併相鄰的或相接近的候選點而濃縮發射器所在位置之候選表單(例如,間隔小於3像素)。影像中心法可用來找出候選點集合的中心。
● 然後系統於各個候選中心執行試驗性同步化(使用後述方法)來證實於一候選中心接收值係與一實際發射器相對應。
● 然後系統檢查發射器數目是否匹配預期的發射器數目。此一預期的發射器數目可藉於安裝前預先規劃接收器而設定,或藉安裝於接收器單元上或內或連結至接收器單元的開關而設定。於較佳實施例中,有一結合於接收器單元的配置DIP開關集合,唯有當系統未安裝於壁面時才易接取。
但於委任期間,系統開始操作(至少首次)時,須建立發射器於影像訊框內部的所在位置。如此例如可藉手動處理執行,涉及操作員檢查影像,及規劃座標。但無需特殊訓練、特殊工具、及長期複雜的安裝程序。於較佳實施例中,測定發射器於影像訊框內部的所在位置乃自動化。所執行的發射器定位程序操作如下:
發射器於影像內部的所在位置之設定值係儲存於非依電性記憶體。所在位置可藉下列方式清除,經由將接收器置於特定模式,例如經由將DIP開關設定為特定設定值及供電/解除供電予接收器而予清除,或經由使用特殊工具諸如筆記型電腦PC來清除。唯一要求發射器是否自其原先所在位置移動或系統是否將於它處改裝。
成像系統之效能限制可能限制當以高訊框率操作可讀取出的像素數目或線條數目。一個實施例中,於1毫秒最多可讀取30線、640像素。前述方法的最頭數個步驟須重複16次來涵蓋完整640*480影像訊框。另外,若干實施例只採用部分影像訊框。同理,有些實施例使用較慢的訊框率。但若使用較低訊框率,於明亮照明條件下感測器飽和的可能性通常限制曝光時間,及背景照明條件的變化通常導入更多雜訊。
須選用訊框率來確保發射器脈衝不會經常性出現於光閘關閉的週期。舉例言之,若訊框率恰為1000 fps,使用100微秒曝光,發射器忙在1毫秒邊界產生脈衝,則脈衝可全部於光閘關閉時產生。接收器訊框率係選擇使得略有差異造成漸進的相移,確保遲早脈衝將充分落入於光閘的開啟期。
於若干實施例中,處理速度限制係藉未分析全部像素來處置,反而只扣除且檢查每隔四個水平及垂直像素,減輕處理工作達16的因數。假設所接收的影像,亦即各個發射器於感測器上的影像係展開夠大面積(例如,具有5像素直徑的點),則發射器仍可可靠地找到。
每當系統被啟動時,使用已知的發射器所在位置集合或作為前述空間搜尋的一部分使用候選所在位置集合而啟動,使用相位搜尋及鎖定方法來建立初步同步化。
此種方法之主要步驟為:
系統係以高訊框率拍攝影像(至少於期望位置的部分影像)。
系統等候預期的脈衝樣式出現於候選系列位置。
系統使用於預期樣式內部之一選定脈衝的到達時間作為鎖相迴路的起始相位。
系統等候PLL的穩定化。若未做PLL鎖定,則於測試候選所在位置之情況下,該所在位置標示為偽;否則當重建與已知發射器所在位置之同步化時,接收器可連續重複嘗試而直至成功前皆宣告失敗。
如同空間搜尋,使用接收器訊框率的小量偏差,造成漸進的相移,確保遲早脈衝將充分落入於光閘的開啟期。
對各個訊框,於取中於已知之所在位置或候選位置的一小區影像計算總強度。然後對得自發射器之期望樣式檢查此序列強度值。
對期望樣式之測試操作如下:
於已經收集至少9訊框強度值後,可以下述方式測試預期的發射器脈衝序列是否存在。
給定強度值I(n)
,0
<n
<N
,
測試可能的發射器信號,始於訊框n接收的訊框0
首先,計算「關訊框」參考位準
I 0
=(I R (n
+0)
+I R (n
+3)
+I R (n
+4)
+I R (n
+6)
+I R (n
+8))
/5
{表示「關訊框」}
運算相對強度
I R (n
+m)
=I(n
+m)
-I 0
對m=0至8
與預定臨界值比較來判定於各訊框一發射器脈衝之是否存在
實測值
={(I R (n
+0)
>I ON )或(I R (n
+2)
>I ON )}及
{Sync 1或Sync 2}
(I R (n
+5)
>I ON )及
{IR脈衝}
(I R (n
+7)
>I ON )及
{UV脈衝}
(I R (n
+0)
>I ON )及
{off訊框}
(I R (n
+3)
>I ON )及
{off訊框}
(I R (n+4)>I ON )及
{off訊框}
(I R (n+6)
>I O N )及
{off訊框}
(I R (n+8)
>I ON )及
{off訊框}
由於隨機相位誤差,sync脈衝中之任一者可能完成遺漏,因而造成前述表示式中的「或」。另外,sync脈衝的測試可完全刪除,及也可減少對off訊框的測試。但須小心確保發射器脈衝序列之位置並未錯誤識別。
於陽性偵測後,以變數記錄與訊框n相對應之時間。相位脈衝之振幅可用來修改所記錄之時間值成為更密切表示序列的起點。如此有助於減少鎖相迴路必須處理的初始相位誤差,若頻率誤差夠小則也可能無需處理。
於較佳實施例中,影像拍攝速率1000 fps係匹配先前說明的發射器時間。使用100微秒之光閘時間。
如此完成初始同步化。經由單純將已知發射器週期加總至前一個步驟所記錄的時間,現在可預測下一個脈衝集合的到達時間。
雖然發射器週期為接收器所已知(於較佳實施例為300毫秒),但於各端的時鐘頻率有小誤差。如此將無可避免地造成所發射的脈衝變成與接收器光閘開啟時間未對準。鎖相迴路系統係用來維持正確相位或時間。PLL構想為眾所周知,故於此處不再詳加說明。於較佳實施例中,PLL控制方程式係於軟體實施。相位比較器函數係基於測量相位脈衝的振幅。此等振幅係經由扣除於最接近的off訊框(訊框0及3)測得的強度平均值而求出。然後以下式計算相位誤差:
此處T為相位脈衝之寬度。
於相位脈衝振幅降至低於預定臨界值之情況下,相位誤差被指定數值零。此種方式的雜訊資料係為PLL所允許,實際上,系統可維持足夠同步化歷時至少數分鐘。因此,於可傳訊警報前,高煙霧程度不會造成同步化失敗。於阻塞之情況下,此種特徵允許系統於阻擋被去除後快速回復。
PLL控制方程式包括比例項及積分項。可能無需使用差分項。於較佳實施例中,發現0.3及0.01之比例增益及積分增益可產生可接受的結果。於又一變化例中,增益初步設定為較佳值,而於相位誤差低於預定臨界值後縮小,如此對一給定迴路頻寬縮短總鎖定時間。
相位誤差低於+/-10微秒可用來指示相位鎖定,二者皆係用於證實候選發射器所在位置,同時也允許開始正常煙霧偵測操作。
發明人已經測定於前述類型系統中,有若干可能不會出現於習知光束偵測器的額外挑戰出現。由於使用多感測器光接收器或多重電磁輻射波長等而出現挑戰。舉例言之,雖然前述系統解決了對高度敏感度之似乎矛盾的需求及於光束偵測系統對寬廣操作角範圍的需求。但對可用作為發射器的光源強度也有額外限制,表示可能需要進一步於此等面相加強微粒偵測系統。
於光束偵測器,所發射的光強度可能有限。舉例言之,可能有預算上的考量,表示須選用產品的相對低功率光發射器。此外,於某些情況下,可利用的電源供應器有限,特別若發射器單元係藉電池供電。眼睛安全性也時限制光源的發射功率之因素之一,原因在於來自於發射器的可見光潛在的惱人影響。由於任何此等理由故,相對低發射信號功率可用於光束偵測器。結果,可折衷系統的信號對雜訊比。
為了滿意地操作,同時維持發射功率儘可能地低,為了敏感度理由,較佳發射器的極性發射樣式及接收器的視角維持儘可能地低。但用於安裝及對準目的,較佳該等角度維持儘可能地寬。如此因應此等似乎互相矛盾的系統要求成問題。
此種系統可能出現的又一問題為反射表面可能於發射器與接收器間提供一或多非期望的光徑,因而干擾直射光徑的辨識,或對所接收的信號造成無法控制的且非期望的貢獻,或二者皆是。若反射表面遭遇任何變化,則此效應加劇,諸如溫度或建築物的風載移動;或人類或車輛的移動造成其反映出的貢獻隨著時間之經過而改變。
由於光束偵測器組件經常係安裝於實質上平坦的天花板下方,故常見此型非期望的反射。發明人已經實現為了造成此等議題,反射表面之光整無需為明顯反射性或鏡面狀,甚至常見無光澤塗料表面可於低入射角時提供相對強的鏡面反射,諸如典型見於安裝接近一表面的有長橫過距的光束偵測器。雖然於極端情況係鏡面狀或光澤光整,但即使顯著粗糙表面也可能產生足夠的鏡面反射來造成此等問題。
相鄰壁面特別閃耀的壁面也可能形成類似的問題帶來額外複雜度,於不同時間可使用百葉窗或可開啟窗。但此項問題並不常見,原因在於罕見要求光束係導向於壁面緊鄰附近。
由於此項及其它理由,光束偵測器安裝時典型地要求小心對準。此種對準係針對確保於正常情況下,亦即不含微粒的情況下,光進入感測器,因而捕捉大部分所發射之光束,而又轉成使對遮掩的敏感度變成最大化。此項對準可能緩慢,因而執行上昂貴。此外,隨時物理環境的改變,例如光束偵測器所附接結構的小量移動可能須重複對準。於某些情況下,若入射至光束偵測器上的入射光強度快速減低,則此種錯誤對準也可能造成假警報。
由於光束偵測器典型係安裝於壁面等平坦表面上,通常無法到達光束偵測器後方來使用視線型對準裝置。又,因光束偵測器通常係安裝於高處難以接取的位置,故準確對準問題及錯誤對準引發的困難更加惡化。
如關聯第1圖討論,若干光束偵測器採用帶有遠端反射器之共同定位發射器及接收器。如第102圖所示,另一種配置使用光源10202遠離接收器10204。分開的發射器10202可為電池供電以免昂貴的拉線需要。此外,於自火災警報迴路供電之實施例中,偵測器單元10204(或第1圖之光源與偵測器的組合102)也可採用電池作為備用電源用於超過接線迴路電源供應的規定極限的高耗電期。
為了達成所要求的使用壽命或符合安全性瓔求,於出貨運輸期間或長期儲存時需關閉電池供電單元。
習知電池供電設備經常係使用手動開關啟動,或藉去除絕緣隔件啟動,或藉將電池插入設備內部啟動。發明人已經識別出此等方法特別於光束偵測系統之情況下有若干缺點。習知啟動電池供電設備的系統並非自動化,結果當架設光束偵測系統時可能被忽略。於光束偵測系統中,用於光源102、202之波長經常為人眼所不可見。如此難以證實安裝時光源102、202是否啟用。此外,光束偵測系統經常安裝得相當高,需要台架或升降機來接近系統組件。結果,接近或矯正意外地沒有動作的單元耗時費力。
若干習知啟用電池供電單元之技術也干擾下述常見要求:光束偵測系統須避免有造成穿過單元主要包圍體的配置。經常發射器係設計來對抗灰塵及水分的進入,使用人為操作的開關可能造成此項絕緣更困難且更耗成本才能達成。
使用光束偵測器的又一項問題為其暴露的光學表面隨著時間之經過而被塵土所污染。如此逐漸減少所接收的信號而可能造成假警報。避免與移除堆積於光學表面上的塵土之方法為已知,特別常見採用於閉路電視安全監控應用領域,諸如使用觀看窗上的防污塗膜、保護罩、清洗與擦拭機構等。
又如希崔利技術公司(Xtralis Technologies Limited)擁有的PCT/AU2008/001697所述,有其它機械裝置用來清潔或避免灰塵堆積於光學表面上,包括使用已過濾的乾淨空氣作為障壁,或靜電防護區來防止視窗的污染。此等方法分開地或組合本發明之其它面相,可優異地用於光束偵測器,且各自構成本發明之一面相。
使用前述雙波長系統,所接收的光之絕對強度變化可忍受至某種程度,原因在於差異測量係用來偵測光束中的微粒,但波長間的相對變化可能造成錯誤,或更惡化造成假警報;特別自UV光束所接收的信號比IR光束相對減低可能誤判為煙霧。如此任何波長選擇性的污染物蓄積在光學表面上可能成問題。
於視訊監控領域及具有遠端定位光學裝置(諸如攝影機)的類似領域,昆蟲或其它異物偶爾落在系統光學組件的暴露表面上而部分地或全部地遮掩光學組件的視野成問題。類似的問題也發生在微粒偵測系統,例如暴露於昆蟲及其它異物的光束偵測器。如此,需要保護微粒偵測系統的組件諸如光束偵測器,藉此避免或減少因此等情況造成的假警報。
如前文說明,若干本發明之實施例可能於發射器內包括分開的光發射器,其係配置來發射不同波長光。最佳光發射器為LED。隨著時間之經過,LED的輸出信號可能絕對強度或比較強度或二者改變。使用雙波長系統,絕對強度的變化可忍受至某種程度,只要微粒偵測系統所用來偵測微粒的相對強度測量值維持實質上恆定即可。但兩具光發射器之輸出信號強度的相對變化可能造成錯誤或形成假警報。當來自UVLED的輸出信號比來自IRLED的輸出信號減低時尤為如此。
已知經由使用例如150米長之光束,或於相對有限空間只要求例如3米長的光束,使用光束偵測器來監視大面積。於習知光束偵測器系統,同一個光源及接收器可用於此二極大差異應用,亦即分開150米或分開3米。如此係經由根據發射器與接收器間之分開距離,調整接收器的增益或轉低發射器的功率而變成可能。
如前文說明,本發明之實例對各個接收器可有多於一部發射器。如此造成其本身的特殊問題,可能有多具發射器設定在距接收器的重大差異距離。舉例言之,考慮第57圖所示該型房間。此房間5700通常為L字形,且有一部接收器5702安裝於L字形的外部頂點。三具發射器5704、5706、5708定位環繞房間5700。第一發射器5704位在L的一臂。第二發射器5706位在L另一臂末端距第一接收器5704的90度位置。第三發射器5708安裝於距接收器5702橫過越L字形頂點。如所瞭解,發射器5704、5706與接收器5702間距比較發射器5708與接收器5702間距遠更長。結果自各個發射器所接收的光位準將有極大差異。此外,發射器5708可能太接近接收器而其飽和光接收元件。
其它缺點例如偶爾也可能出現安裝者可能利用光束偵測器的事靠效能,而安裝製造商的規格以外的系統。舉例言之,雖然光束偵測器經常意圖以發射器與接收器間實質上分開而操作,但安裝者可能延長距離來提供超出製造商推薦的或法規所允許的系統。於某些情況下,微粒偵測器的安裝者可能未知接收器對其中裝設的光源的操作極限。
於此種情況下,所安裝的微粒偵測器可能於安裝的初期滿意地操作,但於安裝後偶爾無法正確操作。如此可能發生於例如微粒偵測器最初安裝接近其設計極限但超出其設計極限。隨著時間之經過,設備或裝境可能發生變化,由於光束存在有微粒以外的原因而逐漸變更所接收的信號強度。此等變化可能因例如組件的老化、粗略對準的漂移、或光學表面的污染所致。此種系統漂移通常係藉系統是否設定在其設計極限以內處置。但當系統係設定在此等極限以外時,效能的降級及相關聯的錯誤狀況的發生可能過早或重複。
此外,期望經由使用實心物件模擬煙霧的存在來對準及/或測試此種光束偵測器。此種測試為光束偵測器之標準本體測試的要求。例如對「生物偵測及火警系統。煙霧偵測。使用光學光束之直線偵測器」的歐洲EN 54-12標準。
於先前技術測試方法,光束偵測器之測試係採用光濾波器其部分遮掩投射光束來模擬煙霧效應。所使用的濾波器通常係由纖維網或載有染料的板或印刷有結構的透明片組成,其係經由實質上以可重複方式遮掩全部可見光及近可見光波長。本發明人實現此型濾波器可能不適用於前述類型的光束偵測器。
於前述實施例中,光源係配置來包括多個光發射器,其中各個光發射器係適用於產生於特定波長頻帶之光。此外,分開光源可設置來於不同時間發光,俾便可使用單色成像元件。使用分開光發射器的直射結果為光源中的兩個光發射器間有某些分開,如此光將行進通過光源與接收器間的介入空間的略為不同但又緊密相鄰的光徑。如此產生一種風險,小型物件諸如昆蟲於發射器上可能影響一條光徑比另一條光徑更多,因而影響接收器的讀數。如此可能誘導假警報或不必要的錯誤狀況。
習知光束偵測器要求安裝時小心對準。此種對準係針對確保於正常情況下,不含微粒的情況下,光進入感測器,因而捕捉大部分所發射之光束,又轉而最大化對遮掩的敏感度。此項對準可能緩慢,因而執行上昂貴。此外,隨著物理環境的改變可能須重複對準,例如因光束偵測器所附接的結構體有小量移動。如前文說明,本發明之實施例較佳使用接收器其具有包含光感測器元件矩陣的光感測器,該等元件可於橫過其視野的多個點接收與報告光強度。於接收器的各個感測器元件產生一信號,該信號係與其接收的光強度有關。信號發射至控制器,於控制器應用微粒偵測演繹法則至所接收的影像資料。比較單一感測器的接收器,本微粒偵測器的接收器具有較寬的視野但較低的雜訊,且可於此視野內的較寬範圍點獨立測量光。
因各個感測器元件具有特有的雜訊位準,經由將標靶(亦即光束影像)聚焦在單一感測器元件上可改良系統整體的信號對雜訊比。但可能無法獲得最佳結果。
前述類型的感測器例如CCD等偶爾遭遇因用於接收器的影像處理演繹法則,稱作為階梯法(staircasing)形成的現象,其中相鄰像素或相鄰像素群具有顯著不同值。感測器的實體結構也在感測器元件間有無反應的「間隙」而未產生信號。由於此等效應,煙霧偵測器組件對準上的任何變化皆可能產生所測得的光強度位準的重大變化。
舉例言之,因聚焦標靶的尺寸小,接收器或發射器的極小量移動皆可能造成標靶移動至,比較其先前所聚焦的前一個像素,有極為不同的特有雜訊位準或響應之全然不同的感測器元件上。也可能落至一位置,於該位置全部或非小部分所接收的光束落入前述「間隙」中之一者。結果導致藉控制器測定之影像強度變化,如此可能造成控制器錯誤偵測煙霧。
為了部分改善此項問題,偵測器可適用於隨著時間之經過追蹤標靶橫過光感測器,允許煙霧偵測係在隨著時間之經過來自於正確感測器的信號上執行。但為了妥當測定影像強度,控制器可能被要求確定隨著時間之經過所使用的不同光感測器之特有性質。如此進行需要系統資源,諸如處理週期及電力。同時也非經常性可能對控制器作此項測定。
於光束偵測器,可能發生的額外問題係來自欲監視體積內部周圍光的干擾。周圍光可能來自照明該體積的日光或用來照明該空間的人造燈具。如此,光束偵測器要求最小化來自此種光的影響之機構。此項問題混合有互相矛盾的需求,光束偵測器之光源須相對低功率因而減少耗電量,對眼睛安全且不會造成目測可見的干擾。於先前技術,使用單一波長光的光束偵測器典型使用濾波器來減少來自周圍光之信號。於紅外光光束偵測器之情況下,濾波器通常為低通濾波器,其去除實質上全部可見光及紫外光。但不適合用於如此處所述之多波長系統。
於前述系統之較佳實施例中,微粒偵測器係於接收器直射來自火災警報迴路供電。如此減低裝置的架設成本,原因在於免除免除用於供電或與微粒偵測器通訊的專用布線需要。但火災警報迴路通常只提供極小量直流電力予偵測器。舉例言之,此種偵測器可能需要約50毫瓦的平均耗電量。但使用目前技術,於視訊拍攝及處理期間需要的電量可能遠高於可得自迴路的50毫瓦。為了解決此項問題,可使用分開的電源供應器,但如此成本高,原因在於火災安全設備的標準繁苛,例如要求全然經核准且經監視的備用電池供應及固式定主電源布線。
有限的電源供應也限制發射器的光功率輸出。有限的光功率輸出又轉而限制測量得之信號的信號對雜訊比。若系統的信號對雜訊比降級過大,則系統可能經歷頻繁的或連續的假警報。
於某些系統,信號對雜訊比可藉採用於接收器的長期積分時間或求取時間平均來提供。但若使用長期積分時間,則系統響應時間通常約為10秒至60秒則須增至較高程度。
除了使用光束偵測器於煙霧偵測之外,經常也期望使用其它感測器機構來偵測額外或另外其它環境狀況或風險,例如二氧化碳氣體偵測或溫度偵測。偵測器習知使用有線或無線通訊鏈接來傳訊警報或故障狀況予火災警報控制面板等監視系統。如此此等鏈接經常增加顯著成本與造成警報系統可能的可靠性問題。
於某些系統,本發明人已經判定可有利地藉電池供電操作至少部分組件,及最佳為發射器。但微粒偵測器的電池供電組件之問題為隨著時間之經過,組件的電池可能放電而組件最終停擺。此等故障將要求非排程的維修呼叫欲修復與重新委任裝置。於煙霧偵測應用,此點特別成問題,原因在於設備係用在生命安全角色,一旦故障即需即刻補救。此項問題可藉執行預防性維修來補救,但最終可能執行不必要的維修服務與更換尚有大量電池壽命的單元,因而耗費不貲且浪費材料。
不幸,個別電池效能及環境狀況變化使得單純定期例行性更換不可靠且可能浪費。該問題的一項明顯解決之道係組件裝配電池狀態指示器,但如此有增加成本的缺點,而指示器本身耗電又更縮短電池壽命。此外,要求常規直射檢查組件上的指示器,於光束偵測器的情況下特別不便。
於光束偵測器諸如前文說明,多個光束偵測器係由相對應的發射器與接收器對所界定,使得二道或多道光束或交叉或通過空氣中一共通區,光束夠接近而其交叉點可映射來定址欲監視區內部的位址,可能發生一項問題,任一個次系統可能受環境狀況或系統問題影響而其並不影響其它次系統。此種問題通常迫使減低可達成的敏感度或增加非期望的假警報率。
如前文說明,隨著時間之經過,光學表面的污濁可能引發光束偵測器的問題。為了解決此項問題,發明人已經判定系統適用於處理隨著時間之經過光學表面的污穢問題。第29圖顯示真正所接收的光位準,亦即到達系統的接收器或光感測器的光位準如何隨著時間之經過而減低。第29圖顯示隨著時間之經過到達光束偵測器接收器之感測器的真正光位準介於時間t1與t2間之作圖。由作圖可知,於波長λ1
及λ2
所接收的光位準由於接收器的光學系統表面上污染的蓄積而隨著時間之經過遞減。為了補償敏感度的損耗,於本發明之一個實施例中,系統增益隨著時間之經過相對應地極為緩慢增加(如第30圖指示),使得偵測得之強度λ1
及λ2
維持隨著時間之經過實質上穩定。
第31圖係類似第30圖,但如圖可知於波長頻帶λ1
及λ2
效能的降級各異。於本實施例中,於λ2
的信號比較於λ1
的信號更大受光學裝置之污染的影響。於此種情況下,當於波長λ1
及λ2
所接收的信號間的分開增加時,使用所接收的信號間之差值或相對值的於二波長帶之系統可能進入假警報狀態。為了解決此項問題,對各波長增益作不同調整,如圖可知當增益調整時,如同第30圖,系統之長時間平均輸出信號仍維持實質上恆定。
於第31及32圖之實例中,時間t1與t2約略中途發生煙霧事件3500。於此種情況下,因λ1
有效操作為參考波長,其進行極為微小的強度降,而於λ2
所接收的信號進行極為顯著的強度降,原因在於λ2
傾向於被小型微粒較為強力吸收。如圖可知,因煙霧事件比較施加至增益的補償時間短,故系統污染的長期補償不受煙霧事件3500發生的影響,而煙霧事件3500也可藉系統可靠地偵測。
參考第33至35圖,顯示根據本發明之一實施例之光源3300。光源3300包括有一發射區段3304之一殼體3302,光係經由該發射區段3304而發射至接收器3306。
於此種情況下,發射區段3304係位在殼體3302的外部且提供殼體3302內部之光自光源3300朝向接收器3306發射點。如此,發射區段3304可自光源3300外側接取,且可能受灰塵/塵土蓄積、昆蟲/小蟲活動等的影響。非限制性地,發射區段3304可為任何光學表面(或其部分),雖然供舉例說明目的已經顯示為自殼體3302突起,但當然也可與殼體3302壁面齊平或內凹。發射區段3304可與殼體3302整合一體或可為其組成之一部分。
於本實施例中,殼體3302罩住第一光發射器3308、第二光發射器3310及第三光發射器3312。各個光發射器3308至3312為LED且發射光束(分別為3314、3316及3318)其係經由發射區段3304發射至接收器3306。第一光發射器3308及第三光發射器3312發射實質上相等波長之第一頻帶的電磁輻射例如紫外光(亦即電磁頻譜中的紫外光部分之光),因而稱作為UV發射器。第二光發射器3310發射第二頻帶的電磁輻射例如紅外光(亦即電磁頻譜中的紅外光部分之光),因而稱作為IR發射器。相對應地,光束3314及3318將稱作為UV光束,而光束3316將稱作為IR光束。
光源3302也包括適用於控制第一、第二及第三光發射器3308至3312之操作之一控制器3320。如圖所示,控制器可罩於殼體3302內部,或可位在殼體遠端而於遠端控制光發射器3308至3312之操作。
顯然易知,光發射器3308至3312藉控制器3320操作之特定方式係依據系統之程式規劃。此實施例中,控制器3320係以重複交替順序交替光發射器3308至3312的操作。此等光束由接收器3306接收之處理容後詳述。
控制器也適用於操作光發射器3308至3312中之一者或多者來發送控制信號至接收器3306。此種控制信號指示有關光源3300之狀態資訊,例如傳送光源3300正在操作、光源3300功能異常、及/或光源3300的電池耗盡。控制信號可藉個別光發射器3308至3312所發射之光束3314、3316及/或3318之時間及/或強度測定。
如圖可知,UV光發射器3308及3312彼此分開,而其又導致UV光發射器3308及3312離開發射區段3304的點分開。UV光發射器(及UV光束3314及3318)間的分開足夠距離,使得若發射區段3304被異物3322所阻擋,則只有UV光束3314或3318中之一者可能被阻擋。第一與第三光束3314及3318間分開約50毫米發現適合用於此項目的。如此,此種配置可有效提供UV頻帶的冗餘光發射器。
「異物」一詞用於此處係指大於可能存在於空氣中的灰塵或煙霧微粒或其它關注微粒的物體或惱人的微粒。舉例言之,阻擋發射區段3304的異物可能為爬行在發射區段3304上的昆蟲或蟲子。
第34圖顯示單一UV光束3318受阻擋而其餘IR光束3314未受阻擋之實例。於此種情況下,接收器3306辨識故障狀況,原因在於其只接收到每第二個預期的UV脈衝而非警報狀況。
若此種情況(亦即於接收器3306只接收到UV光束3314或3318中之一者的情況,或因部分阻擋而接收到比另一者顯著更低位準的情況)持續一段有意義的時間,例如一分鐘,則接收器3306可經程式規劃成解譯為光源3300的錯誤/功能異常而觸發適當警報/錯誤訊息。
與第34圖所示阻擋相反,第35圖顯示空氣中的煙霧微粒3324阻擋全部三道光束3314至3318的情況。於此種情況下,煙霧3324將光束3314及3318裡減至實質上相同程度,尋常警報邏輯電路可應用來判定是否存在有警報或故障狀況。
第36圖提供前述實施例之替代例。類似先前實施例,光源3600包括一殼體3602及一發射區段(或窗)3604,通過此處,光束3614、3616及3618發射至一接收器3606。光源3600之操作係藉控制器3620控制。UV光束3614及3618係自單一UV光發射器3626發射。於此種情況下,光源3600包括一分束器3628,其將來自光源3626的光束分束使得第一及第三光束3614及3618彼此以足夠距離自發射區段3604送出。
轉向參考第37至40圖,提供用於微粒偵測系統之光源3700之又一實施例。光源3700包括一殼體3702有一發射區段3704,光係通過此處自光源3700發射至接收器3706。發射區段3704係如前文就發射區段3604所述,但可知遠較小。
殼體3702罩住第一及第二LED光發射器3708及3710。光發射器3708為UV光發射器及發射UV光束3712,而光發射器3710為IR光發射器及發射IR光束3714。光源3700也包括適用於控制第一及第二光發射器3708及3710之操作的控制器3716。控制器可如圖所示罩在殼體3702內部,或可在殼體遠端而於遠端控制光發射器3708及3710的操作。
如圖可知,光源3700係配置(容後詳述)使得光束3712及3714自發射區段3704順著實質上相同路徑離開光源。最佳為共線。此項配置提供發射區段3704被異物3718所阻擋的特徵,如第38圖所示(再度例如,昆蟲爬過發射區段),UV及IR光束3712及3714被阻擋至實質上相等程度。
當異物3718阻擋發射區段3704時,對第一及第二光束3712及3714告成實質上相等的阻擋,與接收器相關聯之控制器將應用警報及/或故障邏輯電路來判定所接收的光位準減低的成因。故障及警報邏輯電路可經配置來以下述方式解譯所接收的光強度之相等的且同時的降低。黃有小型強度降,系統可解譯為故障或阻擋。若情況持續,則被以軟體補償或發生故障狀況。當強度有大型降低時,則發出警報,即便如發明人之共同審查中的專利申請案所述,一次警報標準係基於二波長頻帶之差異衰減亦如此。
