TWI491445B - 用於流體化觸媒裂解單元中輕烯烴之五元環觸媒 - Google Patents

用於流體化觸媒裂解單元中輕烯烴之五元環觸媒 Download PDF

Info

Publication number
TWI491445B
TWI491445B TW095110924A TW95110924A TWI491445B TW I491445 B TWI491445 B TW I491445B TW 095110924 A TW095110924 A TW 095110924A TW 95110924 A TW95110924 A TW 95110924A TW I491445 B TWI491445 B TW I491445B
Authority
TW
Taiwan
Prior art keywords
catalyst
zeolite
membered ring
zsm
weight
Prior art date
Application number
TW095110924A
Other languages
English (en)
Inventor
Wu-Cheng Cheng
Ranjit Kumar
Meenakshi Sundaram Krishnamoorthy
Michael Scott Ziebarth
Philip S Deitz
Original Assignee
Grace W R & Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36636250&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI491445(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Grace W R & Co filed Critical Grace W R & Co
Application granted granted Critical
Publication of TWI491445B publication Critical patent/TWI491445B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • B01J35/45Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

用於流體化觸媒裂解單元中輕烯烴之五元環觸媒
本發明係有關使用觸媒來提升於流體化觸媒裂解(FCC)法中製造的輕烯烴和液化石油氣(LPG)之產率。
使用基於ZSM-5之觸媒來提升於FCC法中之烯烴產率之相關聯的討論可參考U.S.5,997,728。後文相關技藝之說明係基於該項討論。
於FCC法中使用的觸媒係呈粒子形式,通常具有平均粒徑之範圍於20微米至200微米,且係於FCC單元(「FCCU」)的裂解反應器與觸媒再生器間循環。於反應器中,烴進料接觸熱的再生觸媒,該觸媒於約400℃至700℃,通常為500℃至約550℃氣化且裂解該進料。裂解反應沉積含碳烴類或焦炭於觸媒上,藉此鈍化觸媒。裂解產物與焦炭化觸媒分開。焦炭化觸媒於觸媒汽提器中,汽提去除揮發物(通常係連同水蒸氣),然後再生。觸媒再生器使用含氧氣體(通常為空氣),從觸媒中燃燒焦炭來恢復觸媒活性,且加熱觸媒例如500℃至900℃,通常為600℃至750℃。熱再生觸媒循環至裂解反應器來裂解更多新製進料。來自於再生器的煙道氣體可經處理,來去除微粒或轉化一氧化碳,然後排放入大氣。FCC法及其發展說明於流體觸媒裂解報告,Amos A.Avidan、Michael Edwards及Hartley Owen,石油與天然氣期刊,1990年1月8日發行。
來自於目前FCC法之產物分布包括多種成分,以汽油為大部分精煉廠的主要興趣所在。輕烯烴類和LPG也出現於FCC產物,隨著該等產物變成愈來愈有價值,已經逐漸讓精煉廠感興趣。製造的輕烯烴類可用於多項用途,例如可透過硫酸或氫氟酸烷化來升級為高級烷基化物。LPG係用於烹調及/或加熱等用途。如此,FCC單元的操作人員可依據服務市場、以及FCC產物中出現的各種成分的關聯價值而改變其產物含量。
丙烯是一種有高度需求的特殊輕烯烴。丙烯於全球多種大量快速成長中的合成材料和熱塑材料中作為原料。精煉廠愈來愈仰賴其FCC單元來滿足對丙烯增高的需求,如此隨著操作人員尋找擴大邊際效益的機會,將傳統FCC單元的注意力焦點從運輸燃料移開,而注意力焦點較為朝向石化原料的製造。
若精煉廠無法擴大現有單元,則FCC操作人員提高輕烯烴產率的選項相當有限。已報告的選項包括:a.採用共享基料(matrix)的ZSM-5和大孔沸石亦即整合觸媒之FCC法。
b.使用加成性ZSM-5觸媒之FCC法。
c.在高度裂解苛刻度,於五元環沸石從氣體油製造裂解氣體。
若精煉業感興趣的主要產物並非石油,則精煉業可極為良好的由如上選項(c)的範圍中選擇製造程序。如此,精煉業通常係提高該製造程序之反應器溫度和觸媒對油之比來將進料過度裂解成為小型烯烴。但如此進行中,與通常FCC汽油製程相比,精煉業通常被迫減少習知觸媒例如Y沸石用量,而以較高量的五元環沸石來取代Y沸石。大部分係由於Y沸石之氫移轉性質,及於Y沸石存在下,烯烴之飽和度增高的可能性。於Y沸石存在下,以較為苛刻條件進行該方法,也可能增高焦炭產率以及相關聯的問題。但減少習知觸媒用量來解決此等問題表示較少有觸媒可將進料有效裂解成為石油範圍的分子,如此,當採用較為苛刻條件來提升烯烴產率時,精煉廠通常必須犧牲汽油產率。參考US 2005/0020867。
對於降低其FCC單元的汽油產率減損感興趣,也對有效利用輕烯烴的製造來獲得與前述丙烯需求相關的價值感興趣的精煉業而言,精煉廠經常係採用選項(b)來結合其習知大孔FCC觸媒。參考美國專利5,997,728,其中採用ZSM-5組合某種濃度的習知Y沸石裂解觸媒來提高輕烯烴的產率,同時保有汽油產率。一般而言,此等嘗試通常表示添加更多ZSM-5系之添加劑來增加例如丙烯的產率。但此等嘗試的影響有限,因為典型FCC單元的加工處理增加數量丙烯的能力有限,否則係由典型FCC單元中原有處理該單元所製造的LPG的濕氣體壓縮機來決定。如此,精煉業只提高備料中的ZSM-5含量直到LPG產率無法超越精煉廠的濕氣體壓縮機的能力極限的期望量。
如此為了讓運轉FCC單元的精煉廠可製造輕烯烴,特別對於由FCC單元製造汽油作為主要產物感興趣之該等精煉廠而言,期望有一種觸媒,以單位LPG為基準,相對於現有五元環沸石觸媒的選擇性,該觸媒可提高烯烴選擇性,例如丙烯選擇性。
一種流體化觸媒組成物,其可於FCC法製造汽油,且與其它商業觸媒比較,可提高烯烴產率,包括:(a)具有矽氧/鋁氧骨架之五元環沸石,(b)至少5重量%之磷(呈P2 O5 )及(c)至少約1%之氧化鐵(呈Fe2 O3 )存在於五元環沸石骨架外側,其中磷和氧化鐵之百分比係以含五元環沸石之粒子用量為基準,以及該組成物平均粒徑之範圍係於約20微米至約200微米之間。本發明之觸媒組成物較佳包括至少約8重量%之磷,甚至更佳至少約10重量%之磷。氧化鐵的較佳含量之範圍係於約1%至約10%之間。發現包括前述含量之磷組合氧化鐵位在五元環骨架外側(例如添加的鐵係位在觸媒粒子基料內)的觸媒可提高FCC的烯烴產率,可從FCC法製造可接受的汽油產率,特別當本發明組合含有額外沸石(如Y沸石)的觸媒時尤為如此,較佳為組合約15%以上濃度之額外沸石。
如此,本發明也包括獨創之觸媒裂解製造程序,其中該製造程序包括:(a)將烴進料導入包括反應區段、汽提區段、和再生區段之觸媒裂解單元之反應區段內部,該烴進料之特徵為具有初沸點約120℃至終點高達約850℃;(b)經由讓該進料接觸流體化裂解觸媒,於該反應區段,在約400℃至約700℃之溫度觸媒裂解進料,該流體化裂解觸媒包括:(i)具有矽氧/鋁氧骨架之五元環沸石,(ii)至少5重量%之磷(呈P2 05 )及(iii)至少約1%之氧化鐵(呈Fe2 03 )存在於五元環沸石骨架外側,其中磷和氧化鐵之百分比係以含五元環沸石之粒子用量為基準;(c)於汽提區段,以汽提流體來汽提回收已用過的觸媒粒子,來從其中去除若干含烴材料;(d)從汽提區段回收經汽提的含烴材料,循環經汽提的用過的觸媒粒子至再生器或再生區段;以及於再生區段,經由燃燒掉相當大量之觸媒上的焦炭,來再生該裂解觸媒,且以任何添加的燃料成分來將再生觸媒維持於可將觸媒裂解反應器溫度維持於約400℃至約700℃之溫度;以及(e)循環再生的熱觸媒至反應區段。
