TWI419331B - 金氧半導體場效電晶體及其製造方法 - Google Patents

金氧半導體場效電晶體及其製造方法 Download PDF

Info

Publication number
TWI419331B
TWI419331B TW098144138A TW98144138A TWI419331B TW I419331 B TWI419331 B TW I419331B TW 098144138 A TW098144138 A TW 098144138A TW 98144138 A TW98144138 A TW 98144138A TW I419331 B TWI419331 B TW I419331B
Authority
TW
Taiwan
Prior art keywords
channel layer
effect transistor
field effect
layer
channel
Prior art date
Application number
TW098144138A
Other languages
English (en)
Other versions
TW201112420A (en
Inventor
Matthias Passlack
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Publication of TW201112420A publication Critical patent/TW201112420A/zh
Application granted granted Critical
Publication of TWI419331B publication Critical patent/TWI419331B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66522Unipolar field-effect transistors with an insulated gate, i.e. MISFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/512Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being parallel to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

金氧半導體場效電晶體及其製造方法
本發明係有關於通道層含有例如InGaAs、InAs或InAsSb之III-V族半導體的金氧半導體場效電晶體。
本發明係有關於通道層含有例如InGaAs、InAs或InAsSb之III-V族半導體的金氧半導體場效電晶體(此後稱之為“III-V族MOSFET(III-V MOSFET)”或“薄體MOSFET(thin body MOSFET)”)。在習知技術中,一般當III-V族MOSFET是形成在GaAs基底上時,會使用銦(In)莫耳分率低(<30%)的InGaAs通道;而當形成在InP基底上時,則會使用銦莫耳分率高()的InGaAs通道。具有銦(In)含量較高之通道層的III-V族MOSFET也適合未來形成在矽基底上的CMOS應用。
在習知技術中,通道具有高的銦莫耳分率的MOSFET使用一般的離子摻雜法形成源極與汲極延伸區域以降低寄生電阻,如Y. Xuan等人在“High-Performance Inversion-Type Enhancement-Mode InGaAs MOSFET with Maximum Drain Current Exceeding 1A/mm,”Electron Device letters,Vol. 29,No. 4,p. 294(2008)中所述。0.5μm的裝置其最終的有效寄生串聯源極/汲極電阻(parasitic series source/drain resistance(Rsd ))約為2000Ωμm,且次臨界擺幅(subthreshold swing(S))為200mV/decade。習知技術更揭示無摻雜的III-V族MOSFET,其是使用極性與通道相反並形成在閘極氧化層表面上的電荷層,藉此降低源極/汲極延伸區域中的寄生電阻,如R. J. W. Hill等人在“1μm gate length,In0.75 Ga0.25 As channel,thin body n-MOSFET on InP substrate with transconductance of 73μS/μm,”Electronics Letter,Vol. 44,No. 7,pp. 498-500(2008),與美國專利公開號2008/0102607中所述。在此例子中,1μm的裝置其Rsd約為530Ωμm,且次臨界擺幅為1100mV/decade。習知技術也揭露使用從源極接觸延伸至汲極接觸的單一個氧化層,其同時在閘極下方與源極/汲極延伸區域中誘導出導電的表面通道,如N. Li等人在“Properties of InAs metal-oxide-semiconductor structures with atomic-layer-deposited Al2 O3 Dielectric,”Applied Physics Letters,Vol. 92,143507(2008)中所述。N. Li等人量測5μm的裝置得到Rsd 為52,500Ωμm,且次臨界擺幅為400mV/decade。而量測得的跨導(transconductance;gm )非常小,為2.3μS/μm。