第37及38圖提供配置來提供光束3712及3714之一個實施例,該等光束係沿實質上共線路徑而自發射區段3704離開光源3726。於此實施例中,光束3712及3714並未源自實質上接近的光源3708及3710,反而係以導光光學裝置3722而於到達發射區段前到達附近。導光光學裝置3722可為任一種適合用於導光之光學裝置,諸如鏡子、透鏡(例如,凸透鏡、凹透鏡、菲涅爾透鏡)及/或稜鏡或其組合,也可用來讓光束3712及3714變平行光。
第39圖提供一種配置來使得光束3712及3714自發射區段3726離開光源共同靠近之光發射器3724。於此實施例中,第一及第二光發射器3728及3730為罩在單一光學封裝體3732內的半導體晶粒(發射區段3726為所發射的光束3712及3714離開封裝體3732該點)。於此實施例中,光束3712及3714的接近係藉半導體晶粒3728及3730於封裝體3732內部的實體靠近及藉封裝體3732的離開效應達成。
此項目的可藉由使用有多個半導體晶粒於一共用LED封裝體而達成。實例顯示於第47至49圖。如同典型LED,殼體係由透明材料製成且成形因而對所發射的光束具有透鏡效應,其廣義地限制光束至正向方向。
於又一實施例中,且如第41及42圖所示,光源3700也設置有光束成形光學裝置4102用以調整自光發射器3708及3710所發射的光束形狀。雖然於第41圖中顯示為單一元件,但實際上(且如第42圖所示)光束成形光學裝置4102包括多個光束調整元件,用於各式目的用來調整自光源3700發射至接收器3706之光之光束寬度及/或光束形狀。
光束3712及3714(來自光發射器3708及3710)通過光束成形光學裝置4202,其係用來提供具有期望特性之已調整之光束4104。
如所瞭解,光束於橫過其軸線方向將具有空間強度輪廓或光束輪廓。使用該光束輪廓,光束之束寬可界定在最大峰值兩邊相等強度例如3分貝點等的兩點間。束寬之一個常用測量值為光束「於半最大值之全寬」(半高寬、FWMH)。舉例言之,第42圖之已經調整的光束4204如圖所示具有一寬區段4214,其中光束4204之強度係高於預定臨界值(以黑色顯示),以較亮的光束區段4216為邊帶,此處光束強度係低於預定臨界值。
光束成形光學裝置4102可選擇來達成期望的光束輪廓,準直元件4208係用來將光束3712及3714準直成為更緊密的光束形狀。準直元件4208例如可為透鏡,諸如菲涅爾透鏡或凸透鏡,或可為反射鏡。
光束調整光學裝置也可包括漫射元件4210,選用來使光束輪廓變「扁平」及增加光束3712及3714之束寬。漫射元件可為例如經研磨的/經蝕刻的/經煙燻的玻璃漫射器。漫射元件4210另外可施用塗覆物至發射區段3704或其它光束調整元件。
第40圖顯示成形與平坦化光束輪廓之光學元件4000之實例。光學元件4000包括一菲涅爾透鏡4080設置與多元件透鏡4081背對背。菲涅爾透鏡準直光束,及多元件透鏡4081有效漫射光束。替代多元件透鏡4081,可使用其它漫射器例如經研磨的、經煙燻的、經蝕刻的玻璃或表面。
於發射器上設置一漫射器為有利,原因在於接收器將「看到」與光源相對應的展開的點,而非看到一點,若無漫射器時將看到一點。結果,任何停在發射區段3702上的異物(諸如昆蟲)將覆蓋發射區段的較小比例,因而對於接收器3706所接收的總光將具有比例上較小的影響。此外,於多光束系統,當全部光發射器(3708及3710,亦即於UV及IR二波長光)係通過一共通元件漫射時,任何停在發射區段3702上的異物(諸如昆蟲)將以實質上等量影響各個波長光(亦即UV及IR)。
進一步經由提供一種較大的束寬予已經調整的光束4204,接收器3706與光源3700的對準簡化。第43圖提供自光源4354接收光束4352之接收器4350之說明圖。經由具有寬的束寬,橫過光束寬度(接近其中心)的強度改變速率減低。如此表示隨著時間之經過當光束對準及接收器漂移時,對相對小的移動,於接近光束中心之所接收的強度之變化率比較有窄束寬之光束減低。
於此種情況下,光束4352之束寬4356相當感測器4350上約有三個感測器元件。若系統係配置成平均(或合計)輸出信號,則此三像素用來決定所接收的光束強度,發射器與接收器間之對準的小量變化將要求系統準確追蹤光束於感測器表面上的移動,或另外,造成自此三像素測得的信號強度之重大變化。如第44圖所示,此項問題藉使用較寬的束寬而減少。此種系統中,由光表面4454所發射之光束4462具有等於感測器4450上約6個感測器元件尺寸。如所瞭解,在中間三個像素位在中心高強度光束區外側之前,此種系統對對準有較高忍受性。
所使用的漫射器及所提供的束寬之特定性質將取決於接收器及光發射器。但使用LED,發現約10度的束寬乃已經調整的光束維持強度與寬度間之適當折衷,因而適應接收器與光源容易對準及,接收器及/或光源的漂移。
參考第42圖,輪廓調整元件4212係選擇使得已經調整的光束4204之光束輪廓於水平方向比垂直更加擴展。如此用來最大化已經調整的光束4204於接收器之強度,同時也配合建築物的移動典型地於水平面比垂直面導入更多變化。
光源可包括一輪廓調整元件4212用以於不同波長頻帶提供不同強度予光束。光束調整元件再度可為透鏡、反射鏡、塗覆層等選用來達成提供於各波長之期望的光束輪廓。
輪廓調整元件4212具有下述效果,產生已經調整的光束4204其具有光束輪廓其中UV光(源自於UV發射器3708)之光束寬度係比IR光(源自於IR發射器3710)之光束寬度更寬。如此具有下述優點,當光源4500或接收器4508移動(例如,由於建築物的移動)而破壞其間的對準時,IR光4506(具有較窄的束寬)將在UV光4504之前移動成與接收器4508未對準(亦即於接收器所接收的IR光量減少)。如此產生於接收器IR光強度減低,隨著對準的漸進惡化,接著為UV光強度的減低。此點係與當煙霧進入光束時所見效應相反,此時UV降先於IR降。如此藉控制器的故障/警報邏輯電路,可區別未對準與煙霧事件。
作為使用輪廓調整元件的替代之道,可使用有多個UV光發射器環繞一個或多個IR光發射器之光源。於此種情況下,當光源與接收器間之對準被破壞時,接收器將停止接收IR光隨後才停止接收UV光束,因而允許接收器將其解譯為故障事件而非警報事件。
於若干實施例中,可能形成奇特的強度輪廓,例如具有正弦函數等之強度輪廓。於此種情況下,若接收器的感測器之一感測器元件或一組感測器元件偵測得所接收的光束強度之變化係匹配所發射之光束的空間強度輪廓,則控制器可判定光束係掃描通過該感測器元件或該組感測器元件。如此可由故障邏輯電路用來偵測與傳訊系統漂移出而未對準,需要或很快需要重新對準。
第47圖顯示可用於根據本發明之一實施例之光束偵測器的發射器之一光發射器4740。光發射器4740包括一本體4742,其中罩有一個或多個光發射元件(圖中未顯示)。光發射器4740包括一透鏡或窗部4744,通過此處發射由光發射元件所產生的光束。也包括多根引線4746用來與裝置作電連接。第47圖顯示該光發射器4740之平面圖。光發射器4740包括多個光發射元件4748、4750。於此種情況下,光發射器為LED,而光發射元件為兩個LED晶粒呈UV LED晶粒4748及IR LED晶粒4750形式組成光發射元件。封裝體4740也包括於本體4742內部之一光電二極體4752。各個光發射元件4748、4750適用於通過透鏡4744發光。光電二極體4752接收由光發射元件4748、4750所發射之若干比例之光,及產生進給至回授電路之電信號。光電二極體輸出信號係由回授電路用來調整光發射元件之輸出信號俾維持光發射器4740之正確操作。
第第49圖顯示光源之第二實施例。於本實例中,光發射器4955包括多個排列成格子圖案的光發射元件。於此種情況下,光發射器4955包括環繞一中心IR LED晶粒4960排列之四個UV LED晶粒4958。如前文說明,此種排列具有防止因光源與其個自的接收器未對準所造成的錯誤警報之特殊優點。封裝體4955也包括一光電二極體4952。
第50圖顯示可用於本發明之實施例之發射器的電路示意方塊圖。電路5000包括二光發射器5002、5004,其係與前述IR及UV LED晶粒相對應。也包括光電二極體5006。如前文說明顯然易明,LED及光電二極體5002、5004、5006可彼此緊密相鄰封裝於單一LED封裝體內部。但也可分開封裝於個別組件內。光發射器5002、5004係電連接至電流源5008,及光電二極體5006係電連接至回授電路5010。回授電路5010係與電流源5008通訊。使用中,來自光電二極體5006之輸出信號其代表LED 5002及5004之輸出信號係送至回授電路5010,而轉而控制電流源5008之輸出至光發射器5002、5004。隨著於光電二極體5006所接收的光信號減低,例如由於隨著時間之經過LED輸出光減少或,由於溫度升高而光發射器5002、5004之光發射減少,回授電路5010將施加一輸出信號至電流源5008,造成對光源5002、5004之驅動電流的增加。藉此方式,光發射器5002、5004之光輸出量可維持於約略恆定水平。因光發射器可能具有不同特性,正確系統操作要求預定的照明特性,兩個光發射器5002、5004之輸出信號可個別控制及調整。此點可藉由使用光電二極體5006交替其照明脈衝及個別決定其光輸出而達成。另外,多個光電二極體可以其中其響應具有波長選擇性及微調至相對應光發射器之方式使用。舉例言之,可經由於各個光電二極體設置不同的帶通濾波器而達成。於此種情況下,光發射器5002、5004可同時照明及其輸出信號使用如此處所述之回授電路個別穩定化。第51圖顯示第50圖之電路用於穩定化被連續照明之一部光發射器之光輸出的回授程序。第51圖之作圖包括一第一部分5102其表示隨著時間之經過光電二極體之輸出,且表示隨著時間之經過自光源之光輸出減少。此項輸出饋至回授電路,其控制由電流源5008輸出之驅動電流。光電二極體輸出之減少造成LED輸出電流的增加,如作圖5104所示。
第52圖顯示呈示意方塊圖形式之第二電路。於本實例中,替代控制電流源之輸出電流,係藉回授電路控制光發射器之輸出脈衝的持續時間。如此,第51圖包括二光源5202、5204其各自連接至一電流源5208。電路也包括一光電二極體5206其係連結至一回授電路5210。此電路5200額外包括一驅動脈衝調變電路5212,其控制由電流源5208施加至光發射器5202、5204之電流脈衝之時間及持續時間。於本實例中,當感測到由光電二極體5206所接收的光位準減低時,回授電路5210施加一信號至調變電路5212。回應於此,調變電路5212增加由光源5208所產生的施加至LED之脈衝長度。
第53圖顯示第52圖之電路之操作方法。上圖顯示光電二極體5302之輸出信號,如圖可知其通常隨著時間之經過而減低。下圖5304顯示施加至光發射器之驅動電流。於此種情況下,輸出電流係以方波脈衝例如5306施加。因光電二極體之輸出信號減低,故脈衝持續時間隨著時間之經過而增加。經由藉此方式調整脈衝持續時間,及維持電流於恆定位準,由光發射器所發射之有效光強度當於脈衝長度積分時維持實質上恆定。較佳也導致於接收器脈衝較為準確的接收,原因在於接收器並非單取各脈衝內部的單一光強度樣本,反而接收器可作為積分器操作而收集較多所發射的信號。
第51圖及第53圖之作圖顯示發射器之單一光發射元件之光電二極體響應及驅動電路電流。對其它(或多個其它)光發射元件可形成類似的作圖。
於本發明之另一實施例中可提供LED強度之開放迴路控制。舉例言之,經由提供一種電流驅動電路其為溫度穩定化或對LED之輸出信號特性為溫度補償性可以低成本達成。
於本發明之又一實施例中,光發射元件之輸出信號只能微弱控制,例如以極為簡單的電流控制電路藉固定式脈衝長度驅動。於此種情況下,藉光電二極體測量的平均輸出強度可通訊至接收器。然後接收器可配置來以軟體補償改變中的LED輸出信號。於較佳形式,平均LED輸出信號可使用光學通訊頻道或其它無線通訊頻道通訊予接收器。當使用光學通訊頻道時,可藉由於光發射器中之一者或另一者或二者的照明脈衝順序中插入或刪除脈衝而調變光發射器本身之輸出信號實施。本實施例具有只需相對低成本發射器而無需複雜的回授電路之優點。也利用下述事實,光發射器輸出信號之溫度及老化相關的漂移可能相當緩慢,故只需要低的通訊頻寬。
前文說明之方法中使用一個或多個光電二極體來測量與控制光發射器之輸出強度可能產生又一問題,周圍光可能干擾此項測量。舉例言之,日光可能被光電二極體接收,而錯誤增高由光電二極體所偵測得光發射元件已經減低的輸出光位準。
為了克服此項問題,於一個實施例中,經由使用帶通濾波器結合光電二極體可大減有效周圍光。舉例言之,可有效使用只通過由其相對應的光發射器所發射之波長頻帶之光,但衰減全部其它波長之光,例如常見於日光之光的光電二極體。同理,若使用人工照明諸如螢光燈,則帶通濾波器適用於實質上排除全部人工光,同時仍然發射由相對應的光發射器所發射之波長頻帶的全部光。
另一實施例中,吸光擋板可位置環繞光電二極體,例如於LED封裝體,使得只有來自光發射元件之光可到達光電二極體。經由於光電二極體與LED封裝體之透鏡間放置一擋板可屏蔽光電二極體免於外來光線。
校正背景光位準之又一機制係當光發射器於「開」及「關」狀況下自光電二極體作測量。於此種情況下,於「關」週期期間,於光發射器之二脈衝間作測量代表背景光。此種背景光位準可自「開」週期亦即光發射元件照明週期期間測得的下一個(或前一者)光位準中扣除。若要求背景光位準的平滑化,背景光位準可於若干「關」訊框求取平均,及自「開」週期資料中扣除背景光位準的移動平均。舉例言之,當周圍光位準隨頻率等於或實質上等於光發射器頻率而有重大變化時可能需要如此。
第54圖顯示根據本發明之一實施例所製成的光源。光源5400包括由電源5406供電之連接至一控制電路5404的光發射器5402。光發射器5402投予光束(或多道光束)通過一光學系統5408朝向一接收器。於若干實施例中,光學系統5408可單純為透明窗,於使用時光束投射通過其中,但也可為更複雜的光學配置,例如包括一個或多個透鏡、鏡或濾波器等,其適用於讓光源5402所發射之光束具有特殊特性。如前文說明,光學組件5408之外表面易暫時被其外表面上的昆蟲等所遮掩。
為了檢測此等異物,光源5400設有光電二極體5410或其它感光元件其係連接至控制電路5404。使用中光電二極體5410,係設置成其將接收來自遮掩至少部分光學配置5408之外表面的異物之散射光。光電二極體5410係連接回控制電路5404,其適用於基於由光電二極體5410所接收的散射光之完整性來判定是否存在有故障狀況。舉例言之,控制電路5404可包括一微控制器5412其係程式規劃有故障邏輯電路等,該邏輯電路比對接收自光電二極體5410之回授信號與預定臨界值,及若所接收的光強係高於預定臨界值或若回授信號滿足若干其它基於強度及/或時間的標準,則故障邏輯電路適用於於光源5400觸發故障響應。例如,微控制器可造成光發射器5402之照明樣式回應於故障狀況改變來傳訊予微粒偵測系統之接收器存在有故障狀況。經由光發射專利案編碼特殊信號,可將故障類型傳訊回接收器。故障狀況可經由以預定樣式調變所發射的光脈衝之振幅、持續時間及/或時間來通訊。其優點為微粒偵測系統的發射器與接收器間無需有線或其它無線通訊系統。
第55及56圖顯示本發明之此一面相之其它實施例,而共用部件標示以共通元件符號。
首先參考第55圖,顯示根據本發明之一實施例製造的光源5500之第二實施例。於本實施例中,光源5500已經設有額外發光裝置5502。發光裝置係設置成其自狹小入射角照明透鏡。如此增加微粒或異物落在光學組件5408外表面上之機會,將產生足夠的反射而藉光電二極體5410偵測。於此實施例中,光電二極體可藉壁面或擋板5504屏蔽來防止被光源5502直射照明。
第56圖顯示光源5600。此一實施例與第54及55圖顯示之光源差異在於含括外部安裝的光發射器5602。此一光發射器5602係定位使得其直射照明光學組件5408之外表面。此點具有正確識別異物諸如昆蟲等存在於外表面上的額外優點。
於本發明之若干實施例中,光源可設有內部安裝的回授光電二極體。此種回授光電二極體典型係用來監視光源之光輸出及,例如若測得所接收的光位準減低則調整光源之發射特性。但內部光電二極體經由施加上臨界值至其所接收的信號,及若所接收的光位準係高於上臨界值(而非控制器5404所造成的光輸出增高的結果),此可判定為異物於光學系統5408外表面的結果,則內部光電二極體可用於本發明之此一面相之實施例。
本發明之實施例也可用於微粒偵測系統之接收器。於此實施例中,接收器可配備有光發射器,諸如第14圖之光發射器及光電二極體,且可配置來實施如此處關聯光源所述之方法。使用該接收器,顯然較佳於接收器殼體內部的光發射不會干擾系統的微粒偵測效能。如此,光源5502可選擇使得其發射於接收器的接收頻帶外側之光,或接收器可設置帶通濾波器其排除該選定之波長。另外,若微粒偵測器之光源係設定為根據預定樣式閃光而「關週期」係在閃光間,則異物偵測功能可於此等「關」週期執行。若欲使用於「關」週期之異物偵測,則光發射器例如光發射器5502可於接收器的通過頻帶發光,而主接收器可用來偵測於光學組件5408外表面上是否存在有異物。
如前文說明,要緊地微粒偵測器須妥當安裝及委任。正確安裝與委任確保系統可靠而安全地操作。就此方面而言,現在將說明可用於微粒偵測系統之安裝及委任之若干方法。
為求清晰,以下方法說明將聚焦在關聯第2圖微粒偵測器。但如熟諳技藝人士顯然易知,該方法可使用關聯第3圖所述實施例及其它實施例實施。
於一個實施例中,該方法包括二階段,包括一委任階段及一操作階段。委任階段係於光束偵測器之初期安裝執行,而操作階段係於安裝後的某個時間執行。
一種委任微粒偵測器之方法顯示於第58圖。技術員或其它適當安裝人員安裝光源32及接收器34及標靶36(可有其它幾何形狀)於適當位置橫過據需要監視微粒例如煙霧區(步驟5801)。如所討論,使用呈視訊攝影機或其它適當裝置形式之接收器34,安裝程序可容易且更快速。
安裝後,於步驟5802,技術員藉供電予微粒偵測器而啟用偵測器。最初偵測器於其欲監視的視野內發現存在有光源。如本文它處及發明人之共同審查中之申請案所述,於步驟5803,控制器識別偵測器的視野代表來自光源32之光的相關部分,及然後測量接收自光源32之光信號強度。此識別過程可為手動例如技術員將攜帶型電腦介接接收器34,觀看由攝影機所拍攝的影像,及使用點選裝置或以其它方式指出視野的相關部分。識別程序另外可為自動化,例如使用控制器44經程式規劃來識別由光源所照明的螢幕部分(例如,於使用UV及/或紫外光源之情況下,UV及/或紅外光)。
於本文它處有標靶獲得及時間發現方法之實例之細節說明。於步驟5804,自各個已識別的光源所接收的光位準比較臨界值來判定所接收的光位準是否於可接受的限度以內。若控制器54接收到來自光源32之光高於預設的臨界值,則造成微粒偵測器指示操作為可接受(步驟5805)。系統狀態的指示包含恆常點亮接收器上的LED,但其它通報機轉也可使用,諸如發出聲響及/或發送信號至與該控制器44通訊的PDA或電腦供技術員觀看。
偵測系統將應用警報及故障邏輯電路來判定偵測系統是否正確操作,或是否已經偵測微粒。警報及故障邏輯電路將包括基於接收器所接收的光強度之警報標準。此項標準可能基於原始強度測量值、於多個波長或變化率的差值或比較值、或熟諳技藝人士已知之其它測量值。典型地該項標準可視為所接收的資料與臨界值儲準間之比較。發明人已經瞭解微粒偵測系統之安裝及委任係由技術員監控,而於委任期間,並未仰賴系統來提供一項微粒偵測或生命安全性功能,尋常警報臨界值可能於委任階段大為受忽略。如此,於委任階段應用的臨界值比較於操作階段應用的警報或故障臨界值中之一者或多者可能極為密切設定。
於較佳形式,於委任階段使用的至少一個臨界值將設定為實質上高於可能造成於操作期,微粒偵測器發出警報、採行其它動作來指示已經偵測得煙霧或產生故障狀況的位準。
舉例言之,於委任階段期間,可接受的所接收的最低光位準可設定為比正常操作期間可能造成故障狀況光位準更高20%。此種臨界值要求安裝者確保系統的初期對準高度準確,光學表面乾淨且於良好狀況,及發射路徑長度並未超出可接受的範圍,否則系統將無法於委任期間就地達成相當苛刻的光強度要求。
若於委任階段期間,控制器44判定所接收的光強度係低於預設的臨界值,則控制器44使得微粒偵測器指示錯誤(步驟5806)。如此例如包含閃亮LED或發送信號至技術員的PDA或電腦。若視野相關部分的辨識為自動化,則控制器44可允許完成手動辨識,隨後可重複步驟5802至5804。
當接收到錯誤指示,技術員可執行需要的動作來校正問題。舉例言之,技術員可重新定位光源32、接收器34及/或標靶36,例如來縮短光源32與接收器34間之光徑長度。若要求實質上縮短光徑長度及初期安裝使用標靶36,則技術員移開標靶36且將接收器34安置在標靶36先前所在位置來減半光徑長度。技術員可以其它方式來找出適當中點而安裝微粒偵測器的各個組件於該中點。
控制器44可經程式規劃來於每次啟動電源時自動完成第58圖所示處理程序之一部分。另外,該處理程序可唯有於指令時完成,例如藉按下接收器34相關聯的一個按鈕,或當透過接收器34之一通訊埠接收到指令時完成。
若委任階段已經成功地完成,則接收器34處理開始操作的狀況。兩個此一「操作階段」之實施例將說明如下,第一例係關第59圖而第二例係關第60圖。於操作階段期間,接收器34測量接收自光源32之光強度。此資料經處理,而若所接收的信號指示於光源32與接收器34間的光徑存在有煙霧,則控制器44於微粒偵測器產生警報狀況,及/或通訊一信號來造成另一裝置(例如,火警面板)或系統諸如自動疏散系統發出警報。
於本發明之較佳實施例中,操作多個波長,一次警報臨界值係基於於多於一個波長所接收的光強度之差異測量值,例如於二波長所接收的光強度間之比值或差值,或此等測量值之變化率。二次「後備」臨界值可基於於一個或多個波長獨立所接收的絕對值或已經校正的光強度設定。正確操作及錯誤狀況之偵測也可基於差值或絕對值所接收的光位準。
參考第59圖,控制器44係經程式規劃來重新檢查接收自光源32之信號強度,或檢查各個光源32(若有多於一個光源)相對絕對信號強度臨界值。此項檢查可連續進行或定期進行,例如依據需要而定,每日一次、每日二次或多次、或更低的頻次。檢查也可依指令進行,例如當接收到指令來檢查於接收器34的通訊埠所接收的信號強度,或當作動所設置的與接收器34相關聯的按鈕時進行。若於步驟5907控制器44判定無需檢查,則接收器34持續監視光徑上的煙霧。
若需要檢查,則於步驟5908控制器44評估來自光源32之光信號強度,及於步驟5909比較此值與臨界值。此一臨界值可與步驟5803所使用的臨界值相同,或另外可為決定可指示要求的操作可靠度位準之其它設定值。
於步驟5910,評估比較結果及若尚未超過最低要求強度之臨界值,則指示/產生錯誤信號(步驟5911),視特定實施例而定,該項錯誤信號可能與步驟5806指示的錯誤相同或相異。舉例言之,步驟5911所指示的錯誤信號可能為於微粒偵測器,及/或於控制站諸如建築物的安全監控站,及/或透過有線及/或無線公用及/或專用網路通訊錯誤狀況的遠端監控站所產生的聽覺信號。
若已經超過最低要求強度的臨界值,則於步驟5912,微粒偵測器指示可接受的操作,其可以對步驟5805所述之相同方式指示。
參考第60圖,顯示執行其它操作階段的可藉控制器44完成之方法之流程圖。
於委任後(亦即於步驟5805後),於步驟6016,控制器44判定延遲期是否已經逾時。此項延遲期例如可為24小時,該段時間後預期微粒偵測器係於穩定狀態操作。其它非零延遲期可用於其它實施例。較佳於延遲期期間,偵測器並未用於主要的微粒偵測用途而只是監視是否正確操作。
當延遲期已經失效,控制器44重新設定其臨界值(於步驟6018)。較佳該欲使用的新的臨界值係基於於(選擇性步驟)6015所測得的信號強度(或自其中衍生之參數)。另外,可基於當延遲期失效時所做的測量值(步驟6017)。操作臨界值強度也可具有預設的最小值。另外,經由觀察於延遲期期間系統的效能,例如經由分析於延遲期期間於一個或多個波長所接收的光強度變化,可判定可接受的臨界值。舉例言之,若於該段期間所接收的光強度變化係由關注微粒的撞擊光束以外的情況(例如,安裝漂移、光源之溫度相依性光輸出變化等)所造成者為2%,則可接受之最低所接收的光位準可設定於低於平均所接收的光位準2%,或設定於若干其它位準。操作強度可為延遲期結束時所測得的強度及預設最小值二者之函數,例如測定為二數值之平均。若有多於一條光徑,則操作臨界值及預設最小值(若有)可對各光徑獨立測定/設定。
其次,控制器評估自光源32所接收的光強度(步驟6088A)及,於步驟609A,將其與新的操作臨界值比較。
然後步驟600A至602A係如前文就第59圖說明,使用於步驟689A測得之操作臨界值進行。
當有多個光源及/或來自單一光源有多條光徑時,誤差指示何時沿所監視的光徑中之任一者的所接收的光強度降至低於臨界值。另外,可有不同的誤差情況位準,一個位準指示何時沿光徑中之任一者的光降至低於臨界值,而另一位準指示何時沿多於一條或全部光徑之光降至低於臨界值。各條光徑之臨界值可能有別,例如反映出由光源32對該光徑所產生的光強度。
於前文說明,已經參考自光源32至接收器34之個別光徑。熟諳技藝人士瞭解光可反射偏離各個結構,諸如天花板,結果光源與接收器上的特定點間可能有多於一道光徑。來自一光源之光係由接收器藉多條光徑接收及來自一個光源之光係反射至接收器接收來自另一個光源之光的該部分上等實施例意圖皆落入於本發明之範圍。
再度轉向參考第57圖,於一種安裝諸如此種安裝,於本發明之又一面相之實施例中,自發射器5704、5706、5708到達接收器5702之光強度差異可藉應用光衰減器至系匹中的各個發射器之光徑,或至少應用至系統中位在可能造成接收器5702飽和的距離之該等發射器而調整。第61圖顯示可用於實施此一機轉之殼體實例。第61圖顯示通過發射器殼體6100之剖面圖。於殼體內定位一光源諸如LED 6102。此係連結至適當電路(圖中未顯示)且係用來產生用於微粒偵測的光束。由光源6102發射的光可通過一個或多個光學元件6104用以將光束聚焦成適當形狀,例如窄發散管柱或廣發散管柱,或如此處討論的若干其它形狀。發射器6100額外包括一個或多個光學衰減器6108用以衰減自發射器6100所發射的光束。經由使用具有適當穿透特性的一個或多個濾波器,衰減程度可經選擇及設定於對該發射器與其相對應之接收器間的分離為適當的位準。多個濾波元件可串列增加來達成適當的衰減程度。有多個濾波器之系統實例顯示於第62圖。第62圖中,類似的組件標示以與第61圖相對應之元件符號。於較佳實施例中,發射器6100之殼體6106可經配置而具有用以接納濾波器6108(及6110)於適當位置的結構6112。最佳,接納機構允許選擇性地於系統的委任期間濾波器由安裝者附接及移除。舉例言之,殼體可包括多條溝槽,例如溝槽6112,其各自適用於接納一個別濾波器元件。
第63圖顯示可用於諸如第61或62圖所示本發明之實施例之三個濾波器元件實例。濾波器6300、6301、6302較佳為中性密度濾波器,及可由衰減材料諸如塑膠膜製成。經由提高材料之吸光程度,例如經由改變材料性質或增加材料厚度,可製作不同距離的衰減器。
較佳各個濾波器具有印記指示濾波器的強度。例如發射器與接收器間之較佳距離或距離範圍之指示可印刷、壓紋或以其它方式顯示於濾波器上。另外,可顯示分量衰減程度。顯示於濾波器上的此項資訊可由安裝者用來對所安裝的特定系統幾何形狀,用於適當濾波器或濾波器群。