當將前述五元環沸石組合額外含沸石裂解觸媒時,前述裂解程序於通常FCC條件下製造丙烯產率提高,以每單位LPG的丙烯產率定義丙烯選擇性,丙烯選擇性也比使用其它五元環系之觸媒的製造程序之選擇性高。
本發明須為可維持於FCCU內部之形式。FCC觸媒通常含有沸石,沸石為於結晶骨架中由矽氧化物和鋁氧化物所組成的一種細小多孔粉狀材料。於某些情況下,也可能存在有小量其它元素。沸石通常係摻混於基料及/或黏結劑且製作成微粒。當微粒以氣體通氣時,微粒化觸媒材料達成類似流體狀態,讓其表現類似液體。此種性質允許觸媒與FCCU的烴進料有較大接觸,可於反應器與整個製造程序的其它單元(例如再生器)間循環。如此「流體」一詞由業界採用來描述此種材料。
五元環
適合用於本發明之五元環類包括於結構骨架具有一個五元環之該等沸石結構。骨架包括四面體配位的矽氧和鋁氧。於較佳實施例中,本發明之觸媒組成物包括一種或多種具有ZSM-5或ZSM-11之X光繞射樣式之五元環類。適當五元環類包括美國專利5,380,690所述,該案內容併入做為參考。市售合成形狀選擇性沸石也適合使用。
較佳五元環類通常具有瓶頸指標(Constraint Index)為1-12。瓶頸指標測試細節可參考觸媒期刊67,218-222(1981年)和美國專利4,711,710,二文併入做為參考。此種五元環類例如為中孔沸石,例如具有約4埃至約7埃之孔徑之沸石。以ZSM-5(美國專利第3,702,886號及Re.29,948)及ZSM-11(美國專利第3,709,979號)為佳。此等合成五元環類之製備方法為技藝界眾所周知。五元環之較佳實施例之矽氧對鋁氧莫耳比(SiO2 /Al2 O3 )相當低,例如低於100:1,較佳低於50:1。本發明之較佳實施例之矽氧對鋁氧比低於30:1。五元環也可與金屬陽離子交換。適當金屬包括US2004/011029所述之該等金屬摻雜劑,該案內容併入做為參考。簡言之,此等金屬可為鹼土金屬、過渡金屬、稀土金屬、磷、硼、貴金屬及其組合。
相較於習知不含此種五元環之沸石系裂解觸媒,五元環之存在量通常足以提升烯烴產率。大致上,本發明包括占觸媒組成物約0.1%至約70%之範圍之五元環。於若干期望最大量丙烯之實施例中,較佳五元環含量為五元環對任一種存在的習知沸石系裂解觸媒之比至少為0.25。特別當觸媒也包括稀土金屬及基料表面積時,含有顯著量之習知沸石觸媒和五元環二者的觸媒組成物可提高烯烴產率。本發明之若干較佳實施例包括約0.25重量%至約35重量%之五元環,更通常地,五元環含量之範圍係占觸媒組成物約0.5至約20重量%。
本發明使用磷係選用來穩定五元環。測定為P2 O5 。不欲受任何特定理論所限,相信磷與五元環的鋁氧酸性位置反應,藉此穩定化於通常FCC條件下或於甚至更苛刻的條件下使用期間可能發生的任何位置的任何脫鋁現象。因此磷可穩定五元環轉化於汽油範圍內的分子的活性,藉此提高於FCC法中的烯烴產率。可於含五元環之觸媒粒子形成前,添加磷至五元環。適合作為本發明之磷來源之含磷化合物包括磷酸(H3 PO4 )、亞磷酸(H3 PO3 )、磷酸鹽類、亞磷酸鹽類及其混合物。也可使用銨鹽諸如磷酸一銨鹽(NH4 )H2 PO4 、磷酸二銨鹽(NH4 )2 HPO4 、亞磷酸一銨鹽(NH4 )H2 PO3 、亞磷酸二銨鹽(NH4 )2 HPO3 及其混合物。其它適當磷化合物述於WO 98/41595,其內容併入做為參考。該等其它磷化合物包括膦類、膦酸、膦酸鹽類等。
磷於本發明之製造中之添加量為,以含五元環之粒子為基準,讓磷含量係於5至24重量%,較佳至少8重量%及更佳至少10重量%之範圍。
氧化鐵
鐵於本發明之存在量係占存在於本發明之含五元環粒子之至少1重量%。較佳本發明之觸媒組成物之通常用途包括約1%至約10%氧化鐵。
前述鐵為位在五元環骨架外部的鐵。「五元環骨架外部」一詞,表示矽氧/鋁氧四面體結構之配位的外部。換言之,前述鐵係與存在於五元環的結構骨架內部的任何鐵分開且為額外鐵。但本發明之鐵包括結合骨架的酸位置例如呈交換於該位置的陽離子的鐵。
因此本發明之鐵通常係出現於觸媒基料或黏結劑,以及出現於五元環之孔洞結構內部。確實,鐵通常為分開添加的鐵,組合用來達成本發明的其它原料一起添加。雖然此處係以氧化鐵(亦即Fe2 O3 )說明鐵,但進一步相信組成物中的鐵可以其它形式諸如磷酸鐵存在。但實際形式確實係依據鐵如何導入觸媒組成物而決定。舉例言之,於鐵呈不溶性氧化鐵形式添加之實施例中,鐵可呈氧化鐵形式。另一方面,當鹵化鐵添加至含有磷酸之噴乾機進料混合物時,若呈水溶性鹽添加鐵,則鐵可與陰離子反應來形成例如磷酸鐵。雖言如此,氧化鐵經選用來反應本發明之鐵部分,大半原因在於業界典型用來測量鐵含量及其它金屬的分析方法,通常係以其氧化物來報告分析結果。
視需要使用的成分
觸媒組成物也較佳含有基料,基料通常為無機氧化物,其具有改質FCC法之產物的活性,且特別具有前文說明之五元環可作用之可製造汽油範圍之烯烴分子的活性。適合用作為基料之無機氧化物包括但不限於非沸石無機氧化物諸如矽氧、鋁氧、矽氧-鋁氧、鎂氧、硼氧、鈦氧、鋯氧及其混合物。基料可包括一種或多種已知之黏土,諸如微晶高嶺土、高嶺土、多水高嶺土、膨土、綠坡縷石等。參考美國專利第3,867,308號;美國專利第3,957,689號及美國專利第4,458,023號。其它適當黏土包括藉酸或鹼瀝取來增加黏土表面積的黏土,例如藉BET測量,增加黏土表面積至約50平方米/克至約350平方米/克。參考美國專利第4,843,052號(酸瀝取黏土)。基料成分於觸媒中之存在量之範圍係於0至約60重量百分比。於若干實施例中,使用鋁氧,鋁氧用量係占總觸媒組成物由約10至約50重量百分比之範圍。
適當基料也包括含鐵黏土,偶爾稱作為硬質高嶺土黏土或「灰」黏土。因為硬質高嶺土具有灰色調或灰著色有時使用後述名詞。參考美國專利6,696,378。據報告硬質高嶺土有顯著鐵含量,通常含有約0.6至約1重量百分比Fe2 O3 。於含有灰黏土之實施例中,鐵含量可含括作為用來完成本發明的氧化鐵的一部分。提供典型用於本發明之鐵用量,然而,事實上此等黏土中之鐵係不易反應形式,較佳為當使用此等黏土時,採用額外鐵來源來完成本發明。
當調配觸媒呈粒子時,通常提供基料且摻混於觸媒。當從含五元環粒子和額外沸石(例如含Y型沸石粒子)之摻合物製備組成物時,基料係添加至一組粒子或兩組粒子。較佳選用的基料可提供表面積至少約25平方米/克,較佳為45至130平方米/克。可經由採用基於ASTM 4365-95之t作圖分析來測量基料表面積。特佳為含有額外沸石的粒子包括前述高表面積基料。觸媒組成物或為新製組成物或於100%水蒸氣於816℃[1500℉]處理4小時,組成物之總表面積通常至少約為130平方米/克。總表面積可使用BET測量。
適當選擇性黏結劑材料包括技藝界已知之無機氧化物,諸如鋁氧、矽氧、矽氧-鋁氧、磷酸鋁及其它金屬系磷酸鹽類。也可使用鋁氯醇作為黏結劑。當使用磷酸鋁以外的金屬磷酸鹽黏結劑時,金屬可選自IIA族金屬、鑭系金屬(包括鈧、釔、鑭)、及過渡金屬。於若干實施例中,以VIII族金屬磷酸鹽為適合。金屬磷酸鹽之製造方法為熟諳技藝人士所已知,述於審查中之美國專利申請案第10/817,069號,申請日2004年4月2日,其內容併入做為參考。適合磷酸鋁黏結劑係揭示於美國專利案5,194,412及5,286,369。
製備
本發明之製備方法包括但非必然限於下列大致方法。
(1)以鐵離子交換或浸漬選用的五元環沸石,然後將經過離子交換的或浸漬的沸石摻混於前述視需要使用的成分,且由該等成分形成觸媒。
(2)將鐵來源與五元環沸石和視需要使用的成分同時組合,然後形成期望的觸媒。
(3)以習知方式製造含五元環之觸媒,例如形成包括前述五元環及視需要使用的成分之五元環觸媒,然後將所形成的觸媒粒子接受離子交換來包括鐵。
(4)如(3)所述製備習知觸媒,除了例如透過受體濕潤來以鐵浸漬觸媒粒子。