國際半導體技術藍圖(International Technology Roadmap for Semiconductors)顯示22奈米及更小尺寸世代的CMOS裝置需要符合、S<100mV/decade,且gm=3000-4000μS/μm的條件。然而,所有的習知技術並無法達到上述需求。
本發明提供一種金氧半導體場效電晶體,包括:一半導體基底;一通道層,設置在該基底的頂表面上;一閘極介電層,插入一閘電極與該通道層之間;以及介電延伸層,設置在該通道層的頂部上,並插入該閘電極與歐姆接觸之間;其中該閘極介電層包括一第一材料,該第一材料與該通道層的頂表面形成一低缺陷的界面;以及其中該介電延伸層包括一不同於該第一材料的第二材料,該第二材料與該通道層形成一導電表面通道。
本發明也提供一種薄體金氧半導體場效電晶體,包括:一半導體基底;一通道層,設置在該基底的頂表面上,該通道層包括一III-V族半導體;一間極介電層,插入一閘電極與該通道層之間,並沿著該通道層的前側與後側設置;以及介電延伸層,設置在通道層的頂部上,並插入該閘電極與歐姆接觸之間;其中該閘極介電層包括一第一材料,該第一材料沿著該通道層的頂表面、前側表面與後側表面而與該通道層形成一低缺陷的界面;以及其中該介電延伸層包括一不同於該第一材料的第二材料,該第二材料與該通道層形成一導電表面通道。
本發明還提供一種包括閘電極位於源極與汲極歐姆接觸之間的薄體金氧半導體場效電晶體的製造方法,包括:在一半導體基底的頂表面上提供一通道層;在該閘電極與該通道層之間提供一閘極介電層;以及提供介電延伸層,設置在該通道層的頂部上,並插入該閘電極與歐姆接觸之間;其中該閘極介電層包括第一材料,該第一材料與該通道層形成一低缺陷的界面;以及其中該介電延伸層包括一不同於該第一材料的第二材料,該第二材料與該通道層形成一導電表面通道。
以下是透過圖示說明本發明的概念。要強調的是,圖中的各種元件並未畫成與工業標準規範相符的比例。實際上,為了清楚地描述本發明,各種元件的尺寸可任意地放大或縮小。
在此所述的實施例提供III-V族MOSFET,其在導通狀態時具有低的寄生導通電阻(parasitic on-resistance;Rsd )與高的跨導(transconductance;gm ),且在關閉狀態時具有低的次臨界擺幅(subthreshold swing;S)。本發明一實施例包括III-V族MOSFET,其同時具有只在源極/汲極延伸區域誘導的導電表面通道造成的低導通電阻;在閘極區域使用低界面缺陷的閘極氧化物所造成的高跨導;以及裝置在關閉狀態時由於空乏的通道側壁所造成的低次臨界擺幅。
第1A圖至第1C圖顯示各種典型的III-V族MOSFET。第1A圖顯示第一典型之III-V族MOSFET 100的剖面圖。III-V族MOSFET 100包括寬能隙半導體的基底層101,其上方設置有通道層102並具有離子摻雜延伸區域103。歐姆接觸104設置在部分的離子摻雜延伸區域103上。通道層102包括多數個III-V族半導體中的其中一個,例如InGaAs、InAs或InAsSb。
閘極氧化層106延伸在歐姆接觸104之間,且閘電極108與閘極側壁110設置在閘極氧化層106的上方。MOSFET 100更包括隔離區域112。化合物半導體中的施體摻雜質的活化效率一般很低,只有幾個百分比的等級,且活化施體的濃度是限制在接近5x1018 原子cm-3 (atom cm-3 )。舉例來說,對遷移率為2500cm2 /Vs的10nm的通道層來說,其片電阻高達500Ω/sq,此會造成過高的Rsd
第1B圖顯示第二典型的III-V族MOSFET 120的剖面圖。MOSFET 120包括寬能隙半導體的基底層122,其上方設置有通道層124。通道層124包括多數個III-V族半導體中的其中一個,例如InGaAs、InAs或InAsSb。
MOSFET 120包括單一個閘極氧化層126,延伸在源極與汲極歐姆接觸128之間。閘電極130與閘極側壁132設置在閘極氧化層126的上方。MOSFET 120更包括隔離區域133。若InGaAs通道層具有高的In莫耳分率,特別是InAs通道層具有高的In莫耳分率,而其表面被氧化或其終端具有高程度的缺陷時,會造成導電表面通道134。雖然位於閘電極130與歐姆接觸128之間的延伸區域136有可能達成低的電阻,然而由於閘極氧化層126與通道層124之間的界面138的高缺陷,閘電極130下方的電荷控制成為不可能,因而造成非常小的跨導。