現在說明本發明之此一面相之替代(或額外)實施例。於此實施例中,系統適用於允許接收器避免飽和而未使用濾波器,但若有所需,濾波器可用於本實施例。第64圖為時程圖,說明根據本發明之一面相解決前述問題之第二解決之道。
於本發明之此一面相,發射器可配置來發射一系列不同強度的脈衝,及於操作期間重複此系列。然後接收器可判定所接收的脈衝哪一個係落入於接收器的可接受的光位準,其後選用來只接收具有可接受的光位準之該等脈衝。
現在轉向參考第64圖,上圖6400為時程圖,顯示隨著時間之經過由發射器所發射之脈衝序列之發射率。下圖顯示接收器之接收狀態。於初始時間週間t1
,發射器循環通過一系列遞增發射功率之發射脈衝6404、6406及6408。此系列係於時間週間t2
及t3
重複且隨後連續重複進行。於第一時間週間t1
,接收器未知哪一個發射脈衝將在適當位準,俾不致於飽和接收器,但也夠高而有適當的信號對雜訊比。因此,對時間週間t1
,接收器連續於「on」態故可接收各個所發射之脈衝64046406及6408。基於測量得之三個所接收的光強度,接收器可判定哪一個脈衝須接收然後變成on。於此種情況下,脈衝6408判定具有正確強度,接收器配置來於時間6410及6412啟動,該等時間分別係對應於接續發射週期T2及T3中的脈衝6408之發射時間。
如前文說明,接收器及發射器通常並未彼此通訊,發射器將於其操作期間持續發射三個不同位準的脈衝。另外,於接收器可通訊回發射器之實施例中,接收器可傳訊至發射器告知哪一個脈衝欲繼續發射而哪一個脈衝欲刪除。此種系統可節省發射器的耗電量,原因在於發射的脈衝減少。
監視各個發射脈衝的初期可延長超出單一發射時間週期,原因在於接收器可能需要經歷數個發射時間週期來找出發射器的照明樣式。
於用於改善或解決此項問題之第三解決之道,本發明之又一面相使用電子裝置來控制發射器之發射功率。於本實例中,DIP開關可結合入發射器,發射器於安裝期間係由安裝者設定於適當發射位準。DIP開關上的設定可經選擇來減少流經LED之電流,如此減弱LED亮度或縮短脈衝「on週期」持續時間來避免接收器的飽和。於此種情況下,較佳具有一種安裝模式,其中發射器最初係於不同功率位準發射光。於此期間,接收器可決定適當發射位準,及指示安裝者適當DIP開關設定值,來將發射位準設定於最佳值。舉例言之,接收器可設置有顯示器或其它介面,其可用來指示對該發射器DIP開關的設定值。也須瞭解於有多個發射器之系統中,任一程序皆可對各個發射器重複進行。
於本發明之此一面相之一額外實施例中,有多個發射器之系統可包括多種不同型發射器。各型發射器用於特定距離或距離範圍為最佳化,於此種情況下,係由安裝者選擇須安裝哪一型發射器。
第65圖顯示根據本發明之另一面相之一實施例,使用測試濾波器欲測試的微粒偵測系統6500之一實施例。微粒偵測系統6500包括一光源6502及一光接收器6504。光源6502產生一道或多道光束,包括波長頻帶取中於λ1
的第一波長頻帶6506之光及波長頻帶取中於λ2
的第二波長頻帶6506之光。較佳λ1
為較短波長頻帶,例如於電磁頻譜的紫外光部分;而λ2
為較長波長頻帶,例如取中於近紅外光。光束6506及6508通過測試濾波器6510,其經由交替光束6506、6508而模擬煙霧對光束的效應。假設光束衰減程度係由測試濾波器6510造成,則可檢查接收器6504之操作來判定其表現是否正確。由於光源6502所發射之光包括於二波長頻帶λ1
及λ2
之光,測試濾波器6510需要吸光特性可以適當方式處理此二波長頻帶。如前文說明,於微粒偵測器6500之較佳形式,於二波長頻帶λ1
及λ2
之光強度之差異測量值(例如,於各個波長所測得之強度比或此等數值之變化率等)係用來決定於光束6506及6508內部是否存在有預定尺寸範圍之微粒。最佳若所接收的光強度之比係以預定方式改變,則可指示微粒偵測事件。如此,於大半情況下,測試濾波器6510不會均勻衰減二波長頻帶,反而於二波長頻帶λ1
及λ2
提供差異衰減來模擬煙霧效應。於本實例中,測試濾波器6510吸收較短波長λ1
顯著比較長波長λ2
更多。例如測試濾波器可吸收於λ1
之光為於λ2
之光的兩倍,可判定為類似特定類型的微粒。
如此,測試濾波器特性係經選擇來設定於不同波長頻帶所發射(或所衰減)光之比,及亦改變由測試濾波器所發射(或所衰減)光之絕對位準二者。此二變數適用於產生適當測試濾波器來模擬不同的煙霧或微粒類型及不同的煙霧或微粒密度。
第66圖顯示第一測試濾波器實例包含三個濾波器元件6512、6514及6516。測試濾波器6510通常為由二層濾材所製成的片狀材料。於本實例中,前兩個濾波器元件6512及6514衰減於波長頻帶λ1
之光,及第三個濾波器元件6516吸收於波長頻帶λ2
之光。於本實例中,組成測試濾波器6510之各個濾波器元件6512至6517係配置來提供通過其中之光的等量衰減。如此,測試濾波器6510衰減於波長頻帶λ1
之光比其衰減波長頻帶λ2
之光強兩倍。
第67圖顯示測試濾波器6570之發射頻譜。如圖可知,測試濾波器發射實質上全部於波長頻帶λ1
及λ2
外側之光,但衰減於波長頻帶λ1
之光兩倍於其衰減波長頻帶λ2
之光。於其它實施例中,於波長頻帶λ1
及λ2
外側之發射可為任何位準而無需於全部波長為均勻。
前述吸收特性可以寬廣多種方式達成。第68至75圖顯示一定範圍之此等技術。其它技術為熟諳技藝人士顯然易知。
第68圖顯示濾波器元件。該濾波器元件有一前表面6802其上黏著多個微粒,微粒具有實質上等於使用濾波器元件欲測試的微粒偵測器欲偵測的微粒之可偵測的粒徑分布。此等微粒可使用多種眾所周知之方法製造,或藉過濾選擇及與粉末諸如氧化鋁分開。第69B圖顯示此項機構之變化倒。第15B圖之濾波器元件6900係包括類似於第68B圖之實施例中所使用的微粒,但係分布於濾波器元件本體。
第70圖顯示一種濾波器元件7000,其上一個或二個表面具有表面處理來造成材料表面上的缺陷。表面缺陷例如可藉機械磨蝕、粒子爆噴、化學蝕刻或雷射蝕刻等而產生。另外,經由使用例如3D雷射蝕刻,可貫穿第70圖之濾波器元件本體形成缺陷。
第71及72圖顯示可於濾波器元件7100、7200上執行來達成預定衰減特性的進一步表面處理。此等實例中,濾波器元件係由實質上透明的材料製成且藉施用表面印刷改性。舉例言之,噴墨印表機或雷射印表機可用來印刷圖案於濾波器元件薄片之一或二表面上。較佳點圖案係印刷於濾波器元件之全表面上。最佳均勻尺寸點係印刷成預定分開,係由欲藉濾波器元件達成的衰減程度決定。第71及72圖除了印刷於濾波器元件上的點數外實質上完全相同。如圖可知,第71圖比第72圖印刷於其上之點遠更少,如此比第15E圖之濾波器元件更不吸光。
顯然其它圖案可用來達成預定衰減。
第73圖顯示可於濾波器元件7300表面上實施的印刷圖案。本濾波器元件7300係以二色印刷程序印刷,及包括有第一色點及第二色點之點圖案。如圖可知色點6804比色點6806更多,如此濾波器元件將於一個波長頻帶比另一個波長頻帶衰減更多統。另外,一色的點圖案可印刷於濾波器元件的一面上,而另一面上的點圖案可以第二色印刷。
第74圖顯示有更複雜結構的測試濾波器。此種測試濾波器元件7408係由五層7410至7418製成。其中四層7410至7416衰減於波長頻帶λ1
之光,但發射全部其它波長頻帶,而最末層6818吸收波長頻帶λ2
之光。
第75圖顯示另一種測試濾波器。此種測試濾波器有一中部7420,其具有選用來達成於波長頻帶λ1
及λ2
之光的預定衰減,但係層合透明層7422及7424來保護形成核心7420的衰減層。於衰減層使用表面處理而該表面處理可因接觸其它物件或物質而受損的情況下特別優異。
於另一個實施例中,測試濾波器之一或二表面可使用多層薄膜處理來形成預定的波長選擇性衰減側寫資料。此外,濾波器元件可為反射性而非吸統性來達成期望的衰減側寫資料。
第76圖顯示光束偵測器7600其包括一發射器或光源7602及接收器7604。發射器7602包括適用於產生一道或多道光束7608之一個或多個光發射器7606。一或多光束中之至少部分係由接收器7604接收。較佳光發射器7606適用於同時產生取中於不同波長頻帶λ1
及λ2
之二波長頻帶內部之光(後文定名為「波長頻帶λ1
及λ2
」)用以發射至接收器7604。接收器7604包括一光感測器7610,其係適用於輸出表示於其表面上的多個位置於二波長頻帶之所接收的光強度之信號。於二波長頻帶之輸出信號送至控制器7612,其係對光接收器7604的輸出信號執行分析及應用警報及/或故障邏輯電路來判定回應於所接收的信號是否需要採行動作。接收器7604可額外包括用來形成影像或以其它方式控制所接收的光束7608之光學系統7614。
於本發明之實施例中,光發射器7606同時發射二波長頻帶λ1
及λ2
,接收器7604之感測器7610較佳適用於同時且可區別地接收於各個波長頻帶之光。為了達成此項目的,接收器7604可設有波長選擇組件,係適用於將光分束成波長頻帶λ1
之光及波長頻帶λ2
之光,且以允許二波長組分分開測量之方式差異導向至感測器7610。
第77圖顯示允許執行此項技術之接收器7750之第一實例。接收器7750包括一窗7752,光束7754通過此窗進入接收器7750。窗7752可為扁平玻璃板等,或另外可為適用於光接收器上或附近形成影像的光學配置之一部分(例如,透鏡或透鏡系列)。接收器7750包括一感測器7756其包括多個感測器元件7758。波長選擇性組件7760安裝鄰近光感測器7756之前表面且例如,包含鑲嵌染料濾波器。染料濾波器7760包括多個單元7762及7764。單元7762適用於發射第一波長頻帶λ1
而單元7764係適用於發射第二波長頻帶λ2
。鑲嵌染料濾波器7760與光感測器陣列7756之組合允許第一群感測器元件或感測器7756之像素接收於第一波長頻帶之光,而感測器陣列7756之其它像素同時接收與記錄用於第二波長頻帶λ2
之光強度。
然後配置控制器來分開一組(亦即關係一個波長頻帶λ1
之光)與另一組之強度值,例如,感測器元件之輸出信號可選擇性地「讀出」來獲得二波長頻帶信號。
第78圖顯示獲得類似結果之另一個實施例。於此實施例中,接收器7800係類似第77圖之接收器,在於其包括光學組件7802,其可包含一窗或聚焦光學裝置,通過此窗,光進入接收器殼體7804。於通過光學組件7802後,光束進入波長選擇性稜鏡7806,其係適用於依據入射光波長而定發散於不同方向之光。如此於波長頻帶λ1
之光發射成第一光束7808,而於波長頻帶λ2
之光發射成第二光束7810。於波長頻帶λ1
之光束落至第一感測器陣列7812上,而於波長頻帶λ2
之光束落至第二感測器陣列7814上。如前文關聯先前實施例之說明,感測器陣列7812及7814適用於同時記錄表面上多點的光強度。
第79圖顯示使用稜鏡來將一光束分束成其光學組分之第二實施例。於此實施例中,接收器7820包括單一感測器陣列7822適用於透過光學組件7824及分束組件7826接收光。分束組件適用於將第一波長頻帶之光與第二波長頻帶之光分束,及導引此等光束於不同方向。此一實施例係與第78圖不同,在於並未於分開的感測器陣互上於各波長頻帶λ1
及λ2
形成影像,分束組件7826係安裝極為接近感測器陣列7822。藉此方式,分束的進行極為接近感測器陣列7822表面。有效地,如此對感測器陣列7822之一像素子集提供分開的波長選擇性分束器。
第80圖顯示本發明之又一實施例。此一實施例顯示光接收器7850包括一殼體7852其中安裝一感測器元件7854。光通過光學系統7856進入殼體及發射至光感測器7854。於本實施例中,感測器7854為多層感測器及包括n感測器層7854.1、7854.2至7854.n。各感測器層7854.1至7854.n適用於接收於不同能量之統。此種能量分開係利用不同能量的光子將穿入感測器裝置7854之不同深度。於此種情況下,感測器裝置可為矽光感測器元件。於感測器7854之各層,於其相對應波長可測定空間上分開的光強度測量值。
於前述各個實施例中,於多波長的信號可根據前述方法處理來產生微粒偵測或故障狀況輸出信號。須瞭解雖較佳實施例係關聯二波長系統說明,但於若干實施例中可使用三或多波長。
第81及82圖顯示包括用以發射至少一道光束8102之一發射器8101,及用以接收該光束之一接收器8103。接收器8103具有帶多個感光元件8104之一光感測器。適當接收器之實例為視訊成像器,其感測器係排列成像素矩陣。各個感測器元件產生例如與藉該感測器測得之光強度成正比的電信號。
第81圖中,發射器8101顯示為橫過所監視之空間8105位在接收器8103的對側。但須瞭解發射器8101可以其它方式定位(亦即未正對乾向接收器8103發射的光束),只要所發射的光束8102穿過所監視之空間8105即可。所發射的光束8102可藉設置諸如光反射器而朝向接收器8103。
漫射裝置8106係設置於所發射的光束8102之光束上,因而於接收器的感測器8107A上形成漫射的光束影像。來自感測器元件8104之信號係發射至控制器8108,諸如處理器。
控制器8108組合來自至少部分感測器元件之信號,例如只有光束落至其上的感測器元件,成組8109來判定所發射的光束8107A之強度。於CCD 8103上的各個感測器元件可具有不同的特性雜訊位準及不同的光轉換效率。因此,於其計算中,控制器8108考慮有關初步對準光束8107A的感測器元件8109A之資訊。基於所測定之強度,控制器8108應用警報邏輯電路及判定是否應採行動作,諸如傳訊警報,或發送警報或訊息予管理員或其它使用人。於前述系統,基於所測定之強度是否低於與煙霧微粒之存在相對應的臨界值。
第82圖中,發射器8101位置顯示為略為與如第81圖所示位置移開。此項改變導致已漫射的光束8107B影像位置相對於接收器8103改變。已漫射的光束8107B入射其上之若干感測器元件係在感測器元件8109之初子群外側,其信號係藉控制器8108初步讀取。控制器8108適用於追蹤橫過感測器8103表面上的光束影像位置,結果整合所接收的光於感測器上於一新區8109A。如所瞭解,區8109A內部之感測器組係與原先用作為組8109的感測器不同,但兩組(8109、8109A)包括等數感測器。
新區8109A的感測器元件理論上具有與原先區8109的感測器元件不同的特性信號誤差。但此項差異並不顯著。於本實例中,四個新積分的感測器元件之平均特性雜訊位準將係與不再使用的四個感測器元件的位準約略相等。此外,感測器元件間之間隔(亦即間隙數目及大小)保持實質上恆定,如此於感測器元件間之間隙不再有額外光損耗。
此點係與鮮明聚焦的光束影像的情況相反,此處與所接收的光束強度相關的誤差隨著鮮明聚焦的光束影像自一個感測器元件移動至次一個感測器元件將有重大改變,原因在於兩個感測器具有不同的光轉換效率,及差異無法藉求取平均而改善(如同於較為漫射的光束影像之情況)。進一步,當已聚焦的光束自一個感測器元件移動至下一個感測器元件,將掃描通過感測器元件間的空間,將有介入期,此處實質量的光束功率將耗損在感測器間的空間。如前文說明,此等問題可經由使用散焦的影像來緩和。
以下各段說明用於接收器的光學裝置(亦即成像系統)如何配置使得產生蓄意散焦的標靶之實例。本說明書中,「漫射裝置」一詞須廣義讀取來指稱可於感測器上產生漫射光束影像之任一種配置或組件。
於第83圖所示實施例中,漫射裝置8301包括一聚焦透鏡8302其係位在所發射的光束之光徑上。
聚焦透鏡8302有一相關焦點8304。所發射的光束8303係藉發射器(圖中未顯示)直射朝向聚焦透鏡8302發射,或朝向反射器(圖中未顯示)發射而反射光束朝向聚焦透鏡8302。本實施例中,透鏡8302及感測器8305之相對位置使得感測器自已聚焦的光束影像8306之位置異位。因此感測器8305接收到蓄意略微散焦的光束影像。聚焦量及漫射量經控制使得獲得(以更密度聚焦的光束達成)信號對雜訊比,同時即使系統有移動時達成相對穩定的系統(以已漫射的或模糊的影像達成)。
於又一實施例中(第84圖),接收器8310包括聚焦透鏡8311。光感測器8312係位在已聚焦的影像所在該點。於本實施例中,漫射裝置包括一漫射器8313其係位在透鏡8311與光感測器8312間的某處(例如,在位感測器正上方)。因而所接收的影像蓄意模糊。漫射器8313可為一塊研磨或蝕刻玻璃,或單純包含蝕刻面於感測器本身上。
於某些情況下,漫射裝置8313可位在所發射的光束至感測器8312之光徑的某一處。
於若干實施例中,發射器可輸出具有於二(或多)波長頻帶組分之光束,例如紅外光(IR)及紫外光(UV)光束二者沿實質上共線路徑發射。二波長係經選擇使得其於欲偵測的微粒例如煙霧微粒存在正顯示不同的表現。藉此方式,於二(或多)波長所接收的光之相對變化可用來獲得造成光束衰減的指示。
於若干實施例中,接收器可接收多道光束,或多個發射器可發射欲接收的光束。多道光束用共同於所監視的空間之煙霧偵測目的。如同先前實施例,感測器接收光束及發送信號至控制器。控制器分析信號,判定信號的哪一部分含有與個別光束最強力相關的資訊。於此判定程序結束,控制器將已選定由個別感測器或感測器組所產生的二部分信號,故所選定信號可最可靠地用來測量光束強度。選擇其資料可最可靠地使用之感測器之一種方式係於委任煙霧偵測器及選擇適當感測器時觀看由接收器所產生的影像。
確保計算得的所接收的光強度係儘可能地接近所接收的光束之實際強度之又一機制可藉控制器執行。控制器可根據感測器元件對總影像強度之貢獻來判定是否使用與某個感測器元件相對應值。例如自感測器元件之輸出信號,控制器可判定光束的「信號中心」位置。信號中心位置係類似質心位置,但替代質量,其信號值係由用於計算的各個像素(亦即感測器元件)所貢獻。例如可使用如下方程式:信號中心位置向量={(各個像素之位置向量)*(各個像素值)}/{得自全部像素之數值和}。
於確定信號中心位置後,控制器可根據感測器元件與該信號中心位置間距加權信號對各個感測器元件所接收的光束強度值之貢獻(亦即與各感測器所產生的電信號相對應)。藉此方式,控制器判定其信號最佳代表標靶影像之信號的該等感測器元件,及最不可能因光束於感測器上的信號影像位置漂移而自隨後測量降低之該等信號之感測器元件。
第85圖顯示本發明之又一面相之實施例。於本實施例中,微粒偵測系統8500包括一發射器8502及一接收器8504。發射器8502包括適用於發光包括二波長頻帶λ1
及λ2
之光的一光源或多光源。光源8502包括多個發光元件其各自適用於發射不同波長頻帶或寬帶光源。發射器8502可額外包括一個或多個光學組件例如8506用以形成具有期望的光束輪廓或分散特性之光束。接收器8504也可包括一導光光學裝置或成像光學裝置8508其適用於於接收器8504之感測器陣列8510上形成光束影像。為了減少周圍光與接收器8504的干擾,接收器8504也有多通帶濾波器配置8512。舉例言之,多通帶濾波器可為干涉濾波器其設置來選擇性地發射與光源8502之發射頻帶相對應的第一通帶及第二通帶之光。較佳濾波器配置8512為多通帶干涉濾波器,其具有於長波長之通帶及一個或多個該波長之諧波。於此種實施例中,光源8502須配置來發射於類似相關的諧波之光。舉例言之,單一干涉濾波器可設計來發射於800奈米及亦於400奈米的實質上全部光,同時阻斷大部分於其它波長之光。當使用此種濾波器時,光源適用於發射800奈米及400奈米。
於本發明之又一實施例中,濾波器配置8512可包括並聯使用的多於一個干涉濾波器或染料濾波器或其它類似類型的濾波器。舉例言之,與其中系統配置來操作的波長頻帶數目相對應之二個或多個濾波器可以並排關係置於接收器的成像路徑。第86至89圖顯示此種濾波器配置之實例。就此方面而言,第86至89圖之濾波器配置包括適用於發射元件符號8602指示的第一通帶之光且畫影線為白色的部分,其它部分的影線為灰色且以元件符號8604指示,其適用於發射於第二通帶之光。第88圖適用於用於四個波長系統,因而額外包括以元件符號8606及8608指示的部分,其係適用於發射於第三及第四波長頻帶之光。於各個此種濾波器配置,濾波器表面約略平分於不同波長組分間,如此發射於各波長頻帶之實質上等量光至接收器。此種配置比較前述多通帶濾波器配置之缺點在於有效接收器透鏡直徑縮短,例如對第86、87及89圖之各波長約減半,如此減低有效信號強度。但如此藉下述事實補償至某種程度,光源LED無需彼此於諧波,但可基於其它優點諸如貨品的成本選擇。此外,用於此種濾波器配置的濾波器可具較低成本,而無需準確的波長取中,因此對發射器輸出隨溫度起伏的變化不會太敏感。
第91圖顯示適用於監視房間9304內部一區9302之一種環境監視系統9300。該環境監視系統包括一光束偵測次系統9306其包括一接收器9308及四部發射器9310、9312、9314、9316。光束偵測係根據前文說明之任一系統之實施例操作。
環境監視系統9300額外包括四個額外的環境監視器9318、9320、9322、9324。各個額外環境監視器9318至9324可屬同型,但另外各自可不同型,亦即感測不同環境狀況,或藉不同機轉感測相同狀況。環境監視器例如可包括二氧化碳、一氧化碳、溫度、火焰、其它氣體感測器等。各個額外環境監視器9318至9324係藉通訊頻道連結至光束偵測次系統的附近發射器。舉例言之,額外環境監視器9318係透過導線9326連結至光束偵測次系統9306的相對應發射器9310。同理,環境監視器9320係與發射器9312作資料通訊,環境監視器9322係與發射器9314作資料通訊,及環境監視器9324係與發射器9316作資料通訊。各個環境監視器與其個別發射器間之資料通訊頻道可為有線連結,或可透過無線連結,例如無線電、光學等通訊鏈路連結。大部分實施例中,通訊鏈路只需單向,但於若干實施例中也可為雙向。於單向之情況下,通訊頻道係調整適合分散型電致發光裝置可通訊其所偵測得的警報及/或故障狀況或其它輸出信號例如原始或已處理的感測器輸出信號至光束偵測次系統9606之發射器。
如所瞭解,環境感測器可罩在發射器內部,而非位在遠端而藉長的導線或通訊鏈路連接。
光束偵測次系統9306之發射器適用於接收來自環境監視器之信號及,有或無額外編碼,透過光學通訊頻道轉發此等信號返回接收器9308。光學通訊頻道可經由調變微粒偵測光束或由發射器發射至接收器9308之二次光束而實施。光學通訊頻道可介於由發射器所產生的微粒偵測光束脈衝間交替地或間歇地發射。另外可連續照明,可能同時使用微粒偵測光束照明。於此種情況下,用於微粒偵測光束之波長可與光學通訊頻道執行的波長不同。
使用此種系統,環境監視器網路可放置環繞欲監視區9302藉此等監視器感測得的環境狀況可通訊回光束偵測次系統之接收器。例如透過火災警報迴路或專有網路或其它通報系統,接收器9308係與火災警報控制面板作資料通訊,而無需環境監視器網路與火災警報系統間複雜的專用布線系統。於較佳實施例中,多個光學通訊頻道可差異總碼使得光束偵測次系統之接收器可區別各個光學通訊頻道彼此。舉例言之,各個光學通訊頻道可差異調變,或可經排程來於不同時間週期操作。如此對不同的光學通訊頻道,可實施有效分時多工配置。對各光學通訊頻道使用不同波長亦屬可能。
系統也允許確定偵測環境狀況的所在位置,原因在於接收器9308可光學分割來自不同的發射器之光學頻道,例如基於所接收的信號,或若接收器的感測器屬於多感測器元件類型則基於信號到達感測器上的何處。定址資訊或頻道資訊可送至火災警報控制面板,及警報所在位置送至操作員或消防當局。
於第91圖之實例中,各個發射器及環境監視器較佳係由電池供電來去除拉線的需要。
第92圖顯示本發明之此一面相之又一實施例。於此實施例中,環境監視系統9400包括一光束偵測次系統9402及一環境監視次系統9404。光束偵測次系統包括一接收器9406及一發射器9408。發射器適用於發射由接收器9406所接收的一道或多道光束9410。接收器9406有寬視野,邊緣以線9409、9409B指示。於接收器9406的視野內部定位二環境監視器9412、9414。環境監視器9412及9414可屬前述任何類型,且額外包括一個別光發射器9416、9418。光發射器9416、9418可為低功率LED等且係用來產生光信號而藉接收器9406接收。各個LED 9416、9418可別調變來將相對應的環境監視器9412、9414之輸出信號通訊回接收器9406。如先前實施例所述,光學通訊頻道可與彼此及與由發射器9408所發射之微粒偵測光束9410時間多工化或波長多工化。本實施例具有優於第91圖之額外優點,環境監視器9412及9414與微粒偵測次系統發射器9408間無需任何布線或通訊頻道。如此安裝成本減低。
第93圖顯示微粒偵測器系統之一組件。組件9500為用於橫過欲監視微粒的體積發射一道或多道光束。光源9500包括一個或多個光發射器9502,其連結至電路9504其輸送電力予光發射器9502。光發射器9502之操作係藉微控制器9506控制,其造成光發射器以預定方式照明,例如以特定順序閃光。光源9500係由電池9508供電。電池之輸出信號係藉監視組件9510,而組件操作情況係藉環境監視器9512監視。環境監視器9512可為感溫裝置,諸如熱偶。控制器9506接收電池監視器9510的輸出信號及環境監視器9512之輸出信號及判定預期的電池壽命。
特定言之,控制器接收代表電池緊鄰環境之溫度及測量得之電池9508之輸出電壓的信號。電池輸出電壓與測量得之溫度相對應的臨界值電壓作比較,及決定電池9508之放電狀態。
於另一實施例中,電池監視器9510適用於測量自電池汲取的總電流。例如電池監視器9510可為電流計及測定沒取自電池之電流位準。於此種情況下,控制器適用於隨著時間之經過積分測得的電流,及測定剩餘可用電力。當計算得剩餘可用電量降至低於預定臨界值時,可產生電池迫近放電狀態的指示。
又一替代例中,可做所使用的總電流估算。例如,於較佳實施例中,大部分沒取自電池的電荷將被汲取於脈衝用來閃光光發射器9502。若電路9504係於恆定電流操作(其為較佳),則LED操作時間乘以此恆定電流將提供相當準確的隨著時間之經過由系統所使用的總電荷之測量值。於更粗略的替代例中,已知設備所需之典型平均耗電量可預先求出,組件之操作時間長度可用來測定隨著時間之經過自電池所汲取的總電流。
於前述實施例中,環境狀況最佳為電池緊鄰周圍的溫度可隨著時間之經過經監視,而此溫度資料可由控制器用來產生電池9808中可用剩餘電量之估值。如所瞭解,控制器適用於於普遍條件下算出可用剩餘電量之估值。剩餘時間可與警告臨界值作比較,而若超過臨界值,則可產生趨近放電狀態的指示。
於較佳實施例中,將產生電池趨近放電狀態的指示的預定時間臨界值可經選定,俾便允許維修人員於所排程的維修事件期間,接收到電池即將放電的指示。若電池即將放電的警告可於夠早期提出,換言之,於將需更換電池的另一次已排程的維修事件之前的已排程的維修事件提出,則無需額外未排程的維修情事。此外,維修人員可確保於將需更換電池的維修事件之前,獲得需要的設備,例如特殊工具及電池。舉例言之,若一組件具有名目上五年的電池壽命而排程年度維修檢查,則電池即將耗盡的指示可在名目壽命結束前的例如13或14個月提出。藉此方式,於系統委任後約4年的檢查時,維修人員將偵測電池將需於下次維修排程(一年時間)時更換,而可規劃在下次年度維修訪視時帶來替換電池。須瞭解為了避免系統故障,名目電池壽命設定有相當安全邊際。選用13或14個月時間允許兩次維修期的排程邊際,亦即一次係在維修人員了解電池放電狀態,而下次係更換電池。
於本發明之較佳形式,當欲監視之組件為微粒偵測器光源時,光源控制器適用於傳訊電池狀態予接收器。此點可藉以預定方式調變一個或多個所發射之光脈衝之振幅、持續時間及/或時序而達成。用於資料傳輸之光脈衝可為用於微粒偵測之光脈衝中之一者,或加至由光源所產生之光脈衝序列中用於自光源資料通訊至接收器之目的的額外光脈衝。如前文說明,此種體系避免單元間布線的需要。另外,光源可裝有額外低功率LED,該LED可閃光來指示其電池狀態予位在遠端的人員(而非接收器)。