噴乾為一種可用於前述任一種方法來形成觸媒的方法。舉例言之,於水中組合(1)之經交換的五元環與視需要使用的成分後,所得料漿可噴乾成為粒徑範圍為約20至約200微米且較佳20至約100微米之粒子,所得觸媒粒子隨後於習知條件下加工處理。
前述任一種方法之鐵來源可呈鐵鹽形式,包括但非限於鐵(亞鐵或鐵或二者)鹵化物,諸如氯化物、氟化物、溴化物、和碘化物。鐵碳酸鹽,硫酸鹽、磷酸鹽、硝酸鹽和乙酸鹽也適合作為鐵來源。鐵來源較佳係水系,鐵可以約1%至約30%之濃度存在於交換溶液。當透過交換法摻混鐵時,通常較佳係進行交換,讓存在於沸石上的至少15%交換位置與鐵陽離子交換。鐵也可經由固態交換法摻混。
當使用方法(1)或方法(4)浸漬五元環或含五元環觸媒時,通常呈水溶液的鐵來源添加至五元環粉末或觸媒粒子至受體濕潤為止。通常浸漬浴之鐵濃度係於0.5至20%之範圍。
方法(1)和方法(2)之鐵來源也可為諸如氧化鐵(亞鐵或鐵)之鐵形式,其中此等來源並非必要為可溶,及/或其溶解度係依據添加鐵來源至介質之pH值決定。如後文於實例中顯示,即使採用相對不溶性氧化鐵來製造本發明,仍然可獲得丙烯之選擇性之優點。
如前文說明,前述視需要使用的成分中之一者可含有鐵,因此此種材料可作為鐵的主要來源或補充來源。其中一種材料為前述含鐵高嶺土。
於含括基料和黏結劑之情況下,此等材料係呈分散液、固體、及/或溶液形式添加至五元環混合物。適當黏土基料包括高嶺土。適當分散性溶膠包括技藝界已知之鋁氧溶膠和矽氧溶膠。適當鋁氧溶膠係經由使用強酸來膠溶鋁氧而製備。特別適當之矽氧溶膠包括路朵司(Ludox)膠體矽氧,得自W.R.康格雷氏公司(W.R.Grace&Co-Conn.)。若干黏結劑例如由黏結劑前驅物如鋁氯醇所形成之黏結劑可經由將黏結劑前驅物溶液導入混合器內,然後當噴乾及/或進一步加工處理例如煅燒時形成黏結劑。
觸媒組成物較佳具有適合忍受通常於FCC法所見的條件之耐磨性。具有此等性質之製備觸媒為技藝界已知,此種性質之測量經常係使用戴維森磨耗指標(Davison Attrition Index)進行測定。為了測定本發明之戴維森磨耗指標(DI),將7.0cc試樣觸媒經過篩來去除於0至20微米範圍的粒子。然後剩餘粒子於硬化鋼噴射杯中接觸,該杯具有經過精準鏜孔的孔口,濕化(60%)空氣通過該孔口以21升/分鐘之速度空氣噴射1小時。DI係定義為測試期間產生之0-20微米細料相對於最初存在之大於20微米材料含量之百分比,亦即公式如下。
DI值愈低,則觸媒之耐磨性愈大。市面上可接受之耐磨性係以小於約20,較佳小於約10,及最佳小於約5之DI指示。
一旦製備本發明之含五元環觸媒,本發明可用來補充100%觸媒存量,或可呈添加劑例如「烯烴添加劑」而添加至觸媒存量,或可組合額外沸石系裂解觸媒來形成主要裂解觸媒。一般而言,含五元環之觸媒粒子係占總觸媒存量之0.5%至約80%,較佳約1%至約60%及較佳約1%至約30重量%。
額外沸石系裂解觸媒
前述額外沸石系裂解觸媒可為任一種於烴轉化程序中具有觸媒活性之任一種沸石。適合於FCC法中裂解烴之沸石為特佳。通常地,沸石具有開口至少約0.7奈米之孔洞結構為特徵之大孔沸石。
適當大孔沸石包括結晶鋁矽酸鹽沸石諸如合成八面沸石,亦即Y型沸石、X型沸石及β沸石及其經加熱處理(經煅燒)及/或經稀土元素交換之衍生物。特別適合之沸石包括經煅燒且經過稀土元素交換之Y型沸石(CREY),其製備係揭示於美國專利3,402,996、超穩定Y型沸石(USY沸石)如美國專利第3,293,192號之揭示以及多種經部分交換之Y型沸石如美國專利第3,607,043及3,676,368號之揭示。其它適當大孔沸石包括MgUSY、ZnUSY、MnUSY、HY、REY、CREUSY、REUSY沸石及其混合物。本發明之沸石也可摻混如美國專利第4,764,269號揭示之諸如SAPO和ALPO等分子篩。
標準Y型沸石於市面上可經由矽酸鈉和鋁酸鈉之結晶製造。沸石可藉脫鋁來轉成USY型,脫鋁可提高本標準Y型沸石結構的矽/鋁原子比。脫鋁可藉水蒸氣煅燒或藉化學處理來達成。由已經原位「沸石化」來形成沸石Y的黏土微球也可形成額外沸石系裂解觸媒。簡言之,經由微球於180℉(82℃)接觸苛性溶液,可從經過煅燒之黏土微球形成沸石Y,「FCC觸媒之商業製備與特徵化」,流體觸媒裂解:科學與技術,表面科學與觸媒研究,76期,120頁(1993年)。
可用於本發明的稀土交換沸石可藉離子交換製備,於離子交換期間,存在於沸石結構的鈉原予以其它陽離子替代,通常係呈稀土金屬鹽之混合物,諸如鈰、鑭、釹、天然稀土及其混合物之鹽形式來分別提供REY級及REUSY級沸石。此等沸石進一步藉煅燒處理來提供前述CREY型和CREUSY型材料。MgUSY、ZnUSY和MnUSY沸石可經由使用鎂、鋅或錳之金屬鹽類或其混合物,以前文就形成REUSY沸石之相同方式來製造,但使用鎂、鋅或錳鹽替代用來形成REUSY的稀土金屬鹽。
較佳新製Y沸石的晶胞大小約為24.35埃至24.7埃。沸石的單元泡胞大小(UCS)可遵照ASTM D3942之程序,藉X光分析測定。通常於沸石中之矽原子和鋁原子相對量與其單元泡胞大小間有直接關聯。此種直接關聯完整說明於沸石分子篩,結構化學與用途(1974年)D.W.Breck,第94頁,該文之教示前文在此併入做為參考。雖然沸石本身和流體化裂解觸媒基料二者通常含有矽氧和鋁氧二者,但觸媒基料的SiO2 /Al2 O3 比不可與沸石的SiO2 /Al2 O3 比混淆。當平衡觸媒接受X光分析時,只測量其中所含結晶沸石的UCS。
當Y沸石置於FCC再生器環境下時,Y沸石的單元泡胞大小值也降低,由於從晶體結構中去除鋁原子而達成平衡。如此,當使用FCC備料中的Y沸石時,其骨架Si/Al原子比由約3:1增加至約30:1。經由從單元結構去除鋁原子造成的收縮,單元泡胞大小也相對地縮小。較佳平衡Y沸石之單元泡胞大小至少為24.22埃,較佳為24.24埃至24.50埃及更佳為24.24埃至24.40埃。
通常,額外沸石系裂解觸媒含量係足夠製造於汽油範圍之分子的用量。舉例言之,本發明包括約15至約75重量%之額外沸石(例如Y型沸石),其特定含量係依據期望的活性量決定。更通常之實施例包括約15至約60%之額外沸石系裂解觸媒,甚至更通常實施例包括約20至約45%之額外沸石系裂解觸媒。通常例如增加Y沸石含量可提升汽油產率,其又提供讓五元環轉化成為烯烴的分子。於若干實施例中,本發明含有額外沸石含量為,藉額外沸石製造的汽油進一步藉沸石裂解成為烯烴。
雖然並不佳,但五元環和額外沸石系裂解觸媒可製備於相同粒子內,也稱作為整合型觸媒粒子。為了製備整合型觸媒,基料可以前文說明之濃度添加至五元環沸石與Y型沸石之摻合物,然後將基料/沸石混合物噴乾,來形成其中兩種沸石變成整合一體的粒子。另一個整合型實施例包括將分開製備的五元環沸石粒子或Y型沸石粒子摻混於另一者的噴乾機進料內部。大致上,整合型觸媒具有活性比分開製備觸媒的組合活性更低,因而通常並不佳。
當製造整合型粒子時,偶爾期望於例如當額外沸石為沸石Y時,減少額外沸石系觸媒與磷的接觸。例如沸石Y當與磷接觸程度增高時可能鈍化。當製備此種實施例時,通常較佳係於摻混額外沸石系觸媒前,使用磷穩定五元環。如此,可使用較少量磷來製造終產物觸媒,基於整合型觸媒總重,此種實施例通常含有0.01至不超過約5重量%之磷(P2 O5 )。
FCC法
本發明之觸媒特別適合用於習知FCC法,此處於無添加氫之下,烴進料被裂解成為較低分子量化合物亦即汽油。通常FCC處理程序包括於流體裂解觸媒粒子存在下,於裂解反應器單元(FCCU)或於裂解反應器階段,裂解烴進料,來製造液體產物流和氣體產物流。產物流被去除,觸媒粒子隨後被送至再生器階段,於該處,粒子藉暴露於氧化氣氛去除污染物來再生。然後再生的粒子循環返回裂解區段,來進一步觸媒烴的裂解。藉此方式,於整個裂解製程期間,觸媒粒子存量係介於裂解階段與再生階段間循環。
