CN105633169A - 基于InAs材料的铁电场效应晶体管及其制备方法 - Google Patents

基于InAs材料的铁电场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN105633169A
CN105633169A CN201610124048.2A CN201610124048A CN105633169A CN 105633169 A CN105633169 A CN 105633169A CN 201610124048 A CN201610124048 A CN 201610124048A CN 105633169 A CN105633169 A CN 105633169A
Authority
CN
China
Prior art keywords
layer
ferro
field effect
effect transistor
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610124048.2A
Other languages
English (en)
Inventor
张春福
韩根全
李庆龙
冯倩
张进城
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201610124048.2A priority Critical patent/CN105633169A/zh
Publication of CN105633169A publication Critical patent/CN105633169A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种基于InAs材料的铁电场效应晶体管及其制备方法,解决现有Si基铁电栅介质场效应晶体管导通电流小和亚阈摆幅无法降低的问题。该晶体管包括:衬底1、源极2、沟道3、漏极4、绝缘电介质薄膜5、内部栅电极6、铁电栅介质层7、栅电极8;沟道3位于衬底1上方中央位置,源极3和漏极4位于在沟道3的两侧。绝缘电介质薄膜5、内部栅电极6、铁电栅介质层7及栅电极8依次由下至上竖直分布在沟道3的上方。本发明在场效应晶体管中引入InAs材料作为晶体管的沟道材料,使得该晶体管在较低工作电压的情况下能得到较低的亚阈摆幅和较高的开关速度。