於特別複雜的實施例中,光源控制器適用於例如經由以特定碼調變光束來產生電池輸出信號,藉此指示直至電池放電剩餘時間。舉例言之,輸出信號可指示直至預期電池耗盡的月數。如此允許維修人員更準確地排程下個排程的維修期,同時也判定於下次排程維修訪視前電池是否將需更換。此外,若準確的「至完全放電時間」為已知,則光源可進入低功率模式,例如其中其工作週期比正常減少來延長電池壽命。接收器可經程式規劃來檢測此種低工作週期模式,且若觀察得低工作週期調變樣式則指示故障。
第94圖顯示根據本發明之又一實施例之系統。於此系統9600中,設有第一接收器9602其關聯一瓶發射器9604及9608。第一發射器9604發射第一光束9606,而第二發射器9608發射相對應的光束9610。二光束皆由接收器9602接收,可根據此處所述本發明之實施例作出微粒偵測判定。系統9600額外包括一接收器9612及相關聯的發射器9614,其發射光束9616。光束9616係由接收器9612接收,如本文它處所述,接收器9612適用於判定微粒的存在。光束偵測器配置有效提供三個光束偵測器,其具有光束重合(或實際上重合)於兩個位置。接收器9602及9612皆係連結至控制器9618,其適用於應用故障及/或警報邏輯電路來判定故障狀況及/或微粒偵測狀況的存在。如所瞭解,交叉光束9606與9616、及9610與9616允許系統9600藉來自接收器9602及9612的輸出信號之相關性判定於光束交叉點是否偵測得微粒。此種配置也允許執行相對先進的處理,允許個別光束偵測器各自的微粒偵測演繹法則與用於單一孤立光束偵測器所使用的演繹法則不同。舉例言之,可實施簡單雙警報系統,其中於發布警報前至少須兩道光束偵測得微粒高於預定臨界值位準。於較佳形式中,此種系統可減低總假警報率,原因在於假警報狀況不可能出現於兩道不同光束。但如此也允許使用較低警報臨界值,如此允許更快速偵測微粒而未實質上影響系統的假警報率。於此種系統中,整個系統的假警報機率係與光束個別的假警報機率的乘積相同。如將瞭解,前述系統之優點皆可經由設定警報臨界值介於敏感度與假警報率改良間的折衷至某種程度。此外,可使用多個光束偵測器之微粒偵測輸出信號的時間特性來改良微粒偵測效能或減少假警報的發生。就此方面而言,於各光束出現可疑煙霧事件間的分開可用來改良早期偵測的機率而未增加假警報。舉例言之,一對實質上重合的光束各自進入警報的時間可用來決定警報狀況是否因微粒或假警報的存在所引起。若光束的時間實質上重合,則微粒偵測事件可能為真。另一方面,若微粒偵測事件於各光束發生在實質上不同時間,則其可能指示存在有假警報。於複雜的系統中,可比較時間變化的微粒偵測輪廓與各光束偵測器而識別相對應的微粒偵測事件。舉例言之,經由將系統內部的多個實質上重合的光束偵測器之輸出信號交叉相關進行。當判定一對輸出信號間之高度交叉相關時,如此指示各光束偵測器之輸出信號皆經驗類似的狀況,例如相同微粒偵測事件或相同假警報事件。經由分析側寫資料,例如遮蔽持續時間;遮蔽位準;觀察初始的變化率等,來判定該事件是否由微粒或異物的存在所引起,可做出哪一型事件的判定。
第95圖顯示前述類型的光束偵測器。光束偵測器9700包括發射器9702及接收器9704。光束偵測器9700架設來檢測空間9701中的微粒,例如可為房間。發射器9702於由線9706界定的照明野發射發散的光束。光束包括直射照明路徑9708,其未於接收器9704反射而到達。於發射器9702之照明野9706內部,某些光線將藉反射路徑,例如反射偏離界定體積9701的天花板9712之路徑而到達接收器9704。發明人已經判定若滿足某些狀況,則可忽略反射光束9710的存在。舉例言之,若所接收的光束滿足最低接收強度要求;且於光束包括可資區別的特性例如波長組分及/或偏振狀態之情況下,所接收的光束具有預定特性。於某些情況下,例如於多波長系統中,關係用於偵測微粒的光束是否為直射光束9708或反射光束9710,可能天花板9712的表面光整為於一個波長頻帶之光將比於第二波長頻帶之光反射更完全。此等波長頻帶之光重合用於藉接收器9704作微粒偵測的由發射器9702所發射的波長頻帶之光之情況下,於二波長頻帶之光所接收的光強度之差異測量將於反射光徑9710與直射光徑9708有不同表現。如此,於此種情況下,需要正確識別直射光束路徑9708。
第98圖顯示於此種系統中用以識別直射光束與反射光束的一項機轉。第5圖中相對應的特徵結構將標示以第4圖之相同元件符號。第5圖顯示光束偵測器9700之接收器9704之特寫,顯示反射光束9710及直射光束9708。第5圖也顯示接收器9704之感測器9800之細節。於此實施例中,經由設置具有高空間解析度之感測器的光接收器9704,改良區別直射光束9708與反射光束9710的機率。如前文說明,接收器9704之感測器9800包括多個感測器元件9802,其獨立偵測於分開的空間位置所接收的光強度。第5圖中,經由設置高解析度感測器9800,可知一組像素9808係藉直射光束9708照明,而分開的不同組感測器元件9810係藉所接收的反射光束9710照明。若感測器元件大小實質上較大,則將無法將此二所接收的光束光學分割成為分開兩組感測器元件。於特佳形式,光感測器之空間解析度於由直射光束及反射光束所界定的平面方向為特高。
於大部分實施例中,光束偵測器之控制器可配置來測定哪一點例如9810或9808具有最高強度,及使用最高強度光束用於微粒偵測。典型地,最亮的所接收的光束將與直射光線9708相當。於極端的情況下,兩道所接收的光束之強度間並無可區別的差異。於此種情況下,到達最遠離反射表面的接收器之光束較佳係選作為直射光束,原因在於另一光束亦即較為接近反射表面之光束更可能為反射光線。
於一個具體實施例中,影像感測器之解析度為640x480像素。
第97圖顯示根據本發明之一實施例製造的又一光束偵測器架設。於此種情況下,光束偵測器9900包括發射器9902及接收器9904。光束偵測器之操作實質上係與本文它處所述相同。但光束偵測器架設額外包括附接至反射表面9910之二擋板9906及9908。擋板9906及9908自反射表面9910朝直射光束路徑9912向外延伸,及用來截取可能到達接收器9904之反射光束路徑。擋板數目及長度可經選擇來適合特定架設,且可定位來機乎全部延伸至直射光束9912。另外,若準確定位為可能,若可測定反射光束之正確位置,則可使用相當短的擋板。另一個選項涉及較長形擋板,具有一孔口準確定位來使得直射光束9912通過其中。如所瞭解,經由將發射器與接收器定位於既有結構的緊鄰附近,其作用類似擋板將可達成相同效果,例如於倉儲型架設中,其中倉庫有多道水平延伸的天花板支承光束置在天花板下方,發射器與接收器可定位在略低於光束,使得光束實際上操作作為擋板來防止來自於偏離天花板表面的反射的干擾。
第98圖顯示本發明之又一實施例。本實施例顯示包含發射器10054及接收器10056之光束偵測器設置10050。發射器10052發射一光束或多光束於照明野,如同先前實施例之討論,直射光束10058及反射光束10060二者可到達接收器10056。於本實施例中,接收器係配置使得其具有視野θ,其於反射方向相當窄,如此接收器10056無法「看到」反射表面10062。若接收器10056無法看到反射表面10062,則將產生夠強的可資區別信號之自發射器10054至接收器的唯一光徑將為直射光束10058。同理,發射器10054之照明野可經侷限,使得其未照明反射表面10062。典型地於光束偵測器架設中,反射表面將為欲監視的房間之天花板。於此種情況下,接收器10056之視野及/或發射器10054之照明野將需限制於垂直方向。適當視野或照明野將具有0度至5度的發散角。但此項要求將依系統幾何形狀而異。顯然有長距離的系統,例如發射器與接收器間距100米的系統將要求極窄光束發散角或視角來達成此項結果。但於發射器與接收器間只有三米的實施例中,可接受遠較廣的照明角及視野角。鄰近於反射表面也將影響達成前述結果所需的角度。
第99圖顯示根據本發明之一面相製成的光束偵測器之又一實施例。於此實施例中,光束偵測器10100包括發射器10102及接收器10104。發射器10102包括二光發射器10102A及10102B。各個光發射器10102A及10102B發射一光束或多光束於其個別的照明野,且可導向到達接收器10104的直射光束10108及反射光束10110。兩個光發射器10102A及10102B係配置來以預定照明順序啟動使得所接收的光束來源亦即來源光發射器可藉分析於接收器10104所接收的光測定。於本實施例中,透過直射光徑10108到達接收器10104之光將於接收器之感測器(圖中未顯示)上形成一影像10114A,而藉反射光徑10110於接收器所接收的光將於接收器10104之感測器上形成影像,諸如顯示於10114B。如所瞭解,兩個情況下(亦即直射及反射)形成於接收器上的影像彼此不同,在於一者為另一者的鏡像。直射形成的影像10114A保有二光源10102A及10102B之相對位置,而於反射影像10114B中,此二光源10102A及10102B之位置於含有反射束及接收器的平面交換。如此,經由分析所接收的影像,可判定哪一對所接收的光束係對應於直射光束路徑10108,而哪一對係對應於反射光束路徑10110。於本發明之其它實施例中,二光源10102A及10102B可為有不同波長或偏光特性的光發射器,而非以不同的調變樣式照明。
如熟諳技藝人士瞭解發射器上的任何光影像之成形配置。例如二維光線可區別的光發射器可結合發射器來允許相對於光束於任何方向的來自任何反射表面之直射或反射光束之測定。
現在轉向參考第100圖,顯示光束偵測系統10200。光束偵測系統可為前述任一型系統,及包括發射器10202及接收器10204。發射器可發射於任一個或多個發射頻帶之任何數目的光束。發射器10202所發射之光束係由接收器10204接收。於此實施例中,發射器係配置來發射偏振光(例如,垂直偏振光)。接收器10204係適用於只接收具有與所發射的光相同偏振之光。
發射器之偏振可以多種方式達成,包括使用特性偏振光源諸如雷射二極體,或經由將偏振濾波器放置於隨機(或以其它方式)偏振光源的光束路徑上而達成。同理,接收器之偏振敏感度可藉接收器之特有特性測定,或經由安置一個或多個偏振濾波器於接收器的感測器元件前方而測定。
於本實例中,通常非偏振或隨機偏振的惱人的光諸如周圍日光將由接收器實質上剔除,而全部所發射的光束(少於介於發射器與接收器間區別為微粒及物件的比例)將由接收器104接收。
第101圖顯示第100圖之類似系統。第10圖之系統10300包括一發射器10302,其發射光束10306將由接收器10304接收。於本實例中,發射器係於第一方向(例如,垂直偏振)偏振,及發射至少一道偏振光束10306。接收器10304係設置來接收於與發射器10302所發射之光束正交偏振的光。於此種情況下,接收器10304適用於接收水平偏振光。此種偏振偏差的效果在於光束10306路徑上的大型粒子例如灰塵將與小型微粒例如煙霧區別。原因在於大型粒子例如灰塵傾向於以隨機偏振散射光,如此增加於接收器10304所接收的光之交叉偏振組分。
第102及103圖所述兩個實施例之組合可結合成一個微粒偵測系統。首先轉向第102圖,系統10400包括發射器10402及接收器10404。發射器10402適用於發射光束10406A及10406B。此二光束10406A及10406B中之第一者10406A係設置來以第一偏振態發射,而第二光束10406B係以正交偏振態發射。接收器10404係設置來只接收於單一偏振例如第一偏振態之光。如此,如所瞭解,關係第9及10圖所述兩項技術可應用於同一個接收器。較佳發射器10402係設置來交替產生光束10406A及10406B,因此二偏振態光束係於不同時間到達接收器10404。
第103圖顯示另一系統。於此系統中,光束偵測器10500包含發射器10502及接收器10504。發射器10502係配置來發射垂直偏振光束10506。接收器10504適用於光學分割於多個偏振態例如垂直偏振態或水平偏振態所接收的光。此項目的事經由多個具有不同偏振之相鄰光接收元件其係同時操作或交替操作而達成。於此一實例中,分束組件10508係設置於接收器元件之先來導引光束至各個接收器。
如熟諳技藝人士瞭解,本說明書為求方便只選用垂直偏振及水平偏振,反而可使用任何偏振。此外,為求方便敘述,已經選用正交偏振態來說明本發明。但本發明不應解譯為限於彼此對準的或正交的偏振態。偏振間的其它角度偏差亦屬可能。熟諳技藝人士將可決定欲執行的適當計算來考慮此等變化。
達成接收器或發射器之偏振態變化的一種方式係設置機械裝置來將偏振濾波器置於光徑。舉例言之,電磁閥可用作為啟動器來將往復的偏振濾波器移動進出光束路徑。另外,可採用有多個不同偏振濾波器環繞輪狀結構的旋轉濾波機構。經由旋轉輪狀結構通過光徑,隨著時間之經過可達成不同偏振。其它機械配亦屬可能,例如發射器10502之發光元件可如同接收器之一或多感測器般環繞軸線物理旋轉。其它機構配置為熟諳技藝人士顯然易知。
第104圖顯示房間10600A之平面圖,其中架設根據本發明之一實施例之光束偵測器系統10602A。第105圖顯示同一個房間之側視圖。光束偵測系統包括配置來監視八個發射器10606A、10606B至10606H的單一接收器10604A。各個發射器10606A至10606H適用於發射具有α度水平照明角之光。如第104圖所示,也適用於發射有β度垂直照明角之光。同理,接收器10604A之視野差在其水平及垂直度。於本實例中,接收器10604A適用於接收γ度視角及δ度垂直視角之光。於本發明之較佳形式,發射器10606A至10606H之水平照明角係比其垂直照明角δ寬。同理,接收器10604具有比其垂直視野更寬的水平視野。
之差異視野及照明野分別經選擇來考慮於典型架設中的對準公差。例如,於大部分安裝諸如第104圖所示,發射器10606A至10606H典型係安裝成彼此同高,而接收器10604A將安裝於平行於發射器10606A至10606H的平面。如此,當接收器10604A之光感測器上接收到發射器10606A至10606H之影像,其將對準於光感測器上。如此,於接收器10604A之垂直方向可忍受相對窄視野。但如第4圖顯然易知,接收器10604A要求極寬的水平視野。同理,於大部分架設發射器10606A至10606H之水平對準比垂直對準更難達成。典型原因在於垂直面的移動範圍較為有限,而典型地建築物之壁相對平行對準。因此理由故,安裝者可能僥倖達成安裝發射器及接收器使得其視野係正交於其安裝的表面平面,如此將達成適當準確對準。但水平對準可能並非此種情況,原因在於由於系統之安裝幾何,光源之照明角及光接收器之接收角將與其安裝的表面方向改變。如此提供需要水平對準能力,接收器之水平視野及發射器之水平束寬較佳相當寬。
舉例言之,接收器可能調適使得其水平視野趨近於90度,而其垂直視野只有約10度。同理,發射器可配置使得其水平束寬約10度,而其垂直束寬只有約3至5度。
為了達成不同的水平及垂直光束發散或視角,發射器或接收器可裝配有包括變形鏡頭的光學系統。
第106圖顯示諸如關聯第104圖說明之接收器配置實例。
接收器10820包括一多段光感測器10822,其係耦接視訊讀取及處理次系統10824。光接收器10820包括一種光學配置10826包含例如多個透鏡或用以將所接收的光聚焦於感測器陣列10822上的其它光學組件例如鏡子。於較佳形式,變形鏡頭係設置來對接收器提供實質上不同的水平及垂直視野。
第106圖顯示一種發射器10900其包括適用於發射於一個或多個波長頻帶之一或多光束的至少一個光發射器10902。發射器10900包括由電源10906例如電池供電的控制電路10904。光源10902發射光束10908。此光束藉光學配置10910成形為特殊分散樣式或光束形狀。如前文說明,光學配置10910可包括一個或多個變形鏡頭。
如熟諳技藝人士瞭解,不同裝置將有不同幾何形狀限制及要求。如此,本發明不應考慮為限於發射器例如10806或接收器例如10804之光束形狀係藉其垂直角或水平角界定。反而,本發明擴充至下述系統,其中無論是否彼此下效及是否垂直及水平對準與否,發射器之束寬或接收器的角度範圍中之一者或二者於任二方向有別。
與微粒偵測系統是否屬於附圖第1圖、第2圖或第4圖闡釋之類型無關,諸如PCT/AU2004/000637、PCT/AU2005/001723或PCT/AU2008/001697揭示,系統組件之對準重要,例如光源與標靶的對準及所發射光束反射回接收器之對準。如前文說明,光源與標靶間有顯著距離,如此光源與標靶準確對準困難。因此理由故,較佳設置調整式安裝配置,其允許於安裝時及於光源及/或標靶自其安裝位置移動之兩種情況下,光源(及/或標靶,若非逆反射性)改變。
第108圖顯示將協助微粒偵測器之光學組件對準的對準光束配置之一個實施例。第108圖所示裝置屬於前文就第2圖討論之該型,但煙霧偵測器可有多種不同形式。如圖所示,煙霧偵測器11000包括光源11002及接收器11004。此外,煙霧偵測器11000包括屬於適用於產生對準光束11042之該型視覺對準裝置11030,該光束係與光源11002軸向對準但為視覺上可觀察。光束11042將投射至位在距煙霧偵測器11000某個距離的標靶11006上。
煙霧偵測器11000設置有呈圓板11032形式的安裝裝置,使用時將藉螺絲等安裝至支承表面上來將煙霧偵測器11000固定於距該支承表面之適當高度。活節安裝裝置11034係設置在安裝板11032與煙霧偵測器11000間。活節安裝裝置可呈各種形式,其將允許改變偵測器的對準,但可鎖定於選定之方向。摩擦鎖定配置為可能,或可使用某種形式的螺絲旋緊配置。
如第109圖所示,活節安裝裝置11034包含一杯11036及一球11038,球可於杯內旋轉。球被杯所抓住固定因而允許煙霧偵測器11000相對於支承板11032傾斜,藉此允許入射光11010精準導引至某個距離的標靶11006。平頭螺絲11040設置用以相對於杯鎖定球。其它鎖定球於杯之形式為可能,包括例如摩擦配合。
如所述,對準光束11042用以協助入射光11010與標靶的對準。如此,典型地包含雷射束的對準光束11042係平行於入射光11010。操作員如此可瞄準對準光束11042於標靶,或恰相鄰標靶,藉此確保入射光11010(典型並非可見)取中針對標靶。一旦入射光11010係針對標靶中心,平頭螺絲11040將旋緊,藉此將球11038鎖定於杯11036內部。如此將確保煙霧偵測器11000係最佳對準,然後可以此處所述方式進行系統的對準。
附圖第110圖顯示將煙霧偵測器11000固定選定的可操作位置之方式。於此實施例中,用來將球11038鎖定杯11036內部的平頭螺絲11040可沿延伸貫穿偵測器殼體11000前側11046的通道11044接取。通道11044係配置來接納對準工具11050之主軸11048。對準工具11050的一端有一起子11052及另一端有一手柄11054。手柄11054於其後端有一凹部,其中已經插入雷射11058。主軸11048緊密滑動嵌合通道11044,諸如主軸係位在通道11044,來自雷射11058之雷射束11042係軸向對準光源11002及/或接收器11004,如前文討論。
於本實施例中,主軸11048及通道11044各自有互補筒形。當然熟諳技藝人士將瞭解其它配置亦屬可能,例如通道11044可具有方形輪廓,方形的邊長係與主軸11048直徑相對應。
安裝者使用第19圖所示工具11050將主軸11048插入通道11044,然後操作殼體11000,同時觀察於遠端標靶的視覺對準光束11042。當殼體係正確對準時,手柄11054將以齧合平頭螺絲11040的起子頭11052旋轉因而旋緊平頭螺絲11040且將杯與球一起鎖定。一旦以此種方式鎖定,安裝設備的技術員將檢查雷射束11042是否仍然正確對準標靶,及若是,得知煙霧偵測器係正確定向。顯然於未來任何時間,諸如每當設備被維護或維修,經由單純將工具11050主軸插入通道11044,及再度檢查雷射束11042是否正確對準遠端位置的標靶,可檢查單元的定向。
於此一實施例中,起子11052顯示為螺絲起子頭,但顯然若平頭螺絲有若干其它齧合形式形成,諸如艾倫內六角扳手承窩,則起子11052將呈適當尺寸的六邊艾倫內六角扳手組態。
雖然第110圖顯示一種工具具有安裝於其中供對準目的的雷射,但當然也可單純將雷射11058插入通道11044來協助殼體相對於遠端標靶的對準。
第110至112圖顯示光束係平行對準入射光束之配置,但此非唯一可能的配置。舉例言之,殼體可有多個雷射接收承窩於其中,相對於入射光束夾角成協助煙霧偵測器相對於遠端標靶或關注區架設及定向的組態。例如煙霧偵測器具有前文參考第3圖討論的形式,但可能期望雷射束也指示光源照明的全弧範圍。顯然可殼體11000可包括一承窩其與入射束的夾角將與光源照明的全弧範圍相對應。
第111圖圖解顯示一個有三承窩11049的殼體,各承窩適合接納第110圖所示一工具11050,因而允許安裝技術員正確對準殼體用以獲得最佳效能。側向二承窩11049較佳係相對於視訊攝影機可檢測的可見光弧對準,而中央承窩將用來於遠端位置對準視訊攝影機中心與標靶11006。
第112圖顯示本發明之又一實施例。於本實施例中,視覺對準裝置11460包括一主軸11462,其又安裝於煙霧偵測器殼體11464之一承窩,且將以固定方向,對準於安裝於殼體11464之光學組件。視訊攝影機11466係以手柄部11468安裝於主軸11462末端。視訊攝影機較佳為電池供電,且適用於產生距殼體11464遠端位置的標靶一影像。視訊攝影機較佳係設有望遠鏡頭。
視訊攝影機所看到的影像較佳係無線發射至接收器單元11470,其包括於其上顯示遠端標靶影像的螢幕11472。影像也包括瞄準符號或裝置11474,其可呈準星形式或對準協助瞄準裝置之若干其它形式,諸如格狀圖案等。
顯然,當殼體移動視訊攝影機之視野及因而透過視訊攝影機所產生的影像將於螢幕上移動,做煙霧偵測器對準的技術員將可經由觀看螢幕上的影像,正確地定向殼體。因視訊攝影機相對於煙霧偵測器的光學組件以固定式對準,一旦螢幕上的影像正確地對準期望的標靶,技術員將瞭解光學組件係正確地對準。接收器單元較佳為手持式電池供電的電腦裝置諸如PDA等,顯示即時影像於攝影機上。與接收器間的安裝裝置將較佳為無線,但也可透過纜線連接。
攝影機可裝配有安裝於標靶位置的波長相依性光濾波器,於與光源諸如LED或其它主動或被動光源相對應的波長。標靶光源可選擇性地以特定速率或樣式閃光,因而為人眼可分辨。閃光樣式也可藉攝影機及/或接收器中的軟體識別。
接收器單元及/或攝影機的軟體包括於顯示器上產生標靶的加強視圖之裝置,及可包括安裝標靶的房間或表面之周圍影像。接收器單元及攝影機的組合較佳包括對操作員產生可聽聞的線索及/或語音指令之裝置來協助對準程序。此等指令可為如何移動殼體因而正確地對準標靶的指令本質,且可包括可聽聞的字眼諸如「上」、「下」、「左」、「右」、「標靶上」、等。
須瞭解視訊攝影機安裝主軸11462末端,殼體環繞活節安裝裝置11474的小量移動將移動主軸末端的視訊攝影機通過相對寬的弧。如此主軸作為桿臂,視訊攝影機安裝於臂的遠端。如此提高對準程序的敏感度,故假設視訊攝影機及光學組件係正確相對對準,當視訊攝影機正確對準標靶時,光學組件將精準地對準於期望方向。
第113圖顯示根據本發明之一實施例製成的光學組件之另一種殼體組態。
於本實例中,組件11500包括光電組件,諸如攝影機或光源及其相關電子電路及光學裝置11504。光電組件11502係相對於殼體11506以固定關係安裝,且係透過固定布線11508而連結至電氣及資料連結11510。
殼體11506包括一孔口11512,光束經此孔口而進出殼。孔口11512可藉鏡頭或窗啟閉。組件11500也包括安裝於殼體11506的光學總成11514。於此種情況下,光學總成為一鏡相對於光電系統11502、11504之光軸夾角安裝。鏡係用來轉向光信號來去於光電系統11502、11504及通過孔口11512。
鏡11514係透過關節安裝裝置11516而安裝於殼體11506。於此種情況下,關節安裝裝置包含安裝於旋轉摩擦軸承11518之一轉軸,其係捕捉於殼體11506內有相對應成形的凹部11520。關節座916包括齧合裝置11522,其可使用對準工具自殼體11506外側齧合。舉例言之,可使用關係先前實施例所述對準工具。
使用時,安裝光學組件的技術員使用固定式安裝裝置來相對於安裝表面以固定方式附接殼體,及然後經由使用對準工具調整鏡11514立定向來調整光電組件11502之外部視野(或照明野)。系統之操作方法實質上係與前文說明相同,但活節安裝裝置允許光學總成11514之方向相對於以固定關係安裝於安裝表面上的光電組件改變,而非允許整個殼體相對於安裝表面的重新對準。
第114圖顯示光束偵測器總成11600,其例如可為光發射器。總成11600係以二模組組成。模組11602為主包圍體,罩住該單元的電池(圖中未顯示)及光電系統11606。光電系統11606可安裝於電路板11608上。模組11602也包括一開關11610,於一項配置中,該開關係回應於磁場。此種開關之一實例為磁簧開關,其具有一對接點於位在氣密式密封的玻璃封套內的鐵金屬簧片上。接點最初為分開。於磁場之存在下,開關閉路。一旦移開磁場,簧片的挺度造成二接點的分開。
也可使用其它對磁場敏感的切換裝置,諸如赫爾效應裝置。
模組11604為安裝底座,其包括可作用於開關11610上的啟動器。啟動器例如可為磁鐵。模組11602及11604係彼此分開或於封裝體內運輸及儲存,此處啟動器係與開關分離足夠距離來防止開關的作動。典型地,安裝時,模組11604固定至壁11620或安裝表面上,而模組11602隨後附接至模組11604。須瞭解多種配置允許模組11602易牢固地安裝至模組11604。例如模組11604有一個或多個軌道,於組裝期間模組11602可沿軌道滑動遠達止塊。止動裝置可設置來將二模組固定定位。此種配置允許二模組以預定方向組裝,如此相對於磁鐵11612定位開關11610。
唯有當模組11602及11604組裝時,開關11610才閉路,允許開始自電池顯著耗電。
於另一配置,模組11604包括多塊磁鐵11612。磁鐵11612之配置可用來表示資訊項目,諸如識別模組11604之資料。資訊包括與該模組11604所在位置相關的序號或迴路位址。經由提供於基本模組11604上的磁鐵樣式,資料可有效永久地保有於模組11604附接至壁11620的位置。如此,例如於故障諸如電池耗盡後,即使更換模組11602,識別資料仍然存在。
模組11602可包括對模組11604內磁鐵11612的存在敏感的多個開關11610或感測器。例如可設置可讀取模組11604中磁鋪樣式中所編碼的識別資料之磁簧開關之陣列或預定樣式。
於又一配置中,模組11604中的磁鐵11612樣式可提供於活動裝置諸如卡片上。帶有磁鐵樣式的卡片例如可於模組11604固定至壁11620時插入模組11604內。
第117至119圖顯示本發明之另一個實施例。發射器單元113000包括形成光學模組之一殼體113200。發射器進一步包括一背板113010、後殼套113020及前殼套113030,其共同形成一安裝部113180。
背板113010包括一螺絲孔,通過此孔其安裝至安裝表面(圖中未顯示)諸如壁面上。背板113010係以簡單的可釋放式捺扣嵌合而附接至後殼套113020。