本發明之觸媒可添加至FCCU,而未改變前述處理程序的操作模式。觸媒可直接添加至裂解階段、添加至裂解裝置的再生階段、或添加於任何其它適當點。當正在進行裂解處理時,觸媒可添加至循環中的觸媒粒子存量,或可於FCC操作開始時,觸媒可存在於觸媒粒子存量。舉例言之,當以新製觸媒置換既有平衡觸媒存量時,本發明組成物可添加至FCCU。平衡沸石觸媒藉新製沸石置換通常係基於成本相對於活性於基準來進行。精煉廠通常為平衡新觸媒導入存量的成本,相較於製造期望的烴產物分量。於FCCU反應器條件下,出現碳化反應,造成被導入反應器的石油烴進料的分子大小縮小。當新製觸媒於FCCU內部平衡時,新製觸媒暴露於各種情況,例如反應期間產生的進料污染物的沉積與苛刻的再生操作條件。如此,平衡觸媒可含有高濃度金屬污染物,具有略為降低的活性,於沸石骨架含有較低鋁原子含量,具有與新製觸媒不同的物理性質。正常操作中,精煉廠從再生器中抽取小量平衡觸媒,以新製觸媒置換來控制循環觸媒存量的品質(例如觸媒活性和金屬含量)。
當使用本發明時,FCC單元可使用習知條件運作,其中反應溫度之範圍係於約400℃至700℃,於約500℃至約900℃發生再生。特定條件係依據接受處理的石油進料、期望的產物流、和其它精煉廠眾所周知的條件決定。舉例言之,較輕質的進料可於較低溫裂解。觸媒(亦即備料)係以連續方式循環通過單元之觸媒裂解反應與再生間,同時維持反應器中的平衡觸媒。若干本發明之實施例顯示可於略為苛刻條件下操作的單元中有效。
本發明可用於採用含五元環觸媒之其它裂解程序。當設計為用於習知條件下進行的FCC處理程序時,本發明可用於其它更苛刻的操作。此等處理程序包括稱作為深度觸媒裂解(DCC)、觸媒熱解程序(CPP)和超觸媒裂解(UCC)。此等處理程序之條件和通常FCC條件列舉於下表。
NR=未報告
熟諳技藝人士熟悉何時此等處理程序可用於本發明。當本發明用於此等處理程序時,要求對本發明做若干改質,例如活性和磨耗要求改變,俾便最佳化於該等處理程序之組成效果。此等改質為熟諳技藝人士所已知。
本發明可用來裂解多種烴進料。通常進料全部或部分包括氣體油(例如輕、中、或重氣體油)具有初沸點高於約120℃[250℉],50%點至少約315℃[600℉]及終點高達約850℃[1562℉]。進料也包括深度餾分氣體油、真空氣體油、熱油、殘油、循環進料、全頂端粗餾分、焦油砂油、頁岩油、合成燃料、衍生自煤、焦油、瀝青、柏油的摧毀氫化反應之重質烴餾分、衍生自前述任一者之加氫處理進料等。將瞭解必須於真空進行高於約400℃之高沸石油餾分的蒸餾以防熱裂解。此處利用之沸點係以校正至大氣壓的沸點來方便表示。具有終點高達約700℃之甚至更高含量餾餘物或更深度餾分氣體油可使用本發明裂解。
雖然丙烯產率的改良係因進料和FCC條件而異,但採用本發明於以習知方式運轉的FCC單元,對通常進料進行處理且有75%轉化率,相較於使用不含本發明之觸媒,可獲得,(以進料為基準),丙烯產率的改良至少為0.1%,較佳至少3%,及最佳至少7%。使用本發明之處理程序所得LPG產率相較於使用不含本發明之觸媒之處理程序,(以進料為基準),可提高至少0.1重量%,較佳至少5重量%,及最佳至少12重量%。更出乎意外地,本發明相較於其它觸媒,對於丙烯更具有選擇性。本發明可提高丙烯選擇性,相對於不含本發明之觸媒,以每單位LPG的丙烯產率定義,可提高至少2%選擇性,藉此允許有給定LPG容量的精煉廠的濕氣體壓縮機可提高丙烯產率而未增加任何壓縮機。因此可達成此種產率,而未顯著增加修改習知FCC單元的投資費用,也不要求該單元於極端苛刻條件下運轉。前述產率資料係基於戴維森循環氣門(Davison Circulating Riser)測試進行,其操作條件容後詳述。
為了進一步舉例說明本發明及其優點,舉出下列特例。下列實例僅供舉例說明之用,而非意圖限制隨附之申請專利範圍。須瞭解本發明非僅限於實例中陳述之特定細節。
實例中以及說明書其餘部分述及固體組成或濃度之全部份數及百分比,除非另行陳明,否則係以重量計。但實例中以及說明書其餘部分述及氣體組成之全部份數及百分比,除非另行陳明,否則係以莫耳濃度或以體積計。
此外,於說明書或申請專利範圍中引用之任何數值範圍例如表示特定一組性質、測量單位、條件、物理狀態或百分比的集合,意圖明白併入此處以供參考,否則落入此範圍之任何數目包括落入如此引述之任何範圍的數目子集。
以下為後文實例中出現的縮寫定義表ABD表示平均體積密度。wt.表示重量。cc表示立方厘米。g表示克。APS表示平均粒徑。DI表示如前文定義之戴維森指標。LPG表示液化石油氣。L表示升。min表示分鐘。API比重表示美國石油學會比重。K因數表示UOP華森(Watson)K因數。RON表示研究法辛烷值。LCO表示輕循環油。MON表示馬達法辛烷值。FBP表示終沸點。IBP表示初沸點。Re表示稀土。
實例
實例1(基本)ZSM-5觸媒製備如後。ZSM-5(4000克乾基)於12,000克去離子水中調成料漿。於此料漿內加入鋁氯醇(200克Al2 O3 乾基),400克(乾基)卡塔帕(Catapal)-BT M 鋁氧,4200克(乾基)高嶺土及1200克來自於濃縮(85%)H3 PO4 之P2 O5 。料漿係混合於高剪混合機,以1升/分鐘於4升德萊斯(Drais)介質磨機及然後噴乾。波溫(Bowen)噴乾機於進氣口溫度400℃及出氣口溫度150℃操作。噴乾的觸媒於593℃煅燒40分鐘。此試樣定名為觸媒A,其性質顯示於表1。
實例2(1% Fe2 O3 )含有1% Fe2 O3 之ZSM-5觸媒製備如下。Fe2 O3 粉末(50克)於5430克去離子水調成料漿。於此混合物內加入600克來自於濃縮(85%)H3 PO4 之P2 O5 ,2000克(乾基)ZSM-5,100克(乾基)得自於鋁氯醇之Al2 O3 ,200克(乾基)卡塔帕B鋁氧,2050克(乾基)高嶺土。料漿係混合於高剪混合機,以1升/分鐘於4升德萊斯介質磨機及然後噴乾。波溫噴乾機於進氣口溫度400℃及出氣口溫度150℃操作。噴乾的觸媒於593℃煅燒40分鐘。此試樣定名為觸媒B,其性質顯示於表1。
實例3(10%Fe2 O3 )含10 wt.% Fe2 O3 之觸媒C係以實例2之相同方式製備,但使用500克Fe2 O3 粉末,及高嶺土用量降至1600克。觸媒C之性質顯示於表1。
實例4實例1-3之觸媒係於ACE單元測試來測定其製造丙烯和LPG之相對活性。觸媒於816℃、100%水蒸氣汽蒸鈍化24小時,摻混5重量%濃度含沸石Y阿羅拉(AuroraT M )裂解觸媒(得自W.R.康格雷氏公司),該觸媒已經於816℃[1500℉]、100%水蒸氣分開汽蒸4小時。觸媒摻合物以527℃於ACE模型AP流體床微活性單元(ACE Model AP Fluid Bed Microactivity unit)測試。使用觸媒對油比為3至10,對各種觸媒進行若干回合。經由改變觸媒重量,維持進料重量的恆定,改變觸媒對油比。各回合使用的進料重量為1.5克,進料注入速率為3.0克/分鐘。進料性質顯示於表4。於77%常數轉換,觸媒摻合物之內插丙烯產率和LPG產率顯示於表1。可知,本發明(觸媒B和C)含有增加量之氧化鐵,相對於基本觸媒A可提高丙烯和LPG的產率。
實例5(基本觸媒)經由將1364克(1200克乾基)ZSM-5和171克(120克乾基)卡塔帕B鋁氧於水中調整為料漿至32 wt.%固體,來製備ZSM-5觸媒。於料漿內加入279克(60克乾基)鋁氯醇,1482克(1260克乾基)高嶺土和578克濃磷酸。料漿係以1.2升/分鐘於4升德萊斯介質磨機及然後噴乾。波溫噴乾機於400℃進氣口溫度及150℃出氣口溫度操作。噴乾的觸媒於593℃煅燒2小時。觸媒D之性質顯示於表2。
實例6(2% Fe2 O3 得自FeCl2 )含2 wt.%添加Fe2 O3 之觸媒E係以實例5之相同方式製備,但149克FeCl2 .4H2 O(60克Fe2 O3 基準)添加至料漿,高嶺土含量降至1412克。觸媒E之性質顯示於表2。
實例7(4% Fe2 O3 得自FeCl2 )含4 wt.%添加Fe2 O3 之觸媒F係以實例5之相同方式製備,但299克FeCl2 .4H2 O(120克Fe2 O3 基準)添加至料漿,高嶺土含量降至1341克。觸媒F之性質顯示於表2。
實例8實例5至7之觸媒係於ACE單元測試來測定其製造丙烯和LPG之相對活性。ZSM-5觸媒於816℃、100%水蒸氣汽蒸鈍化24小時,摻混5重量%濃度含阿羅拉裂解觸媒(得自W.R.康格雷氏公司),該觸媒已經於816℃[1500℉]、100%水蒸氣分開汽蒸4小時。觸媒摻合物以527℃於ACE模型AP流體床微活性單元測試。使用觸媒對油比為3至10,對各種觸媒進行若干回合。經由改變觸媒重量,維持進料重量的恆定,改變觸媒對油比。各回合使用的進料重量為1.5克,進料注入速率為3.0克/分鐘。進料性質顯示於表4。於77%常數轉換,觸媒摻合物之內插丙烯產率和LPG產率顯示於表2。資料顯示添加Fe2 O3 (得自FeCl2 )之觸媒相較於基本觸媒D,可提高丙烯和LPG的產率。