Description

基于InAs材料的铁电场效应晶体管及其制备方法
技术领域
本发明属于电子技术领域,更进一步涉及微电子器件技术领域中的一种基于InAs材料的铁电场效应晶体管及其制备方法。本发明可用于高性能、低功耗大规模集成电路。
背景技术
随着集成电路的发展,芯片特征尺寸不断缩小,单个芯片上集成度随之提高,由此带来的功耗问题也愈发严重。据ITRS数据显示,特征尺寸缩小到32nm节点时,功耗会是预计趋势的8倍,即随着特征尺寸的逐步缩小,传统MOS器件就功耗方面将不能满足性能需求。除此之外,MOSFET尺寸的减小面临室温下亚阈摆幅最小为60mv/decade的限制。基于铁电栅介质的MOS场效应晶体管与传统MOSFET相比,不受该亚阈摆幅的限制,并且可以有效的降低功耗。
JaesungJo等人在“NegativeCapacitanceFieldEffectTransistorwithHysteresis-FreeSub-60-mV/decadeSwitching”(EDL.2014)中公开发表了一种基于硅材料的采用PVDF铁电材料作为栅介质的MFIS场效应晶体管。该论文中的MFIS-FET结构在传统MOSFET结构的栅介质层上增加一层铁电材料(PVDF),由于铁电材料产生的负电容效应,使得内部栅压放大,摆脱了传统MOSFET亚阈摆幅的限制,可达到48mV/decade。但是,该MFIS-FET结构仍然存在的不足之处是,其衬底采用的材料—硅的电子迁移率较低,导致晶体管的导通电流较小,亚阈摆幅进一步减小变得困难,因而无法提高晶体管的开关速度,降低晶体管的功耗,不能满足高性能器件的应用要求。
湘潭大学在其申请的专利“一种基于规整性碳纳米管条纹阵列的铁电场效应晶体管及其制备方法”(申请号:201410249488.1,公开号:104009091A)中公开了一种基于规整性碳纳米管条纹阵列的铁电场效应晶体管。该专利技术公开了一种基于规整性碳纳米管条纹阵列的铁电场效应晶体管及其制备方法。该晶体管单元结构为:底层为底电极层;中间层依次为铁电薄膜绝缘栅层和规整性碳纳米管条纹阵列沟道层,规整性碳纳米管条纹阵列沟道层上为顶层,顶层为晶体管源极和漏极。该晶体管实现了较大的导通电流和较大的开关比。但是仍然存在的不足之处是,该规整性碳纳米管条纹阵列的铁电场效应晶体管无法在增大晶体管导通电流的同时降低工作电压,导致晶体管的功耗较高;并且无法降低亚阈摆幅,进一步提高晶体管的开关速度,不能满足高速度、低功耗大规模集成电路的制造要求。
发明内容
本发明的目的在于针对上述常见铁电场效应晶体管导通电流小、亚阈摆幅大、开关速度慢的缺点,提供一种基于InAs材料的铁电场效应晶体管及其制备方法,以提高晶体管的开关速度,降低晶体管的功耗
为了实现上述目的,本发明的具体思路是:根据材料特征研究表明,Ⅲ-Ⅴ材料具有较高的电子迁移率,其中InAs材料作为Ⅲ-Ⅴ材料中的一员,其电子迁移率比Si材料的电子迁移率高一个数量级,采用InAs材料作为铁电场效应晶体管的沟道材料,能在提高晶体管的导通电流的同时降低亚阈摆幅,从而使晶体管具有开关速度快,功耗低的优点。
本发明基于InAs材料的铁电场效应晶体管包括:衬底、源极、沟道、漏极、绝缘电介质薄膜、内部栅电极、铁电栅介质层、栅电极。沟道位于衬底上方中央位置,源极和漏极分布在沟道的两侧。绝缘电介质薄膜、内部栅电极、铁电栅介质层及栅电极依次由下至上竖直分布在沟道的上方。源极、沟道、漏极均采用InAs材料。
本发明基于InAs材料的铁电场效应晶体管的制备方法,包括如下步骤:
(1)外延生长InAs层:
利用分子束外延工艺,在In0.52Al0.48As衬底(1)上生长InAs层;
(2)光刻形成有源层:
利用光刻工艺,在InAs层上形成源极层(2)、沟道(3)、漏极层(4),其中沟道(3)位于InAs层正中央,源极层(2)和漏极层(4)分别位于于沟道(3)两侧;
(3)掺杂形成源极区、漏极区:
利用离子注入工艺,对源极层和漏极层进行离子注入,形成源极区(2)和漏极区(4);
(4)激活:
在400℃条件下对源极区(2)和漏极区(4)热退火5min进行激活处理,得到源极(2)和漏极(4);
(5)淀积HfO2层:
利用原子层淀积工艺,在步骤(2)形成的有源层上方淀积HfO2,形成绝缘电介质薄膜(5);
(6)淀积内部栅电极:
利用磁控溅射工艺,在绝缘电介质薄膜(5)上淀积TiN,形成内部栅电极(6);
(7)淀积铁电栅介质层:
利用旋涂工艺,在内部栅电极(6)上淀积一层PVDF铁电材料,形成铁电栅介质层(7);
(8)淀积栅电极:
利用磁控溅射工艺,在铁电栅介质层(7)上淀积TiN,形成栅电极(8);
(9)刻蚀:
刻蚀源极(2)和漏极(4)上方的HfO2/TiN/PVDF/TiN,完成晶体管的制作。