後殼套113020及前殼套113030共同界定一部分球形空腔,其中接納殼體113200。殼體113200包括後殼體113040及前殼體113050。後殼體113040及前殼體113050各自有主要為中空的半球殼狀形式。
後殼體113040具有環繞其外周邊的一唇。前殼體113050於其外周邊內側有一互補唇。互補唇係共同捺扣嵌合在一起而界定球殼體113200。相鄰此捺扣嵌合,小部分後殼體113040凸起入前殼體113050內而界定環繞其周的環形階。
偵測器殼體113200外表面主要為球形且與由後殼套113020及前殼套113030共同界定的球形空腔互補。互補球形表面間有緊密滑套嵌合,故殼體113020相對於安裝部113180可旋轉至寬廣方向範圍,且於安裝期間稀鬆摩擦固定對準。
前殼套113030之前端開放而暴露殼體113200。於本實施例中,前殼套113030之開口係成形且彎曲來允許殼體113200環繞縱軸比橫軸彎曲至更寬廣的角度範圍:典型地如同接收器,發射器安裝於接近天花板的壁面,接著通常環繞橫軸亦即於上下方向需要較少調整。
前殼體113050前端為鈍端來界定一圓形開口,其中載有透鏡113060。圓形印刷電路板(PCB)113070係取中安裝且橫過據於殼體113200內部。PCB 113070係平行於透鏡113060,且座落背靠由後殼體113040凸起入前殼體113050內部所界定的環形階。
呈LED形式的光源係取中安裝於PCB 113070的前表面上,於使用中,投射例如於一個或多個波長頻帶之光束,其遮蔽提供微粒存在的指示。透鏡113060係設置來準直由LED 113080所投射的光束。電池113090係載於PCB 113070後表面上。
該具體實施例包括一鎖定機構113190,包括如第116圖顯示的一心軸113240一凸輪113100及一制動蹄113110。心軸113240具有位在其軸向中點的向外凸起之軸環113140。
後殼體113040及前殼體113050各自包括一管狀凹部,用以接納心軸113240之個別部分。當前後殼體捺扣嵌合在一起時,軸環113140係捕捉於後殼體113040與前殼體113050間。套住軸環113040之前後心軸的O形環封限制碎屑的經由管形凹部進入殼體113200。六角扳手113160係形成於心軸113240之前端面。筒形管狀通道113244通過前殼體113050,及提供接取承窩113160。承窩113160於發射器單元安裝期間接納透過通道113244來自發射器單元113000前方的艾倫內六角扳手狀嵌合,使得安裝者可旋轉心軸113240環繞其軸。如所瞭解,該旋轉鎖定殼體113200於相對於安裝部113180之選定方向。
後殼體113040具有向後孔口其中載有制動蹄113110。制動蹄113110具有外表面113130,其為部分球形且當於回縮「關節部位」時,對準後殼體113040之球形外表面。制動蹄113110載有一螺柱113120於其各面上。螺柱113120凸起一段短橫向距離,亦即垂直上及下及前及後方向的方向。螺柱113120係接納於後殼體113040之互補凹部(圖中未顯示)內部,因而界定制動蹄113110可旋轉通過一定移動範圍的樞軸。移動範圍係受制動表面113130與由後及/或前殼套113020、113030所界定之內球形表面間的接觸所限,及受與凸輪113100接觸所限,容後詳述。
如第116圖所示,制動蹄113110包括分開二翼部的一中心縱槽道,翼部各自載有個別螺柱113120。制動蹄113110具有隨順度因此制動蹄113110及後殼套113040可藉壓縮翼部裝來縮小橫過螺柱113120的總尺寸,及將制動蹄113110嵌套入後殼套113040,使得螺柱113120係接納於形成於後殼套113040的互補凹部(圖中未顯示)。一旦釋放,翼部回復其未經壓縮的形狀,故螺柱113120捺扣嵌合入互補凹部。
凸輪113100係由心軸113240攜載。當然另一選項係凸輪與心軸一體成形,如第119圖顯示。凸制動蹄113110包括單一葉片,且係設置來於前向與螺柱113120(及因而所界定的樞軸)隔開位置,向下作用於制動蹄113110上。
於接收器113000架設期間,於對準殼體113200後,安裝者使用艾倫內六角扳手狀工具,透過通道113244接取心軸113240之承窩113160。使用艾倫內六角扳手狀工具旋轉心軸113240,旋轉凸輪113100,其又驅動制動蹄113110前部向下,使得制動表面113130摩擦齧合由後及前殼套113020及113030界定的內球形表面。藉此鎖定殼體113200相對於安裝部113180的對準。
於此一實施例中,透鏡113060及LED 113080係配置來投射光於透鏡113060之平面的垂直方向。通道113244也係垂直透鏡113060平面。類似前文說明,於安裝期間,可使用對準工具,其中對準工具具有圓柱主軸,其尺寸用以緊密滑套通道113244,及包括設置來投射與主軸共軸的光束之一雷射指標器。於本實施例中,對準工具之主軸止於與承窩113160互補嵌套的艾倫內六角扳手。於安裝期間,該工具插入通道113244及齧合承窩113160。當齧合時,對準工具可用作為槓桿,且可操縱直至其投射光束聚焦於標靶諸如接收器上。通道113244因而提供殼體113200對準的視覺指示之方便裝置。對準工具然後可單純環繞其軸旋轉來將殼體113200鎖定於正確對準。
如前文說明,期望電源供應器,本例為電池113090只有於安裝時才連結(而啟動發射器)。心軸113240之軸環113140於其周邊上一點載有一磁鐵113150。磁鐵113150與凸輪113100葉片的相對位置係經選定,使得當制動蹄113110係在向前進的「制動」位置時磁鐵113150與安裝在PCB 113070後表面上的磁簧開關(圖中未顯示)交互作用而閉路開關,藉此連接電源供應器而啟動接收器113000。磁鐵環繞軸環113140相對於凸輪113100葉片的所在位置係經選擇,使得當制動蹄113110係在回縮的「活節安裝裝置」位置時,磁鐵113150不會作用在磁簧開關,故磁簧開關維持開路,而接收器維持未啟用。
發射器單元113000的安裝簡單。接收器113000可呈預組裝的單元供應,鎖定機構係於回縮活節安裝裝置位置,故電池未連接而不會耗電。以簡單捺扣嵌合附接至後殼套113020的背板係升降離開(亦即可捺扣嵌合),而螺接或以其它方式操接至壁或其它安裝表面。後殼套113020及附接其上之接收器113000之其餘部分然後單純捺扣嵌合至背板。然後殼體使用前述對準工具對準,及然後容易地方便地鎖定於該對準且以該工具的簡單移動來作動。
第118及119圖顯示類似第117至119圖所述實施例的本發明之又另一實施例。第119圖係類似第116圖,但其顯示可用於本發明之實施例之接收器113000’。接收器113000’包括一通道113244’,如同前一個實施例,通過該通道可接取心軸113240’。本實施例與第115圖實施例之差異在於鎖定機構的細節。心軸113240’包括一體成形的凸輪113100’設置來作用於樞接安裝的桿臂113210。
桿臂113210具有於側向的長度,亦即垂直上下及前後方向之方向。螺柱113120’自桿臂113210的一端向前突起。螺柱113120’係接納於界定於發射器殼體113200’內部的一互補凹部(圖中未顯示),桿臂113210係樞接支撐於發射器殼體113200’內部。
短螺柱113230自桿臂113210的另一端於前後方向突起。螺柱113230係同軸對準。制動蹄113110’包括向上突起的U字形配置,涵蓋桿臂之另一端且齧合螺柱113230來樞接桿臂113210及制動蹄113110’。制動蹄113110’自桿臂113210向下突起,及具有方形載面及決定部分球形制動表面113130’。
制動蹄113110’係座落在發射器殼體113200’內部具有一互補方形輪廓的管狀貫穿孔(圖中未顯示)內且由該管孔所導引。
如同前一個實施例,於發射器113000’之安裝期間,心軸113240’旋轉。當心軸113240’旋轉時,凸輪113100’作用來向下驅動桿臂113210環繞其樞軸(由螺柱113120’所界定)。制動蹄113110’係又向下推送來摩擦齧合固定式安裝部113180’的內表面。
桿臂113210包括自桿臂113210末端,以與桿臂主體夾角銳角,向下凸起的一體形成指狀物113220。指狀物113220界定彎曲路徑,其外表面係與發射器殼體113200’內部互補。指狀物113220之尺寸係朝向該內部按壓,藉此偏轉桿臂113210環繞其樞軸(由螺柱113120’所界定)向上旋轉。因而制動蹄113110’相對於凸輪朝向回縮的未制動位置偏轉。
須瞭解於本說明書揭示及界定之發明延伸至自文字或圖式所述或顯然易知的個別面相或結構特徵中之二者或多者的全部其它組合。全部此等不同組合組成本發明之多個其它面相。
也須瞭解「包含」(或其文法上的變化詞)一詞用於本說明書係相當於「包括」一詞,而不應解譯為排除其它元件或特徵的存在。
32...光源
34...接收器
36...標靶
44,54...控制器
100...偵測器、信標
102...光發射器及偵測器、逆反射部
104...反射器、光源部
106...監視區、LED
108...入射光、LED
110...反射光、Sync 1(訊框1)
112...Sync 2(訊框2)
114...IR(訊框5)
116...UV(訊框7)
118...資料(訊框9)
200...偵測器
202...光發射器
204...接收器
206...標靶
208...監視區
210...入射光
212...反射光
220...視野
222...視野
300...視野、像素陣列
302...像素
304...像素組群
310...箭頭
324...發射器
401...接收器
402...發射器、光發射器
403...成像晶片
404...接收器
405...透鏡
406...標靶
407...控制器、主處理器、主視訊處理器
408...監視區
409...記憶體
410...入射的UV光
412...入射的IR光
413...第二處理器、處理器
414...反射的UV光
415...介面裝置
416...反射的IR光
420,422...邊
424...微控制器
506...時間
510...時間
600...偵測器、系統
602...光發射器
604...接收器
606...第一標靶
607...標靶
608...第二標靶
610...監視區
612...入射光
614...反射光
616...入射光
618...反射光
620,622...邊
624...微控制器
700...系統
704...接收器
706...光發射器
708...監視區
720...視野
724...微控制器
800...微粒偵測系統
801...空間
802...接收器
804-814...六個標靶
816...線
818-828...光束
830-834...煙流
900...定址能力提高之系統、系統
901...整個空間、監視區
902...接收器
904-908,804-808...反射器
909...線
910-920...光束
1000...信標、提供定址能力之系統
1001...監視的空間
1002-1014...反射標靶、反射器
1002...逆反射部
1004...光源部
1006,1008...LED
1014...懸垂、反射標靶
1016...光束
1018...反射器光束
1020-1028...光束
1050...反射標靶、標靶
1052...反射面
1054...安裝托架
1100...調變體系
1102...另一調變體系
1202...欲監視區
1204-1214...多個信標
1216...接收器
1218...扇區
1220,1222...位置
1300...安裝機構
1302...接收器
1304...光源
1306,1308...旋轉鏡
1310...驅動機構
1312...視野
1314...照明野
1400...微粒偵測系統
1402,1402’...曲線、所接收之紫外光位準
1404,1404’...曲線、所接收之紅外光位準
1406...反射標靶
1408...監視區、欲監視房間
1410...攝影機及光發射器配置、接收器及光發射器配置、配置
1500...信標
1502...信標殼體
1504...托架
1506...指示器撥盤
1508...中心部
1510...指示器箭頭
1512...照明野
1514...角度刻度記號、記號
1700...信標
1702...安裝托架
1704...活動式瞄準機構
1706...目鏡
1708...位置標記
1800...信標
1802...逆反射標靶部
1804...光源
1806...直角稜鏡
1808...LED
1810...驅動電路
1812...電池
1814...透鏡、殼體
1900...信標
1902,1904...LED
1906...光束
1908...照明野
1920...信標
1922,1924...LED、光源
2000...信標
2002,2004...光源、LED
2006,2008...調變樣式
2010-2014...區
2016...調變樣式
3300...光源
3302...殼體
3304...發射區段
3306...接收器
3308...第一光發射器
3310...第二光發射器
3312...第三光發射器
3314-3318...光束
3320...控制器
3322...異物
3324...煙霧、煙霧微粒
3400...光束
3422...阻塊
3500...煙霧事件
3600...光源
3602...殼體
3604...發射區段或窗
3606...接收器
3610...IR發射器
3614、3618...UV光束
3616...IR光束
3620...控制器
3626...單一UV光發射器
3628...分束器
3700...光源
3702...殼體
3704...發射區段
3706...接收器
3708...第一LED光發射器
3710...第二LED光發射器
3712...UV光束
3714...IR光束
3716...控制器
3718...異物
3722...導光光學裝置
3724...光發射器
3726...發射區段
3728...第一光發射器、半導體晶粒
3730...第二光發射器、半導體晶粒
3732...封裝體、單一光學封裝體
3900...系統
3906...標靶
3912,3914...光束
3926...發射器
3928,3930...光發射器
3932...殼體
4000...光學元件
4080...菲涅爾透鏡
4081...多元件透鏡
4102...光束成形光學裝置
4104...已經調整之光束
4202...光束成形光學裝置
4204...已經調整之光束
4208...準直元件
4210...漫射元件
4212...輪廓調整元件
4214...寬區段
4216...較亮的光束區段
4350...接收器、感測器
4352...光束
4354...光源
4356...光束
4450...感測器
4454...光表面
4456...寬度
4462,4466...光束
4500...光源
4502...光束
4504...UV光
4506...IR光
4508...接收器
4740...光發射器
4742...本體
4744...透鏡或窗部
4746...引線
4748...發光元件、UV LED晶粒
4750...IR LED晶粒
4752...光電二極體
4952...光電二極體
4955...光發射器
4958...UV LED晶粒
4960...IR LED晶粒
5000...電路
5002、5004...光發射器
5006...光電二極體
5008...電流源
5010...回授電路
5070...電流源
5102...第一部分
5104...作圖
5200...電路
5202、5204...光源
5206...光電二極體
5208...電流源
5210...回授電路
5212...調變電路、驅動脈衝調變電路
5302...光電二極體
5304...下圖
5306...方波脈衝
5400...光源
5402...光發射器
5404...控制電路
5406...電源
5408...光學系統、光學組件
5410...光電二極體
5412...微控制器
5500...光源
5502...光源、發光裝置
5504...壁面或擋板
5600...光源
5602...光發射器
5700...房間
5702...接收器
5704-5708...發射器
5801-5806...步驟
5907-5912...步驟
6015-6018,600A-602A,609A...步驟
6100...發射器殼體、發射器
6102...LED、光源
6104...光學元件
6108,6110...光學衰減器、濾波器
6112...結構、溝槽
6300-6302...濾波器
6400...上圖
6402...下圖
6404-6408...所發射的脈衝
6410,6412...時間
6500...微粒偵測系統
6502...光源
6504...光接收器
6506,6508...波長頻帶、光束
6510...測試濾波器
6512-6516...濾波器元件
6570...測試濾波器
6802...前表面
6804,6806...色彩
6900...濾波器元件
7000-7300...濾波器元件
7304...第一色
7306...第二色
7408...測試濾波器元件
7410-7418...層
7420...中部、核心
7422,7424...透明層
7600...光束偵測器
7602...發射器或光源
7604...接收器
7606...光發射器
7608...光束
7610...光感測器
7612...控制器
7614...光學系統
7750...接收器
7752...窗
7754...光束
7756...感測器
7758...感測器元件
7760...波長選擇性組件、鑲嵌染料濾波器
7762,7764...單元
7800...接收器
7802...光學組件
7804...接收器殼體
7806...波長選擇性稜鏡
7808...第一光束
7810...第二光束
7812,7814...感測器陣列
7820...接收器
7822...單一感測器陣列
7824...光學組件
7826...分束組件
7850...光接收器
7852...殼體
7854...光感測器
7854-1~n...n感測器層
7856...光學系統
8101...發射器
8102...光束
8103...接收器、CCD
8104...感光元件
8105...所監視的空間
8106...漫射裝置
8107A-B...已漫射的光束
8108...控制器
8109,8109A...感測器元件組、區
8301...漫射裝置
8302...聚焦透鏡
8303...所發射的光束
8304...焦點
8305...感測器
8306...已聚焦之光束影像
8310...接收器
8311...聚焦透鏡
8312...光感測器
8313...漫射器
8500...微粒偵測系統
8502...發射器
8504...接收器
8506...光學組件
8508...導光或影像形成光學裝置
8510...感測器陣列
8512...帶通濾波器配置
8602-8608...發射通帶光之部分
9000...火警系統、火災警報系統
9010...火災警報面板
9012...火災警報迴路
9014...偵測器
9016...火災警笛
9018...偵測器
9020...光束偵測器系統
9022...接收器
9024...發射器
9300...環境監視系統
9302...區、欲監視區
9304...房間
9306...光束偵測次系統
9308...接收器
9310-9316...發射器
9318-9324...環境監視器
9326...導線
9400...環境監視系統
9402...光束偵測次系統
9404...環境監視次系統
9406...接收器
9408...發射器
9409A-B...線、視角邊緣線
9410...光束
9412,9414...環境監視器
9416,9418...光發射器
9500...光源、微粒偵測系統之組件
9502...光發射器
9504...電路
9506...微控制器
9508...電池
9510...電池監視器、監視組件
9512...環境監視器
9600...系統
9602...第一接收器
9604...第一發射器
9606...第一光束
9608...第二發射器
9610...光束
9612...接收器
9614...發射器
9616...光束
9618...控制器
9700...光束偵測器
9701...體積
9702...發射器
9704...接收器
9706...線、照明野
9708...直射射線、直射照明路徑
9710...反射路徑、反射光束
9712...天花板
9800...感測器
9802...感測器元件
9808...一組像素、點
9810...一組感測器元件
9900...光束偵測器
9902...發射器
9904...接收器
9906,9908...擋板
9910...反射表面
9912...直射光束、直射光束路徑
10050...光束偵測器裝置
10052,10054...發射器
10056...接收器
10058...直射光束
10060...反射光束
10062...反射表面
10100...光束偵測器
10102...發射器
10102A-B...光發射器
10104...接收器
10104A-B...影像
10106...直射光徑
10110...反射光束路徑
10200...微粒偵測器系統
10202...光源、發射器
10204...接收器、偵測器單元
10206...光束
10300...系統
10302...發射器
10304...接收器
10306...光束
10400...系統
10402...發射器
10404...接收器
10406A-B...光束
10500...光束偵測器
10502...發射器
10504...接收器
10506...光束
10508...分束組件
10600A...房間
10602A...光束偵測器系統
10604A...接收器
10606A-H...發射器
10804...接收器
10806...發射器
10820...光接收器
10822...多節段光感測器
10824...視訊讀取與處理次系統
10826...光學配置
10900...發射器
10902...光發射器
10904...控制電路
10906...電源
10908...光束
10910...光學配置
11000...煙霧偵測器
11002...光源
11004...接收器
11006...標靶
11010...入射光
11030...視覺對準裝置
11032...支承板
11034...活節安裝裝置
11036...杯
11038...球
11040...平頭螺絲
11042...對準光束
11044...通道
11046...前側
11048...主軸
11049...承窩
11050...對準工具
11052...起子
11054...手柄
11056...凹部
11058...雷射
11460...視覺對準裝置
11462...主軸
11464...煙霧偵測器殼體
11466...視訊攝影機
11468...手柄部
11470...接收器單元
11472...螢幕
11474...瞄準符號或裝置、活節安裝裝置
11500...組件
11502...光電組件
11504...電路及光學裝置
11506...殼體
11508...固定式布線
11510...電氣及資料連結
11512...孔口
11514...光學總成、鏡
11516...關節安裝裝置
11518...旋轉摩擦軸承
11520...凹部
11522...齧合裝置
11600...光束偵測器總成
11602...模組
11604...模組
11606...光電系統
11608...電路板
11610...開關
11612...磁鐵
11620...壁
113000,113000’...發射器、接收器
113010...背板
113020...後殼套
113030...前殼套
113040...後殼體
113050...前殼體
113060...透鏡
113070...PCB、印刷電路板
113080...LED
113090...電池
113100,113100’...凸輪
113110,113110’...止動蹄
113120,113120’...螺柱
113130,113130’...部分球形止動表面、外表面
113140...軸環
113150...磁鐵
113160...承窩、六角扳手
113180,113180’...固定式安裝部
113190,113190’...發射器單元
113200,113200’...發射器殼體
113210...桿臂
113220...指部
113230...螺柱
113240,113240’...心軸
113244,113244’...通道
B...處理器
第1圖為先前技術光束偵測器;
第2圖顯示本發明之第一實施例;
第3a圖及第3b圖示意顯示於第2圖之系統之光接收器204的光感測器所接收之影像;
第4圖顯示使用二波長光之本發明之第二實施例;
第5a及5b圖示意顯示於兩種情況下第4圖之偵測器之操作;
第6圖顯示本發明之又一實施例其包括二標靶於接收器的視野;
第7圖顯示本發明之又一實施例其未包括標靶;
第8圖顯示本發明之又一實施例其具有六道光束橫過據一監視區;
第9圖顯示一種微粒偵測系統示例說明根據本發明之又一面相之一種定址體系;
第10圖顯示一種微粒偵測系統具有根據本發明之一實施例之第二定址體系;
第10A圖顯示一後反射標靶;
第11A圖顯示於二波長操作的微粒偵測器當偵測燃燒產物而驗證比較小型微粒,有異常高比例的大型微粒時所接收的光強度之作圖;
第11B圖為與對11A圖相對應,於第一及第二波長之偵測器輸出信號的比較作圖;
第12A圖顯示於三波長操作的偵測器對燃燒產物而驗證比較小型微粒,有異常高比例的大型微粒時之輸出信號;
第12B圖為第12A圖之第一波長興第三波長間之二波長比較之作圖;
第13圖顯示警報臨界值如何可於本發明之一實施例實施;
第14圖顯示用於本發明之一實施例之信標;
第15圖顯示第14圖之信標之示意圖;
第16圖顯示第14圖之信標之變化例之示意側視圖;
第17圖顯示於本發明之一實施例中可由信標所使用之兩種編碼體系;
第18圖顯示根據本發明之又一實施例之微粒偵測系統,其使用多個靜態信標及一掃描信標來涵蓋90度視野;
第19圖為用於本發明之一實施例之掃描接收器及光源配置之機械系統之示意代表圖;
第20圖顯示根據本發明之又一實施例之微粒偵測系統,其使用一掃描攝影機及光源配置來涵蓋360度視野;
第21圖顯示帶有一對準機構之根據本發明之一實施例之信標;
第22圖顯示第21圖之信標之頂視圖;
第23圖顯示於本發明之一實施例中用於對準信標之另一裝置;
第24圖顯示第23圖之對準機構之底視圖;
第25圖顯示根據本發明之又一實施例之信標;
第25A圖顯示根據本發明之又一實施例之信標;
第26圖顯示可用於本發明之又一實施例之又一信標;
第27圖顯示根據本發明之一實施例之光束偵測器之一接收器組件之示意方塊圖;
第28圖顯示用於本發明之一實施例之脈衝串列之實例;
第29圖顯示根據本發明之一實施例於一光束偵測器中所接收的於二波長光之作圖;