實例970%含鐵ZSM-5觸媒製備如下。ZSM-5(5820克乾基)於水中以48重量%固體調成料漿。於ZSM-5料漿中,加入446克氯化鐵II四水合物。料漿經過徹底混合,然後於波溫噴乾機內噴乾。所得產物於537℃煅燒2小時。產物含有2.8%Fe2 O3 。經煅燒含Fe2 O3 的ZSM-5(1444克乾基)於水中與80克(乾基)卡塔帕B鋁氧,176克(乾基)那卡黏土(Natka clay),174克鋁氯醇(23%固體)和494克濃磷酸調成料漿。料漿經過徹底混合,以1升/分鐘於4升德萊斯介質磨機。料漿然後於波溫噴乾機噴乾。波溫噴乾機於400℃進氣口溫度及150℃出氣口溫度操作。噴乾的觸媒於593℃煅燒2小時。觸媒定名為觸媒G。性質顯示於表3。
實例10觸媒D和G係呈與阿羅拉裂解觸媒(市售得自W.R.康格雷氏公司)之摻合物於ACE模式AP流體床微活性單元於527℃測試。在觸媒D和G以1 wt.% ZSM-5濃度與經過水蒸氣鈍化之阿羅拉裂解觸媒摻混前,觸媒D和G於流體化床反應器內在816℃於100%水蒸氣氣氛下汽蒸鈍化24小時。於恆定ZSM-5濃度測試觸媒,獲得觸媒D和G活性之規度化測量值,觸媒D和G含有不同濃度ZSM-5。觸媒摻合物係於ACE模式AP流體床微活性單元內於527℃測試。使用觸媒對油之比為3至10,對各觸媒進行若干回合。經由改變觸媒重量,且維持進料重量為恆定,和變動觸媒對油之比。各回合使用之進料重量為1.5克,進料注入速率為3.0克/分鐘。ACE烴產率內插至恆定轉化率來比較各種觸媒。進料性質顯示於表4。
ACE資料(表5)顯示含有大於1%添加鐵之觸媒G可比較不含大於1%添加鐵之觸媒D製造更大量丙烯達25%。
實例11製備一系列70重量%含ZSM-5之觸媒,含有一定範圍之鐵濃度和磷濃度。觸媒皆係藉下述方法製備。ZSM-5、鋁氯醇、卡塔帕B鋁氧、那卡黏土、氯化鐵II四水合物及磷酸於水中以40-45%固體濃度共同調成料漿。卡塔帕B和鋁氯醇分別占總觸媒組成之4 wt.%(乾基)和2 wt.%(乾基)。料漿係於4升德萊斯介質磨機以1升/分鐘研磨,然後於波溫噴乾機噴乾。噴乾機係以進氣口溫度400℃和出氣口溫度150℃操作。產物於537℃煅燒2小時。
藉此方式製備之觸媒配方摘述如後:(a)觸媒H:70%ZSM-5/1% Fe2 O3 /12.1%P2 O5 (b)觸媒I:70%ZSM-5/1% Fe2 O3 /13.1%P2 O5 (c)觸媒J:70%ZSM-5/1% Fe2 O3 /14.1%P2 O5 (d)觸媒K:70%ZSM-5/2.5% Fe2 O3 /12%P2 O5 (e)觸媒L:70%ZSM-5/2.5% Fe2 O3 /13.5%P2 O5 (f)觸媒M:70%ZSM-5/2.5% Fe2 O3 /15%P2 O5 (g)觸媒N:70%ZSM-5/4% Fe2 O3 /13%P2 O5 (h)觸媒O:70%ZSM-5/4% Fe2 O3 /14.5%P2 O5 (i)觸媒P:70%ZSM-5/4% Fe2 O3 /16%P2 O5 觸媒性質顯示於表6。
實例12觸媒D和H-P係呈與阿羅拉(市售得自W.R.康格雷氏公司)之摻合物於ACE模式AP流體床微活性單元於527℃測試。ZSM-5觸媒於以2 wt.% ZSM-5濃度而與經過水蒸氣鈍化之阿羅拉裂解觸媒摻混前,ZSM-5觸媒於流體化床反應器內於816℃於100%水蒸氣氣氛下汽蒸鈍化24小時。於恆定ZSM-5濃度測試觸媒,獲得觸媒D和H-P活性之規度化測量值,觸媒D和H-P含有不同濃度ZSM-5。如實例3所述進行ACE回合。ACE資料(表7)顯示含大於1%添加鐵之觸媒H-P相較於不含大於1%添加鐵的觸媒D可製造更高量的丙烯。
實例13(觸媒R)經Fe2 O3 和P2 O5 穩定化的ZSM-5觸媒製備如下。氧化鐵(250克)混合入5453克去離子水。隨後添加1218克濃磷酸(85%溶液)、2000克(乾基)ZSM-5、91克(乾基)鋁氯醇、200克(乾基)卡塔帕B鋁氧和1700克(乾基)高嶺土,來調成料漿。然後料漿係以1.2升/分鐘於4升德萊斯介質磨機且於波溫噴乾機噴乾。噴乾機於400℃進氣口溫度及150℃出氣口溫度操作。噴乾的觸媒於593℃煅燒2小時。此試樣定名為觸媒R,其性質顯示於表8。
基本FCC裂解觸媒和兩種ZSM-5觸媒(觸媒R和超烯烴(OlefinsUltraT M )亦即40重量%含ZSM-5的添加劑,得自W.R.康格雷氏公司其中含有低於1%鐵,標示為觸媒Q)於測試前,係以下述方式鈍化。使用之基本裂解觸媒為里布拉(LibraT M )裂解觸媒(得自W.R.康格雷氏公司),該基本裂解觸媒首先係以3%環烷酸釩於戊烷溶液和8%辛酸鎳於戊烷溶液浸漬來達成受體濕度目標1000 ppm Ni和1000 ppm V。試樣於浸漬步驟之前於蒙福(muffle)前處理,於浸漬步驟後接受後處理來燒掉溶劑。前處理程序和後處理程序皆包括乾燥步驟(204℃ 1小時)及煅燒步驟(593℃ 3小時)。然後經處理的試樣使用循環丙烯汽蒸方法(CPS),於788℃鈍化20小時。CPS方法之說明公開於L.T.Boock、T.F.Petti及J.A.Rudesill,「於流體觸媒裂解觸媒之循環丙烯汽蒸期間污染物-金屬鈍化和金屬-去氫效果」,烴處理觸媒之鈍化與測試,ACS研討會系列634,171頁(1996年),ISBN0-8412-3411-6。觸媒Q和R於流化床汽蒸器內於816℃分開濕熱鈍化24小時,未添加任何鎳或釩。
約70 wt.%經CPS鈍化之里布拉裂解觸媒摻混30%分開鈍化的超烯烴觸媒。同樣地,使用經過CPS鈍化之70/30里布拉裂解觸媒和分開鈍化之觸媒R製造70/30摻合物和85/15摻合物。新製里布拉觸媒和鈍化里布拉觸媒、超烯烴觸媒(觸媒Q)和觸媒R之性質報告於表8。
1 超烯烴、40重量%含ZSM-5添加劑,得自W.R.康格雷氏公司,含有低於1%鐵。
前述汽蒸鈍化觸媒於FCC單元之效能評估係經由使用戴維森循環升管(DCR)進行。該單元的說明與操作細節討論於下列公開文獻:1)G.W.Young、G.D.Weatherbee及S.W.Davey,「使用戴維森循環升管(DCR)先導工廠單元模擬商業FCCU產率」,國家石油精煉廠協會(NPRA)報告AM88-52;及2)G.W.Young,「於實驗室之FCC觸媒效能的實際評估」,於流體觸媒裂解:科學與技術J.S.Magee及M.M.Mitchell,Jr.編輯,表面科學與觸媒研究,76期,257頁,Elsevier科學出版公司B.V.阿姆斯特丹1993年,ISBN 0-444-89037-8。
具有表9所示性質之兩種商用FCC進料之摻合物用於測試。於各實驗中,DCR係於「完全燃燒」再生條件下操作,此處「完全燃燒」定義為添加至再生器內的空氣量足以將用過的FCC觸媒上的全部焦炭轉化成CO2
DCR初步進料各約2000克觸媒摻合物。使用的條件為升管頂溫545℃,再生器溫度727℃,再生器有1%過量氧(及以完全燃燒模式操作)。轉化成有用的產物係經由於導入單元前改變進料的預熱溫度來變化。對全部觸媒於各次轉化觸媒比含30%觸媒Q(超烯烴)之里布拉觸媒,於恆定轉化率顯著較高的C3輕烯烴產率(第1圖),且顯示相對於LPG有較高丙烯產率(第2圖)。含30%觸媒Q之觸媒和含15%觸媒R之觸媒顯示於恆定LPG時有略為不同的丙烯產率,但後者觸媒的ZSM-5存在量比前者少半量。本資料集合顯示含鐵ZSM-5觸媒(觸媒R)比較未添加Fe2 O3 之ZSM-5觸媒(觸媒Q),具有遠較佳的丙烯活性,產生較高的丙烯對丁烯比。
第1圖顯示本發明(觸媒R)之丙烯產率相對轉化率,且與得自具有低於1重量%氧化鐵之含ZSM-5觸媒(觸媒Q)之產率作比較。
第2圖顯示以丙烯產率相對於LPG產率定義的本發明(觸媒R)之丙烯選擇性,且與得自具有低於1重量%氧化鐵之含ZSM-5觸媒於恆定轉化率(觸媒Q)之選擇性作比較。