第1A圖與第1B圖顯示MOSFET垂直於對應的閘電極的剖面圖。第1C圖則顯示MOSFET 120位於閘電極130下方且平行於閘電極130的剖面圖。請參考第1C圖,隔離區域133與通道層124的側壁之間會形成高缺陷的界面138,而在通道層124的側壁產生導電表面通道134。由於導電表面通道134是無法被空乏掉的導電層,因此MOSFET 120在關閉狀態時會造成高次臨界擺幅與高源極至汲極的漏電流(source-to-drain leakage current)。
第2圖顯示本發明一實施例的III-V族MOSFET 200垂直於閘極的剖面圖。如第2圖中所示,MOSFET 200包括寬能隙半導體的基底層202,其上方設置有通道層204。通道層204包括多數個III-V族半導體中的其中一個,例如InGaAs、InAs或InAsSb。
MOSFET 200包括閘極介電層206與延伸介電層207,延伸在源極與汲極歐姆接觸208之間。閘電極210設置於閘極介電層206的上方,且閘極側壁212設置在延伸介電層207的上方。MOSFET 200更包括隔離區域213。如先前所述,閘極介電層206包括適合的氧化物或其他絕緣材料,其在通道層204提供低缺陷的界面,而在閘極下方造成有效的電荷控制的區域,其如符號214所示。詳細地說,區域214會被閘極控制,且在裝置200關閉狀態時電荷載子能有效地被空乏掉。
延伸介電層207是設置於鄰接且自對準於閘電極210,以誘導出導電表面通道216,其能將延伸電阻(extension resistance)最小化。延伸介電層207包括適合的氧化物或其他絕緣材料,此材料可與通道層204產生高缺陷的界面,藉此在半導體表面或鄰近半導體表面的區域產生電荷累積層(charge accumulation layer)。延伸介電層207能藉由對通道層204的表面進行氧化而相對容易地形成。要注意延伸介電層207與通道層204產生的“高缺陷”的界面是相對於閘極介電層206與通道層204產生的“低缺陷”的界面作定義。
第3圖則顯示MOSFET 200位於閘電極210下方且平行於閘電極210的剖面圖。由於通道層204的側壁300與閘極介電層206形成低缺陷的界面,因此能有效地控制在側壁300的電荷。因此,包含側壁300的區域,會類似於上述區域214,被閘極控制且在裝置200的關閉狀態下,可有效地空乏掉電荷載子。
第4圖為MOSFET 200的上視圖,顯示隔離區域213相對於閘電極210及源極與汲極歐姆接觸208的位置。
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟悉此項技藝者,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾。舉例來說,所述方法的各種步驟可以不同的順序或連續地執行,或與其他步驟合併、更分割成其他步驟或以其他步驟取代,或全部移除。另外,在說明書中的方法或其他部分所述的各種功能,可合併提供額外及/或其他的功能。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100...MOSFET
101...基底層
102...通道層
103...離子摻雜延伸區域
104...歐姆接觸
106...閘極氧化層
108...閘電極
110...閘極側壁
112...隔離區域
120...MOSFET
122...基底層
124...通道層
126...閘極氧化層
128...源極與汲極歐姆接觸
130...閘電極
132...閘極側壁
133...隔離區域
134...導電的表面通道
136...延伸區域
138...界面
200...MOSFET
202...基底層
204...通道層
206...閘極介電層
207‧‧‧延伸介電層
208‧‧‧源極與汲極歐姆接觸
210‧‧‧閘電極
212‧‧‧閘極側壁
213‧‧‧隔離區域
214‧‧‧區域
216‧‧‧導電表面通道
300‧‧‧側壁
第1A圖至第1C圖顯示各種典型的III-V族MOSFET。
第2圖為本發明一實施例的III-V族MOSFET垂直於閘極的剖面圖,III-V族MOSFET包括導電表面通道延伸區域與閘極控制的通道側壁。
第3圖為第2圖MOSFET位於閘電極210下方且平行於閘電極的剖面圖。
第4圖為MOSFET的上視圖。
200...MOSFET
202...基底層
204...通道層
206...閘極介電層
207...延伸介電層
208...源極與汲極歐姆接觸
210...閘電極
212...閘極側壁
213...隔離區域
214...區域
216...導電表面通道