第30圖顯示當實施根據本發明之一實施例之方法時增益及經校正的輸出信號之作圖;
第31圖顯示於本發明之一實施例於二波長頻帶所接收的光位準;及
第32圖顯示當於第31圖所示條件下實施根據本發明之一實施例之方法時經校正的輸出位準及經調整的增益位準。
第33圖顯示根據本發明之一實施例結合一光源之一種微粒偵測系統;
第34圖顯示當被異物部分阻擋時第33圖之光源;
第35圖顯示當被煙霧所阻擋時第33圖之光源;
第36圖顯示第33至35圖所示光源之另一個實施例;
第37圖顯示根據本發明之另一實施例結合一光源之一種微粒偵測系統;
第38圖顯示當被異物部分阻擋時第37圖之光源;
第39圖顯示第37及38圖所示光源之另一個實施例;
第40圖顯示可用於本發明之一實施例之光學次系統;
第41及42圖顯示根據本發明之又一實施例之光源;
第43及44圖顯示修改用於微粒偵測系統之光源之光束寬度的效果;及
第45及46圖顯示用於微粒偵測系統之所發射光之於不同波長頻帶光具有不同空間輪廓之優點;
第47圖顯示可用於本發明之第一實施例之一光發射器;
第48圖顯示可用於本發明之一實施例之一光發射器之進一步細節;
第49圖顯示可用於本發明之一實施例之一光發射器之又一實施例;
第50圖顯示可用於本發明之一實施例之一電路之示意方塊圖;
第51圖為顯示第50圖之電路之操作之作圖;
第52圖顯示可用於本發明之一實施例之第二電路之示意方塊圖;
第53圖為顯示第52圖之電路之操作之作圖;
第54圖顯示採用本發明之一實施例之光束偵測器之光源之示意代表圖;
第55圖顯示採用本發明之一實施例之光束偵測器之光源之示意代表圖;
第56圖顯示採用本發明之一實施例之光束偵測器之光源之示意代表圖;
第57圖顯示其中安裝根據本發明之一實施例之一微粒偵測系統的房間;
第58圖顯示可實施來安裝根據本發明之一實施例操作之光束偵測器之一個方法實施例之流程圖。
第59圖顯示於安裝後可藉根據本發明之一實施例之光束偵測器的控制器執行之方法之一個實施例之流程圖;
第60圖顯示於安裝後可藉根據本發明之一實施例之光束偵測器的控制器執行之方法之另一個實施例之流程圖;
第61圖示意顯示根據本發明之一實施例之發射器之一部分;
第62圖顯示第61圖所示發射器之一第二實施例;
第63圖顯示可用於本發明之一實施例之衰減器實例;
第64圖為時序圖,顯示代表本發明之另一實施例之發射功率及相對應的接收器之線圖;
第65圖示意顯示根據本發明之一面相採用測試濾波器之微粒偵測系統;
第66圖顯示根據本發明之一實施例製成的測試濾波器實例;
第67圖為根據本發明之一實施例製成的濾波器之發射光譜之作圖;
第68圖至第75圖顯示根據本發明之一面相製成的濾波器之多個實施例;
第76圖示意顯示根據本發明之一實施例製成之微粒偵測系統;
第77圖顯示根據本發明之一實施例製成之接收器實例;
第78圖顯示根據本發明之一光接收器之又一個具體實施例;
第79圖顯示根據本發明之一實施例製成之又一個光接收器;
第80圖顯示根據本發明之一實施例製成之光接收器之第四實施例;
第81圖為利用本發明之一實施例之光束偵測器之示意代表圖;
第82圖為第81圖表示之光束偵測器之示意代表圖,顯示不同的發射器位置;
第83圖為示意圖,顯示本發明之一實施例之漫射裝置之一個實施例,此處該發射器充分遠離使得進入透鏡之光束射線大致上為平行;
第84圖為示意圖,顯示本發明之漫射裝置之另一實施例;
第85圖顯示本發明之一面相之又一個實施例;
第86至89圖顯示可用於本發明之一實施例之之多個波長濾波器配置,諸如第85圖所示。
第90圖為適用於根據本發明之一實施例操作的火災警報系統之示意說明圖;
第91圖示意顯示根據本發明之第一實施例之環境監視系統;
第92圖示意顯示根據本發明之第二實施例之環境監視系統之第二實施例;
第93圖示意顯示可用於本發明之一實施例之之一光源;
第94圖顯示根據本發明之又一實施例製成之系統;
第95圖顯示其中於光束偵測器可能造成反射之一種情況;
第96圖顯示根據本發明之一實施例製成之光束偵測器中的接收器之特寫視圖;
第97圖顯示根據本發明之另一實施例製成之光束偵測器配置;
第98圖顯示根據本發明之另一實施例製成之光束偵測器配置;
第99圖顯示根據本發明之另一實施例製成之光束偵測器之另一個實施例;
第100圖示意顯示本發明之一實施例其中發射器與接收器之偏振態為經對準;
第101圖示意顯示本發明之一實施例其中發射器與接收器之偏振態為正交配置;
第102圖顯示本發明之一實施例其中二正交偏振光束係發射至一偏振敏感的接收器;
第103圖顯示本發明之一實施例之,發射器發射單一偏振光束欲由二正交偏振接收器所接收;
第104圖顯示藉根據本發明之一實施例操作的微粒偵測系統監視之一體積之平面圖;
第105圖顯示通過第104圖之一體積之剖面圖,顯示該系統之該接收器及一個發射器;
第106圖顯示用於根據本發明之一實施例之一個實例的接收器之示意圖;
第107圖顯示用於根據本發明之一實施例之發射器之示意代表圖;
第108圖圖解顯示根據本發明之煙霧偵測器及安裝配置;
第109圖顯示第108圖所示煙霧偵測器之剖面側視圖;
第110圖顯示根據本發明之煙霧偵測器裝置之另一個實施例之側視圖;
第111圖顯示根據本發明之煙霧偵測器裝置之另一個實施例之平面圖;
第112圖顯示根據本發明之煙霧偵測器裝置之又一個實施例之圖解說明圖;
第113圖顯示貫穿根據本發明之另一實施例製成的煙霧偵測器之組件之剖面圖;
第114圖為具有一第一模組及一第二模組之光束偵測器總成之示意說明圖,該總成於兩個模組組裝時啟動;
第115圖為根據本發明之一實施例之發射器之透視圖;
第116圖為第115圖之該發射器之制動蹄及心軸之特寫透視圖;
第117圖為第115圖之接收器之透視切除視圖;
第118圖為根據本發明之一實施例之接收器之透視圖;
第119圖為第118圖之該發射器之制動蹄、桿臂、及心軸之特寫。
600...偵測器
602...光發射器
604...接收器
606...第一標靶
610...監視區
612,616...入射光
614,618...反射光
620,622...邊
624...微控制器
Claims (16)
- 一種微粒偵測系統,包括:適於以至少二波長照明受監視的容積之至少一個光源;具有一視野之一接收器,其係適於接收來自該接收器之該視野內的至少一個光源之光,該光係在已經通過該受監視的容積後被接收,該接收器係進一步適於產生指示從該接收器之該視野內之多個空間上不同之區域所接收的光強度之多個輸出信號;與該接收器聯結之一處理器,其適於處理由該接收器所產生之該等信號,以使在該接收器之該視野內的該等空間上不同之區域中的相同區域中於至少二波長所接收之光相關聯,及產生指出在該等至少二波長所接收的光之相對位準的一輸出。
- 如申請專利範圍第1項之微粒偵測系統,其中該接收器包括具有多個感測器元件之一感測器,該等感測器元件之各者接收來自於該接收器之該視野內部之一個別區之光。
- 如申請專利範圍第1或2項之微粒偵測系統,其中光源可包括適於發射於一個別波長之光之一個或多個光發射器。
- 如申請專利範圍第1或2項之微粒偵測系統,其中光源係組配來於不同時間以該等至少二波長中之各者照明該受監視的容積。
- 如申請專利範圍第1或2項之微粒偵測系統,其中該處理器係適於測定於該接收器之該視野的同一區接收的於一對或多對波長所接收的光之相對遮蔽率,及基於該相對遮蔽率,產生指示於該受監視的體容積中存在有微粒之一輸出。
- 如申請專利範圍第1或2項之微粒偵測系統,其適於用以偵測於該受監視的體容積內部之所關注的微粒,其中該至少二波長包括相對不受關注的微粒所影響之至少一第一波長,及受至少該等微粒影響之至少一第二波長;且其中:該處理器係適於處理該接收器於該第一及第二波長之至少其一的該輸出,及提供指示於受監視區是否檢測到所關注的微粒之一輸出。
- 如申請專利範圍第1或2項之微粒偵測系統,其中該處理器係組配來施用基於在一波長或二波長之所接收的光位準而決定的一警報狀況。
- 如申請專利範圍第7項之微粒偵測系統,其中該警報狀況係基於相對光強度之改變並未造成滿足一第一警報狀況之先決條件。
- 如申請專利範圍第1或2項之微粒偵測系統,其中該光源或該等光源係由電池供電。
- 如申請專利範圍第1或2項之微粒偵測系統,其包括彼此非同步的至少二光源。
- 如申請專利範圍第1或2項之微粒偵測系統,其中該接收器包括具有一感測器之照相機,該感測器包含多個像素,且其中相對應一個別光源的該接收器之該視野內部之該等區域包含該感測器之該等多個像素之一子集。
- 一種由微粒偵測系統執行之方法,該微粒偵測系統係為如申請專利範圍第1或2項之微粒偵測系統,該方法包括下列步驟:發射包括一第一及第二波長之光至一受監視區;該第一波長為其發射穿過該受監視區係相對不受關注微粒影響的波長,及該第二波長為其發射穿過該受監視區會受關注微粒影響的波長;接收已經通過該受監視區後之至少一第一及第二波長之光,及產生指示所接收的於至少該第一及第二波長之光之強度之一信號;處理指示來自接收器之視野內之多個區域中的一區域之所接收的於至少該第一及第二波長的光之強度之該信號,以提供指示於該受監視區是否檢測到關注微粒之一輸出。
- 如申請專利範圍第12項之方法,其中該處理指示所接收的於至少該第一及第二波長之光之強度之該信號之步驟,係基於在該第一及第二波長接收的光之相對強度變化。
- 如申請專利範圍第12項之方法,其中在於該第一及第二波長接收的光之相對強度係維持實質上穩定,但於該 等波長之一或多個波長接收之光之絕對強度係符合一項或多項預定標準之情況下,該方法包括產生指示關注微粒存在於該受監視區之一輸出。
- 如申請專利範圍第12項之方法,其中該方法包括:約略對準至少一光源與接收器,使得該至少一光源照明該接收器,及選擇於該接收器之該視野內部一光源相對應之一空間位置,其將用來測定與該光源相對應之所接收的光強度量測。
- 如申請專利範圍第15項之方法,其中該方法包括:當該微粒偵測系統之幾何形狀改變時,隨時間之經過追蹤對應至該光源之一區域。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2009901926A AU2009901926A0 (en) | 2009-05-01 | Particle detector with auxiliary functions | |
AU2009901923A AU2009901923A0 (en) | 2009-05-01 | Partical detector, processor management and acquisition | |
AU2009901925A AU2009901925A0 (en) | 2009-05-01 | Particle detector, receiver techniques | |
AU2009901927A AU2009901927A0 (en) | 2009-05-01 | Partical detector; transmision techniques | |
AU2009901922A AU2009901922A0 (en) | 2009-05-01 | Particle detectors, polarisation; reflections; field of view techniques | |
AU2009901924A AU2009901924A0 (en) | 2009-05-01 | Partical detector; calibration; testing and commissioning techniques |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201215873A TW201215873A (en) | 2012-04-16 |
TWI503530B true TWI503530B (zh) | 2015-10-11 |
Family
ID=43031595
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106122084A TWI674402B (zh) | 2009-05-01 | 2010-05-03 | 微粒偵測組件、煙霧偵測器之組件、視覺對準工具及對準煙霧偵測器之組件的方法 |
TW099114049A TWI503530B (zh) | 2009-05-01 | 2010-05-03 | 微粒偵測技術 |
TW104103257A TWI600891B (zh) | 2009-05-01 | 2010-05-03 | 微粒偵測技術(一) |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106122084A TWI674402B (zh) | 2009-05-01 | 2010-05-03 | 微粒偵測組件、煙霧偵測器之組件、視覺對準工具及對準煙霧偵測器之組件的方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104103257A TWI600891B (zh) | 2009-05-01 | 2010-05-03 | 微粒偵測技術(一) |
Country Status (11)
Country | Link |
---|---|
US (5) | US8797531B2 (zh) |
EP (2) | EP2425411B1 (zh) |
JP (3) | JP5646600B2 (zh) |
KR (3) | KR102032863B1 (zh) |
CN (2) | CN102460527B (zh) |
AU (3) | AU2010242552B2 (zh) |
CA (2) | CA2760026C (zh) |
HK (2) | HK1168458A1 (zh) |
MY (1) | MY158884A (zh) |
TW (3) | TWI674402B (zh) |
WO (1) | WO2010124347A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI651525B (zh) * | 2017-11-28 | 2019-02-21 | 日商理音股份有限公司 | 粒子計數器 |
US11047788B2 (en) | 2018-12-19 | 2021-06-29 | Industrial Technology Research Institute | Particulate matter sensing device |
TWI755836B (zh) * | 2020-06-04 | 2022-02-21 | 新煒科技有限公司 | 光學元件檢測輔助裝置 |
Families Citing this family (149)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7108414B2 (en) | 1995-06-27 | 2006-09-19 | Solid State Opto Limited | Light emitting panel assemblies |
AU2003902319A0 (en) | 2003-05-14 | 2003-05-29 | Garrett Thermal Systems Limited | Laser video detector |
CN101099186B (zh) | 2004-11-12 | 2012-01-18 | Vfs技术有限公司 | 微粒探测器,系统与方法 |
EP3836539B1 (en) * | 2007-10-10 | 2024-03-13 | Gerard Dirk Smits | Image projector with reflected light tracking |
EP3082117B1 (en) * | 2007-11-15 | 2018-03-28 | Garrett Thermal Systems Limited | Particle detection |
KR101947004B1 (ko) | 2008-06-10 | 2019-02-12 | 엑스트랄리스 테크놀로지 리미티드 | 입자 검출 |
KR101819997B1 (ko) * | 2008-09-05 | 2018-01-18 | 엑스트랄리스 테크놀로지 리미티드 | 입자 특징들의 광검출 |
GB2464105A (en) * | 2008-10-01 | 2010-04-07 | Thorn Security | A Particle Detector |
CA2760026C (en) | 2009-05-01 | 2018-03-20 | Xtralis Technologies Ltd | Improvements to particle detectors |
WO2011103565A1 (en) * | 2010-02-22 | 2011-08-25 | Lyric Semiconductor, Inc. | Mixed signal stochastic belief propagation |
GB201006680D0 (en) * | 2010-04-21 | 2010-06-09 | Fireangel Ltd | Alarm |
WO2012000847A2 (fr) * | 2010-07-01 | 2012-01-05 | Thomson Licensing | Procede d'estimation de diffusion de la lumiere |
US8346500B2 (en) * | 2010-09-17 | 2013-01-01 | Chang Sung Ace Co., Ltd. | Self check-type flame detector |
US12025807B2 (en) | 2010-10-04 | 2024-07-02 | Gerard Dirk Smits | System and method for 3-D projection and enhancements for interactivity |
US9946076B2 (en) | 2010-10-04 | 2018-04-17 | Gerard Dirk Smits | System and method for 3-D projection and enhancements for interactivity |
JP5713862B2 (ja) * | 2011-09-29 | 2015-05-07 | 能美防災株式会社 | 光電式分離型煙感知器 |
JP6133545B2 (ja) * | 2012-03-30 | 2017-05-24 | 能美防災株式会社 | 光電式分離型感知器および光電式分離型感知器の光軸調整方法 |
US8947243B2 (en) | 2012-04-29 | 2015-02-03 | Valor Fire Safety, Llc | Smoke detector with external sampling volume and utilizing internally reflected light |
US9835549B1 (en) * | 2012-04-29 | 2017-12-05 | Valor Fire Safety, Llc | System and method of smoke detection using multiple wavelengths of light and multiple sensors |
US9140646B2 (en) | 2012-04-29 | 2015-09-22 | Valor Fire Safety, Llc | Smoke detector with external sampling volume using two different wavelengths and ambient light detection for measurement correction |
US8907802B2 (en) | 2012-04-29 | 2014-12-09 | Valor Fire Safety, Llc | Smoke detector with external sampling volume and ambient light rejection |
US9915609B1 (en) | 2012-04-29 | 2018-03-13 | Valor Fire Safety, Llc | System and method of smoke detection using multiple wavelengths of light |
US9396637B2 (en) * | 2012-07-13 | 2016-07-19 | Walter Kidde Portable Equipment, Inc | Photoelectric smoke detector with drift compensation |
DE102012014520A1 (de) * | 2012-07-23 | 2014-01-23 | Prüftechnik Dieter Busch AG | Vorrichtung zum Ermitteln der Lage von mechanischen Elementen |
JP5993253B2 (ja) * | 2012-09-06 | 2016-09-14 | 能美防災株式会社 | 煙感知器 |
US8711370B1 (en) | 2012-10-04 | 2014-04-29 | Gerard Dirk Smits | Scanning optical positioning system with spatially triangulating receivers |
US8971568B1 (en) | 2012-10-08 | 2015-03-03 | Gerard Dirk Smits | Method, apparatus, and manufacture for document writing and annotation with virtual ink |
US9897536B2 (en) * | 2013-01-04 | 2018-02-20 | University Of Limerick | Differential infra red nanoscopy system and method |
US10352844B2 (en) | 2013-03-15 | 2019-07-16 | Particles Plus, Inc. | Multiple particle sensors in a particle counter |
US11579072B2 (en) | 2013-03-15 | 2023-02-14 | Particles Plus, Inc. | Personal air quality monitoring system |
US9677990B2 (en) | 2014-04-30 | 2017-06-13 | Particles Plus, Inc. | Particle counter with advanced features |
US12044611B2 (en) | 2013-03-15 | 2024-07-23 | Particles Plus, Inc. | Particle counter with integrated bootloader |
KR101373864B1 (ko) * | 2013-07-02 | 2014-03-12 | 이승철 | 고압반, 저압반, 모터콘트롤반, 분전반 배전반의 전기화재 조기 감지장치 |
DE102013220553A1 (de) * | 2013-10-11 | 2015-04-16 | Robert Bosch Gmbh | Raucherkennungsvorrichtung, Verfahren zur Detektion von mindestens einem Rauchdetektionsmerkmal sowie Computerprogramm |
US9819933B2 (en) * | 2013-10-18 | 2017-11-14 | Alcatel Lucent | Automated testing of media devices |
CN105849787B (zh) | 2013-10-30 | 2019-02-15 | 瓦洛尔消防安全有限责任公司 | 具有外部采样体积和环境光抑制的烟雾探测器 |
EP3063531B1 (en) * | 2013-11-01 | 2022-12-21 | TOMRA Sorting NV | Method and apparatus for detecting matter |
US9300388B1 (en) * | 2013-12-18 | 2016-03-29 | Google Inc. | Systems and methods for using different beam widths for communications between balloons |
DE102014001704B4 (de) * | 2014-02-08 | 2023-08-10 | Dräger Safety AG & Co. KGaA | Gasdetektionsvorrichtung |
US10705192B2 (en) | 2014-03-14 | 2020-07-07 | Ams Sensors Singapore Pte. Ltd. | Optoelectronic modules operable to recognize spurious reflections and to compensate for errors caused by spurious reflections |
JP6536567B2 (ja) * | 2014-03-28 | 2019-07-03 | 日本電気株式会社 | 検知装置、検知方法、及びコンピュータプログラム |
US9810913B2 (en) | 2014-03-28 | 2017-11-07 | Gerard Dirk Smits | Smart head-mounted projection system |
US9830806B2 (en) * | 2014-06-02 | 2017-11-28 | Tyco New Zealand Limited | Systems enabling testing of fire control panels together with remote control and providing text-to-speech of event data |