Claims (26)

  1. 一種流體化微粒觸媒組成物,其包括:(a)具有矽氧/鋁氧骨架之五元環(pentasil)沸石,(b)8至24重量%之磷(呈P2 O5 ),(c)1至10重量%氧化鐵(呈Fe2 O3 )存在於五元環沸石骨架外側,及(d)基料(matrix),其中磷和氧化鐵之含量係以含五元環沸石、磷、氧化鐵以及基料之粒子的含量為基準,且組成物的平均粒徑之範圍係於20微米至200微米,及其中五元環沸石為ZSM-5或ZSM-11。
  2. 如申請專利範圍第1項之觸媒組成物,其包括至少10重量%之磷。
  3. 如申請專利範圍第1項之觸媒組成物,其中磷酸鐵係存在於基料中。
  4. 如申請專利範圍第1項之觸媒組成物,其進一步包括適合於流體化觸媒裂解方法中裂解烴類之額外的沸石。
  5. 如申請專利範圍第4項之觸媒組成物,其中額外的沸石為八面沸石。
  6. 如申請專利範圍第4項之觸媒組成物,其中額外的沸石係選自Y沸石、REY、REUSY及其混合物。
  7. 如申請專利範圍第6項之觸媒組成物,其中五元環沸石為ZSM-5或ZSM-11。
  8. 如申請專利範圍第7項之觸媒組成物,其中觸媒組成物包括至少15重量%之Y沸石,該Y沸石含量係以總觸媒組成物為基準。
  9. 如申請專利範圍第7項之觸媒組成物,其中該觸媒組成物包括15重量%至60重量%之Y沸石,該Y沸石含量係以總觸媒組成物為基準。
  10. 如申請專利範圍第7項之觸媒組成物,其中該觸媒組成物包括25重量%至40重量%之Y沸石,該Y沸石含量係以總觸媒組成物為基準。
  11. 如申請專利範圍第4項之觸媒組成物,其中額外的觸媒係存在於粒子中,該粒子係與含五元環沸石、磷、氧化鐵以及基料之粒子分離。
  12. 一種觸媒裂解方法,其包括:(a)將烴進料導入包括反應區段、汽提區段、和再生區段之觸媒裂解單元的反應區段,該進料之特徵為具有初沸點120℃至終點高達850℃;(b)藉由讓該進料接觸流體化微粒裂解觸媒,在400℃至700℃之溫度下於該反應區段觸媒裂解該進料,該流體化微粒裂解觸媒包括:(i)具有矽氧/鋁氧骨架之五元環沸石,(ii)8至24重量%之磷(呈P2 O5 ),(iii)1至10重量%之氧化鐵(呈Fe2 O3 )存在於五元環沸石骨架外側,及 (iv)基料,其中磷和氧化鐵之量係以含五元環沸石、磷、氧化鐵以及基料之粒子的含量為基準,及其中五元環沸石為ZSM-5或ZSM-11;(c)於汽提區段,藉汽提流體來汽提回收已用過的觸媒粒子,以去除若干含烴材料;(d)從汽提區段回收經汽提的含烴材料,循環經汽提的用過的觸媒粒子至再生器或再生區段;以及於再生區段,經由燃燒掉相當大量之觸媒上的焦炭,來再生該裂解觸媒,且以任何添加的燃料成分來將再生觸媒維持於可將觸媒裂解反應器維持於400℃至700℃之溫度;以及(e)將再生的熱觸媒循環至反應區段。
  13. 如申請專利範圍第12項之方法,其中該流體化微粒裂解觸媒平均粒徑之範圍係20微米至200微米之間。
  14. 如申請專利範圍第12項之方法,其中該進料係在500℃至550℃之溫度下於該反應區段觸媒裂解。
  15. 如申請專利範圍第12項之方法,其中該裂解微粒觸媒包括至少10重量%之磷。
  16. 如申請專利範圍第12項之方法,其中該裂解微粒觸媒包括適合於流體化觸媒裂解方法中裂解烴類之額外沸石。
  17. 如申請專利範圍第16項之方法,其中該額外的沸石為八面沸石。
  18. 如申請專利範圍第16項之方法,其中該額外的沸石係選自Y沸石、REY、REUSY及其混合物。
  19. 如申請專利範圍第16項之方法,其中額外的沸石係存在於與包括五元環沸石、磷、氧化鐵以及基料之粒子分離之粒子中。
  20. 如申請專利範圍第16項之方法,其中以總流體化裂解觸媒為基準,額外沸石係占至少15重量%。
  21. 如申請專利範圍第16項之方法,其中以總流體化裂解觸媒為基準,額外沸石係占15重量%至60重量%。
  22. 如申請專利範圍第16項之方法,其中以總流體化裂解觸媒為基準,額外沸石係占25重量%至45重量%。
  23. 如申請專利範圍第16項之方法,其中五元環沸石為ZSM-5或ZSM-11。
  24. 一種流體化觸媒組成物,包括:(a)具有矽氧/鋁氧骨架之五元環沸石,(b)適合用於流體化觸媒裂中解裂解烴類之15至60重量%之額外的沸石,(c)至少0.01%之磷(呈P2 O5 ),(d)存在於五元環骨架外側之至少1%之氧化鐵(呈Fe2 O3 ),以及(e)基料,其中含五元環之觸媒(a)及額外沸石(b)之粒子係於相同粒子中,氧化鐵和磷之含量係以含(a)及(b)之觸媒組 成物總重為基準,以及該組成物之平均粒徑的範圍為20微米至200微米,及其中五元環沸石為ZSM-5或ZSM-11。
  25. 如申請專利範圍第24項之觸媒組成物,其中該觸媒包括0.01重量%至5重量%之磷。
  26. 如申請專利範圍第24項之觸媒組成物,其中五元環係選自ZSM-5、ZSM-11及其混合物;額外沸石(b)係選自沸石Y、REY、REUSY及其混合物。
TW095110924A 2005-06-29 2006-03-29 用於流體化觸媒裂解單元中輕烯烴之五元環觸媒 TWI491445B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US69494505P 2005-06-29 2005-06-29