Claims (20)

  1. 一種金氧半導體場效電晶體(MOSFET),包括:一半導體基底;一通道層,設置在該基底的頂表面上;一閘極介電層,插入一閘電極與該通道層之間;以及介電延伸層,設置在該通道層的頂部上,並插入該閘電極與歐姆接觸之間;其中該閘極介電層包括一第一材料,該第一材料與該通道層的頂表面形成一第一界面;以及其中該介電延伸層包括一不同於該第一材料的第二材料,該第二材料與該通道層形成一導電表面通道,該介電延伸層與該通道層的頂表面形成一第二界面,且該第一界面之缺陷低於該第二界面之缺陷。
  2. 如申請專利範圍第1項所述的金氧半導體場效電晶體,其中該通道層包括一III-V族半導體。
  3. 如申請專利範圍第2項所述的金氧半導體場效電晶體,其中該通道層包括InGaAs、InAs與InAsSb中的其中一個。
  4. 如申請專利範圍第1項所述的金氧半導體場效電晶體,其中該基底包括一寬能隙半導體材料。
  5. 如申請專利範圍第1項所述的金氧半導體場效電晶體,其中該介電延伸層是藉由氧化該半導體基底的表面形成。
  6. 如申請專利範圍第1項所述的金氧半導體場效電 晶體,其中該閘極介電層包括一氧化物。
  7. 如申請專利範圍第1項所述的金氧半導體場效電晶體,更包括一隔離區域,沿著該半導體基底的邊緣設置。
  8. 一種薄體金氧半導體場效電晶體(thin-body MOSFET),包括:一半導體基底;一通道層,設置在該基底的頂表面上,該通道層包括一III-V族半導體;一閘極介電層,插入一閘電極與該通道層之間,並沿著該通道層的前側與後側設置;以及介電延伸層,設置在通道層的頂部上,並插入該閘電極與歐姆接觸之間;其中該閘極介電層包括一第一材料,該第一材料沿著該通道層的頂表面、前側表面與後側表面而與該通道層形成一低缺陷的界面;以及其中該介電延伸層包括一不同於該第一材料的第二材料,該第二材料與該通道層形成一導電表面通道。
  9. 如申請專利範圍第8項所述的薄體金氧半導體場效電晶體,其中該通道層包括一III-V族半導體。
  10. 如申請專利範圍第8項所述的薄體金氧半導體場效電晶體,其中該通道層包括InGaAs、InAs與InAsSb中的其中一個。
  11. 如申請專利範圍第8項所述的薄體金氧半導體場效電晶體,其中該基底包括一寬能隙半導體材料。
  12. 如申請專利範圍第8項所述的薄體金氧半導體場效電晶體,其中該介電延伸層是藉由氧化該半導體基底的表面形成。
  13. 如申請專利範圍第8項所述的薄體金氧半導體場效電晶體,其中該閘極介電層包括一氧化物。
  14. 如申請專利範圍第8項所述的薄體金氧半導體場效電晶體,更包括一隔離區域,沿著該半導體基底的邊緣設置。
  15. 一種包括閘電極位於源極與汲極歐姆接觸之間的薄體金氧半導體場效電晶體的製造方法,包括:在一半導體基底的頂表面上提供一通道層;在該閘電極與該通道層之間提供一閘極介電層;以及提供介電延伸層,設置在該通道層的頂部上,並插入該閘電極與歐姆接觸之間;其中該閘極介電層包括第一材料,該第一材料與該通道層形成一第一界面;以及其中該介電延伸層包括一不同於該第一材料的第二材料,該第二材料與該通道層形成一導電表面通道,該介電延伸層與該通道層的頂表面形成一第二界面,且該第一界面之缺陷低於該第二界面之缺陷。
  16. 如申請專利範圍第15項所述的薄體金氧半導體場效電晶體的製造方法,其中該通道層包括一III-V族半導體。
  17. 如申請專利範圍第15項所述的薄體金氧半導體 場效電晶體的製造方法,其中該通道層包括InGaAs、InAs與InAsSb中的其中一個。
  18. 如申請專利範圍第15項所述的薄體金氧半導體場效電晶體的製造方法,其中該基底包括一寬能隙半導體材料。
  19. 如申請專利範圍第15項所述的薄體金氧半導體場效電晶體的製造方法,其中該介電延伸層是藉由氧化該半導體基底的表面形成。
  20. 如申請專利範圍第15項所述的薄體金氧半導體場效電晶體的製造方法,其中該閘極介電層包括一氧化物。
TW098144138A 2009-09-18 2009-12-22 金氧半導體場效電晶體及其製造方法 TWI419331B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/562,790 US20110068348A1 (en) 2009-09-18 2009-09-18 Thin body mosfet with conducting surface channel extensions and gate-controlled channel sidewalls