EP2983145A1 (de) * | 2014-08-05 | 2016-02-10 | Siemens Schweiz AG | Meldersockel und Anschlussbasis zur lösbaren Anbringung eines Gefahrenmelders mit jeweils einer Funkeinrichtung zum Aussenden von Positionsdaten des Montageorts des Meldersockels bzw. der Anschlussbasis und/oder eines Verweises auf diese Positionsdaten |
US9377533B2 (en) | 2014-08-11 | 2016-06-28 | Gerard Dirk Smits | Three-dimensional triangulation and time-of-flight based tracking systems and methods |
JP2016080571A (ja) * | 2014-10-20 | 2016-05-16 | 株式会社島津製作所 | 粒子量測定装置 |
US11096609B2 (en) * | 2015-01-07 | 2021-08-24 | National Institute Of Advanced Industrial Science And Technology | Brain function measurement device and brain function measurement method |
US10067234B2 (en) * | 2015-02-17 | 2018-09-04 | Honeywell International Inc. | Projected beam detector with imaging device |
JP6458566B2 (ja) * | 2015-03-11 | 2019-01-30 | 株式会社島津製作所 | パーティクル計数装置及びそれを用いたパーティクル計数システム |
US10043282B2 (en) | 2015-04-13 | 2018-08-07 | Gerard Dirk Smits | Machine vision for ego-motion, segmenting, and classifying objects |
JP6898855B2 (ja) * | 2015-05-07 | 2021-07-07 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 光学系 |
JP6767072B2 (ja) * | 2015-10-06 | 2020-10-14 | アズビル株式会社 | 距離設定型光電センサ |
TWI571649B (zh) * | 2015-12-03 | 2017-02-21 | 財團法人金屬工業研究發展中心 | A scanning device and method for establishing an outline image of an object |
JP6854828B2 (ja) | 2015-12-18 | 2021-04-07 | ジェラルド ディルク スミッツ | 物体のリアルタイム位置検知 |
US9813673B2 (en) | 2016-01-20 | 2017-11-07 | Gerard Dirk Smits | Holographic video capture and telepresence system |
JP6321063B2 (ja) * | 2016-02-29 | 2018-05-09 | 能美防災株式会社 | 火災監視システム及び煙感知器 |
EP3225977B1 (en) * | 2016-03-31 | 2019-03-13 | ams AG | Method and sensor system for detecting particles |
TW201741618A (zh) | 2016-05-23 | 2017-12-01 | 國立交通大學 | 光學感測裝置 |
US10748399B2 (en) | 2016-07-11 | 2020-08-18 | Autronica Fire & Security As | Smoke detector dynamic range adjustment system and method |
ES2894676T3 (es) | 2016-08-04 | 2022-02-15 | Carrier Corp | Detector de humo |
CN108291869B (zh) * | 2016-09-06 | 2022-09-20 | 株式会社爱宕 | 无损测定装置 |
KR102411675B1 (ko) * | 2016-10-25 | 2022-06-20 | 비지리텍 아게 | 센서 장치 |
US10067230B2 (en) | 2016-10-31 | 2018-09-04 | Gerard Dirk Smits | Fast scanning LIDAR with dynamic voxel probing |
US10251027B2 (en) * | 2016-12-15 | 2019-04-02 | Wisconsin Alumni Ressarch Foundation | Navigation system tracking high-efficiency indoor lighting fixtures |
US11478853B2 (en) | 2016-12-23 | 2022-10-25 | General Electric Company | Method for emissions plume monitoring in additive manufacturing |
US11318535B2 (en) | 2016-12-23 | 2022-05-03 | General Electric Company | Method for process control in additive manufacturing |
US11072025B2 (en) | 2016-12-23 | 2021-07-27 | General Electric Company | Method for avoiding plume interference in additive manufacturing |
JP7329444B2 (ja) | 2016-12-27 | 2023-08-18 | ジェラルド ディルク スミッツ | 機械知覚のためのシステム及び方法 |
EP3276680A1 (de) * | 2017-01-25 | 2018-01-31 | Siemens Schweiz AG | Optische rauchdetektion nach dem zweifarben-prinzip mittels einer leuchtdiode mit einem led-chip zur lichtemission und mit einem lichtkonverter zum umwandeln eines teils des emittierten lichts in langwelligeres licht |
DE102017104378A1 (de) | 2017-03-02 | 2018-09-06 | Osram Opto Semiconductors Gmbh | Optoelektronischer partikelsensor und elektrisches gerät mit einem optoelektronischen partikelsensor |
TWI633301B (zh) * | 2017-04-06 | 2018-08-21 | 林喆 | 細懸浮微粒偵測器校正方法及其系統 |
CN110914671B (zh) | 2017-04-20 | 2023-03-10 | 生物梅里埃公司 | 用于控制检测装置的组件的方法、设备及计算机程序产品 |
US10830743B2 (en) * | 2017-05-04 | 2020-11-10 | International Business Machines Corporation | Determining the net emissions of air pollutants |
WO2018209096A2 (en) | 2017-05-10 | 2018-11-15 | Gerard Dirk Smits | Scan mirror systems and methods |
US9853740B1 (en) * | 2017-06-06 | 2017-12-26 | Surefire Llc | Adaptive communications focal plane array |
DE102017113194B4 (de) * | 2017-06-14 | 2019-06-19 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Verfahren zum Verfolgen einer Vielzahl von punktförmigen Objekten im Raum |
CN107516397B (zh) * | 2017-09-28 | 2023-04-07 | 深圳市泰和安科技有限公司 | 光电感烟探测器 |
US10591605B2 (en) | 2017-10-19 | 2020-03-17 | Gerard Dirk Smits | Methods and systems for navigating a vehicle including a novel fiducial marker system |
TWI633921B (zh) * | 2017-11-03 | 2018-09-01 | 台灣晶技股份有限公司 | Micro aerosol sensing device with self-cleaning function |
US11788942B2 (en) | 2017-12-15 | 2023-10-17 | Analog Devices, Inc. | Compact optical smoke detector system and apparatus |
US10486199B2 (en) * | 2018-01-11 | 2019-11-26 | Key Technology, Inc. | Method and apparatus for sorting having a background element with a multiplicity of selective energizable electromagnetic emitters |
US10379220B1 (en) | 2018-01-29 | 2019-08-13 | Gerard Dirk Smits | Hyper-resolved, high bandwidth scanned LIDAR systems |
US20190335078A1 (en) * | 2018-04-30 | 2019-10-31 | Macronix International Co., Ltd. | Detection system and associated detection method for detecting occurrence of arcing phenomenon |
TWI668424B (zh) * | 2018-05-09 | 2019-08-11 | 南臺學校財團法人南臺科技大學 | 高精準度光學空氣微粒偵測裝置 |
KR102063871B1 (ko) * | 2018-05-10 | 2020-01-08 | 주식회사 스펙트로 | 게인측정장치 |
WO2019217504A1 (en) * | 2018-05-11 | 2019-11-14 | Carrier Corporation | Multi-point detection system |
EP3821415A2 (en) | 2018-07-13 | 2021-05-19 | Carrier Corporation | Enhanced robustness for high sensitivity fiber optic smoke detection |
US11176796B2 (en) | 2018-07-13 | 2021-11-16 | Carrier Corporation | High sensitivity fiber optic based detection |
WO2020010599A1 (en) | 2018-07-13 | 2020-01-16 | Carrier Corporation | High sensitivity fiber optic based detection |
US11145046B2 (en) * | 2018-07-24 | 2021-10-12 | The Regents Of The University Of Michigan | Detection of near-field occlusions in images |
DE102018005915A1 (de) * | 2018-07-27 | 2020-01-30 | Dräger Safety AG & Co. KGaA | Homogenisierungsvorrichtung, Detektorvorrichtung sowie Gasdetektorsystem |
DE102018212685B4 (de) * | 2018-07-30 | 2023-06-22 | Robert Bosch Gmbh | Optische Partikelsensorvorrichtung und entsprechendes Partikelmessverfahren |
CN108919597B (zh) * | 2018-07-30 | 2024-02-13 | 深圳阜时科技有限公司 | 一种光学投影模组 |
US11137331B2 (en) | 2018-08-21 | 2021-10-05 | Viavi Solutions Inc. | Multispectral sensor based alert condition detector |
EP3857207B1 (de) * | 2018-09-28 | 2023-10-25 | Siemens Schweiz AG | Streulichtrauchmelder mit einer zweifarben-led, einem photosensor und einem dem photosensor vorgeschalteten oder der zweifarben-led nachgeschalteten wellenlängenselektiven polarisator sowie geeignete verwendung eines solchen polarisators |
CN109470166B (zh) * | 2018-11-09 | 2020-12-08 | 业成科技(成都)有限公司 | 结构光深度感测器及感测方法 |
KR102105253B1 (ko) * | 2018-11-22 | 2020-04-27 | 부산대학교 산학협력단 | 광산란 미세먼지 측정 장치 |
CN109406463A (zh) * | 2018-11-30 | 2019-03-01 | 宁波凯耀电器制造有限公司 | 玻璃透光率测试装置 |
US11137340B2 (en) | 2018-11-30 | 2021-10-05 | Sharp Kabushiki Kaisha | Particle detection sensor and particle detection apparatus |
WO2020123290A1 (en) * | 2018-12-11 | 2020-06-18 | Carrier Corporation | Calibration of an optical detector |
WO2020123155A1 (en) | 2018-12-11 | 2020-06-18 | Carrier Corporation | Calibration of an optical detector |
US11879840B2 (en) | 2018-12-11 | 2024-01-23 | Carrier Corporation | Calibration of an optical detector using a micro-flow chamber |
WO2020136644A1 (en) * | 2018-12-24 | 2020-07-02 | Mobile Physics Ltd. | Airborne particulate density determination using standard user equipment |
GB2580646A (en) * | 2019-01-18 | 2020-07-29 | Ffe Ltd | Smoke detector |
CN109615816A (zh) * | 2019-01-31 | 2019-04-12 | 中磊电子(苏州)有限公司 | 可避免假警报的烟雾检测器 |
TWI744776B (zh) * | 2019-02-01 | 2021-11-01 | 日商夏普股份有限公司 | 微粒子檢測感測器、灰塵感測器、空調設備、及微粒子檢測感測器的控制方法 |
EP3696572A1 (en) * | 2019-02-13 | 2020-08-19 | Infineon Technologies AG | Method, apparatus and computer program for detecting a presence of airborne particles |
US11016024B2 (en) * | 2019-02-19 | 2021-05-25 | Kla Corporation | Air scattering standard for light scattering based optical instruments and tools |
US11195400B2 (en) * | 2019-02-20 | 2021-12-07 | Jade Bird Fire Co., Ltd. | Smoke detector and method for detecting smoke |
US11493229B2 (en) | 2019-03-20 | 2022-11-08 | Carrier Corporation | Chamberless wide area duct smoke detector |
KR102102988B1 (ko) * | 2019-03-28 | 2020-04-22 | 주식회사 엘지화학 | 면역 검사 장치 및 면역 검사 방법 |
US11796445B2 (en) | 2019-05-15 | 2023-10-24 | Analog Devices, Inc. | Optical improvements to compact smoke detectors, systems and apparatus |
US11747272B2 (en) | 2019-06-10 | 2023-09-05 | Analog Devices, Inc. | Gas detection using differential path length measurement |
WO2021034285A1 (en) * | 2019-08-21 | 2021-02-25 | Nero Endüstri̇ Savunma Sanayi̇ Anoni̇m Şi̇rketi̇ | Shutter test device for flame/fire detectors |
WO2021055732A1 (en) * | 2019-09-20 | 2021-03-25 | Kansas State University Research Foundation | Methods and apparatus for contactless orthographic imaging of aerosol particles |
TWI735044B (zh) | 2019-09-27 | 2021-08-01 | 研能科技股份有限公司 | 微粒偵測模組 |
KR102197138B1 (ko) * | 2019-09-30 | 2020-12-30 | 이노디지털(주) | 옥외용 미세먼지 수집 측정 장치 |
KR20220076523A (ko) | 2019-10-16 | 2022-06-08 | 웨이모 엘엘씨 | 적외선 감지를 위한 시스템들 및 방법들 |
KR20210064621A (ko) * | 2019-11-26 | 2021-06-03 | 주식회사엘디티 | 화재 감지기 및 그 화재 감지기를 포함하는 화재 감지 시스템 |
CN110827493B (zh) * | 2019-11-26 | 2022-03-25 | 珠海优特物联科技有限公司 | 防盗窃系统 |
US11018765B1 (en) | 2019-11-27 | 2021-05-25 | X Development Llc | Method of optical aperture integration for producing symmetric irradiance pattern |
CN111044473A (zh) * | 2019-12-11 | 2020-04-21 | 华帝股份有限公司 | 一种油烟检测装置的油烟浓度检测方法及吸油烟机 |
WO2021174227A1 (en) | 2020-02-27 | 2021-09-02 | Gerard Dirk Smits | High resolution scanning of remote objects with fast sweeping laser beams and signal recovery by twitchy pixel array |
CN111467886B (zh) * | 2020-03-31 | 2021-11-19 | 苏州浪潮智能科技有限公司 | 一种火灾监控系统及集装箱式数据中心系统 |
US11988591B2 (en) | 2020-07-01 | 2024-05-21 | Particles Plus, Inc. | Modular optical particle counter sensor and apparatus |
US11821836B2 (en) | 2020-07-13 | 2023-11-21 | Analog Devices, Inc. | Fully compensated optical gas sensing system and apparatus |
US11709124B2 (en) | 2020-07-13 | 2023-07-25 | Honeywell International Inc. | Particle sensor sample area qualification without a physical slit |
TWI756751B (zh) * | 2020-07-24 | 2022-03-01 | 熱映光電股份有限公司 | 氣體檢測裝置的維護方法 |
KR102357102B1 (ko) * | 2020-07-28 | 2022-02-07 | 현대제철 주식회사 | 먼지 모니터링 시스템 및 먼지 모니터링 방법 |
US11506586B2 (en) | 2020-08-17 | 2022-11-22 | Carrier Corporation | Photoelectric smoke sensor tube |
KR102559543B1 (ko) * | 2020-09-25 | 2023-07-26 | 한국전자통신연구원 | 라만산란광 측정장치 및 이를 이용한 화재판정 장치와 방법 |
US11959857B2 (en) | 2020-09-25 | 2024-04-16 | Electronics And Telecommunications Research Institute | Apparatus for measuring Raman scattering, and apparatus and method for determining true fire using the apparatus |
US20220136956A1 (en) * | 2020-10-30 | 2022-05-05 | Becton, Dickinson And Company | Method and systems for characterizing and encoding a light detection system |
EP4086870A1 (en) * | 2021-05-07 | 2022-11-09 | Carrier Corporation | Fire protection system |
CN113252516B (zh) * | 2021-06-02 | 2024-06-18 | 爱德森(厦门)电子有限公司 | 一种外穿式油液电磁检测传感器及其制作方法 |
CN113466251B (zh) * | 2021-08-05 | 2022-10-25 | 长鑫存储技术有限公司 | 一种设备检测方法及系统 |
US11927526B2 (en) | 2021-08-05 | 2024-03-12 | Changxin Memory Technologies, Inc. | Method and system for detecting cleanliness in cavity of target device |
TWI769915B (zh) | 2021-08-26 | 2022-07-01 | 財團法人工業技術研究院 | 投射系統及應用其之投射校準方法 |
US11933976B2 (en) | 2021-09-28 | 2024-03-19 | Valve Corporation | Position tracking systems and methods for head-mounted display systems |
WO2023163813A1 (en) * | 2022-02-24 | 2023-08-31 | Becton, Dickinson And Company | Methods and systems for evaluating flow cytometer data for the presence of a coincident event |