本发明与现有技术相比具有如下优点:
第一,由于本发明源极、沟道、漏极均采用InAs材料,其电子迁移率较高,克服了现有技术中铁电场效应晶体管导通电流较小的缺点,因而使得本发明基于InAs材料的铁电场效应晶体管具有更高的导通电流,减小了器件的延迟,在高性能大规模集成电路领域中具有广泛的应用前景。
第二,由于本发明应用了铁电材料的负电容效应,结合电子迁移率更高的沟道材料,克服了现有技术中铁电栅介质场效应晶体管亚阈摆幅较大的缺点,因而使得本发明基于InAs材料的铁电场效应晶体管在较低工作电压的情况下,实现了更低的亚阈摆幅和更高的开关速度,成功降低了晶体管的功耗。
附图说明
图1为本发明晶体管的剖面图;
图2为本发明制作方法的流程图;
图3为本发明制作方法步骤对应的结果图。
具体实施方式
下面结合附图对本发明做进一步的说明。
参照图1,本发明基于InAs材料的铁电场效应晶体管包括:衬底1、源极2、沟道3、漏极4、绝缘电介质薄膜5、内部栅电极6、铁电栅介质层7、栅电极8。沟道3位于衬底1上方中央位置,源极2和漏极4位于在沟道3的两侧。绝缘电介质薄膜5、内部栅电极6、铁电栅介质层7及栅电极8依次由下至上竖直分布在沟道3的上方。源极2、沟道3、漏极4均采用电子迁移率较高的InAs材料。
参照附图2,本发明基于InAs材料的铁电场效应晶体管的制备方法如下。
步骤1.外延生长InAs层。
利用分子束外延工艺,以固体In和As作为蒸发源,在200℃的条件下在In0.52Al0.48As衬底上外延生长InAs。
步骤2.光刻形成有源层。
利用光刻工艺,在InAs层上形成源极层、沟道、漏极层,其中沟道位于InAs层正中央,源极层和漏极层分别位于于沟道两侧,所采用的光刻工艺是365nmI线光刻工艺。
步骤3.掺杂形成源极区、漏极区。
利用离子注入工艺,对源极层和漏极层注入能量为20KeV、剂量为1019cm-3的Te元素,形成N+型源极区和N+型漏极区。
步骤4.激活。
在400℃条件下对源极区和漏极区热退火5min进行激活处理,得到源极和漏极。
步骤5.淀积HfO2层。
利用原子层淀积工艺,在温度为280℃,压强为15hPa的环境下,在步骤2形成的有源层上方淀积厚度为8nm的HfO2层,形成绝缘电介质薄膜。
步骤6.淀积内部栅电极。
利用磁控溅射工艺,设置溅射温度为300℃,在绝缘电介质薄膜上淀积厚度为120nm的TiN,形成内部栅电极。
步骤7.淀积铁电栅介质层。
利用旋涂工艺,在内部栅电极上淀积一层厚度为40nm的PVDF,形成铁电栅介质。
步骤8.淀积栅电极。
利用磁控溅射工艺,设置溅射温度为300℃,在铁电栅介质层上淀积一层厚度为80nm的TiN,形成栅电极。
步骤9.刻蚀。
刻蚀源极和漏极上方的HfO2/TiN/PVDF/TiN,完成晶体管的制作。
下面通过一个实施例,对本发明的制备方法做进一步的描述。
实施案例1:制作基于InAs材料的铁电场效应晶体。
步骤1.外延生长InAs层。
利用分子束外延工艺,在In0.52Al0.48As衬底上以固体In和As作为蒸发源,200℃、的条件下外延生长InAs层。图3(a)为外延生长InAs层后的结果示意图。
步骤2.光刻形成有源层。
利用365nmI线光刻工艺,在InAs层上形成源极层、沟道、漏极层,其中沟道位于InAs层正中央,源极层和漏极层分别位于于沟道两侧。图3(b)为形成源极层、沟道、漏极层后的结果示意图。
步骤3.掺杂形成源极区、漏极区。
在源极区和漏极区中注入能量为20KeV、剂量为1019cm-3的Te元素,形成N+型源极区和N+型漏极区。图3(c)为形成N+型源极区和N+型漏极区后的结果示意图。
步骤4.淀积HfO2层。
利用原子层淀积工艺,在环境温度为280℃,压强为15hPa的条件下,在步骤2形成的有源层上方生长厚度为8nm的HfO2。图3(d)为生长HfO2层后的结果示意图。
步骤5.淀积内部栅电极。
利用磁控溅射工艺,在温度为300℃,压强为0.32Pa,溅射功率为115W的条件下,在HfO2上生长120nm的TiN。图3(e)为淀积内部栅电极后的结果示意图。
步骤6.淀积铁电栅介质层。
利用旋涂工艺,以甲基乙基酮溶液为源制备40nm的PVDF铁电材料,并进行退火处理,去除界面残留溶剂及保证薄膜具有良好结晶特性。图3(f)为淀积铁电栅介质层后的结果示意图。
步骤7.淀积栅电极。
利用磁控溅射工艺,在温度为300℃,压强为0.32Pa,溅射功率为115W的条件下,在铁电栅介质层上生长80nm的TiN。图3(g)为淀积栅电极后的结果示意图。
步骤8.刻蚀。
利用刻蚀工艺,采用氯基原子团作为刻蚀剂,在光刻胶的掩蔽作用下,将源极和漏极上方HfO2/TiN/PVDF/TiN部分刻蚀掉,完成器件的制作。图3(g)为器件制作完毕后的结果示意图。