Publications (2)

Publication Number Publication Date
TW201112420A TW201112420A (en) 2011-04-01
TWI419331B true TWI419331B (zh) 2013-12-11

Family

ID=43235569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098144138A TWI419331B (zh) 2009-09-18 2009-12-22 金氧半導體場效電晶體及其製造方法

Country Status (6)

Country Link
US (1) US20110068348A1 (zh)
EP (1) EP2299480A3 (zh)
JP (1) JP5334934B2 (zh)
KR (1) KR101145991B1 (zh)
CN (1) CN102024850B (zh)
TW (1) TWI419331B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9680027B2 (en) 2012-03-07 2017-06-13 Taiwan Semiconductor Manufacturing Co., Ltd. Nickelide source/drain structures for CMOS transistors
US20130299895A1 (en) 2012-05-09 2013-11-14 Taiwan Semiconductor Manufacturing Co., Ltd. Iii-v compound semiconductor device having dopant layer and method of making the same
US9252237B2 (en) 2012-05-09 2016-02-02 Taiwan Semiconductor Manufacturing Company, Ltd. Transistors, semiconductor devices, and methods of manufacture thereof
CN105633169A (zh) * 2016-03-04 2016-06-01 西安电子科技大学 基于InAs材料的铁电场效应晶体管及其制备方法
CN106568548A (zh) * 2016-10-27 2017-04-19 北京遥测技术研究所 基于soi‑mems技术的电容式绝压微压气压传感器
WO2018182687A1 (en) * 2017-03-31 2018-10-04 Intel Corporation Field effect transistor structures
US10468494B2 (en) * 2018-02-09 2019-11-05 United Microelectronics Corp. High-voltage device and method for fabricating the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093947A (en) * 1998-08-19 2000-07-25 International Business Machines Corporation Recessed-gate MOSFET with out-diffused source/drain extension
US20030227029A1 (en) * 2002-06-07 2003-12-11 Amberwave Systems Corporation Elevated source and drain elements for strained-channel heterojuntion field-effect transistors
US20040041169A1 (en) * 2002-08-26 2004-03-04 Fan Ren GaN-type enhancement MOSFET using hetero structure
US6713819B1 (en) * 2002-04-08 2004-03-30 Advanced Micro Devices, Inc. SOI MOSFET having amorphized source drain and method of fabrication
US6891234B1 (en) * 2004-01-07 2005-05-10 Acorn Technologies, Inc. Transistor with workfunction-induced charge layer
JP2005175378A (ja) * 2003-12-15 2005-06-30 Sharp Corp 半導体装置およびその製造方法
US20060281285A1 (en) * 2005-06-13 2006-12-14 Sharp Kabushiki Kaisha Semiconductor device and a method of manufacturing the same
US20080048216A1 (en) * 2006-05-30 2008-02-28 Ye Peide D Apparatus and method of forming metal oxide semiconductor field-effect transistor with atomic layer deposited gate dielectric
US20080286589A1 (en) * 2001-10-02 2008-11-20 Asm America, Inc. Incorporation of nitrogen into high k dielectric film
US7564081B2 (en) * 2005-11-30 2009-07-21 International Business Machines Corporation finFET structure with multiply stressed gate electrode