CN117008231A (zh) * | 2022-04-28 | 2023-11-07 | 海湾安全技术有限公司 | 滤光器、烟雾探测器测试组件和测试方法 |
CN115223323B (zh) * | 2022-07-18 | 2023-05-23 | 深圳市千宝通通科技有限公司 | 光电式烟感传感器、烟感传感器自检方法及烟感报警器 |
US11790765B1 (en) * | 2022-08-01 | 2023-10-17 | Honeywell International Inc. | Smoke detector device with secondary detection chamber and filter |
WO2024043923A1 (en) * | 2022-08-22 | 2024-02-29 | Hewlett-Packard Development Company, L.P. | Measuring light intensities |
EP4336162A1 (en) * | 2022-09-07 | 2024-03-13 | Honeywell International Inc. | Multi-directional open path detector system and method of using the same |
TWI843251B (zh) | 2022-10-25 | 2024-05-21 | 財團法人工業技術研究院 | 目標追蹤系統及應用其之目標追蹤方法 |
WO2024142652A1 (ja) * | 2022-12-27 | 2024-07-04 | 株式会社堀場製作所 | 分析装置、分析方法、及び、プログラム |
CN116071886B (zh) * | 2023-02-22 | 2024-04-26 | 哲弗智能系统(上海)有限公司 | 一种基于动态零值的烟雾报警方法、装置、设备及介质 |
CN117282200B (zh) * | 2023-11-25 | 2024-02-02 | 甘肃第四建设集团有限责任公司 | 建筑施工降尘控制方法及系统 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200915010A (en) * | 2007-05-30 | 2009-04-01 | Nikon Corp | Detection device, movable body apparatus, pattern formation apparatus and pattern formation method, exposure apparatus and exposure method, and device manufacturing method |
Family Cites Families (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3504566A (en) * | 1968-05-31 | 1970-04-07 | Gti Corp | Mechanical alignment device |
JPS51127786A (en) * | 1975-04-30 | 1976-11-08 | Kokusai Gijutsu Kaihatsu Kk | Smoke sensor |
US3982130A (en) | 1975-10-10 | 1976-09-21 | The United States Of America As Represented By The Secretary Of The Air Force | Ultraviolet wavelength smoke detector |
US4156816A (en) * | 1976-09-01 | 1979-05-29 | Telefonaktiebolaget L M Ericsson | Optical fire-detector |
US4163969A (en) | 1977-06-20 | 1979-08-07 | American District Telegraph Company | Variable frequency light pulser for smoke detectors |
GB2040443B (en) | 1978-12-07 | 1983-01-12 | English Electric Co Ltd | Optical particle size analyser |
JPS5929274Y2 (ja) * | 1980-03-03 | 1984-08-22 | ホーチキ株式会社 | 減光式煙感知器 |
DE3175819D1 (en) * | 1980-12-18 | 1987-02-12 | Cerberus Ag | Smoke detector according to the radiation extinction principle |
US4387993A (en) | 1981-06-25 | 1983-06-14 | Tsi Incorporated | Particle size measuring method and apparatus |
GB8621426D0 (en) * | 1986-09-05 | 1986-10-15 | Health Lab Service Board | Particle analysis |
US4928153A (en) | 1987-04-06 | 1990-05-22 | Kms Fusion, Inc. | Optical measurement of particle concentration |
US4857895A (en) * | 1987-08-31 | 1989-08-15 | Kaprelian Edward K | Combined scatter and light obscuration smoke detector |
JPH01121737A (ja) | 1987-11-05 | 1989-05-15 | Taito Corp | 煙感知装置 |
US5392114A (en) * | 1988-03-30 | 1995-02-21 | Cole; Martin T. | Fluid pollution monitor |
US4854705A (en) | 1988-04-05 | 1989-08-08 | Aerometrics, Inc. | Method and apparatus to determine the size and velocity of particles using light scatter detection from confocal beams |
JPH03188596A (ja) | 1989-12-19 | 1991-08-16 | Nittan Co Ltd | 煙濃度監視方式 |
US5260765A (en) | 1990-01-16 | 1993-11-09 | Pittway Corporation | Beam alignment apparatus and method |
JPH03239949A (ja) * | 1990-02-16 | 1991-10-25 | Rion Co Ltd | 粒子検出器用セル |
JP2761083B2 (ja) | 1990-05-15 | 1998-06-04 | 消防庁長官 | 多波長減光式煙感知器 |
JPH0459454U (zh) | 1990-09-27 | 1992-05-21 | ||
JPH06109631A (ja) | 1991-10-31 | 1994-04-22 | Hochiki Corp | 火災報知装置 |
CH684556A5 (de) * | 1992-09-14 | 1994-10-14 | Cerberus Ag | Optischer Rauchmelder. |
US5694221A (en) * | 1996-06-07 | 1997-12-02 | Knapp; Julius Z. | Particle detection method for detection of contaminating particles in sealed containers |
GB2319604A (en) | 1996-11-25 | 1998-05-27 | Kidde Fire Protection Ltd | Smoke and particle detector |
JPH1123458A (ja) | 1997-05-08 | 1999-01-29 | Nittan Co Ltd | 煙感知器および監視制御システム |
JP4027374B2 (ja) | 1997-05-08 | 2007-12-26 | ニッタン株式会社 | 煙感知器および監視制御システム |
JP3166841B2 (ja) | 1998-04-10 | 2001-05-14 | 日本電気株式会社 | パーティクル検査装置 |
JP3897206B2 (ja) | 1998-04-27 | 2007-03-22 | ホーチキ株式会社 | 異常監視装置 |
JP3387826B2 (ja) * | 1998-05-25 | 2003-03-17 | ホーチキ株式会社 | 感知器の照準機構 |
JP3996272B2 (ja) | 1998-06-29 | 2007-10-24 | 新日本空調株式会社 | エアロゾル検出方法 |
US6288644B1 (en) * | 1998-09-01 | 2001-09-11 | Caretaker System, Inc. | Perimeter monitoring system |
JP2000251168A (ja) | 1999-02-25 | 2000-09-14 | Nohmi Bosai Ltd | 光電式分離型感知器 |
JP2001116692A (ja) * | 1999-10-18 | 2001-04-27 | Nittan Co Ltd | 煙感知器および微粒子粒径計測装置および微粒子種類判別装置 |
AUPQ553800A0 (en) | 2000-02-10 | 2000-03-02 | Cole, Martin Terence | Improvements relating to smoke detectors particularily duct monitored smoke detectors |
US6663055B2 (en) * | 2000-03-15 | 2003-12-16 | The Or Group, Inc. | Armboard assembly |
JP3939900B2 (ja) | 2000-05-22 | 2007-07-04 | ニッタン株式会社 | 煙感知器および監視制御システム |
DE10118913B4 (de) | 2001-04-19 | 2006-01-12 | Robert Bosch Gmbh | Streulichtrauchmelder |
GB0120588D0 (en) * | 2001-08-24 | 2001-10-17 | Land Instr Int Ltd | Light source for open-path gas monitoring |
GB2379977B (en) | 2001-09-25 | 2005-04-06 | Kidde Plc | High sensitivity particle detection |
EP1300816A1 (de) | 2001-10-04 | 2003-04-09 | VIDAIR Aktiengesellschaft | Verfahren und System zur Erkennung von Bränden in Räumen |
GB2385933B (en) * | 2002-02-27 | 2005-06-15 | Jude Barker-Mill | Wind indicator |
JP2003281643A (ja) | 2002-03-26 | 2003-10-03 | Nohmi Bosai Ltd | 減光式煙感知器 |
US7505604B2 (en) * | 2002-05-20 | 2009-03-17 | Simmonds Precision Prodcuts, Inc. | Method for detection and recognition of fog presence within an aircraft compartment using video images |
US6725552B2 (en) * | 2002-05-30 | 2004-04-27 | Hubbell Incorporated | Methods and apparatus for mounting and aligning an occupancy sensor |
US7564365B2 (en) * | 2002-08-23 | 2009-07-21 | Ge Security, Inc. | Smoke detector and method of detecting smoke |
JP4102626B2 (ja) | 2002-09-13 | 2008-06-18 | 能美防災株式会社 | 煙検出装置 |
DE10246056A1 (de) * | 2002-10-02 | 2004-04-22 | Robert Bosch Gmbh | Rauchmelder |
ITPD20030019A1 (it) * | 2003-01-30 | 2004-07-31 | Manfrotto Lino & C Spa | Testa ad orientamento rapido per apparecchiature |
JP4010455B2 (ja) | 2003-04-24 | 2007-11-21 | ホーチキ株式会社 | 散乱光式煙感知器 |
AU2003902319A0 (en) | 2003-05-14 | 2003-05-29 | Garrett Thermal Systems Limited | Laser video detector |
US20080021674A1 (en) * | 2003-09-30 | 2008-01-24 | Robert Puskas | Methods for Enhancing the Analysis of Particle Detection |
WO2005033283A2 (en) | 2003-09-30 | 2005-04-14 | Singulex, Inc. | Methods for enhancing the analysis of particle detection |
GB0323055D0 (en) | 2003-10-02 | 2003-11-05 | Unidata Europ Ltd | Particulate detector |
US7671988B2 (en) * | 2004-02-18 | 2010-03-02 | American Ecotech Llc | Detection of particles |
GB0421469D0 (en) | 2004-09-27 | 2004-10-27 | Dt Assembly & Test Europ Ltd | Apparatus for monitoring engine exhaust |
CN101099186B (zh) * | 2004-11-12 | 2012-01-18 | Vfs技术有限公司 | 微粒探测器,系统与方法 |
US7525660B2 (en) * | 2005-02-08 | 2009-04-28 | Northrop Grumman Systems Corporation | Systems and methods for use in detecting harmful aerosol particles |
US7495573B2 (en) | 2005-02-18 | 2009-02-24 | Honeywell International Inc. | Camera vision fire detector and system |
US7456961B2 (en) * | 2005-04-14 | 2008-11-25 | The Boeing Company | Apparatus and method for detecting aerosol |
GB2426323A (en) * | 2005-05-16 | 2006-11-22 | Fire Fighting Entpr Ltd | Infra-red beam smoke detection system |
NO326482B1 (no) * | 2005-05-31 | 2008-12-15 | Integrated Optoelectronics As | En ny infrarod laserbasert alarm |
DE102005031957B4 (de) * | 2005-07-08 | 2007-03-22 | Koenig & Bauer Ag | Vorrichtung zur Inspektion eines Bedruckstoffes mit uneinheitlich reflektierenden Oberflächen |
JP2007057360A (ja) | 2005-08-24 | 2007-03-08 | Agilent Technol Inc | 粒子検出装置及びそれに使用される粒子検出方法 |
JP4585966B2 (ja) | 2005-12-27 | 2010-11-24 | ホーチキ株式会社 | 減光式煙感知器 |
JPWO2007096964A1 (ja) | 2006-02-23 | 2009-07-09 | ホーチキ株式会社 | 分離型感知器 |
WO2007127269A2 (en) * | 2006-04-25 | 2007-11-08 | Corporation For Laser Optics Research | 3-d projection full color multimedia display |
AU2007327541B2 (en) | 2006-09-07 | 2012-08-02 | Siemens Schweiz Ag | Improvement(s) related to particle monitors and method(s) therefor |
JP4793194B2 (ja) * | 2006-09-14 | 2011-10-12 | 富士ゼロックス株式会社 | 煙検出装置、閃光定着装置及び画像形成装置 |
US7982869B2 (en) * | 2006-10-24 | 2011-07-19 | Pd-Ld Inc. | Compact, low cost Raman monitor for single substances |
CN101021474B (zh) * | 2006-12-05 | 2010-09-01 | 中国科学院安徽光学精密机械研究所 | 开放式气体多组分监测仪及监测方法 |
US7561329B2 (en) | 2006-12-14 | 2009-07-14 | Cytyc Corporation | Illumination source for stained biological samples |
GB2450132B (en) * | 2007-06-13 | 2012-06-20 | Hochiki Co | Position specifiying system |
JP5026880B2 (ja) | 2007-07-27 | 2012-09-19 | ホーチキ株式会社 | 統合判定システム |
US8085157B2 (en) * | 2007-10-24 | 2011-12-27 | Honeywell International Inc. | Smoke detectors |
EP3082117B1 (en) | 2007-11-15 | 2018-03-28 | Garrett Thermal Systems Limited | Particle detection |
CN201191263Y (zh) * | 2008-03-06 | 2009-02-04 | 杜永强 | 一种在线连续颗粒物浓度监测仪的校准装置 |
KR101947004B1 (ko) | 2008-06-10 | 2019-02-12 | 엑스트랄리스 테크놀로지 리미티드 | 입자 검출 |
CA2760026C (en) | 2009-05-01 | 2018-03-20 | Xtralis Technologies Ltd | Improvements to particle detectors |
-
2010
- 2010-05-03 CA CA2760026A patent/CA2760026C/en active Active
- 2010-05-03 KR KR1020187014873A patent/KR102032863B1/ko active IP Right Grant
- 2010-05-03 EP EP10769161.0A patent/EP2425411B1/en active Active
- 2010-05-03 CN CN201080030294.2A patent/CN102460527B/zh active Active
- 2010-05-03 JP JP2012507546A patent/JP5646600B2/ja active Active
- 2010-05-03 MY MYPI2011005239A patent/MY158884A/en unknown
- 2010-05-03 AU AU2010242552A patent/AU2010242552B2/en active Active
- 2010-05-03 KR KR1020177011395A patent/KR101863270B1/ko active IP Right Grant
- 2010-05-03 TW TW106122084A patent/TWI674402B/zh active
- 2010-05-03 WO PCT/AU2010/000511 patent/WO2010124347A1/en active Application Filing
- 2010-05-03 CN CN201510209603.7A patent/CN104833655B/zh active Active
- 2010-05-03 US US13/318,309 patent/US8797531B2/en active Active
- 2010-05-03 KR KR1020117028656A patent/KR101735576B1/ko active IP Right Grant
- 2010-05-03 TW TW099114049A patent/TWI503530B/zh active
- 2010-05-03 EP EP20174153.5A patent/EP3736558A1/en active Pending
- 2010-05-03 TW TW104103257A patent/TWI600891B/zh active
- 2010-05-03 CA CA2993711A patent/CA2993711C/en active Active
-
2012
- 2012-09-20 HK HK12109267.3A patent/HK1168458A1/zh unknown
-
2014
- 2014-08-04 US US14/451,330 patent/US9057485B2/en active Active
- 2014-11-05 JP JP2014225490A patent/JP6025802B2/ja active Active
-
2015
- 2015-06-12 US US14/738,371 patent/US9448168B2/en active Active
- 2015-10-27 AU AU2015249058A patent/AU2015249058B2/en active Active
-
2016
- 2016-02-12 HK HK16101570.8A patent/HK1216115A1/zh unknown
- 2016-08-25 US US15/246,990 patent/US10094777B2/en active Active
- 2016-10-11 JP JP2016199977A patent/JP6431015B2/ja not_active Expired - Fee Related
-
2017
- 2017-07-13 AU AU2017204851A patent/AU2017204851B2/en active Active
-
2018
- 2018-08-23 US US16/110,085 patent/US10971611B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200915010A (en) * | 2007-05-30 | 2009-04-01 | Nikon Corp | Detection device, movable body apparatus, pattern formation apparatus and pattern formation method, exposure apparatus and exposure method, and device manufacturing method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI651525B (zh) * | 2017-11-28 | 2019-02-21 | 日商理音股份有限公司 | 粒子計數器 |
US11047788B2 (en) | 2018-12-19 | 2021-06-29 | Industrial Technology Research Institute | Particulate matter sensing device |
TWI755836B (zh) * | 2020-06-04 | 2022-02-21 | 新煒科技有限公司 | 光學元件檢測輔助裝置 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI503530B (zh) | 微粒偵測技術 | |
US9267884B2 (en) | Particle detection |