Claims (10)

1.一种基于InAs材料的铁电场效应晶体管,包括:衬底(1)、源极(2)、沟道(3)、漏极(4)、绝缘电介质薄膜(5)、内部栅电极(6)、铁电栅介质层(7)、栅电极(8);所述的沟道(3)位于衬底(1)上方中央位置,源极(2)和漏极(4)分布在沟道(3)的两侧;所述的绝缘电介质薄膜(5)、内部栅电极(6)、铁电栅介质层(7)及栅电极(8)依次由下至上竖直分布在沟道(3)的上方;其特征在于:所述的源极(2)、沟道(3)、漏极(4)均采用InAs材料。
2.根据权利要求1所述基于InAs材料的铁电场效应晶体管,其特征在于,所述衬底(1)采用In0.52Al0.48As材料。
3.一种基于InAs材料的铁电场效应晶体管制作方法,包括如下步骤:
(1)外延生长InAs层:
利用分子束外延工艺,在In0.52Al0.48As衬底(1)上生长InAs层;
(2)光刻形成有源层:
利用光刻工艺,在InAs层上形成源极层(2)、沟道(3)、漏极层(4),其中沟道(3)位于InAs层正中央,源极层(2)和漏极层(4)分别位于于沟道(3)两侧;
(3)掺杂形成源极区、漏极区:
利用离子注入工艺,对源极层和漏极层进行离子注入,形成源极区(2)和漏极区(4);
(4)激活:
在400℃条件下对源极区(2)和漏极区(4)热退火5min进行激活处理,得到源极(2)和漏极(4);
(5)淀积HfO2层:
利用原子层淀积工艺,在步骤(2)形成的有源层上方淀积HfO2,形成绝缘电介质薄膜(5);
(6)淀积内部栅电极:
利用磁控溅射工艺,在绝缘电介质薄膜(5)上淀积TiN,形成内部栅电极(6);
(7)淀积铁电栅介质层:
利用旋涂工艺,在内部栅电极(6)上淀积一层PVDF铁电材料,形成铁电栅介质层(7);
(8)淀积栅电极:
利用磁控溅射工艺,在铁电栅介质层(7)上淀积TiN,形成栅电极(8);
(9)刻蚀:
刻蚀源极(2)和漏极(4)上方的HfO2/TiN/PVDF/TiN,完成晶体管的制作。
4.根据权利要求3所述的基于InAs材料的铁电场效应晶体管制作方法,其特征在于,步骤(1)中所述的分子束外延工艺,是以固体In和As作为蒸发源,在200℃的条件下外延生长InAs层。
5.根据权利要求3所述的基于InAs材料的铁电场效应晶体管制作方法,其特征在于,步骤(2)中所述的光刻工艺是采用365nmI线光刻工艺。
6.根据权利要求3所述的基于InAs材料的铁电场效应晶体管制作方法,其特征在于,步骤(3)所述的离子注入工艺条件为:能量为20KeV、剂量为1019cm-3的Te元素。
7.根据权利要求3所述的基于InAs材料的铁电场效应晶体管制作方法,其特征在于,步骤(5)所述的原子层淀积工艺的温度为280℃;利用原子层淀积工艺淀积的HfO2层的厚度为8nm。
8.根据权利要求3所述的基于InAs材料的铁电场效应晶体管制作方法,其特征在于,步骤(7)所述的内部栅电极(6)上淀积的PVDF层的厚度为40nm。
9.根据权利要求3所述的基于GeSn材料的铁电场效应晶体管制作方法,其特征在于,步骤(6)和步骤(8)中所述的磁控溅射工艺的温度为300℃。
10.根据权利要求3所述的基于GeSn材料的铁电场效应晶体管制作方法,其特征在于,步骤(6)和步骤(8)中所述的TiN的厚度分别为120nm和80nm。
CN201610124048.2A 2016-03-04 2016-03-04 基于InAs材料的铁电场效应晶体管及其制备方法 Pending CN105633169A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610124048.2A CN105633169A (zh) 2016-03-04 2016-03-04 基于InAs材料的铁电场效应晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610124048.2A CN105633169A (zh) 2016-03-04 2016-03-04 基于InAs材料的铁电场效应晶体管及其制备方法

Publications (1)

Publication Number Publication Date
CN105633169A true CN105633169A (zh) 2016-06-01