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1503411A (en) * 1976-01-16 1978-03-08 Nat Res Dev Gaas mosfet
GB1536177A (en) * 1976-12-07 1978-12-20 Nat Res Dev Anodising a compound semiconductor
US4291327A (en) * 1978-08-28 1981-09-22 Bell Telephone Laboratories, Incorporated MOS Devices
US4312113A (en) * 1978-10-23 1982-01-26 Eaton Corporation Method of making field-effect transistors with micron and submicron gate lengths
US4226667A (en) * 1978-10-31 1980-10-07 Bell Telephone Laboratories, Incorporated Oxide masking of gallium arsenide
IT1171402B (it) * 1981-07-20 1987-06-10 Selenia Ind Eletroniche Associ Transistor ad effeto di campo a barriera metallo-semiconduttorre conzona svuotata modificata
US4525239A (en) * 1984-04-23 1985-06-25 Hewlett-Packard Company Extrinsic gettering of GaAs wafers for MESFETS and integrated circuits
JPS60239066A (ja) * 1984-05-11 1985-11-27 Hitachi Ltd 半導体装置
US5273937A (en) * 1988-01-08 1993-12-28 Kabushiki Kaisha Toshiba Metal semiconductor device and method for producing the same
US5188978A (en) * 1990-03-02 1993-02-23 International Business Machines Corporation Controlled silicon doping of III-V compounds by thermal oxidation of silicon capping layer
JP2773449B2 (ja) * 1991-04-10 1998-07-09 日立電線株式会社 金属絶縁物半導体電界効果トランジスタ
US5597768A (en) * 1996-03-21 1997-01-28 Motorola, Inc. Method of forming a Ga2 O3 dielectric layer
US5920105A (en) * 1996-09-19 1999-07-06 Fujitsu Limited Compound semiconductor field effect transistor having an amorphous gas gate insulation layer
JPH10150185A (ja) * 1996-11-20 1998-06-02 Mitsubishi Electric Corp 半導体装置及びその製造方法
US5902130A (en) * 1997-07-17 1999-05-11 Motorola, Inc. Thermal processing of oxide-compound semiconductor structures
US5958519A (en) * 1997-09-15 1999-09-28 National Science Council Method for forming oxide film on III-V substrate
US5945718A (en) * 1998-02-12 1999-08-31 Motorola Inc. Self-aligned metal-oxide-compound semiconductor device and method of fabrication
US6200866B1 (en) * 1998-02-23 2001-03-13 Sharp Laboratories Of America, Inc. Use of silicon germanium and other alloys as the replacement gate for the fabrication of MOSFET
JP3449535B2 (ja) * 1999-04-22 2003-09-22 ソニー株式会社 半導体素子の製造方法
US6756320B2 (en) * 2002-01-18 2004-06-29 Freescale Semiconductor, Inc. Method of forming article comprising an oxide layer on a GaAs-based semiconductor structure
US7442654B2 (en) * 2002-01-18 2008-10-28 Freescale Semiconductor, Inc. Method of forming an oxide layer on a compound semiconductor structure
JP4134575B2 (ja) * 2002-02-28 2008-08-20 松下電器産業株式会社 半導体装置およびその製造方法
US6989556B2 (en) * 2002-06-06 2006-01-24 Osemi, Inc. Metal oxide compound semiconductor integrated transistor devices with a gate insulator structure
US6770536B2 (en) * 2002-10-03 2004-08-03 Agere Systems Inc. Process for semiconductor device fabrication in which a insulating layer is formed on a semiconductor substrate
US6963090B2 (en) * 2003-01-09 2005-11-08 Freescale Semiconductor, Inc. Enhancement mode metal-oxide-semiconductor field effect transistor
US7045404B2 (en) 2004-01-16 2006-05-16 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
US7385247B2 (en) * 2004-01-17 2008-06-10 Samsung Electronics Co., Ltd. At least penta-sided-channel type of FinFET transistor