Publications (1)

Publication Number Publication Date
TWI491445B true TWI491445B (zh) 2015-07-11

Family

ID=36636250

Family Applications (2)

Application Number Title Priority Date Filing Date
TW095110924A TWI491445B (zh) 2005-06-29 2006-03-29 用於流體化觸媒裂解單元中輕烯烴之五元環觸媒
TW950110924A TW200700154A (en) 2005-06-29 2006-03-29 Pentasil catalyst for light olefins in fluidized catalytic units

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW950110924A TW200700154A (en) 2005-06-29 2006-03-29 Pentasil catalyst for light olefins in fluidized catalytic units

Country Status (18)

Country Link
US (1) US20090134065A1 (zh)
EP (1) EP1907509B1 (zh)
JP (1) JP5185816B2 (zh)
KR (1) KR101317991B1 (zh)
CN (2) CN101213269B (zh)
AR (1) AR053846A1 (zh)
AU (1) AU2006266463A1 (zh)
BR (1) BRPI0611711B1 (zh)
CA (1) CA2613398C (zh)
ES (1) ES2730002T3 (zh)
IL (1) IL187767A0 (zh)
IN (1) IN2007DE09961A (zh)
MX (1) MX2007015824A (zh)
NO (1) NO20080476L (zh)
RU (1) RU2008103182A (zh)
TW (2) TWI491445B (zh)
WO (1) WO2007005075A1 (zh)
ZA (1) ZA200800721B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100904297B1 (ko) * 2007-10-26 2009-06-25 한국화학연구원 연속적인 2단계 촉매 반응을 이용한 합성가스로부터 경질올레핀의 제조방법
WO2010030369A1 (en) * 2008-09-15 2010-03-18 W.R. Grace & Co. - Conn. Catalytic cracking for enhanced propylene yield and reduced benzene naphtha fractions
CN101747135B (zh) * 2008-11-28 2013-09-04 中国石油化工股份有限公司 一种生物质催化裂解生产低碳烯烃的方法
US8137534B2 (en) 2009-04-23 2012-03-20 Uop Llc Catalyst compositions for improved fluid catalytic cracking (FCC) processes targeting propylene production
TWI473651B (zh) 2010-11-25 2015-02-21 Asahi Kasei Chemicals Corp Silica shaped body, method for producing the same, and production method of propylene using silica molded body
US20130131412A1 (en) * 2011-11-18 2013-05-23 Uop Llc Resid catalytic cracker and catalyst for increased propylene yield
SG11201407659XA (en) * 2012-05-25 2014-12-30 Saudi Arabian Oil Co Catalyst for enhanced propylene in fluidized catalytic cracking
CA2893459C (en) * 2012-12-21 2021-03-16 Albemarle Europe Sprl Modified y-zeolite/zsm-5 catalyst for increased propylene production
US8895790B2 (en) * 2013-02-12 2014-11-25 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products
US9434658B2 (en) * 2013-03-06 2016-09-06 Ut-Battelle, Llc Catalytic conversion of alcohols to hydrocarbons with low benzene content
EP2991762B1 (en) 2013-04-29 2022-11-16 Saudi Basic Industries Corporation Catalytic methods for converting naphtha into olefins
WO2014207756A1 (en) * 2013-06-23 2014-12-31 Reliance Industries Limited Fcc catalyst additive and a method for its preparation
JP5832560B2 (ja) * 2014-01-21 2015-12-16 日揮触媒化成株式会社 リン酸アルミニウムで修飾された金属担持結晶性シリカアルミノフォスフェート触媒の製造方法
CN106140252A (zh) * 2015-04-17 2016-11-23 中国石油天然气股份有限公司 催化裂化催化剂及其制备方法和应用
US20190070595A1 (en) * 2016-03-23 2019-03-07 Inaeris Technologies, Llc Catalyst containing phosphated kaolin and alumina from ach and method of using the same
US10105689B2 (en) * 2016-05-12 2018-10-23 Saudi Arabian Oil Company Heat generating catalyst for hydrocarbons cracking
WO2021007156A1 (en) 2019-07-10 2021-01-14 W.R. Grace & Co.-Conn. Fluidized cracking process for increasing olefin yield and catalyst composition for same
US11370975B2 (en) * 2020-09-30 2022-06-28 Saudi Arabian Oil Company Steam-enhanced catalytic cracking of hydrocarbons to produce light olefins
CA3192590A1 (en) 2020-10-07 2022-04-14 Mehdi Allahverdi Maximization of light olefins in fcc process
WO2022076169A1 (en) 2020-10-07 2022-04-14 Johnson Matthey Process Technologies, Inc Additive for fcc process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3709832A (en) * 1970-09-24 1973-01-09 Osaka Yogyo Co Ltd Method for the preparation of a catalyst usable for catalytic cracking of hydrocarbons
US6080698A (en) * 1997-09-17 2000-06-27 China Petrochemical Corporation Pentasil-type molecular sieve containing composition and its preparation method
US20010042701A1 (en) * 2000-04-17 2001-11-22 Stuntz Gordon F. Cycle oil conversion process
US20050020867A1 (en) * 2003-06-30 2005-01-27 China Petroleum & Chemical Corporation Catalytic conversion process for producing light olefins with a high yield from petroleum hydrocarbons