Family

ID=56047906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610124048.2A Pending CN105633169A (zh) 2016-03-04 2016-03-04 基于InAs材料的铁电场效应晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN105633169A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400165A (zh) * 2018-03-22 2018-08-14 武汉大学 低功耗氮化镓基负电容场效应晶体管及制备方法
CN112578012A (zh) * 2020-12-08 2021-03-30 湘潭大学 碳基场效应晶体管传感器
CN112697843B (zh) * 2020-12-08 2023-10-03 湘潭大学 基于负电容效应的碳基场效应晶体管传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1211827A (zh) * 1997-09-15 1999-03-24 国际商业机器公司 带有阻性耦合浮栅的铁电存储晶体管
US20020098599A1 (en) * 2000-02-24 2002-07-25 Hidemi Takasu Method of manufacturing ferroelectric memory device
CN102024850A (zh) * 2009-09-18 2011-04-20 台湾积体电路制造股份有限公司 金属氧化物半导体场效应晶体管及其制造方法
US20150311349A1 (en) * 2014-04-24 2015-10-29 Micron Technology, Inc. Ferroelectric Field Effect Transistors, Pluralities Of Ferroelectric Field Effect Transistors Arrayed In Row Lines And Column Lines, And Methods Of Forming A Plurality Of Ferroelectric Field Effect Transistors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1211827A (zh) * 1997-09-15 1999-03-24 国际商业机器公司 带有阻性耦合浮栅的铁电存储晶体管
US20020098599A1 (en) * 2000-02-24 2002-07-25 Hidemi Takasu Method of manufacturing ferroelectric memory device
CN102024850A (zh) * 2009-09-18 2011-04-20 台湾积体电路制造股份有限公司 金属氧化物半导体场效应晶体管及其制造方法
US20150311349A1 (en) * 2014-04-24 2015-10-29 Micron Technology, Inc. Ferroelectric Field Effect Transistors, Pluralities Of Ferroelectric Field Effect Transistors Arrayed In Row Lines And Column Lines, And Methods Of Forming A Plurality Of Ferroelectric Field Effect Transistors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400165A (zh) * 2018-03-22 2018-08-14 武汉大学 低功耗氮化镓基负电容场效应晶体管及制备方法
CN112578012A (zh) * 2020-12-08 2021-03-30 湘潭大学 碳基场效应晶体管传感器
CN112578012B (zh) * 2020-12-08 2023-06-27 湘潭大学 碳基场效应晶体管传感器
CN112697843B (zh) * 2020-12-08 2023-10-03 湘潭大学 基于负电容效应的碳基场效应晶体管传感器

Similar Documents

Publication Publication Date Title
CN102543886B (zh) 一种栅控二极管半导体存储器器件的制造方法
CN104766888A (zh) 高介电常数栅介质复合沟道场效应晶体管及其制备方法
CN103811549A (zh) 横向mosfet
WO2012159424A1 (zh) 一种基于湿法腐蚀制备硅纳米线场效应晶体管的方法
CN102130014B (zh) 一种FinFET晶体管的制作方法
CN101969061A (zh) 一种鳍型隧穿晶体管集成电路及其制造方法
US20210083050A1 (en) Silicon nanotube, negative-capacitance transistor with ferroelectric layer and method of making
CN108807553B (zh) 一种基于二维半导体材料的同质pn结及其制备方法
CN105405893A (zh) 一种平面分离双栅薄膜晶体管及其制备方法
Wu et al. High-performance polycrystalline silicon thin-film transistor with multiple nanowire channels and lightly doped drain structure
CN102569066B (zh) 栅控二极管半导体器件的制备方法
CN105633169A (zh) 基于InAs材料的铁电场效应晶体管及其制备方法
CN108417636A (zh) 一种二维相变场效应晶体管及其制备方法
CN102543723A (zh) 一种栅控二极管半导体器件的制造方法
CN105762178A (zh) 基于GeSn材料的铁电场效应晶体管及其制备方法
CN102592997B (zh) 一种栅控二极管半导体器件的制造方法
WO2021037335A1 (en) A negative quantum capacitance field effect transistor
US20210336055A1 (en) Semiconductor device, method of fabricating the same, and electronic apparatus including the same
US11715744B2 (en) Array substrate, preparation method thereof, and display panel
CN104425269B (zh) 鳍式场效应晶体管及其形成方法
CN110634955B (zh) 基于体硅的新型半导体场效应正反馈晶体管及制备方法
CN104867834A (zh) 基于soi衬底的单杂质原子无结硅纳米线晶体管及制备方法
CN103840005A (zh) 具有SiGeSn源漏的鳍式场效应晶体管及其形成方法
Chandan et al. A fair comparison of the performance of charge plasma and electrostatic tunnel FETs for low-power high-frequency applications
Lim et al. High-performance microwave-annealed indium-gallium-zinc oxide thin-film-transistors with buried conductive layers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160601