KR100625175B1 (ko) * 2004-05-25 2006-09-20 삼성전자주식회사 채널층을 갖는 반도체 장치 및 이를 제조하는 방법
KR100604870B1 (ko) * 2004-06-16 2006-07-31 삼성전자주식회사 접합 영역의 어브럽트니스를 개선시킬 수 있는 전계 효과트랜지스터 및 그 제조방법
KR100541515B1 (ko) * 2004-07-22 2006-01-11 삼성전자주식회사 수직 채널 패턴을 갖는 반도체 장치 및 이를 제조하는 방법
US7429506B2 (en) * 2005-09-27 2008-09-30 Freescale Semiconductor, Inc. Process of making a III-V compound semiconductor heterostructure MOSFET
US20070120153A1 (en) * 2005-11-29 2007-05-31 Advanced Analogic Technologies, Inc. Rugged MESFET for Power Applications
US20070131938A1 (en) * 2005-11-29 2007-06-14 Advanced Analogic Technologies, Inc. Merged and Isolated Power MESFET Devices
US20080068868A1 (en) * 2005-11-29 2008-03-20 Advanced Analogic Technologies, Inc. Power MESFET Rectifier
KR100653536B1 (ko) * 2005-12-29 2006-12-05 동부일렉트로닉스 주식회사 반도체 소자의 핀 전계효과 트랜지스터 제조방법
JP4271210B2 (ja) * 2006-06-30 2009-06-03 株式会社東芝 電界効果トランジスタ、集積回路素子、及びそれらの製造方法
US7682912B2 (en) * 2006-10-31 2010-03-23 Freescale Semiconductor, Inc. III-V compound semiconductor device with a surface layer in access regions having charge of polarity opposite to channel charge and method of making the same
US7943469B2 (en) * 2006-11-28 2011-05-17 Intel Corporation Multi-component strain-inducing semiconductor regions
KR100864631B1 (ko) * 2007-02-23 2008-10-22 주식회사 하이닉스반도체 반도체 소자의 트랜지스터 및 그 제조 방법
US7435636B1 (en) * 2007-03-29 2008-10-14 Micron Technology, Inc. Fabrication of self-aligned gallium arsenide MOSFETs using damascene gate methods
JP2008277640A (ja) * 2007-05-02 2008-11-13 Toshiba Corp 窒化物半導体素子
US7812370B2 (en) 2007-07-25 2010-10-12 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel field-effect transistor with narrow band-gap channel and strong gate coupling
JP5448530B2 (ja) * 2009-03-31 2014-03-19 古河電気工業株式会社 電界効果トランジスタ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093947A (en) * 1998-08-19 2000-07-25 International Business Machines Corporation Recessed-gate MOSFET with out-diffused source/drain extension
US20080286589A1 (en) * 2001-10-02 2008-11-20 Asm America, Inc. Incorporation of nitrogen into high k dielectric film
US6713819B1 (en) * 2002-04-08 2004-03-30 Advanced Micro Devices, Inc. SOI MOSFET having amorphized source drain and method of fabrication
US20030227029A1 (en) * 2002-06-07 2003-12-11 Amberwave Systems Corporation Elevated source and drain elements for strained-channel heterojuntion field-effect transistors
US20040041169A1 (en) * 2002-08-26 2004-03-04 Fan Ren GaN-type enhancement MOSFET using hetero structure
JP2005175378A (ja) * 2003-12-15 2005-06-30 Sharp Corp 半導体装置およびその製造方法
US6891234B1 (en) * 2004-01-07 2005-05-10 Acorn Technologies, Inc. Transistor with workfunction-induced charge layer
US20060281285A1 (en) * 2005-06-13 2006-12-14 Sharp Kabushiki Kaisha Semiconductor device and a method of manufacturing the same
US7564081B2 (en) * 2005-11-30 2009-07-21 International Business Machines Corporation finFET structure with multiply stressed gate electrode
US20080048216A1 (en) * 2006-05-30 2008-02-28 Ye Peide D Apparatus and method of forming metal oxide semiconductor field-effect transistor with atomic layer deposited gate dielectric