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6503410A (zh) * 1963-02-21 1965-09-20
US3354096A (en) * 1965-04-06 1967-11-21 Union Oil Co Pelleted zeolite compositions possessing improved crushing strength
US3293192A (en) * 1965-08-23 1966-12-20 Grace W R & Co Zeolite z-14us and method of preparation thereof
US3402996A (en) * 1966-12-19 1968-09-24 Grace W R & Co Ion exchange of crystalline zeolites
US3649523A (en) * 1969-04-10 1972-03-14 Standard Oil Co Hydrocracking process and catalyst
US3702886A (en) * 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3607043A (en) * 1969-11-19 1971-09-21 Grace W R & Co Cation and thermal stabilization of a faujasite-type zeolite
US3709979A (en) * 1970-04-23 1973-01-09 Mobil Oil Corp Crystalline zeolite zsm-11
US3676368A (en) * 1970-08-26 1972-07-11 Grace W R & Co Rare earth-hydrogen exchanged zeolites
US3941871A (en) * 1973-11-02 1976-03-02 Mobil Oil Corporation Crystalline silicates and method of preparing the same
US3867308A (en) * 1973-12-10 1975-02-18 Grace W R & Co Process for preparing a petroleum cracking catalyst
US3957689A (en) * 1974-08-02 1976-05-18 W. R. Grace & Co. Process for preparing an attrition resistant zeolite hydrocarbon conversion catalyst
US4178267A (en) * 1976-03-29 1979-12-11 Phillips Petroleum Company Passivating metals on cracking catalysts
JPS5827837B2 (ja) * 1979-03-22 1983-06-11 日本鉱業株式会社 含硫黄重質油の処理方法
DE3006471A1 (de) * 1980-02-21 1981-08-27 Basf Ag, 6700 Ludwigshafen Kristalline isotaktische zeolithe, verfahren zur herstellung derselben sowie deren verwendung als katalysatoren
US4288647A (en) * 1980-03-10 1981-09-08 Mobil Oil Corporation Shape selective reactions with alkaline earth-modified zeolite catalysts
US4458023A (en) * 1981-08-10 1984-07-03 W. R. Grace & Co. Catalyst manufacture
US4472518A (en) * 1981-11-04 1984-09-18 Mobil Oil Corporation Shape selective reactions with zeolite catalysts modified with iron and/or cobalt
US4446008A (en) * 1981-12-09 1984-05-01 Research Association For Residual Oil Processing Process for hydrocracking of heavy oils with iron containing aluminosilicates
US4843052A (en) * 1982-05-21 1989-06-27 W. R. Grace & Co.-Conn. Acid-reacted metakaolin catalyst and catalyst support compositions
US4454241A (en) * 1982-05-24 1984-06-12 Exxon Research And Engineering Co. Phosphorus-containing catalyst
US4504382A (en) * 1982-10-14 1985-03-12 Exxon Research And Engineering Co. Phosphorus-containing catalyst and catalytic cracking process utilizing the same
US4465780A (en) * 1982-10-14 1984-08-14 Exxon Research & Engineering Co. Phosphorus-containing catalyst
DE3370469D1 (en) * 1982-11-16 1987-04-30 Hoechst Ag Aluminium silicates with a zeolite structure and process for their preparation
US4605637A (en) * 1983-02-14 1986-08-12 Mobil Oil Corporation Hydrothermal activation of acid zeolites with aluminum phosphates
JPS6115848A (ja) * 1984-06-30 1986-01-23 Agency Of Ind Science & Technol リン酸カルシウム変性ゼオライト型触媒による低級オレフインの製造方法
DE3570689D1 (en) * 1984-09-25 1989-07-06 Catalysts & Chem Ind Co Catalytic cracking, process for heavy oil
US4567152A (en) * 1984-12-13 1986-01-28 Exxon Research And Engineering Co. Co-matrixed zeolite and p/alumina
US4584091A (en) * 1984-12-13 1986-04-22 Exxon Research And Engineering Co. Cracking with co-matrixed zeolite and p/alumina
US4724066A (en) * 1985-01-22 1988-02-09 Mobil Oil Corporation Composites of microporous aluminum phosphates and zeolites and conversions over these catalysts
US4629717A (en) * 1985-06-11 1986-12-16 Uop Inc. Phosphorus-modified alumina composite, method of manufacture and use thereof
US4764269A (en) * 1985-07-15 1988-08-16 W. R. Grace & Co. Cracking catalyst
US4711710A (en) * 1985-09-23 1987-12-08 Mobil Oil Corporation Process for making improved lubricating oils from heavy feedstock
US4839319A (en) * 1986-07-11 1989-06-13 Exxon Research And Engineering Company Hydrocarbon cracking catalysts and processes for utilizing the same
US4952385A (en) * 1987-03-02 1990-08-28 Georgia Tech Research Corp. Ferrisilicate molecular sieve and use as a catalyst
US4873211A (en) * 1987-07-02 1989-10-10 Phillips Petroleum Company Cracking catalyst and process
US4765884A (en) * 1987-07-02 1988-08-23 Phillips Petroleum Company Cracking catalyst and process
GB8820358D0 (en) * 1988-08-26 1988-09-28 Shell Int Research Process for catalytic cracking of hydrocarbon feedstock
US5207893A (en) * 1989-02-07 1993-05-04 Research Association For Residual Oil Processing Hydrocracking process employing a novel iron-containing aluminosilicate
US5236880A (en) * 1989-12-11 1993-08-17 W. R. Grace & Co.-Conn. Catalyst for cracking of paraffinic feedstocks
CN1037327C (zh) * 1990-06-20 1998-02-11 中国石油化工总公司石油化工科学研究院 含高硅沸石的裂解催化剂
US5194412A (en) * 1991-01-22 1993-03-16 W. R. Grace & Co.-Conn. Catalytic compositions
AU652222B2 (en) * 1991-03-12 1994-08-18 Mobil Oil Corporation Preparation of cracking catalysts, and cracking process using them
US5110776A (en) * 1991-03-12 1992-05-05 Mobil Oil Corp. Cracking catalysts containing phosphate treated zeolites, and method of preparing the same
US5302567A (en) * 1991-11-04 1994-04-12 W. R. Grace & Co.-Conn. Zeolite octane additive
US5997728A (en) * 1992-05-04 1999-12-07 Mobil Oil Corporation Catalyst system for maximizing light olefin yields in FCC
CN1034223C (zh) * 1993-03-29 1997-03-12 中国石油化工总公司 制取低碳烯烃的裂解催化剂
US5521133A (en) * 1994-11-29 1996-05-28 Engelhard Corporation Phosphorus bound porous microspheres
US5898089A (en) * 1997-07-09 1999-04-27 Phillips Petroleum Company Hydrocarbon aromatization process using a zeolite
US20010008949A1 (en) * 1997-09-30 2001-07-19 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
US20020011429A1 (en) * 1997-09-30 2002-01-31 Akira Iino Iron-containing crystalline aluminosilicate
CO4890864A1 (es) * 1997-10-02 2000-02-28 Colombiana De Petroleos Ecopet Trampas de vanadio para catalizadores de ruptura catalitica
DE69832938T2 (de) * 1997-10-15 2006-08-10 China Petro-Chemical Corp. Krackkatalysator für die Produktion von leichten Olefinen und dessen Herstellung
FR2769856B1 (fr) * 1997-10-20 1999-12-03 Inst Francais Du Petrole Catalyseur et procede d'hydrocraquage de coupes hydrocarbonees
US6040257A (en) * 1997-11-07 2000-03-21 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
US6074975A (en) * 1998-03-03 2000-06-13 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
US6080303A (en) * 1998-03-11 2000-06-27 Exxon Chemical Patents, Inc. Zeolite catalyst activity enhancement by aluminum phosphate and phosphorus
US20020049133A1 (en) * 1999-03-02 2002-04-25 Michael S. Ziebarth High zeolite content and attrition resistant catalyst, methods for preparing the same and catalyzed processes therewith
FR2794116B1 (fr) * 1999-05-11 2001-07-20 Inst Francais Du Petrole Zeolithe im-5 au phosphore, composition catalytique, sa preparation et son utilisation en craquage catalytique
US6387246B1 (en) * 1999-05-19 2002-05-14 Institut Francais Du Petrole Catalyst that comprises a partially amorphous Y zeolite and its use in hydroconversion of hydrocarbon petroleum feedstocks
US6797155B1 (en) * 1999-12-21 2004-09-28 Exxonmobil Research & Engineering Co. Catalytic cracking process using a modified mesoporous aluminophosphate material
US6355591B1 (en) * 2000-01-03 2002-03-12 Indian Oil Corporation Limited Process for the preparation of fluid catalytic cracking catalyst additive composition
ES2168208B1 (es) * 2000-03-24 2003-04-01 Univ Valencia Politecnica Catalizadores de craqueo basados en zeolitas.
US6569316B2 (en) * 2000-04-17 2003-05-27 Exxonmobil Research And Engineering Company Cycle oil conversion process incorporating shape-selective zeolite catalysts
DE10043375A1 (de) * 2000-09-02 2002-03-14 Bosch Gmbh Robert Verfahren zur Aufheizung eines Katalysators bei Verbrennungsmotoren mit Benzindirekteinspritzung
JP4991083B2 (ja) * 2000-09-22 2012-08-01 バスフ・カタリスツ・エルエルシー 構造的に強化された分解用触媒
US6656347B2 (en) * 2000-09-22 2003-12-02 Engelhard Corporation Structurally enhanced cracking catalysts
US6673235B2 (en) * 2000-09-22 2004-01-06 Engelhard Corporation FCC catalysts for feeds containing nickel and vanadium
DE10061959A1 (de) * 2000-12-13 2002-06-20 Creavis Tech & Innovation Gmbh Kationen-/protonenleitende, mit einer ionischen Flüssigkeit infiltrierte keramische Membran, Verfahren zu deren Herstellung und die Verwendung der Membran
US6696378B2 (en) * 2001-08-31 2004-02-24 Engelhard Corporation Fluid catalytic cracking catalyst manufacturing process
US6613710B2 (en) * 2001-09-25 2003-09-02 Indian Oil Corporation Limited Process for preparation of bi-functional fluid catalytic cracking catalyst composition
CN1176020C (zh) * 2002-06-27 2004-11-17 中国石油化工股份有限公司 一种含磷和过渡金属的mfi结构分子筛
JP2005536343A (ja) * 2002-08-29 2005-12-02 アルベマーレ ネザーランズ ビー.ブイ. 軽オレフィン生産のための触媒
CN1205306C (zh) * 2002-11-29 2005-06-08 中国石油化工股份有限公司 一种石油烃裂解制取低碳烯烃的催化剂
US7125817B2 (en) * 2003-02-20 2006-10-24 Exxonmobil Chemical Patents Inc. Combined cracking and selective hydrogen combustion for catalytic cracking
CN1261216C (zh) * 2003-05-30 2006-06-28 中国石油化工股份有限公司 一种含分子筛的烃类裂化催化剂及其制备方法
CN1234806C (zh) * 2003-06-30 2006-01-04 中国石油化工股份有限公司 一种制取乙烯和丙烯的石油烃催化热裂解方法
CN1257769C (zh) * 2003-10-31 2006-05-31 中国石油化工股份有限公司 一种含磷和金属组分的mfi结构分子筛及其应用
US20050227853A1 (en) * 2004-04-02 2005-10-13 Ranjit Kumar Catalyst compositions comprising metal phosphate bound zeolite and methods of using same to catalytically crack hydrocarbons

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3709832A (en) * 1970-09-24 1973-01-09 Osaka Yogyo Co Ltd Method for the preparation of a catalyst usable for catalytic cracking of hydrocarbons
US6080698A (en) * 1997-09-17 2000-06-27 China Petrochemical Corporation Pentasil-type molecular sieve containing composition and its preparation method
US20010042701A1 (en) * 2000-04-17 2001-11-22 Stuntz Gordon F. Cycle oil conversion process
US20050020867A1 (en) * 2003-06-30 2005-01-27 China Petroleum & Chemical Corporation Catalytic conversion process for producing light olefins with a high yield from petroleum hydrocarbons

Also Published As

Publication number Publication date
AR053846A1 (es) 2007-05-23
CA2613398A1 (en) 2007-01-11
NO20080476L (no) 2008-01-25
EP1907509A1 (en) 2008-04-09
MX2007015824A (es) 2008-02-22
ZA200800721B (en) 2009-01-28
ES2730002T3 (es) 2019-11-07
CN101213269B (zh) 2012-01-25
IN2007DE09961A (zh) 2008-06-20
CA2613398C (en) 2014-05-06
BRPI0611711B1 (pt) 2021-06-29
TW200700154A (en) 2007-01-01
KR20080034442A (ko) 2008-04-21
BRPI0611711A2 (pt) 2010-09-28
AU2006266463A1 (en) 2007-01-11
EP1907509B1 (en) 2019-05-08
CN101213269A (zh) 2008-07-02
RU2008103182A (ru) 2009-08-10
IL187767A0 (en) 2008-08-07
US20090134065A1 (en) 2009-05-28
WO2007005075A1 (en) 2007-01-11
CN102553633A (zh) 2012-07-11
JP2009500153A (ja) 2009-01-08
CN102553633B (zh) 2016-03-02
JP5185816B2 (ja) 2013-04-17
KR101317991B1 (ko) 2013-10-14

Similar Documents

Publication Publication Date Title
TWI491445B (zh) 用於流體化觸媒裂解單元中輕烯烴之五元環觸媒
JP5008570B2 (ja) 流動式接触反応装置における軽質オレフィン用およびlpg用触媒
JP5126613B2 (ja) 接触分解触媒及びその製造方法ならびに炭化水素油の接触分解方法
WO2014057931A1 (ja) 炭化水素油の接触分解触媒及び炭化水素油の接触分解方法
JP5152925B2 (ja) 炭化水素油の接触分解触媒、炭化水素油の接触分解触媒の製造方法および炭化水素油の接触分解方法
US20220267681A1 (en) Fluidized cracking process for increasing olefin yield and catalyst composition for same
JP5499407B2 (ja) 接触分解触媒の製造方法
RU2793858C1 (ru) Способ флюидизированного крекинга для повышения выхода олефинов и предназначенная для этого каталитическая композиция
KR20240154699A (ko) 올레핀 수율을 증가시키기 위한 유동 분해 방법 및 이를 위한 촉매 조성물