Also Published As

Publication number Publication date
EP2299480A3 (en) 2013-06-05
JP5334934B2 (ja) 2013-11-06
EP2299480A2 (en) 2011-03-23
CN102024850A (zh) 2011-04-20
TW201112420A (en) 2011-04-01
KR101145991B1 (ko) 2012-05-15
CN102024850B (zh) 2012-11-14
KR20110031078A (ko) 2011-03-24
JP2011066415A (ja) 2011-03-31
US20110068348A1 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
TWI419331B (zh) 金氧半導體場效電晶體及其製造方法
Johansson et al. High-frequency gate-all-around vertical InAs nanowire MOSFETs on Si substrates
US20100276662A1 (en) Junctionless metal-oxide-semiconductor transistor
US8829576B2 (en) Semiconductor structure and method of manufacturing the same
CN106449763B (zh) 一种薄膜晶体管及制造方法和显示器面板
KR101637852B1 (ko) 연장된 게이트 유전체층을 갖는 금속-산화물-반도체 전계-효과 트랜지스터 및 그 제조방법
TWI463653B (zh) 穿隧場效應元件
Song et al. Ultra-high aspect ratio InP junctionless FinFETs by a novel wet etching method
JP2009238955A (ja) 半導体基板、半導体装置、および半導体装置の製造方法
US8343815B2 (en) TFET with nanowire source
US20140203363A1 (en) Extremely Thin Semiconductor-On-Insulator Field-Effect Transistor With An Epitaxial Source And Drain Having A Low External Resistance
US20160133695A1 (en) A method of inhibiting leakage current of tunneling transistor, and the corresponding device and a preparation method thereof
Sahu et al. Characteristic enhancement of hetero dielectric DG TFET using SiGe pocket at source/channel interface: proposal and investigation
Chen et al. Junctionless poly-Si nanowire FET with gated raised S/D
Saitoh et al. 10nm-diameter tri-gate silicon nanowire MOSFETs with enhanced high-field transport and V th tunability through thin BOX
Goh et al. Gate-all-around In 0.53 Ga 0.47 As junctionless nanowire FET with tapered source/drain structure
CN103928342B (zh) 一种硅纳米线隧穿场效应晶体管及其制作方法
Yang et al. Suppressing the excess OFF-state current of short-channel InAs nanowire field-effect transistors by nanoscale partial-gate
Qian et al. Evaluation of DC and AC performance of junctionless MOSFETs in the presence of variability
Yeap et al. Design and characterization of a 10 nm FinFET
US9287361B2 (en) Junction-less transistor having reverse polarity structure
TW201742126A (zh) 環閘極iii-v族量子井電晶體及鍺無接面電晶體及其製造方法
JP5196470B2 (ja) 二重絶縁ゲート電界効果トランジスタ
Ke et al. Recessed source/drain for sub-50 nm UTB SOI MOSFET
Baksh et al. Design of GaAs based Junctionless field effect transistor and its performance evaluation